
M A N N I N G

Morgan Bruce
Paulo A. Pereira

Sample Chapter

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

A microservice production environment

Control paneRuntime
management

Manages

N
et

w
or

k
an

d
ro

ut
in

g

Connects

O
bs

er
va

bi
lit

y

Observes

Deployment pipeline

Monitors

Engineers

Writes

Code

Production

A microservice production environment has several components: a deployment target,
a deployment pipeline, runtime management, networking features, and support for

observability. In this book, we'll teach you about these components and how you can use
them to build a stable, modern microservice application.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

Microservices in Action

by Morgan Bruce
Paulo A. Pereira

Chapter 6

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

v

brief contents

Part 1	 The lay of the land.. 1
1	■	 Designing and running microservices  3
2	■	 Microservices at SimpleBank  28

Part 2	 Design..49
3	■	 Architecture of a microservice application  51
4	■	 Designing new features  75
5	■	 Transactions and queries in microservices   105
6	■	 Designing reliable services  129
7	■	 Building a reusable microservice framework  159

Part 3	 Deployment...185
8	■	 Deploying microservices  187
9	■	 Deployment with containers and schedulers  214

10	■	 Building a delivery pipeline for microservices  243

Part 4	 Observability and ownership..............................267
11	■	 Building a monitoring system  269
12	■	 Using logs and traces to understand behavior  296
13	■	 Building microservice teams  325

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

129

6Designing reliable services

This chapter covers
¡	The impact of service availability on application

reliability

¡	Designing microservices that defend against
faults in their dependencies

¡	Applying retries, rate limits, circuit breakers,
health checks, and caching to mitigate
interservice communication issues

¡	Applying safe communication standards across
many services

No microservice is an island; each one plays a small part in a much larger system. Most ser-
vices that you build will have other services that rely on them — upstream collaborators — 
and in turn themselves will depend on other services — downstream collaborators — to
perform useful functions. For a service to reliably and consistently perform its job, it
needs to be able to trust these collaborators.

This is easier said than done. Failures are inevitable in any complex system. An indi-
vidual microservice might fail for a variety of reasons. Bugs can be introduced into code.
Deployments can be unstable. Underlying infrastructure might let you down: resources

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

130 Chapter 6  Designing reliable services

might be saturated by load; underlying nodes might become unhealthy; even entire data
centers can fail. As we discussed in chapter 5, you can’t even trust that the network between
your services is reliable — believing otherwise is a well-known fallacy of distributed comput-
ing.1 Lastly, human error can lead to major failures. For example, I’m writing this chapter a
week after an engineer’s mistake in running a maintenance script led to a severe outage in
Amazon S3, affecting thousands of well-known websites.

It’s impossible to eliminate failure in microservice applications — the cost of that
would be infinite! Instead, your focus needs to be on designing microservices that are
tolerant of dependency failures and able to gracefully recover from them or mitigate
the impact of those failures on their own responsibilities.

In this chapter, we’ll introduce the concept of service availability, discuss the impact of
failure in microservice applications, and explore approaches to designing reliable com-
munication between services. We’ll also discuss two different tactics — frameworks and
proxies — for ensuring all microservices in an application interact safely. Using these
techniques will help you maximize the reliability of your microservice application — and
keep your users happy.

6.1	 Defining reliability
Let’s start by figuring out how to measure the reliability of a microservice. Consider a simple
microservice system: a service, holdings, calls two dependencies, transactions and market-data.
Those services in turn call further dependencies. Figure 6.1 illustrates this relationship.

For any of those services, you can assume that they spent some time performing work
successfully. This is known as uptime. Likewise, you can safely assume — because failure
is inevitable — that they spent some time failing to complete work. This is known as
downtime. You can use uptime and downtime to calculate availability: the percentage of
operational time during which the service was working correctly. A service’s availability
is a measure of how reliable you can expect it to be.

Requests Holdings

D

E

C

Market-data

Transactions

Figure 6.1   A simple microservice system, illustrating dependencies between collaborating services

1	 Peter Deutsch originally posited the eight fallacies of distributed computing in 1994. A good over-
view is available here: http://mng.bz/9T5F.

www.itbook.store/books/9781617294457

http://mng.bz/9T5F
https://itbook.store/books/9781617294457

	 131Defining reliability

A typical shorthand for high availability is “nines:” for example, two nines is 99%,
whereas five nines is 99.999%. It’d be highly unusual for critical production-facing ser-
vices to be less reliable than this.

To illustrate how availability works, imagine that calls from holdings to market-data
are successful 99.9% of the time. This might sound quite reliable, but downtime of
0.1% quickly becomes pronounced as volumes increase: only one failure per 1,000
requests, but 1,000 failures per million. These failures will directly affect your calling
service unless you can design that service to mitigate the impact of dependency failure.

Microservice dependency chains can quickly become complex. If those dependen-
cies can fail, what’s the probability of failure within your whole system? You can treat
your availability figure as the probability of a request being successful — by multiplying
together the availability figures for the parts of the chain, you can estimate the failure
rate across your entire system.

Say you expand the previous example to specify that you have six services with the
same success rate for calls. For any request to your system, you can expect one of four
outcomes: all services work correctly, one service fails, multiple services fail, or all ser-
vices fail.

Because calls to each microservice are successful 99.9% of the time, combined reli-
ability of the system will be 0.9996 = 0.994 = 99.4%. Although this is a simple model,
you can see that the whole application will always be less reliable than its independent
components; the maximum availability you can achieve is a product of the availability of
a service’s dependencies.

To illustrate, imagine that service D’s availability is degraded to 95%. Although this
won’t affect transactions — because it’s not part of that call hierarchy — it will reduce
the reliability of both market-data and holdings. Figure 6.2 illustrates this impact.

Holdings

D

E

C

Market-data

Transactions

Requests

The reliability of holdings is
the combined reliability of
itself and its collaborators.

The reliability of market-data
is the combined reliability of

itself, D, and E.

A reduction in D’s reliability
affects all upstream services.

99.9%

99.9%

99.9%

95%

99.9% * 95% * 99.9% =
94.8%

99.9% * 94.8% * 99.9% *
99.9% = 94.5%

Figure 6.2   The impact of service dependency availability on reliability in a microservice application

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

132 Chapter 6  Designing reliable services

It’s crucial to maximize service availability — or isolate the impact of unreliability — to
ensure the availability of your entire application. Measuring availability won’t tell you
how to make your services reliable, but it gives you a target to aim for or, more specifi-
cally, a goal to guide both the development of services and the expectations of consum-
ing services and engineers.

NOTE   How do you monitor availability? We’ll explore approaches to monitor-
ing service availability in a microservice application in part 4 of this book.

If you can’t trust the network, your hardware, other services, or even your own services
to be 100% reliable, how can you maximize availability? You need to design defensively
to meet three goals:

¡	Reduce the incidence of avoidable failures
¡	Limit the cascading and system-wide impact of unpredictable failures
¡	Recover quickly — and ideally automatically — when failures do occur

Achieving these goals will ultimately maximize the uptime and availability of your
services.

