
M A N N I N G

William P. Bejeck Jr.
Foreword by Neha Narkhede

Real-time apps and
microservices with the
Kafka Streams API

S A M P L E C H A P T E R

https://itbook.store/books/9781617294471

Kafka Streams in Action

by William P. Bejeck Jr.

 Chapter 3

 Copyright 2018 Manning Publications

https://itbook.store/books/9781617294471

iii

brief contents
PART 1 GETTING STARTED WITH KAFKA STREAMS 1

1 ■ Welcome to Kafka Streams 3

2 ■ Kafka quickly 22

PART 2 KAFKA STREAMS DEVELOPMENT55

3 ■ Developing Kafka Streams 57

4 ■ Streams and state 84

5 ■ The KTable API 117

6 ■ The Processor API 145

PART 3 ADMINISTERING KAFKA STREAMS173

7 ■ Monitoring and performance 175

8 ■ Testing a Kafka Streams application 199

PART 4 ADVANCED CONCEPTS WITH KAFKA STREAMS215

9 ■ Advanced applications with Kafka Streams 217

https://itbook.store/books/9781617294471

57

Developing Kafka Streams

In chapter 1, you learned about the Kafka Streams library. You learned about build-
ing a topology of processing nodes, or a graph that transforms data as it’s streaming
into Kafka. In this chapter, you’ll learn how to create this processing topology with
the Kafka Streams API.

 The Kafka Streams API is what you’ll use to build Kafka Streams applications.
You’ll learn how to assemble Kafka Streams applications; but, more important,
you’ll gain a deeper understanding of how the components work together and how
they can be used to achieve your stream-processing goals.

This chapter covers
 Introducing the Kafka Streams API

 Building Hello World for Kafka Streams

 Exploring the ZMart Kafka Streams application
in depth

 Splitting an incoming stream into multiple
streams

https://itbook.store/books/9781617294471

58 CHAPTER 3 Developing Kafka Streams

3.1 The Streams Processor API
The Kafka Streams DSL is the high-level API that enables you to build Kafka Streams
applications quickly. The high-level API is very well thought out, and there are meth-
ods to handle most stream-processing needs out of the box, so you can create a sophis-
ticated stream-processing program without much effort. At the heart of the high-level
API is the KStream object, which represents the streaming key/value pair records.

 Most of the methods in the Kafka Streams DSL return a reference to a KStream
object, allowing for a fluent interface style of programming. Additionally, a good
percentage of the KStream methods accept types consisting of single-method inter-
faces allowing for the use of Java 8 lambda expressions. Taking these factors into
account, you can imagine the simplicity and ease with which you can build a Kafka
Streams program.

 Back in 2005, Martin Fowler and Eric Evans developed the concept of the fluent
interface—an interface where the return value of a method call is the same instance
that originally called the method (https://martinfowler.com/bliki/FluentInterface
.html). This approach is useful when constructing objects with several parameters,
such as Person.builder().firstName("Beth").withLastName("Smith").with-

Occupation("CEO"). In Kafka Streams, there is one small but important difference:
the returned KStream object is a new instance, not the same instance that made the
original method call.

 There’s also a lower-level API, the Processor API, which isn’t as succinct as the
Kafka Streams DSL but allows for more control. We’ll cover the Processor API in chap-
ter 6. With that introduction out of the way, let’s dive into the requisite Hello World
program for Kafka Streams.

3.2 Hello World for Kafka Streams
For the first Kafka Streams example, we’ll deviate from the problem outlined in chap-
ter 1 to a simpler use case. This will get off the ground quickly so you can see how
Kafka Streams works. We’ll get back to the problem from chapter 1 later in section 3.1.1
for a more realistic, concrete example.

 Your first program will be a toy application that takes incoming messages and con-
verts them to uppercase characters, effectively yelling at anyone who reads the mes-
sage. You’ll call this the Yelling App.

 Before diving into the code, let’s take a look at the processing topology you’ll assem-
ble for this application. You’ll follow the same pattern as in chapter 1, where you built
up a processing graph topology with each node in the graph having a particular func-
tion. The main difference is that this graph will be simpler, as you can see in figure 3.1.

 As you can see, you’re building a simple processing graph—so simple that it resem-
bles a linked list of nodes more than the typical tree-like structure of a graph. But
there’s enough here to give you strong clues about what to expect in the code. There
will be a source node, a processor node transforming incoming text to uppercase, and
a sink processor writing results out to a topic.

https://itbook.store/books/9781617294471

59Hello World for Kafka Streams

This is a trivial example, but the code shown here is representative of what you’ll see in
other Kafka Streams programs. In most of the examples, you’ll see a similar structure:

1 Define the configuration items.
2 Create Serde instances, either custom or predefined.
3 Build the processor topology.
4 Create and start the KStream.

When we get into the more advanced examples, the principal difference will be in the
complexity of the processor topology. With that in mind, it’s time to build your first
application.

3.2.1 Creating the topology for the Yelling App

The first step to creating any Kafka Streams application is to create a source node.
The source node is responsible for consuming the records, from a topic, that will flow
through the application. Figure 3.2 highlights the source node in the graph.

 The following line of code creates the source, or parent, node of the graph.

KStream<String, String> simpleFirstStream = builder.stream("src-topic",

➥ Consumed.with(stringSerde, stringSerde));

The simpleFirstStreamKStream instance is set to consume messages written to the
src-topic topic. In addition to specifying the topic name, you also provide Serde

Listing 3.1 Defining the source for the stream

UpperCase

processor

src-topic

Source

processor

Sink

processor

out-topic

Here the source processor will consume
messages that will be fed into the
processing topology.

The UpperCase processor simply uppercases all
incoming text. It’s important to note that the
copy of the original message is what gets
uppercased, but the original value is unchanged.

The terminal processor here takes
the uppercase text from the
previous processor and writes
it out to a topic.

Figure 3.1 Graph (topology) of the Yelling App

https://itbook.store/books/9781617294471

60 CHAPTER 3 Developing Kafka Streams

objects (via a Consumed instance) for deserializing the records from Kafka. You’ll use
the Consumed class for any optional parameters whenever you create a source node in
Kafka Streams.

