
www.itbook.store/books/9781617294488

Dottie
Text Box
SAMPLE CHAPTER

https://itbook.store/books/9781617294488

D3.js in Action
Second Edition
by Elijah Meeks

Chapter 2

Copyright 2017 Manning Publications

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

v

brief contents
PART 1 D3.JS FUNDAMENTALS ...1

1 ■ An introduction to D3.js 3
2 ■ Information visualization data flow 47
3 ■ Data-driven design and interaction 78
4 ■ Chart components 109
5 ■ Layouts 143

PART 2 COMPLEX DATA VISUALIZATION..................................... 173
6 ■ Hierarchical visualization 175
7 ■ Network visualization 204
8 ■ Geospatial information visualization 240

PART 3 ADVANCED TECHNIQUES ... 273
9 ■ Interactive applications with React and D3 275

10 ■ Writing layouts and components 309
11 ■ Mixed mode rendering 330

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

47

2Information
visualization data flow

Toy examples and online demos sometimes present data in the format of a Java-
Script-defined array, the same way we did in chapter 1. But in the real world, your
data is going to come from an API or an external file, and you’re going to need to
load it, format it, and transform it before you start creating web elements based on
that data. This chapter describes this process of getting data into a suitable form
and touches on the basic structures that you’ll use again and again in D3: loading
data from an external source, formatting that data, and creating graphical repre-
sentations of that data, like you see in figure 2.1.

This chapter covers
 Loading data from external files of various formats

 Working with D3 scales

 Formatting data for analysis and display

 Creating graphics with visual attributes based on
data attributes

 Animating and changing the appearance of graphics

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

48 CHAPTER 2 Information visualization data flow

2.1 Working with data
We’ll deal with two small datasets in this chapter and take them through a simplified
five-step process (figure 2.2) that will touch on everything you need to do with and to
data to turn it into a data visualization product with D3. One dataset consists of a few
cities and their geographic location and population. The other has a few fictional
tweets with information about who made them and who reacted to them. This is the
kind of data you’re often presented with. You’re tasked with finding out which tweets
have more of an impact than others or which cities are more susceptible to natural
disasters than others. In this chapter you’ll learn how to measure data in D3 in a num-
ber of ways and how to use those methods to create charts.

010
110

Enter

<>

010
110 <>

010
110

010
110

<>

<>

<>

<>

010
110

2b

010
110

010
110

010
110

Figure 2.1 Examples from this chapter, including a diagram of how data-binding
works (left) from section 2.3.3, a scatterplot with labels (center) from section
2.3, and the bar chart (right) we’ll build in section 2.2.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

49Working with data

Out in the real world, you’ll deal with much larger datasets, with hundreds of cities
and thousands of tweets, but you’ll use the same principles outlined in this chapter.
This chapter doesn’t teach you how to create complex data visualizations, but it does
explain in detail several of the most important core processes in D3 that you’ll need.

2.1.1 Loading data

As we touched on in chapter 1, our data will typically be formatted in various but
standardized ways. Regardless of the source of the data, it will likely be formatted as
single-document data files in XML, CSV, or JSON format. D3 provides several functions
for importing and working with this data (the first step shown in figure 2.3). One
core difference between these formats is how they model data. JSON and XML pro-
vide the capacity to encode nested relationships in a way that delimited formats like
CSV don’t. Another difference is that d3.csv() and d3.json()produce an array of
JSON objects, whereas d3.xml()creates an XML document that needs to be accessed
in a different manner.

FILE FORMATS

D3 has five functions typically used for loading data that correspond to the five types
of files you’ll likely encounter: d3.text(), d3.xml(), d3.json(), d3.csv(), and
d3.html(). These abstract the same XHR requests that a library like fetch does. We’ll
spend most of our time working with d3.csv() and d3.json(). You’ll see d3.html()

Load Format Measure Create Update

Figure 2.2 The data visualization process that we’ll explore in this chapter
assumes we begin with a set of data and want to create (and update) an
interactive or dynamic data visualization.

Load Format

<script> import

Measure Create Update

d3.xhr

d3.xmld3.dsv d3.jsond3.html

d3.csv d3.tsv

Figure 2.3 The first step in creating a data visualization is getting the data. You can do that
by loading the file asynchronously using one of several D3 XHR functions, or you can import
or include the data. If the data is fixed, then either way is suitable, but if you plan to replace
your data source with a dynamic API call, then the XHR requests are the best approach.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

50 CHAPTER 2 Information visualization data flow

in the next chapter, where we’ll use it to create complex DOM elements that are writ-
ten as templates. You may find d3.xml() and d3.text() more useful depending on
how you typically deal with data. You may be comfortable with XML rather than JSON,
in which case you can rely on d3.xml() and format your data functions accordingly. If
you prefer working with text strings, you can use d3.text() to pull in the data and
process it using another library or code.

Both d3.csv() and d3.json() use the same format when calling the function, by
declaring the path to the file being loaded and defining the callback function:

d3.csv("cities.csv", (error,data) => {console.log(error,data)});

The error variable is optional, and if we only declare a single variable with the callback
function, it will be the data:

d3.csv("cities.csv", d => console.log(d));

You first get access to the data in the callback function, and you may want to declare
the data as a global variable so that you can use it elsewhere. Global variables are bad
practice out in the real world, but we’ll use them in examples because it makes it eas-
ier to follow along. To get started, you need a data file. For this chapter we’ll be work-
ing with two data files: a CSV file that contains data about cities and a JSON file that
contains data about tweets, as shown in the following listings.

"label","population","country","x","y"
"San Francisco", 750000,"USA",122,-37
"Fresno", 500000,"USA",119,-36
"Lahore",12500000,"Pakistan",74,31
"Karachi",13000000,"Pakistan",67,24
"Rome",2500000,"Italy",12,41
"Naples",1000000,"Italy",14,40
"Rio",12300000,"Brazil",-43,-22
"Sao Paolo",12300000,"Brazil",-46,-23

Listing 2.1 File contents of cities.csv

Should I be using XHR?
One of the major patterns you see in D3 examples is the use of d3.csv or d3.json to
bring data into your application. But asynchronous loading of data isn’t necessary if
your data is never going to change during the course of the application being used.
Instead of relying on d3.json or d3.csv, you could as easily format your data as Java-
Script data and include it using a <script> tag or import/require the data if you’re
working with Node or ES2015.