6.2	 What could go wrong?
As we’ve stated, failure is inevitable in a complex system. Over the lifetime of an appli-
cation, it’s incredibly likely that any catastrophe that could happen, will happen. Con-
sequently, you need to understand the different types of failures that your application
might be susceptible to. Understanding the nature of these risks and their likelihood
is fundamental to both architecting appropriate mitigation strategies and reacting rap-
idly when incidents do occur.

Balancing risk and cost
It’s important to be pragmatic: you can neither anticipate nor eliminate every possible
cause of failure. When you’re designing for resilience, you need to balance the risk of a
failure against what you can reasonably defend against given time and cost constraints:

¡	The cost to design, build, deploy, and operate a defensive solution
¡	The nature of your business and expectations of your customers

To put that in perspective, consider the S3 outage I mentioned earlier. You could defend
against that error by replicating data across multiple regions in AWS or across multiple
clouds. But given that S3 failures of that magnitude are exceptionally rare, that solution
wouldn’t make economic sense for many organizations because it would significantly
increase operational costs and complexity.

As a responsible service designer, you need to identify possible types of failure within
your microservice application, rank them by anticipated frequency and impact, and
decide how you’ll mitigate their impact. In this section, we’ll walk you through some

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 133What could go wrong?

common failure scenarios in microservice applications and how they arise. We’ll also
explore cascading failures — a common catastrophic scenario in a distributed system.

6.2.1	 Sources of failure

Let’s examine a microservice to understand where failure might arise, using one of Sim-
pleBank’s services as an example. You can assume a few things about the market-data
service:

¡	The service will run on hardware — likely a virtualized host — that ultimately
depends on a physical data center.

¡	Other upstream services depend on the capabilities of this service.
¡	This service stores data in some store — for example, a SQL database.
¡	It retrieves data from third-party data sources through APIs and file uploads.
¡	It may call other downstream SimpleBank microservices.

Figure 6.3 illustrates the service and its relationship to other components.

Data store

Stores &
retrieves
data

Host

Third-party
dependencies

Makes requests

Make requests

Market-data

Upstream collaborators

Downstream collaborators

Makes requests

Figure 6.3   Relationships between the market-data microservice and other components of the
application

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

134 Chapter 6  Designing reliable services

Every point of interaction between your service and another component indicates a
possible area of failure. Failures could occur in four major areas:

¡	Hardware  — The underlying physical and virtual infrastructure on which a ser-
vice operates

¡	Communication  — Collaboration between different services and/or third parties
¡	Dependencies  — Failure within dependencies of a service
¡	Internal  — Errors within the code of the service itself, such as defects introduced

by engineers

Let’s explore each category in turn.

Hardware

Regardless of whether you run your services in a public cloud, on-premise, or using
a PaaS, the reliability of the services will ultimately depend on the physical and vir-
tual infrastructure that underpins them, whether that’s server racks, virtual machines,
operating systems, or physical networks. Table 6.1 illustrates some of the causes of fail-
ure within the hardware layer of a microservice application.

Table 6.1   Sources of failure within the hardware layer of a microservice application

Source of failure Frequency Description

Host Often Individual hosts (physical or virtual) may fail.

Data center Rare Data centers or components within them may fail.

Host configuration Occasionally Hosts may be misconfigured —  for example, through errors in
provisioning tools.

Physical network Rare Physical networking (within or between data centers) may fail.

Operating system and
resource isolation

Occasionally The OS or the isolation system — for example, Docker — may fail
to operate correctly.

The range of possible failures at this layer of your application are diverse and unfortu-
nately, often the most catastrophic because hardware component failure may affect the
operation of multiple services within an organization.

Typically, you can mitigate the impact of most hardware failures by designing appro-
priate levels of redundancy into a system. For example, if you’re deploying an applica-
tion in a public cloud, such as AWS, you’d typically spread replicas of a service across
multiple zones — geographically distinct data centers within a wider region — to reduce
the impact of failure within a single center.

It’s important to note that hardware redundancy can incur additional operational
cost. Some solutions may be complex to architect and run — or just plain expensive.
Choosing the right level of redundancy for an application requires careful consider-
ation of the frequency and impact of failure versus the cost of mitigating against poten-
tially rare events.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 135What could go wrong?

Communication

Communication between services can fail: network, DNS, messaging, and firewalls are
all possible sources of failure. Table 6.2 details possible communication failures.

Table 6.2   Sources of communication failure within a microservice application

Source of failure Description

Network Network connectivity may not be possible.

Firewall Configuration management can set security rules inappropriately.

DNS errors Hostnames may not be correctly propagated or resolved across an application.

Messaging Messaging systems — for example, RPC — can fail.

Inadequate health
checks

Health checks may not adequately represent instance state, causing requests to be
routed to broken instances.

Communication failures can affect both internal and external network calls. For exam-
ple, connectivity between the market-data service and the external APIs it relies on
could degrade, leading to failure.

Network and DNS failures are reasonably common, whether caused by changes in
firewall rules, IP address assignment, or DNS hostname propagation in a system. Net-
work issues can be challenging to mitigate, but because they’re often caused by human
intervention (whether through service releases or configuration changes), the best way
to avoid many of them is to ensure that you test configuration changes robustly, and
that they’re easy to roll back if issues occur.

Dependencies

Failure can occur in other services that a microservice depends on, or within that
microservice’s internal dependencies (such as databases). For example, the database
that market-data relies on to save and retrieve data might fail because of underlying
hardware failure or hitting scalability limits — it wouldn’t be unheard of for a database
to run out of disk space!

As we outlined earlier, such failures have a drastic effect on overall system availability.
Table 6.3 outlines possible sources of failure.

Table 6.3   Sources of dependency-related failure

Source of failure Description

Timeouts Requests to services may time out, resulting in erroneous behavior.

Decommissioned or nonbackwards-
compatible functionality

Design doesn’t take service dependencies into account, unexpect-
edly changing or removing functionality.

Internal component failures Problems with databases or caches prevent services from working
correctly.

External dependencies Services may have dependencies outside of the application that
don’t work correctly or as expected — for example, third-party APIs.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

136 Chapter 6  Designing reliable services

In addition to operational sources of failure, such as timeouts and service outages, depen-
dencies are prone to errors caused by design and build failures. For example, a service
may rely on an endpoint in another service that’s changed in a nonbackwards-compatible
way or, even worse, removed completely without appropriate decommissioning.

Service practices

Lastly, inadequate or limited engineering practices when developing and deploying ser-
vices may lead to failure in production. Services may be poorly designed, inadequately
tested, or deployed incorrectly. You may not catch errors in testing, or a team may not
adequately monitor the behavior of their service in production. A service might scale
ineffectively: hitting memory, disk, or CPU limits on its provisioned hardware such that
performance is degraded — or the service becomes completely unresponsive.

Because each service contributes to the effectiveness of the whole system, one poor
quality service can have a detrimental effect on the availability of swathes of function-
ality. Hopefully the practices we outline throughout this book will help you avoid
this — unfortunately common — source of failure!

