
M A N N I N G

Chris Richardson

S A M P L E C H A P T E R

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

Microservices Patterns

by Chris Richardson

 Chapter 1

 Copyright 2019 Manning Publications

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

vii

brief contents
1 ■ Escaping monolithic hell 1

2 ■ Decomposition strategies 33

3 ■ Interprocess communication in a microservice
architecture 65

4 ■ Managing transactions with sagas 110

5 ■ Designing business logic in a microservice
architecture 146

6 ■ Developing business logic with event sourcing 183

7 ■ Implementing queries in a microservice architecture 220

8 ■ External API patterns 253

9 ■ Testing microservices: Part 1 292

10 ■ Testing microservices: Part 2 318

11 ■ Developing production-ready services 348

12 ■ Deploying microservices 383

13 ■ Refactoring to microservices 428

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

1

Escaping monolithic hell

It was only Monday lunchtime, but Mary, the CTO of Food to Go, Inc. (FTGO), was
already feeling frustrated. Her day had started off really well. She had spent the
previous week with other software architects and developers at an excellent confer-
ence learning about the latest software development techniques, including contin-
uous deployment and the microservice architecture. Mary had also met up with her
former computer science classmates from North Carolina A&T State and shared
technology leadership war stories. The conference had left her feeling empowered
and eager to improve how FTGO develops software.

This chapter covers
 The symptoms of monolithic hell and how to

escape it by adopting the microservice
architecture

 The essential characteristics of the microservice
architecture and its benefits and drawbacks

 How microservices enable the DevOps style of
development of large, complex applications

 The microservice architecture pattern language
and why you should use it

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

2 CHAPTER 1 Escaping monolithic hell

 Unfortunately, that feeling had quickly evaporated. She had just spent the first
morning back in the office in yet another painful meeting with senior engineering
and business people. They had spent two hours discussing why the development team
was going to miss another critical release date. Sadly, this kind of meeting had become
increasingly common over the past few years. Despite adopting agile, the pace of devel-
opment was slowing down, making it next to impossible to meet the business’s goals.
And, to make matters worse, there didn’t seem to be a simple solution.

 The conference had made Mary realize that FTGO was suffering from a case of
monolithic hell and that the cure was to adopt the microservice architecture. But the
microservice architecture and the associated state-of-the-art software development
practices described at the conference felt like an elusive dream. It was unclear to Mary
how she could fight today’s fires while simultaneously improving the way software was
developed at FTGO.

 Fortunately, as you will learn in this book, there is a way. But first, let’s look at the
problems that FTGO is facing and how they got there.

1.1 The slow march toward monolithic hell
Since its launch in late 2005, FTGO had grown by leaps and bounds. Today, it’s one of
the leading online food delivery companies in the United States. The business even
plans to expand overseas, although those plans are in jeopardy because of delays in
implementing the necessary features.

 At its core, the FTGO application is quite simple. Consumers use the FTGO web-
site or mobile application to place food orders at local restaurants. FTGO coordinates
a network of couriers who deliver the orders. It’s also responsible for paying couriers
and restaurants. Restaurants use the FTGO website to edit their menus and manage
orders. The application uses various web services, including Stripe for payments,
Twilio for messaging, and Amazon Simple Email Service (SES) for email.

 Like many other aging enterprise applications, the FTGO application is a mono-
lith, consisting of a single Java Web Application Archive (WAR) file. Over the years, it
has become a large, complex application. Despite the best efforts of the FTGO devel-
opment team, it’s become an example of the Big Ball of Mud pattern (www.laputan
.org/mud/). To quote Foote and Yoder, the authors of that pattern, it’s a “haphaz-
ardly structured, sprawling, sloppy, duct-tape and bailing wire, spaghetti code jungle.”
The pace of software delivery has slowed. To make matters worse, the FTGO applica-
tion has been written using some increasingly obsolete frameworks. The FTGO appli-
cation is exhibiting all the symptoms of monolithic hell.

 The next section describes the architecture of the FTGO application. Then it
talks about why the monolithic architecture worked well initially. We’ll get into how
the FTGO application has outgrown its architecture and how that has resulted in
monolithic hell.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

3The slow march toward monolithic hell

1.1.1 The architecture of the FTGO application

FTGO is a typical enterprise Java application. Figure 1.1 shows its architecture. The
FTGO application has a hexagonal architecture, which is an architectural style
described in more detail in chapter 2. In a hexagonal architecture, the core of the
application consists of the business logic. Surrounding the business logic are various
adapters that implement UIs and integrate with external systems.

The business logic consists of modules, each of which is a collection of domain
objects. Examples of the modules include Order Management, Delivery Management,
Billing, and Payments. There are several adapters that interface with the external sys-
tems. Some are inbound adapters, which handle requests by invoking the business
logic, including the REST API and Web UI adapters. Others are outbound adapters,
which enable the business logic to access the MySQL database and invoke cloud ser-
vices such as Twilio and Stripe.

 Despite having a logically modular architecture, the FTGO application is packaged
as a single WAR file. The application is an example of the widely used monolithic style

Invoked by mobile applications

Twilio

messaging

service

Cloud services

FTGO application

AWS SES

email

service

Stripe

payment

service

Adapters invoke
cloud services.

Twilio

adapter
Courier REST

API

Web

UI

MySQL

adapter

Restaurant
management

Payments

Billing

Notification

Order
management

Delivery
management

Amazon

SES

adapter

Stripe

adapter

Consumer

Restaurant

MySQL

Figure 1.1 The FTGO application has a hexagonal architecture. It consists of business logic
surrounded by adapters that implement UIs and interface with external systems, such as mobile
applications and cloud services for payments, messaging, and email.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

4 CHAPTER 1 Escaping monolithic hell

of software architecture, which structures a system as a single executable or deploy-
able component. If the FTGO application were written in the Go language (GoLang),
it would be a single executable. A Ruby or NodeJS version of the application would be
a single directory hierarchy of source code. The monolithic architecture isn’t inher-
ently bad. The FTGO developers made a good decision when they picked monolithic
architecture for their application.

1.1.2 The benefits of the monolithic architecture

In the early days of FTGO, when the application was relatively small, the application’s
monolithic architecture had lots of benefits:

 Simple to develop—IDEs and other developer tools are focused on building a sin-
gle application.

 Easy to make radical changes to the application—You can change the code and the
database schema, build, and deploy.

 Straightforward to test—The developers wrote end-to-end tests that launched the
application, invoked the REST API, and tested the UI with Selenium.

 Straightforward to deploy—All a developer had to do was copy the WAR file to a
server that had Tomcat installed.

 Easy to scale—FTGO ran multiple instances of the application behind a load
balancer.

Over time, though, development, testing, deployment, and scaling became much more
difficult. Let’s look at why.

1.1.3 Living in monolithic hell

Unfortunately, as the FTGO developers have discovered, the monolithic architecture
has a huge limitation. Successful applications like the FTGO application have a habit
of outgrowing the monolithic architecture. Each sprint, the FTGO development team
implemented a few more stories, which made the code base larger. Moreover, as the
company became more successful, the size of the development team steadily grew.
Not only did this increase the growth rate of the code base, it also increased the man-
agement overhead.

 As figure 1.2 shows, the once small, simple FTGO application has grown over the
years into a monstrous monolith. Similarly, the small development team has now
become multiple Scrum teams, each of which works on a particular functional area.
As a result of outgrowing its architecture, FTGO is in monolithic hell. Development is
slow and painful. Agile development and deployment is impossible. Let’s look at why
this has happened.

COMPLEXITY INTIMIDATES DEVELOPERS

A major problem with the FTGO application is that it’s too complex. It’s too large for
any developer to fully understand. As a result, fixing bugs and correctly implementing
new features have become difficult and time consuming. Deadlines are missed.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

5The slow march toward monolithic hell

To make matters worse, this overwhelming complexity tends to be a downward spiral.
If the code base is difficult to understand, a developer won’t make changes correctly.
Each change makes the code base incrementally more complex and harder to under-
stand. The clean, modular architecture shown earlier in figure 1.1 doesn’t reflect real-
ity. FTGO is gradually becoming a monstrous, incomprehensible, big ball of mud.