It’s not either/or; you might have some data that never changes (such as the geodata
you’re using to draw a basemap) and some that does change (the polling data you’re
using to change the color of your map). In that case, you can include the static data
and use XHR for the dynamic content.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

51Working with data

{
"tweets": [
{"user": "Al", "content": "I really love seafood.",

"timestamp": " Mon Dec 23 2013 21:30 GMT-0800 (PST)",
"retweets": ["Raj","Pris","Roy"], "favorites": ["Sam"]},

{"user": "Al", "content": "I take that back, this doesn't taste so good.",
"timestamp": "Mon Dec 23 2013 21:55 GMT-0800 (PST)",
"retweets": ["Roy"], "favorites": []},

{"user": "Al",
"content": "From now on, I'm only eating cheese sandwiches.",
"timestamp": "Mon Dec 23 2013 22:22 GMT-0800 (PST)",
"retweets": [],"favorites": ["Roy","Sam"]},

{"user": "Roy", "content": "Great workout!",
"timestamp": " Mon Dec 23 2013 7:20 GMT-0800 (PST)",
"retweets": [],"favorites": []},

{"user": "Roy", "content": "Spectacular oatmeal!",
"timestamp": " Mon Dec 23 2013 7:23 GMT-0800 (PST)",
"retweets": [],"favorites": []},

{"user": "Roy", "content": "Amazing traffic!",
"timestamp": " Mon Dec 23 2013 7:47 GMT-0800 (PST)",
"retweets": [],"favorites": []},

{"user": "Roy", "content": "Just got a ticket for texting and driving!",
"timestamp": " Mon Dec 23 2013 8:05 GMT-0800 (PST)",
"retweets": [],"favorites": ["Sam", "Sally", "Pris"]},

{"user": "Pris", "content": "Going to have some boiled eggs.",
"timestamp": " Mon Dec 23 2013 18:23 GMT-0800 (PST)",
"retweets": [],"favorites": ["Sally"]},

{"user": "Pris", "content": "Maybe practice some gymnastics.",
"timestamp": " Mon Dec 23 2013 19:47 GMT-0800 (PST)",
"retweets": [],"favorites": ["Sally"]},

{"user": "Sam", "content": "@Roy Let's get lunch",
"timestamp": " Mon Dec 23 2013 11:05 GMT-0800 (PST)",
"retweets": ["Pris"], "favorites": ["Sally", "Pris"]}

]
}

With these two files, we can access the data by using the appropriate function to load
them:

d3.csv("cities.csv", data => console.log(data));
d3.json("tweets.json", data => console.log(data));

In both cases, the data file is loaded as an array of JSON objects. For tweets.json, this
array is found at data.tweets, whereas for cities.csv, this array is data. The function
d3.json() allows you to load a JSON-formatted file, which can have objects and attri-
butes in a way that a loaded CSV can’t. When you load a CSV, it returns an array of
objects. When you load a JSON file, it will return an object with one or more key/value
pairs (known as entries). In this case, the object that’s initialized as data has a key of
tweets that corresponds to an array of data. That’s why we need to refer to data.tweets

after we’ve loaded tweets.json, but refer directly to data when we load cities.csv.

Listing 2.2 File contents of tweets.json

Prints “Object {tweets:
Array[10]}” in the console

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

52 CHAPTER 2 Information visualization data flow

Both d3.csv and d3.json are asynchronous, and will return after the request to open
the file and not after processing the file. Loading a file, which is typically an operation
that takes more time than most other functions, won’t be complete by the time other
functions are called. If you call functions that require the loaded data before it’s
loaded, then they’ll fail. You can get around this asynchronous behavior in two ways.
You can nest the functions operating on the data in the data-loading function:

d3.csv("somefiles.csv", function(data) {doSomethingWithData(data)});

Or you can use promises (which we’ll use in chapter 7) to trigger events upon comple-
tion of the loading of one or more files. You’ll see queue.js in action in later chapters.
Note that d3.csv() has a method .parse() that you can use on a block of text rather
than an external file. If you need more direct control over getting data, you should
review the documentation for d3-request, which allows for more fine-grained control
of sending and receiving data.

2.1.2 Formatting data

After you load the datasets, you’ll need to define methods so that the attributes of the
data directly relate to settings for color, size, and position graphical elements. If you
want to display the cities in the CSV, you probably want to use circles, size those circles
based on population, and then place them according to their geographic coordinates.
We have long-established conventions for representing cities on maps graphically, but
the same can’t be said about tweets. What graphical symbol to use to represent a single
tweet, how to size it, and where to place it are all open questions. To answer these
questions, you need to understand the forms of data you’ll encounter when doing
data visualization. Programming languages and ontologies define numerous data-
types, but it’s useful to think of them as quantitative, categorical, geometric, temporal,
topological, or raw.

You’ll typically need to format quantitative data (the second step in creating data
visualization shown in figure 2.4) by defining scales using d3.scale* functions (such
as d3.scaleLinear and d3.scaleTime), as explained in section 2.1.3, or by transform-
ing your quantitative data into categorical data using techniques like quantiles, which
group numeric values.

QUANTITATIVE

Numerical or quantitative data is the most common type in data visualization. Quanti-
tative data can be effectively represented with size, position, or color.

For one of our datasets, we have readily accessible quantitative data: the popula-
tion figures in the cities.csv table. For the tweets dataset, though, it seems like we don’t
have any quantitative data available, which is why we’ll spend time in section 2.1.3
looking at how to transform data.

CATEGORICAL

Categorical data falls into discrete groups, typically represented by text, such as
nationality or gender. Categorical data is often represented using shape or color. You

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

53Working with data

map the categories to distinct colors or shapes to identify the pattern of the groups of
elements positioned according to other attributes.

The tweets data has categorical data in the form of the user data, which you can
recognize by intuitively thinking of coloring the tweets by the user who made them.
Later, we’ll discuss methods to derive categorical data.

TOPOLOGICAL

Topological data describes the relationship of one piece of data with another, which
can also be another form of location data. The genealogical connection between two
people or the distance of a shop from a train station each represents a way of defining
relationships between objects. Topological attributes can be represented with text
referring to unique ID values or with pointers to the other objects. Later in this chap-
ter we’ll create topological data in the form of nested hierarchies.

For the cities data, it seems like we don’t have topological data. However, we could
easily produce it by designating one city, such as San Francisco, to be our frame of ref-
erence. We could then create a distance-to-San-Francisco measure that would give us
topological data if we needed it. The tweets data has its topological component in the
favorites and retweets arrays, which provide the basis for a social network.

Load Format

Scale for display Scale for color Scale for binning

Measure Create Update

Figure 2.4 After loading data, you need to make sure it’s formatted in such a way
that it can be used to create graphics. This includes mapping the data to positions
on the screen, colors that indicate quantity, or bins to nest the data visually.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

54 CHAPTER 2 Information visualization data flow

GEOMETRIC

Geometric data is most commonly associated with the boundaries and tracks of geo-
graphic data, such as countries, rivers, cities, and roads. Geometric data might also be
the SVG code to draw a particular icon that you want to use, the text for a class of
shape, or a numerical value indicating the size of the shape. Geometric data is, not
surprisingly, most often represented using shape and size, but can also be transformed
like other data, for example, into quantitative data by measuring area and perimeter.

The cities data has obvious geometric data in the form of traditional latitude and
longitude coordinates that allow the points to be placed on a map. The tweets data,
on the other hand, has no readily accessible geometric data.

TEMPORAL

Dates and time can be represented using numbers for days, years, or months, or with
specific date-time encoding for more complex calculations. The most common format
is ISO 8601, and if your data comes formatted that way as a string, it’s easy to turn it
into a date datatype in JavaScript, as you’ll see in section 2.1.4. You’ll work with dates
and times often. Fortunately, both the built-in functions in JavaScript and a few helper
functions in D3 are available to handle data that’s tricky to measure and represent.

Although the cities dataset has no temporal data, keep in mind that temporal data
for common entities like cities and countries is often available. In situations where you
can easily expand your dataset like this, you need to ask yourself if it makes sense
given the scope of your project. In contrast, the tweets data has a string that conforms
to RFC 2822 (supported by JavaScript for representing dates along with ISO 8601) and
can easily be turned into a date datatype in JavaScript.

