
M A N N I N G

Chris Richardson

S A M P L E C H A P T E R

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

Microservices Patterns

by Chris Richardson

 Chapter 8

 Copyright 2019 Manning Publications

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

vii

brief contents
1 ■ Escaping monolithic hell 1

2 ■ Decomposition strategies 33

3 ■ Interprocess communication in a microservice
architecture 65

4 ■ Managing transactions with sagas 110

5 ■ Designing business logic in a microservice
architecture 146

6 ■ Developing business logic with event sourcing 183

7 ■ Implementing queries in a microservice architecture 220

8 ■ External API patterns 253

9 ■ Testing microservices: Part 1 292

10 ■ Testing microservices: Part 2 318

11 ■ Developing production-ready services 348

12 ■ Deploying microservices 383

13 ■ Refactoring to microservices 428

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

253

External API patterns

The FTGO application, like many other applications, has a REST API. Its clients
include the FTGO mobile applications, JavaScript running in the browser, and
applications developed by partners. In such a monolithic architecture, the API
that’s exposed to clients is the monolith’s API. But when once the FTGO team
starts deploying microservices, there’s no longer one API, because each service has
its own API. Mary and her team must decide what kind of API the FTGO applica-
tion should now expose to its clients. For example, should clients be aware of the
existence of services and make requests to them directly?

This chapter covers
 The challenge of designing APIs that support a

diverse set of clients

 Applying API gateway and Backends for frontends
patterns

 Designing and implementing an API gateway

 Using reactive programming to simplify API
composition

 Implementing an API gateway using GraphQL

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

254 CHAPTER 8 External API patterns

 The task of designing an application’s external API is made even more challenging
by the diversity of its clients. Different clients typically require different data. A desktop
browser-based UI usually displays far more information than a mobile application. Also,
different clients access the services over different kinds of networks. The clients within
the firewall use a high-performance LAN, and the clients outside of the firewall use the
internet or mobile network, which will have lower performance. Consequently, as you’ll
learn, it often doesn’t make sense to have a single, one-size-fits-all API.

 This chapter begins by describing various external API design issues. I then
describe the external API patterns. I cover the API gateway pattern and then the Back-
ends for frontends pattern. After that, I discuss how to design and implement an API
gateway. I review the various options that are available, which include off-the-shelf API
gateway products and frameworks for developing your own. I describe the design and
implementation of an API gateway that’s built using the Spring Cloud Gateway frame-
work. I also describe how to build an API gateway using GraphQL, a framework that
provides graph-based query language.

8.1 External API design issues
In order to explore the various API-related issues, let’s consider the FTGO application.
As figure 8.1 shows, this application’s services are consumed by a variety of clients. Four
kinds of clients consume the services’ APIs:

 Web applications, such as Consumer web application, which implements the
browser-based UI for consumers, Restaurant web application, which imple-
ments the browser-based UI for restaurants, and Admin web application, which
implements the internal administrator UI

 JavaScript applications running in the browser
 Mobile applications, one for consumers and the other for couriers
 Applications written by third-party developers

The web applications run inside the firewall, so they access the services over a high-
bandwidth, low-latency LAN. The other clients run outside the firewall, so they access
the services over the lower-bandwidth, higher-latency internet or mobile network.

 One approach to API design is for clients to invoke the services directly. On the
surface, this sounds quite straightforward—after all, that’s how clients invoke the API
of a monolithic application. But this approach is rarely used in a microservice archi-
tecture because of the following drawbacks:

 The fine-grained service APIs require clients to make multiple requests to
retrieve the data they need, which is inefficient and can result in a poor user
experience.

 The lack of encapsulation caused by clients knowing about each service and its
API makes it difficult to change the architecture and the APIs.

 Services might use IPC mechanisms that aren’t convenient or practical for cli-
ents to use, especially those clients outside the firewall.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

255External API design issues

To learn more about these drawbacks, let’s take a look at how the FTGO mobile appli-
cation for consumers retrieves data from the services.

8.1.1 API design issues for the FTGO mobile client

Consumers use the FTGO mobile client to place and manage their orders. Imagine
you’re developing the mobile client’s View Order view, which displays an order. As
described in chapter 7, the information displayed by this view includes basic order
information, including its status, payment status, status of the order from the restau-
rant’s perspective, and delivery status, including its location and estimated delivery
time if in transit.

 The monolithic version of the FTGO application has an API endpoint that returns
the order details. The mobile client retrieves the information it needs by making a sin-
gle request. In contrast, in the microservices version of the FTGO application, the
order details are, as described previously, scattered across several services, including
the following:

Lower-performance

internet

Higher-performance

LAN

Backend services

Order Service

Firewall

API

requests

API

requests

API

requests

Web page

requests

Web

application

Consumer

Service

Delivery

Service

Kitchen

Service

Browser

iPhone/

Android

application

3rd-party

application

HTML

JavaScript

application

Figure 8.1 The FTGO application’s services and their clients. There are several
different types of clients. Some are inside the firewall, and others are outside.
Those outside the firewall access the services over the lower-performance
internet/mobile network. Those clients inside the firewall use a higher-
performance LAN.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

256 CHAPTER 8 External API patterns

 Order Service—Basic order information, including the details and status
 Kitchen Service—The status of the order from the restaurant’s perspective

and the estimated time it will be ready for pickup
 Delivery Service—The order’s delivery status, its estimated delivery time, and

its current location
 Accounting Service—The order’s payment status

If the mobile client invokes the services directly, then it must, as figure 8.2 shows, make
multiple calls to retrieve this data.

FTGO backend services

Order Service

Firewall

Monolithic FTGO

application

Firewall

Internet

Internet

getOrder()

getDelivery()

getOrderDetails()

getBill()

getTicket()

Delivery

Service

Accounting

Service

Kitchen

Service

iPhone/

Android

consumer

application

iPhone/

Android

consumer

application

One API required

Many API calls required

Figure 8.2 A client can retrieve the order details from the monolithic FTGO application with a
single request. But the client must make multiple requests to retrieve the same information in a
microservice architecture.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

257External API design issues

In this design, the mobile application is playing the role of API composer. It invokes
multiple services and combines the results. Although this approach seems reasonable,
it has several serious problems.

POOR USER EXPERIENCE DUE TO THE CLIENT MAKING MULTIPLE REQUESTS

The first problem is that the mobile application must sometimes make multiple
requests to retrieve the data it wants to display to the user. The chatty interaction
between the application and the services can make the application seem unrespon-
sive, especially when it uses the internet or a mobile network. The internet has much
lower bandwidth and higher latency than a LAN, and mobile networks are even worse.
The latency of a mobile network (and internet) is typically 100x greater than a LAN.

 The higher latency might not be a problem when retrieving the order details,
because the mobile application minimizes the delay by executing the requests concur-
rently. The overall response time is no greater than that of a single request. But in
other scenarios, a client may need to execute requests sequentially, which will result in
a poor user experience.

 What’s more, poor user experience due to network latency is not the only issue
with a chatty API. It requires the mobile developer to write potentially complex API
composition code. This work is a distraction from their primary task of creating a
great user experience. Also, because each network request consumes power, a chatty
API drains the mobile device’s battery faster.

LACK OF ENCAPSULATION REQUIRES FRONTEND DEVELOPERS TO CHANGE THEIR CODE IN LOCKSTEP
WITH THE BACKEND

Another drawback of a mobile application directly accessing the services is the lack of
encapsulation. As an application evolves, the developers of a service sometimes
change an API in a way that breaks existing clients. They might even change how the
system is decomposed into services. Developers may add new services and split or
merge existing services. But if knowledge about the services is baked into a mobile
application, it can be difficult to change the services’ APIs.

 Unlike when updating a server-side application, it takes hours or perhaps even
days to roll out a new version of a mobile application. Apple or Google must approve
the upgrade and make it available for download. Users might not download the
upgrade immediately—if ever. And you may not want to force reluctant users to
upgrade. The strategy of exposing service APIs to mobile creates a significant obstacle
to evolving those APIs.

SERVICES MIGHT USE CLIENT-UNFRIENDLY IPC MECHANISMS

Another challenge with a mobile application directly calling services is that some ser-
vices could use protocols that aren’t easily consumed by a client. Client applications
that run outside the firewall typically use protocols such as HTTP and WebSockets.
But as described in chapter 3, service developers have many protocols to choose
from—not just HTTP. Some of an application’s services might use gRPC, whereas
others could use the AMQP messaging protocol. These kinds of protocols work well

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

258 CHAPTER 8 External API patterns

internally, but might not be easily consumed by a mobile client. Some aren’t even fire-
wall friendly.

8.1.2 API design issues for other kinds of clients

I picked the mobile client because it’s a great way to demonstrate the drawbacks of cli-
ents accessing services directly. But the problems created by exposing services to cli-
ents aren’t specific to just mobile clients. Other kinds of clients, especially those
outside the firewall, also encounter these problems. As described earlier, the FTGO
application’s services are consumed by web applications, browser-based JavaScript
applications, and third-party applications. Let’s take a look at the API design issues
with these clients.

API DESIGN ISSUES FOR WEB APPLICATIONS

Traditional server-side web applications, which handle HTTP requests from browsers
and return HTML pages, run within the firewall and access the services over a LAN.
Network bandwidth and latency aren’t obstacles to implementing API composition in
a web application. Also, web applications can use non-web-friendly protocols to access
the services. The teams that develop web applications are part of the same organiza-
tion and often work in close collaboration with the teams writing the backend ser-
vices, so a web application can easily be updated whenever the backend services are
changed. Consequently, it’s feasible for a web application to access the backend ser-
vices directly.

