
M A N N I N G

William P. Bejeck Jr.
Foreword by Neha Narkhede

Real-time apps and
microservices with the
Kafka Streams API

S A M P L E C H A P T E R

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

Kafka Streams in Action

by William P. Bejeck Jr.

 Chapter 1

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

iii

brief contents
PART 1 GETTING STARTED WITH KAFKA STREAMS 1

1 ■ Welcome to Kafka Streams 3

2 ■ Kafka quickly 22

PART 2 KAFKA STREAMS DEVELOPMENT55

3 ■ Developing Kafka Streams 57

4 ■ Streams and state 84

5 ■ The KTable API 117

6 ■ The Processor API 145

PART 3 ADMINISTERING KAFKA STREAMS173

7 ■ Monitoring and performance 175

8 ■ Testing a Kafka Streams application 199

PART 4 ADVANCED CONCEPTS WITH KAFKA STREAMS215

9 ■ Advanced applications with Kafka Streams 217

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

3

Welcome to Kafka Streams

In this book, you’ll learn how to use Kafka Streams to solve your streaming applica-
tion needs. From basic extract, transform, and load (ETL) to complex stateful
transformations to joining records, we’ll cover the components of Kafka Streams so
you can solve these kinds of challenges in your streaming applications.

 Before we dive into Kafka Streams, we’ll briefly explore the history of big data
processing. As we identify problems and solutions, you’ll clearly see how the need
for Kafka, and then Kafka Streams, evolved. Let’s look at how the big data era got
started and what led to the Kafka Streams solution.

This chapter covers
 Understanding how the big data movement

changed the programming landscape

 Getting to know how stream processing works
and why we need it

 Introducing Kafka Streams

 Looking at the problems solved by Kafka Streams

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

4 CHAPTER 1 Welcome to Kafka Streams

1.1 The big data movement, and how it changed
the programming landscape
The modern programming landscape has exploded with big data frameworks and
technologies. Sure, client-side development has undergone transformations of its
own, and the number of mobile device applications has exploded as well. But no mat-
ter how big the mobile device market gets or how client-side technologies evolve,
there’s one constant: we need to process more and more data every day. As the
amount of data grows, the need to analyze and take advantage of the benefits of that
data grows at the same rate.

 But having the ability to process large quantities of data in bulk (batch processing)
isn’t always enough. Increasingly, organizations are finding that they need to process
data as it becomes available (stream processing). Kafka Streams, a cutting-edge approach
to stream processing, is a library that allows you to perform per-event processing of
records. Per-event processing means you process each record as soon as it’s avail-
able—no grouping of data into small batches (microbatching) is required.

NOTE When the need to process data as it arrives became more and more
apparent, a new strategy was developed: microbatching. As the name implies,
microbatching is nothing more than batch processing, but with smaller quan-
tities of data. By reducing the size of the batch, microbatching can sometimes
produce results more quickly; but microbatching is still batch processing,
although at faster intervals. It doesn’t give you real per-event processing.

1.1.1 The genesis of big data

The internet started to have a real impact on our daily lives in the mid-1990s. Since
then, the connectivity provided by the web has given us unparalleled access to infor-
mation and the ability to communicate instantly with anyone, anywhere in the world.
An unexpected byproduct of all this connectivity emerged: the generation of massive
amounts of data.

 For our purposes, I’ll say that the big data era officially began in 1998, the year
Sergey Brin and Larry Page formed Google. Brin and Page developed a new way of
ranking web pages for searches: the PageRank algorithm. At a very high level, the Page-
Rank algorithm rates a website by counting the number and quality of links pointing
to it. The assumption is that the more important or relevant a web page is, the more
sites will refer to it.

 Figure 1.1 offers a graphical representation of the PageRank algorithm:

 Site A is the most important, because it has the most references pointing to it.
 Site B is somewhat important. Although it doesn’t have as many references, an

important site does point to it.
 Site C is less important than A or B. More references are pointing to site C than

site B, but the quality of those references is lower.
 The sites at the bottom (D through I) have no references pointing to them.