RAW

Raw, free, or unstructured data is typically text and image content. Raw data can be
transformed by measuring it or using sophisticated text and image analysis to derive
attributes more suited to data visualization. In its unaltered form, raw data is used in
the content fields of graphical elements, such as in labels or snippets.

The city names provide convenient labels for that dataset, but how would we label
the individual tweets? One way is to use the entire content of the tweet as a label, as
we’ll do in chapter 5, but when dealing with raw data, the most difficult and important
task is coming up with ways of summarizing and measuring it effectively.

2.1.3 Further modifying data

As you deal with different forms of data, you’ll change data from one type to another
to better represent it. You can transform data in many ways. Here we’ll look at casting,
normalizing (or scaling), binning (or grouping), and nesting data.

CASTING: CHANGING DATATYPES

The act of casting data refers to turning one datatype into another from the perspec-
tive of your programming language, which in this case is JavaScript. When you load
data, it will often be in a string format, even if it’s a date, integer, floating-point num-
ber, or array. The date string in the tweets data, for instance, needs to be changed

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

55Working with data

from a string into a date datatype if you want to work with the date methods available
in JavaScript. You should familiarize yourself with the JavaScript functions that allow
you to transform data. Here are a few:

parseInt("77"); +"77";
parseFloat("3.14"); +"3.14"
Date.parse("Sun, 22 Dec 2013 08:00:00 GMT");
text = "alpha,beta,gamma"; text.split(",");

NOTE JavaScript defaults to type conversion when using the == test, whereas it
forces no type conversion when using === and the like, so you’ll find your code
will often work fine without casting. But this will come back to haunt you in sit-
uations where it doesn’t default to the type you expect, for example, when you
try to sort an array and JavaScript sorts your numbers alphabetically.

SCALES AND SCALING

Numerical data rarely corresponds directly to the position and size of graphical ele-
ments onscreen. You can use d3.scale() functions to normalize your data for presen-
tation on a screen (among other things). The first scale we’ll look at is d3.scale()

.linear(), which makes a direct relationship between one range of numbers and
another. Scales have a domain setting and a range setting that accept arrays, with the
domain determining the ramp of values being transformed and the range referring to
the ramp to which those values are being transformed. For example, if you take the
smallest population figure in cities.csv and the largest population figure, you can cre-
ate a ramp that scales from the smallest to the largest so that you can display the differ-
ence between them easily on a 500-px canvas. In figure 2.5 and the code that follows,
you can see that the same linear rate of change from 500,000 to 13,000,000 maps to a
linear rate of change from 0 to 500.

Casts the string 77
into the number 77
with no decimal places

Casts the string 3.14
into the number 3.14
with decimal places

Casts an ISO 8601– or
RFC 2822–compliant
string into a date datatypeSplits the comma-delimited string into an

array, which isn’t strictly speaking a casting
operation, but changes the type of data

Domain

500,000

0

13,000,000

500

Range

Figure 2.5 Scales in D3 map one set of values (the domain) to another set of
values (the range) in a relationship determined by the type of scale you create.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

56 CHAPTER 2 Information visualization data flow

You create this ramp by instantiating a new scale object and setting its domain and
range values:

var newRamp = d3.scaleLinear().domain([500000,13000000]).range([0, 500]);
newRamp(1000000);
newRamp(9000000);
newRamp.invert(313);

You can also create a color ramp by referencing CSS color names, RGB colors, or hex
colors in the range field. The effect is a linear mapping of a band of colors to the band
of values defined in the domain, as shown in figure 2.6.

The code to create this ramp is the same, except for the reference to colors in the
range array:

var newRamp = d3.scaleLinear().domain([500000,13000000]).range(["blue", "red"]);
newRamp(1000000);
newRamp(9000000);
newRamp.invert("#ad0052");

You can also use d3.scaleLog(), d3.scalePow(), d3.scaleOrdinal(), and other less-
common scales to map data where these scales are more appropriate to your dataset.
You’ll see these in action later in the book as we deal with those kinds of datasets.
Finally, d3.scaleTime() provides a linear scale that’s designed to deal with date data-
types, as you’ll see later in this chapter.

BINNING: CATEGORIZING DATA

It’s useful to sort quantitative data into categories, placing the values in a range or
“bin” to group them together. One method is to use quantiles, by splitting the array

Returns 20, allowing you to place a country
with population 10,000,000 at 20 pxReturns

340
The invert function reverses the transformation,
in this case returning 8325000

Domain

Range

500,000

Blue Red

13,000,000

Figure 2.6 Scales can also be used to map numerical values to color bands,
to make it easier to denote values using a color scale.

Returns “#0a00f5”, allowing you to
draw a city with population 1,000,000
as dark purple

Returns “#ad0052”

The invert function only works with
a numeric range, so inverting in
this case returns NaN

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

57Working with data

into equal-sized parts. The quantile scale in D3 is, not surprisingly, called d3.scale-

Quantile(), and it has the same settings as other scales. The number of parts and
their labels are determined by the .range() setting. Unlike other scales, it gives no
error if there’s a mismatch between the number of .domain() values and the number
of .range() values in a quantile scale, because it automatically sorts and bins the val-
ues in the domain into a smaller number of values in the range.

The scale sorts the array of numbers in its .domain() from smallest to largest and
automatically splits the values at the appropriate point to create the necessary catego-
ries. Any number passed into the quantile scale function returns one of the set catego-
ries based on these break points:

var sampleArray = [423,124,66,424,58,10,900,44,1];

var qScale = d3.scaleQuantile().domain(sampleArray).range([0,1,2]);

qScale(423);

qScale(20);

qScale(10000);

Notice that the range values in figure 2.7 are fixed and can accept text that may corre-
spond to a particular CSS class, color, or other arbitrary value.

var qScaleName =

d3.scaleQuantile()

.domain(sampleArray).range(["small","medium","large"]);

qScaleName (68);

qScaleName (20);

qScaleName (10000);

NESTING

Hierarchical representations of data are useful and aren’t limited to data with more
traditional or explicit hierarchies, such as a dataset of parents and their children.
We’ll get into hierarchical data and representation in more detail in chapters 4 and 5,
but in this chapter we’ll use the D3 nesting function, which you can probably guess is
called d3.nest().

Returns 2
Returns 0

Returns 2

Domain

Range

10

1 10 44

2

58 66 124 423 424 900

Figure 2.7 Quantile scales take a range of values and reassign them into a set
of equally sized bins.

Returns “medium”
Returns “small”

Returns “large”

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

58 CHAPTER 2 Information visualization data flow

The concept behind nesting is that shared attributes of data can be used to sort
them into discrete categories and subcategories. For instance, if we want to group
tweets by the user who made them, then we’d use nesting:

d3.json("tweets.json", data => {
var tweetData = data.tweets;
var nestedTweets = d3.nest()
.key(d => d.user)
.entries(tweetData);

});

This nesting function combines the tweets into arrays under new objects labeled by
the unique user attribute values, as shown in figure 2.8.

Now that we’ve loaded our data and transformed it into types that are accessible,
we’ll investigate the patterns of that data by measuring the data (the third step shown
in figure 2.9).

Figure 2.8 Objects nested into a new array are now child elements of a values array of newly
created objects that have a key attribute set to the value used in the d3.nest.key function.