 Mary remembers recently attending a conference where she met a developer who
was writing a tool to analyze the dependencies between the thousands of JARs in their
multimillion lines-of-code (LOC) application. At the time, that tool seemed like some-
thing FTGO could use. Now she’s not so sure. Mary suspects a better approach is to
migrate to an architecture that is better suited to a complex application: microservices.

DEVELOPMENT IS SLOW

As well as having to fight overwhelming complexity, FTGO developers find day-to-day
development tasks slow. The large application overloads and slows down a developer’s
IDE. Building the FTGO application takes a long time. Moreover, because it’s so large,
the application takes a long time to start up. As a result, the edit-build-run-test loop
takes a long time, which badly impacts productivity.

PATH FROM COMMIT TO DEPLOYMENT IS LONG AND ARDUOUS

Another problem with the FTGO application is that deploying changes into produc-
tion is a long and painful process. The team typically deploys updates to production
once a month, usually late on a Friday or Saturday night. Mary keeps reading that the
state-of-the-art for Software-as-a-Service (SaaS) applications is continuous deployment:

Large
development
organization

Single code base creates
communication and

coordination overhead.

Large, complex
unreliable, difficult

to maintain

The path from code commit to
production is arduous.

Changes sit in a queue until
they can be manually tested.

Order management team

Restaurant management team

Delivery management team

FTGO development

Production

Jenkins
Cl

Backlog

Deployment pipeline

Source

code

repository

Manual
testing

FTGO

application

Figure 1.2 A case of monolithic hell. The large FTGO developer team commits their changes to a
single source code repository. The path from code commit to production is long and arduous and
involves manual testing. The FTGO application is large, complex, unreliable, and difficult to maintain.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

6 CHAPTER 1 Escaping monolithic hell

deploying changes to production many times a day during business hours. Apparently,
as of 2011, Amazon.com deployed a change into production every 11.6 seconds with-
out ever impacting the user! For the FTGO developers, updating production more
than once a month seems like a distant dream. And adopting continuous deployment
seems next to impossible.

 FTGO has partially adopted agile. The engineering team is divided into squads
and uses two-week sprints. Unfortunately, the journey from code complete to running
in production is long and arduous. One problem with so many developers committing
to the same code base is that the build is frequently in an unreleasable state. When the
FTGO developers tried to solve this problem by using feature branches, their attempt
resulted in lengthy, painful merges. Consequently, once a team completes its sprint, a
long period of testing and code stabilization follows.

 Another reason it takes so long to get changes into production is that testing takes
a long time. Because the code base is so complex and the impact of a change isn’t well
understood, developers and the Continuous Integration (CI) server must run the
entire test suite. Some parts of the system even require manual testing. It also takes a
while to diagnose and fix the cause of a test failure. As a result, it takes a couple of days
to complete a testing cycle.

SCALING IS DIFFICULT

The FTGO team also has problems scaling its application. That’s because different
application modules have conflicting resource requirements. The restaurant data, for
example, is stored in a large, in-memory database, which is ideally deployed on servers
with lots of memory. In contrast, the image processing module is CPU intensive and
best deployed on servers with lots of CPU. Because these modules are part of the same
application, FTGO must compromise on the server configuration.

DELIVERING A RELIABLE MONOLITH IS CHALLENGING

Another problem with the FTGO application is the lack of reliability. As a result, there
are frequent production outages. One reason it’s unreliable is that testing the applica-
tion thoroughly is difficult, due to its large size. This lack of testability means bugs
make their way into production. To make matters worse, the application lacks fault iso-
lation, because all modules are running within the same process. Every so often, a bug
in one module—for example, a memory leak—crashes all instances of the applica-
tion, one by one. The FTGO developers don’t enjoy being paged in the middle of the
night because of a production outage. The business people like the loss of revenue
and trust even less.

LOCKED INTO INCREASINGLY OBSOLETE TECHNOLOGY STACK

The final aspect of monolithic hell experienced by the FTGO team is that the archi-
tecture forces them to use a technology stack that’s becoming increasingly obsolete. The
monolithic architecture makes it difficult to adopt new frameworks and languages. It
would be extremely expensive and risky to rewrite the entire monolithic application so
that it would use a new and presumably better technology. Consequently, developers

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

7What you’ll learn in this book

are stuck with the technology choices they made at the start of the project. Quite
often, they must maintain an application written using an increasingly obsolete tech-
nology stack.

 The Spring framework has continued to evolve while being backward compatible,
so in theory FTGO might have been able to upgrade. Unfortunately, the FTGO applica-
tion uses versions of frameworks that are incompatible with newer versions of Spring.
The development team has never found the time to upgrade those frameworks. As a
result, major parts of the application are written using increasingly out-of-date frame-
works. What’s more, the FTGO developers would like to experiment with non-JVM
languages such as GoLang and NodeJS. Sadly, that’s not possible with a monolithic
application.

1.2 Why this book is relevant to you
It’s likely that you’re a developer, architect, CTO, or VP of engineering. You’re responsi-
ble for an application that has outgrown its monolithic architecture. Like Mary at
FTGO, you’re struggling with software delivery and want to know how to escape
monolith hell. Or perhaps you fear that your organization is on the path to mono-
lithic hell and you want to know how to change direction before it’s too late. If you
need to escape or avoid monolithic hell, this is the book for you.

 This book spends a lot of time explaining microservice architecture concepts. My
goal is for you to find this material accessible, regardless of the technology stack you
use. All you need is to be familiar with the basics of enterprise application architecture
and design. In particular, you need to know the following:

 Three-tier architecture
 Web application design
 How to develop business logic using object-oriented design
 How to use an RDBMS: SQL and ACID transactions
 How to use interprocess communication using a message broker and REST APIs
 Security, including authentication and authorization

The code examples in this book are written using Java and the Spring framework.
That means in order to get the most out of the examples, you need to be familiar with
the Spring framework too.

1.3 What you’ll learn in this book
By the time you finish reading this book you’ll understand the following:

 The essential characteristics of the microservice architecture, its benefits and
drawbacks, and when to use it

 Distributed data management patterns
 Effective microservice testing strategies
 Deployment options for microservices
 Strategies for refactoring a monolithic application into a microservice architecture

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

8 CHAPTER 1 Escaping monolithic hell

You’ll also be able to do the following:

 Architect an application using the microservice architecture pattern
 Develop the business logic for a service
 Use sagas to maintain data consistency across services
 Implement queries that span services
 Effectively test microservices
 Develop production-ready services that are secure, configurable, and observable
 Refactor an existing monolithic application to services

1.4 Microservice architecture to the rescue
Mary has come to the conclusion that FTGO must migrate to the microservice
architecture.

 Interestingly, software architecture has very little to do with functional require-
ments. You can implement a set of use cases—an application’s functional require-
ments—with any architecture. In fact, it’s common for successful applications, such as
the FTGO application, to be big balls of mud.

 Architecture matters, however, because of how it affects the so-called quality of ser-
vice requirements, also called nonfunctional requirements, quality attributes, or ilities. As
the FTGO application has grown, various quality attributes have suffered, most nota-
bly those that impact the velocity of software delivery: maintainability, extensibility,
and testability.

 On the one hand, a disciplined team can slow down the pace of its descent toward
monolithic hell. Team members can work hard to maintain the modularity of their
application. They can write comprehensive automated tests. On the other hand, they
can’t avoid the issues of a large team working on a single monolithic application. Nor
can they solve the problem of an increasingly obsolete technology stack. The best a
team can do is delay the inevitable. To escape monolithic hell, they must migrate to a
new architecture: the Microservice architecture.