This makes them the least valuable.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

5The big data movement, and how it changed the programming landscape

The figure is an oversimplification of the PageRank algorithm, but it gives you the
basic idea of how the algorithm works.

 At the time, PageRank was a revolutionary approach. Previously, searches on the web
were more likely to use Boolean logic to return results. If a website contained all or most
of the terms you were looking for, that website was in the search results, regardless of the
quality of the content. But running the PageRank algorithm on all internet content
required a new approach—the traditional approaches to working with data took too
long. For Google to survive and grow, it needed to index all that content quickly
(“quickly” being a relative term) and present quality results to the public.

 Google developed another revolutionary approach for processing all that data: the
MapReduce paradigm. Not only did MapReduce enable Google to do the work it
needed to as a company, it inadvertently spawned an entire new industry in computing.

1.1.2 Important concepts from MapReduce

The map and reduce functions weren’t new concepts when Google developed Map-
Reduce. What was unique about Google’s approach was applying those simple con-
cepts at a massive scale across many machines.

 At its heart, MapReduce has roots in functional programming. A map function
takes some input and maps that input into something else without changing the origi-
nal value. Here’s a simple example in Java 8, where a LocalDate object is mapped into
a String message, while the original LocalDate object is left unmodified:

Function<LocalDate, String> addDate =
(date) -> "The Day of the week is " + date.getDayOfWeek();

Site A
Site B

Site C

Site D Site E Site F Site G Site H Site I

Figure 1.1 The PageRank algorithm in action. The circles represent websites, and the larger
ones represent sites with more links pointing to them from other sites.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

6 CHAPTER 1 Welcome to Kafka Streams

Although simple, this short example is sufficient for demonstrating what a map func-
tion does.

 On the other hand, a reduce function takes a number of parameters and reduces
them down to a singular, or at least smaller, value. A good example of that is adding
together all the values in a collection of numbers.

 To perform a reduction on a collection of numbers, you first provide an initial
starting value. In this case, we’ll use 0 (the identity value for addition). The next step
is adding the seed value to the first number in the list. You then add the result of that
first addition to the second number in the list. The function repeats this process until
it reaches the last value, producing a single number.

 Here are the steps to reduce a List<Integer> containing the values 1, 2, and 3:

0 + 1 = 1
1 + 2 = 3
3 + 3 = 6

As you can see, a reduce function collapses results together to form smaller results. As
in the map function, the original list of numbers is left unchanged.

 The following example shows an implementation of a simple reduce function
using a Java 8 lambda:

List<Integer> numbers = Arrays.asList(1, 2, 3);

int sum = numbers.reduce(0, (i, j) -> i + j);

The main topic of this book is not MapReduce, so we’ll stop our background discus-
sion here. But some of the key concepts introduced by the MapReduce paradigm
(later implemented in Hadoop, the original open source version based on Google’s
MapReduce white paper) come into play in Kafka Streams:

 How to distribute data across a cluster to achieve scale in processing
 The use of key/value pairs and partitions to group distributed data together
 Instead of avoiding failure, embracing failure by using replication

The following sections look at these concepts in general terms. Pay attention, because
you’ll see them coming up again and again in the book.

DISTRIBUTING DATA ACROSS A CLUSTER TO ACHIEVE SCALE IN PROCESSING

Working with 5 TB (5,000 GB) of data could be overwhelming for one machine. But if
you can split up the data and involve more machines, so each is processing a manage-
able amount, your problem is minimized. Table 1.1 illustrates this clearly.

 As you can see from the table, you may start out with an unwieldy amount of data
to process, but by spreading the load across more servers, you eliminate the difficulty

Adds the seed value
to the first number Takes the result from

step 1 and adds it to
the second number
in the listAdds the sum of step 2

to the third number

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

7The big data movement, and how it changed the programming landscape

of processing the data. The 1 GB of data in the last line of the table is something a lap-
top could easily handle.

 This is the first key concept to understand about MapReduce: by spreading the
load across a cluster of machines, you can turn an overwhelming amount of data into
a manageable amount.

