
M A N N I N G

Elijah Meeks

Data visualization with JavaScript

SECOND EDITION

www.itbook.store/books/9781617294488

Dottie
Text Box
SAMPLE CHAPTER

https://itbook.store/books/9781617294488

D3.js in Action
Second Edition
by Elijah Meeks

Chapter 5

Copyright 2017 Manning Publications

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

v

brief contents
PART 1 D3.JS FUNDAMENTALS ...1

1 ■ An introduction to D3.js 3
2 ■ Information visualization data flow 47
3 ■ Data-driven design and interaction 78
4 ■ Chart components 109
5 ■ Layouts 143

PART 2 COMPLEX DATA VISUALIZATION..................................... 173
6 ■ Hierarchical visualization 175
7 ■ Network visualization 204
8 ■ Geospatial information visualization 240

PART 3 ADVANCED TECHNIQUES ... 273
9 ■ Interactive applications with React and D3 275

10 ■ Writing layouts and components 309
11 ■ Mixed mode rendering 330

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

143

5Layouts

D3 contains a variety of functions, referred to as layouts, that help you format your
data so that it can be presented using a popular charting method. In this chapter
we’ll look at several different layouts so that you can understand general layout
functionality, learn how to deal with D3’s layout structure, and deploy one of these
layouts (several of which are shown in figure 5.1) with your data.

In each case, as you’ll see with upcoming examples, when a dataset is associated
with a layout, each of the objects in the dataset has attributes that allow for drawing
the data. Layouts don’t draw the data, nor are they called like components or
referred to in the drawing code like generators. Rather, they’re a preprocessing step
that formats your data so that it’s ready to be displayed in the form you’ve chosen.
You can update a layout and then if you rebind that altered data to your graphical
objects, you can use the D3 enter/update/exit syntax you encountered in chapter 2
to update your layout. Paired with animated transitions, this can provide you with
the framework for an interactive, dynamic chart.

This chapter covers
 Understanding histogram and pie chart layouts

 Learning about simple tweening

 Working with stack layouts

 Using Sankey diagrams and word clouds

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

144 CHAPTER 5 Layouts

This chapter gives an overview of layout structure by implementing popular layouts
such as the histogram, pie chart, tree, and circle packing. Other layouts, such as the
chord layout and more exotic ones, follow the same principles and should be easy to
understand after looking at these. We’ll get started with a kind of chart you’ve already
worked with, the bar chart or histogram, which has its own layout that helps abstract
the process of building this kind of chart.

5.1 Histograms
Before we get into charts that you’ll need layouts for, first we’ll create a chart that we
easily made without a layout. In chapter 2, we made a bar chart based on our Twitter
data by using d3.nest(). But D3 has a layout, d3.histogram(), that bins values auto-
matically and provides us with the necessary settings to draw a bar chart based on a
scale that we’ve defined. Many people who get started with D3 think it’s a charting
library and that they’ll find a function like d3.histogram that creates a bar chart in a
<div> when it’s run. But D3 layouts don’t result in charts; they result in the settings
necessary for charts. You have to put in a bit of extra work for charts, but you have
enormous flexibility (as you’ll see in this and later chapters) that allows you to make
diagrams and charts that you can’t find in other libraries.

5.1.1 Drawing a histogram

Listing 5.1 shows the code to create a histogram layout and associate it with a particu-
lar scale. I’ve also included an example of how you can use interactivity to adjust the
original layout and rebind the data to your shapes. This changes the histogram from
showing the number of tweets that were favorited to the number of tweets that were
retweeted.

Figure 5.1 Multiple layouts are
demonstrated in this chapter, including
the circle pack (section 5.3), tree
(section 5.4), stack (section 5.5), and
Sankey (section 5.6.1), as well as
tweening to properly animate shapes like
the arcs in pie charts (section 5.2.3).

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

145Histograms

d3.json("tweets.json", function(error, data) { histogram(data.tweets) })
function histogram(tweetsData) {

var xScale = d3.scaleLinear().domain([0, 5]).range([0, 500]);
var yScale = d3.scaleLinear().domain([0, 10]).range([400, 0]);
var xAxis = d3.axisBottom().scale(xScale).ticks(5)
var histoChart = d3.histogram();

histoChart
.domain([0, 5])
.thresholds([0, 1, 2, 3, 4, 5])
.value(d => d.favorites.length)

histoData = histoChart(tweetsData);

d3.select("svg")
.selectAll("rect")
.data(histoData).enter()
.append("rect")
.attr("x", d => xScale(d.x0))
.attr("y", d => yScale(d.length))
.attr("width", d => xScale(d.x1 - d.x0) - 2)
.attr("height", d => 400 - yScale(d.length))
.style("fill", "#FCD88B")

d3.select("svg").append("g").attr("class", "x axis")
.attr("transform", "translate(0,400)").call(xAxis);

d3.select("g.axis").selectAll("text").attr("dx", 50);
}

You pass d3.histogram an array of data, a number of bins, and a scale, and it returns
to you an array of bins filled with the data that falls into a particular bin at a particular
scale, which you can then bind to elements and create a bar chart like the one in fig-
ure 5.2. In this context, a bin is the label for data that falls within a certain range, and
you’ll hear the term binning used to refer to aggregating data points into discrete
groups of data points based on value. Second, you’re still using the same generators
and components that you needed when you created a bar chart from raw data without
the help of a layout. The axisBottom component is in this case being sent five ticks.
Third, the histogram is useful because it automatically bins data, whether it’s whole
numbers like this or it falls in a range of values in a scale. Finally, if you want to change
a chart using a different dimension of your data, you don’t need to remove the origi-
nal. You need to reformat your data using the layout and rebind it to the original ele-
ments, preferably with a transition. You’ll see this in more detail in your next example,
which uses another type of chart: pie charts.

Listing 5.1 Histogram code

Creates a new
layout function

Determines the
values the
histogram bins forFormats

the data

Formatted data
is used to draw
the bars

Centers the axis
labels under the bars

Figure 5.2 The histogram in its
initial state before we change the
measure from favorites to retweets
by clicking on one of the bars

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

146 CHAPTER 5 Layouts

Let’s look at the data that histogram produces. One way to do this is by console

.log(histoData) after you process it. You’ll see the array in figure 5.3. The array has
been extended so that each array item has an x0 and x1 value that corresponds to the
top and bottom thresholds of that bin. The array length indicates the number of items
in that bin. And that’s all there is to that function, but it’s enough to provide us with
sufficient drawing instructions to render the chart in figure 5.2.