6.2.2	 Cascading failures

You should now understand how failure in different areas can affect a single micro-
service. But the impact of failure doesn’t stop there. Because your applications are
composed of multiple microservices that continually interact with each other, failure
in one service can spread across an entire system.

Cascading failures are a common mode of failure in distributed applications. A cas-
cading failure is an example of positive feedback: an event disturbs a system, leading to
some effect, which in turn increases the magnitude of the initial disturbance. In this
case, positive means that the effect increases — not that the outcome is beneficial.

You can observe this phenomenon in several real-world domains, such as financial
markets, biological processes, or nuclear power stations. Consider a stampede in a herd
of animals: panic causes an animal to run, which in turn spreads panic to other animals,
which causes them to run, and so on. In a microservice application, overload can cause
a domino effect: failure in one service increases failure in upstream services, and in
turn their upstream services. At worst, the result is widespread unavailability.

Let’s work through an example to illustrate how overload can result in a cascading
failure. Imagine that SimpleBank built a UI to show a user their current financial hold-
ings (or positions) in an account. That might look something like figure 6.4.

Each financial position is the sum of the transactions — purchases and sales of a
stock — made to date, multiplied by the current price. Retrieving these values relies on
collaboration between three services:

¡	Market-data  — A service responsible for retrieving and processing price and mar-
ket information for financial instruments, such as stocks

¡	Transactions  — A service responsible for representing transactions occurring
within an account

¡	Holdings  — A service responsible for aggregating transactions and market-data to
report financial positions

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 137What could go wrong?

Figure 6.4   A user interface that reports financial holdings in an account

Figure 6.5 outlines the production configuration of these services. For each service,
load is balanced across multiple replicas.

Suppose that holdings are being retrieved 1,000 times per second (QPS). If you have
two replicas of your holdings service, each replica will receive 500 QPS (figure 6.6).

UI 1. Retrieves
holdings

LB

LB

LB Data store

Data storeQueries

Queries

The transactions
and market-data
services “own”

data within their
domains.

Holdings

Load is balanced
across multiple
replicas of each

microservice.

2. Retrieves transactions

3. Retrieves prices

Market-data

Transactions

Figure 6.5   Production configuration and collaboration between services to populate the “current
financial holdings” user interface

UI 1000 QPS

500 QPS

LB

500 QPS

Holdings

Holdings

Figure 6.6   Queries made to a service are split across multiple replicas.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

138 Chapter 6  Designing reliable services

Your holdings service subsequently queries transactions and market-data to construct
the response. Each call to holdings will generate two calls: one to transactions and one
to market-data.

Now, let’s say a failure occurs that takes down one of your transactions replicas. Your
load balancer reroutes that load to the remaining replica, which now needs to service
1,000 QPS (figure 6.7).

But that reduced capacity is unable to handle the level of demand to your service.
Depending on how you’ve deployed your service — the characteristics of your web
server — the change in load might first lead to increased latency as requests are queued.
In turn, increased latency might start exceeding the maximum wait time that the hold-
ings service expects for that query. Alternatively, the transactions service may begin
dropping requests.

It’s not unreasonable for a service to retry a request to a collaborator when it fails.
Now, imagine that the holdings service will retry any request to transactions that times
out or fails. This will further increase the load on your remaining transactions resource,
which now needs to handle both the regular request volume and the heightened retry
volume (figure 6.8). In turn, the holdings service takes longer to respond while it waits
on its collaborator.

LB

Holdings

Holdings

Transactions

Transactions

1000 QPS

500 QPS

500 QPS

Figure 6.7   One replica of a collaborating service fails, sending all load to the remaining instance.

Requests to
holdings begin to

take longer.

Collaborators

Holdings

Holdings

Transactions
Requests

Retries

100 QPS

500 QPS

100 QPS

500 QPS

LB 1200 QPS

Failed requests to
transactions

trigger retries.

Retries increase
requests to

transactions.

Figure 6.8   Overload on transactions causes some requests to fail, in turn causing holdings to retry
those requests, which starts to degrade holdings’ response time.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 139Designing reliable communication

Holdings

C

B

Transactions

F

E

D

B

C

Transactions

Holdings

Increased failure in upstream dependencies leads to retries,
repeating the cycle of failure.

Upstream dependencies are unable to service requests
that rely on transactions.

Figure 6.9   Overload in a service leads to complete failure. Unhealthy retry behavior is repeated across
dependency chains as service performance progressively degrades, leading to further overloads.

This feedback loop — failed requests lead to a higher volume of subsequent requests,
leading to a higher rate of failure — continues to escalate. Your whole system is unable to
complete work, as other services that rely on transactions or holdings begin to fail. Your
initial failure in a single service causes a domino effect, worsening response times and
availability across several services. At worst, the cumulative impact on the transactions ser-
vice causes it to fail completely. Figure 6.9 illustrates this final stage of a cascading failure.

Cascading failures aren’t only caused by overload — although this is one of the most
common root causes. In general, increased error rates or slower response times can
lead to unhealthy service behavior, increasing the chance of failure across multiple ser-
vices that depend on each other.

You can use several approaches to limit the occurrence of cascading failures in micro
service applications: circuit breakers; fallbacks; load testing and capacity planning; back-off
and retries; and appropriate timeouts. We’ll explore these approaches in the next section.

6.3	 Designing reliable communication
Earlier, we emphasized the importance of collaboration in a microservice application.
Dependency chains of multiple microservices will achieve most useful capabilities in
an application. When one microservice fails, how does that impact its collaborators
and ultimately, the application’s end customers?

If failure is inevitable, you need to design and build your services to maximize avail-
ability, correct operation, and rapid recovery when failure does occur. This is funda-
mental to achieving resiliency. In this section, we’ll explore several techniques for
ensuring that services behave appropriately — maximizing correct operation — when
their collaborators are unavailable:

¡	Retries
¡	Fallbacks, caching, and graceful degradation
¡	Timeouts and deadlines

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

140 Chapter 6  Designing reliable services

¡	Circuit breakers
¡	Communication brokers

Before we start, let’s get a simple service running that we can use to illustrate the concepts
in this section. You can find these examples in the book’s Github repository (http://
mng.bz/7eN9). Clone the repository to your computer and open the chapter-6 direc-
tory. This directory contains some basic services — holdings and market-data — which
you’ll run inside Docker containers (figure 6.10). The holdings service exposes a GET
/holdings endpoint, which makes a JSON API request to retrieve price information
from market-data.

To run these, you’ll need docker-compose installed (directions online: https://docs
.docker.com/compose/install/). If you’re ready to go, type the following at the com-
mand line:

$ docker-compose up

This will build Docker images for each service and start them as isolated containers on
your machine. Now let’s dive in!

6.3.1	 Retries

In this section, we’ll explore how to use retries when failed requests occur. To under-
stand these techniques, let’s start by examining communication from the perspective
of your upstream service, holdings.