 Today, the growing consensus is that if you’re building a large, complex applica-
tion, you should consider using the microservice architecture. But what are micro-
services exactly? Unfortunately, the name doesn’t help because it overemphasizes size.
There are numerous definitions of the microservice architecture. Some take the name
too literally and claim that a service should be tiny—for example, 100 LOC. Others
claim that a service should only take two weeks to develop. Adrian Cockcroft, formerly
of Netflix, defines a microservice architecture as a service-oriented architecture com-
posed of loosely coupled elements that have bounded contexts. That’s not a bad defi-
nition, but it is a little dense. Let’s see if we can do better.

1.4.1 Scale cube and microservices

My definition of the microservice architecture is inspired by Martin Abbott and
Michael Fisher’s excellent book, The Art of Scalability (Addison-Wesley, 2015). This

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

9Microservice architecture to the rescue

book describes a useful, three-dimensional scalability model: the scale cube, shown in
figure 1.3.

The model defines three ways to scale an application: X, Y, and Z.

X-AXIS SCALING LOAD BALANCES REQUESTS ACROSS MULTIPLE INSTANCES

X-axis scaling is a common way to scale a monolithic application. Figure 1.4 shows
how X-axis scaling works. You run multiple instances of the application behind a
load balancer. The load balancer distributes requests among the N identical instances of
the application. This is a great way of improving the capacity and availability of an
application.

Z-AXIS SCALING ROUTES REQUESTS BASED ON AN ATTRIBUTE OF THE REQUEST

Z-axis scaling also runs multiple instances of the monolith application, but unlike X-axis
scaling, each instance is responsible for only a subset of the data. Figure 1.5 shows how
Z-axis scaling works. The router in front of the instances uses a request attribute to
route it to the appropriate instance. An application might, for example, route requests
using userId.

 In this example, each application instance is responsible for a subset of users. The
router uses the userId specified by the request Authorization header to select one of

Microservices

Y-axis scaling,

a.k.a. functional

decomposition

Scale by splitting

things that are

different, such as

by function.

X-axis scaling,

a.k.a. horizontal duplication

Scale by cloning.

Z-axis scaling,

a.k.a. data partitioning

Scale by splitting

similar things, such as

by customer ID.
One

instance

Many

instances

One

partition

Many

partitions

Monolith

Figure 1.3 The scale cube defines three separate ways to scale an application: X-axis
scaling load balances requests across multiple, identical instances; Z-axis scaling routes
requests based on an attribute of the request; Y-axis functionally decomposes an application
into services.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

10 CHAPTER 1 Escaping monolithic hell

the N identical instances of the application. Z-axis scaling is a great way to scale an
application to handle increasing transaction and data volumes.

Y-AXIS SCALING FUNCTIONALLY DECOMPOSES AN APPLICATION INTO SERVICES

X- and Z-axis scaling improve the application’s capacity and availability. But neither
approach solves the problem of increasing development and application complexity. To
solve those, you need to apply Y-axis scaling, or functional decomposition. Figure 1.6 shows
how Y-axis scaling works: by splitting a monolithic application into a set of services.

Application

instance 1

N identical application

instances

Application

instance 2

Load

balancer
Client

Request

Application

instance 3

Route requests using a
load balancing algorithm.

Figure 1.4 X-axis scaling runs multiple, identical instances of the monolithic
application behind a load balancer.

Application

instance 1

N identical application

instances

Application

instance 2
Client Router

Request:

GET /...
Authorization: userId:password

Application

instance 3

Users: a–h

Users: i-p

Users: r–z

Uses the userId to decide
where to route requests

Each instance is responsible
for a subset of the users.

Figure 1.5 Z-axis scaling runs multiple identical instances of the monolithic application behind
a router, which routes based on a request attribute . Each instance is responsible for a subset
of the data.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

11Microservice architecture to the rescue

A service is a mini application that implements narrowly focused functionality, such as
order management, customer management, and so on. A service is scaled using X-axis
scaling, though some services may also use Z-axis scaling. For example, the Order ser-
vice consists of a set of load-balanced service instances.

 The high-level definition of microservice architecture (microservices) is an archi-
tectural style that functionally decomposes an application into a set of services. Note
that this definition doesn’t say anything about size. Instead, what matters is that each
service has a focused, cohesive set of responsibilities. Later in the book I discuss what
that means.

 Now let’s look at how the microservice architecture is a form of modularity.

1.4.2 Microservices as a form of modularity

Modularity is essential when developing large, complex applications. A modern appli-
cation like FTGO is too large to be developed by an individual. It’s also too complex
to be understood by a single person. Applications must be decomposed into modules
that are developed and understood by different people. In a monolithic application,
modules are defined using a combination of programming language constructs (such
as Java packages) and build artifacts (such as Java JAR files). However, as the FTGO
developers have discovered, this approach tends not to work well in practice. Long-
lived, monolithic applications usually degenerate into big balls of mud.

 The microservice architecture uses services as the unit of modularity. A service has
an API, which is an impermeable boundary that is difficult to violate. You can’t bypass

Order

Service

Application

Customer

Service
Client

Review

Service

Order

requests

Customer

requests

Review

requests

Order

Service

instance 1

Order service

Order

Service

instance 2

Order

Service

instance 3

Load

balancer

Request

Y-axis scaling functionality decomposes
an application into services.

Each service is typically scaled using
X-axis and possibly Z-axis scaling.

Figure 1.6 Y-axis scaling splits the application into a set of services. Each service is responsible for
a particular function. A service is scaled using X-axis scaling and, possibly, Z-axis scaling.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

12 CHAPTER 1 Escaping monolithic hell

the API and access an internal class as you can with a Java package. As a result, it’s
much easier to preserve the modularity of the application over time. There are other
benefits of using services as building blocks, including the ability to deploy and scale
them independently.

1.4.3 Each service has its own database

A key characteristic of the microservice architecture is that the services are loosely
coupled and communicate only via APIs. One way to achieve loose coupling is by each
service having its own datastore. In the online store, for example, Order Service has a
database that includes the ORDERS table, and Customer Service has its database, which
includes the CUSTOMERS table. At development time, developers can change a service’s
schema without having to coordinate with developers working on other services. At
runtime, the services are isolated from each other—for example, one service will
never be blocked because another service holds a database lock.

Now that we’ve defined the microservice architecture and described some of its essen-
tial characteristics, let’s look at how this applies to the FTGO application.

1.4.4 The FTGO microservice architecture

The rest of this book discusses the FTGO application’s microservice architecture in
depth. But first let’s quickly look at what it means to apply Y-axis scaling to this applica-
tion. If we apply Y-axis decomposition to the FTGO application, we get the architec-
ture shown in figure 1.7. The decomposed application consists of numerous frontend
and backend services. We would also apply X-axis and, possibly Z-axis scaling, so that
at runtime there would be multiple instances of each service.

 The frontend services include an API gateway and the Restaurant Web UI. The API
gateway, which plays the role of a facade and is described in detail in chapter 8, provides
the REST APIs that are used by the consumers’ and couriers’ mobile applications. The
Restaurant Web UI implements the web interface that’s used by the restaurants to man-
age menus and process orders.

 The FTGO application’s business logic consists of numerous backend services.
Each backend service has a REST API and its own private datastore. The backend ser-
vices include the following:

 Order Service—Manages orders
 Delivery Service—Manages delivery of orders from restaurants to consumers

Don’t worry: Loose coupling doesn’t make Larry Ellison richer
The requirement for each service to have its own database doesn’t mean it has its
own database server. You don’t, for example, have to spend 10 times more on Oracle
RDBMS licenses. Chapter 2 explores this topic in depth.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

13Microservice architecture to the rescue

 Restaurant Service—Maintains information about restaurants
 Kitchen Service—Manages the preparation of orders
 Accounting Service—Handles billing and payments

Many services correspond to the modules described earlier in this chapter. What’s dif-
ferent is that each service and its API are very clearly defined. Each one can be inde-
pendently developed, tested, deployed, and scaled. Also, this architecture does a good
job of preserving modularity. A developer can’t bypass a service’s API and access its
internal components. Chapter 13 describes how to transform an existing monolithic
application into microservices.