 You now have a source node for your application, but you need to attach a process-
ing node to make use of the data, as shown in figure 3.3. The code used to attach the

UpperCase

processor

src-topic

Source

processor

Sink

processor

out-topicFigure 3.2 Creating the source node
of the Yelling App

UpperCase

processor

src-topic

Source

processor

Sink

processor

out-topicFigure 3.3 Adding the uppercase
processor to the Yelling App

https://itbook.store/books/9781617294471

61Hello World for Kafka Streams

processor (a child node of the source node) is shown in the following listing. With this
line, you create another KStream instance that’s a child node of the parent node.

KStream<String, String> upperCasedStream =

➥ simpleFirstStream.mapValues(String::toUpperCase);

By calling the KStream.mapValues function, you’re creating a new processing node
whose inputs are the results of going through the mapValues call.

 It’s important to remember that you shouldn’t modify the original value in the Value-
Mapper provided to mapValues. The upperCasedStream instance receives transformed
copies of the initial value from the simpleFirstStream.mapValues call. In this case,
it’s uppercase text.

 The mapValues() method takes an instance of the ValueMapper<V, V1> interface.
The ValueMapper interface defines only one method, ValueMapper.apply, making it
an ideal candidate for using a Java 8 lambda expression. This is what you’ve done here
with String::toUpperCase, which is a method reference, an even shorter form of a
Java 8 lambda expression.

NOTE Many Java 8 tutorials are available for lambda expressions and method
references. Good starting points can be found in Oracle’s Java documenta-
tion: “Lambda Expressions” (http://mng.bz/J0Xm) and “Method References”
(http://mng.bz/BaDW).

You could have used the form s  s.toUpperCase(), but because toUpperCase is an
instance method on the String class, you can use a method reference.

 Using lambda expressions instead of concrete implementations is a pattern
you’ll see over and over with the Streams Processor API in this book. Because most
of the methods expect types that are single method interfaces, you can easily use
Java 8 lambdas.

 So far, your Kafka Streams application is consuming records and transforming
them to uppercase. The final step is to add a sink processor that writes the results out
to a topic. Figure 3.4 shows where you are in the construction of the topology.

 The following code line adds the last processor in the graph.

upperCasedStream.to("out-topic", Produced.with(stringSerde, stringSerde));

The KStream.to method creates a sink-processing node in the topology. Sink proces-
sors write records back out to Kafka. This sink node takes records from the upper-
CasedStream processor and writes them to a topic named out-topic. Again, you
provide Serde instances, this time for serializing records written to a Kafka topic. But
in this case, you use a Produced instance, which provides optional parameters for cre-
ating a sink node in Kafka Streams.

Listing 3.2 Mapping incoming text to uppercase

Listing 3.3 Creating a sink node

https://itbook.store/books/9781617294471

62 CHAPTER 3 Developing Kafka Streams

NOTE You don’t always have to provide Serde objects to either the Consumed
or Produced objects. If you don’t, the application will use the serializer/dese-
rializer listed in the configuration. Additionally, with the Consumed and
Produced classes, you can specify a Serde for either the key or value only.

The preceding example uses three lines to build the topology:

KStream<String,String> simpleFirstStream =

➥ builder.stream("src-topic", Consumed.with(stringSerde, stringSerde));
KStream<String, String> upperCasedStream =

➥ simpleFirstStream.mapValues(String::toUpperCase);
upperCasedStream.to("out-topic", Produced.with(stringSerde, stringSerde));

Each step is on an individual line to demonstrate the different stages of the building
process. But all methods in the KStream API that don’t create terminal nodes (meth-
ods with a return type of void) return a new KStream instance, which allows you to use
the fluent interface style of programming mentioned earlier. To demonstrate this
idea, here’s another way you could construct the Yelling App topology:

builder.stream("src-topic", Consumed.with(stringSerde, stringSerde))

➥ .mapValues(String::toUpperCase)

➥ .to("out-topic", Produced.with(stringSerde, stringSerde));

This shortens the program from three lines to one without losing any clarity or pur-
pose. From this point forward, all the examples will be written using the fluent inter-
face style unless doing so causes the clarity of the program to suffer.

UpperCase

processor

src-topic

Source

processor

Sink

processor

out-topicFigure 3.4 Adding a processor for
writing the Yelling App results

https://itbook.store/books/9781617294471

63Hello World for Kafka Streams

 You’ve built your first Kafka Streams topology, but we glossed over the important
steps of configuration and Serde creation. We’ll look at those now.

3.2.2 Kafka Streams configuration

Although Kafka Streams is highly configurable, with several properties you can
adjust for your specific needs, the first example uses only two configuration settings,
APPLICATION_ID_CONFIG and BOOTSTRAP_SERVERS_CONFIG:

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "yelling_app_id");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

Both settings are required because no default values are provided. Attempting to start
a Kafka Streams program without these two properties defined will result in a Config-
Exception being thrown.

 The StreamsConfig.APPLICATION_ID_CONFIG property identifies your Kafka Streams
application, and it must be a unique value for the entire cluster. It also serves as a
default value for the client ID prefix and group ID parameters if you don’t set either
value. The client ID prefix is the user-defined value that uniquely identifies clients
connecting to Kafka. The group ID is used to manage the membership of a group of
consumers reading from the same topic, ensuring that all consumers in the group can
effectively read subscribed topics.

 The StreamsConfig.BOOTSTRAP_SERVERS_CONFIG property can be a single host-
name:port pair or multiple hostname:port comma-separated pairs. The value of this
setting points the Kafka Streams application to the locaction of the Kafka cluster. We’ll
cover several more configuration items as we explore more examples in the book.

3.2.3 Serde creation

In Kafka Streams, the Serdes class provides convenience methods for creating Serde
instances, as shown here:

Serde<String> stringSerde = Serdes.String();

This line is where you create the Serde instance required for serialization/deserializa-
tion using the Serdes class. Here, you create a variable to reference the Serde for
repeated use in the topology. The Serdes class provides default implementations for
the following types:

 String
 Byte array
 Long
 Integer
 Double

Implementations of the Serde interface are extremely useful because they contain the
serializer and deserializer, which keeps you from having to specify four parameters

https://itbook.store/books/9781617294471

64 CHAPTER 3 Developing Kafka Streams

(key serializer, value serializer, key deserializer, and value deserializer) every time you
need to provide a Serde in a KStream method. In an upcoming example, you’ll create a
Serde implementation to handle serialization/deserialization of more-complex types.