Load Format Measure Create Update

d3.extent

d3.mean

d3.min d3.max

Figure 2.9 After formatting your data, you’ll need to measure it to ensure that the
graphics you create are appropriately sized and positioned based on the parameters
of the dataset. You’ll use d3.extent, d3.min, d3.mean, and d3.max all the time.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

59Working with data

2.1.4 Measuring data

After loading your data array, one of the first things you should do is measure and sort
it. It’s particularly important to know the distribution of values of particular attributes,
as well as the minimum and maximum values and the names of the attributes. D3 pro-
vides a set of array functions that can help you understand your data.

You’ll always have arrays filled with data that you’ll want to size and position based
on the relative value of an attribute compared to the distribution of the values in the
array. You should therefore familiarize yourself with the ways to determine the distri-
butions of values in an array in D3. You’ll work with an array of numbers first before
you see these functions in operation with more complex and more data-rich JSON
object arrays:

var testArray = [88,10000,1,75,12,35];

Nearly all the D3 measuring functions follow the same pattern. First, you need to des-
ignate the array and an accessor function for the value that you want to measure. In
our case, we’re working with an array of numbers and not an array of objects, so the
accessor only needs to point at the element itself:

d3.min(testArray, el => el);
d3.max(testArray, el => el);
d3.mean(testArray, el => el);

If you’re dealing with a more complex JSON object array, you’ll need to designate the
attribute you want to measure. For instance, if we’re working with the array of JSON
objects from cities.csv, we may want to derive the minimum, maximum, and average
populations:

d3.csv("cities.csv", data => {
d3.min(data, el => +el.population);
d3.max(data, el => +el.population);
d3.mean(data, el => +el.population);
});

Finally, because dealing with minimum and maximum values is a common occur-
rence, d3.extent() conveniently returns d3.min() and d3.max() in a two-piece array:

d3.extent(data, el => +el.population);

You can also measure nonnumerical data like text by using the JavaScript .length()
function for strings and arrays. When dealing with topological data, you need more
robust mechanisms to measure network structure, such as centrality and clustering.

Returns the minimum value
in the array, 1

Returns the
maximum value in
the array, 10000

Returns the average of
values in the array,
1701.8333333333335

Returns the minimum value of the
population attribute of each object
in the array, 500000

Returns the maximum
value of the population
attribute of each object
in the array, 1300000

Returns the average
value of the
population attribute
of each object in the
array, 6856250

Returns [500000, 1300000]

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

60 CHAPTER 2 Information visualization data flow

When dealing with geometric data, you can calculate the area and perimeter of
shapes mathematically, which can become rather difficult with complex shapes.

Now that we’ve loaded, formatted, and measured our data, we can create data visu-
alizations. This requires us to use selections and the functions that come with them,
which we’ll examine in more detail in the next section.

2.2 Data-binding
We touched on data-binding in chapter 1, but here we’ll go into it in more detail,
explaining how selections work with data-binding to create elements (the fourth step
shown in figure 2.10) and to change those elements after they’ve been created. Our
first example uses the data from cities.csv. After that we’ll see the process using this
data as well as simple numerical arrays, and later we’ll do more interesting things with
the tweets data.

2.2.1 Selections and binding

You use selections to make changes to the structure and appearance of your web page
with D3. Remember that a selection consists of one or more elements in the DOM as
well as the data, if any, associated with them. You can also create or delete elements
using selections, and change the style and content. You’ve seen how to use
d3.select() to change a DOM element, and now we’ll focus on creating and remov-
ing elements based on data. For this example, we’ll use cities.csv as our data source. In
it are a list of all the cities I’ve lived or always wanted to visit, and Fresno. Later we’ll
put these cities on a map, but for now we’re going to use them as non-map data. First,
we need to load cities.csv and trigger our data visualization function in the callback to
create a set of new <div> elements on the page using this code, with the results shown
in figure 2.11.

d3.csv("cities.csv", (error,data) => {
if (error) {
console.error(error)
}
else {
dataViz(data)
}
});

function dataViz(incomingData) {
d3.select("body").selectAll("div.cities")
.data(incomingData)
.enter()

Load Format Measure Create Update

Figure 2.10 To create graphics in D3, you use selections that bind data to DOM elements.

An empty selection because there
are no <div> elements in

<body> with class of “cities”

Binds the data
to your selection Defines how to respond when there’s more

data than DOM elements in a selection

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

61Data-binding

.append("div") #D

.attr("class","cities")

.html(d => d.label);
}

The selection and binding procedure shown here is a common pattern throughout
the rest of this book. A subselection is created when you first select one element and
then select the elements underneath it, which you’ll see in more detail later. First, let’s
look at each individual part of this example. See figure 2.11.

D3.SELECTALL()
The first part of any selection is d3.select() or d3.selectAll() with a CSS identifier
that corresponds to a part of the DOM. Often no elements match the identifier, which
is referred to as an empty selection, because you want to create new elements on the
page using the .enter() function. You can make a selection on a selection to desig-
nate how to create and modify child elements of a specific DOM element. Note that a
subselection won’t automatically generate a parent. The parent must already exist, or
you’ll need to create one using .append().

.DATA()
Here you associate an array with the DOM elements you selected. Each city in our data-
set is associated with a DOM element in the selection, and that associated data is stored
in a data attribute of the element. We could access these values manually using Java-
Script like so:

document.getElementsByClassName("cities")[0].__data__

Later in this chapter we’ll work with those values in a more sophisticated way using D3.

Creates an element in the current selection
Sets the class of each newly created element

Sets the content of the created <div>

Figure 2.11 When our selection binds the cities.csv data to our web page, it
creates eight new divs, each of which is classed with "cities" and with content
drawn from our data.

Returns a pointer to
the object representing
San Francisco

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

62 CHAPTER 2 Information visualization data flow

.ENTER() AND .EXIT()
When binding data to selections, there will be either more, less, or the same number
of DOM elements as there are data values. When you have more data values than DOM
elements in the selection, you trigger the .enter() function, which allows you to
define behavior to perform for every value that doesn’t have a corresponding DOM
element in the selection. In our case, .enter() fires eight times, because no DOM ele-
ments correspond to "div.cities" and our incomingData array contains eight val-
ues. When fewer data elements exist, then .exit() behavior is triggered, and when
data values and DOM elements are equal in a selection, then neither .exit() nor
.enter() is fired. You’ll notice I didn’t use .exit() in the previous code. That’s
because I knew there weren’t going to be fewer data elements than DOM elements. In
an application where you know that you’re not going to deal with .exit() you don’t
need to write the behavior for it.

Enter and exit often confuse people when they first get started with D3 but the pat-
tern, where you make a diff of the current state of the DOM and the data being bound,
and creating or removing elements as a result, is commonly deployed in modern
Model-View-Controller (MVC) frameworks. The difference is that when you’re using
something like React, it abstracts it more, and so you don’t have to write separate logic
for enter, exit, and update.

.APPEND() AND .INSERT()
You’ll almost always want to add elements to the DOM when there are more data val-
ues than DOM elements. The .append() function allows you to add more elements
and define which elements to add. In our example, we add <div> elements, but later
in this chapter we’ll add SVG shapes, and in other chapters we’ll add tables and but-
tons and any other element type supported in HTML. The .insert() function is a sis-
ter function to .append(), but .insert() gives you control over where in the DOM
you add the new element. You can also perform an append or insert directly on a
selection, which adds one DOM element of the kind you specify for each DOM ele-
ment in your selection.

