
M A N N I N G

Morgan Bruce
Paulo A. Pereira

Sample Chapter

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

A microservice production environment

Control paneRuntime
management

Manages

N
et

w
or

k
an

d
ro

ut
in

g

Connects

O
bs

er
va

bi
lit

y

Observes

Deployment pipeline

Monitors

Engineers

Writes

Code

Production

A microservice production environment has several components: a deployment target,
a deployment pipeline, runtime management, networking features, and support for

observability. In this book, we'll teach you about these components and how you can use
them to build a stable, modern microservice application.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

Microservices in Action

by Morgan Bruce
Paulo A. Pereira

Chapter 1

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

v

brief contents

Part 1	 The lay of the land.. 1
1	■	 Designing and running microservices  3
2	■	 Microservices at SimpleBank  28

Part 2	 Design..49
3	■	 Architecture of a microservice application  51
4	■	 Designing new features  75
5	■	 Transactions and queries in microservices   105
6	■	 Designing reliable services  129
7	■	 Building a reusable microservice framework  159

Part 3	 Deployment...185
8	■	 Deploying microservices  187
9	■	 Deployment with containers and schedulers  214

10	■	 Building a delivery pipeline for microservices  243

Part 4	 Observability and ownership..............................267
11	■	 Building a monitoring system  269
12	■	 Using logs and traces to understand behavior  296
13	■	 Building microservice teams  325

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

Part 1

The lay of the land

This part introduces microservice architecture, explores the properties and
benefits of microservice applications, and presents some of the challenges you’ll
face in developing microservice applications. We’ll also introduce SimpleBank, a
fictional company whose attempts to build a microservice application will be the
common thread in many examples used in this book.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

3

1Designing and
running microservices

This chapter covers
¡	Defining a microservice application

¡	The challenges of a microservices approach

¡	Approaches to designing a microservice
application

¡	Approaches to running microservices
successfully

Software developers strive to craft effective and timely solutions to complex prob-
lems. The first problem you usually try to solve is: What does your customer want? If
you’re skilled (or lucky), you get that right. But your efforts rarely stop there. Your
successful application continues to grow: you debug issues; you build new features;
you keep it available and running smoothly.

Even the most disciplined teams can struggle to sustain their early pace and agility
in the face of a growing application. At worst, your once simple and stable product
becomes both intractable and delicate. Instead of sustainably delivering more value to
your customers, you’re fatigued from outages, anxious about releasing, and too slow to
deliver new features or fixes. Neither your customers nor your developers are happy.

Microservices promise a better way to sustainably deliver business impact. Rather
than a single monolithic unit, applications built using microservices are made up of

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

4 Chapter 1  Designing and running microservices

loosely coupled, autonomous services. By building services that do one thing well, you
can avoid the inertia and entropy of large applications. Even in existing applications,
you can progressively extract functionality into independent services to make your
whole system more maintainable.

When we started working with microservices, we quickly realized that building smaller
and more self-contained services was only one part of running a stable and business-critical
application. After all, any successful application will spend much more of its life in pro-
duction than in a code editor. To deliver value with microservices, our team couldn’t be
focused on build alone. We needed to be skilled at operations: deployment, observation,
and diagnosis.

1.1	 What is a microservice application?
A microservice application is a collection of autonomous services, each of which does
one thing well, that work together to perform more intricate operations. Instead of a
single complex system, you build and manage a suite of relatively simple services that
might interact in complex ways. These services collaborate with each other through
technology-agnostic messaging protocols, either point-to-point or asynchronously.

This might seem like a simple idea, but it has striking implications for reducing friction in
the development of complex systems. Classical software engineering practice advocates high
cohesion and loose coupling as desirable properties of a well-engineered system. A system that
has these properties will be easier to maintain and more malleable in the face of change.

Cohesion is the degree to which elements of a certain module belong together, whereas
coupling is the degree to which one element knows about the inner workings of another.
Robert C. Martin’s Single Responsibility Principle is a useful way to consider the former:

Gather together the things that change for the same reasons. Separate those things that
change for different reasons.

In a monolithic application, you try to design for these properties at a class, module,
or library level. In a microservice application, you aim instead to attain these proper-
ties at the level of independently deployable units of functionality. A single microservice
should be highly cohesive: it should be responsible for some single capability within an
application. Likewise, the less that each service knows about the inner workings of other
services, the easier it is to make changes to one service — or capability — without forcing
changes to others.

To get a better picture of how a microservice application fits together, let’s start by
considering some of the features of an online investment tool:

¡	Opening an account
¡	Depositing and withdrawing money
¡	Placing orders to buy or sell positions in financial products (for example, shares)
¡	Modeling risk and making financial predictions

Let’s explore the process of selling shares:

1	 A user creates an order to sell some shares of a stock from their account.

2	 This position is reserved on their account, so it can’t be sold multiple times.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 5What is a microservice application?

3	 It costs money to place an order on the market — the account is charged a fee.

4	 The system needs to communicate that order to the appropriate stock market.

Figure 1.1 shows how placing that sell order might look as part of a microservice
application.

You can observe three key characteristics of microservices in figure 1.1:

¡	Each microservice is responsible for a single capability. This might be business related or
represent a shared technical capability, such as integration with a third party (for example,
the stock exchange).

¡	A microservice owns its data store, if it has one. This reduces coupling between
services because other services can only access data they don’t own through the
interface that a service provides.

¡	Microservices themselves, not the messaging mechanism that connects them nor
another piece of software, are responsible for choreography and collaboration  — the
sequencing of messages and actions to perform some useful activity.

Transaction
database

User

1. Places order to sell
100 units of Stock A
from account ABC

2. Records order
details in database

3. Requests reservation
of 100 units of Stock A
against account ABC

4. Records reserved
stock position against
account ABC

5. Requests calculation
of fee

6. Requests placement
of order to market

7. Places order onto
stock exchange

Account
transactions

service

Orders service

Fees service

Fee rules
database

Market service Stock exchange
Order

database

Figure 1.1   The flow of communication through microservices in an application that allows users to sell
positions in financial shares

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

6 Chapter 1  Designing and running microservices

In addition to these three characteristics, you can identify two more fundamental attri-
butes of microservices:

¡	Each microservice can be deployed independently. Without this, a microservice
application would still be monolithic at the point of deployment.