5.1.2 Interactivity

We can add interactivity to change the chart to render another view of the data when
we click it. Because the data we used has more than one dimension to it, we can re-run
d3.histogram to bin on another dimension and get updated drawing instructions
that we can use for a new chart, as in the following listing.

...
.attr("height", d => 400 - yScale(d.length))
.on("click", retweets);

function retweets() {
histoChart.value(d => d.retweets.length)
histoData = histoChart(tweetsData);
d3.selectAll("rect").data(histoData)
.transition().duration(500).attr("x", d => xScale(d.x0))
.attr("y", d => yScale(d.length))

.attr("height", d => 400 - yScale(d.length))
};

Listing 5.2 Histogram interactivity

Figure 5.3 The processed data from
d3.histogram returns an array where each
array item also has an x0 and x1 field.

Changes the value
being measured

Binds and redraws
the new data

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

147Histograms

We’re adding the click event to the individual rect elements out of convenience here.
In a finished application you’d probably want to assign this to a button or other UI ele-
ment. But for our purposes, this is fine, and clicking a rect produces the new chart of
retweets in figure 5.4.

5.1.3 Drawing violin plots

I’ve taught D3 many people in different environments, and every time someone will
ask me, “Why do D3 layouts provide such abstract data?” It’s a good question. After all,
if you have a function called “histogram” shouldn’t it just, you know, make a histo-
gram? What good is it to give you this intermediary piece on your way to a visualiza-
tion? The answer is that there are more ways to visualize data than there are ways to
process data, by the definition of the problem space. Using rectangles like I have in
this chapter is only one way to show distribution data. Another is what we call a violin
plot, and we’re going to use d3.histogram to create one right now.

A violin plot is a mirrored curved area that bulges where many datapoints exist and
tapers where few exist. They’re commonly seen in medical diagrams dealing with dos-
age and efficacy but also used more generally to show distributions, and unlike a box-
plot that only shows sample points, the violin plot encodes the entire distribution.
First, though, we need to generate random data. D3 includes a few random number
generators, because when you’re generating random numbers, counterintuitively, you
don’t usually want truly random numbers, particularly when you want to look at distri-
butions. We’ll use d3.randomNormal to provide normally distributed random numbers.

If we use d3.histogram to bin those random numbers, and then feed the results
into a d3.area generator like we see in the following listing used in the last chapter,
you’ll get violin plots like the kind you see in figure 5.5.

var fillScale = d3.scaleOrdinal().range(["#fcd88a", "#cf7c1c", "#93c464"])

var normal = d3.randomNormal()
var sampleData1 = d3.range(100).map(d => normal())
var sampleData2 = d3.range(100).map(d => normal())

Listing 5.3 Generating violin plots with d3.histogram

Figure 5.4 The histogram chart
we’ve built will make an animated
transition to display tweets binned
by the number of retweets instead of
the number of favorites.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

148 CHAPTER 5 Layouts

var sampleData3 = d3.range(100).map(d => normal())

var histoChart = d3.histogram();

histoChart
.domain([-3, 3])
.thresholds([-3, -2.5, -2, -1.5, -1,

-0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3])
.value(d => d)

var yScale = d3.scaleLinear().domain([-3, 3]).range([400, 0]);
var yAxis = d3.axisRight().scale(yScale)
.tickSize(300)

d3.select("svg").append("g").call(yAxis)

var area = d3.area()
.x0(d => -d.length)
.x1(d => d.length)
.y(d => yScale(d.x0))

.curve(d3.curveCatmullRom)

d3.select("svg")
.selectAll("g.violin")
.data([sampleData1, sampleData2, sampleData3])
.enter()
.append("g")
.attr("class", "violin")
.attr("transform", (d,i) => `translate(${50 + i * 100},0)`)
.append("path")
.style("stroke", "black")
.style("fill", (d,i) => fillScale(i))
.attr("d", d => area(histoChart(d)))

You see, because D3 provides you with that intermediary transformed data, you can
decide how you might want to draw the final data visualization.

Generate
three sample
distributions

The more thresholds, the
smoother any distribution
chart will look

Unlike in the last
chapter, we’ll draw
these vertically

Use a Catmull–Rom spline
interpolation for the area
generator

We’re going to generate the area
based on the data transformed
by the histogram function

Figure 5.5 Three violin plots based on
the data produced by d3.histogram

www.itbook.store/books/9781617294488

https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline
https://itbook.store/books/9781617294488

149Pie charts

5.2 Pie charts
In this section you’ll learn how to create a pie chart
and transform it into a ring chart. You’ll also learn
how to use tweening to properly transition it when
you change its data source. After you create it, you
can pass it an array of values (which I’ll call a data-
set), and it will compute the necessary starting and
ending angles for each of those values to draw a pie
chart. When we pass an array of numbers as our
dataset to a pie layout in the console, as in the fol-
lowing code, it doesn’t produce any kind of graphics
like those seen in figure 5.6 but rather results in the
response shown in figure 5.7.

var pieChart = d3.pie();
var yourPie = pieChart([1,1,2]);

Original dataset:
A layout takes one (and sometimes
more) datasets. In this case, the dataset
is an array of numbers [1,1,2]. It transforms
that dataset for the purpose of drawing it.

Transformed dataset:
The layout returns a dataset that has
a reference to the original data but also
includes new attributes that are meant to be
passed to graphical elements or generators.
In this case, the pie layout creates an array
of objects with the endAngle and startAngle
values necessary for the arc generator to
create the pie pieces for a pie chart.

Figure 5.7 A pie layout applied to an array of [1,1,2] shows objects created with a start angle, end
angle, and value attribute corresponding to the dataset, as well as the original data, which in this case
is a number.

Figure 5.6 The traditional pie chart
(bottom right) represents proportion
as an angled slice of a circle. With
slight modification, it can be turned
into a donut or ring chart (top) or an
exploded pie chart (bottom left).

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

150 CHAPTER 5 Layouts

Our pieChart function created a new array of three objects. The startAngle and
endAngle for each of the data values draw a pie chart with one piece from 0 radians to
pi radians, the next from pi to 1.5 pi radians, and the last from 1.5 pi radians to 2 pi
radians. But this isn’t a drawing or SVG code like the line and area generators pro-
duced. It doesn’t even have the virtue of the histogram response, which at least seems
to map directly to coordinates (or coordinates we can pass to a scale).