API DESIGN ISSUES FOR BROWSER-BASED JAVASCRIPT APPLICATIONS

Modern browser applications use some amount of JavaScript. Even if the HTML is pri-
marily generated by a server-side web application, it’s common for JavaScript running
in the browser to invoke services. For example, all of the FTGO application web appli-
cations—Consumer, Restaurant, and Admin—contain JavaScript that invokes the back-
end services. The Consumer web application, for instance, dynamically refreshes the
Order Details page using JavaScript that invokes the service APIs.

 On one hand, browser-based JavaScript applications are easy to update when ser-
vice APIs change. On the other hand, JavaScript applications that access the services
over the internet have the same problems with network latency as mobile applications.
To make matters worse, browser-based UIs, especially those for the desktop, are usu-
ally more sophisticated and need to compose more services than mobile applications.
It’s likely that the Consumer and Restaurant applications, which access services over
the internet, won’t be able to compose service APIs efficiently.

DESIGNING APIS FOR THIRD-PARTY APPLICATIONS

FTGO, like many other organizations, exposes an API to third-party developers. The
developers can use the FTGO API to write applications that place and manage
orders. These third-party applications access the APIs over the internet, so API com-
position is likely to be inefficient. But the inefficiency of API composition is a rela-
tively minor problem compared to the much larger challenge of designing an API

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

259The API gateway pattern

that’s used by third-party applications. That’s because third-party developers need
an API that’s stable.

 Very few organizations can force third-party developers to upgrade to a new API.
Organizations that have an unstable API risk losing developers to a competitor.
Consequently, you must carefully manage the evolution of an API that’s used by third-
party developers. You typically have to maintain older versions for a long time—pos-
sibly forever.

 This requirement is a huge burden for an organization. It’s impractical to make
the developers of the backend services responsible for maintaining long-term back-
ward compatibility. Rather than expose services directly to third-party developers,
organizations should have a separate public API that’s developed by a separate team.
As you’ll learn later, the public API is implemented by an architectural component
known as an API gateway. Let’s look at how an API gateway works.

8.2 The API gateway pattern
As you’ve just seen, there are numerous drawbacks with services accessing services
directly. It’s often not practical for a client to perform API composition over the inter-
net. The lack of encapsulation makes it difficult for developers to change service
decomposition and APIs. Services sometimes use communication protocols that
aren’t suitable outside the firewall. Consequently, a much better approach is to use an
API gateway.

An API gateway is a service that’s the entry point into the application from the outside
world. It’s responsible for request routing, API composition, and other functions,
such as authentication. This section covers the API gateway pattern. I discuss its bene-
fits and drawbacks and describe various design issues you must address when develop-
ing an API gateway.

8.2.1 Overview of the API gateway pattern

Section 8.1.1 described the drawbacks of clients, such as the FTGO mobile applica-
tion, making multiple requests in order to display information to the user. A much
better approach is for a client to make a single request to an API gateway, a service
that serves as the single entry point for API requests into an application from outside
the firewall. It’s similar to the Facade pattern from object-oriented design. Like a facade,
an API gateway encapsulates the application’s internal architecture and provides an API
to its clients. It may also have other responsibilities, such as authentication, monitoring,

Pattern: API gateway
Implement a service that’s the entry point into the microservices-based application
from external API clients. See http://microservices.io/patterns/apigateway.html.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

260 CHAPTER 8 External API patterns

and rate limiting. Figure 8.3 shows the relationship between the clients, the API gate-
way, and the services.

The API gateway is responsible for request routing, API composition, and protocol
translation. All API requests from external clients first go to the API gateway, which
routes some requests to the appropriate service. The API gateway handles other
requests using the API composition pattern and by invoking multiple services and
aggregating the results. It may also translate between client-friendly protocols such as
HTTP and WebSockets and client-unfriendly protocols used by the services.

REQUEST ROUTING

One of the key functions of an API gateway is request routing. An API gateway imple-
ments some API operations by routing requests to the corresponding service. When it
receives a request, the API gateway consults a routing map that specifies which service
to route the request to. A routing map might, for example, map an HTTP method
and path to the HTTP URL of a service. This function is identical to the reverse proxy-
ing features provided by web servers such as NGINX.

Lower-performance

internet

Higher-performance

LAN

Backend services

Order Service

Firewall

API

requests

API

requests

API

requests

Web page

requests

Web

application

Consumer

Service

Delivery

Service

Browser

iPhone/

Android

application

3rd-party

application

HTML

JavaScript

application

API

gateway

Figure 8.3 The API gateway is the single entry point into the application for API calls from outside
the firewall.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

261The API gateway pattern

API COMPOSITION

An API gateway typically does more than simply reverse proxying. It might also imple-
ment some API operations using API composition. The FTGO API gateway, for exam-
ple, implements the Get Order Details API operation using API composition. As
figure 8.4 shows, the mobile application makes one request to the API gateway, which
fetches the order details from multiple services.

 The FTGO API gateway provides a coarse-grained API that enables mobile clients
to retrieve the data they need with a single request. For example, the mobile client
makes a single getOrderDetails() request to the API gateway.

FTGO backend services

Order Service

Firewall

Internet

getOrder()

LAN

getDelivery()
getOrderDetails()

getBill()

getTicket()

Delivery

Service

Accounting

Service

Kitchen

Service

iPhone/

Android

consumer

application

API

gateway

FTGO backend services

Order Service

Firewall

Internet

getOrder()

getDelivery()

getBill()

getTicket()

Delivery

Service

Accounting

Service

Kitchen

Service

iPhone/

Android

consumer

application

Many API calls required

One API call requiredLower-performance
network

Higher-performance
network

Figure 8.4 An API gateway often does API composition, which enables a client such as a mobile
device to efficiently retrieve data using a single API request.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

262 CHAPTER 8 External API patterns

PROTOCOL TRANSLATION

An API gateway might also perform protocol translation. It might provide a RESTful
API to external clients, even though the application services use a mixture of protocols
internally, including REST and gRPC. When needed, the implementation of some
API operations translates between the RESTful external API and the internal gRPC-
based APIs.

THE API GATEWAY PROVIDES EACH CLIENT WITH CLIENT-SPECIFIC API
An API gateway could provide a single one-size-fits-all (OSFA) API. The problem with
a single API is that different clients often have different requirements. For instance, a
third-party application might require the Get Order Details API operation to return
the complete Order details, whereas a mobile client only needs a subset of the data.
One way to solve this problem is to give clients the option of specifying in a request
which fields and related objects the server should return. This approach is adequate
for a public API that must serve a broad range of third-party applications, but it often
doesn’t give clients the control they need.

 A better approach is for the API gateway to provide each client with its own API.
For example, the FTGO API gateway can provide the FTGO mobile client with an API
that’s specifically designed to meet its requirements. It may even have different APIs
for the Android and iPhone mobile applications. The API gateway will also implement
a public API for third-party developers to use. Later on, I’ll describe the Backends for
frontends pattern that takes this concept of an API-per-client even further by defining
a separate API gateway for each client.

IMPLEMENTING EDGE FUNCTIONS

Although an API gateway’s primary responsibilities are API routing and composition,
it may also implement what are known as edge functions. An edge function is, as the
name suggests, a request-processing function implemented at the edge of an applica-
tion. Examples of edge functions that an application might implement include the
following:

 Authentication—Verifying the identity of the client making the request.
 Authorization—Verifying that the client is authorized to perform that particular

operation.
 Rate limiting —Limiting how many requests per second from either a specific cli-

ent and/or from all clients.
 Caching—Cache responses to reduce the number of requests made to the services.
 Metrics collection—Collect metrics on API usage for billing analytics purposes.
 Request logging—Log requests.

There are three different places in your application where you could implement these
edge functions. First, you can implement them in the backend services. This might
make sense for some functions, such as caching, metrics collection, and possibly autho-
rization. But it’s generally more secure if the application authenticates requests on the
edge before they reach the services.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

263The API gateway pattern

 The second option is to implement these edge functions in an edge service that’s
upstream from the API gateway. The edge service is the first point of contact for an
external client. It authenticates the request and performs other edge processing
before passing it to the API gateway.

 An important benefit of using a dedicated edge service is that it separates con-
cerns. The API gateway focuses on API routing and composition. Another benefit is
that it centralizes responsibility for critical edge functions such as authentication.
That’s particularly valuable when an application has multiple API gateways that are
possibly written using a variety of languages and frameworks. I’ll talk more about that
later. The drawback of this approach is that it increases network latency because of the
extra hop. It also adds to the complexity of the application.

 As a result, it’s often convenient to use the third option and implement these edge
functions, especially authorization, in the API gateway itself. There’s one less network
hop, which improves latency. There are also fewer moving parts, which reduces com-
plexity. Chapter 11 describes how the API gateway and the services collaborate to
implement security.