¡	A microservice is replaceable. Having a single capability places natural bounds on
size; likewise, it makes the individual responsibility, or role, of a service easy to
comprehend.

The idea that microservices are responsible for coordinating actions in a system is the
crucial difference between this approach and traditional service-oriented architec-
tures (SOAs). Those types of systems often used enterprise service buses (ESBs) or
more complex orchestration standards to externalize messaging and process orches-
tration from applications themselves. In that model, services often lacked cohesion,
as business logic was increasingly added to the service bus, rather than the services
themselves.

It’s interesting to think about how decoupling functionality in the online investment
system helps you be more flexible in the face of changing requirements. Imagine that
you need to change how fees are calculated. You could make and release those changes
to the fees service without any change to its upstream or downstream services. Or imag-
ine an entirely new requirement: when an order is placed, you need to alert your risk
team if it doesn’t match normal trading patterns. It’d be easy to build a new microser-
vice to perform that operation based on an event raised by the orders service without
changing the rest of the system.

1.1.1	 Scaling through decomposition

You also can consider how microservices allow you to scale an application. In The Art
of Scalability, Abbott and Fisher define three dimensions of scale as the scale cube (fig-
ure 1.2).

Monolithic applications typically scale through horizontal duplication: deploying
multiple, identical instances of the application. This is also known as cookie-cutter,
or X-axis, scaling. Conversely, microservice applications are an example of Y-axis scal-
ing, where you decompose a system to address the unique scaling needs of different
functionality.

NOTE    The Z axis refers to horizontal data partitions: sharding. You can apply
sharding to either approach — microservices or monolithic applications — but
we won’t be exploring that topic in this book.

Let’s revisit the investment tool as an example, with the following characteristics:

¡	Financial predictions might be computationally onerous and are rarely done.
¡	Complex regulatory and business rules may govern investment accounts.
¡	Market trading may happen in extremely large volumes, while also relying on

minimizing latency.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 7What is a microservice application?

Z axis–data
partitioning
Scale by splitting
similar things

Y axis–functional
decomposition

Scale by splitting
different things

x axis–horizontal duplication
Scale by cloning

Figure 1.2   The three dimensions of scaling an application

If you build features as microservices that meet the requirements of these characteristics,
you can choose the ideal technical tools to solve each problem, rather than trying to fit
square pegs into round holes. Likewise, autonomy and independent deployment mean
you can manage the microservices’ underlying resource needs separately. Interestingly,
this also implies a natural way to limit failure: if your financial prediction service fails,
that failure is unlikely to cascade to the market trading or investment account services.

Microservice applications have some interesting technical properties:

¡	Building services along the lines of single capabilities places natural bounds on
size and responsibility.

¡	Autonomy allows you to develop, deploy, and scale services independently.

1.1.2	 Key principles

Five cultural and architectural principles underpin microservices development:

¡	Autonomy
¡	Resilience
¡	Transparency
¡	Automation
¡	Alignment

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

8 Chapter 1  Designing and running microservices

These principles should drive your technical and organizational decisions when you’re
building and running a microservice application. Let’s explore each of them.

Autonomy

We’ve established that microservices are autonomous  — each service operates and
changes independently of others. To ensure that autonomy, you need to design your ser-
vices so they are:

¡	Loosely coupled  — By interacting through clearly defined interfaces, or through
published events, each microservice remains independent of the internal imple-
mentation of its collaborators. For example, the orders service we introduced
earlier shouldn’t be aware of the implementation of the account transactions
service. This is illustrated in figure 1.3.

¡	Independently deployable  — Services will be developed in parallel, often by multi-
ple teams. Being forced to deploy them in lockstep or in an orchestrated forma-
tion would result in risky and anxious deployments. Ideally, you want to use your
smaller services to enable rapid, frequent, and small releases.

Autonomy is also cultural. It’s vital that you delegate accountability for and ownership
of services to teams responsible for delivering business impact. As we’ve established,
organizational design has an influence on system design. Clear service ownership
allows teams to build iteratively and make decisions based on their local context and
goals. Likewise, this model is ideal for promoting end-to-end ownership, where a team
is responsible for a service in both development and production.

NOTE    In chapter 13, we’ll discuss developing responsible and autonomous
engineering teams and why this is crucial when working with microservices.

Messaging between
services should be language

agnostic—for example
gRPC, Thrift, JSON+HTTP.

A service exposes a
contract. Messages are

constructed according to
this contract.

Internal implementation is
irrelevant to the caller, as long

as it meets the contract.

ImplementsUsesOrders service

Messaging

Account
transactions

service

Contract

Figure 1.3   You can loosely couple services by having them communicate through defined contracts
that hide implementation details.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 9What is a microservice application?

Resilience

Microservices are a natural mechanism for isolating failure: if you deploy them inde-
pendently, application or infrastructure failure may only affect part of your system.
Likewise, being able to deploy smaller bits of functionality should help you change
your system more gradually, rather than releasing a risky big bang of new functionality.

Consider the investment tool again. If the market service is unavailable, it won’t be
able to place the order to market. But a user can still request the order, and the service
can pick it up later when the downstream functionality becomes available.

Although splitting your application into multiple services can isolate failure, it
also will multiply points of failure. In addition, you’ll need to account for what hap-
pens when failure does occur to prevent cascades. This involves both design — favor-
ing asynchronous interaction where possible and using circuit breakers and timeouts
appropriately — and operations — using provable continuous delivery techniques and
robustly monitoring system activity.

Transparency

Most importantly, you need to know when a failure has occurred, and rather than one
system, a microservice application depends on the interaction and behavior of mul-
tiple services, possibly built by different teams. At any point, your system should be
transparent and observable to ensure that you both observe and diagnose problems.