5.2.1 Drawing the pie layout

These are settings that need to be passed to a generator to make each of the pieces of
our pie chart. This particular generator is d3.arc and it’s instantiated like the D3 gen-
erators we worked with in chapter 4. As an aside, JavaScript has a whole class of func-
tions known as generators, so keep in mind I’m referring to D3 functions that
“generate” drawing instructions for paths. d3.arc has a few settings, but the only one
we need for this first example is the outerRadius, which allows us to set a dynamic or
fixed radius for our arcs:

var newArc = d3.arc();
newArc.innerRadius(0)

.outerRadius(100)
console.log(newArc(yourPie[0]));

Now that you know how the arc constructor works and that it works with our data, all
we need to do is bind the data created by our pie layout and pass it to <path> elements
to draw our pie chart. The pie layout is centered on the 0,0 point in the same way as a
circle. If we want to draw it at the center of our canvas, we need to create a new <g>

element to hold the <path> elements we’ll draw and then move the <g> to the center
of the canvas:

var fillScale = d3.scaleOrdinal()
.range(["#fcd88a", "#cf7c1c", "#93c464", "#75734F"])

d3.select("svg")
.append("g")
.attr("transform","translate(250,250)")
.selectAll("path")
.data(yourPie)
.enter()
.append("path")
.attr("d", newArc)
.style("fill", (d,i) => fillScale(i))
.style("stroke", "black")
.style("stroke-width", "2px");

Gives our arcs and resulting pie
chart a radius of 100 px

Returns the d attribute necessary to draw this arc as a <path> element:
"M6.123031769111886e-15,100A100,100 0 0,1 -100,1.2246063538223773e-14L0,0Z"

Appends a new <g> and
moves it to the middle of
the canvas so that it’ll be
easier to see the results

Binds the array that was created
using the pie layout, not our original
array or the pie layout itself

Each path drawn based on that array needs to
pass through the newArc function, which sees
the startAngle and endAngle attributes of the
objects and produces the commensurate SVG
drawing code

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

151Pie charts

Figure 5.8 shows our pie chart. The pie chart layout,
like most layouts, grows more complicated when you
want to work with JSON object arrays rather than num-
ber arrays. Let’s bring back our tweets.json from chap-
ter 2. We can nest and measure it to transform it from
an array of tweets into an array of Twitter users with
their number of tweets computed.

We get there by using d3.nest() with keys based on
the user attribute of tweets. After nesting the tweets, we
can measure their attributes and use those numerical
measures for charts like these:

d3.json("tweets.json", pieChart)
function pieChart(data) {

var nestedTweets = d3.nest()
.key(d => d.user)
.entries(data.tweets);

nestedTweets.forEach(d => {
d.numTweets = d.values.length;
d.numFavorites = d3.sum(d.values, p => p.favorites.length)
d.numRetweets = d3.sum(d.values, p => p.retweets.length)

});
}

5.2.2 Creating a ring chart

If we execute pieChart(nestedTweets)as with the
earlier array illustrated in figure 5.7, it will fail,
because it doesn’t know that the numbers we should
be using to size our pie pieces come from the
.numTweets attribute. Most layouts, pie included,
can define where the values are in your array by
defining an accessor function to get to those values.
In the case of nestedTweets, we define pieChart

.value() to point at the numTweets attribute of the
dataset it’s being used on. While we’re at it, let’s set a
value for our arc generator’s innerRadius so that we
create a donut chart instead of a pie chart:

pieChart.value(d => d.numTweets);
newArc.innerRadius(20)
var yourPie = pieChart(nestedTweets);

With those changes in place, we can use the same code as before to draw the pie chart
in figure 5.9.

Gives the total number of favorites
by summing the favorites array

length of all the tweets

Gives the total number of retweets by doing
the same for the retweets array length

Figure 5.8 A pie chart showing
three pie pieces that subdivide
the circle between the values in
the array [1,1,2]

Figure 5.9 A donut chart showing
the number of tweets from our four
users represented in the
nestedTweets dataset.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

152 CHAPTER 5 Layouts

5.2.3 Transitioning

You’ll notice that for each value in nestedTweets, we totaled the number of tweets and
also used d3.sum()to total the number of retweets and favorites (if any). Because we
have this data, we can adjust our pie chart to show pie pieces based not on the number
of tweets but on those other values. One of the core uses of a layout in D3 is to update
the graphical chart. All we need to do is make changes to the data or layout and then
rebind the data to the existing graphical elements. By using a transition, we can see the
pie chart change from one form to the other. Running the following code first trans-
forms the pie chart to represent the number of favorites instead of the number of
tweets. The next block causes the pie chart to represent the number of retweets. The
final forms of the pie chart after running that code are shown in figure 5.10:

pieChart.value(d => d.numFavorites)
d3.selectAll("path").data(pieChart(nestedTweets))
.transition().duration(1000).attr("d", newArc);

pieChart.value(d => d.numRetweets);
d3.selectAll("path").data(pieChart(nestedTweets))
.transition().duration(1000).attr("d", newArc);

Although the results are what we want, the transition can leave a lot to be desired. Fig-
ure 5.11 shows snapshots of the pie chart transitioning from representing the number
of tweets to representing the number of favorites. As you’ll see by running the code
and comparing these snapshots, the pie chart doesn’t smoothly transition from one
state to another but instead distorts significantly.

Figure 5.10 The pie charts representing, on
the left, the total number of favorites and, on
the right, the total number of retweets

Figure 5.11 Snapshots of the transition of the pie chart representing the number of
tweets to the number of favorites. This transition highlights the need to assign key
values for data binding and to use tweens for some types of graphical transition, such
as that used for arcs.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

153Pie charts

The reason you see this wonky transition is because, as you learned earlier, the default
data-binding key is array position. When the pie layout measures data, it also sorts it in
order from largest to smallest to create a more readable chart. But when you recall the
layout, it re-sorts the dataset. The data objects are bound to different pieces in the pie
chart, and when you transition between them graphically, you see the effect shown in
figure 5.11. To prevent this from happening, we need to disable this sort:

pieChart.sort(null);

The result is a smooth graphical transition between numTweets and numRetweets,
because the object position in the array remains unchanged, and so the transition in
the drawn shapes is straightforward. But if you look closely, you’ll notice that the circle
deforms a bit because the default transition() behavior doesn’t deal with arcs well.
It’s not transitioning the radians in our arcs; instead, it’s treating each arc as a geomet-
ric shape and transitioning from one to another.