 Let’s take a look at the whole program you just put together. You can find the
source in src/main/java/bbejeck/chapter_3/KafkaStreamsYellingApp.java (source
code can be found on the book’s website here: https://manning.com/books/kafka-
streams-in-action).

public class KafkaStreamsYellingApp {

public static void main(String[] args) {

Properties props = new Properties();

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "yelling_app_id");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

StreamsConfig streamingConfig = new StreamsConfig(props);

Serde<String> stringSerde = Serdes.String();

StreamsBuilder builder = new StreamsBuilder();

KStream<String, String> simpleFirstStream = builder.stream("src-topic",

➥ Consumed.with(stringSerde, stringSerde));

KStream<String, String> upperCasedStream =

➥ simpleFirstStream.mapValues(String::toUpperCase);

upperCasedStream.to("out-topic",

➥ Produced.with(stringSerde, stringSerde));

KafkaStreams kafkaStreams = new KafkaStreams(builder.build(),streamsConfig);

kafkaStreams.start();
Thread.sleep(35000);
LOG.info("Shutting down the Yelling APP now");
kafkaStreams.close();

}
}

You’ve now constructed your first Kafka Streams application. Let’s quickly review the
steps involved, as it’s a general pattern you’ll see in most of your Kafka Streams
applications:

1 Create a StreamsConfig instance.
2 Create a Serde object.

Listing 3.4 Hello World: the Yelling App

Properties for configuring
the Kafka Streams program

Creates the
StreamsConfig with

the given properties

Creates the
Serdes used
to serialize/
deserialize

keys and
values Creates the StreamsBuilder

instance used to construct
the processor topology

Creates the
actual stream
with a source
topic to read

from (the
parent node

in the graph)

A processor using a Java 8
method handle (the first
child node in the graph)

Writes the transformed
output to another topic
(the sink node in the graph)

Kicks off the Kafka
Streams threads

https://itbook.store/books/9781617294471

65Working with customer data

3 Construct a processing topology.
4 Start the Kafka Streams program.

Apart from the general construction of a Kafka Streams application, a key takeaway here
is to use lambda expressions whenever possible, to make your programs more concise.

 We’ll now move on to a more complex example that will allow us to explore more
of the Streams Processor API. The example will be new, but the scenario is one you’re
already familiar with: ZMart data-processing goals.

3.3 Working with customer data
In chapter 1, we discussed ZMart’s new requirements for processing customer data,
intended to help ZMart do business more efficiently. We demonstrated how you could
build a topology of processors that would work on purchase records as they come stream-
ing in from transactions in ZMart stores. Figure 3.5 shows the completed graph again.

Let’s briefly review the requirements for the streaming program, which will also serve
as a good description of what the program will do:

 All records need to have credit card numbers protected, in this case by masking
the first 12 digits.

 You need to extract the items purchased and the ZIP code to determine pur-
chase patterns. This data will be written out to a topic.

Patterns

Masking

Source

Rewards

Patterns

sink

Rewards

sink

Purchases

sink

Figure 3.5 Topology for ZMart Kafka Streams program

https://itbook.store/books/9781617294471

66 CHAPTER 3 Developing Kafka Streams

 You need to capture the customer’s ZMart member number and the amount
spent and write this information to a topic. Consumers of the topic will use this
data to determine rewards.

 You need to write the entire transaction out to topic, which will be consumed by
a storage engine for ad hoc analysis.

As in the Yelling App, you’ll combine the fluent interface approach with Java 8 lamb-
das when building the application. Although it’s sometimes clear that the return type
of a method call is a KStream object, other times it may not be. Keep in mind that the
majority of the methods in the KStream API return new KStream instances. Now, let’s
build a streaming application that will satisfy ZMart’s business requirements.

3.3.1 Constructing a topology

Let’s dive into building the processing topology. To help make the connection between
the code you’ll create here and the processing topology graph from chapter 1, I’ll high-
light the part of the graph that you’re currently working on.

BUILDING THE SOURCE NODE

You’ll start by building the source node and first processor of the topology by chaining
two calls to the KStream API together (highlighted in figure 3.6). It should be fairly obvi-
ous by now what the role of the origin node is. The first processor in the topology will be
responsible for masking credit card numbers to protect customer privacy.

Patterns

Masking

Source

Rewards

Patterns

sinkRewards

sink

Purchases

sink

Source node consuming messages from
the Kafka transactions topic

Second node does the masking
of credit card numbers

Figure 3.6 The source processor consumes from a Kafka topic, and it feeds the
masking processor exclusively, making it the source for the rest of the topology.

https://itbook.store/books/9781617294471

67Working with customer data

KStream<String,Purchase> purchaseKStream =

➥ streamsBuilder.stream("transactions",

➥ Consumed.with(stringSerde, purchaseSerde))

➥ .mapValues(p -> Purchase.builder(p).maskCreditCard().build());

You create the source node with a call to the StreamsBuilder.stream method using a
default String serde, a custom serde for Purchase objects, and the name of the topic
that’s the source of the messages for the stream. In this case, you only specify one
topic, but you could have provided a comma-separated list of names or a regular
expression to match topic names instead.

 In this listing 3.5, you provide Serdes with a Consumed instance, but you could have
left that out and only provided the topic name and relied on the default Serdes pro-
vided via configuration parameters.

 The next immediate call is to the KStream.mapValues method, taking a ValueMap-
per<V, V1> instance as a parameter. Value mappers take a single parameter of one
type (a Purchase object, in this case) and map that object to a to a new value, possibly
of another type. In this example, KStream.mapValues returns an object of the same
type (Purchase), but with a masked credit card number.

 Note that when using the KStream.mapValues method, the original key is unchanged
and isn’t factored into mapping a new value. If you wanted to generate a new key/value
pair or include the key in producing a new value, you’d use the KStream.map method
that takes a KeyValueMapper<K, V, KeyValue<K1, V1>> instance.

HINTS ABOUT FUNCTIONAL PROGRAMMING

An important concept to keep in mind with the map and mapValues functions is that
they’re expected to operate without side effects, meaning the functions don’t modify
the object or value presented as a parameter. This is because of the functional pro-
gramming aspects in the KStream API. Functional programming is a deep topic, and a
full discussion is beyond the scope of this book, but we’ll briefly look at two central
principles of functional programming here.