 Every service in your application will produce business, operational, and infrastruc-
ture metrics; application logs; and request traces. As a result, you’ll need to make sense
of a huge amount of data.

Automation

It might seem counterintuitive to alleviate the pain of a growing application by build-
ing a multitude of services. It’s true that microservices are a more complex architecture
than building a single application. By embracing automation and seeking consistency
in the infrastructure between services, you can significantly reduce the cost of managing
this additional complexity. You need to use automation to ensure the correctness of
deployments and system operation.

It’s not a coincidence that the popularity of microservice architecture parallels both
the increasing mainstream adoption of DevOps techniques, especially infrastructure-
as-code, and the rise of infrastructure environments that are fully programmable
through APIs (such as AWS or Azure). These two trends have done a lot to make micro-
services feasible for smaller teams.

Alignment

Lastly, it’s critical that you align your development efforts in the right way. You should
aim to structure your services, and therefore your teams, around business concepts.
This leads to higher cohesion.

To understand why this is important, consider the alternative. Many traditional SOAs
deployed the technical tiers of an application separately — UI, business logic, integra-
tion, data. Figure 1.4 compares SOA and microservice architecture.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

10 Chapter 1  Designing and running microservices

Presentation UI UI API

Service Process Service

Transport Orchestration Message

Store Store Store

Business services Responsibility split by tier

Orchestration between
components governed by

a smart message bus

Services contain
full vertical stack.

Services own data.

Microservice architecture
Service-Oriented Architecture (SOA)

Independent
components

collaborate directly.

Service

Service

Service

Service

Store

Logic

API

Data services

Enterprise service bus

Figure 1.4   SOA versus microservice architecture

This use of horizontal decomposition in SOA is problematic, because cohesive function-
ality becomes spread across multiple systems. New features may require coordinated
releases to multiple services and may become unacceptably coupled to others at the
same level of technical abstraction.

A microservice architecture, on the other hand, should be biased toward vertical
decomposition; each service should align to a single business capability, encapsulating
all relevant technical layers.

NOTE    In rare instances, it might make sense to build a service that implements
a technical capability, such as integration with a third-party service, if multiple
services require it.

You also should be mindful of the consumers of your services. To ensure a stable
system, you need to ensure you’re developing patiently and maintaining backwards
compatibility — whether explicitly or by running multiple versions of a service — to
ensure that you don’t force other teams to upgrade or break complex interactions
between services.

Working with these five principles in mind will help you develop microservices well,
leading to systems that are highly amenable to change, scalable, and stable.

1.1.3	 Who uses microservices?

Many organizations have successfully built and deployed microservices, across many
domains: in media (The Guardian); content distribution (SoundCloud, Netflix);
transport and logistics (Hailo, Uber); e-commerce (Amazon, Gilt, Zalando); banking
(Monzo); and social media (Twitter).

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 11What is a microservice application?

Most of these companies took a monolith-first approach.1 They started by building
a single large application, then progressively moved to microservices in response to
growth pressures they faced. These pressures are outlined in Table 1.1.

Table 1.1   Pressures of growth on a software system

Pressure Description

Volume The volume of activity that a system performs may outgrow the capacity of
original technology choices.

New features New features may not be cohesive with existing features, or different technol-
ogies may be better at solving problems.

Engineering team growth As a team grows larger, lines of communication increase. New developers
spend more time comprehending the existing system and less time adding
product value.

Technical debt Increased complexity in a system — including debt from previous build
decisions — increases the difficulty of making changes.

International distribution International distribution may lead to data consistency, availability, and
latency challenges.

For example, Hailo wanted to expand internationally — which would’ve been chal-
lenging with their original architecture — but also increase their pace of feature deliv-
ery.2 SoundCloud wanted to be more productive, as the complexity of their original
monolithic application was holding them back.3 Sometimes, the shift coincided with a
change in business priority: Netflix famously moved from physical DVD distribution to
content streaming. Some of these companies completely decommissioned their origi-
nal monolith. But for many, this is an ongoing process, with a monolith surrounded by
a constellation of smaller services.

As microservice architecture has been more widely popularized — and as early
adopters have open sourced, blogged, and presented the practices that worked for
them — teams have increasingly begun greenfield projects using microservices, rather
than building a single application first. For example, Monzo started with microservices
as part of its mission to build a better and more scalable bank.4

1	 Martin Fowler expands on this pattern: “MonolithFirst,” June 3, 2015, http://martinfowler.com/
bliki/MonolithFirst.html.

2	 See Matt Heath, “A Long Journey into a Microservice World,” Medium, May 30, 2015, http://mng.bz/
XAOG.

3	 See Phil Calçado, “How we ended up with microservices,” September 8, 2015, http://mng.bz/Qzhi.
4	 See Matt Heath, “Building microservice architectures in Go,” June 18, 2015, http://mng.bz/9L83.

www.itbook.store/books/9781617294457

http://martinfowler.com/bliki/MonolithFirst.html
http://martinfowler.com/bliki/MonolithFirst.html
http://mng.bz/XAOG
http://mng.bz/Qzhi
http://mng.bz/9L83
https://itbook.store/books/9781617294457

12 Chapter 1  Designing and running microservices

1.1.4	 Why are microservices a good choice?

Plenty of successful businesses are built on monolithic software — Basecamp,5 Stack-
Overflow, and Etsy spring to mind. And in monolithic applications, a wealth of ortho-
dox, long-established software development practice and knowledge exists. Why
choose microservices?

Technical heterogeneity leads to microservices

In some companies, technical heterogeneity makes microservices an obvious choice.
At Onfido, we started building microservices when we introduced a product driven by
machine learning — not a great fit for our original Ruby stack! Even if you’re not fully
committed to a microservice approach, applying microservice principles gives you a
greater range of technical choices to solve business problems. Nevertheless, it’s not
always so clear-cut.

Development friction increases as complex systems grow

It comes down to the nature of complex systems. At the beginning of the chapter, we
mentioned that software developers strive to craft effective and timely solutions to com-
plex problems. But the software systems we build are inherently complex. No methodol-
ogy or architecture can eliminate the essential complexity at the heart of such a system.