1.4.5 Comparing the microservice architecture and SOA

Some critics of the microservice architecture claim it’s nothing new—it’s service-
oriented architecture (SOA). At a very high level, there are some similarities. SOA
and the microservice architecture are architectural styles that structure a system as a
set of services. But as table 1.1 shows, once you dig deep, you encounter significant
differences.

Amazon

SES

Adapter

Twilio

Adapter

Stripe

Adapter

The API Gateway routes
requests from the mobile
applications to services.

Services have APIs. A service’s data is private.

Services corresponding
to business capabilities/
domain-driven design

(DDD) subdomains

API

Gateway

Restaurant

Web UI

Order

Service

Courier

REST

API

REST

API

REST

API

Consumer

Restaurant

Restaurant

Service

REST

API

Accounting

Service

REST

API

Notification

Service

REST

API

Kitchen

Service

REST

API

Delivery

Service

REST

API

Figure 1.7 Some of the services of the microservice architecture-based version of the FTGO
application. An API Gateway routes requests from the mobile applications to services. The services
collaborate via APIs.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

14 CHAPTER 1 Escaping monolithic hell

SOA and the microservice architecture usually use different technology stacks. SOA
applications typically use heavyweight technologies such as SOAP and other WS* stan-
dards. They often use an ESB, a smart pipe that contains business and message-processing
logic to integrate the services. Applications built using the microservice architecture
tend to use lightweight, open source technologies. The services communicate via dumb
pipes, such as message brokers or lightweight protocols like REST or gRPC.

 SOA and the microservice architecture also differ in how they treat data. SOA
applications typically have a global data model and share databases. In contrast, as
mentioned earlier, in the microservice architecture each service has its own database.
Moreover, as described in chapter 2, each service is usually considered to have its own
domain model.

 Another key difference between SOA and the microservice architecture is the size
of the services. SOA is typically used to integrate large, complex, monolithic applica-
tions. Although services in a microservice architecture aren’t always tiny, they’re
almost always much smaller. As a result, a SOA application usually consists of a few
large services, whereas a microservices-based application typically consists of dozens or
hundreds of smaller services.

1.5 Benefits and drawbacks of the microservice
architecture
Let’s first consider the benefits and then we’ll look at the drawbacks.

1.5.1 Benefits of the microservice architecture

The microservice architecture has the following benefits:

 It enables the continuous delivery and deployment of large, complex applications.
 Services are small and easily maintained.
 Services are independently deployable.
 Services are independently scalable.
 The microservice architecture enables teams to be autonomous.
 It allows easy experimenting and adoption of new technologies.
 It has better fault isolation.

Table 1.1 Comparing SOA with microservices

SOA Microservices

Inter-service
communication

Smart pipes, such as Enterprise Ser-
vice Bus, using heavyweight protocols,
such as SOAP and the other WS*
standards.

Dumb pipes, such as a message
broker, or direct service-to-service
communication, using lightweight
protocols such as REST or gRPC

Data Global data model and shared data-
bases

Data model and database per service

Typical service Larger monolithic application Smaller service

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

15Benefits and drawbacks of the microservice architecture

Let’s look at each benefit.

ENABLES THE CONTINUOUS DELIVERY AND DEPLOYMENT OF LARGE, COMPLEX APPLICATIONS

The most important benefit of the microservice architecture is that it enables continu-
ous delivery and deployment of large, complex applications. As described later in sec-
tion 1.7, continuous delivery/deployment is part of DevOps, a set of practices for the
rapid, frequent, and reliable delivery of software. High-performing DevOps organiza-
tions typically deploy changes into production with very few production issues.

 There are three ways that the microservice architecture enables continuous deliv-
ery/deployment:

 It has the testability required by continuous delivery/deployment—Automated testing is
a key practice of continuous delivery/deployment. Because each service in a
microservice architecture is relatively small, automated tests are much easier to
write and faster to execute. As a result, the application will have fewer bugs.

 It has the deployability required by continuous delivery/deployment—Each service can
be deployed independently of other services. If the developers responsible for a
service need to deploy a change that’s local to that service, they don’t need to
coordinate with other developers. They can deploy their changes. As a result,
it’s much easier to deploy changes frequently into production.

 It enables development teams to be autonomous and loosely coupled—You can structure
the engineering organization as a collection of small (for example, two-pizza)
teams. Each team is solely responsible for the development and deployment of
one or more related services. As figure 1.8 shows, each team can develop, deploy,
and scale their services independently of all the other teams. As a result, the
development velocity is much higher.

The ability to do continuous delivery and deployment has several business benefits:

 It reduces the time to market, which enables the business to rapidly react to
feedback from customers.

 It enables the business to provide the kind of reliable service today’s customers
have come to expect.

 Employee satisfaction is higher because more time is spent delivering valuable
features instead of fighting fires.

As a result, the microservice architecture has become the table stakes of any business
that depends upon software technology.

EACH SERVICE IS SMALL AND EASILY MAINTAINED

Another benefit of the microservice architecture is that each service is relatively small.
The code is easier for a developer to understand. The small code base doesn’t slow
down the IDE, making developers more productive. And each service typically starts a
lot faster than a large monolith does, which also makes developers more productive
and speeds up deployments.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

16 CHAPTER 1 Escaping monolithic hell

SERVICES ARE INDEPENDENTLY SCALABLE

Each service in a microservice architecture can be scaled independently of other ser-
vices using X-axis cloning and Z-axis partitioning. Moreover, each service can be
deployed on hardware that’s best suited to its resource requirements. This is quite dif-
ferent than when using a monolithic architecture, where components with wildly dif-
ferent resource requirements—for example, CPU-intensive vs. memory-intensive—
must be deployed together.

BETTER FAULT ISOLATION

The microservice architecture has better fault isolation. For example, a memory leak
in one service only affects that service. Other services will continue to handle requests
normally. In comparison, one misbehaving component of a monolithic architecture
will bring down the entire system.

EASILY EXPERIMENT WITH AND ADOPT NEW TECHNOLOGIES

Last but not least, the microservice architecture eliminates any long-term commit-
ment to a technology stack. In principle, when developing a new service, the develop-
ers are free to pick whatever language and frameworks are best suited for that service.

Small, autonomous,
loosely coupled teams

Each service has
its own source
code repository.

Each service has
its own automated

deployment pipeline.

Small, simple,
reliable, easy to

maintain services

Order management team

Restaurant management team

Delivery management team

FTGO development

Production

Jenkins Cl

Deployment pipeline

Order Service

source code

repository

Order Service

Jenkins Cl

Deployment pipeline

Restaurant Service

source code

repository

Restaurant Service

Jenkins Cl

Deployment pipeline

Delivery Service

source code

repository

Delivery Service

Figure 1.8 The microservices-based FTGO application consists of a set of loosely coupled services.
Each team develops, tests, and deploys their services independently.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

17Benefits and drawbacks of the microservice architecture

In many organizations, it makes sense to restrict the choices, but the key point is that
you aren’t constrained by past decisions.

 Moreover, because the services are small, rewriting them using better languages
and technologies becomes practical. If the trial of a new technology fails, you can
throw away that work without risking the entire project. This is quite different than
when using a monolithic architecture, where your initial technology choices severely
constrain your ability to use different languages and frameworks in the future.

1.5.2 Drawbacks of the microservice architecture

Certainly, no technology is a silver bullet, and the microservice architecture has a
number of significant drawbacks and issues. Indeed most of this book is about how to
address these drawbacks and issues. As you read about the challenges, don’t worry.
Later in this book I describe ways to address them.

 Here are the major drawbacks and issues of the microservice architecture:

 Finding the right set of services is challenging.
 Distributed systems are complex, which makes development, testing, and deploy-

ment difficult.
 Deploying features that span multiple services requires careful coordination.
 Deciding when to adopt the microservice architecture is difficult.

Let’s look at each one in turn.

FINDING THE RIGHT SERVICES IS CHALLENGING

One challenge with using the microservice architecture is that there isn’t a concrete,
well-defined algorithm for decomposing a system into services. As with much of soft-
ware development, it’s something of an art. To make matters worse, if you decompose
a system incorrectly, you’ll build a distributed monolith, a system consisting of coupled
services that must be deployed together. A distributed monolith has the drawbacks of
both the monolithic architecture and the microservice architecture.