This becomes obvious when you look at the transition from either of those versions
of our pie chart to one that shows numFavorites, because several of the objects in our
dataset have 0 values for that attribute, and one of them changes size dramatically. To
clean this all up and make our pie chart transition properly, we need to change the
code. Some of this you’ve already dealt with, such as using key values for your created
elements and using them in conjunction with exit and update behavior. But to make
our pie slices transition in a smooth, graphical manner, we need to extend our transi-
tions, as shown in the following listing, to include a custom tween to define how an arc
can grow or shrink graphically into a different arc.

pieChart
.value(d => d.numTweets)
.sort(null)

var tweetsPie = pieChart(nestedTweets)

pieChart.value(d => d.numRetweets)
var retweetsPie = pieChart(nestedTweets)

nestedTweets.forEach((d,i) => {
d.tweetsSlice = tweetsPie[i]
d.retweetsSlice = retweetsPie[i]

})

...

.selectAll("path")

.data(nestedTweets, d => d.key)

.enter()

.append("path")

.attr("d", d => newArc(d.tweetsSlice))

.style("fill", (d,i) => fillScale(i))

...

Listing 5.4 Updated binding and transitioning for pie layout

Don’t sort the pie results so
that they stay in the same
order as the array you send

Take the original dataset and
add to each object the
results of the pie layout

Notice we’re appending the
original dataset because it has
the drawing instructions now

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

154 CHAPTER 5 Layouts

d3.selectAll("path")
.transition()
.duration(1000)
.attrTween("d", arcTween)

function arcTween(d) {
return t => {
var interpolateStartAngle = d3
.interpolate(d.tweetsSlice.startAngle, d.retweetsSlice.startAngle);
var interpolateEndAngle = d3
.interpolate(d.tweetsSlice.endAngle, d.retweetsSlice.endAngle);
d.startAngle = interpolateStartAngle(t);
d.endAngle = interpolateEndAngle(t);
return newArc(d);

}
}

The result of the code in listing 5.4 is a pie chart that cleanly transitions the individ-
ual arcs.

We could label each pie piece <path> element, color it according to a measure-
ment or category, or add interactivity. But rather than spend a chapter creating the
greatest pie chart application you’ve ever seen, we’ll move on to another kind of lay-
out that’s often used: the stack layout.

5.3 Stack layout
You saw the effects of the stack layout in the last chapter when we created a stacked
area chart, and which we introduced by referring to the Wired streamgraph that we see
again in figure 5.12. This time, we’ll make a streamgraph, but we’ll begin with a sim-
ple stacking function and then use it in more complex ways. The d3.stack layout for-
mats your data so that it can be easily passed to d3.area to draw a stacked graph or
streamgraph.

To implement this, we’ll use the area generator in tandem with the stack layout in
listing 5.5. This general pattern should be familiar to you by now:

1 Process the data to match the requirements of the layout.
2 Set the accessor functions of the layout to align it with the dataset.
3 Use the layout to format the data for display.
4 Send the modified data either directly to SVG elements or paired with a genera-

tor like d3.diagonal, d3.arc, or d3.area.

The first step is to take our original movies.csv data and transform it into an array of
movie objects that each have an array of values at points that correspond to the thick-
ness of the section of the streamgraph that they represent.

I’m only using a named function here instead
of an arrow function because it’s longer and
so it’s easier to read as a separate function attrTween expects a function that

takes the current transition value
(a float between 0 and 1) and
returns the interpolated value, in
this case an arc drawn from the
interpolated start and
interpolated end angles

Because this is going into a d
attribute, make sure to return
the drawing instructions for
the intermediary arc

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

155Stack layout

d3.csv("movies.csv", dataViz);
function dataViz(data) {

var xScale = d3.scaleLinear().domain([0, 10]).range([0, 500]);
var yScale = d3.scaleLinear().domain([0, 100]).range([500, 0]);
var movies = ["titanic", "avatar", "akira", "frozen", "deliverance",

"avengers"]

var fillScale = d3.scaleOrdinal()
.domain(movies)
.range(["#fcd88a", "#cf7c1c", "#93c464", "#75734F", "#5eafc6",
"#41a368"])

stackLayout = d3.stack()
.keys(movies)

var stackArea = d3.area()
.x((d, i) => xScale(i))
.y0(d => yScale(d[0]))
.y1(d => yScale(d[1]));

d3.select("svg").selectAll("path")
.data(stackLayout(data))
.enter().append("path")

Listing 5.5 Stack layout example

Figure 5.12 The streamgraph by Pitch Interactive used in a Wired piece describing the subject of
calls to 311 (a city service for reporting problems) in New York (November 1, 2010;
https://www.wired.com/2010/11/ff_311_new_york/all/1)

The movies dataset happens to be perfectly
suited to the default stack formatting—all
you need to do is pass an array of keys for
each object, which happens to also be the
domain of our colorScale

The stack layout is going to return an
array of two item arrays, the first is the
lower bound and the second is the
upper bound, and the index position
can be used for the x-position

www.itbook.store/books/9781617294488

https://www.wired.com/2010/11/ff_311_new_york/all/1
https://itbook.store/books/9781617294488

156 CHAPTER 5 Layouts

.style("fill", d => fillScale(d.key))

.attr("d", d => stackArea(d));
}

After our stackLayout function processes our dataset, we can get the results by run-
ning stackLayout(stackData). The layout creates an array of [y0, y1] values cor-
responding to the top and bottom of the object at the position of the item in the
parent array. If we use the stack layout to create a streamgraph, it requires a corre-
sponding area generator:

var stackArea = d3.area()
.x((d,i) => xScale(i))
.y0(d => yScale(d[0]))
.y1(d => yScale(d[1]));

After we have our data, layout, and area generator in order, we can call them all as
part of the selection and binding process. This gives a set of SVG <path> elements the
necessary shapes to make our chart. The result, as shown in figure 5.13, isn’t a stream-
graph but rather a stacked area chart of the kind we made manually in the last chap-
ter. This isn’t that different from a streamgraph, as you’ll soon find out.

The stack layout has an .offset() function that determines the relative positions of
the areas that make up the chart. Although we can write our own offset functions to
create exotic charts, D3 includes several functions to achieve the typical effects we’re
looking for. We’ll use the d3.stackOffsetSilhouette keyword, which centers the
drawing of the stacked areas around the middle. Another method you’ll need to take
advantage of for creating streamgraphs is .order(), which determines the order in
which areas are drawn so that you can alternate them like in a streamgraph. We’ll use
d3.stackOrderInsideOut because that produces the best streamgraph effect. We can
change the area constructor to use the basis interpolator because that gave the best
look in our earlier streamgraph example and finally update the domain of our yScale
to match up with the centered baseline around which the streamgraph is drawn:

stackLayout.offset(d3.stackOffsetSilhouette).order(d3.stackOrderInsideOut)
stackArea.curve(d3.curveBasis)
yScale.domain([-50, 50])

Each array of stacked data has a
key property that corresponds to
the keys you sent in your layout
generator

When your index position is sufficient, use that—
otherwise d.data still has the original data, so if you
need access to it for your scale, you can use that

Figure 5.13 The stack layout default settings,
when tied to an area generator, produce a stacked
area chart like this one.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

157Stack layout

This results in a cleaner streamgraph than our example from chapter 4 and is shown
in figure 5.14.