API GATEWAY ARCHITECTURE

An API gateway has a layered, modular architecture. Its architecture, shown in figure 8.5,
consists of two layers: the API layer and a common layer. The API layer consists of
one or more independent API modules. Each API module implements an API for a

API gateway

Mobile client

Mobile API

API layer

Browser JavaScript

application

Browser API

Common layer

3rd-party application

Public API

Figure 8.5 An API gateway has a layered modular architecture. The API for each client is
implemented by a separate module. The common layer implements functionality common to all
APIs, such as authentication.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

264 CHAPTER 8 External API patterns

particular client. The common layer implements shared functionality, including edge
functions such as authentication.

 In this example, the API gateway has three API modules:

 Mobile API—Implements the API for the FTGO mobile client
 Browser API—Implements the API for the JavaScript application running in the

browser
 Public API—Implements the API for third-party developers

An API module implements each API operation in one of two ways. Some API opera-
tions map directly to single service API operation. An API module implements these
operations by routing requests to the corresponding service API operation. It might
route requests using a generic routing module that reads a configuration file describ-
ing the routing rules.

 An API module implements other, more complex API operations using API com-
position. The implementation of this API operation consists of custom code. Each API
operation implementation handles requests by invoking multiple services and com-
bining the results.

API GATEWAY OWNERSHIP MODEL

An important question that you must answer is who is responsible for the develop-
ment of the API gateway and its operation? There are a few different options. One is
for a separate team to be responsible for the API gateway. The drawback to that is that
it’s similar to SOA, where an Enterprise Service Bus (ESB) team was responsible for all
ESB development. If a developer working on the mobile application needs access to a
particular service, they must submit a request to the API gateway team and wait for
them to expose the API. This kind of centralized bottleneck in the organization is very
much counter to the philosophy of the microservice architecture, which promotes
loosely coupled autonomous teams.

 A better approach, which has been promoted by Netflix, is for the client teams—
the mobile, web, and public API teams—to own the API module that exposes their
API. An API gateway team is responsible for developing the Common module and for
the operational aspects of the gateway. This ownership model, shown in figure 8.6,
gives the teams control over their APIs.

 When a team needs to change their API, they check in the changes to the source
repository for the API gateway. To work well, the API gateway’s deployment pipeline
must be fully automated. Otherwise, the client teams will often be blocked waiting for
the API gateway team to deploy the new version.

USING THE BACKENDS FOR FRONTENDS PATTERN

One concern with an API gateway is that responsibility for it is blurred. Multiple teams
contribute to the same code base. An API gateway team is responsible for its opera-
tion. Though not as bad as a SOA ESB, this blurring of responsibilities is counter to
the microservice architecture philosophy of “if you build it, you own it.”

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

265The API gateway pattern

The solution is to have an API gateway for each client, the so-called Backends for front-
ends (BFF) pattern, which was pioneered by Phil Calçado (http://philcalcado.com/)
and his colleagues at SoundCloud. As figure 8.7 shows, each API module becomes its
own standalone API gateway that’s developed and operated by a single client team.

Pattern: Backends for frontends
Implement a separate API gateway for each type of client. See http://microservices
.io/patterns/apigateway.html.

API gateway

Mobile client

Mobile API

API layer

Browser JavaScript

application

Browser API

Common layer

3rd-party application

Public API

Mobile client team

API gateway team

Browser client team

Owns

Owns

OwnsOwns

Public API team

Figure 8.6 A client team owns their API module. As they change the client, they can change the API
module and not ask the API gateway team to make the changes.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

266 CHAPTER 8 External API patterns

The public API team owns and operates their API gateway, the mobile team owns and
operates theirs, and so on. In theory, different API gateways could be developed using
different technology stacks. But that risks duplicating code for common functionality,
such as the code that implements edge functions. Ideally, all API gateways use the
same technology stack. The common functionality is a shared library implemented by
the API gateway team.

 Besides clearly defining responsibilities, the BFF pattern has other benefits. The
API modules are isolated from one another, which improves reliability. One misbehav-
ing API can’t easily impact other APIs. It also improves observability, because different
API modules are different processes. Another benefit of the BFF pattern is that each
API is independently scalable. The BFF pattern also reduces startup time because
each API gateway is a smaller, simpler application.

Mobile API

gateway

Mobile client

Mobile API

API layer

Common layer

Browser API

gateway

Browser API

API layer

Common layer

Public API

gateway

Public API

API layer

Common layer

Mobile client team Browser client team

Owns Owns Owns

Public API team

Browser JavaScript

application
3rd-party application

Figure 8.7 The Backends for frontends pattern defines a separate API gateway for each client. Each
client team owns their API gateway. An API gateway team owns the common layer.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

267The API gateway pattern

8.2.2 Benefits and drawbacks of an API gateway

As you might expect, the API gateway pattern has both benefits and drawbacks.

BENEFITS OF AN API GATEWAY

A major benefit of using an API gateway is that it encapsulates internal structure of the
application. Rather than having to invoke specific services, clients talk to the gateway.
The API gateway provides each client with a client-specific API, which reduces the
number of round-trips between the client and application. It also simplifies the client
code.

DRAWBACKS OF AN API GATEWAY

The API gateway pattern also has some drawbacks. It is yet another highly available
component that must be developed, deployed, and managed. There’s also a risk that
the API gateway becomes a development bottleneck. Developers must update the API
gateway in order to expose their services’s API. It’s important that the process for
updating the API gateway be as lightweight as possible. Otherwise, developers will be
forced to wait in line in order to update the gateway. Despite these drawbacks, though,
for most real-world applications, it makes sense to use an API gateway. If necessary,
you can use the Backends for frontends pattern to enable the teams to develop and
deploy their APIs independently.

8.2.3 Netflix as an example of an API gateway

A great example of an API gateway is the Netflix API. The Netflix streaming service is
available on hundreds of different kinds of devices including televisions, Blu-ray
players, smartphones, and many more gadgets. Initially, Netflix attempted to have a
one-size-fits-all style API for its streaming service (www.programmableweb.com/news/
why-rest-keeps-me-night/2012/05/15). But the company soon discovered that didn’t
work well because of the diverse range of devices and their different needs. Today,
Netflix uses an API gateway that implements a separate API for each device. The client
device team develops and owns the API implementation.

 In the first version of the API gateway, each client team implemented their API
using Groovy scripts that perform routing and API composition. Each script invoked
one or more service APIs using Java client libraries provided by the service teams. On
one hand, this works well, and client developers have written thousands of scripts. The
Netflix API gateway handles billions of requests per day, and on average each API call
fans out to six or seven backend services. On the other hand, Netflix has found this
monolithic architecture to be somewhat cumbersome.

 As a result, Netflix is now moving to an API gateway architecture similar to the
Backends for frontends pattern. In this new architecture, client teams write API mod-
ules using NodeJS. Each API module runs its own Docker container, but the scripts
don’t invoke the services directly. Rather, they invoke a second “API gateway,” which
exposes the service APIs using Netflix Falcor. Netflix Falcor is an API technology that
does declarative, dynamic API composition and enables a client to invoke multiple

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

268 CHAPTER 8 External API patterns

services using a single request. This new architecture has a number of benefits. The
API modules are isolated from one another, which improves reliability and observabil-
ity, and the client API module is independently scalable.

8.2.4 API gateway design issues

Now that we’ve looked at the API gateway pattern and its benefits and drawbacks, let’s
examine various API gateway design issues. There are several issues to consider when
designing an API gateway:

 Performance and scalability
 Writing maintainable code by using reactive programming abstractions
 Handling partial failure
 Being a good citizen in the application’s architecture

We’ll look at each one.

PERFORMANCE AND SCALABILITY

An API gateway is the application’s front door. All external requests must first pass
through the gateway. Although most companies don’t operate at the scale of Netflix,
which handles billions of requests per day, the performance and scalability of the API
gateway is usually very important. A key design decision that affects performance and
scalability is whether the API gateway should use synchronous or asynchronous I/O.

 In the synchronous I/O model , each network connection is handled by a dedicated
thread. This is a simple programming model and works reasonably well. For example,
it’s the basis of the widely used Java EE servlet framework, although this framework
provides the option of completing a request asynchronously. One limitation of syn-
chronous I/O, however, is that operating system threads are heavyweight, so there is a
limit on the number of threads, and hence concurrent connections, that an API gate-
way can have.

 The other approach is to use the asynchronous (nonblocking) I/O model . In this
model, a single event loop thread dispatches I/O requests to event handlers. You have
a variety of asynchronous I/O technologies to choose from. On the JVM you can use
one of the NIO-based frameworks such as Netty, Vertx, Spring Reactor, or JBoss
Undertow. One popular non-JVM option is NodeJS, a platform built on Chrome’s
JavaScript engine.

 Nonblocking I/O is much more scalable because it doesn’t have the overhead of
using multiple threads. The drawback, though, is that the asynchronous, callback-
based programming model is much more complex. The code is more difficult to
write, understand, and debug. Event handlers must return quickly to avoid blocking
the event loop thread.

 Also, whether using nonblocking I/O has a meaningful overall benefit depends on
the characteristics of the API gateway’s request-processing logic. Netflix had mixed results
when it rewrote Zuul, its edge server, to use NIO (see https://medium.com/netflix-
techblog/zuul-2-the-netflix-journey-to-asynchronous-non-blocking-systems-45947377fb5c).

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

269The API gateway pattern

On one hand, as you would expect, using NIO reduced the cost of each network con-
nection, due to the fact that there’s no longer a dedicated thread for each one. Also, a
Zuul cluster that ran I/O-intensive logic—such as request routing—had a 25% increase
in throughput and a 25% reduction in CPU utilization. On the other hand, a Zuul clus-
ter that ran CPU-intensive logic—such as decryption and compression—showed no
improvement.