USING KEY/VALUE PAIRS AND PARTITIONS TO GROUP DISTRIBUTED DATA

The key/value pair is a simple data structure with powerful implications. In the previ-
ous section, you saw the value of spreading a massive amount of data over a cluster of
machines. Distributing your data solves the processing problem, but now you have the
problem of collecting the distributed data back together.

 To regroup distributed data, you can use the keys from the key/value pairs to par-
tition the data. The term partition implies grouping, but I don’t mean grouping by
identical keys, but rather by keys that have the same hash code. To split data into par-
titions by key, you can use the following formula:

int partition = key.hashCode() % numberOfPartitions;

Figure 1.2 shows how you could apply a hashing function to take results from Olympic
events stored on separate servers and group them on partitions for different events.

Table 1.1 How splitting up 5 TB improves processing throughput

Number of machines Amount of data processed per server

10 500 GB

100 50 GB

1000 5 GB

5000 1 GB

swimming, result_1

sprinting, result_3

swimming, result_3

sprinting, result_2

swimming, result_2

sprinting, result_1

Swim results partition

Sprint results partition

Partition = key.hashCode % 2

Figure 1.2 Grouping records by key on partitions. Even though the records start out on separate
servers, they end up in the appropriate partitions.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

8 CHAPTER 1 Welcome to Kafka Streams

All the data is stored as key/value pairs. In the image below the key is the name of the
event, and the value is a result for an individual athlete.

 Partitioning is an important concept, and you’ll see detailed examples in later
chapters.

EMBRACING FAILURE BY USING REPLICATION

Another key component of Google’s MapReduce is the Google File System (GFS). Just
as Hadoop is the open source implementation of MapReduce, Hadoop File System
(HDFS) is the open source implementation of GFS.

 At a very high level, both GFS and HDFS split data into blocks and distribute
those blocks across a cluster. But the essential part of GFS/HDFS is the approach to
server and disk failure. Instead of trying to prevent failure, the framework embraces
failure by replicating blocks of data across the cluster (by default, the replication
factor is 3).

 By replicating data blocks on different servers, you no longer have to worry about
disk failures or even complete server failures causing a halt in production. Replication
of data is crucial for giving distributed applications fault tolerance, which is essential
for a distributed application to be successful. You’ll see later how partitions and repli-
cation work in Kafka Streams.

1.1.3 Batch processing is not enough

Hadoop caught on with the computing world like wildfire. It allowed people to pro-
cess vast amounts of data and have fault tolerance while using commodity hardware
(cost savings). But Hadoop/MapReduce is a batch-oriented process, which means you
collect large amounts of data, process it, and then store the output for later use. Batch
processing is a perfect fit for something like PageRank because you can’t make deter-
minations of what resources are valuable across the entire internet by watching user
clicks in real time.

 But business also came under increasing pressure to respond to important ques-
tions more quickly, such as these:

 What is trending right now?
 How many invalid login attempts have there been in the last 10 minutes?
 How is our recently released feature being utilized by the user base?

It was apparent that another solution was needed, and that solution emerged as stream
processing.

1.2 Introducing stream processing
There are varying definitions of stream processing. In this book, I define stream process-
ing as working with data as it’s arriving in your system. The definition can be further
refined to say that stream processing is the ability to work with an infinite stream of
data with continuous computation, as it flows, with no need to collect or store the data
to act on it.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

9Introducing stream processing

 Figure 1.3 represents a stream of data, with each circle on the line representing
data at a point in time. Data is continuously flowing, as data in stream processing is
unbounded.

Who needs to use stream processing? Anyone who needs quick feedback from an
observable event. Let’s look at some examples.

1.2.1 When to use stream processing, and when not to use it

Like any technical solution, stream processing isn’t a one-size-fits-all solution. The
need to quickly respond to or report on incoming data is a good use case for stream
processing. Here are a few examples:

 Credit card fraud—A credit card owner may not notice a card has been stolen,
but by reviewing purchases as they happen against established patterns (loca-
tion, general spending habits), you may be able to detect a stolen credit card
and alert the owner.