.ATTR()
You’re familiar with changing styles and attributes using D3 syntax. The only thing to
note is that each of the functions you define here will be applied to each new element
added to the page. In our example, each of our eight new <div> elements will be cre-
ated with class="cities". Remember that even though our selection referenced
"div.cities", we still have to manually declare that we’re creating <div> elements
and also manually set their class to "cities".

.HTML()
For traditional DOM elements, you set the content with a .html() function. In the
next section, you’ll see how to set content based on the data bound to the particular
DOM element.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

63Data-binding

2.2.2 Accessing data with inline functions

If you ran the code in the previous example, you saw that each <div> element was set
with different content derived from the data array that you bound to the selection.
You did this using an inline anonymous function in your selection that automatically
provides access to two variables that are critical to representing data graphically: the
data value itself and the array position of the data. In most examples you’ll see these
represented as d for data and i for array index, but they could be declared using any
available variable name.

The best way to see this in action is to use our data to create a simple data visualiza-
tion. We’ll keep working with d3ia.html, which we created in chapter 1, and which is
a simple HTML page with minimal DOM elements and styles. A histogram or bar chart
is one of the most simple and effective ways of expressing numerical data broken
down by category. We’ll avoid the more complex datasets for now and start with a sim-
ple array of numbers:

[15, 50, 22, 8, 100, 10]

If we bind this array to a selection, we can use the values to determine the height of
the rectangles (our bars in a bar chart). We need to set a width based on the space
available for the chart, and we’ll start by setting it to 10 px:

d3.select("svg")
.selectAll("rect")
.data([15, 50, 22, 8, 100, 10])
.enter()
.append("rect")
.attr("width", 10)
.attr("height", d => d);

When we used the label values of our array to create <div> content with labels in sec-
tion 2.2.1, we pointed to the object’s label attribute. Here, because we’re dealing with
an array of number literals, we use the inline function to point directly at the value in
the array to determine the height of our rectangles. The result, shown in figure 2.12,
isn’t nearly as interesting as you might expect.

All the rectangles overlap each other—they have the same default x and y positions.
The drawing is easier to see by adjusting their opacity style, as shown in figure 2.13.

Sets the width of
the rectangles to
a fixed value

Sets the height equal to the
value of the data associated
with each element

Figure 2.12 The default setting for any
shape in SVG is black fill with no stroke,
which makes it hard to tell when the
shapes overlap each other.

Figure 2.13 By changing the opacity
settings, you can see the overlapping
rectangles.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

64 CHAPTER 2 Information visualization data flow

d3.select("svg")
.selectAll("rect")
.data([15, 50, 22, 8, 100, 10])
.enter()
.append("rect")
.attr("width", 10)
.attr("height", d => d)
.style("opacity", .25);

You may wonder about practical use of the second variable in the inline function, typ-
ically represented as i. One use of the array position of a data value is to place visual
elements. If we set the x position of each rectangle based on the i value (multiplied by
the width of the rectangle), then we get a step closer to a bar chart:

…
.style("opacity", .25)
.attr("x", (d,i) => i * 10);

Our histogram seems to be drawn from top to bottom, as seen in figure 2.14, because
SVG draws rectangles down and to the right from the 0,0 point that we specify. To
adjust this, we need to move each rectangle so that its y position corresponds to a posi-
tion that is offset based on its height. We know that the tallest rectangle will be 100.
The y position is measured based on the distance from the top left of the canvas, so if
we set the y attribute of each rectangle equal to 100 minus its length, then the histo-
gram is drawn in the manner we’d expect, as shown in figure 2.15. Now that the rect-
angles aren’t overlapping, they also appear to be a light gray color—their default black
fill with 75% transparency. We’ll lose the opacity and also add fill and stroke color to
differentiate them.

Figure 2.14 SVG rectangles
are drawn from top to bottom.

Figure 2.15 When we set the y position of the
rectangle to the desired y position minus the
height of the rectangle, the rectangle is drawn
from bottom to top from that y position.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

65Data-binding

...
.attr("height", d => d)
.style("fill", "#FE9922")
.style("stroke", "#9A8B7A")
.style("stroke-width", "1px")
.attr("x", (d,i) => i * 10)
.attr("y", d => 100 - d);

2.2.3 Integrating scales

This way of building a chart works fine if you’re dealing with
an array of values that correspond directly to the height of
the rectangles relative to the height and width of your <svg>
element. But if you have real data, it tends to have widely
divergent values that don’t correspond directly to the size of
the shape you want to draw. Let’s say you need to show the
number of social media followers of some of your business
accounts. Several of these are technical accounts with only a
handful of followers, and others are public-facing accounts
with thousands of followers. The previous code doesn’t deal
with an array of values like this:

[14, 68, 24500, 430, 19, 1000, 5555]

You can see how poorly it works in figure 2.16.

...
.selectAll("rect")
.data([14, 68, 24500, 430, 19, 1000, 5555])
.enter()

...

And it works no better if you set a y offset equal to the maximum:

...
.selectAll("rect")
.data([14, 68, 24500, 430, 19, 1000, 5555])
.enter()
.append("rect")
.attr("y", d => 24500 - d)

...

There’s no need to bother with a screenshot. It’s a single bar running vertically across
your canvas. In this case, it’s best to use D3’s scaling functions to normalize the values
for display. We’ll use the relatively straightforward d3.scaleLinear() for this bar
chart. A D3 scale has two primary functions: .domain() and .range(), both of which
expect arrays and must have arrays of the same length to get the right results. The
array in .domain() indicates the series of values being mapped to .range(), which
will make more sense in practice. First, we make a scale for the y-axis:

Figure 2.16 SVG shapes
will continue to be drawn
offscreen.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

66 CHAPTER 2 Information visualization data flow

var yScale = d3.scaleLinear().domain([0,24500]).range([0,100]);

yScale(0);

yScale(100);

yScale(24000);

As you can see, yScale now allows us to map the values in a way suitable for display. If
we then use yScale to determine the height and y position of the rectangles, we end
up with a bar chart that’s more legible, as shown in figure 2.17.

var yScale = d3.scaleLinear() .domain([0,24500]).range([0,100]);
...
.attr("width", 10)
.attr("height", d => yScale(d))
.attr("y", d => 100 - yScale(d));
.style("fill", "#FE9922")

...

When you deal with such widely diverging values, it often makes more sense to use a
polylinear scale. A polylinear scale is a linear scale with multiple points in the domain
and range. Let’s suppose that for our dataset, we’re particularly interested in values
between 1 and 100, while recognizing that sometimes we get interesting values
between 100 and 1000, and occasionally we get outliers that can be quite large. We
could express this in a polylinear scale as follows:

var yScale =
d3.scaleLinear().domain([0,100,1000,24500]).range([0,50,75,100]);

The previous draw code produces a different chart with this scale, as shown in figure 2.18.
There may be a cutoff value, after which it isn’t so important to express how large a

datapoint is. For instance, let’s say these datapoints represent the number of
responses for a survey, and it’s deemed a success if you receive more than 500
responses. We may only want to show the range of the data values between 0 and 500,
while emphasizing the variation at the 0 to 100 level with a scale like this:

var yScale = d3.scaleLinear().domain([0,100,500]).range([0,50,100]);

Returns 0
Returns 0.40816326530612246

Returns 97.95918367346938

Figure 2.17 A bar chart
drawn using a linear scale

Figure 2.18 The same bar chart from
figure 2.17 drawn with a polylinear scale

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

67Data-binding

You may think that’s enough to draw a new chart that caps the bars at a maximum
height of 100 if the datapoint has a value over 500. This isn’t the default behavior for
scales in D3, though. In figure 2.19 you can see what would happen running the draw
code with that scale.