 The first principle is avoiding state modification. If an object requires a change or
update, you pass the object to a function, and a copy or entirely new instance is made,
containing the desired changes or updates. In listing 3.5, the lambda passed to
KStream.mapValues is used to update the Purchase object with a masked credit card
number. The credit card field on the original Purchase object is left unchanged.

 The second principle is building complex operations by composing several smaller
single-purpose functions together. The composition of functions is a pattern you’ll
frequently see when working with the KStream API.

DEFINITION For the purposes of this book, I define functional programming as a
programming approach in which functions are first-class objects. Further-
more, functions are expected to avoid creating side effects, such as modifying
state or mutable objects.

Listing 3.5 Building the source node and first processor

https://itbook.store/books/9781617294471

68 CHAPTER 3 Developing Kafka Streams

BUILDING THE SECOND PROCESSOR

Now you’ll build the second processor, responsible for extracting pattern data from a
topic, which ZMart can use to determine purchase patterns in regions of the country.
You’ll also add a sink node responsible for writing the pattern data to a Kafka topic.
The construction of these is demonstrated in figure 3.7.

In listing 3.6, you can see the purchaseKStream processor using the familiar mapValues
call to create a new KStream instance. This new KStream will start to receive Purchase-
Pattern objects created as a result of the mapValues call.

KStream<String, PurchasePattern> patternKStream =

➥ purchaseKStream.mapValues(purchase ->

➥ PurchasePattern.builder(purchase).build());

patternKStream.to("patterns",

➥ Produced.with(stringSerde,purchasePatternSerde));

Listing 3.6 Second processor and a sink node that writes to Kafka

Again you see two nodes in the graph, but
with the fluent style of programming in
Kafka Streams, sometimes it’s easy to
overlook the fact that you’re creating
two nodes.

Patterns

Masking

Source

Rewards

Patterns

sinkRewards

sink

Purchases

sink

This is the fourth node overall,
but it does no processing. This
node writes PurchasePattern
out to a topic.

Second processing node
(third node overall) builds
the PurchasePattern object

Figure 3.7 The second processor builds purchase-pattern information. The sink node writes the
PurchasePattern object out to a Kafka topic.

https://itbook.store/books/9781617294471

69Working with customer data

Here, you declare a variable to hold the reference of the new KStream instance,
because you’ll use it to print the results of the stream to the console with a print call.
This is very useful during development and for debugging. The purchase-patterns
processor forwards the records it receives to a child node of its own, defined by the
method call KStream.to, writing to the patterns topic. Note the use of a Produced
object to provide the previously built Serde.

 The KStream.to method is a mirror image of the KStream.source method.
Instead of setting a source for the topology to read from, the KStream.to method
defines a sink node that’s used to write the data from a KStream instance to a Kafka
topic. The KStream.to method also provides overloaded versions in which you can
leave out the Produced parameter and use the default Serdes defined in the configu-
ration. One of the optional parameters you can set with the Produced class is Stream-
Partitioner, which we’ll discuss next.

BUILDING THE THIRD PROCESSOR

The third processor in the topology is the customer rewards accumulator node shown
in figure 3.8, which will let ZMart track purchases made by members of their pre-
ferred customer club. The rewards accumulator sends data to a topic consumed by
applications at ZMart HQ to determine rewards when customers complete purchases.

The rewards
processor builds a
Rewards object and
passes the object to a
sink processor, which
serializes and writes the
object out to a topic.

Patterns

Masking

Source

Rewards

Patterns

sink

Rewards

sink

Purchases

sink

Figure 3.8 The third processor creates the RewardAccumulator object from the
purchase data. The terminal node writes the results out to a Kafka topic.

https://itbook.store/books/9781617294471

70 CHAPTER 3 Developing Kafka Streams

KStream<String, RewardAccumulator> rewardsKStream =

➥ purchaseKStream.mapValues(purchase ->

➥ RewardAccumulator.builder(purchase).build());
rewardsKStream.to("rewards",

➥ Produced.with(stringSerde,rewardAccumulatorSerde));

You build the rewards accumulator processor using what should be by now a familiar
pattern: creating a new KStream instance that maps the raw purchase data contained
in the record to a new object type. You also attach a sink node to the rewards accumu-
lator so the results of the rewards KStream can be written to a topic and used for deter-
mining customer reward levels.

BUILDING THE LAST PROCESSOR

Finally, you’ll take the first KStream you created, purchaseKStream, and attach a sink
node to write out the raw purchase records (with credit cards masked, of course) to a
topic called purchases. The purchases topic will be used to feed into a NoSQL store
such as Cassandra (http://cassandra.apache.org/), Presto (https://prestodb.io/), or
Elastic Search (www.elastic.co/webinars/getting-started-elasticsearch) to perform ad
hoc analysis. Figure 3.9 shows the final processor.

purchaseKStream.to("purchases", Produced.with(stringSerde, purchaseSerde));

Listing 3.7 Third processor and a terminal node that writes to Kafka

Listing 3.8 Final processor

The final processor, a sink
processor to be precise, writes
the purchase data out to
a topic with the credit card
information still masked.

Patterns

Masking

Source

Rewards

Rewards

sinkRewards

sink

Purchases

sink

Figure 3.9 The last node writes out the entire purchase transaction to a topic whose
consumer is a NoSQL data store.

https://itbook.store/books/9781617294471

71Working with customer data

Now that you’ve built the application piece by piece, let’s look at the entire applica-
tion (src/main/java/bbejeck/chapter_3/ZMartKafkaStreamsApp.java). You’ll quickly
notice it’s more complicated than the previous Hello World (the Yelling App) example.

public class ZMartKafkaStreamsApp {

public static void main(String[] args) {
// some details left out for clarity

StreamsConfig streamsConfig = new StreamsConfig(getProperties());

JsonSerializer<Purchase> purchaseJsonSerializer = new

➥ JsonSerializer<>();
JsonDeserializer<Purchase> purchaseJsonDeserializer =

➥ new JsonDeserializer<>(Purchase.class);
Serde<Purchase> purchaseSerde =

➥ Serdes.serdeFrom(purchaseJsonSerializer, purchaseJsonDeserializer);
//Other Serdes left out for clarity

Serde<String> stringSerde = Serdes.String();

StreamsBuilder streamsBuilder = new StreamsBuilder();

KStream<String,Purchase> purchaseKStream =

➥ streamsBuilder.stream("transactions",

➥ Consumed.with(stringSerde, purchaseSerde))

➥ .mapValues(p -> Purchase.builder(p).maskCreditCard().build());

KStream<String, PurchasePattern> patternKStream =

➥ purchaseKStream.mapValues(purchase ->

➥ PurchasePattern.builder(purchase).build());

patternKStream.to("patterns",

➥ Produced.with(stringSerde,purchasePatternSerde));

KStream<String, RewardAccumulator> rewardsKStream =

➥ purchaseKStream.mapValues(purchase ->

➥ RewardAccumulator.builder(purchase).build());

rewardsKStream.to("rewards",

➥ Produced.with(stringSerde,rewardAccumulatorSerde));

purchaseKStream.to("purchases",

➥ Produced.with(stringSerde,purchaseSerde));

KafkaStreams kafkaStreams =

➥ new KafkaStreams(streamsBuilder.build(),streamsConfig);
kafkaStreams.start();

}

Listing 3.9 ZMart customer purchase KStream program

Creates the Serde; the
data format is JSON.