 Intrusion detection—Analyzing application log files after a breach has occurred
may be helpful to prevent future attacks or to improve security, but the ability to
monitor aberrant behavior in real time is critical.

 A large race, such as the New York City Marathon—Almost all runners will have a
chip on their shoe, and when runners pass sensors along the course, you can
use that information to track the runners’ positions. By using the sensor data,
you can determine the leaders, spot potential cheating, and detect whether a
runner is potentially having problems.

 The financial industry—The ability to track market prices and direction in real
time is essential for brokers and consumers to make effective decisions about
when to sell or buy.

On the other hand, stream processing isn’t a solution for all problem domains. To
effectively make forecasts of future behavior, for example, you need to use a large
amount of data over time to eliminate anomalies and identify patterns and trends.
Here the focus is on analyzing data over time, rather than just the most current data:

 Economic forecasting—Information is collected on many variables over an extended
period of time in an attempt to make an accurate forecast, such as trends in
interest rates for the housing market.

 School curriculum changes—Only after one or two testing cycles can school adminis-
trators measure whether curriculum changes are achieving their goals.

Figure 1.3 This marble diagram is a simple representation of stream processing. Each circle represents
some information or an event occurring at a particular point in time. The number of events is unbounded
and moves continually from left to right.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

10 CHAPTER 1 Welcome to Kafka Streams

Here are the key points to remember: If you need to report on or take action immedi-
ately as data arrives, stream processing is a good approach. If you need to perform
in-depth analysis or are compiling a large repository of data for later analysis, a stream-
processing approach may not be a good fit. Let’s now walk through a concrete exam-
ple of stream processing.

1.3 Handling a purchase transaction
Let’s start by applying a general stream-processing approach to a retail sales example.
Then we’ll look at how you can use Kafka Streams to implement the stream-processing
application.

 Suppose Jane Doe is on her way home from work and remembers she needs tooth-
paste. She stops at a ZMart, goes in to pick up the toothpaste, and heads to the check-
out to pay. The cashier asks Jane if she’s a member of the ZClub and scans her
membership card, so Jane’s membership info is now part of the purchase transaction.

 When the total is rung up, Jane hands the cashier her debit card. The cashier
swipes the card and gives Jane the receipt. As Jane is walking out of the store, she
checks her email, and there’s a message from ZMart thanking her for her patronage,
with various coupons for discounts on Jane’s next visit.

 This transaction is a normal occurrence that a customer wouldn’t give a second
thought to, but you’ll have recognized it for what it is: a wealth of information that can
help ZMart run more efficiently and serve customers better. Let’s go back in time a lit-
tle, to see how this transaction became a reality.

1.3.1 Weighing the stream-processing option

Suppose you’re the lead developer for ZMart’s streaming-data team. ZMart is a big-
box retail store with several locations across the country. ZMart does great business,
with total sales for any given year upwards of $1 billion. You’d like to start mining the
data from your company’s transactions to make the business more efficient. You know
you have a tremendous amount of sales data to work with, so whatever technology you
implement will need to be able to work fast and scale to handle this volume of data.

 You decide to use stream processing because there are business decisions and
opportunities that you can take advantage of as each transaction occurs. After data is
gathered, there’s no reason to wait for hours to make decisions. You get together with
management and your team and come up with the following four primary require-
ments for the stream-processing initiative to succeed:

 Privacy—First and foremost, ZMart values its relationship with its customers.
With all of today’s privacy concerns, your first goal is to protect customers’ pri-
vacy, and protecting their credit card numbers is the highest priority. However
you use the transaction information, customer credit card information should
never be at risk of exposure.

 Customer rewards—A new customer-rewards program is in place, with customers
earning bonus points based on the amount of money they spend on certain

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

11Handling a purchase transaction

items. The goal is to notify customers quickly, once they’ve received a reward—
you want them back in the store! Again, appropriate monitoring of activity is
required here. Remember how Jane received an email immediately after leav-
ing the store? That’s the kind of exposure you want for the company.

 Sales data—ZMart would like to refine its advertising and sales strategy. The
company wants to track purchases by region to figure out which items are more
popular in certain parts of the country. The goal is to target sales and specials
for best-selling items in a given area of the country.