But that’s no reason to get downhearted! You can ensure that the development
approaches you take result in good complex systems, free from accidental complexity.

 Take a moment and consider what you’re trying to achieve as an enterprise software
developer. Dan North puts it well:

The goal of software development is to sustainably minimize lead time to positive business
impact.

The hard part in complex software systems is to deliver sustainable value in the face of
change: to continue to deliver with agility, pace, and safety even as the system becomes
larger and more complex. Therefore, we believe a good complex system is one where
two factors are minimized throughout the system’s lifecycle: friction and risk.

Friction and risk limit your velocity and agility, and therefore your ability to deliver
business impact. As a monolith grows, the following factors may lead to friction:

¡	Change cycles are coupled together, leading to higher coordination barriers and
higher risk of regression.

¡	Soft module and context boundaries invite chaos in undisciplined teams, lead-
ing to tight or unanticipated coupling between components.

¡	Size alone can be painful: continuous integration jobs and releases — even local
application startup — become slower.

These qualities aren’t true for all monoliths, but unfortunately they’re true for most
that we’ve encountered. Likewise, these types of challenges are a common thread in
the stories of the companies we mentioned.

5	 David Heinemeier Hansson coined the term “Majestic Monolith” to describe how 37signals built
Basecamp: Signal v. Noise, February 29, 2016, http://mng.bz/1p3I.

www.itbook.store/books/9781617294457

http://mng.bz/1p3I
https://itbook.store/books/9781617294457

	 13What is a microservice application?

Microservices reduce friction and risk

Microservices help reduce friction and risk in three ways:

¡	Isolating and minimizing dependencies at build time
¡	Allowing developers to reason about cohesive individual components, rather

than an entire system
¡	Enabling the continuous delivery of small, independent changes

Isolating and minimizing dependencies at build time — whether between teams or on
existing code — allows developers to move faster. Development can move in parallel,
with reduced long-term dependency on past decisions made in a monolithic applica-
tion. Technical debt is naturally limited to service boundaries.

Microservices are individually easier to build and reason about than monolithic
applications. This is beneficial for the productivity of development in a growing orga-
nization. It also provides a compelling and flexible paradigm for coping with increased
scale or smoothly introducing new technologies.

Small services are also a great enabler of continuous delivery. Deployments in large
applications can be risky and involve lengthy regression and verification cycles. By
deploying smaller elements of functionality, you better isolate changes to your active
system, reducing the potential risk of an individual deployment.

At this point, we can come to two conclusions:

¡	Developing small, autonomous services can reduce friction in the development
of long-running complex systems.

¡	By delivering cohesive and independent pieces of functionality, you can build a
system that’s malleable and resilient in the face of change, helping you to deliver
sustainable business impact with reduced risk.

That doesn’t mean everyone should build microservices. It’d be wonderful if there
was an objective answer to the question “Do I need microservices?” but unfortunately
you can only say “It depends” — on your team, on your company, and on the nature of
the system you’re building. If the scope of your system is trivial, then it’s unlikely you’ll
gain benefits that outweigh the added complexity of building and running this type of
fine-grained application. But if you’ve faced any of the challenges we mentioned ear-
lier in this section, then microservices are a compelling solution.

A cautionary tale
We once heard a story about a microservice implementation gone wrong. The startup
in question had begun to scale, and the CTO had decided that the only solution was
to rebuild the application as microservices. If you’re not worried by that sentence, you
should be!

The engineering team set out to rebuild their application. This took them five months,
during which time they released zero new features, nor did they release any of their micro-
services to production. The team proceeded to launch their new microservice application

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

14 Chapter 1  Designing and running microservices

during the busiest month for the business, causing absolute chaos and necessitating a
rollback to the original monolith.

This type of migration gives microservices a bad name. Few businesses have the luxury
of a feature freeze for several months nor can they indulge a big-bang launch of a new
architecture. Although the sample set is small, most successful microservice migrations
that we’ve observed have been piecemeal, balancing architectural vision with business
needs, priorities, and resource constraints. Although it’ll take longer and require more
engineering effort, hopefully you’ll never recognize your team being mentioned in a cau-
tionary tale!

1.2	 What makes microservices challenging?
Let’s dig a little deeper and explore the costs and complexity of designing and run-
ning microservices. Microservices aren’t the only architecture that have promised nir-
vana through decomposition and distribution, but those past attempts, such as SOA,6
are widely considered unsuccessful. No technique is a silver bullet. For example, as
we’ve mentioned, microservices drastically increase the number of moving parts in a
system. By distributing functionality and data ownership across multiple autonomous
services, you likewise distribute responsibility for stability and sane operation of your
application.

You’ll encounter many challenges when designing and running a microservice
application:

¡	Scoping and identifying microservices requires substantial domain knowledge.
¡	The right boundaries and contracts between services are difficult to identify and,

once you’ve established them, can be time-consuming to change.
¡	Microservices are distributed systems and therefore require different assumptions

to be made about state, consistency, and network reliability.
¡	By distributing system components across networks, and increasing technical

heterogeneity, microservices introduce new modes of failure.
¡	It’s more challenging to understand and verify what should happen in normal

operation.

1.2.1	 Design challenges

How do these challenges impact the design and runtime phases of microservice devel-
opment? Earlier we introduced the five key principles underlying microservice develop-
ment. The first of those was autonomy. For your services to be autonomous, you need to
design them such that, together, they’re loosely coupled, and, individually, they encap-
sulate highly cohesive elements of functionality. This is an evolutionary process. The

6	 SOA is a wooly term. Although many principles of SOA are similar to microservices, the definition
of the former is inextricably associated with heavyweight, enterprise vendor tools, such as ESBs.

(continued)

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 15What makes microservices challenging?

scope of your services may change over time, and you’ll often choose to carve out new
functionality from — or even retire — existing services.

Making those choices is challenging, and even more so at the start of developing
an application! The primary driver of loose coupling is the boundaries you establish
between services; getting those wrong will lead to services that are resistant to change
and, overall, a less malleable and flexible application.