Imagine that a call from the holdings service to retrieve prices fails, returning an
error. From the perspective of the calling service, it’s not clear yet whether this failure
is isolated — repeating that call is likely to succeed, or systemic — the next call has a
high likelihood of failing. You expect calls to retrieve data to be idempotent  — to have no
effect on the state of the target system and therefore be repeatable.2

As a result, your first instinct might be to retry the request. In Python, you can use
an open source library — tenacity — to decorate the appropriate method of your
API client (the MarketDataClient class in holdings/clients.py) and perform retries if
the method throws an exception. The following listing shows the class with retry code
added.

Holdings

Holdings

Requests
Market-data

Market-data

Figure 6.10   Docker containers for working with microservice requests

2	 Requests that effect some system change aren’t typically idempotent. One strategy for guaranteeing
“exactly once” semantics is to implement idempotency keys. See Brandur Leach, “Designing robust
and predictable APIs with idempotency,” February 22, 2017, https://stripe.com/blog/idempotency.

www.itbook.store/books/9781617294457

http://mng.bz/7eN9
http://mng.bz/7eN9
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://stripe.com/blog/idempotency
https://itbook.store/books/9781617294457

	 141Designing reliable communication

Listing 6.1   Adding a retry to a service call

import requests
import logging
from tenacity import retry, stop, before

class MarketDataClient(object):

 logger = logging.getLogger(__name__)
 base_url = 'http://market-data:8000'

 def _make_request(self, url):
 response = requests.get(f"{self.base_url}/{url}",
 headers={'content-type': 'application/json'})
 return response.json()

 @retry(stop=stop_after_attempt(3),
 before=before_log(logger, logging.DEBUG))
 def all_prices(self):
 return self._make_request("prices")

Let’s call the holdings service to see how it behaves. In another terminal window, make
the following request:

curl -I http://{DOCKER_HOST}/holdings

This will return a 500 error, but if you follow the logs from the market-data service, you
can see a request being made to GET /prices three times, before the holdings service
gives up.

If you read the previous section, you should be wary at this point. Failure might be
isolated or persistent, but the holdings service can’t know which one is the case based
on one call.

If the failure is isolated and transient, then a retry is a reasonable option. This helps
to minimize direct impact to end users — and explicit intervention from operational
staff — when abnormal behavior occurs. It’s important to consider your budget for
retries: if each retry takes a certain number of milliseconds, then the consuming service
can only absorb so many retries before it surpasses a reasonable response time.

But if the failure is persistent — for example, if the capacity of market-data is
reduced — then subsequent calls may worsen the issue and further destabilize the
system. Suppose you retry each failed request to market-data five times. Every failed
request you make to this service potentially results in another five requests; the volume
of retries continues to grow. The entire service is doing less useful work as it attempts
to service a high volume of retries. At worst, retries suffocate your market-data service,
magnifying your original failure. Figure 6.11 illustrates this growth of requests.

Imports relevant functions
from the library

Retries the query up to three times

Logs each retry
before execution

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

142 Chapter 6  Designing reliable services

of

 r
eq

ue
st

s

3000

0

6000

9000

12000 Retries

Requests

Requests vs Retries

Figure 6.11   Growth of load on your unstable market-data service resulting from failed requests being
retried

How can you use retries to improve your resiliency in the face of intermittent failures
without contributing to wider system failure if persistent failures occur? First, you
could use a variable time between successive retries to try to spread them out evenly
and reduce the frequency of retry-based load. This is known as an exponential back-off
strategy and is intended to give a system under load time to recover. You can change
the retry strategy you used earlier, as shown in the following listing. Afterwards, by curl-
ing the /holdings endpoint, you can observe the retry behavior of the service.

Listing 6.2   Changing your retry strategy to exponential back-off

@retry(wait=wait_exponential(multiplier=1, max=5),
 stop=stop_after_delay(5))
def all_prices(self):
 return self._make_request("prices")

Unfortunately, exponential back-off can lead to another instance of curious emergent
behavior. Imagine that a momentary failure interrupts several calls to market-data,
leading to retries. Exponential back-off can cause the service to schedule those retries
together so they further amplify themselves, like the ripples from throwing a stone in
a pond.

Instead, back-off should include a random element — jitter — to spread out retries to
a more constant rate and avoid thundering herds of synchronized retries.3 The follow-
ing listing shows how to adjust your strategy again.

Waits 2^x * 1 second
between each retry

Stops after five seconds

3	 A great article by Marc Brooker about exponential back-off and the importance of jitter is avail-
able on the AWS Architecture Blog, March 4, 2015, http://mng.bz/TRk5.

www.itbook.store/books/9781617294457

http://mng.bz/TRk5
https://itbook.store/books/9781617294457

	 143Designing reliable communication

Listing 6.3   Adding jitter to an exponential back-off

@retry(wait=wait_exponential(multiplier=1, max=5) + wait_random(0, 1),
 stop=stop_after_delay(5))
def all_prices(self):
 return self._make_request("prices")

This strategy will ensure that retries are less likely to happen in synchronization across
multiple waiting clients.

Retries are an effective strategy for tolerating intermittent dependency faults, but
you need to use them carefully to avoid exacerbating the underlying issue or consum-
ing unnecessary resources:

¡	Always limit the total number of retries.
¡	Use exponential back-off with jitter to smoothly distribute retry requests and

avoid compounding load.
¡	Consider which error conditions should trigger a retry and, therefore, which

retries are unlikely to, or will never, succeed.

When your service meets retry limits or can’t retry a request, you can either accept
failure or find an alternative way to serve the request. In the next section, we’ll explore
fallbacks.

6.3.2	 Fallbacks

If a service’s dependencies fail, you can explore four fallback options:

¡	Graceful degradation
¡	Caching
¡	Functional redundancy
¡	Stubbed data

Graceful Degradation

Let’s return to the problem with the holdings service: if market-data fails, the applica-
tion may not be able to provide valuations to end customers. To resolve this issue, you
might be able to design an acceptable degradation of service. For example, you could
show holding quantities without valuations. This limits the richness of your UI but is
better than showing nothing — or an error. You can see techniques like this in other
domains. For example, an e-commerce site could still allow purchases to be made,
even if the site’s order dispatch isn’t functioning correctly.

Caching

Alternatively, you could cache the results of past queries for prices, reducing the need
to query the market-data service at all. Say a price is valid for five minutes. If so, the
holdings service could cache pricing data for up to five minutes, either locally or in

Exponentially backs off, adding a random
wait between zero and one second

Stops after five seconds

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

144 Chapter 6  Designing reliable services

a dedicated cache (for example, Memcached or Redis). This solution would both
improve performance and provide contingency in the event of a temporary outage.

Let’s try out this technique. You’ll use a library called cachetools, which provides an
implementation of a time-to-live cache. As you did earlier with retries, you’ll decorate
your client method, as shown in the following listing.