DISTRIBUTED SYSTEMS ARE COMPLEX

Another issue with using the microservice architecture is that developers must deal
with the additional complexity of creating a distributed system. Services must use an
interprocess communication mechanism. This is more complex than a simple method
call. Moreover, a service must be designed to handle partial failure and deal with the
remote service either being unavailable or exhibiting high latency.

 Implementing use cases that span multiple services requires the use of unfamiliar
techniques. Each service has its own database, which makes it a challenge to implement
transactions and queries that span services. As described in chapter 4, a microservices-
based application must use what are known as sagas to maintain data consistency
across services. Chapter 7 explains that a microservices-based application can’t retrieve
data from multiple services using simple queries. Instead, it must implement queries
using either API composition or CQRS views.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

18 CHAPTER 1 Escaping monolithic hell

 IDEs and other development tools are focused on building monolithic applica-
tions and don’t provide explicit support for developing distributed applications. Writ-
ing automated tests that involve multiple services is challenging. These are all issues
that are specific to the microservice architecture. Consequently, your organization’s
developers must have sophisticated software development and delivery skills in order
to successfully use microservices.

 The microservice architecture also introduces significant operational complexity.
Many more moving parts—multiple instances of different types of service—must be
managed in production. To successfully deploy microservices, you need a high level of
automation. You must use technologies such as the following:

 Automated deployment tooling, like Netflix Spinnaker
 An off-the-shelf PaaS, like Pivotal Cloud Foundry or Red Hat OpenShift
 A Docker orchestration platform, like Docker Swarm or Kubernetes

I describe the deployment options in more detail in chapter 12.

DEPLOYING FEATURES SPANNING MULTIPLE SERVICES NEEDS CAREFUL COORDINATION

Another challenge with using the microservice architecture is that deploying features
that span multiple services requires careful coordination between the various develop-
ment teams. You have to create a rollout plan that orders service deployments based
on the dependencies between services. That’s quite different than a monolithic archi-
tecture, where you can easily deploy updates to multiple components atomically.

DECIDING WHEN TO ADOPT IS DIFFICULT

Another issue with using the microservice architecture is deciding at what point during
the lifecycle of the application you should use this architecture. When developing the
first version of an application, you often don’t have the problems that this architec-
ture solves. Moreover, using an elaborate, distributed architecture will slow down
development. That can be a major dilemma for startups, where the biggest problem is
usually how to rapidly evolve the business model and accompanying application.
Using the microservice architecture makes it much more difficult to iterate rapidly. A
startup should almost certainly begin with a monolithic application.

 Later on, though, when the problem is how to handle complexity, that’s when it
makes sense to functionally decompose the application into a set of microservices.
You may find refactoring difficult because of tangled dependencies. Chapter 13 goes
over strategies for refactoring a monolithic application into microservices.

 As you can see, the microservice architecture offer many benefits, but also has some
significant drawbacks. Because of these issues, adopting a microservice architecture
should not be undertaken lightly. But for complex applications, such as a consumer-
facing web application or SaaS application, it’s usually the right choice. Well-known
sites like eBay (www.slideshare.net/RandyShoup/the-ebay-architecture-striking-a-
balance-between-site-stability-feature-velocity-performance-and-cost), Amazon.com,
Groupon, and Gilt have all evolved from a monolithic architecture to a microservice
architecture.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

19The Microservice architecture pattern language

 You must address numerous design and architectural issues when using the micro-
service architecture. What’s more, many of these issues have multiple solutions, each
with a different set of trade-offs. There is no one single perfect solution. To help guide
your decision making, I’ve created the Microservice architecture pattern language. I ref-
erence this pattern language throughout the rest of the book as I teach you about the
microservice architecture. Let’s look at what a pattern language is and why it’s helpful.

1.6 The Microservice architecture pattern language
Architecture and design are all about making decisions. You need to decide whether
the monolithic or microservice architecture is the best fit for your application. When
making these decisions you have lots of trade-offs to consider. If you pick the microser-
vice architecture, you’ll need to address lots of issues.

 A good way to describe the various architectural and design options and improve
decision making is to use a pattern language. Let’s first look at why we need patterns
and a pattern language, and then we’ll take a tour of the Microservice architecture
pattern language.

1.6.1 Microservice architecture is not a silver bullet

Back in 1986, Fred Brooks, author of The Mythical Man-Month (Addison-Wesley Profes-
sional, 1995), said that in software engineering, there are no silver bullets. That means
there are no techniques or technologies that if adopted would give you a tenfold
boost in productivity. Yet decades years later, developers are still arguing passionately
about their favorite silver bullets, absolutely convinced that their favorite technology
will give them a massive boost in productivity.

 A lot of arguments follow the suck/rock dichotomy (http://nealford.com/memeagora/
2009/08/05/suck-rock-dichotomy.html), a term coined by Neal Ford that describes
how everything in the software world either sucks or rocks, with no middle ground.
These arguments have this structure: if you do X, then a puppy will die, so therefore
you must do Y. For example, synchronous versus reactive programming, object-oriented
versus functional, Java versus JavaScript, REST versus messaging. Of course, reality is
much more nuanced. Every technology has drawbacks and limitations that are often
overlooked by its advocates. As a result, the adoption of a technology usually follows
the Gartner hype cycle (https://en.wikipedia.org/wiki/Hype_cycle), in which an emerg-
ing technology goes through five phases, including the peak of inflated expectations (it
rocks), followed by the trough of disillusionment (it sucks), and ending with the plateau
of productivity (we now understand the trade-offs and when to use it).

 Microservices are not immune to the silver bullet phenomenon. Whether this
architecture is appropriate for your application depends on many factors. Conse-
quently, it’s bad advice to advise always using the microservice architecture, but it’s
equally bad advice to advise never using it. As with many things, it depends.

 The underlying reason for these polarized and hyped arguments about technology is
that humans are primarily driven by their emotions. Jonathan Haidt, in his excellent

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

20 CHAPTER 1 Escaping monolithic hell

book The Righteous Mind: Why Good People Are Divided by Politics and Religion (Vintage,
2013), uses the metaphor of an elephant and its rider to describe how the human mind
works. The elephant represents the emotion part of the human brain. It makes most of
the decisions. The rider represents the rational part of the brain. It can sometimes influ-
ence the elephant, but it mostly provides justifications for the elephant’s decisions.

 We—the software development community—need to overcome our emotional
nature and find a better way of discussing and applying technology. A great way to dis-
cuss and describe technology is to use the pattern format, because it’s objective. When
describing a technology in the pattern format, you must, for example, describe the
drawbacks. Let’s take a look at the pattern format.

1.6.2 Patterns and pattern languages

A pattern is a reusable solution to a problem that occurs in a particular context. It’s an
idea that has its origins in real-world architecture and that has proven to be useful in
software architecture and design. The concept of a pattern was created by Christo-
pher Alexander, a real-world architect. He also created the concept of a pattern lan-
guage, a collection of related patterns that solve problems within a particular domain.
His book A Pattern Language: Towns, Buildings, Construction (Oxford University Press,
1977) describes a pattern language for architecture that consists of 253 patterns. The
patterns range from solutions to high-level problems, such as where to locate a city
(“Access to water”), to low-level problems, such as how to design a room (“Light on
two sides of every room”). Each of these patterns solves a problem by arranging physi-
cal objects that range in scope from cities to windows.

 Christopher Alexander’s writings inspired the software community to adopt the
concept of patterns and pattern languages. The book Design Patterns: Elements of Reus-
able Object-Oriented Software (Addison-Wesley Professional, 1994), by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides is a collection of object-oriented
design patterns. The book popularized patterns among software developers. Since the
mid-1990s, software developers have documented numerous software patterns. A soft-
ware pattern solves a software architecture or design problem by defining a set of col-
laborating software elements.