USE REACTIVE PROGRAMMING ABSTRACTIONS

As mentioned earlier, API composition consists of invoking multiple backend services.
Some backend service requests depend entirely on the client request’s parameters.
Others might depend on the results of other service requests. One approach is for an
API endpoint handler method to call the services in the order determined by the depen-
dencies. For example, the following listing shows the handler for the findOrder()
request that’s written this way. It calls each of the four services, one after the other.

@RestController
public class OrderDetailsController {
@RequestMapping("/order/{orderId}")
public OrderDetails getOrderDetails(@PathVariable String orderId) {

OrderInfo orderInfo = orderService.findOrderById(orderId);

TicketInfo ticketInfo = kitchenService
.findTicketByOrderId(orderId);

DeliveryInfo deliveryInfo = deliveryService
.findDeliveryByOrderId(orderId);

BillInfo billInfo = accountingService
.findBillByOrderId(orderId);

OrderDetails orderDetails =
OrderDetails.makeOrderDetails(orderInfo, ticketInfo,

deliveryInfo, billInfo);

return orderDetails;
}
...

The drawback of calling the services sequentially is that the response time is the sum
of the service response times. In order to minimize response time, the composition
logic should, whenever possible, invoke services concurrently. In this example, there
are no dependencies between the service calls. All services should be invoked concur-
rently, which significantly reduces response time. The challenge is to write concurrent
code that’s maintainable.

 This is because the traditional way to write scalable, concurrent code is to use
callbacks. Asynchronous, event-driven I/O is inherently callback-based. Even a Servlet

Listing 8.1 Fetching the order details by calling the backend services sequentially

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

270 CHAPTER 8 External API patterns

API-based API composer that invokes services concurrently typically uses callbacks. It
could execute requests concurrently by calling ExecutorService.submitCallable().
The problem there is that this method returns a Future, which has a blocking API. A
more scalable approach is for an API composer to call ExecutorService.submit
(Runnable) and for each Runnable to invoke a callback with the outcome of the
request. The callback accumulates results, and once all of them have been received it
sends back the response to the client.

 Writing API composition code using the traditional asynchronous callback approach
quickly leads you to callback hell. The code will be tangled, difficult to understand,
and error prone, especially when composition requires a mixture of parallel and
sequential requests. A much better approach is to write API composition code in a
declarative style using a reactive approach. Examples of reactive abstractions for the
JVM include the following:

 Java 8 CompletableFutures
 Project Reactor Monos
 RxJava (Reactive Extensions for Java) Observables, created by Netflix specifi-

cally to solve this problem in its API gateway
 Scala Futures

A NodeJS-based API gateway would use JavaScript promises or RxJS, which is reactive
extensions for JavaScript. Using one of these reactive abstractions will enable you to
write concurrent code that’s simple and easy to understand. Later in this chapter, I
show an example of this style of coding using Project Reactor Monos and version 5 of
the Spring Framework.

HANDLING PARTIAL FAILURES

As well as being scalable, an API gateway must also be reliable. One way to achieve reli-
ability is to run multiple instances of the gateway behind a load balancer. If one
instance fails, the load balancer will route requests to the other instances.

 Another way to ensure that an API gateway is reliable is to properly handle failed
requests and requests that have unacceptably high latency. When an API gateway
invokes a service, there’s always a chance that the service is slow or unavailable. An API
gateway may wait a very long time, perhaps indefinitely, for a response, which con-
sumes resources and prevents it from sending a response to its client. An outstanding
request to a failed service might even consume a limited, precious resource such as a
thread and ultimately result in the API gateway being unable to handle any other
requests. The solution, as described in chapter 3, is for an API gateway to use the Cir-
cuit breaker pattern when invoking services.

BEING A GOOD CITIZEN IN THE ARCHITECTURE

In chapter 3 I described patterns for service discovery, and in chapter 11, I cover
patterns for observability. The service discovery patterns enable a service client,
such as an API gateway, to determine the network location of a service instance so
that it can invoke it. The observability patterns enable developers to monitor the

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

271Implementing an API gateway

behavior of an application and troubleshoot problems. An API gateway, like other ser-
vices in the architecture, must implement the patterns that have been selected for the
architecture.

8.3 Implementing an API gateway
Let’s now look at how to implement an API gateway. As mentioned earlier, the respon-
sibilities of an API gateway are as follows:

 Request routing—Routes requests to services using criteria such as HTTP request
method and path. The API gateway must route using the HTTP request method
when the application has one or more CQRS query services. As discussed in
chapter 7, in such an architecture commands and queries are handled by sepa-
rate services.

 API composition—Implements a GET REST endpoint using the API composition
pattern, described in chapter 7. The request handler combines the results of
invoking multiple services.

 Edge functions—Most notable among these is authentication.
 Protocol translation—Translates between client-friendly protocols and the client-

unfriendly protocols used by services.
 Being a good citizen in the application’s architecture.

There are a couple of different ways to implement an API gateway:

 Using an off-the-shelf API gateway product/service—This option requires little or no
development but is the least flexible. For example, an off-the-shelf API gateway
typically does not support API composition

 Developing your own API gateway using either an API gateway framework or a web frame-
work as the starting point—This is the most flexible approach, though it requires
some development effort.

Let’s look at these options, starting with using an off-the-shelf API gateway product or
service.

8.3.1 Using an off-the-shelf API gateway product/service

Several off-the-self services and products implement API gateway features. Let’s first
look at a couple of services that are provided by AWS. After that, I’ll discuss some
products that you can download, configure, and run yourself.

AWS API GATEWAY

The AWS API gateway, one of the many services provided by Amazon Web Services, is
a service for deploying and managing APIs. An AWS API gateway API is a set of REST
resources, each of which supports one or more HTTP methods. You configure the API
gateway to route each (Method, Resource) to a backend service. A backend service is
either an AWS Lambda Function, described later in chapter 12, an application-
defined HTTP service, or an AWS service. If necessary, you can configure the API

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

272 CHAPTER 8 External API patterns

gateway to transform request and response using a template-based mechanism. The
AWS API gateway can also authenticate requests.

 The AWS API gateway fulfills some of the requirements for an API gateway that I
listed earlier. The API gateway is provided by AWS, so you’re not responsible for instal-
lation and operations. You configure the API gateway, and AWS handles everything
else, including scaling.

 Unfortunately, the AWS API gateway has several drawbacks and limitations that
cause it to not fulfill other requirements. It doesn’t support API composition, so you’d
need to implement API composition in the backend services. The AWS API gateway
only supports HTTP(S) with a heavy emphasis on JSON. It only supports the Server-
side discovery pattern, described in chapter 3. An application will typically use an AWS
Elastic Load Balancer to load balance requests across a set of EC2 instances or ECS
containers. Despite these limitations, unless you need API composition, the AWS API
gateway is a good implementation of the API gateway pattern.

AWS APPLICATION LOAD BALANCER

Another AWS service that provides API gateway-like functionality is the AWS Applica-
tion Load Balancer, which is a load balancer for HTTP, HTTPS, WebSocket, and
HTTP/2 (https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/).
When configuring an Application Load Balancer, you define routing rules that route
requests to backend services, which must be running on AWS EC2 instances.

 Like the AWS API gateway, the AWS Application Load Balancer meets some of the
requirements for an API gateway. It implements basic routing functionality. It’s hosted,
so you’re not responsible for installation or operations. Unfortunately, it’s quite lim-
ited. It doesn’t implement HTTP method-based routing. Nor does it implement API
composition or authentication. As a result, the AWS Application Load Balancer
doesn’t meet the requirements for an API gateway.

USING AN API GATEWAY PRODUCT

Another option is to use an API gateway product such as Kong or Traefik . These are
open source packages that you install and operate yourself. Kong is based on the
NGINX HTTP server, and Traefik is written in GoLang. Both products let you config-
ure flexible routing rules that use the HTTP method, headers, and path to select the
backend service. Kong lets you configure plugins that implement edge functions such
as authentication. Traefik can even integrate with some service registries, described in
chapter 3.

 Although these products implement edge functions and powerful routing capabil-
ities, they have some drawbacks. You must install, configure, and operate them your-
self. They don’t support API composition. And if you want the API gateway to perform
API composition, you must develop your own API gateway.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

273Implementing an API gateway

8.3.2 Developing your own API gateway

Developing an API gateway isn’t particularly difficult. It’s basically a web application
that proxies requests to other services. You can build one using your favorite web
framework. There are, however, two key design problems that you’ll need to solve:

 Implementing a mechanism for defining routing rules in order to minimize the
complex coding

 Correctly implementing the HTTP proxying behavior, including how HTTP
headers are handled

Consequently, a better starting point for developing an API gateway is to use a frame-
work designed for that purpose. Its built-in functionality significantly reduces the
amount of code you need to write.

 We’ll take a look at Netflix Zuul, an open source project by Netflix, and then con-
sider the Spring Cloud Gateway, an open source project from Pivotal.