Builds the
source and first
processor

Builds the
PurchasePattern
processor

Builds the
RewardAccumula
tor processor

Builds the storage sink, the topic
used by the storage consumer

https://itbook.store/books/9781617294471

72 CHAPTER 3 Developing Kafka Streams

NOTE I’ve left out some details in listing 3.9 for clarity. The code examples in
the book aren’t necessarily meant to stand on their own. The source code
that accompanies this book provides the full examples.

As you can see, this example is a little more involved than the Yelling App, but it has a
similar flow. Specifically, you still performed the following steps:

 Create a StreamsConfig instance.
 Build one or more Serde instances.
 Construct the processing topology.
 Assemble all the components and start the Kafka Streams program.

In this application, I’ve mentioned using a Serde, but I haven’t explained why or how
you create them. Let’s take some time now to discuss the role of the Serde in a Kafka
Streams application.

3.3.2 Creating a custom Serde

Kafka transfers data in byte array format. Because the data format is JSON, you need
to tell Kafka how to convert an object first into JSON and then into a byte array when
it sends data to a topic. Conversely, you need to specify how to convert consumed byte
arrays into JSON, and then into the object type your processors will use. This conver-
sion of data to and from different formats is why you need a Serde. Some serdes are
provided out of the box by the Kafka client dependency, (String, Long, Integer, and
so on), but you’ll need to create custom serdes for other objects.

 In the first example, the Yelling App, you only needed a serializer/deserializer for
strings, and an implementation is provided by the Serdes.String() factory method.
In the ZMart example, however, you need to create custom Serde instances, because
the types of the objects are arbitrary. We’ll look at what’s involved in building a Serde
for the Purchase class. We won’t cover the other Serde instances, because they follow
the same pattern, just with different types.

 Building a Serde requires implementations of the Deserializer<T> and Serial-
izer<T> interfaces. We’ll use the implementations in listings 3.10 and 3.11 through-
out the examples. Also, you’ll use the Gson library from Google to convert objects to
and from JSON. Here’s the serializer, which you can find in src/main/java/bbejeck/
util/serializer/JsonSerializer.java.

public class JsonSerializer<T> implements Serializer<T> {

private Gson gson = new Gson();

@Override
public void configure(Map<String, ?> map, boolean b) {

}

Listing 3.10 Generic serializer

Creates the
Gson object

https://itbook.store/books/9781617294471

73Working with customer data

@Override
public byte[] serialize(String topic, T t) {

return gson.toJson(t).getBytes(Charset.forName("UTF-8"));
}

@Override
public void close() {

}
}

For serialization, you first convert an object to JSON, and then get the bytes from the
string. To handle the conversions from and to JSON, the example uses Gson (https://
github.com/google/gson).

 For the deserializing process, you take different steps: create a new string from a
byte array, and then use Gson to convert the JSON string into a Java object. This
generic deserializer can be found in src/main/java/bbejeck/util/serializer/Json-
Deserializer.java.

public class JsonDeserializer<T> implements Deserializer<T> {

private Gson gson = new Gson();
private Class<T> deserializedClass;

public JsonDeserializer(Class<T> deserializedClass) {
this.deserializedClass = deserializedClass;

}

public JsonDeserializer() {
}

@Override
@SuppressWarnings("unchecked")
public void configure(Map<String, ?> map, boolean b) {

if(deserializedClass == null) {
deserializedClass = (Class<T>) map.get("serializedClass");

}
}

@Override
public T deserialize(String s, byte[] bytes) {

if(bytes == null){
return null;

}

return gson.fromJson(new String(bytes),deserializedClass);

}

Listing 3.11 Generic deserializer

Serializes an
object to bytes

Creates the
Gson object

Instance variable of
Class to deserialize

Deserializes bytes to an
instance of expected Class

https://itbook.store/books/9781617294471

74 CHAPTER 3 Developing Kafka Streams

@Override
public void close() {

}
}

Now, let’s go back to the following lines from listing 3.9:

JsonDeserializer<Purchase> purchaseJsonDeserializer =

➥ new JsonDeserializer<>(Purchase.class);
JsonSerializer<Purchase> purchaseJsonSerializer =

➥ new JsonSerializer<>();
Serde<Purchase> purchaseSerde =

➥ Serdes.serdeFrom(purchaseJsonSerializer,purchaseJsonDeserializer);

As you can see, a Serde object is useful because it serves as a container for the serial-
izer and deserializer for a given object.

 We’ve covered a lot of ground so far in developing a Kafka Streams application. We
still have much more to cover, but let’s pause for a moment and talk about the devel-
opment process itself and how you can make life easier for yourself while developing a
Kafka Streams application.

3.4 Interactive development
You’ve built the graph to process purchase records from ZMart in a streaming fashion,
and you have three processors that write out to individual topics. During development
it would certainly be possible to have a console consumer running to view results, but
it would be good to have a more convenient solution, like the ability to watch data
flowing through the topology in the console, as shown in figure 3.10.

 There’s a method on the KStream interface that can be useful during develop-
ment: the KStream.print method, which takes an instance of the Printed<K, V> class.

Creates the Deserializer
for the Purchase class

Creates the Serializer
for the Purchase class

Creates the Serde for
Purchase objects

Figure 3.10 A great tool while you’re developing is the capacity to print the data that’s output from each node to
the console. To enable printing to the console, just replace any of the to methods with a call to print.

https://itbook.store/books/9781617294471

75Interactive development

Printed provides two static methods allowing you print to stdout, Printed.toSys-
Out(), or to write results to a file, Printed.toFile(filePath).