Is it useful? Well, it is useful, for various reasons, not least of which is because the
area in the chart corresponds graphically to the aggregate profit of each movie.

But sometimes a simple stacked bar graph is better. Layouts can be used for various
types of charts, and the stack layout is no different. If we restore the .offset() and
.order() back to the default settings, we can use the stack layout to create a set of
rectangles that makes a traditional stacked bar chart:

var xScale = d3.scaleLinear().domain([0, 10]).range([0, 500])
var yScale = d3.scaleLinear().domain([0, 60]).range([480, 0])
var heightScale = d3.scaleLinear().domain([0, 60]).range([0, 480])

stackLayout = d3.stack().keys(movies)

d3.select("svg").selectAll("g.bar")
.data(stackLayout(data))
.enter()
.append("g")
.attr("class", "bar")
.each(function(d) {

d3.select(this).selectAll("rect")
.data(d)
.enter()
.append("rect")
.attr("x", (p,q) => xScale(q) + 30)
.attr("y", p => yScale(p[1]))
.attr("height", p => heightScale(p[1] - p[0]))
.attr("width", 40)
.style("fill", fillScale(d.key));

});

In many ways, the stacked bar chart in figure 5.15 is much more readable than the
streamgraph. It presents the same information, but the y-axis tells us exactly how
much money a movie made. There’s a reason why bar charts, line charts, and pie
charts are the standard chart types found in your spreadsheet. Streamgraph, stacked
bar charts, and stacked area charts are fundamentally the same thing and rely on the
stack layout to format your dataset to draw it. Because you can deploy them equally
easily, your decision whether to use one or the other can be based on user testing
rather than your ability to create awesome dataviz.

Figure 5.14 The streamgraph effect from a stack
layout with basis interpolation for the areas and
using the silhouette and inside-out settings
for the stack layout. This is similar to our hand-built
example from chapter 4 and shows the same
graphical artifacts from the basis interpolation.

The stacked data is returned in a
way so that we iterate through
drawing each movie’s bars,
rather than each day

This function is using p,q instead
of d,i as a conventional approach
for nested arrow functions

Because it’s an SVG:rect, we want
it to be placed where its top
position would be, and then we
draw down from there

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

158 CHAPTER 5 Layouts

The layouts we’ve looked at so far, as well as the associated methods and generators, have
broad applicability. Now we’ll look at a pair of layouts that don’t come with D3 which are
designed for more specific kinds of data: the Sankey diagram and the word cloud. Even
though these layouts aren’t as generic as the layouts included in the core D3 library that
we’ve looked at, they have some prominent examples and can come in handy.

5.4 Plugins to add new layouts
The examples we’ve touched on in this chapter are a few of the layouts that come with
the core D3 library. You’ll see a few more in later chapters, and we’ll focus specifically
on the force layout in chapter 7. But layouts outside of core D3 may also be useful to
you. These layouts tend to use specifically formatted datasets or different terminology
for layout functions.

5.4.1 Sankey diagram

Sankey diagrams consist of two types of objects: nodes and edges. In this case, the nodes
are the web pages or events, and the edges are the traffic between them. This differs
from the hierarchical data you worked with before, because nodes can have many
overlapping connections (figure 5.16) to show event flow or user flow from one part
of your website to another.

The D3 version of the Sankey layout is a plugin written by Mike Bostock a couple
years ago and later updated for D3v4 by Kshitij Aranke. You can find it at
https://github.com/d3/d3-sankey. The Sankey layout has a few examples and sparse
documentation—one of the drawbacks of non-core layouts. Another minor drawback
is that non-core layouts don’t always follow the patterns of the core layouts in D3. To
understand the Sankey layout, you need to examine the format of the data, the exam-
ples, and the code itself.

Figure 5.15 A stacked bar chart
using the stack layout to determine
the position of the rectangles that
make up each day’s stacked bar

www.itbook.store/books/9781617294488

https://github.com/d3/d3-sankey
https://itbook.store/books/9781617294488

159Plugins to add new layouts

Figure 5.16 Google Analytics uses Sankey diagrams to chart event and user flow for website visitors.

D3 plugins
The core D3 library comes with a number of layouts and useful functions, but you can
find even more at https://github.com/d3/d3-plugins or by searching NPM. Besides
the two non-core layouts discussed in this chapter, we’ll look at the geo plugins in
chapter 7 when we deal with maps. Also available is a fisheye distortion lens, a
canned boxplot layout, a layout for horizon charts, and more exotic plugins for Cher-
noff faces and implementing the superformula (a mathematical expression that
allows you to create thousands of different shape types by modifying variables).

bboxCollideChernoff face

hexbin

www.itbook.store/books/9781617294488

https://github.com/d3/d3-plugins
https://itbook.store/books/9781617294488

160 CHAPTER 5 Layouts

The data is a JSON array of nodes and a second JSON array of links. Get used to this
format, because it’s the format of most of the network data we’ll use in chapter 7. For
our example, we’ll look at the traffic flow in a website that sells milk and milk-based
products. We want to see how visitors move through the site from the home page to
the store page to the various product pages, as shown in the following listing. In the
parlance of the data format we need to work with, the nodes are the web pages, the
links are the visitors who go from one page to another (if any), and the value of each
link is the total number of visitors who move from that page to the next.

{
"nodes":[
{"name":"index"},
{"name":"about"},
{"name":"contact"},
{"name":"store"},
{"name":"cheese"},
{"name":"yoghurt"},
{"name":"milk"}

],
"links":[
{"source":0,"target":1,"value":25},
{"source":0,"target":2,"value":10},
{"source":0,"target":3,"value":40},
{"source":1,"target":2,"value":10},
{"source":3,"target":4,"value":25},
{"source":3,"target":5,"value":10},
{"source":3,"target":6,"value":5},
{"source":4,"target":6,"value":5},
{"source":4,"target":5,"value":15}

]
}

The nodes array is clear—each object represents a web page. The links array is a bit
more opaque, until you realize the numbers represent the array position of nodes in
the node array. When links[0] reads "source": 0, it means that the source is
nodes[0], which is the index page of the site. It connects to "target": 1 so to nodes[1],
the about page, and "value": 25 indicates that 25 people navigated from the home
page to the about page. That defines our flow—the flow of traffic through a site.