Scoping microservices requires domain knowledge
Each microservice is responsible for a single capability. Identifying these capabilities
requires knowledge of the business domain of your application. Early in an application’s
lifetime, your domain knowledge might be at best incomplete, or at worst, incorrect.

Inadequate understanding of your problem domain can result in poor design
choices. In a microservice application, the increased rigidity of a service boundary 
when compared to a module within a monolithic application means the downstream
cost of poor scoping decisions is likely to be higher:

¡	You may need to refactor across multiple distinct codebases.
¡	You may need to migrate data from one service’s database to another.
¡	You may not have identified implicit dependencies between services, which could

lead to errors or incompatibility on deployment.

These activities are illustrated in figure 1.5.

Database

Consumers Consumers

Service AService A Service B Service B

Database

Service A depends on closely related functionality
in Service B.

Refactoring this relationship requires the
coordination of multiple changes.

Data needs to be
migrated.

Functionality is moved
to new services.

Consumers need to
move to a new

service.

Database Database

Figure 1.5   Incorrect service scoping decisions may require complex and costly refactoring across
service boundaries.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

16 Chapter 1  Designing and running microservices

But making design decisions based on insufficient domain knowledge is hardly
unique to microservices! The difference is in the impact of those decisions.

NOTE    In chapters 2 and 4, we’ll discuss best practices for identifying and scop-
ing services, using an example application.

Maintaining contracts between services

Each microservice should be independent of the implementation of other services.
This enables technical heterogeneity and autonomy. For this to work, each microser-
vice should expose a contract  — analogous to an interface in object-oriented design — 
defining the messages it expects to receive and respond with. A good contract should be

¡	Complete  — Defines the full scope of an interaction
¡	Succinct  — Takes in no more information than is necessary, so that consumers

can construct messages within reasonable bounds
¡	Predictable  — Accurately reflects the real behavior of any implementation

Anyone who’s designed an API might know how hard these properties are to achieve.
Contracts become the glue between services. Over time, contracts may need to evolve
while also needing to maintain backwards compatibility for existing collaborators.
These twin tensions — between stability and change — are challenging to navigate.

Microservice applications are designed by teams

In larger organizations, it’s likely that multiple teams will build and run a microser-
vice application, each taking responsibility for different microservices. Each team may
have its own goals, way of working, and delivery lifecycle. It can be difficult to design a
cohesive system when you also need to reconcile the timelines and priorities of other
independent teams. Coordinating the development of any substantial microservice
application therefore will require the agreement and reconciliation of priorities and
practices across multiple teams.

Microservice applications are distributed systems

Designing microservice applications means designing distributed systems. Many falla-
cies occur in the design of distributed systems,7 including

¡	The network is reliable.
¡	Latency is zero.
¡	Bandwidth is infinite.
¡	Transport cost is zero.

Clearly, assumptions you might make in nondistributed systems — such as the speed
and reliability of method calls — are no longer appropriate and can lead to poor, unsta-
ble implementation. You must consider latency, reliability, and the consistency of state
across your application.

7	 See Arnon Rotem-Gal-Oz, “Fallacies of Distributed Computing Explained,” https://pages.cs.wisc
.edu/~zuyu/files/fallacies.pdf.

www.itbook.store/books/9781617294457

https://pages.cs.wisc.edu/~zuyu/files/fallacies.pdf
https://pages.cs.wisc.edu/~zuyu/files/fallacies.pdf
https://itbook.store/books/9781617294457

	 17What makes microservices challenging?

Once the application is distributed — where the application’s underlying state
data is spread across a multitude of places — consistency becomes challenging. You
may not have guarantees of the order of operations. It won’t be possible to maintain
ACID-like transactional guarantees when actions take place across multiple services.
This will affect design at the application level: you’ll need to consider how a service
might operate in an inconsistent state and how to roll back in the event of transaction
failure.

1.2.2	 Operational challenges

A microservice approach will inherently multiply the possible points of failure in a
system. To illustrate this, let’s return to the investment tool we mentioned earlier. Fig-
ure 1.6 identifies possible points of failure in this application. You can see that some-
thing could go wrong in multiple places, and that could affect the normal processing
of an order.

Consider the questions you might need to answer when this application is in
production:

¡	If something goes wrong and your user’s order isn’t placed, how would you deter-
mine where the fault occurred?

¡	How do you deploy a new version of a service without affecting order placement?
¡	How do you know which services were meant to be called?
¡	How do you test that this behavior is working correctly across multiple services?
¡	What happens if a service is unavailable?

Rather than eliminating risk, microservices move that cost to later in the lifecycle of
your system: reducing friction in development but increasing the complexity of how
you deploy, verify, and observe your application in operation.

User

Overload
Service instances become

saturated with requests and fail
to respond or pass timeout limits.

Network/routing failure
Network issues cause request routing

between users/services/dependencies to fail.

Hardward failure
The hardware running the

database or service instances
fails.

Downstream failure
Service dependencies may fail

or respond slowly.

Third party failure
Requests to third party
dependencies may fail.

Third-party
providers

Other
microservices

Database

Order service

Figure 1.6   Possible points of failure when placing a sell order

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

18 Chapter 1  Designing and running microservices

A microservices approach suggests an evolutionary approach to system design: you
can add new features independently without changing existing services. This minimizes
the cost and risk of change.

But in a decoupled system that constantly changes, it can be extremely difficult to
keep track of the big picture, which makes issue diagnosis and support more challeng-
ing. When something goes wrong, you need to have some way of tracing how the system
did behave (what services it called, in which order, and what the outcome was), but you
also need some way of knowing how the system should have behaved.

Ultimately, you face two operational challenges in microservices: observability and
multiple points of failure. Let’s focus on each of those in turn.

Observability is difficult to achieve

We touched on the importance of transparency back in section 1.1.2. But why is it
harder in microservice applications? It’s harder because you need to understand the
big picture. You need to assemble that big picture from multiple jigsaw pieces, to cor-
relate and link together the data each service produces to ensure you understand what
each service does within the wider context of delivering some business output. Indi-
vidual service logs provide a partial view of system operation, which is helpful, but you
need to use both a microscope and a wide-angle lens to understand the system in full.