USING NETFLIX ZUUL

Netflix developed the Zuul framework to implement edge functions such as routing,
rate limiting, and authentication (https://github.com/Netflix/zuul). The Zuul frame-
work uses the concept of filters, reusable request interceptors that are similar to servlet
filters or NodeJS Express middleware. Zuul handles an HTTP request by assembling a
chain of applicable filters that then transform the request, invoke backend services,
and transform the response before it’s sent back to the client. Although you can use
Zuul directly, using Spring Cloud Zuul, an open source project from Pivotal, is far eas-
ier. Spring Cloud Zuul builds on Zuul and through convention-over-configuration
makes developing a Zuul-based server remarkably easy.

 Zuul handles the routing and edge functionality. You can extend Zuul by defining
Spring MVC controllers that implement API composition. But a major limitation of
Zuul is that it can only implement path-based routing. For example, it’s incapable of
routing GET /orders to one service and POST /orders to a different service. Conse-
quently, Zuul doesn’t support the query architecture described in chapter 7.

ABOUT SPRING CLOUD GATEWAY

None of the options I’ve described so far meet all the requirements. In fact, I had
given up in my search for an API gateway framework and had started developing an
API gateway based on Spring MVC. But then I discovered the Spring Cloud Gate-
way project (https://cloud.spring.io/spring-cloud-gateway/). It’s an API gateway
framework built on top of several frameworks, including Spring Framework 5,
Spring Boot 2, and Spring Webflux, which is a reactive web framework that's part of
Spring Framework 5 and built on Project Reactor. Project Reactor is an NIO-based
reactive framework for the JVM that provides the Mono abstraction used a little
later in this chapter.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

274 CHAPTER 8 External API patterns

 Spring Cloud Gateway provides a simple yet comprehensive way to do the following:

 Route requests to backend services.
 Implement request handlers that perform API composition.
 Handle edge functions such as authentication.

Figure 8.8 shows the key parts of an API gateway built using this framework.

The API gateway consists of the following packages:

 ApiGatewayMain package—Defines the Main program for the API gateway.
 One or more API packages—An API package implements a set of API endpoints.

For example, the Orders package implements the Order-related API endpoints.
 Proxy package—Consists of proxy classes that are used by the API packages to

invoke the services.

«@SpringBootApplication»
ApiGatewayApplication

«@Bean»
orderProxyRouting

«@Bean»
orderHandlerRouting

GET/orders/{orderId}

=>

OrderHandlers::getOrderDetails

orders*

=>

http://orderservice

mono<ServerResponse>

getOrderDetails(ServerRequest){

...

}

mono<OrderInfo>

findOrderById()(orderId){

...WebClient

.get()

.url("http://order-service/..."}

}

static void main(String[]args){

...

}

Remote proxies«package»

Orders«API package»

«proxy»
....

«proxy»
DeliveryService

findDeliveryByOrder()

«proxy»
OrderService

findOrderById()

Order handlers

Spring Cloud Gateway

Spring 5

getOrderDetails()

Spring webFlux

Project reactor

«Spring Configuration»OrderConfiguration

Figure 8.8 The architecture of an API gateway built using Spring Cloud Gateway

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

275Implementing an API gateway

The OrderConfiguration class defines the Spring beans responsible for routing
Order-related requests. A routing rule can match against some combination of the
HTTP method, the headers, and the path. The orderProxyRoutes @Bean defines rules
that map API operations to backend service URLs. For example, it routes paths begin-
ning with /orders to the Order Service.

 The orderHandlers @Bean defines rules that override those defined by order-
ProxyRoutes. These rules map API operations to handler methods, which are the
Spring WebFlux equivalent of Spring MVC controller methods. For example, order-
Handlers maps the operation GET /orders/{orderId} to the OrderHandlers::get-
OrderDetails() method.

 The OrderHandlers class implements various request handler methods, such as
OrderHandlers::getOrderDetails(). This method uses API composition to fetch the
order details (described earlier). The handle methods invoke backend services using
remote proxy classes, such as OrderService. This class defines methods for invoking
the OrderService.

 Let’s take a look at the code, starting with the OrderConfiguration class.

THE ORDERCONFIGURATION CLASS

The OrderConfiguration class, shown in listing 8.2, is a Spring @Configuration class.
It defines the Spring @Beans that implement the /orders endpoints. The order-
ProxyRouting and orderHandlerRouting @Beans use the Spring WebFlux routing
DSL to define the request routing. The orderHandlers @Bean implements the request
handlers that perform API composition.

@Configuration
@EnableConfigurationProperties(OrderDestinations.class)
public class OrderConfiguration {

@Bean
public RouteLocator orderProxyRouting(OrderDestinations orderDestinations) {
return Routes.locator()

.route("orders")

.uri(orderDestinations.orderServiceUrl)

.predicate(path("/orders").or(path("/orders/*")))
.and()
...
.build();

}

@Bean
public RouterFunction<ServerResponse>

orderHandlerRouting(OrderHandlers orderHandlers) {
return RouterFunctions.route(GET("/orders/{orderId}"),

orderHandlers::getOrderDetails);
}

Listing 8.2 The Spring @Beans that implement the /orders endpoints

By default, route all requests whose
path begins with /orders to the URL
orderDestinations.orderServiceUrl.

Route a GET
/orders/{orderId}
to orderHandlers::
getOrderDetails.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

276 CHAPTER 8 External API patterns

@Bean
public OrderHandlers orderHandlers(OrderService orderService,

KitchenService kitchenService,
DeliveryService deliveryService,
AccountingService accountingService) {

return new OrderHandlers(orderService, kitchenService,
deliveryService, accountingService);

}

}

OrderDestinations, shown in the following listing, is a Spring @Configuration-
Properties class that enables the externalized configuration of backend service URLs.

@ConfigurationProperties(prefix = "order.destinations")
public class OrderDestinations {

@NotNull
public String orderServiceUrl;

public String getOrderServiceUrl() {
return orderServiceUrl;

}

public void setOrderServiceUrl(String orderServiceUrl) {
this.orderServiceUrl = orderServiceUrl;

}
...

}

You can, for example, specify the URL of the Order Service either as the order
.destinations.orderServiceUrl property in a properties file or as an operating sys-
tem environment variable, ORDER_DESTINATIONS_ORDER_SERVICE_URL.

THE ORDERHANDLERS CLASS

The OrderHandlers class, shown in the following listing, defines the request handler
methods that implement custom behavior, including API composition. The getOrder-
Details() method, for example, performs API composition to retrieve information
about an order. This class is injected with several proxy classes that make requests to
backend services.

public class OrderHandlers {

private OrderService orderService;
private KitchenService kitchenService;
private DeliveryService deliveryService;
private AccountingService accountingService;

Listing 8.3 The externalized configuration of backend service URLs

Listing 8.4 The OrderHandlers class implements custom request-handling logic.

The @Bean, which implements the
custom request-handling logic

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

277Implementing an API gateway

public OrderHandlers(OrderService orderService,
KitchenService kitchenService,
DeliveryService deliveryService,
AccountingService accountingService) {

this.orderService = orderService;
this.kitchenService = kitchenService;
this.deliveryService = deliveryService;
this.accountingService = accountingService;

}

public Mono<ServerResponse> getOrderDetails(ServerRequest serverRequest) {
String orderId = serverRequest.pathVariable("orderId");

Mono<OrderInfo> orderInfo = orderService.findOrderById(orderId);

Mono<Optional<TicketInfo>> ticketInfo =
kitchenService

.findTicketByOrderId(orderId)

.map(Optional::of)
.onErrorReturn(Optional.empty());

Mono<Optional<DeliveryInfo>> deliveryInfo =
deliveryService

.findDeliveryByOrderId(orderId)

.map(Optional::of)

.onErrorReturn(Optional.empty());

Mono<Optional<BillInfo>> billInfo = accountingService
.findBillByOrderId(orderId)
.map(Optional::of)
.onErrorReturn(Optional.empty());

Mono<Tuple4<OrderInfo, Optional<TicketInfo>,
Optional<DeliveryInfo>, Optional<BillInfo>>> combined =

Mono.when(orderInfo, ticketInfo, deliveryInfo, billInfo);

Mono<OrderDetails> orderDetails =
combined.map(OrderDetails::makeOrderDetails);

return orderDetails.flatMap(person -> ServerResponse.ok()
.contentType(MediaType.APPLICATION_JSON)
.body(fromObject(person)));

}

}

The getOrderDetails() method implements API composition to fetch the order
details. It’s written in a scalable, reactive style using the Mono abstraction , which is pro-
vided by Project Reactor. A Mono, which is a richer kind of Java 8 CompletableFuture,
contains the outcome of an asynchronous operation that’s either a value or an
exception. It has a rich API for transforming and combining the values returned by
asynchronous operations. You can use Monos to write concurrent code in a style that’s

Transform a TicketInfo into
an Optional<TicketInfo>.

If the service invocation failed,
return Optional.empty().

Combine the four
values into a single
value, a Tuple4.

Transform the Tuple4
into an OrderDetails.

Transform the
OrderDetails into

a ServerResponse.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

278 CHAPTER 8 External API patterns

simple and easy to understand. In this example, the getOrderDetails() method
invokes the four services in parallel and combines the results to create an Order-
Details object.

 The getOrderDetails() method takes a ServerRequest, which is the Spring Web-
Flux representation of an HTTP request, as a parameter and does the following:

1 It extracts the orderId from the path.
2 It invokes the four services asynchronously via their proxies, which return Monos.