 Let’s imagine, for example, that you’re building a banking application that must
support a variety of overdraft policies. Each policy defines limits on the balance of an
account and the fees charged for an overdrawn account. You can solve this problem
using the Strategy pattern, which is a well-known pattern from the classic Design Pat-
terns book. The solution defined by the Strategy pattern consists of three parts:

 A strategy interface called Overdraft that encapsulates the overdraft algorithm
 One or more concrete strategy classes, one for each particular context
 The Account class that uses the algorithm

The Strategy pattern is an object-oriented design pattern, so the elements of the solution
are classes. Later in this section, I describe high-level design patterns, where the solu-
tion consists of collaborating services.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

21The Microservice architecture pattern language

 One reason why patterns are valuable is because a pattern must describe the con-
text within which it applies. The idea that a solution is specific to a particular context
and might not work well in other contexts is an improvement over how technology
used to typically be discussed. For example, a solution that solves the problem at the
scale of Netflix might not be the best approach for an application with fewer users.

 The value of a pattern, however, goes far beyond requiring you to consider the
context of a problem. It forces you to describe other critical yet frequently overlooked
aspects of a solution. A commonly used pattern structure includes three especially
valuable sections:

 Forces
 Resulting context
 Related patterns

Let’s look at each of these, starting with forces.

FORCES: THE ISSUES THAT YOU MUST ADDRESS WHEN SOLVING A PROBLEM

The forces section of a pattern describes the forces (issues) that you must address
when solving a problem in a given context. Forces can conflict, so it might not be
possible to solve all of them. Which forces are more important depends on the con-
text. You have to prioritize solving some forces over others. For example, code must
be easy to understand and have good performance. Code written in a reactive style
has better performance than synchronous code, yet is often more difficult to under-
stand. Explicitly listing the forces is useful because it makes clear which issues need
to be solved.

RESULTING CONTEXT: THE CONSEQUENCES OF APPLYING A PATTERN

The resulting context section of a pattern describes the consequences of applying the
pattern. It consists of three parts:

 Benefits—The benefits of the pattern, including the forces that have been resolved
 Drawbacks—The drawbacks of the pattern, including the unresolved forces
 Issues—The new problems that have been introduced by applying the pattern

The resulting context provides a more complete and less biased view of the solution,
which enables better design decisions.

RELATED PATTERNS: THE FIVE DIFFERENT TYPES OF RELATIONSHIPS

The related patterns section of a pattern describes the relationship between the pattern
and other patterns. There are five types of relationships between patterns:

 Predecessor—A predecessor pattern is a pattern that motivates the need for this
pattern. For example, the Microservice architecture pattern is the predecessor
to the rest of the patterns in the pattern language, except the monolithic archi-
tecture pattern.

 Successor—A pattern that solves an issue that has been introduced by this pat-
tern. For example, if you apply the Microservice architecture pattern, you must

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

22 CHAPTER 1 Escaping monolithic hell

then apply numerous successor patterns, including service discovery patterns
and the Circuit breaker pattern.

 Alternative—A pattern that provides an alternative solution to this pattern. For
example, the Monolithic architecture pattern and the Microservice architec-
ture pattern are alternative ways of architecting an application. You pick one or
the other.

 Generalization—A pattern that is a general solution to a problem. For example,
in chapter 12 you’ll learn about the different implementations of the Single ser-
vice per host pattern.

 Specialization—A specialized form of a particular pattern. For example, in chap-
ter 12 you’ll learn that the Deploy a service as a container pattern is a specializa-
tion of Single service per host.

In addition, you can organize patterns that tackle issues in a particular problem area
into groups. The explicit description of related patterns provides valuable guidance
on how to effectively solve a particular problem. Figure 1.9 shows how the relation-
ships between patterns is visually represented.

The different kinds of relationships between patterns shown in figure 1.9 are repre-
sented as follows:

 Represents the predecessor-successor relationship
 Patterns that are alternative solutions to the same problem
 Indicates that one pattern is a specialization of another pattern
 Patterns that apply to a particular problem area

Pattern

Problem area
Deployment

Monolithic

architecture

Key

Microservice

architecture

Single service

per host

Service-per-container

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Figure 1.9 The visual representation of different types of relationships
between the patterns: a successor pattern solves a problem created by applying
the predecessor pattern; two or more patterns can be alternative solutions to
the same problem; one pattern can be a specialization of another pattern; and
patterns that solve problems in the same area can be grouped, or generalized.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

23The Microservice architecture pattern language

A collection of patterns related through these relationships sometimes form what is
known as a pattern language. The patterns in a pattern language work together to
solve problems in a particular domain. In particular, I’ve created the Microservice
architecture pattern language. It’s a collection of interrelated software architecture
and design patterns for microservices. Let’s take a look at this pattern language.

1.6.3 Overview of the Microservice architecture pattern language

The Microservice architecture pattern language is a collection of patterns that help
you architect an application using the microservice architecture. Figure 1.10 shows
the high-level structure of the pattern language. The pattern language first helps
you decide whether to use the microservice architecture. It describes the monolithic
architecture and the microservice architecture, along with their benefits and draw-
backs. Then, if the microservice architecture is a good fit for your application, the
pattern language helps you use it effectively by solving various architecture and
design issues.

 The pattern language consists of several groups of patterns. On the left in figure 1.10
is the application architecture patterns group, the Monolithic architecture pattern
and the Microservice architecture pattern. Those are the patterns we’ve been discussing

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Decomposition

Application infrastructure patterns

Communication patterns

Infrastructure patterns

Microservice patterns

Application

architecture

Application patterns

Testing

Observability

Maintaining

data consistency

Database

architecture

Key

Querying

Security
Cross-cutting

concerns Reliability

External

API

Communication style

Discovery

Transactional messaging

Problem area

Deployment

Monolithic

architecture

Microservice

architecture

Figure 1.10 A high-level view of the Microservice architecture pattern language showing the different problem
areas that the patterns solve. On the left are the application architecture patterns: Monolithic architecture and
Microservice architecture. All the other groups of patterns solve problems that result from choosing the
Microservice architecture pattern.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

24 CHAPTER 1 Escaping monolithic hell

in this chapter. The rest of the pattern language consists of groups of patterns that are
solutions to issues that are introduced by using the Microservice architecture pattern.

 The patterns are also divided into three layers:

 Infrastructure patterns —These solve problems that are mostly infrastructure issues
outside of development.

 Application infrastructure —These are for infrastructure issues that also impact
development.

 Application patterns—These solve problems faced by developers.

These patterns are grouped together based on the kind of problem they solve. Let’s
look at the main groups of patterns.

PATTERNS FOR DECOMPOSING AN APPLICATION INTO SERVICES

Deciding how to decompose a system into a set of services is very much an art, but
there are a number of strategies that can help. The two decomposition patterns
shown in figure 1.11 are different strategies you can use to define your application’s
architecture.

Chapter 2 describes these patterns in detail.

COMMUNICATION PATTERNS

An application built using the microservice architecture is a distributed system. Conse-
quently, interprocess communication (IPC) is an important part of the microservice
architecture. You must make a variety of architectural and design decisions about how
your services communicate with one another and the outside world. Figure 1.12 shows
the communication patterns, which are organized into five groups:

 Communication style—What kind of IPC mechanism should you use?
 Discovery—How does a client of a service determine the IP address of a service

instance so that, for example, it makes an HTTP request?
 Reliability—How can you ensure that communication between services is reli-

able even though services can be unavailable?
 Transactional messaging—How should you integrate the sending of messages and

publishing of events with database transactions that update business data?
 External API—How do clients of your application communicate with the services?

Decompose by

business capability

Decompose by

subdomain

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Key

Problem area

Figure 1.11 There are two
decomposition patterns: Decompose
by business capability, which organizes
services around business capabilities,
and Decompose by subdomain, which
organizes services around domain-
driven design (DDD) subdomains.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

25The Microservice architecture pattern language

Chapter 3 looks at the first four groups of patterns: communication style, discovery,
reliability, and transaction messaging. Chapter 8 looks at the external API patterns.