Likewise, because you’re running multiple applications, depending on how you
choose to deploy them, a less obvious correlation may exist between underlying infra-
structural metrics — like memory and CPU usage — and the application. These metrics
are still useful but are less of a focus than they might be in a monolithic system.

Multiplying services multiplies points of failure

We’re probably not being too pessimistic if we say that everything that can fail will fail.
It’s important that you start with that mindset: if you assume weakness and fragility
in the multiple services forming your system, that can better inform how you design,
deploy, and monitor that system — rather than getting too surprised when something
does go wrong.

You need to consider how your system will continue operating despite the failures
of individual components. This implies that, individually, services will need to become
more robust — considering error checking, failover, and recovery — but also that the
whole system should act reliably, even when individual components are never 100%
reliable.

1.3	 Microservice development lifecycle
At an individual level, each microservice should look familiar to you — even if it’s a bit
smaller. To build a microservice, you’ll use many of the same frameworks and tech-
niques that you’d normally apply in building an application: web application frame-
works, SQL databases, unit tests, libraries, and so on.

At a system level, choosing a microservice architecture will have a significant impact
on how you design and run your application. Throughout this book, we’ll focus on these

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 19Microservice development lifecycle

three key stages in the development lifecycle of a microservice application: designing
services, deploying them to production, and observing their behavior. This cycle is illus-
trated in figure 1.7.

Making well-reasoned decisions in each of these three stages will help you build
applications that are resilient, even in the face of changing requirements and increas-
ing complexity. Let’s walk through each stage and consider the steps you’ll take to
deliver an application with microservices.

1.3.1	 Designing microservices

You’ll need to make several design decisions when building a microservice application
that you wouldn’t have encountered building monolithic apps. The latter often fol-
low well-known patterns or frameworks, such as three-tier architecture or model-view
controller (MVC). But techniques for designing microservices are still in their relative
infancy. You’ll need to consider

¡	Whether to start with a monolith or commit to microservices up front
¡	The overall architecture of your application and the façade it presents to outside

consumers
¡	How to identify and scope the boundaries of your services
¡	How your services communicate with each other, whether synchronously or

asynchronously
¡	How to achieve resiliency in services

That’s quite a lot of ground to cover. For now, we’ll touch on each of these consid-
erations so you can see why paying attention to all of them is vital to a well-designed
microservice application.

Monolith first?
You’ll find two opposing trends to starting with microservices: monolith first or micro-
services only. Advocates of the former reason that you should always start with a mono-
lith, as you won’t understand the component boundaries in your system at an early
stage, and the cost of getting these wrong is much higher in a microservice application.
On the other hand, the boundaries you choose in a monolith aren’t necessarily the
same ones you’d choose in a well-designed microservice application.

Design Deploy Observe

Figure 1.7   The key iterative stages — design, deploy, and observe — in the microservice development
lifecycle

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

20 Chapter 1  Designing and running microservices

Although the speed of development may be slower to begin with, microservices will
reduce friction and risk in future development. Likewise, as tooling and frameworks
mature, microservices best practice is becoming increasingly less daunting to pick
up. Either way you want to go, the advice in this book should be useful, regardless of
whether you’re thinking of migrating away from your monolith or starting afresh.

Scoping services

Choosing the right level of responsibility for each service — its scope — is one of the
most difficult challenges in designing a microservice application. You’ll need to model
services based on the business capabilities they provide to an organization.

Let’s extend the example from the beginning of this chapter. How might your ser-
vices change if you wanted to introduce a new, special type of order? You have three
options to solve this problem (figure 1.8):

1	 Extend the existing service interface

2	 Add a new service endpoint

3	 Add a new service

Each of these options has pros and cons that will impact the cohesiveness and coupling
between services in your application.

Orders service exposes an
operation to create an order To support a new type of order, we could...

Orders service Orders service

Orders service

Orders service

Special order
service

Add a new service for the new order type

Alter the operation contract to
accept new fields

Add a new operation to the
existing orders service

Figure 1.8. To scope functionality, you need to make decisions about whether capabilities belong in
existing services or if you need to design new services.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 21Microservice development lifecycle

NOTE    In chapters 2 and 4, we’ll explore service scoping and how to make opti-
mal decisions about service responsibility.

Communication

Communication between services may be asynchronous or synchronous. Although
synchronous systems are easier to reason through, asynchronous systems are highly
decoupled — reducing the risk of change — and potentially more resilient. But the
complexity of such a system is high. In a microservice application, you need to balance
synchronous and asynchronous messaging to choreograph and coordinate the actions
of multiple microservices effectively.

Resiliency

In a distributed system, a service can’t trust its collaborators, not necessarily because
they’re coded poorly or because of human error, but because you can’t safely assume
the network between or behavior of those services is reliable or predictable. Services
need to be resilient in the face of failure. To achieve this, you need to design your
services to work defensively by backing off in the event of errors, limiting request rates
from poor collaborators, and dynamically finding healthy services.

1.3.2	 Deploying microservices

Development and operations must be closely intertwined when building microservices.
It’s not going to work if you build something and throw it over the fence for someone
else to deploy and operate it. In a system composed of numerous, autonomous ser-
vices, if you build it, you should run it. Understanding how your services run will in
turn help you make better design decisions as your system grows.

Remember, what’s special about your application is the business impact it deliv-
ers. That emerges from collaboration between multiple services. In fact, you could
standardize or abstract away anything outside of the unique capability each service
offers — ensuring teams are focused on business value. Ultimately, you should reach
a stage where there’s no ceremony involved in deploying a new service. Without this,
you’ll invest all your energy in plumbing, rather than creating value for customers.