 Storage—All purchase records need to be saved in an off-site storage center for
historical and ad hoc analysis.

These requirements are straightforward enough on their own, but how would you go
about implementing them against a single purchase transaction like Jane Doe’s?

1.3.2 Deconstructing the requirements into a graph

Looking at the preceding requirements, you can quickly recast them in a directed acyclic
graph (DAG). The point where the customer completes the transaction at the register
is the source node for the entire graph. ZMart’s requirements become the child nodes
of the main source node (figure 1.4).

Next, you need to determine how to map a purchase transaction to the require-
ments graph.

Patterns

Masking

Rewards

Purchase

Storage

Figure 1.4 The business
requirements for the streaming
application presented as a
directed acyclic graph. Each
vertex represents a requirement,
and the edges show the flow of
data through the graph.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

12 CHAPTER 1 Welcome to Kafka Streams

1.4 Changing perspective on a purchase transaction
In this section, we’ll walk through the steps of a purchase and see how it relates, at a
high level, to the requirements graph from figure 1.4. In the next section, we’ll look at
how to apply Kafka Streams to this process.

1.4.1 Source node

The graph’s source node (figure 1.5) is where the application consumes the purchase
transaction. This node is the source of the sales transaction information that will flow
through the graph.

1.4.2 Credit card masking node

The child node of the graph source is where the credit card masking takes place (fig-
ure 1.6). This is the first vertex or node in the graph that represents the business
requirements, and it’s the only node that receives the raw sales data from the source
node, effectively making this node the source for all other nodes connected to it.

For the credit card masking operation, you make a copy of the data and then convert
all the digits of the credit card number to an x, except the last four digits. The data
flowing through the rest of the graph will have the credit card field converted to the
xxxx-xxxx-xxxx-1122 format.

The point of purchase is the source or
parent node for the entire graph.

Purchase

Figure 1.5 The simple start for the sales
transaction graph. This node is the source of
raw sales transaction information that will
flow through the graph.

Credit card numbers are masked
here for security purposes.Masking

Purchase

Figure 1.6 The first node in the graph that
represents the business requirements. This
node is responsible for masking credit card
numbers and is the only node that receives
the raw sales data from the source node,
effectively making it the source for all other
nodes connected to it.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

13Changing perspective on a purchase transaction

1.4.3 Patterns node

The patterns node (figure 1.7) extracts the relevant information to establish where
customers purchase products throughout the country. Instead of making a copy of the
data, the patterns node will retrieve the item, date, and ZIP code for the purchase and
create a new object containing those fields.

1.4.4 Rewards node

The next child node in the process is the rewards accumulator (figure 1.8). ZMart has
a customer rewards program that gives customers points for purchases made in the
store. This node’s role is to extract the dollar amount spent and the client’s ID and
create a new object containing those two fields.

1.4.5 Storage node

The final child node writes the purchase data out to a NoSQL data store for further
analysis (figure 1.9).

 We’ve now tracked the example purchase transaction through ZMart’s graph of
requirements. Let’s see how you can use Kafka Streams to convert this graph into a
functional streaming application.

Data is extracted here for
determining purchase patterns.Patterns

Masking

Purchase

Figure 1.7 The patterns node consumes purchase information from the
masking node and converts it into a record showing when a customer
purchased an item and the ZIP code where the customer completed the
transaction.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

14 CHAPTER 1 Welcome to Kafka Streams

Data is pulled from the transaction here for
use in calculating customer rewards.

Patterns

Masking

Rewards

Purchase

Figure 1.8 The rewards node is
responsible for consuming sales records
from the masking node and converting
them into records containing the total of
the purchase and the customer ID.

Purchase is stored here to
be available for further

ad hoc analysis.

Patterns

Masking

Rewards

Purchase

Storage

Figure 1.9 The storage node consumes records from the masking node as well.
These records aren’t converted into any other format but are stored in a NoSQL
data store for ad hoc analysis later.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

15Kafka Streams as a graph of processing nodes

1.5 Kafka Streams as a graph of processing nodes
Kafka Streams is a library that allows you to perform per-event processing of records.
You can use it to work on data as it arrives, without grouping data in microbatches.
You process each record as soon as it’s available.