Listing 6.4   Adding in-process caching to a client call

import requests
import logging
from cachetools import cached, TTLCache

class MarketDataClient(object):

 logger = logging.getLogger(__name__)
 cache = TTLCache(maxsize=10, ttl=5*60)
 base_url = 'http://market-data:8000'

 def _make_request(self, url):
 response = requests.get(f"{self.base_url}/{url}",
 headers={'content-type': 'application/json'})
 return response.json()

 @cached(cache)
 def all_prices(self):
 logger.debug("Making request to get all_prices")
 return self._make_request("prices")

Subsequent calls made to GET /holdings should retrieve price information from
the cache, rather than by making calls to market-data. If you used an external cache
instead, multiple instances could use the cache, further reducing load on market-data
and providing greater resiliency for all holdings replicas, albeit at the cost of maintain-
ing an additional infrastructural component.

Functional redundancy

Similarly, you might be able to fall back to other services to achieve the same func-
tionality. Imagine that you could purchase market data from multiple sources, each
covering a different set of instruments at a different cost. If source A failed, you could
instead make requests to source B (figure 6.12).

Functional redundancy within a system has many drivers: external integrations; algo-
rithms for producing similar results with varying performance characteristics; and even
older features that remain operational but have been superseded. In a globally distrib-
uted deployment, you could even fall back on services hosted in another region.4

Only some failure scenarios would allow the use of an alternative service. If the cause
of failure was a code defect or resource overload in your original service, then rerouting
to another service would make sense. But a general network failure could affect multi-
ple services, including ones you might try rerouting to.

Instantiates a cache

Decorates your method to
store results using your cache

4	 At the ultimate end of this scale, Netflix can serve a given customer from any of their global data
centers, conveying an impressive degree of resilience.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 145Designing reliable communication

Falls back to querying
market-data-B

Retrieves prices

Holdings market-data-A
Holdings market-data-A

market-data-B

Requests to market-data-A failNormal operation

Figure 6.12   If service failure occurs, you may be able to serve the same capability with other services.

Stubbed data

Lastly, although it wouldn’t be appropriate in this specific scenario, you could use
stubbed data for fallbacks. Picture the “recommended to you” section on Amazon: if
the backend was unable for some reason to retrieve those personalized recommenda-
tions, it’d be more graceful to fall back to a nonpersonalized data set than to show a
blank section on the UI.

6.3.3	 Timeouts

When the holdings service sends a request to market-data, that service consumes
resources waiting for a reply. Setting an appropriate deadline for that interaction limits
the time those resources are consumed.

You can set a timeout within your HTTP request function. For HTTP calls, you want
to timeout if you haven’t received any response, but not if the response itself is slow to
download. Try the following listing to add a timeout.

Listing 6.5   Adding a timeout to an HTTP call

def _make_request(self, url):
 response = requests.get(f"{self.base_url}/{url}",
 headers={'content-type': 'application/json'},
 timeout=5)
 return response.json()

In a computational sense, network communication is slow, so the speed of failures is
important. In a distributed system, some errors might happen almost instantly. For
example, a dependent service may rapidly fail in the event of an internal bug. But many
failures are slow. For example, a service that’s overloaded by requests may respond
sluggishly, in turn consuming the resources of the calling service while it waits for a
response that may never come.

Sets a timeout of five seconds before
receiving data from market-data

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

146 Chapter 6  Designing reliable services

Slow failures illustrate the importance of setting appropriate deadlines — timing out
in a reasonable timeframe — for communication between microservices. If you don’t
set upper bounds, it’s easy for unresponsiveness to spread through entire microservice
dependency chains. In fact, lack of deadlines can extend the impact of issues because a
server consumes resources while it waits forever for an issue to be resolved.

Picking a deadline can be difficult. If they’re too long, they can consume unnecessary
resources for a calling service if a service is unresponsive. If they’re too short, they can cause
higher levels of failure for expensive requests. Figure 6.13 illustrates these constraints.

For many microservice applications, you set deadlines at the level of individual inter-
actions; for example, a call from holdings to market-data may always have a deadline of
10 seconds. A more elegant approach is to apply an absolute deadline across an entire
operation and propagate the remaining time across collaborators.

Without propagating deadlines, it can be difficult to make them consistent across a
request. For example, holdings could waste resources waiting for market-data far beyond
the overall deadline imposed by a higher level of the stack, such as an API gateway.

Imagine a chain of dependencies between multiple services. Each service takes a cer-
tain amount of time to do its work and expects its collaborators to take some time. If any
of those times vary, static expectations may no longer be correct (figure 6.14).

If your service interactions are over HTTP, you could propagate deadlines using a
custom HTTP header, such as X-Deadline: 1000, passing that value to set read timeout
values on subsequent HTTP client calls. Many RPC frameworks, such as gRPC, explic-
itly implement mechanisms for propagating deadlines within a request context.

6.3.4	 Circuit breakers

You can combine some of the techniques we've discussed so far. You can consider an
interaction between holdings and market-data as analogous to an electrical circuit. In
electrical wiring, circuit breakers perform a protective role — preventing spikes in cur-
rent from damaging a wider system. Similarly, a circuit breaker is a pattern for pausing
requests made to a failing service to prevent cascading failures.

Unresponsive

Typical response

Lengthy deadlines lead
to wasted resource
consumption when

failure occurs.

Short deadlines
contribute to failure if
responses often take

longer.

Short deadline

Long deadline

Time

Figure 6.13   Choosing the right deadline requires balancing time constraints to maximize the window of
successful requests.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 147Designing reliable communication

There is no synchronization between
deadlines; service B will work beyond

the deadline that service A sets.

In normal operation, response
times are within those

deadlines.

Deadline

Avg response
time

Downstream services are
unaware of upstream limits.

Services set wait times for calls
to their dependencies.

D

C

BA

5s 4s

10s

2s

1s

10s

Figure 6.14   Services may set expectations about how long they expect calls to collaborators to take;
varying widely because of failure or latency can exacerbate the impact of those failures.

How does it work? Two principles, both of which we touched on in the previous sec-
tion, inform the design of a circuit breaker:

1	 Remote communication should fail quickly in the event of an issue, rather than
wasting resources waiting for a response that might never come.

2	 If a dependency is failing consistently, it’s better to stop making further requests
until that dependency recovers.

When making a request to a service, you can track the number of times that request
succeeds or fails. You might track this number within each running instance of a ser-
vice or share that state (using an external cache) across multiple services. In this nor-
mal operation, we consider the circuit to be closed.

If the number of failures seen or the rate of failures within a certain time window
passes a threshold, then the circuit is opened. Rather than attempting to send requests
to your collaborating service, you should short-circuit requests and, where possible,
perform an appropriate fallback — returning a stubbed message, routing to a different
service, or returning a cached response. Figure 6.15 illustrates the lifecycle of a request
using a circuit breaker.

Setting the time window and threshold requires careful consideration of both
the expected reliability of the target service and the volume of interactions between
services. If requests are relatively sparse, then a circuit breaker may not be effective,
because a large time window might be required to obtain a representative sample of
requests. For service interactions with contrasting busy and quiet periods, you may want
to introduce a minimum throughput to ensure a circuit only reacts when load is statis-
tically significant.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

148 Chapter 6  Designing reliable services

Request

Response Fallback

Open

Circuit open?