In this book, we’ll teach you how to construct a reliable road to production for exist-
ing and new services. The cost of deploying new services must be negligible to enable
rapid innovation. Likewise, you should standardize this process to simplify system oper-
ation and ensure consistency across services. To achieve this, you’ll need to

¡	Standardize microservice deployment artifacts
¡	Implement continuous delivery pipelines

We’ve heard reliable deployment described as boring, not in the sense that it’s unex-
citing, but that it’s incident-free. Unfortunately, we’ve seen too many teams where the
opposite is true: deploying software is stressful and encourages unhealthy all-hands-on-
deck behavior. This is bad enough for one service — if you’re deploying any number

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

22 Chapter 1  Designing and running microservices

of services, the anxiety alone will drive you mad! Let’s look at how these steps lead to
stable and reliable microservice deployments.

Standardize microservice deployment artifacts

It often seems like every language and framework has its own deployment tool. Python
has Fabric, Ruby has Capistrano, Elixir has exrm, and so on. And then the deployment
environment itself is complex:

¡	What server does an application run on?
¡	What are the application’s dependencies on other tools?
¡	How do you start that application?

At runtime, an application’s dependencies (figure 1.9) are broad and might include
libraries, binaries and OS packages (such as ImageMagick or libc), and OS processes
(such as cron or fluentd).

Technically, heterogeneity is a fantastic benefit of service autonomy. But it doesn’t
make life easy for deployment. Without consistency, you won’t be able to standardize
your approach to taking services to production, which increases the cost of managing
deployments and introducing new technology. At worst, each team reinvents the wheel,
coming up with different approaches for managing dependencies, packing builds, get-
ting them onto servers, and operating the application itself.

An application exposes an
operational API. Restart

Start

Application
Supporting
processes,

for example,
logging,

cron

Operating system

Application libraries

Binary dependencies, for
example, ImageMagick

Stop
An application has multiple
points of explicit and implicit

dependency.

Figure 1.9   An application exposes an operational API and has many types of dependencies, including
libraries, binary dependencies, and supporting processes.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 23Microservice development lifecycle

Our experience suggests the best tools for this job are containers. A container is an
operating system-level virtualization method that supports running isolated sys-
tems on a host, each with its own network and process space, sharing the same ker-
nel. A container is quicker to build and quicker to start up than a virtual machine
(seconds, rather than minutes). You can run multiple containers on one machine,
which simplifies local development and can help to optimize resource usage in cloud
environments.

Containers standardize the packaging of an application, and the runtime interface
to it, and provide immutability of both operating environment and code. This makes
them powerful building blocks for higher level composition. By using them, you can
define and isolate the full execution environment of any service.

Although many implementations of containers are available (and the concept exists
outside of Linux, such as jails in FreeBSD and zones in Solaris), the most mature and
approachable tooling that we’ve used so far is Docker. We’ll use that tool later in this book.

Implement continuous delivery pipelines

Continuous delivery is a practice in which developers produce software that they
can reliably release to production at any time. Imagine a factory production line:
to continuously deliver software, you build similar pipelines to take your code from
commit to live operation. Figure 1.10 illustrates a simple pipeline. Each stage of
the pipeline provides feedback to the development team on the correctness of
their code.

Earlier, we mentioned that microservices are an ideal enabler of continuous
delivery because their smaller size means you can develop them quickly and release
them independently. But continuous delivery doesn’t automatically follow from
developing microservices. To continuously deliver software, you need to focus on
two goals:

¡	Building a set of validations that your software has to pass through. At each
stage of your deployment process, you should be able to prove the correctness
of your code.

¡	Automating the pipeline that delivers your code from commit to production.

Code commit Build Unit test Package Production

Quality uncertain

Deployment pipeline

Quality proven

Integration
test

Acceptance
test

Figure 1.10   A high-level deployment pipeline for a microservice

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

24 Chapter 1  Designing and running microservices

Building a provably correct deployment pipeline will allow developers to work safely
and at pace as they iteratively develop services. Such a pipeline is a repeatable and reli-
able process for delivering new features. Ideally, you should be able to standardize the
validations and steps in your pipeline and use them across multiple services, further
reducing the cost of deploying new services.

Continuous delivery also reduces risk, because the quality of the software produced
and the team’s agility in delivering changes are both increased. From a product per-
spective, this may mean you can work in a leaner fashion — rapidly validating your
assumptions and iterating on them.

NOTE    In part 3, we’ll build a continuous delivery pipeline using the Pipe-
line feature of the freely available Jenkins continuous integration tool. We’ll
also explore different deployment patterns, such as canaries and blue-green
deployments.

1.3.3	 Observing microservices

We’ve discussed transparency and observability throughout this chapter. In produc-
tion, you need to know what’s going on. The importance of this is twofold:

¡	You want to proactively identify and refactor fragile implementation in your
system.

¡	You need to understand how your system is behaving.

Thorough monitoring is significantly more difficult in a microservice application
because single transactions may span multiple distinct services; technically heteroge-
neous services might produce data in irreconcilable formats; and the total volume of
operational data is likely to be much higher than that of a single monolithic applica-
tion. But if you’re able to understand how your system operates — and observe that
closely — despite this complexity, you’ll be better placed to make effective changes to
your system.

Identify and refactor potentially fragile implementation

Systems will fail, whether because of bugs introduced, runtime errors, network failures,
or hardware problems.8 Over time, the cost of eliminating unknown bugs and errors
becomes higher than the cost of being able to react quickly and effectively when they
occur.

Monitoring and alerting systems allow you to diagnose problems and determine
what causes failures. You may have automated mechanisms reacting to the alerts that’ll
spawn new container instances in different data centers or react to load issues by
increasing the number of running instances of a service.

To minimize the consequences of those failures, and prevent them cascading through-
out the system, you need to be able to architect dependencies between services in ways

8	 You even have to watch out for squirrels: Rich Miller, “Surviving Electric Squirrels and UPS Fail-
ures,” DataCenter Knowledge, July 9, 2012, http://mng.bz/rmbF.

www.itbook.store/books/9781617294457

http://mng.bz/rmbF
https://itbook.store/books/9781617294457

	 25Microservice development lifecycle

that’ll allow for partial degradation. One service going down shouldn’t bring down the
whole application. It’s important to think about the possible failure points of your appli-
cations, recognize that failure will always happen, and prepare accordingly.