In order to improve availability, getOrderDetails() treats the results of all ser-
vices except the OrderService as optional. If a Mono returned by an optional
service contains an exception, the call to onErrorReturn() transforms it into a
Mono containing an empty Optional.

3 It combines the results asynchronously using Mono.when(), which returns a
Mono<Tuple4> containing the four values.

4 It transforms the Mono<Tuple4> into a Mono<OrderDetails> by calling Order-
Details::makeOrderDetails.

5 It transforms the OrderDetails into a ServerResponse, which is the Spring
WebFlux representation of the JSON/HTTP response.

As you can see, because getOrderDetails() uses Monos, it concurrently invokes the
services and combines the results without using messy, difficult-to-read callbacks. Let’s
take a look at one of the service proxies that return the results of a service API call
wrapped in a Mono.

THE ORDERSERVICE CLASS

The OrderService class, shown in the following listing, is a remote proxy for the Order
Service. It invokes the Order Service using a WebClient, which is the Spring Web-
Flux reactive HTTP client.

@Service
public class OrderService {

private OrderDestinations orderDestinations;

private WebClient client;

public OrderService(OrderDestinations orderDestinations, WebClient client)
{

this.orderDestinations = orderDestinations;
this.client = client;

}

public Mono<OrderInfo> findOrderById(String orderId) {
Mono<ClientResponse> response = client

.get()

Listing 8.5 OrderService class—a remote proxy for Order Service

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

279Implementing an API gateway

.uri(orderDestinations.orderServiceUrl + "/orders/{orderId}",
orderId)

.exchange();
return response.flatMap(resp -> resp.bodyToMono(OrderInfo.class));

}

}

The findOrder() method retrieves the OrderInfo for an order. It uses the WebClient
to make the HTTP request to the Order Service and deserializes the JSON response
to an OrderInfo. WebClient has a reactive API, and the response is wrapped in a Mono.
The findOrder() method uses flatMap() to transform the Mono<ClientResponse>
into a Mono<OrderInfo>. As the name suggests, the bodyToMono() method returns the
response body as a Mono.

THE APIGATEWAYAPPLICATION CLASS

The ApiGatewayApplication class, shown in the following listing, implements the API
gateway’s main() method. It’s a standard Spring Boot main class.

@SpringBootConfiguration
@EnableAutoConfiguration
@EnableGateway
@Import(OrdersConfiguration.class)
public class ApiGatewayApplication {

public static void main(String[] args) {
SpringApplication.run(ApiGatewayApplication.class, args);

}
}

The @EnableGateway annotation imports the Spring configuration for the Spring
Cloud Gateway framework.

 Spring Cloud Gateway is an excellent framework for implementing an API gateway.
It enables you to configure basic proxying using a simple, concise routing rules DSL.
It’s also straightforward to route requests to handler methods that perform API com-
position and protocol translation. Spring Cloud Gateway is built using the scalable,
reactive Spring Framework 5 and Project Reactor frameworks. But there’s another
appealing option for developing your own API gateway: GraphQL, a framework that
provides graph-based query language. Let’s look at how that works.

8.3.3 Implementing an API gateway using GraphQL

Imagine that you’re responsible for implementing the FTGO’s API Gateway’s GET
/orders/{orderId} endpoint, which returns the order details. On the surface, imple-
menting this endpoint might appear to be simple. But as described in section 8.1, this
endpoint retrieves data from multiple services. Consequently, you need to use the

Listing 8.6 The main() method for the API gateway

Invoke the
service.

Convert the response
body to an OrderInfo.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

280 CHAPTER 8 External API patterns

API composition pattern and write code that invokes the services and combines
the results.

 Another challenge, mentioned earlier, is that different clients need slightly differ-
ent data. For example, unlike the mobile application, the desktop SPA application dis-
plays your rating for the order. One way to tailor the data returned by the endpoint, as
described in chapter 3, is to give the client the ability to specify the data they need. An
endpoint can, for example, support query parameters such as the expand parameter,
which specifies the related resources to return, and the field parameter, which speci-
fies the fields of each resource to return. The other option is to define multiple ver-
sions of this endpoint as part of applying the Backends for frontends pattern. This is a
lot of work for just one of the many API endpoints that the FTGO’s API Gateway
needs to implement.

 Implementing an API gateway with a REST API that supports a diverse set of cli-
ents well is time consuming. Consequently, you may want to consider using a graph-
based API framework, such as GraphQL, that’s designed to support efficient data
fetching. The key idea with graph-based API frameworks is that, as figure 8.9 shows,
the server’s API consists of a graph-based schema. The graph-based schema defines a
set of nodes (types), which have properties (fields) and relationships with other nodes.
The client retrieves data by executing a query that specifies the required data in terms
of the graph’s nodes and their properties and relationships. As a result, a client can
retrieve the data it needs in a single round-trip to the API gateway.

Graph-based API technology has a couple of important benefits. It gives clients con-
trol over what data is returned. Consequently, developing a single API that’s flexible

Consumer

Consumer

Restaurant Delivery

Consumer Service

API gateway

Graph-based API framework

Graph schema

Order

Order Service

Restaurant

Restaurant Service

Delivery

Delivery Service

Order

Schema

=>

Service

mapping

Client
Query

Query

Query

Query

Query

Figure 8.9 The API gateway’s API consists of a graph-based schema that’s mapped to the services. A client
issues a query that retrieves multiple graph nodes. The graph-based API framework executes the query by
retrieving data from one or more services.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

281Implementing an API gateway

enough to support diverse clients becomes feasible. Another benefit is that even though
the API is much more flexible, this approach significantly reduces the development
effort. That’s because you write the server-side code using a query execution frame-
work that’s designed to support API composition and projections. It’s as if, rather than
force clients to retrieve data via stored procedures that you need to write and main-
tain, you let them execute queries against the underlying database.

This section talks about how to develop an API gateway using Apollo GraphQL. I’m
only going to cover a few of the key features of GraphQL and Apollo GraphQL. For
more information, you should consult the GraphQL and Apollo GraphQL docu-
mentation.

 The GraphQL-based API gateway, shown in figure 8.10, is written in JavaScript
using the NodeJS Express web framework and the Apollo GraphQL server. The key
parts of the design are as follows:

 GraphQL schema—The GraphQL schema defines the server-side data model and
the queries it supports.

 Resolver functions—The resolve functions map elements of the schema to the
various backend services.

 Proxy classes—The proxy classes invoke the FTGO application’s services.

There’s also a small amount of glue code that integrates the GraphQL server with the
Express web framework. Let’s look at each part, starting with the GraphQL schema.

Schema-driven API technologies
The two most popular graph-based API technologies are GraphQL (http://graphql.org)
and Netflix Falcor (http://netflix.github.io/falcor/). Netflix Falcor models server-side
data as a virtual JSON object graph. The Falcor client retrieves data from a Falcor
server by executing a query that retrieves properties of that JSON object. The client
can also update properties. In the Falcor server, the properties of the object graph
are mapped to backend data sources, such as services with REST APIs. The server
handles a request to set or get properties by invoking one or more backend data
sources.

GraphQL, developed by Facebook and released in 2015, is another popular graph-
based API technology. It models the server-side data as a graph of objects that have
fields and references to other objects. The object graph is mapped to backend data
sources. GraphQL clients can execute queries that retrieve data and mutations that
create and update data. Unlike Netflix Falcor, which is an implementation, GraphQL
is a standard, with clients and servers available for a variety of languages, including
NodeJS, Java, and Scala.

Apollo GraphQL is a popular JavaScript/NodeJS implementation (www.apollographql
.com). It’s a platform that includes a GraphQL server and client. Apollo GraphQL
implements some powerful extensions to the GraphQL specification, such as sub-
scriptions that push changed data to the client.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

282 CHAPTER 8 External API patterns

DEFINING A GRAPHQL SCHEMA

A GraphQL API is centered around a schema, which consists of a collection of types
that define the structure of the server-side data model and the operations, such as
queries, that a client can perform. GraphQL has several different kinds of types. The
example code in this section uses just two kinds of types: object types, which are the

type Query{
orders(consumerId:Int!): [Order]
order(orderId : int!): Order
consumer(consumerId : int!): Consumer

}

type Order {
orderId: ID,
consumerId: Int,
consumer: Consumer
restaurant: Restaurant
deliveryInfo : DeliveryInfo

...

const resolvers = {
Query:{
orders: resolveOrders,
order: resolveOrder,
...

},
Order:{
consumer: resolveOrderConsumer,
restaurant: resolveOrderRestaurant,
deliveryInfo: resolveOrderDeliveryInfo

},
...

function resolveOrder(_. {orderId}, context){
return context.orderServiceProxy.findOrder(orderI d);

}

function resolveOrderDeliveryInfo({orderId}, args, context) {
return context.deliveryServiceProxy.findDeliveryF orOrder(orderId);

}

Apollo graphQL engine

ConsumerServiceProxy OrderServiceProxy RestaurantServiceProxy DeliveryServiceProxy

Consumer Service

invokes invokes invokes invokes

Order Service Restaurant Service Delivery Service

Express web framework

Apollo

graphQL

client

FTGO API gateway

http://.../graphql?query={orders(consumerId:1){orde rId,restaurant{id}}}

Figure 8.10 The design of the GraphQL-based FTGO API Gateway

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

283Implementing an API gateway

primary way of defining the data model, and enums, which are similar to Java enums.
An object type has a name and a collection of typed, named fields. A field can be a sca-
lar type, such as a number, string, or enum; a list of scalar types; a reference to another
object type; or a collection of references to another object type. Despite resembling a
field of a traditional object-oriented class, a GraphQL field is conceptually a function
that returns a value. It can have arguments, which enable a GraphQL client to tailor
the data the function returns.