Open circuit Yes

Yes

No

Make request
to service

Closed Success?

Report metrics

Threshold
exceeded?

Figure 6.15   A circuit breaker controls the flow of requests between two services and opens when the
number of failed requests surpasses a threshold.

NOTE   You should monitor when circuits are opened and closed, as well as
potentially alerting the team responsible, especially if the circuit is frequently
opened. We’ll discuss this further in part 4.

Once the circuit has opened, you probably don’t want to leave it that way. When avail-
ability returns to normal, the circuit should be closed. The circuit breaker needs to
send a trial request to determine whether the connection has returned to a healthy
state. In this trial state, the circuit breaker is half open: if the call succeeds, the circuit
will be closed; otherwise, it will remain open. As with other retries, you should sched-
ule these attempts with an exponential back-off with jitter. Figure 6.16 shows the three
distinct states of a circuit breaker.

Several libraries are available that provide implementations of the circuit breaker
pattern in different languages, such as Hystrix (Java), CB2 (Ruby), or Polly (.NET).

TIP   Don’t forget that closed is the good state for a circuit breaker! The use of
open and closed to represent, respectively, negative and positive states may seem
counterintuitive but reflects the real-world behavior of an electrical circuit.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 149Designing reliable communication

Successful requests

In this state, requests fail quickly.

1. If failure thresholds aren’t
met, the circuit stays closed.

Open

Half open

Closed

2. If the failure threshold
is exceeded, the circuit
is opened.

3. After a delay,
the circuit attemps to close.

5. If closing is successful,
the circuit returns to closed.

4. If this fails,
the circuit returns to open.

Figure 6.16   A circuit breaker transitions between three stages: open, closed, and half open.

6.3.5	 Asynchronous communication

So far, we’ve focused on failure in synchronous, point-to-point communication
between services. As we outlined in the first section, the more services in a chain, the
lower overall availability you can guarantee for that path.

Designing asynchronous service interactions, using a communication broker like a
message queue, is another technique you can use to maximize reliability. Figure 6.17
illustrates this approach.

Where you don’t need immediate, consistent responses, you can use this tech-
nique to reduce the number of direct service interactions, in turn increasing overall
availability — albeit at the expense of making business logic more complex. As we
mentioned elsewhere in this book, a communication broker becomes a single point
of failure that will require careful attention for you to scale, monitor, and operate
effectively.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

150 Chapter 6  Designing reliable services

Emits
message

Consumes
message

Consumes
message

Message
queue

Service

Service

Service

Figure 6.17   Using a message queue to decouple services from direct interaction

6.4	 Maximizing service reliability
In the previous sections, we explored techniques to ensure a service can tolerate faults
in interactions with its collaborators. Now, let’s consider how you can maximize avail-
ability and fault tolerance within an individual service. In this section, we’ll explore
two techniques — health checks and rate limits — as well as methods for validating the
resilience of services.

6.4.1	 Load balancing and service health

In production, you deploy multiple instances of your market-data service to ensure
redundancy and horizontal scalability. A load balancer will distribute requests from
other services between these instances. In this scenario, the load balancer plays two roles:

1	 Identifying which underlying instances are healthy and able to serve requests

2	 Routing requests to different underlying instances of the service

A load balancer is responsible for executing or consuming the results of health checks.
In the previous section, you could ascertain the health of a dependency at the point
of interaction — when requests were being made. But that’s not entirely adequate. You
should have some way of understanding the application’s readiness to serve requests at
any time, rather than when it’s actively being queried.

Every service you design and deploy should implement an appropriate health check. If
a service instance becomes unhealthy, that instance should no longer receive traffic from
other services. For synchronous RPC-facing services, a load balancer will typically query
each instance’s health check endpoint on an interval basis. Similarly, asynchronous services
may use a heartbeat mechanism to test connectivity between the queue and consumers.

TIP   It’s often desirable for repeated or systematic instance failures, as detected
by health checks, to trigger alerts to an operations team — a little human inter-
vention can be helpful. We’ll explore that further in part 4 of this book.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 151Maximizing service reliability

You can classify health checks based on two criteria: liveness and readiness. A live-
ness check is typically a simple check that the application has started and is running
correctly. For example, an HTTP service should expose an endpoint — commonly
/health, /ping, or /heartbeat — that returns a 200 OK response once the service is
running (figure 6.18). If an instance is unresponsive, or returns an error message, the
load balancer will no longer deliver requests there.

In contrast, a readiness check indicates whether a service is ready to serve traffic,
because being alive may still not indicate that requests will be successful. A service might
have many dependencies — databases, third-party services, configuration, caches — so
you can use a readiness check to see if these constituent components are in the correct
state to serve requests. Both of the example services implement a simple HTTP liveness
check, as shown in the following listing.

Listing 6.6   Flask handler for an HTTP liveness check

@app.route('/ping', methods=["GET"])
def ping():
 return 'OK'

Health checks are binary: either an instance is available or it isn’t. This works well with
typical round-robin load balancing, where requests are distributed to each replica in
turn. But in some circumstances the functioning of a service may be degraded and
exhibit increased latency or error rates without a health check reflecting this status.
As such, it can be beneficial to use load balancers that are aware of latency and able
to route requests to instances that are performing better, or those that are under less
load, to achieve more consistent service behavior. This is a typical feature of a microser-
vice proxy, which we’ll touch on later in this chapter.

LB

4xx/5xx200

200

Holdings

Holdings

LB

200

Holdings

Holdings

Figure 6.18   Load balancers continuously query service instances to check their health. If an instance
is unhealthy, the load balancer will no longer route requests to that instance until it recovers.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

152 Chapter 6  Designing reliable services

6.4.2	 Rate limits

Unhealthy service usage patterns can sometimes arise in large microservice appli-
cations. Upstream dependencies might make several calls, where a single batch call
would be more appropriate, or available resources may not be distributed equitably
among all callers. Similarly, a service with third-party dependencies could be limited by
restrictions that those dependencies impose.

An appropriate solution is to explicitly limit the rate of requests or total requests
available to collaborating services in a timeframe. This helps to ensure that a service — 
particularly when it has many collaborators — isn’t overloaded. The limiting might be
indiscriminate (drop all requests above a certain volume) or more sophisticated (drop
requests from infrequent service clients, prioritize requests for critical endpoints, and
drop low-priority requests). Table 6.4 outlines different rate-limiting strategies.

Table 6.4   Common rate-limiting strategies

Strategy Description

Drop requests above volume Drop consumer requests above a specified volume

Prioritize critical traffic Drop requests to low-priority endpoints to prioritize resources for critical
traffic

Drop uncommon clients Prioritize frequent consumers of the service over infrequent users

Limit concurrent requests Limit the overall number of requests an upstream service can make over
a time period

Rate limits can be shared with a service’s clients at design time or, better, at runtime. A
service might return a header to a consumer that indicates the remaining volume of
requests available. On receipt, the upstream collaborator should take this into account
and adjust its rate of outbound requests. This technique is known as back pressure.