DATA CONSISTENCY PATTERNS FOR IMPLEMENTING TRANSACTION MANAGEMENT

As mentioned earlier, in order to ensure loose coupling, each service has its own data-
base. Unfortunately, having a database per service introduces some significant issues. I
describe in chapter 4 that the traditional approach of using distributed transactions
(2PC) isn’t a viable option for a modern application. Instead, an application needs to
maintain data consistency by using the Saga pattern. Figure 1.13 shows data-related
patterns.

 Chapters 4, 5, and 6 describe these patterns in more detail.

PATTERNS FOR QUERYING DATA IN A MICROSERVICE ARCHITECTURE

The other issue with using a database per service is that some queries need to join
data that’s owned by multiple services. A service’s data is only accessible via its API, so
you can’t use distributed queries against its database. Figure 1.14 shows a couple of
patterns you can use to implement queries.

Polling

publisher

Transaction

log tailing

Transactional messaging

Transactional

outbox

Messaging
Remote procedure

invocation

Circuit

breaker

Communication style

Reliability
Domain-specific

Self registration
Client-side

discovery

Discovery External API

3rd-party

registration

API gateway

Backend for

frontendServer-side

discovery

Service registry

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Key

Problem area

Figure 1.12 The five groups of communication patterns

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

26 CHAPTER 1 Escaping monolithic hell

Sometimes you can use the API composition pattern, which invokes the APIs of one or
more services and aggregates results. Other times, you must use the Command query
responsibility segregation (CQRS) pattern, which maintains one or more easily queried
replicas of the data. Chapter 7 looks at the different ways of implementing queries.

SERVICE DEPLOYMENT PATTERNS

Deploying a monolithic application isn’t always easy, but it is straightforward in the
sense that there is a single application to deploy. You have to run multiple instances of
the application behind a load balancer.

 In comparison, deploying a microservices-based application is much more com-
plex. There may be tens or hundreds of services that are written in a variety of lan-
guages and frameworks. There are many more moving parts that need to be managed.
Figure 1.15 shows the deployment patterns.

 The traditional, and often manual, way of deploying applications in a language-
specific packaging format, for example WAR files, doesn’t scale to support a microser-
vice architecture. You need a highly automated deployment infrastructure. Ideally,
you should use a deployment platform that provides the developer with a simple UI
(command-line or GUI) for deploying and managing their services. The deployment
platform will typically be based on virtual machines (VMs), containers, or serverless
technology. Chapter 12 looks at the different deployment options.

Database per

service
Saga

Event

sourcing

Domain

event

Aggregate

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Key

Problem area

Figure 1.13 Because each service has its own database, you must use the Saga pattern to maintain
data consistency across services.

CQRS
API

composition

Database

per service

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Key

Problem area

Figure 1.14 Because each service has its own database, you must use one
of the querying patterns to retrieve data scattered across multiple services.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

27The Microservice architecture pattern language

OBSERVABILITY PATTERNS PROVIDE INSIGHT INTO APPLICATION BEHAVIOR

A key part of operating an application is understanding its runtime behavior and trouble-
shooting problems such as failed requests and high latency. Though understanding and
troubleshooting a monolithic application isn’t always easy, it helps that requests are han-
dled in a simple, straightforward way. Each incoming request is load balanced to a par-
ticular application instance, which makes a few calls to the database and returns a
response. For example, if you need to understand how a particular request was handled,
you look at the log file of the application instance that handled the request.

 In contrast, understanding and diagnosing problems in a microservice architec-
ture is much more complicated. A request can bounce around between multiple ser-
vices before a response is finally returned to a client. Consequently, there isn’t one log
file to examine. Similarly, problems with latency are more difficult to diagnose because
there are multiple suspects.

 You can use the following patterns to design observable services:

 Health check API—Expose an endpoint that returns the health of the service.
 Log aggregation—Log service activity and write logs into a centralized logging

server, which provides searching and alerting.

Traditional approach of deploying
services using their language-specific

packaging, such as WAR files

Automated, self-service
platform for deploying
and managing services

A modern approach,
which runs your code
without you having to
worry about managing

the infrastructure

A modern approach, which
encapsulates a service’s

technology stack

Single service

per host

Multiple services

per host

Serverless

deployment

Service-per-container

Service-per-VM
Service deployment

platform

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Key

Problem area

Figure 1.15 Several patterns for deploying microservices. The traditional approach is to deploy
services in a language-specific packaging format. There are two modern approaches to deploying
services. The first deploys services as VM or containers. The second is the serverless approach.
You simply upload the service’s code and the serverless platform runs it. You should use a service
deployment platform, which is an automated, self-service platform for deploying and managing
services.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

28 CHAPTER 1 Escaping monolithic hell

 Distributed tracing—Assign each external request a unique ID and trace requests
as they flow between services.

 Exception tracking—Report exceptions to an exception tracking service, which
deduplicates exceptions, alerts developers, and tracks the resolution of each
exception.

 Application metrics—Maintain metrics, such as counters and gauges, and expose
them to a metrics server.

 Audit logging—Log user actions.

Chapter 11 describes these patterns in more detail.

PATTERNS FOR THE AUTOMATED TESTING OF SERVICES

The microservice architecture makes individual services easier to test because they’re
much smaller than the monolithic application. At the same time, though, it’s import-
ant to test that the different services work together while avoiding using complex,
slow, and brittle end-to-end tests that test multiple services together. Here are patterns
for simplifying testing by testing services in isolation:

 Consumer-driven contract test—Verify that a service meets the expectations of its
clients.

 Consumer-side contract test—Verify that the client of a service can communicate
with the service.

 Service component test—Test a service in isolation.

Chapters 9 and 10 describe these testing patterns in more detail.

PATTERNS FOR HANDLING CROSS-CUTTING CONCERNS

In a microservice architecture, there are numerous concerns that every service must
implement, including the observability patterns and discovery patterns. It must also
implement the Externalized Configuration pattern, which supplies configuration
parameters such as database credentials to a service at runtime. When developing a
new service, it would be too time consuming to reimplement these concerns from
scratch. A much better approach is to apply the Microservice Chassis pattern and
build services on top of a framework that handles these concerns. Chapter 11
describes these patterns in more detail.

SECURITY PATTERNS

In a microservice architecture, users are typically authenticated by the API gateway. It
must then pass information about the user, such as identity and roles, to the services it
invokes. A common solution is to apply the Access token pattern. The API gateway
passes an access token, such as JWT (JSON Web Token), to the services, which can val-
idate the token and obtain information about the user. Chapter 11 discusses the
Access token pattern in more detail.

 Not surprisingly, the patterns in the Microservice architecture pattern language
are focused on solving architect and design problems. You certainly need the right

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

29Beyond microservices: Process and organization

architecture in order to successfully develop software, but it’s not the only concern.
You must also consider process and organization.

1.7 Beyond microservices: Process and organization
For a large, complex application, the microservice architecture is usually the best
choice. But in addition to having the right architecture, successful software develop-
ment requires you to also have organization, and development and delivery processes.
Figure 1.16 shows the relationships between process, organization, and architecture.

I’ve already described the microservice architecture. Let’s look at organization and
process.

1.7.1 Software development and delivery organization

Success inevitably means that the engineering team will grow. On the one hand, that’s
a good thing because more developers can get more done. The trouble with large
teams is, as Fred Brooks wrote in The Mythical Man-Month, the communication over-
head of a team of size N is O(N 2). If the team gets too large, it will become inefficient,
due to the communication overhead. Imagine, for example, trying to do a daily standup
with 20 people.

 The solution is to refactor a large single team into a team of teams. Each team is
small, consisting of no more than 8–12 people. It has a clearly defined business-oriented
mission: developing and possibly operating one or more services that implement a
feature or a business capability. The team is cross-functional and can develop, test,
and deploy its services without having to frequently communicate or coordinate with
other teams.