 GraphQL also uses fields to define the queries supported by the schema. You
define the schema’s queries by declaring an object type, which by convention is called
Query. Each field of the Query object is a named query, which has an optional set of
parameters, and a return type. I found this way of defining queries a little confusing
when I first encountered it, but it helps to keep in mind that a GraphQL field is a
function. It will become even clearer when we look at how fields are connected to the
backend data sources.

 The following listing shows part of the schema for the GraphQL-based FTGO API
gateway. It defines several object types. Most of the object types correspond to the
FTGO application’s Consumer, Order, and Restaurant entities. It also has a Query object
type that defines the schema’s queries.

type Query {
orders(consumerId : Int!): [Order]
order(orderId : Int!): Order
consumer(consumerId : Int!): Consumer

}

type Consumer {
id: ID
firstName: String
lastName: String
orders: [Order]
}

type Order {
orderId: ID,
consumerId : Int,
consumer: Consumer
restaurant: Restaurant

deliveryInfo : DeliveryInfo

...
}

type Restaurant {
id: ID
name: String
...

}

Listing 8.7 The GraphQL schema for the FTGO API gateway

Defines the queries
that a client can
execute

The unique ID
for a Consumer

A consumer has
a list of orders.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

284 CHAPTER 8 External API patterns

type DeliveryInfo {
status : DeliveryStatus
estimatedDeliveryTime : Int
assignedCourier :String

}

enum DeliveryStatus {
PREPARING
READY_FOR_PICKUP
PICKED_UP
DELIVERED

}

Despite having a different syntax, the Consumer, Order, Restaurant, and Delivery-
Info object types are structurally similar to the corresponding Java classes. One differ-
ence is the ID type, which represents a unique identifier.

 This schema defines three queries:

 orders()—Returns the Orders for the specified Consumer
 order()—Returns the specified Order
 consumer()—Returns the specified Consumer

These queries may seem not different from the equivalent REST endpoints, but
GraphQL gives the client tremendous control over the data that’s returned. To under-
stand why, let’s look at how a client executes GraphQL queries.

EXECUTING GRAPHQL QUERIES

The principal benefit of using GraphQL is that its query language gives the client
incredible control over the returned data. A client executes a query by making a
request containing a query document to the server. In the simple case, a query docu-
ment specifies the name of the query, the argument values, and the fields of the result
object to return. Here’s a simple query that retrieves firstName and lastName of the
consumer with a particular ID:

query {
consumer(consumerId:1)
{
firstName
lastName

}
}

This query returns those fields of the specified Consumer.
 Here’s a more elaborate query that returns a consumer, their orders, and the ID

and name of each order’s restaurant:

query {
consumer(consumerId:1) {
id
firstName
lastName

Specifies the query called consumer,
which fetches a consumer

The fields of the
Consumer to return

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

285Implementing an API gateway

orders {
orderId
restaurant {
id
name

}
deliveryInfo {
estimatedDeliveryTime
name

}
}

}
}

This query tells the server to return more than just the fields of the Consumer. It
retrieves the consumer’s Orders and each Order’s restaurant. As you can see, a
GraphQL client can specify exactly the data to return, including the fields of transi-
tively related objects.

 The query language is more flexible than it might first appear. That’s because a
query is a field of the Query object, and a query document specifies which of those fields
the server should return. These simple examples retrieve a single field, but a query doc-
ument can execute multiple queries by specifying multiple fields. For each field, the
query document supplies the field’s arguments and specifies what fields of the result
object it’s interested in. Here’s a query that retrieves two different consumers:

query {
c1: consumer (consumerId:1) { id, firstName, lastName}
c2: consumer (consumerId:2) { id, firstName, lastName}

}

In this query document, c1 and c2 are what GraphQL calls aliases. They’re used to dis-
tinguish between the two Consumers in the result, which would otherwise both be
called consumer. This example retrieves two objects of the same type, but a client
could retrieve several objects of different types.

 A GraphQL schema defines the shape of the data and the supported queries. To
be useful, it has to be connected to the source of the data. Let’s look at how to do that.

CONNECTING THE SCHEMA TO THE DATA

When the GraphQL server executes a query, it must retrieve the requested data from
one or more data stores. In the case of the FTGO application, the GraphQL server
must invoke the APIs of the services that own the data. You associate a GraphQL
schema with the data sources by attaching resolver functions to the fields of the object
types defined by the schema. The GraphQL server implements the API composition
pattern by invoking resolver functions to retrieve the data, first for the top-level query,
and then recursively for the fields of the result object or objects.

 The details of how resolver functions are associated with the schema depend on
which GraphQL server you are using. Listing 8.8 shows how to define the resolvers

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

286 CHAPTER 8 External API patterns

when using the Apollo GraphQL server. You create a doubly nested JavaScript object.
Each top-level property corresponds to an object type, such as Query and Order. Each
second-level property, such as Order.consumer, defines a field’s resolver function.

const resolvers = {
Query: {
orders: resolveOrders,
consumer: resolveConsumer,
order: resolveOrder

},
Order: {
consumer: resolveOrderConsumer,
restaurant: resolveOrderRestaurant,
deliveryInfo: resolveOrderDeliveryInfo

...
};

A resolver function has three parameters:

 Object—For a top-level query field, such as resolveOrders, object is a root
object that’s usually ignored by the resolver function. Otherwise, object is the
value returned by the resolver for the parent object. For example, the resolver
function for the Order.consumer field is passed the value returned by the Order’s
resolver function.

 Query arguments—These are supplied by the query document.
 Context—Global state of the query execution that’s accessible by all resolvers. It’s

used, for example, to pass user information and dependencies to the resolvers.

A resolver function might invoke a single service or it might implement the API com-
position pattern and retrieve data from multiple services. An Apollo GraphQL server
resolver function returns a Promise, which is JavaScript’s version of Java’s Completable-
Future. The promise contains the object (or a list of objects) that the resolver func-
tion retrieved from the data store. GraphQL engine includes the return value in the
result object.

 Let’s look at a couple of examples. Here’s the resolveOrders() function, which is
the resolver for the orders query:

function resolveOrders(_, { consumerId }, context) {
return context.orderServiceProxy.findOrders(consumerId);

}

This function obtains the OrderServiceProxy from the context and invokes it to
fetch a consumer’s orders. It ignores its first parameter. It passes the consumerId argu-
ment, provided by the query document, to OrderServiceProxy.findOrders(). The
findOrders() method retrieves the consumer’s orders from OrderHistoryService.

Listing 8.8 Attaching the resolver functions to fields of the GraphQL schema

The resolver for
the orders query

The resolver for
the consumer field
of an Order

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

287Implementing an API gateway

 Here’s the resolveOrderRestaurant() function, which is the resolver for the
Order.restaurant field that retrieves an order’s restaurant:

function resolveOrderRestaurant({restaurantId}, args, context) {
return context.restaurantServiceProxy.findRestaurant(restaurantId);

}

Its first parameter is Order. It invokes RestaurantServiceProxy.findRestaurant()
with the Order’s restaurantId, which was provided by resolveOrders().

 GraphQL uses a recursive algorithm to execute the resolver functions. First, it exe-
cutes the resolver function for the top-level query specified by the Query document.
Next, for each object returned by the query, it iterates through the fields specified in
the Query document. If a field has a resolver, it invokes the resolver with the object
and the arguments from the Query document. It then recurses on the object or
objects returned by that resolver.

 Figure 8.11 shows how this algorithm executes the query that retrieves a consumer’s
orders and each order’s delivery information and restaurant. First, the GraphQL engine
invokes resolveConsumer(), which retrieves Consumer. Next, it invokes resolve-
ConsumerOrders(), which is the resolver for the Consumer.orders field that returns
the consumer’s orders. The GraphQL engine then iterates through Orders, invok-
ing the resolvers for the Order.restaurant and Order.deliveryInfo fields.

The result of executing the resolvers is a Consumer object populated with data retrieved
from multiple services.

 Let’s now look at how to optimize the executing of resolvers by using batching and
caching.

Resolver functions

Schema Query document

type Query{
consumer(consumerId:int!): Consumer

}

type Order {
...
restaurant: Restaurant
deliveryInfo : DeliveryInfo

...

query{
consumer(consumerId:1){
id
firstName
lastName
orders{
orderId
restaurant{
id
name
}
deliveryInfo{
estimatedDeliveryTime
name
}
}

}
}

consumer = resolveConsumer(..., 1)

orders = resolveConsumerOrders(consumer)

resolveOrderRestaurant(order, ...)

resolveOrderDeliveryInfo(order)

Query arguments passed to resolver

Figure 8.11 GraphQL executes a query by recursively invoking the resolver functions for the fields specified in
the Query document. First, it executes the resolver for the query, and then it recursively invokes the resolvers for
the fields in the result object hierarchy.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

288 CHAPTER 8 External API patterns

OPTIMIZING LOADING USING BATCHING AND CACHING

GraphQL can potentially execute a large number of resolvers when executing a query.
Because the GraphQL server executes each resolver independently, there’s a risk of
poor performance due to excessive round-trips to the services. Consider, for example,
a query that retrieves a consumer, their orders, and the orders’ restaurants. If there
are N orders, then a simplistic implementation would make one call to Consumer
Service, one call to Order History Service, and then N calls to Restaurant Service.
Even though the GraphQL engine will typically make the calls to Restaurant Service
in parallel, there’s a risk of poor performance. Fortunately, you can use a few tech-
niques to improve performance.