6.4.3	 Validating reliability and fault tolerance

Applying the tactics and patterns we’ve covered will put you on a good path toward
maximizing availability. But it’s not enough to plan and design for resiliency: you need
to validate that your services can tolerate faults and recover gracefully.

Thorough testing provides assurance that your chosen design is effective when
both predicted and unpredictable failures occur. Testing requires the application of
load testing and chaos testing. Although it’s likely you’re familiar with code testing — such
as unit and acceptance testing to validate implementation, usually in a controlled
environment — you might not know that load and chaos testing are intended to val-
idate service limits by closely replicating the turbulence of production operation.
Although testing isn’t the primary focus of this book, it’s useful to understand how
these different testing techniques can help you build a robust microservice application.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 153Maximizing service reliability

Load testing

As a service developer, you can usually be confident that the number of requests made
to your service will increase over time. When developing a service, you should

1	 Model the expected growth and shape of service traffic to ensure that you under-
stand the likely usage of your service

2	 Estimate the capacity required to service that traffic

3	 Validate the deployed capacity of the service by load testing against those limits

4	 Use business and service metrics as appropriate to re-estimate capacity

Imagine you’re considering how much capacity the market-data service requires. First,
what do you know about the service’s usage patterns? You know that holdings queries
the service, but it may be called from elsewhere too — pricing data is used throughout
SimpleBank’s product.

Let’s assume that queries to market-data grow roughly in line with the number of
active users on the platform, but you may experience spikes (for example, when the
market opens in the morning). You can plan capacity based on predictions of your busi-
ness growth. Table 6.5 outlines a simple estimation of the QPS that you can expect this
service to receive over a three-month period.

Table 6.5   Estimate of calls to a service per second based on growth in average active users over a three-
month period

Jun Jul Aug

Total Users 4000 5600 7840

Expected Growth 40% 40% 40%

Active Users Average 20% 800 1120 1568

Peak 70% 2800 3920 5488

Service Calls Average

Per User/Minute 30 24000 33600 47040

Per User/Second 0.5 400 560 784

Peak

Per User/Minute 30 84000 117600 164640

Per User/Second 0.5 1400 1960 2744

Identifying the qualitative factors that drive growth in service utilization is vital to good
design and optimizing capacity. Once you’ve done that, you can determine how much

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

154 Chapter 6  Designing reliable services

capacity to deploy. For example, the table suggests you need to be able to service 400
requests per second in normal operation, growing by 40% month on month, with
spikes in peak usage to 1,400 requests per second.

TIP   An in-depth review of capacity and scale planning techniques is outside the
scope of this book, but a great overview is available in Abbott and Fisher’s The
Art of Scalability (Addison-Wesley Professional, 2015) (ISBN 978-0134032801).

Once you’ve established a baseline capacity for your service, you can then iteratively
test that capacity against expected traffic patterns. Along with validating the traffic lim-
its of a microservice configuration, load testing can identify potential bottlenecks or
design flaws that aren’t apparent at lower levels of load. Load testing can provide you
with highly effective insight into the limitations of your services.

At the level of individual services, you should automate the load testing of each ser-
vice as part of its delivery pipeline — something we’ll explore in part 3 of this book.
Along with this systematic load testing, you should perform exploratory load testing to
identify limits and test your assumptions about the load that services can handle.

You also should load test services together. This can aid in identifying unusual load
patterns and bottlenecks based on service interaction. For example, you could write a
load test that exercises all the services in the GET /holdings example.

Chaos testing

Many failures in a microservice application don’t arise from within the microservices
themselves. Networks fail, virtual machines fail, databases become unresponsive — failure
is everywhere! To test for these types of failure scenarios, you need to apply chaos testing.

Chaos testing pushes your microservice application to fail in production. By intro-
ducing instability and failure, it accurately mimics real system failures, as well as train-
ing an engineering team to be able to react to those failures. This should ultimately
build your confidence in the system’s capability to withstand real chaos because you’ll
be gradually improving the resiliency of your system and reducing the possible number
of events that would cause operational impact.

As explained on the “Principles of Chaos Engineering” website (https://principlesof
chaos.org/), you can think of chaos testing as “the facilitation of experiments to
uncover systemic weaknesses.” The website lays out this approach:

1	 Define a measurable steady state of normal system operation.

2	 Hypothesize that behavior in an experimental and control group will remain
steady; the system will be resilient to the failure introduced.

3	 Introduce variables that reflect real-world failure events — for example, removing
servers, severing network connections, or introducing higher levels of latency.

4	 Attempt to disprove the hypothesis you defined in (2).

www.itbook.store/books/9781617294457

https://principlesofchaos.org/
https://principlesofchaos.org/
https://itbook.store/books/9781617294457

	 155Maximizing service reliability

Recall how the holdings, transactions, and market-data services were deployed in fig-
ure 6.5. In this case, you expect steady operation to return holdings data within a rea-
sonable response time. A chaos test could introduce several variables:

1	 Killing nodes running market-data or transactions, either partially or completely

2	 Reducing capacity by killing holdings instances at random

3	 Severing the network connection — for example, between holdings and down-
stream services or between services and their data stores

Figure 6.19 illustrates these options.
Companies with mature chaos testing practices might even perform testing on both

a systematic and random basis against live production environments. This might sound
terrifying; real outages can be stressful enough, let alone actively working to make them
happen. But without taking this approach, it’s incredibly difficult to know that your
system is truly resilient in the ways that you expect. In any organization, you should
start small, by introducing a limited set of possible failures, or only running scheduled,
rather than random, tests. Although you can also perform chaos tests in a staging envi-
ronment, you’ll need to carefully consider whether that environment is truly represen-
tative of or equivalent to your production configuration.

TIP   Chaos Toolkit (http://chaostoolkit.org/) is a great tool to start with if
you’d like to practice chaos engineering techniques.

Ultimately, by regularly and systematically validating your system against chaotic events
and resolving the issues you encounter, you and your team will be able to achieve a sig-
nificant level of confidence in your application’s resilience to failure.

UI LB

LB

Sever or throttle
network

connections

Market-data

Transactions

Remove
instances to

reduce capacity

Data store

Disable
components

Data storeLB

Holdings

Figure 6.19   Potential variables to introduce in a chaos test to reflect real-world failure events

www.itbook.store/books/9781617294457

http://chaostoolkit.org/
https://itbook.store/books/9781617294457

156 Chapter 6  Designing reliable services

6.5	 Safety by default
Critical paths in your microservice application will only be as resilient and available as
their weakest link. Given the impact that individual services can have overall availabil-
ity, it’s imperative to avoid emergencies where introducing new services or changes in
a service dependency chain significantly degrade that measure. Likewise, you don’t
want to find out that crucial functionality can’t tolerate faults when that fault happens.