Notice the rectangles are still drawn above the canvas, as evidenced by the lack of
a border on the top of the four rectangles with values over 500. We can confirm this is
happening by putting a value greater than 500 into the scale function we’ve created:

yScale(1000);

By default, a D3 scale continues to extrapolate values greater than the maximum
domain value and less than the minimum domain value. If we want it to set all such
values to the maximum (for greater) or minimum (for lesser) range value, we need to
use the .clamp() function:

var yScale = d3.scaleLinear()
.domain([0,100,500])
.range([0,50,100])
.clamp(true);

Running the draw code now produces rectangles that have a maximum value of 100
for height and position, as shown in figure 2.20.
We can confirm this by plugging a value into yScale() that’s greater than 500:

yScale(1000);

Scale functions are key to determining position, size, and color of elements in data
visualization. As you’ll see later in this chapter and throughout the book, this is the
basic process for using scales in D3.

Returns 162.5

Figure 2.20 A bar chart drawn with values in the
dataset greater than the maximum value of the
domain of the scale, but with the clamp() function
set to true

Figure 2.19 A bar chart drawn with a
linear scale where the maximum value
in the domain is lower than the
maximum value in the dataset

Returns 100

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

68 CHAPTER 2 Information visualization data flow

2.3 Data presentation style, attributes, and content
It’s finally time to start visualizing real data and not only undifferentiated arrays like
we’ve used so far. First we’ll look at the size of those beautiful cities (and Fresno) as
well as learn how to measure our social media success by measuring the number of
tweets in the tweets data combining the techniques you’ve learned in this chapter and
chapter 1. After that, we’ll deal with the more complicated methods necessary to rep-
resent the tweets data in a simple data visualization. Along the way, you’ll learn how to
set styles and attributes based on the data bound to the elements and explore how D3
creates, removes, and changes elements based on changes in the data.

2.3.1 Visualization from loaded data

A bar chart based on the cities.csv data is straightforward, requiring only a scale based
on the maximum population value, which we can determine using d3.max(), as
shown in the following listing. This bar chart (shown annotated in figure 2.21) shows
you the distribution of population sizes of the cities in our dataset.

d3.csv("cities.csv",(error, data) => {dataViz(data)});
function dataViz(incomingData) {
var maxPopulation = d3.max(incomingData, d => parseInt(d.population))
var yScale = d3.scaleLinear().domain([0,maxPopulation]).range([0,460]);
d3.select("svg").attr("style","height: 480px; width: 600px;");

Listing 2.3 Loading data, casting it, measuring it, and displaying it as a bar chart

Layout

Position:
Order of bars on
x-axis (y-axis position offset
to same value as height)

Size:
Height and width
of bar rectangles

Figure 2.21 The cities.csv data drawn as a bar chart using the maximum
value of the population attribute in the domain setting of the scale

Transforms the
population value

into an integer

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

69Data presentation style, attributes, and content

d3.select("svg")
.selectAll("rect")
.data(incomingData)
.enter()
.append("rect")
.attr("width", 50)
.attr("height", d => yScale(parseInt(d.population)))
.attr("x", (d,i) => i * 60)
.attr("y", d => 480 - yScale(parseInt(d.population)))
.style("fill", "#FE9922")
.style("stroke", "#9A8B7A")
.style("stroke-width", "1px")

}

Creating a bar chart out of the Twitter data requires a bit more transformation. As
shown in listing 2.4, we use d3.nest() to gather the tweets under the person making
them, and then use the length of that array to create a bar chart of the number of
tweets (shown annotated in figure 2.22).

d3.json("tweets.json",(error, data) => {dataViz(data.tweets)});
function dataViz(incomingData) {
var nestedTweets = d3.nest()
.key(d => d.user)
.entries(incomingData);

nestedTweets.forEach(d => {

Listing 2.4 Loading, nesting, measuring, and representing data

Figure 2.22 By nesting data and counting the objects that are
nested, we can create a bar chart out of hierarchical data.

nestedTweets(0)
key: “Al”
values.length: 3

nestedTweets(3)
key: “Sam”
values.length: 1

nestedTweets(1)
key: “Roy”
values.length: 4

nestedTweets(2)
key: “Pris”
values.length: 2

Specifies data.tweets,
where your data
array is located

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

70 CHAPTER 2 Information visualization data flow

d.numTweets = d.values.length;
})
var maxTweets = d3.max(nestedTweets, d => d.numTweets);
var yScale = d3.scaleLinear().domain([0,maxTweets]).range([0,500]);
d3.select("svg")
.selectAll("rect")
.data(nestedTweets)
.enter()
.append("rect")
.attr("width", 50)
.attr("height", d => yScale(d.numTweets))
.attr("x", (d,i) => i * 60)
.attr("y", d => 500 - yScale(d.numTweets))
.style("fill", "#FE9922")
.style("stroke", "#9A8B7A")
.style("stroke-width", "1px");

}

2.3.2 Setting channels

Up to now we’ve only used the height of a rectangle to correspond to a point of data, and
in cases where you’re dealing with one piece of quantitative data, that’s all you need.
That’s why bar charts are so popular in spreadsheet applications. But most of the time
you’ll use multivariate data, such as census data for counties or medical data for patients.

Multivariate is another way of saying that each datapoint has multiple data charac-
teristics. For instance, your medical history isn’t a single score between 0 and 100.
Instead, it consists of multiple measures that explain different aspects of your health.
In cases with multivariate data like that, you need to develop techniques to represent
multiple data points in the same shape. The technical term for how a shape visually
expresses data is channel, and depending on the data you’re working with, different
channels are better suited to express data graphically.

Creates a new attribute based
on the number of tweets

Infoviz term: channels
When you represent data using graphics, you need to consider the best visual meth-
ods to represent the types of data you’re working with. Each graphical object, as well
as the whole display, can be broken down into component channels that relay infor-
mation visually. These channels, such as height, width, area, color, position, and
shape, are particularly well suited to represent different classes of information. For
instance, if you represent magnitude by changing the size of a circle, and if you create
a direct correspondence between radius and magnitude, then your readers will be
confused, because we tend to recognize the area of a circle rather than its radius.
Channels also exist at multiple levels, and several techniques use hue, saturation,
and value to represent three different pieces of information, rather than using color
more generically.