 One important optimization is to use a combination of server-side batching and
caching. Batching turns N calls to a service, such as Restaurant Service, into a sin-
gle call that retrieves a batch of N objects. Caching reuses the result of a previous
fetch of the same object to avoid making an unnecessary duplicate call. The combi-
nation of batching and caching significantly reduces the number of round-trips to
backend services.

 A NodeJS-based GraphQL server can use the DataLoader module to implement
batching and caching (https://github.com/facebook/dataloader). It coalesces loads
that occur within a single execution of the event loop and calls a batch loading func-
tion that you provide. It also caches calls to eliminate duplicate loads. The following list-
ing shows how RestaurantServiceProxy can use DataLoader. The findRestaurant()
method loads a Restaurant via DataLoader.

const DataLoader = require('dataloader');

class RestaurantServiceProxy {
constructor() {

this.dataLoader =
new DataLoader(restaurantIds =>
this.batchFindRestaurants(restaurantIds));

}

findRestaurant(restaurantId) {
return this.dataLoader.load(restaurantId);

}

batchFindRestaurants(restaurantIds) {
...

}
}

RestaurantServiceProxy and, hence, DataLoader are created for each request, so
there’s no possibility of DataLoader mixing together different users’ data.

 Let’s now look at how to integrate the GraphQL engine with a web framework so
that it can be invoked by clients.

Listing 8.9 Using a DataLoader to optimize calls to Restaurant Service

Create a DataLoader, which uses
batchFindRestaurants() as the
batch loading functions.

Load the specified Restaurant
via the DataLoader.

Load a batch of
Restaurants.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

289Implementing an API gateway

INTEGRATING THE APOLLO GRAPHQL SERVER WITH EXPRESS

The Apollo GraphQL server executes GraphQL queries. In order for clients to invoke
it, you need to integrate it with a web framework. Apollo GraphQL server supports
several web frameworks, including Express, a popular NodeJS web framework.

 Listing 8.10 shows how to use the Apollo GraphQL server in an Express applica-
tion. The key function is graphqlExpress, which is provided by the apollo-server-
express module. It builds an Express request handler that executes GraphQL queries
against a schema. This example configures Express to route requests to the GET
/graphql and POST /graphql endpoints of this GraphQL request handler. It also creates
a GraphQL context containing the proxies, which makes them available to the resolvers.

const {graphqlExpress} = require("apollo-server-express");

const typeDefs = gql`
type Query {
orders: resolveOrders,
...
}

type Consumer {
...

const resolvers = {
Query: {
...
}

}

const schema = makeExecutableSchema({ typeDefs, resolvers });

const app = express();

function makeContextWithDependencies(req) {
const orderServiceProxy = new OrderServiceProxy();
const consumerServiceProxy = new ConsumerServiceProxy();
const restaurantServiceProxy = new RestaurantServiceProxy();
...
return {orderServiceProxy, consumerServiceProxy,

restaurantServiceProxy, ...};
}

function makeGraphQLHandler() {
return graphqlExpress(req => {

return {schema: schema, context: makeContextWithDependencies(req)}
});

}

app.post('/graphql', bodyParser.json(), makeGraphQLHandler());

app.get('/graphql', makeGraphQLHandler());

app.listen(PORT);

Listing 8.10 Integrating the GraphQL server with the Express web framework

Define the GraphQL
schema.

Define the
resolvers.

Combine the
schema with the
resolvers to create
an executable
schema.

Inject repositories into
the context so they’re
available to resolvers.

Make an express request handler
that executes GraphQL queries
against the executable schema.

Route POST /graphql and GET
/graphql endpoints to the

GraphQL server.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

290 CHAPTER 8 External API patterns

This example doesn’t handle concerns such as security, but those would be straight-
forward to implement. The API gateway could, for example, authenticate users using
Passport, a NodeJS security framework described in chapter 11. The makeContext-
WithDependencies() function would pass the user information to each repository’s
constructor so that they can propagate the user information to the services.

 Let’s now look at how a client can invoke this server to execute GraphQL queries.

WRITING A GRAPHQL CLIENT

There are a couple of different ways a client application can invoke the GraphQL
server. Because the GraphQL server has an HTTP-based API, a client application
could use an HTTP library to make requests, such as GET http://localhost:3000/
graphql?query={orders(consumerId:1){orderId,restaurant{id}}}'. It’s easier,
though, to use a GraphQL client library, which takes care of properly formatting
requests and typically provides features such as client-side caching.

 The following listing shows the FtgoGraphQLClient class, which is a simple
GraphQL-based client for the FTGO application. Its constructor instantiates Apollo-
Client, which is provided by the Apollo GraphQL client library. The FtgoGraphQL-
Client class defines a findConsumer() method that uses the client to retrieve the
name of a consumer.

class FtgoGraphQLClient {

constructor(...) {
this.client = new ApolloClient({ ... });

}

findConsumer(consumerId) {
return this.client.query({

variables: { cid: consumerId},
query: gql`
query foo($cid : Int!) {

consumer(consumerId: $cid) {
id
firstName
lastName

}
} `,

})
}

}

The FtgoGraphQLClient class can define a variety of query methods, such as find-
Consumer(). Each one executes a query that retrieves exactly the data needed by the
client.

Listing 8.11 Using the Apollo GraphQL client to execute queries

Supply the value
of the $cid.

Define $cid as a
variable of type Int.

Set the value of
query parameter
consumerid to $cid.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

291Summary

 This section has barely scratched the surface of GraphQL’s capabilities. I hope I’ve
demonstrated that GraphQL is a very appealing alternative to a more traditional,
REST-based API gateway. It lets you implement an API that’s flexible enough to sup-
port a diverse set of clients. Consequently, you should consider using GraphQL to
implement your API gateway.

Summary
 Your application’s external clients usually access the application’s services via an

API gateway. An API gateway provides each client with a custom API. It’s respon-
sible for request routing, API composition, protocol translation, and implemen-
tation of edge functions such as authentication.

 Your application can have a single API gateway or it can use the Backends for
frontends pattern, which defines an API gateway for each type of client. The
main advantage of the Backends for frontends pattern is that it gives the client
teams greater autonomy, because they develop, deploy, and operate their own
API gateway.

 There are numerous technologies you can use to implement an API gateway,
including off-the-shelf API gateway products. Alternatively, you can develop
your own API gateway using a framework.

 Spring Cloud Gateway is a good, easy-to-use framework for developing an API
gateway. It routes requests using any request attribute, including the method
and the path. Spring Cloud Gateway can route a request either directly to a
backend service or to a custom handler method. It’s built using the scalable,
reactive Spring Framework 5 and Project Reactor frameworks. You can write
your custom request handlers in a reactive style using, for example, Project
Reactor’s Mono abstraction.

 GraphQL, a framework that provides graph-based query language, is another
excellent foundation for developing an API Gateway. You write a graph-oriented
schema to describe the server-side data model and its supported queries. You
then map that schema to your services by writing resolvers, which retrieve data.
GraphQL-based clients execute queries against the schema that specify exactly
the data that the server should return. As a result, a GraphQL-based API gate-
way can support diverse clients.

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

Chris Richardson

S
uccessfully developing microservices-based applications
requires mastering a new set of architectural insights and
practices. In this unique book, microservice architecture

pioneer and Java Champion Chris Richardson collects, cata-
logues, and explains 44 patterns that solve problems such as
service decomposition, transaction management, querying,
and inter-service communication.

Microservices Patterns teaches you how to develop and deploy
production-quality microservices-based applications. This
invaluable set of design patterns builds on decades of dis-
tributed system experience, adding new patterns for writing
services and composing them into systems that scale and
perform reliably under real-world conditions. More than just
a patterns catalog, this practical guide offers experience-driven
advice to help you design, implement, test, and deploy your
microservices-based application.

What’s Inside
● How (and why!) to use the microservice architecture
● Service decomposition strategies
● Transaction management and querying patterns
● Effective testing strategies
● Deployment patterns including containers and serverless

Written for enterprise developers familiar with standard enter-
prise application architecture. Examples are in Java.

Chris Richardson is a Java Champion, a JavaOne rock star,
author of Manning’s POJOs in Action, and the creator of the
original CloudFoundry.com.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/microservices-patterns

$49.99 / Can $65.99 [INCLUDING eBOOK]

Microservices Patterns

SOFTWARE DEVELOPMENT

M A N N I N G

“A comprehensive overview
of the challenges teams face

when moving to microservices,
with industry-tested solutions

to these problems.”
—Tim Moore, Lightbend

“Pragmatic treatment of
an important new

 architectural landscape.”
—Simeon Leyzerzon

Excelsior Software

“A solid compendium of
information that will quicken
your migration to this modern

cloud-based architecture.”—John Guthrie, Dell/EMC

“How to understand the
microservices approach, and
how to use it in real life.”

—Potito Coluccelli
Bizmatica Econocom

See first page

www.itbook.store/books/9781617294549

https://itbook.store/books/9781617294549