 Most of ZMart’s goals are time sensitive, in that you want to take action as soon as
possible. Preferably, you’ll be able to collect information as events occur. Additionally,
there are several ZMart locations across the country, so you’ll need all the transaction
records to funnel into a single flow or stream of data for analysis. For these reasons,
Kafka Streams is a perfect fit. Kafka Streams allows you to process records as they
arrive and gives you the low-latency processing you require.

 In Kafka Streams, you define a topology of processing nodes (I’ll use the terms pro-
cessor and node interchangeably). One or more nodes will have as source Kafka topic(s),
and you can add additional nodes, which are considered child nodes (if you aren’t
familiar with what a Kafka topic is, don’t worry—I'll explain in detail in chapter 2). Each
child node can define other child nodes. Each processing node performs its assigned
task and then forwards the record to each of its child nodes. This process of perform-
ing work and then forwarding data to any child nodes continues until every child
node has executed its function.

 Does this process sound familiar? It should, because you similarly transformed
ZMart’s business requirements into a graph of processing nodes. Traversing a graph is
how Kafka Streams works—it’s a DAG or topology of processing nodes.

 You start with a source or parent node, which has one or more children. Data
always flows from the parent to the child nodes, never from child to parent. Each
child node, in turn, can define child nodes of its own, and so on.

 Records flow through the graph in a depth-first manner. This approach has signifi-
cant implications: each record (a key/value pair) is processed in full by the entire
graph before another record is forwarded through the topology. Because each record
is processed depth-first through the whole DAG, there’s no need to have backpressure
built into Kafka Streams.

DEFINITION There are varying definitions of backpressure, but here I define it
as the need to restrict the flow of data by buffering or using a blocking mech-
anism. Backpressure is necessary when a source is producing data faster than a
sink can receive and process that data.

By being able to connect or chain together multiple processors, you can quickly build
up complex processing logic, while at the same time keeping each component rela-
tively straightforward. It’s in this composition of processors that Kafka Streams’ power
and complexity come into play.

DEFINITION A topology is the way you arrange the parts of an entire system and
connect them with each other. When I say Kafka Streams has a topology, I’m
referring to transforming data by running through one or more processors.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

16 CHAPTER 1 Welcome to Kafka Streams

1.6 Applying Kafka Streams to the purchase
transaction flow
Let’s build a processing graph again, but this time we’ll create a Kafka Streams pro-
gram. To refresh your memory, figure 1.4 shows the requirements graph for ZMart’s
business requirements. Remember, the vertexes are processing nodes that handle
data, and the edges show the flow of data.

 Although you’ll be building a Kafka Streams program as you build your new graph,
you’ll still be taking a relatively high-level approach. Some details will be left out. We’ll
go into more detail later in the book when we look at the actual code.

 The Kafka Streams program will consume records, and when it does, you’ll convert
the raw records into Purchase objects. These pieces of information will make up a
Purchase object:

 ZMart customer ID (scanned from the member card)
 Total dollar amount spent
 Item(s) purchased
 ZIP code of the store where the purchase took place
 Date and time of the transaction
 Debit or credit card number

1.6.1 Defining the source

The first step in any Kafka Streams program is to establish a source for the stream.
The source could be any of the following:

 A single topic
 Multiple topics in a comma-separated list
 A regex that can match one or more topics

In this case, it will be a single topic named transactions. If any of these Kafka terms
are unfamiliar to you, remember—they’ll be explained in chapter 2.

 It’s important to note that to Kafka, the Kafka Streams program looks like any
other combination of consumers and producers. Any number of applications could

Kafka Streams and Kafka
As you might have guessed from the name, Kafka Streams runs on top of Kafka. In
this introductory chapter, you don’t need to know about Kafka, because we’re focus-
ing more how Kafka Streams works conceptually. A few Kafka-specific terms may be
mentioned, but for the most part, we’ll be concentrating on the stream-processing
aspects of Kafka Streams.