Enables

Enables

Architecture:

Microservice

architecture

Organization:

Small, autonomous,

cross-functional teams

Process:

DevOps/continuous delivery/deployment

Enables

Rapid, frequent,

and reliable delivery

of software

Figure 1.16 The rapid, frequent, and reliable delivery of large,
complex applications requires a combination of DevOps, which
includes continuous delivery/deployment, small, autonomous
teams, and the microservice architecture.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

30 CHAPTER 1 Escaping monolithic hell

The velocity of the team of teams is significantly higher than that of a single large
team. As described earlier in section 1.5.1, the microservice architecture plays a key
role in enabling the teams to be autonomous. Each team can develop, deploy, and
scale their services without coordinating with other teams. Moreover, it’s very clear
who to contact when a service isn’t meeting its SLA.

 What’s more, the development organization is much more scalable. You grow the
organization by adding teams. If a single team becomes too large, you split it and its
associated service or services. Because the teams are loosely coupled, you avoid the
communication overhead of a large team. As a result, you can add people without
impacting productivity.

1.7.2 Software development and delivery process

Using the microservice architecture with a waterfall development process is like driv-
ing a horse-drawn Ferrari—you squander most of the benefit of using microservices. If
you want to develop an application with the microservice architecture, it’s essential
that you adopt agile development and deployment practices such as Scrum or Kan-
ban. Better yet, you should practice continuous delivery/deployment, which is a part
of DevOps.

 Jez Humble (https://continuousdelivery.com/) defines continuous delivery as
follows:

Continuous Delivery is the ability to get changes of all types—including new features,
configuration changes, bug fixes and experiments—into production, or into the hands of
users, safely and quickly in a sustainable way.

A key characteristic of continuous delivery is that software is always releasable. It
relies on a high level of automation, including automated testing. Continuous
deployment takes continuous delivery one step further in the practice of automati-
cally deploying releasable code into production. High-performing organizations

The reverse Conway maneuver
In order to effectively deliver software when using the microservice architecture, you
need to take into account Conway’s law (https://en.wikipedia.org/wiki/Conway%27s
_law), which states the following:

Organizations which design systems … are constrained to produce designs
which are copies of the communication structures of these organizations.

Melvin Conway

In other words, your application’s architecture mirrors the structure of the organiza-
tion that developed it. It’s important, therefore, to apply Conway’s law in reverse
(www.thoughtworks.com/radar/techniques/inverse-conway-maneuver) and design
your organization so that its structure mirrors your microservice architecture. By doing
so, you ensure that your development teams are as loosely coupled as the services.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

31Beyond microservices: Process and organization

that practice continuous deployment deploy multiple times per day into produc-
tion, have far fewer production outages, and recover quickly from any that do occur
(https://puppet.com/ resources/whitepaper/state-of-devops-report). As described ear-
lier in section 1.5.1, the microservice architecture directly supports continuous
delivery/deployment.

1.7.3 The human side of adopting microservices

Adopting the microservice architecture changes your architecture, your organization,
and your development processes. Ultimately, though, it changes the working environ-
ment of people, who are, as mentioned earlier, emotional creatures. If ignored, their
emotions can make the adoption of microservices a bumpy ride. Mary and the other
FTGO leaders will struggle to change how FTGO develops software.

 The best-selling book Managing Transitions (Da Capo Lifelong Books, 2017,
https://wmbridges.com/books) by William and Susan Bridges introduces the con-
cept of a transition, which refers to the process of how people respond emotionally to a
change. It describes a three-stage Transition Model:

1 Ending, Losing, and Letting Go—The period of emotional upheaval and resis-
tance when people are presented with a change that forces them out of their
comfort zone. They often mourn the loss of the old way of doing things. For
example, when people reorganize into cross-functional teams, they miss their
former teammates. Similarly, a data modeling group that owns the global data
model will be threatened by the idea of each service having its own data
model.

Move fast without breaking things
The goal of continuous delivery/deployment (and, more generally, DevOps) is to rap-
idly yet reliably deliver software. Four useful metrics for assessing software develop-
ment are as follows:

 Deployment frequency—How often software is deployed into production
 Lead time—Time from a developer checking in a change to that change being

deployed
 Mean time to recover—Time to recover from a production problem
 Change failure rate—Percentage of changes that result in a production problem

In a traditional organization, the deployment frequency is low, and the lead time is
high. Stressed-out developers and operations people typically stay up late into the
night fixing last-minute issues during the maintenance window. In contrast, a DevOps
organization releases software frequently, often multiple times per day, with far fewer
production issues. Amazon, for example, deployed changes into production every
11.6 seconds in 2014 (www.youtube.com/watch?v=dxk8b9rSKOo), and Netflix had
a lead time of 16 minutes for one software component (https://medium.com/netflix-
techblog/how-we-build-code-at-netflix-c5d9bd727f15).

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

32 CHAPTER 1 Escaping monolithic hell

2 The Neutral Zone—The intermediate stage between the old and new ways of doing
things, where people are often confused. They are often struggling to learn the
new way of doing things.

3 The New Beginning—The final stage where people have enthusiastically embraced
the new way of doing things and are starting to experience the benefits.

The book describes how best to manage each stage of the transition and increase the
likelihood of successfully implementing the change. FTGO is certainly suffering from
monolithic hell and needs to migrate to a microservice architecture. It must also
change its organization and development processes. In order for FTGO to successfully
accomplish this, however, it must take into account the transition model and consider
people’s emotions.

 In the next chapter, you’ll learn about the goal of software architecture and how to
decompose an application into services.

Summary
 The Monolithic architecture pattern structures the application as a single deploy-

able unit.
 The Microservice architecture pattern decomposes a system into a set of inde-

pendently deployable services, each with its own database.
 The monolithic architecture is a good choice for simple applications, but micro-

service architecture is usually a better choice for large, complex applications.
 The microservice architecture accelerates the velocity of software development

by enabling small, autonomous teams to work in parallel.
 The microservice architecture isn’t a silver bullet—there are significant draw-

backs, including complexity.
 The Microservice architecture pattern language is a collection of patterns that

help you architect an application using the microservice architecture. It helps
you decide whether to use the microservice architecture, and if you pick the
microservice architecture, the pattern language helps you apply it effectively.

 You need more than just the microservice architecture to accelerate software
delivery. Successful software development also requires DevOps and small,
autonomous teams.

 Don’t forget about the human side of adopting microservices. You need to con-
sider employees’ emotions in order to successfully transition to a microservice
architecture.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

Chris Richardson

S
uccessfully developing microservices-based applications
requires mastering a new set of architectural insights and
practices. In this unique book, microservice architecture

pioneer and Java Champion Chris Richardson collects, cata-
logues, and explains 44 patterns that solve problems such as
service decomposition, transaction management, querying,
and inter-service communication.

Microservices Patterns teaches you how to develop and deploy
production-quality microservices-based applications. This
invaluable set of design patterns builds on decades of dis-
tributed system experience, adding new patterns for writing
services and composing them into systems that scale and
perform reliably under real-world conditions. More than just
a patterns catalog, this practical guide offers experience-driven
advice to help you design, implement, test, and deploy your
microservices-based application.

What’s Inside
● How (and why!) to use the microservice architecture
● Service decomposition strategies
● Transaction management and querying patterns
● Effective testing strategies
● Deployment patterns including containers and serverless

Written for enterprise developers familiar with standard enter-
prise application architecture. Examples are in Java.

Chris Richardson is a Java Champion, a JavaOne rock star,
author of Manning’s POJOs in Action, and the creator of the
original CloudFoundry.com.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/microservices-patterns

$49.99 / Can $65.99 [INCLUDING eBOOK]

Microservices Patterns

SOFTWARE DEVELOPMENT

M A N N I N G

“A comprehensive overview
of the challenges teams face

when moving to microservices,
with industry-tested solutions

to these problems.”
—Tim Moore, Lightbend

“Pragmatic treatment of
an important new

 architectural landscape.”
—Simeon Leyzerzon

Excelsior Software

“A solid compendium of
information that will quicken
your migration to this modern

cloud-based architecture.”—John Guthrie, Dell/EMC

“How to understand the
microservices approach, and
how to use it in real life.”

—Potito Coluccelli
Bizmatica Econocom

See first page

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