 Additionally, you can label your printed results by chaining the withLabel()
method, allowing you to print an initial header with the records. This is useful when
you’re dealing with results from different processors. It’s important that your objects
provide a meaningful toString implementation to create useful results when printing
your stream either to the console or a file.

 Finally, if you don’t want to use toString, or you want to customize how Kafka
Streams prints records, there’s the Printed.withKeyValueMapper method, which
takes a KeyValueMapper instance so you can format your records in any way you want.
The same caveat I mentioned earlier—that you shouldn’t modify the original
records—applies here as well.

 In this book, I focus on printing records to the console for all examples. Here are
some examples of using KStream.print in listing 3.11:

patternKStream.print(Printed.<String, PurchasePattern>toSysOut()

➥ .withLabel("patterns"));

rewardsKStream.print(Printed.<String, RewardAccumulator>toSysOut()

➥ .withLabel("rewards"));

purchaseKStream.print(Printed.<String, Purchase>toSysOut()

➥ .withLabel("purchases"));

Let’s take a quick look at the output you’ll see on the screen (figure 3.11) and how it can
help you during development. With printing enabled, you can run the Kafka Streams
application directly from your IDE as you make changes, stop and start the application,
and confirm that the output is what you expect. This is no substitute for unit and integra-
tion tests, but viewing streaming results directly as you develop is a great tool.

Sets up to print the PurchasePattern
transformation to the console

Sets up to print the RewardAccumulator
transformation to the console

Prints the purchase
data to the console

Name(s) given to the print
statement, helpful to make
this the same as the topic

The values for the records. Note that these are
JSON strings and the Purchase, PurchasePattern,
and RewardAccumulator objects defined toString
methods to get this rendering on the console.

The keys for the records,
which are null in this case

Note the masked
credit card number!

Figure 3.11 This a detailed view of the data on the screen. With printing to the console enabled, you’ll quickly
see if your processors are working correctly.

https://itbook.store/books/9781617294471

76 CHAPTER 3 Developing Kafka Streams

One downside of using the print() method is that it creates a terminal node, mean-
ing you can’t embed it in a chain of processors. You need to have a separate statement.
However, there’s also the KStream.peek method, which takes a ForeachAction
instance as a parameter and returns a new KStream instance. The ForeachAction
interface has one method, apply(), which has a return type of void, so nothing from
KStream.peek is forwarded downstream, making it ideal for operations like printing.
You can embed it in a chain of processors without the need for a separate print state-
ment. You’ll see the KStream.peek method used in this manner in other examples in
the book.

3.5 Next steps
At this point, you have your Kafka Streams purchase-analysis program running well.
Other applications have also been developed to consume the messages written to the
patterns, rewards, and purchases topics, and the results for ZMart have been good.
But alas, no good deed goes unpunished. Now that the ZMart executives can see what
your streaming program can provide, a slew of new requirements come your way.

3.5.1 New requirements

You now have new requirements for each of the three categories of results you’re pro-
ducing. The good news is that you’ll still use the same source data. You’re being asked
to refine, and in some cases further break down, the data you’re providing. The new
requirements may be able to be applied to current topics, or they may require you to
create entirely new topics:

 Purchases under a certain dollar amount need to be filtered out. Upper man-
agement isn’t much interested in the small purchases for general daily articles.

 ZMart has expanded and has bought an electronics chain and a popular coffee
house chain. All purchases from these new stores will flow through the stream-
ing application you’ve set up. You need to send the purchases from these new
subsidiaries to their topics.

 The NoSQL solution you’ve chosen stores items in key/value format. Although
Kafka also uses key/value pairs, the records coming into your Kafka cluster
don’t have keys defined. You need to generate a key for each record before the
topology forwards it to the purchases topic.

More requirements will inevitably come your way, but you can start to work on the cur-
rent set of new requirements now. If you look through the KStream API, you’ll be
relieved to see that there are several methods already defined that will make fulfilling
these new demands easy.

NOTE From this point forward, all code examples are pared down to the
essentials to maximize clarity. Unless there’s something new to introduce, you
can assume that the configuration and setup code remain the same. These
truncated examples aren’t meant to stand alone—the full code listing for this

https://itbook.store/books/9781617294471

77Next steps

example can be found in src/main/java/bbejeck/chapter_3/ZMartKafka-
StreamsAdvancedReqsApp.java.

FILTERING PURCHASES

Let’s start with filtering out purchases that don’t reach the minimum threshold. To
remove low-dollar purchases, you’ll need to insert a filter-processing node between
the KStream instance and the sink node. You’ll update the processor topology graph
as shown in figure 3.12.

You can use the KStream method, which takes a Predicate<K,V> instance as a param-
eter. Although you’re chaining method calls together here, you’re creating a new pro-
cessing node in the topology.

KStream<Long, Purchase> filteredKStream =

➥ purchaseKStream((key, purchase) ->

➥ purchase.getPrice() > 5.00).selectKey(purchaseDateAsKey);

This code filters purchases that are less than $5.00 and selects the purchase date as a
long value for a key.

 The Predicate interface has one method defined, test(), which takes two parame-
ters—the key and the value—although, at this point, you only need to use the value.
Again, you can use a Java 8 lambda in place of a concrete type defined in the KStream API.

Listing 3.12 Filtering on KStream

The filtering processor will
only allow records through that
match the given predicate—in
this case, purchases over a
certain dollar amount.

Patterns

Masking

Source

Rewards

Patterns

sinkRewards

sink

Purchases

sink

Filtering

processor

Figure 3.12 You’re placing a processor between the masking processor and the terminal
node that writes to Kafka. This filtering processor will drop purchases under a given dollar
amount.

https://itbook.store/books/9781617294471

78 CHAPTER 3 Developing Kafka Streams

DEFINITION If you’re familiar with functional programming, you should feel
right at home with the Predicate interface. If the term predicate is new to you,
it’s nothing more than a given statement, such as x < 100. An object either
matches the predicate statement or doesn’t.

Additionally, you want to use the purchase timestamp as a key, so you use the select-
Key processor, which uses the KeyValueMapper mentioned in section 3.4 to extract the
purchase date as a long value. I cover details about selecting the key in the section
“Generating a key.”