If you’re new to Kafka or are unfamiliar with it, you’ll learn what you need to know
about Kafka in chapter 2. Knowledge of Kafka is essential for working effectively with
Kafka Streams.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

17Applying Kafka Streams to the purchase transaction flow

be reading from the same topic in conjunction with your streaming program. Figure 1.10
represents the source node in the topology.

1.6.2 The first processor: masking credit card numbers

Now that you have a source defined, you can start creating processors that will work
on the data. Your first goal is to mask the credit card numbers recorded in the incom-
ing purchase records. The first processor will convert credit card numbers from some-
thing like 1234-5678-9123-2233 to xxxx-xxxx-xxxx-2233.

 The KStream.mapValues method will perform the masking represented in fig-
ure 1.11. It will return a new KStream instance with values masked as specified by a
ValueMapper. This particular KStream instance will be the parent processor for any
other processors you define.

CREATING PROCESSOR TOPOLOGIES

Each time you create a new KStream instance by using a transformation method,
you’re in essence building a new processor that’s connected to the other processors
already created. By composing processors, you can use Kafka Streams to create com-
plex data flows elegantly.

 It’s important to note that calling a method that returns a new KStream instance
doesn’t cause the original instance to stop consuming messages. A transforming method

Source

Figure 1.10 The source node: a Kafka topic

Child node of the source node

Source node consuming message from
the Kafka transaction topic

Source

Masking

Figure 1.11 The masking processor is a
child of the main source node. It receives
all the raw sales transactions and emits
new records with the credit card number
masked.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

18 CHAPTER 1 Welcome to Kafka Streams

creates a new processor and adds it to the existing processor topology. The updated
topology is then used as a parameter to create the next KStream instance, which starts
receiving messages from the point of its creation.

 It’s very likely that you’ll build new KStream instances to perform additional trans-
formations while retaining the original stream for its original purpose. You’ll work
with an example of this when you define the second and third processors.

 It’s possible to have a ValueMapper convert an incoming value to an entirely new
type, but in this case it will return an updated copy of the Purchase object. Using a
mapper to update an object is a pattern you’ll see frequently.

 You should now have a clear image of how you can build up your processor pipe-
line to transform and output data.

1.6.3 The second processor: purchase patterns

The next processor to create is one that can capture information necessary for deter-
mining purchase patterns in different regions of the country (figure 1.12). To do this,
you’ll add a child-processing node to the first processor (KStream) you created. The
first processor produces Purchase objects with the credit card number masked.

 The purchase-patterns processor receives a Purchase object from its parent node
and maps the object to a new PurchasePattern object. The mapping process extracts

Here the Purchase object is “mapped”
to a PurchasePatterns object.

The child processor node of the
patterns processor has a child node

that writes the PurchasePatterns object
out to the patterns topic. The

format is JSON.

patterns

topic

Patterns

Masking

Source

Figure 1.12 The purchase-pattern processor takes Purchase objects and converts
them into PurchasePattern objects containing the items purchased and the ZIP
code where the transaction took place. A new processor takes records from the
patterns processor and writes them out to a Kafka topic.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

19Applying Kafka Streams to the purchase transaction flow

the item purchased (toothpaste, for example) and the ZIP code it was bought in and
uses that information to create the PurchasePattern object. We’ll go over exactly how
this mapping process occurs in chapter 3.

 Next, the purchase-patterns processor adds a child processor node that receives
the new PurchasePattern object and writes it out to a Kafka topic named patterns.
The PurchasePattern object is converted to some form of transferable data when it’s
written to the topic. Other applications can then consume this information and use it
to determine inventory levels as well as purchasing trends in a given area.

1.6.4 The third processor: customer rewards

The third processor will extract information for the customer rewards program (fig-
ure 1.13). This processor is also a child node of the original processor. It receives the
Purchase objects and maps them to another type: the RewardAccumulator object.

 The customer rewards processor also adds a child-processing node to write the
RewardAccumulator object out to a Kafka topic, rewards. By consuming records from
the rewards topic, other applications can determine rewards for ZMart customers and
produce, for example, the email that Jane Doe received.