Depending on how your project is structured, you can install d3-sankey using npm
I d3-sankey or download the latest release and include it in your HTML using script tags.

The Sankey layout is initialized like any layout:

var sankey = d3.sankey()
.nodeWidth(20)
.nodePadding(200)
.size([460, 460])
.nodes(data.nodes)
.links(data.links)
.layout(200);

Listing 5.6 sitestats.json

Each entry in this array
represents a web page

Each entry in this array represents
the number of times someone
navigated from the "source" page
to the "target" page

Where to
start and stop

drawing the
flows between

nodes

The distance between nodes vertically—
a lower value creates longer bars
representing our web pages

The number of times to run the layout
to optimize placement of flows

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

161Plugins to add new layouts

Until now, you’ve only seen .size(). It controls the graphical extent that the layout
uses. The rest you’d need to figure out by looking at the example, experimenting with
different values, or reading the sankey.js code itself. Most of it will quickly make sense,
in particular if you’re familiar with the .nodes() and .links() convention used in D3
network visualizations. The .layout() setting is pretty hard to understand without div-
ing into the code, but I’ll explain that next.

After we define our Sankey layout as in listing 5.7, we need to draw the chart by
selecting and binding the necessary SVG elements. In this case, that typically consists
of <rect> elements for the nodes and <path> elements for the flows. We’ll also add
<text> elements to label the nodes.

var sankey = d3.sankey()
.nodeWidth(20)
.nodePadding(200)
.size([460, 460])
.nodes(data.nodes)
.links(data.links)
.layout(200)

var intensityRamp = d3.scaleLinear()
.domain([0,d3.max(data.links, d => d.value)])
.range(["#fcd88b", "#cf7d1c"])

d3.select("svg").append("g")
.attr("transform", "translate(20,20)").attr("id", "sankeyG");

d3.select("#sankeyG").selectAll(".link")
.data(data.links)
.enter().append("path")
.attr("class", "link")
.attr("d", sankey.link())
.style("stroke-width", d => d.dy)
.style("stroke-opacity", .5)
.style("fill", "none")
.style("stroke", d => intensityRamp(d.value))
.sort((a, b) => b.dy - a.dy)
.on("mouseover", function() {

d3.select(this).style("stroke-opacity", .8); })
.on("mouseout", () => {

d3.selectAll("path.link").style("stroke-opacity", .5); })

d3.select("#sankeyG").selectAll(".node")
.data(data.nodes)
.enter().append("g")
.attr("class", "node")
.attr("transform", d => `translate(${d.x},${d.y})`)

d3.selectAll(".node").append("rect")
.attr("height", d => d.dy)
.attr("width", 20)
.style("fill", "#93c464")
.style("stroke", "gray")

d3.selectAll(".node").append("text")
.attr("x", 0)

Listing 5.7 Sankey drawing code

Offsets the parent <g>
of the entire chart

Sankey layout’s link()
function is a path generator

Note that layout expects us to use
a thick stroke and not a filled area

Sets the stroke color using
our intensity ramp, black to
red indicating weak to strong

Emphasizes the link when
we mouse over it by

making it less transparent

Calculates node position
as x and y coordinates

from our data

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

162 CHAPTER 5 Layouts

.attr("y", d => d.dy / 2)

.attr("text-anchor", "middle")

.style("fill", "black")

.text(d => d.name)

The implementation of this layout has interactivity, as shown in figure 5.17. Diagrams
like these, with wavy paths overlapping other wavy paths, need interaction to make
them legible to your site visitor. In this case, it differentiates one flow from another.

With a Sankey diagram like this at your disposal, you can track the flow of goods, visi-
tors, or anything else through your organization, website, or other system. Although
you could expand on this example in any number of ways, I think one of the most useful
is also one of the simplest. Remember, layouts aren’t tied to particular shape elements.
In certain cases, like with the flows in the Sankey diagram, you’ll have a hard time adapt-
ing the layout data to any element other than a <path>, but the nodes don’t need to be
<rect> elements. If we adjust our code, we can easily make nodes that are circles:

sankey.nodeWidth(1);
d3.selectAll(".node").append("circle")
.attr("height", d => d.dy)
.attr("r", d => d.dy / 2)
.attr("cy", d => d.dy / 2)
.style("fill", "#93c464")

Don’t shy away from experimenting with tweaks to traditional charting methods.
Using circles instead of rectangles, like in figure 5.18, may seem frivolous, but it may
be a better fit visually, or it may distinguish your Sankey from all the boring sharp-
edged Sankeys out there. In the same vein, don’t be afraid of leveraging D3’s capacity

Figure 5.17 A Sankey diagram
where the number of visitors is
represented in the color of the
path. The flow between index and
contact has an increased opacity
as the result of a mouseover event.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

163Plugins to add new layouts

for information visualization to teach yourself how a layout works. You’ll remember
that d3.sankey has a layout() function. It adjusts and attracts and relaxes the pull of
each connected node to each other to achieve the most efficient arrangement of
nodes and edges. You can see how it does that by reading the code, but there’s
another, more visual way to see how this function works: by using transitions and creat-
ing a function that updates the .layout().property dynamically. This allows you to
“see” the layout function in action.

First, we need to add an onclick function to make the chart interactive, as shown in
listing 5.8. We’ll attach this function to the <svg> element itself, but you could as eas-
ily add a button the way we did in chapter 3.

The runMoreLayouts() function does two things. It updates the sankey.layout()

property by incrementing a variable and setting it to the new value of that variable. It also
selects the graphical elements that make up your chart (the <g> and <path> elements)

Figure 5.18 A squid-like
Sankey diagram

Visualizing algorithms
Although you may think of data visualization as all the graphics in this book, it’s also
simultaneously a graphical representation of the methods you used to process the
data. In certain cases, like the Sankey diagram here or the force-directed network
visualization you’ll see in the next chapter, the algorithm used to sort and arrange
the graphical elements is front and center. After you have a layout that displays prop-
erly, you can play with the settings and update the elements as you’ve done with the
Sankey diagram to better understand how the algorithm works visually.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

164 CHAPTER 5 Layouts

and redraws them with the updated settings. By using transition() and delay(), you’ll
see the chart dynamically adjust.

var numLayouts = 1;
d3.select("svg").on("click", runMoreLayouts);
sankey.layout(numLayouts);
function runMoreLayouts() {

numLayouts += 20;
sankey.layout(numLayouts);
d3.selectAll(".link")

.transition()

.duration(500)

.attr("d", sankey.link())
d3.selectAll(".node")

.transition()

.duration(500)

.attr("transform", d => "translate(" + d.x + "," + d.y + ")")
}

The end result is a visual experience of the effect of the .layout() function. This
function specifies the number of passes that d3.sankey makes to determine the best
position of the lines representing flow. You can see snapshots of this in figure 5.19
showing the lines sort out and get out of each other’s way. This kind of position
optimization is a common technique in information visualization and drives the force-
directed network layout that you’ll see in chapter 6. In the case of our Sankey exam-
ple, even one pass of the layout provides good positioning. That’s because this is a
simple dataset and it stabilizes quickly. As you can see as you click your chart, and in
figure 5.19, the layout doesn’t change much with progressively higher numbers of
passes in the layout() setting.