 A mirror-image function, KStreamNot, performs the same filtering functionality
but in reverse. Only records that don’t match the given predicate are processed further
in the topology.

SPLITTING/BRANCHING THE STREAM

Now you need to split the stream of purchases into separate streams that can write to
different topics. Fortunately, the KStream.branch method is perfect. The KStream
.branch method takes an arbitrary number of Predicate instances and returns an
array of KStream instances. The size of the returned array matches the number of
predicates supplied in the call.

 In the previous change, you modified an existing leaf on the processing topology.
With this requirement to branch the stream, you’ll create brand-new leaf nodes on
the graph of processing nodes, as shown in figure 3.13.

The KStream.branch method takes an array of
predicates and returns an array containing an equal
number of KStream instances, each one accepting
records matching the corresponding predicate.

Patterns

Masking

Source

Rewards

Patterns

sink

Rewards

sink

Purchases

sink

Filtering

processor

Processor for records
matching predicate at
index 0

Processor for records
matching predicate at
index 1

Branch

processor

Cafe

processor

Electronics

processor

Cafe

sink

Electronics

sink

Figure 3.13 The branch processor splits the stream into two: one stream consists of purchases from
the cafe, and the other stream contains purchases from the electronics store.

https://itbook.store/books/9781617294471

79Next steps

As records from the original stream flow through the branch processor, each record is
matched against the supplied predicates in the order that they’re provided. The pro-
cessor assigns records to a stream on the first match; no attempts are made to match
additional predicates.

 The branch processor drops records if they don’t match any of the given predi-
cates. The order of the streams in the returned array matches the order of the predi-
cates provided to the branch() method. A separate topic for each department may
not be the only approach, but we’ll stick with this for now. It satisfies the requirement,
and it can be revisited later.

Predicate<String, Purchase> isCoffee =

➥ (key, purchase) ->

➥ purchase.getDepartment().equalsIgnoreCase("coffee");

Predicate<String, Purchase> isElectronics =

➥ (key, purchase) ->

➥ purchase.getDepartment().equalsIgnoreCase("electronics");

int coffee = 0;
int electronics = 1;

KStream<String, Purchase>[] kstreamByDept =

➥ purchaseKStream.branch(isCoffee, isElectronics);

kstreamByDept[coffee].to("coffee",
Produced.with(stringSerde, purchaseSerde));

kstreamByDept[electronics].to("electronics",

➥ Produced.with(stringSerde, purchaseSerde));

WARNING The example in listing 3.13 sends records to several different top-
ics. Although Kafka can be configured to automatically create topics when it
attempts to produce or consume for the first time from nonexistent topics,
it’s not a good idea to rely on this mechanism. If you rely on autocreating top-
ics, the topics are configured with default values from the server.config prop-
erties file, which may or may not be the settings you need. You should always
think about what topics you’ll need, the level of partitions, and the replica-
tion factor ahead of time, and create them before running your Kafka
Streams application.

In listing 3.13, you define the predicates ahead of time, because passing four lambda
expression parameters would be a little unwieldy. The indices of the returned array
are also labeled, to maximize readability.

 This example demonstrates the power and flexibility of Kafka Streams. You’ve
been able to take the original stream of purchase transactions and split them into four
streams with very few lines of code. Also, you’re starting to build up a more complex
processing topology, all while reusing the same source processor.

Listing 3.13 Splitting the stream

Creates the
predicates as
Java 8 lambdas

Labels the expected indices
of the returned array Calls branch to split

the original stream
into two streams

Writes the results of each
stream out to a topic

https://itbook.store/books/9781617294471

80 CHAPTER 3 Developing Kafka Streams

So far, so good. You’ve met two of the three new requirements with ease. Now it’s time
to implement the last additional requirement, generating a key for the purchase
record to be stored.

GENERATING A KEY

Kafka messages are in key/value pairs, so all records flowing through a Kafka Streams
application are key/value pairs as well. But there’s no requirement stating that keys
can’t be null. In practice, if there’s no need for a particular key, having a null key will
reduce the overall amount of data that travels the network. All the records flowing
into the ZMart Kafka Streams application have null keys.

 That’s been fine, until you realize that your NoSQL storage solution stores data in
key/value format. You need a way to create a key from the Purchase data before it gets
written out to the purchases topic. You certainly could use KStream.map to generate a
key and return a new key/value pair (where only the key would be new), but there’s a
more succinct KStream.selectKey method that returns a new KStream instance that
produces records with a new key (possibly a different type) and the same value. This
change to the processor topology is similar to filtering, in that you add a processing
node between the filter and the sink processor, shown in figure 3.14.

KeyValueMapper<String, Purchase, Long> purchaseDateAsKey =

➥ (key, purchase) -> purchase.getPurchaseDate().getTime();

KStream<Long, Purchase> filteredKStream =

➥ purchaseKStream((key, purchase) ->

➥ purchase.getPrice() > 5.00).selectKey(purchaseDateAsKey);

filteredKStream.print(Printed.<Long, Purchase>

➥ toSysOut().withLabel("purchases"));
filteredKStream.to("purchases",

➥ Produced.with(Serdes.Long(),purchaseSerde));

To create the new key, you take the purchase date and convert it to a long. Although you
could pass a lambda expression, it’s assigned to a variable here to help with readability.

Splitting vs. partitioning streams
Although splitting and partitioning may seem like similar ideas, they’re unrelated in
Kafka and Kafka Streams. Splitting a stream with the KStream.branch method
results in creating one or more streams that could ultimately send records to another
topic. Partitioning is how Kafka distributes messages for one topic across servers,
and aside from configuration tuning, it’s the principal means of achieving high
throughput in Kafka.

Listing 3.14 Generating a new key

The KeyValueMapper
extracts the purchase
date and converts to
a long.

Filters out purchases
and selects the key in
one statement

Prints the results
to the console

Materializes the results
to a Kafka topic

https://itbook.store/books/9781617294471

81Next steps

Also, note that you need to change the serde type used in the KStream.to method,
because you’ve changed the type of the key.

This is a simple example of mapping to a new key. Later, in another example, you’ll
select keys to enable joining separate streams. Also, all the examples up until this
point have been stateless, but there are several options for stateful transformations as
well, which you’ll see a little later on.

3.5.2 Writing records outside of Kafka

The security department at ZMart has approached you. Apparently, in one of the
stores, there’s a suspicion of fraud. There have been reports that a store manager is
entering invalid discount codes for purchases. Security isn’t sure what’s going on, but
they’re asking for your help.