Here the Purchase object is “mapped”
to a RewardAccumulator object.

The child processor node of the
Rewards processor has a child node
that writes the RewardAccumulator

object out to the rewards topic.
The format is JSON.

patterns

topic

Patterns

Masking

Source

Rewards

rewards

topic

Figure 1.13 The customer rewards processor is responsible for transforming Purchase objects
into a RewardAccumulator object containing the customer ID, date, and dollar amount of the
transaction. A child processor writes the Rewards objects to another Kafka topic.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

20 CHAPTER 1 Welcome to Kafka Streams

1.6.5 The fourth processor—writing purchase records

The last processor is shown in figure 1.14. This is the third child node of the masking
processor node, and it writes the entire masked purchase record out to a topic called
purchases. This topic will be used to feed a NoSQL storage application that will con-
sume the records as they come in. These records will be used for later analysis.

As you can see, the first processor, which masks the credit card number, feeds three
other processors: two that further refine or transform the data, and one that writes the
masked results to a topic for further use by other consumers. By using Kafka Streams,
you can build up a powerful processing graph of connected nodes to perform stream
processing on your incoming data.

Summary
 Kafka Streams is a graph of processing nodes that combine to provide powerful

and complex stream processing.
 Batch processing is powerful, but it’s not enough to satisfy real-time needs for

working with data.

This last processor writes out
the purchase transaction as
JSON to the purchases topic,

which is consumed by a NoSQL
storage engine.

patterns

topic

Patterns

Masking

Source

Rewards

rewards

topic

purchases

topic

Figure 1.14 The final processor is responsible for writing out the entire Purchase object to
another Kafka topic. The consumer for this topic will store the results in a NoSQL store such as
MongoDB.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

21Summary

 Distributing data, key/value pairs, partitioning, and data replication are critical
for distributed applications.

To understand Kafka Streams, you should know some Kafka. For those who don’t
know Kafka, we’ll cover the essentials in chapter 2:

 Installing Kafka and sending a message
 Exploring Kafka’s architecture and what a distributed log is
 Understanding topics and how they’re used in Kafka
 Understanding how producers and consumers work and how to write them

effectively

If you’re already comfortable with Kafka, feel free to go straight to chapter 3, where
we’ll build a Kafka Streams application based on the example discussed in this chapter.

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

William P. Bejeck Jr.

N
ot all stream-based applications require a dedicated
processing cluster. The lightweight Kafka Streams
library provides exactly the power and simplicity you

need for message handling in microservices and real-time
event processing. With the Kafka Streams API, you fi lter and
transform data streams with just Kafka and your application.

Kafka Streams in Action teaches you to implement stream
processing within the Kafka platform. In this easy-to-follow
book, you’ll explore real-world examples to collect, trans-
form, and aggregate data, work with multiple processors, and
handle real-time events. You’ll even dive into streaming SQL
with KSQL! Practical to the very end, it fi nishes with testing
and operational aspects, such as monitoring and debugging.

What’s Inside
● Using the KStream API
● Filtering, transforming, and splitting data
● Working with the Processor API
● Integrating with external systems

Assumes some experience with distributed systems. No
knowledge of Kafka or streaming applications required.

Bill Bejeck is a Kafka Streams contributor and Confl uent
engineer with over 15 years of software development
experience.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/kafka-streams-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Kafka Streams IN ACTION

SOFTWARE DEVELOPMENT

M A N N I N G

“A great way to learn
about Kafka Streams and
how it is a key enabler of

event-driven applications.”
—From the Foreword by

Neha Narkhede
Cocreator of Apache Kafka

“A comprehensive guide
to Kafka Streams—from

introduction to production!”
—Bojan Djurkovic, Cvent

“Bridges the gap between
message brokering and real-
 time streaming analytics.”—Jim Mantheiy Jr.

Next Century

“Valuable both as an
introduction to streams
as well as an ongoing

 reference.”
—Robin Coe, TD Bank

See first page

www.itbook.store/books/9781617294471

https://itbook.store/books/9781617294471