Understand behavior across hundreds of services

You need to prioritize transparency in design and implementation to understand
behavior across your services. Collecting logs and metrics — and unifying them for ana-
lytical and alerting purposes — allows you to build a single source of truth to resort to
when monitoring and investigating the behavior of your system.

As we mentioned in section 1.3.2, you can standardize and abstract anything outside
of the unique capability each service offers. You can think of each service as an onion.
At the center of that onion, you have the unique business capability offered by that
service. Surrounding that, you have layers of instrumentation — business metrics, appli-
cation logs, operational metrics, and infrastructure metrics — that make that capability
observable. You can then trace each request to the system through these layers. You’d
then push the data you collected from these layers to an operational data store for ana-
lytics and alerting. This is illustrated in figure 1.11.

NOTE   In part 4 of this book, we’ll discuss how to build a monitoring system
for microservices, collect appropriate data, and use that data to produce a live
model for a complex microservice application.

Requests Responses

Infrastructure metrics

Operational metrics

Application logs

Business metrics

Business
capability

Operational data store

Figure 1.11   A business capability microservice surrounded by layers of instrumentation, through which
pass requests to the microservice and its responses, with data collected from the process going to an
operational data store

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

26 Chapter 1  Designing and running microservices

1.4	 Responsible and operationally aware engineering
culture
It’d be a mistake to examine the technical nature of microservices in isolation from
how an engineering team works to develop them. Building an application out of small,
independent services will drastically change how an organization approaches engi-
neering, so guiding the culture and priorities of your team will be a significant factor in
whether you successfully deliver a microservice application.

It can be difficult to separate cause and effect in organizations that have successfully
built microservices. Was the development of fine-grained services a logical outcome of
their organizational structure and the behavior of their teams? Or did that structure
and behavior arise from their experiences building fine-grained services?

The answer is a bit of both. A long-running system isn’t only an accumulation of
features requested, designed, and built. It also reflects the preferences, opinions, and
objectives of its builders and operators. Conway’s Law expresses this to some degree:

organizations which design systems ... are constrained to produce designs which are copies
of the communication structures of these organizations.

“Constrained” might suggest that these communication structures will limit and con-
strict the effective development of a system. In fact, microservices practice implies the
opposite: that a powerful way to avoid friction and tension in building systems is to
design an organization in the shape of the system you intend to build.

Deliberate symbiosis with organizational structure is one example of common
microservices practice. To be able to realize benefits from microservices and adequately
manage their complexity, you need to develop working principles and practices that are
effective for that type of application, rather than using the same techniques that you
used to build monoliths.

Summary

¡	Microservices are both an architectural style and a set of cultural practices,
underpinned by five key principles: autonomy, resilience, transparency, automa-
tion, and alignment.

¡	Microservices reduce friction in development, enabling autonomy, technical
flexibility, and loose coupling.

¡	Designing microservices can be challenging because of the need for adequate
domain knowledge and balancing priorities across teams.

¡	Services expose contracts to other services. Good contracts are succinct, com-
plete, and predictable.

¡	Complexity in long-running software systems is unavoidable, but you can deliver
value sustainably in these systems if you make choices that minimize friction and risk.

¡	Reliably incident-free (“boring”) deployment reduces the risk of microservices
by making releases automated and provable.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 27Summary

¡	Containers abstract away differences between services at runtime, simplifying
large-scale management of heterogeneous microservices.

¡	Failure is inevitable: microservices need to be transparent and observable for
teams to proactively manage, understand, and own service operation ... and the
lack thereof.

¡	Teams adopting microservices need to be operationally mature and focus on the
entire lifecycle of a service, not only on the design and build stages.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

Bruce ● Pereira

I
nvest your time in designing great applications, improving
infrastructure, and making the most out of your dev teams.
Microservices are easier to write, scale, and maintain than

traditional enterprise applications because they’re built as a
system of independent components. Master a few important
new patterns and processes, and you’ll be ready to develop,
deploy, and run production-quality microservices.

Microservices in Action teaches you how to write and maintain
microservice-based applications. Created with day-to-day
development in mind, this informative guide immerses you
in real-world use cases from design to deployment. You’ll
discover how microservices enable an effi cient continuous
delivery pipeline, and explore examples using Kubernetes,
Docker, and Google Container Engine.

What’s Inside
● An overview of microservice architecture
● Building a delivery pipeline
● Best practices for designing multi-service transactions
 and queries
● Deploying with containers
● Monitoring your microservices

Written for intermediate developers familiar with enterprise
architecture and cloud platforms like AWS and GCP.

Morgan Bruce and Paulo A. Pereira are experienced engineering
leaders. They work daily with microservices in a production
environment, using the techniques detailed in this book.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/microservices-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Microservices IN ACTION

SOFTWARE DEVELOPMENT

M A N N I N G

“The one [and only] book
on implementing micro-
services with a real-world,

cover-to-cover example
you can relate to.”

—Christian Bach, Swiss Re

“A perfect fi t for those who
want to move their majestic

monolith to a scalable
 microservice architecture.”

—Akshat Paul
McKinsey & Company

“Shows not only how to
write microservices, but also

how to prepare your
business and infrastructure

 for this change.”—Maciej Jurkowski, Grupa Pracuj

“A deep dive into microser-
vice development with many
real and useful examples.”

—Antonio Pessolano
Consoft Sistemi

See first page

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	Microservices in Action: Sample Chapter
	brief contents
	Part 1: The lay of the land
	1 Designing and running microservices
	1.1	What is a microservice application?
	1.1.1	Scaling through decomposition
	1.1.2	Key principles
	1.1.3	Who uses microservices?
	1.1.4	Why are microservices a good choice?

	1.2	What makes microservices challenging?
	1.2.1	Design challenges
	1.2.2	Operational challenges

	1.3	Microservice development lifecycle
	1.3.1	Designing microservices
	1.3.2	Deploying microservices
	1.3.3	Observing microservices

	1.4	Responsible and operationally aware engineering culture