The important thing here is to avoid using too many channels, and instead focus on us-
ing the channels most suitable to your data. If you aren’t varying shape, for instance, if
you’re using a bar chart where all the shapes are rectangles, then you can use color for
category and value (lightness) to represent magnitude.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

71Data presentation style, attributes, and content

Going back to the tweets.json data, it may seem like there’s not much data available to
put on a chart, but depending on what factors we want to measure and display, we can
take a couple different approaches. Let’s imagine we want to measure the impact fac-
tor of tweets, treating tweets that are favorited or retweeted as more important than
tweets that aren’t. This time, instead of a bar chart, we’ll create a scatterplot, and
instead of using array position to place it along the x-axis, let’s use time, because
there’s good evidence that tweets made at certain times are more likely to be favorited
or retweeted. We’ll place each tweet along the y-axis using a scale based on the maxi-
mum impact factor of our set of tweets. From this point on, we’ll focus on the data-

Viz() function as in the following listing, because you should be familiar now with
getting your data in and sending it to such a function.

function dataViz(incomingData) {
incomingData.forEach(d => {
d.impact = d.favorites.length + d.retweets.length;
d.tweetTime = new Date(d.timestamp);

})
var maxImpact = d3.max(incomingData, d => d.impact);
var startEnd = d3.extent(incomingData, d => d.tweetTime);
var timeRamp = d3.scaleTime().domain(startEnd).range([20,480]);
var yScale = d3.scaleLinear().domain([0,maxImpact]).range([0,460]);
var radiusScale = d3.scaleLinear()

.domain([0,maxImpact]).range([1,20]);
var colorScale = d3.scaleLinear()

.domain([0,maxImpact]).range(["white","#75739F"]);
d3.select("svg")
.selectAll("circle")
.data(incomingData)
.enter()
.append("circle")
.attr("r", d => radiusScale(d.impact))
.attr("cx", d => timeRamp(d.tweetTime))
.attr("cy", d => 480 - yScale(d.impact))
.style("fill", d => colorScale(d.impact))
.style("stroke", "black")
.style("stroke-width", "1px");

};

As shown in figure 2.23, each tweet is positioned vertically based on impact and hori-
zontally based on time. Each tweet is also sized by impact and colored darker red
based on impact. Later on we’ll want to use color, size, and position for different attri-
butes of the data, but for now we’ll tie most of them to impact.

Listing 2.5 Creating a scatterplot

Creates an impact score by totaling
the number of favorites and retweets

Transforms the ISO 8906–
compliant string into a

date datatype

Returns the
earliest and
latest times
for a scale

startEnd
is an array

Builds a scale that maps impact to
a ramp from white to dark red

Size, color, and vertical position
will all be based on impact

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

72 CHAPTER 2 Information visualization data flow

2.3.3 Enter, update, merge, and exit

You’ve used the .enter() behavior of a selection many times already. Now let’s take a
closer look at it and its counterpart, .exit(). Both functions operate when a mis-
match exists between the number of data values bound to a selection and the number
of DOM elements in the selection. If more data values exist than DOM elements, then
.enter() fires, whereas if fewer data values exist than DOM elements, then .exit()

fires, as in figure 2.24. You use selection.enter() to define how you want to create
new elements based on the data you’re working with, and you use selection.exit()

to define how you want to remove existing elements in a selection when the data that
corresponds to them has been deleted. Updating data, as you’ll see in the next exam-
ple, is accomplished through reapplying the functions you used to create the graphi-
cal elements based on your data.

Each .enter() or .exit() event can include actions taken on child elements. This
is mostly useful with .enter() events, where you use the .append() function to add
new elements. If you declare this new appended element as a variable, and if that ele-
ment is amenable to child elements, like a <g> element is, you can include any num-
ber of child elements. In the case of SVG elements, only <svg>, <g>, and <text> can
have child elements, but if you’re using D3 with traditional DOM manipulation, you
can use this method to add <p> elements to <div> elements and so on.

Time scale:
Elements are placed along
the x-axis according to when
the tweets was made.

Impact scale:
Elements are placed along
the y-axis according to their
impact measure and also
sized and colored to indicate
impact measure.

Figure 2.23 Tweets are represented as circles sized by the total number of favorites and
retweets and are placed on the canvas along the x-axis based on the time of the tweet and along
the y-axis according to the same impact factor used to size the circles. Two tweets with the same
impact factor that were made at nearly the same time are shown overlapping at the bottom left.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

73Data presentation style, attributes, and content

For example, let’s say we want to show a bar chart based on our newly measured
impact score, and we want the bars on the bar chart to have labels. We need to append
<g> elements, and not shapes, to the <svg> canvas in our initial selection. Because the
data is bound to these elements, we can use the same syntax when we add child ele-
ments. Because we’re using <g> elements, we need to set the position using the
transform attribute. We add child elements using the .append() function, and we

Selection

010
110

Update

<>

010
110 <>

<>

<>

010
110

010
110

010
110

Enter

<>

010
110 <>

010
110

010
110

010
110

Exit

<>

DOM element<>Datapoint010
110

010
110 <>

<>

<>

010
110

1b

<>

010
110 <>

<>

<>

<>

<>

<>

<>

010
110

010
110

010
110

2b

010
110

010
110

010
110

010
110

3b

<>

<>

<>

010
110 <>

Figure 2.24 Selections where the number of DOM elements and number
of values in an array don’t match will fire either an .enter() event or an
.exit() event, depending on whether there are more or fewer data values
than DOM elements, respectively. Update, in contrast, is not a function,
and simply refers to when you update the data bound to the elements.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

74 CHAPTER 2 Information visualization data flow

need to declare the returned selection as a variable tweetG. This allows tweetG to
stand in for d3.select("svg").selectAll("g") so we don’t have to retype it
throughout the example. The following listing uses all the same scales to determine
size and position as the previous example.

var tweetG = d3.select("svg")
.selectAll("g")
.data(incomingData)
.enter()
.append("g")
.attr("transform", d =>
"translate(" +
timeRamp(d.tweetTime) + "," + (480 - yScale(d.impact))
+ ")"

);
tweetG.append("circle")
.attr("r", d => radiusScale(d.impact))
.style("fill", "#75739F")
.style("stroke", "black")
.style("stroke-width", "1px");

tweetG.append("text")
.text(d => d.user + "-" + d.tweetTime.getHours());

In figure 2.25 you can see the result of our code, along with some annotation. The
same circles in the same position show that translate works much like changing cx
and cy for circles, but now we can add other SVG elements, like <text> for labels.

Listing 2.6 Creating labels on <g> elements

<g> requires a transform,
which takes a constructed string

Uses .getHours() to
make the label a bit
more legible

Text anchoring:
By default, SVG text anchors the text
at “start” so that each text element is
drawn from the left. Other options are
“middle” and “end.”

Child elements:
When you attach a <g> you can
position it; any DOM elements
placed inside it are drawn with
the 0,0 position equal to the
position of the <g>.

Figure 2.25 Each tweet is a <g> element with a circle and a label appended to it. The various
tweets by Roy at 7 A.M. happen so close to each other that they’re difficult to label.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

75Data presentation style, attributes, and content

The labels are illegible in the bottom left, but they’re not much better for the rest.
Later on, you’ll learn how to make better labels. The inline functions such as .text(d
=> d.user + "-" + d.tweetTime.getHours()) set the label to be the name of the per-
son making the tweet, followed by a dash, followed by the hour of the tweet. These
functions all refer to the same data elements, because the child elements inherit their
parents’ data functions. If one of your data elements is an array, you may think you
could bind it to a selection on the child element, and you’d be right. You’ll see that in
the next chapter and later in the book.