It should be clear by this example that when you update the settings of the layout,
you can also update the visual display of the layout. You can use animations and transi-
tions by calling the elements and setting their drawing code or position to reflect the
changed data. You’ll see much more of this in later chapters.

Listing 5.8 Visual layout function for the Sankey diagram

Initializes the Sankey with
only a single layout pass

I chose 20 passes because it shows some change
without requiring us to click too much

Because the layout updates the dataset,
we have to call the drawing functions
again and they automatically update

Figure 5.19 The Sankey layout algorithm attempts to optimize the positioning of nodes to
reduce overlap. The chart reflects the position of nodes after (from left to right) 1 pass, 20
passes, 100 passes, and 200 passes.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

165Plugins to add new layouts

5.4.2 Word clouds

One of the most popular information visualization charts is also one of the most
maligned: the word cloud. Also known as a tag cloud, the word cloud uses text and text
size to represent the importance or frequency of words. Figure 5.20 shows a thumb-
nail gallery of 15 word clouds derived from text in a species biodiversity database.
Word clouds often rotate the words to set them at right angles or jumble them at ran-
dom angles to improve the appearance of the graphics. Word clouds, like stream-
graphs, receive criticism for being hard to read or presenting too little information,
but both are surprisingly popular with audiences.

I created these word clouds using my data with the popular Java applet Wordle,
which provides an easy UI and a few aesthetic customization choices. Wordle has
flooded the Internet with word clouds because it lets anyone create visually arresting
but problematic graphics by dropping text onto a page. This has caused much con-
sternation among data visualization experts, who think word clouds are evil because
they embed no analysis in the visualization and only highlight superficial data such as
the quantity of words in a blog post.

Figure 5.20 A word or tag cloud uses the size of a word to indicate its importance or frequency in a
text, creating a visual summary of text. These word clouds were created by the popular online word
cloud generator Wordle (www.wordle.net).

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

166 CHAPTER 5 Layouts

But word clouds aren’t evil. First of all, they’re popular with audiences. But more than
that, words are remarkably effective graphical objects. If you can identify a numerical
attribute that indicates the significance of a word, then scaling the size of a word in a
word cloud relays that significance to your reader.

Let’s start by assuming we have the right kind of data for a word cloud. Fortunately,
we do: the top 20 words used in this chapter, with the number of each word, as shown
in the following listing.

text,frequency
layout,63
function,61
data,47
return,36
attr,29
chart,28
array,24
style,24
layouts,22
values,22
need,21
nodes,21
pie,21
use,21
figure,20
circle,19
we'll,19
zoom,19
append,17
elements,17

To create a word cloud with D3, you have to use another layout that isn’t in the core
library, created by Jason Davies (who created the sentence trees using the tree layout
shown in chapter 6) that implements an algorithm written by Jonathan Feinberg
(http://static.mrfeinberg.com/bv_ch03.pdf). The layout, d3.cloud(), is available on
GitHub updated for v4 at https://github.com/sly7-7/d3-cloud. It requires that you
define what attribute will determine word size and what size you want the word cloud
to lay out for, as shown in listing 5.10.

Unlike most other layouts, cloud()fires a custom event end that indicates it’s done
calculating the most efficient use of space to generate the word cloud. The layout
then passes to this event the processed dataset with the position, rotation, and size of
the words. We can then run the cloud layout without ever referring to it again, and we
don’t even need to assign it to a variable, as we do in the following listing. If we plan to
reuse the cloud layout and adjust the settings, we assign it to a variable like with any
other layout.

Listing 5.9 worddata.csv

www.itbook.store/books/9781617294488

http://static.mrfeinberg.com/bv_ch03.pdf
https://github.com/sly7-7/d3-cloud
https://itbook.store/books/9781617294488

167Plugins to add new layouts

var wordScale=d3.scaleLinear().domain([0,75]).range([10,120]);
d3.cloud()
.size([500, 500])
.words(data)
.rotate(0)
.fontSize(d => wordScale(d.frequency))
.on("end", draw)
.start();

function draw(words) {
var wordG = d3.select("svg").append("g")

.attr("id", "wordCloudG")

.attr("transform","translate(250,250)");
wordG.selectAll("text")
.data(words)
.enter()
.append("text")
.style("font-size", d => d.size + "px")
.style("fill", "#4F442B")
.attr("text-anchor", "middle")
.attr("transform", d =>

"translate(" + [d.x, d.y] + ")rotate(" + d.rotate + ")")
.text(d => d.text);

};

This code creates an SVG <text> element that’s rotated and placed according to the
code. None of our words is rotated, so we get the staid word cloud shown in figure 5.21.

Listing 5.10 Creating a word cloud with d3.cloud

Assigns
data to

the cloud
layout
using

.words()

Use a scale rather than raw values for
the font size (if you scale a word too
large, the layout won’t draw it)

Sets the size of each
word using our scale

The cloud layout
needs to be
initialized—when it’s
done it fires "end"
and runs whatever
function "end" is
associated with

We’ve assigned draw() to
"end", which automatically
passes the processed
dataset as the words
variable

Translation and
rotation are calculated

by the cloud layout

Figure 5.21 A word cloud with
words that are arranged horizontally

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

168 CHAPTER 5 Layouts

It’s simple enough to define rotation, and we only need to set a rotation value in the
cloud layout’s .rotate() function:

randomRotate=d3.scaleLinear().domain([0,1]).range([-20,20]);
d3.cloud()
.size([500, 500])
.words(data)
.rotate(() => randomRotate(Math.random()))
.fontSize(d => wordScale(d.frequency))
.on("end", draw)
.start();

At this point, we have your traditional word cloud (figure 5.22), and we can tweak the
settings and colors to create anything you’ve seen on Wordle. But now let’s look at why
word clouds get such a bad reputation. We’ve taken an interesting dataset, the most
common words in this chapter, and other than size them by their frequency, done lit-
tle more than place them on screen and jostle them a bit. We have different channels
for expressing data visually, and in this case the best channels that we have, besides
size, are color and rotation.