When applications are technically heterogeneous, or distinct teams deliver underly-
ing services, it can be exceptionally difficult to maintain consistent approaches to reli-
able interaction. We touched on this back in chapter 2 when we discussed isolation and
technical divergence. Teams are under different delivery pressures and different ser-
vices have different needs — at worst, developers might forget to follow good resiliency
practices.

Any change in service topology can have a negative impact. Figure 6.20 illustrates
two examples: adding a new collaborator downstream from market-data might decrease
market-data’s availability, whereas adding a new consumer might reduce the overall
capacity of the market-data service, reducing service for existing consumers.

Frameworks and proxies are two different technical approaches to applying com-
munication standards across multiple services that make it easy for engineers to fall
into doing the right thing by ensuring services communicate resiliently and safely by
default.

6.5.1	 Frameworks

A common approach for ensuring services always communicate appropriately is to
mandate the use of specific libraries implementing common interaction patterns like
circuit breakers, retries, and fallbacks. Standardizing these interactions across all ser-
vices using a library has the following advantages:

1	 Increases the overall reliability of your application by avoiding roll-your-own
approaches to service interaction

2	 Simplifies the process of rolling out improvements or optimizations to communi-
cation across any number of services

3	 Clearly and consistently distinguishes network calls from local calls within code

4	 Can be extended to provide supporting functionality, such as collecting metrics
on service interactions

This approach tends to be more effective when a company uses one language (or few
languages) for writing code; for example, Hystrix, which we mentioned earlier, was
intended to provide a standardized way — across all Java-based services in Netflix’s
organization — of controlling interactions between distributed services.

NOTE    Standardizing communication is a crucial element of building a
microservice chassis, which we’ll explore in the next chapter.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	 157Safety by default

Holdings Market-data

New
consumer

Increased load might
negatively impact existing

service availability.

A new dependency can
negatively impact availability.

New
collaborator

Figure 6.20   Availability impact of new services in a dependency chain

6.5.2	 Service mesh

Alternatively, you could introduce a service mesh, such as Linkerd (https://linkerd.io)
or Envoy (www.envoyproxy.io), between your services to control retries, fallbacks, and
circuit breakers, rather than making this behavior part of each individual service. A
service mesh acts as a proxy. Figure 6.21 illustrates how a service mesh handles commu-
nication between services.

Instead of services communicating directly with other services, service communica-
tion passes through the service mesh application, typically deployed as a separate pro-
cess on the same host as the service. You then can configure the proxy to manage that
traffic appropriately — retrying requests, managing timeouts, or balancing load across
different services. From the caller’s perspective, the mesh doesn’t exist — it makes
HTTP or RPC calls to another service as normal.

Host

Proxy

A

Host

Logical communication

Proxied communicationProxy

Service proxies
route the actual

request; they abstract
this detail away

from the services.

Service A makes a request
to service B.

B

Figure 6.21   Communication between services using a service mesh

www.itbook.store/books/9781617294457

https://linkerd.io
www.envoyproxy.io
https://itbook.store/books/9781617294457

158 Chapter 6  Designing reliable services

Although this may make the treatment of service interaction less explicit to an engi-
neer working on a service, it can simplify defensive communication in applications
that are heterogeneous. Otherwise, consistent communication can require significant
time investment to achieve across different languages, because ecosystems and librar-
ies may have unequal capabilities or support for resiliency features.

Summary

¡	Failure is inevitable in complex distributed systems — you have to consider fault
tolerance when you’re designing them.

¡	The availability of individual services affects the availability of the wider
application.

¡	Choosing the right level of risk mitigation for an application requires careful
consideration of the frequency and impact of failure versus the cost of mitigating
against potentially rare events.

¡	Most failures occur in one of four areas: hardware, communication, dependen-
cies, or internally.

¡	Cascading failures result from positive feedback and are a common failure mode
in a microservice application. They’re most commonly caused by server overload.

¡	You can use retries and deadlines to mitigate against faults in service interactions.
You need to apply retries carefully to avoid exacerbating failure in other services.

¡	You can use fallbacks — such as caching, alternative services, and default
results — to return successful responses, even when service dependencies fail.

¡	You should propagate deadlines between services to ensure they’re consistent
across a system and to minimize wasted work.

¡	Circuit breakers between services protect against cascading failures by failing
quickly when a high threshold of errors is encountered.

¡	Services can use rate limits to protect themselves from spikes in load beyond their
capacity to service.

¡	Individual services should expose health checks for load balancers and monitor-
ing to be able to use.

¡	You can effectively validate resiliency by practicing both load and chaos testing.
¡	You can apply standards — whether through proxies or frameworks — to help

engineers “fall into the pit of success” and build services that tolerate faults by
default.

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

Bruce ● Pereira

I
nvest your time in designing great applications, improving
infrastructure, and making the most out of your dev teams.
Microservices are easier to write, scale, and maintain than

traditional enterprise applications because they’re built as a
system of independent components. Master a few important
new patterns and processes, and you’ll be ready to develop,
deploy, and run production-quality microservices.

Microservices in Action teaches you how to write and maintain
microservice-based applications. Created with day-to-day
development in mind, this informative guide immerses you
in real-world use cases from design to deployment. You’ll
discover how microservices enable an effi cient continuous
delivery pipeline, and explore examples using Kubernetes,
Docker, and Google Container Engine.

What’s Inside
● An overview of microservice architecture
● Building a delivery pipeline
● Best practices for designing multi-service transactions
 and queries
● Deploying with containers
● Monitoring your microservices

Written for intermediate developers familiar with enterprise
architecture and cloud platforms like AWS and GCP.

Morgan Bruce and Paulo A. Pereira are experienced engineering
leaders. They work daily with microservices in a production
environment, using the techniques detailed in this book.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/microservices-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Microservices IN ACTION

SOFTWARE DEVELOPMENT

M A N N I N G

“The one [and only] book
on implementing micro-
services with a real-world,

cover-to-cover example
you can relate to.”

—Christian Bach, Swiss Re

“A perfect fi t for those who
want to move their majestic

monolith to a scalable
 microservice architecture.”

—Akshat Paul
McKinsey & Company

“Shows not only how to
write microservices, but also

how to prepare your
business and infrastructure

 for this change.”—Maciej Jurkowski, Grupa Pracuj

“A deep dive into microser-
vice development with many
real and useful examples.”

—Antonio Pessolano
Consoft Sistemi

See first page

www.itbook.store/books/9781617294457

https://itbook.store/books/9781617294457

	Microservices in Action: Sample Chapter
	brief contents
	Part 2: Design
	6 Designing reliable services
	6.1	Defining reliability
	6.2	What could go wrong?
	6.2.1	Sources of failure
	6.2.2	Cascading failures

	6.3	Designing reliable communication
	6.3.1	Retries
	6.3.2	Fallbacks
	6.3.3	Timeouts
	6.3.4	Circuit breakers
	6.3.5	Asynchronous communication

	6.4	Maximizing service reliability
	6.4.1	Load balancing and service health
	6.4.2	Rate limits
	6.4.3	Validating reliability and fault tolerance

	6.5	Safety by default
	6.5.1	Frameworks
	6.5.2	Service mesh