 The security folks don’t want this information to go into a topic. You talk to them
about securing Kafka, about access controls, and about how you can lock down access
to a topic, but the security folks are standing firm. These records need to go into a
relational database where they have full control. You sense this is a fight you can’t win,
so you relent and resolve to get this task done as requested.

Patterns

Masking

Source

Rewards

Patterns

sink

Rewards

sink

Purchases

sink

Add the select-key
processor here after the
filtering, as you only need to
generate keys for records
that will be written out to
the purchases topic.

Filtering

processor

Select-key

processor

Branch

processor

Cafe

processor

Electronics

processor

Cafe

sink

Electronics

sink

Figure 3.14 The NoSQL data store will use the purchase date as a key for the data it stores. The new select-
Key processor will extract the purchase date to be used as a key, right before you write the data to Kafka.

https://itbook.store/books/9781617294471

82 CHAPTER 3 Developing Kafka Streams

FOREACH ACTIONS

The first thing you need to do is create a new KStream that filters results down to a sin-
gle employee ID. Even though you have a large amount of data flowing through your
topology, this filter will reduce the volume to a tiny amount.

 Here, you’ll use KStream with a predicate that looks to match a specific employee
ID. This filter will be completely separate from the previous filter, and it’ll be attached
to the source KStream instance. Although it’s entirely possible to chain filters, you
won’t do that here; you want full access to the data in the stream for this filter.

Next, you’ll use a KStream.foreach method, as shown in figure 3.15. KStream.foreach
takes a ForeachAction<K, V> instance, and it’s another example of a terminal node.
It’s a simple processor that uses the provided ForeachAction instance to perform an
action on each record it receives.

ForeachAction<String, Purchase> purchaseForeachAction = (key, purchase) ->

➥ SecurityDBService.saveRecord(purchase.getPurchaseDate(),

➥ purchase.getEmployeeId(), purchase.getItemPurchased());

Listing 3.15 Foreach operations

This filter will only forward records where the
employee ID matches the given predicate.

Patterns

Masking

Source

Rewards

Patterns

sink

Rewards

sink

Purchases

sink

After records are forwarded to the Foreach processor,
the value of each record is written to an external database.

Purchase-

price

processor

Select-key

processor

Branch

processor

Employee

ID

processor

Foreach-

Value

processor

Cafe

processor

Electronics

processor

Cafe

sink

Electronics

sink

Figure 3.15 To write purchases involving a given employee outside of the Kafka Streams application, you’ll first
add a filter processor to extract purchases by employee ID, and then you’ll use a foreach operator to write
each record to an external relational database.

https://itbook.store/books/9781617294471

83Summary

purchaseKStream.filter((key, purchase) ->

➥ purchase.getEmployeeId()

➥ .equals("source code has 000000"))

➥ .foreach(purchaseForeachAction);

ForeachAction uses a Java 8 lambda (again), and it’s stored in a variable, purchase-
ForeachAction. This requires an extra line of code, but the clarity gained by doing so
more than makes up for it. On the next line, another KStream instance sends the fil-
tered results to the ForeachAction defined directly above it.

 Note that KStream.foreach is stateless. If you need state to perform some action
for each record, you can use the KStream.process method. The KStream.process
method will be discussed in the next chapter when you add state to a Kafka Streams
application.

 If you step back and look at what you’ve accomplished so far, it’s pretty impressive,
considering the amount of code written. Don’t get too comfortable, though, because
upper management at ZMart has taken notice of your productivity. More changes and
refinements to the purchase-streaming analysis program are coming.

Summary
 You can use the KStream.mapValues function to map incoming record values to

new values, possibly of a different type. You also learned that these mapping
changes shouldn’t modify the original objects. Another method, KStream.map,
performs the same action but can be used to map both the key and the value to
something new.

 A predicate is a statement that accepts an object as a parameter and returns
true or false depending on whether that object matches a given condition.
You used predicates in the filter function to prevent records that didn’t match a
given predicate from being forwarded in the topology.

 The KStream.branch method uses predicates to split records into new streams
when a record matches a given predicate. The processor assigns a record to a
stream on the first match and drops unmatched records.

 You can modify an existing key or create a new one using the KStream.select-
Key method.

In the next chapter, we’ll start to look at state, the required properties for using state
with a steaming application, and why you might need to add state at all. Then you’ll add
state to a KStream application, first by using stateful versions of KStream methods you’ve
seen in this chapter (KStream.mapValues()). For a more advanced example, you’ll per-
form joins between two different streams of purchases to help ZMart improve customer
service.

https://itbook.store/books/9781617294471

William P. Bejeck Jr.

N
ot all stream-based applications require a dedicated
processing cluster. The lightweight Kafka Streams
library provides exactly the power and simplicity you

need for message handling in microservices and real-time
event processing. With the Kafka Streams API, you fi lter and
transform data streams with just Kafka and your application.

Kafka Streams in Action teaches you to implement stream
processing within the Kafka platform. In this easy-to-follow
book, you’ll explore real-world examples to collect, trans-
form, and aggregate data, work with multiple processors, and
handle real-time events. You’ll even dive into streaming SQL
with KSQL! Practical to the very end, it fi nishes with testing
and operational aspects, such as monitoring and debugging.

What’s Inside
● Using the KStream API
● Filtering, transforming, and splitting data
● Working with the Processor API
● Integrating with external systems

Assumes some experience with distributed systems. No
knowledge of Kafka or streaming applications required.

Bill Bejeck is a Kafka Streams contributor and Confl uent
engineer with over 15 years of software development
experience.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/kafka-streams-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Kafka Streams IN ACTION

SOFTWARE DEVELOPMENT

M A N N I N G

“A great way to learn
about Kafka Streams and
how it is a key enabler of

event-driven applications.”
—From the Foreword by

Neha Narkhede
Cocreator of Apache Kafka

“A comprehensive guide
to Kafka Streams—from

introduction to production!”
—Bojan Djurkovic, Cvent

“Bridges the gap between
message brokering and real-
 time streaming analytics.”—Jim Mantheiy Jr.

Next Century

“Valuable both as an
introduction to streams
as well as an ongoing

 reference.”
—Robin Coe, TD Bank

See first page

https://itbook.store/books/9781617294471