With that in mind, let’s create a keyword list for the words that are in the index in the
back of the book. We’ll place those keywords in an array and use them to highlight the
words in our word cloud that appear in the glossary. The code in the following listing
also rotates shorter words 90 degrees and leaves the longer words unrotated so that
they’ll be easier to read.

var keywords = ["layout", "zoom", "circle", "style", "append", "attr"]
d3.cloud()
.size([500, 500])
.words(data)
.rotate(d => d.text.length > 5 ? 0 : 90)
.fontSize(d => wordScale(d.frequency))
.on("end", draw)

Listing 5.11 Word cloud layout with key word highlighting

This scale takes a
random number between

0 and 1 and returns an
angle between –20

degrees and 20 degrees
Sets the
rotation
for each

word

Figure 5.22 A word cloud using the same
worddata.csv but with words slightly perturbed by
randomizing the rotation property of each word.

Our
array of

keywords

The rotate function rotates by
90 degrees every word with
five or fewer characters

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

169Plugins to add new layouts

.start();
function draw(words) {
var wordG = d3.select("svg").append("g")
.attr("id", "wordCloudG").attr("transform","translate(250,250)");

wordG.selectAll("text")
.data(words)
.enter()
.append("text")
.style("font-size", d => d.size + "px")
.style("fill", d => keywords.indexOf(d.text) > -1 ? "#FE9922" : "#4F442B")
.style("opacity", .75)
.attr("text-anchor", "middle")
.attr("transform", d => "translate(" + [d.x, d.y] + ") rotate(" + d.rotate +
")")

.text(d => d.text);
};

The word cloud in figure 5.23 is fundamentally the same, but instead of using color
and rotation for aesthetics, we used them to encode information in the dataset.
You can read about more controls over the format of your word cloud, including
selecting fonts and padding, in the layout’s documentation at www.jasondavies.com/
wordcloud/about/.

Layouts like the word cloud aren’t suitable for as wide a variety of data as other lay-
outs, but because they’re so easy to deploy and customize, you can combine them with
other charts to represent the multiple facets of your data. You’ll see this kind of syn-
chronized chart in chapter 9.

If the word appears in the
keyword list, color it orange—

otherwise, color it black

Figure 5.23 This word cloud highlights
keywords and places longer words
horizontally and shorter words vertically.

www.itbook.store/books/9781617294488

www.jasondavies.com/wordcloud/about/
www.jasondavies.com/wordcloud/about/
www.jasondavies.com/wordcloud/about/
https://itbook.store/books/9781617294488

170 CHAPTER 5 Layouts

5.5 Summary
 Layout structure is mostly shared between D3 layouts, and the output of the lay-

outs doesn’t necessarily need to be expressed with the same graphics or charts.
 Animation can rely on default transition behavior or custom-defined tweens

using attrTween or styleTween.
 The stack() layout can be used to produce a variety of charts, including

stacked area charts, stacked bar charts, and streamgraphs.
 Third-party layouts like sankey() and wordcloud() are available to deploy less

common charts, such as diagrams of flow or text.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

171D3.js in the real world

D3.js in the real world

Adam Pearce
Graphics Editor, New York Times

Trump Has Spent a Fraction of What Clinton Has on Ads

I started this piece thinking I’d remake Alicia’s classic stacked area chart showing pres-
idential ad buys by state. Graphing the 2016 data presented a problem though—Trump
spent several weeks during the summer spending little or no money on television ads.

Rather than using a smaller time scale or visualizing the percentage allocation of
a small amount of money, I decided focus more on the total amount of money spent.
A streamgraph let me do that while still showing part of each campaign’s state by
state strategy.

To smooth over variations in spending between different days of the week and reduce
the data sent to the client, I aggregated spending by week and used the d3.curveMonotoneX
interpolater to stop neighboring curves from overlapping each other.

My editor and I went back and forth a bit on the form of the small multiple charts
at the top. Initially, they were bar charts, but we switched to area charts to introduce
the rorschach blot form. It isn’t exactly the outline of the streamgraph, but
d3.area().y1(d => -y(d.val)).y2(d => y(d.val)) gets close.

Figure from The New York Times, October 21 ©2016 The New York Times. All rights reserved. Used by permis-
sion and protected by the Copyright Laws of the United States. The printing, copying, redistribution, or
retransmission of this content without express written permission is prohibited.

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

Elijah Meeks

V
isualizing complex data is hard. Visualizing complex data
on the web is darn near impossible without D3.js. D3
is a JavaScript library that provides a simple but power-

ful data visualization API over HTML, CSS, and SVG. Start
with a structure, dataset, or algorithm; mix in D3; and you
can programmatically generate static, animated, or interactive
images that scale to any screen or browser. It’s easy, and after
a little practice, you’ll be blown away by how beautiful your
results can be!

D3.js in Action, Second Edition is a completely updated revi-
sion of Manning’s bestselling guide to data visualization with
D3. You’ll explore dozens of real-world examples, including
force and network diagrams, workfl ow illustrations, geospatial
constructions, and more. Along the way, you’ll pick up best
practices for building interactive graphics, animations, and live
data representations. You’ll also step through a fully interactive
application created with D3 and React.

What’s Inside
● Updated for D3 v4 and ES2015
● Reusable layouts and components
● Geospatial data visualizations
● Mixed-mode rendering

Suitable for web developers with HTML, CSS, and JavaScript
skills. No specialized data science skills required.

Elijah Meeks is a senior data visualization engineer at Netfl ix.

To download their free eBook or read it in their browser,
owners of this book should visit

www.manning.com/books/d3js-in-action-second-edition

$44.99 / Can $59.99 [INCLUDING eBOOK]

D3.js IN ACTION Second Edition

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“From basic to complex,
this book gives you

the tools to create beautiful
 data visualizations.”

—Claudio Rodriguez
Cox Media Group

“The best reference for one
of the most useful
DataViz tools.”—Jonathan Rioux, TD Insurance

“From toy examples to
techniques for real projects.

Shows how all the pieces
 fi t together.”

—Scott McKissock, USAID

“A clever way to immerse
yourself in the D3.js world.”

—Felipe Vildoso Castillo
University of Chile

SEE INSERT

www.itbook.store/books/9781617294488

https://itbook.store/books/9781617294488

	cover
	Copyright
	BriefContents
	SampleCh05
	coverB