EXIT

Corresponding to the .append() function is the .remove() function available with
.exit(). To see .exit() in action, you need to have some elements in the DOM,
which could already exist, depending on what you put in your HTML, or which could
have been added with D3. Let’s stick with the state that the previous code creates,
which provides us with ample opportunity to test the .exit() function. DOM element
styles and attributes aren’t updated if we make a change to the array unless we call the
necessary .style() and .attr() functions. If we bind any array to the existing <g>

elements in your DOM, then we can use .exit() to remove them:

d3.selectAll("g").data([1,2,3,4]).exit().remove();

This code deleted all but four of our <g> elements, because we have only four values
in our array. In most of the explanations of D3’s .enter() and .exit() behavior, you
won’t see this kind of binding of an entirely different array to a selection. Instead,
you’ll see a rebinding of the initial data array after it’s been filtered to represent a
change via user interaction or other behavior. You’ll see an example like this next, and
throughout the book. But it’s important to understand the difference between your
data, your selection, and your DOM elements. The data that’s bound to our DOM ele-
ments has been overwritten, so our data-rich objects from tweets.csv have now been
replaced with boring numbers. But the only change to the visual representation is that
the number has been reduced to reflect the size of the array we’ve bound. D3 doesn’t
follow the convention that when the data changes, the corresponding display is
updated; you need to build that functionality yourself. Because it doesn’t follow that
convention, it gives you greater flexibility that we’ll explore in later chapters.

MERGE

D3v4 introduces a new piece of functionality, d3.merge(), which allows you to combine
two selections so that you can act on them both at the same time. This way you can use
an enter selection to set the attributes of your newly created elements and then com-
bine that selection with existing elements so you can operate on them all at once.

UPDATING

You can see how the visual attributes of an element can change to reflect changes in
data by updating the <text> elements in each g to reflect the newly bound data:

d3.selectAll("g").select("text").text(d => d);

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

76 CHAPTER 2 Information visualization data flow

We have to .selectAll() the parent elements and then subselect the child elements
to re-initialize the data-binding for the child elements. Whenever you bind new data
to a selection that utilizes child elements, you’ll need to follow this pattern. You can
see that, because we didn’t update the <circle> elements, they still have the old data
bound to each element:

d3.selectAll("g").each(d => console.log(d));
d3.selectAll("text").each(d => console.log(d));
d3.selectAll("circle").each(d => console.log(d));

The .exit() function isn’t intended to be used for binding a new array of completely
different values like this. Instead, it’s meant to update the page based on the removal
of elements from the array that’s been bound to the selection. But if you plan to do
this, you need to specify how the .data() function binds data to your selected ele-
ments. By default, .data() binds based on the array position of the data value. This
means, in the previous example, that the first four elements in our selection are main-
tained and bound to the new data, while the rest are subject to the .exit() function.
In general, though, you don’t want to rely on array position as your binding key.
Rather, you should use something meaningful, such as the value of the data object
itself. The key requires a string or number, so if you pass a JSON object without using
JSON.stringify, it treats all objects as "[object object]" and only returns one unique
value. To manually set the binding key, we use the second setting in the .data() func-
tion and use the inline syntax typical in D3.

function dataViz(incomingData) {
incomingData.forEach(d => {

d.impact = d.favorites.length + d.retweets.length;
d.tweetTime = new Date(d.timestamp);

})
var maxImpact = d3.max(incomingData, d => d.impact)
var startEnd = d3.extent(incomingData, d => d.tweetTime)
var timeRamp = d3.scaleTime().domain(startEnd).range([50, 450]);
var yScale = d3.scaleLinear().domain([0, maxImpact]).range([0, 460]);
var radiusScale = d3.scaleLinear()

.domain([0, maxImpact])

.range([1, 20]);
d3.select("svg").selectAll("circle")
.data(incomingData, JSON.stringify)
.enter().append("circle")
.attr("r", d => radiusScale(d.impact))
.attr("cx", d => timeRamp(d.tweetTime))
.attr("cy", d => 480 - yScale(d.impact))
.style("fill", "#75739F ")

Listing 2.7 Setting the key value in data-binding

Returns values from the
newly bound array

Returns values
from the newly
bound array,
because we used
a subselect

Returns values from the old tweetData
array, because we haven’t specified

overwriting with a subselect

We could use any unique attribute as
the key but using the entire object
works if we don’t have a unique value,
though we have to stringify it first

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

77Summary

.style("stroke", "black")

.style("stroke-width", "1px");
}

The visual results are the same as our earlier scatterplot with the same settings, but
now if we filter the array we used for the data, and bind that to the selection, we can
get to the state shown in figure 2.26 by defining useful .exit() behavior:

var filteredData = incomingData.filter(d => d.impact > 0)
d3.selectAll("circle")
.data(filteredData, d => JSON.stringify(d))
.exit()
.remove();

Using the stringified object won’t work if you change the data in the object, because
then it no longer corresponds with the original binding string. If you plan to do signif-
icant changing and updating, you’ll need a unique ID for your objects to use as your
binding key.

2.4 Summary
 Load data from external files in CSV and JSON format using d3-request func-

tionality.
 CSV is a much more efficient format that JSON for non-hierarchical data.
 Format and transform data using D3 scales and built-in JavaScript functions.
 Binning data using scaleQuantile (or similar binning scales we’ve not looked

at in this chapter, like scaleThreshold and scaleQuantize) will allow you to
transform numerical data into categorical data.

 Data-binding and the D3 enter/exit/update pattern allow you to create graphi-
cal elements based on the attributes of the data.

 Subselections will let you create complex graphical objects made of multiple
shapes using the <g> element.

 Understanding how to create, change, and move elements using enter(), exit(),
and selections is the basis for all the complex D3 functionality you’ll see later.

Figure 2.26 All elements corresponding
to tweets that were not favorited and not
retweeted were removed.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

Elijah Meeks

V
isualizing complex data is hard. Visualizing complex data
on the web is darn near impossible without D3.js. D3
is a JavaScript library that provides a simple but power-

ful data visualization API over HTML, CSS, and SVG. Start
with a structure, dataset, or algorithm; mix in D3; and you
can programmatically generate static, animated, or interactive
images that scale to any screen or browser. It’s easy, and after
a little practice, you’ll be blown away by how beautiful your
results can be!

D3.js in Action, Second Edition is a completely updated revi-
sion of Manning’s bestselling guide to data visualization with
D3. You’ll explore dozens of real-world examples, including
force and network diagrams, workfl ow illustrations, geospatial
constructions, and more. Along the way, you’ll pick up best
practices for building interactive graphics, animations, and live
data representations. You’ll also step through a fully interactive
application created with D3 and React.

What’s Inside
● Updated for D3 v4 and ES2015
● Reusable layouts and components
● Geospatial data visualizations
● Mixed-mode rendering

Suitable for web developers with HTML, CSS, and JavaScript
skills. No specialized data science skills required.

Elijah Meeks is a senior data visualization engineer at Netfl ix.

To download their free eBook or read it in their browser,
owners of this book should visit

www.manning.com/books/d3js-in-action-second-edition

$44.99 / Can $59.99 [INCLUDING eBOOK]

D3.js IN ACTION Second Edition

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“From basic to complex,
this book gives you

the tools to create beautiful
 data visualizations.”

—Claudio Rodriguez
Cox Media Group

“The best reference for one
of the most useful
DataViz tools.”—Jonathan Rioux, TD Insurance

“From toy examples to
techniques for real projects.

Shows how all the pieces
 fi t together.”

—Scott McKissock, USAID

“A clever way to immerse
yourself in the D3.js world.”

—Felipe Vildoso Castillo
University of Chile

SEE INSERT

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

	cover
	Copyright
	BriefContents
	SampleCh02
	coverB

