
M A N N I N G

Jon P Smith

Sample Chapter

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

Key topics covered in this book: the primary chapter covering each topic is listed first.
Key figures that go with the topic are also listed.

Topics Chapters Key figures

Setting up EF Core 1, 2, 6, 7, 8, 5 1.4, 1.5, 2.6

Query the database 2, 5, 10 2.5, 2.9,

Create, update, delete 3, 5, 7, 10 3.1, 3.2, 3.3, 3.4

Business logic 4, 5, 10 4.2, 5.1, 5.4

ASP.NET Core 5, 2 5.1, 5.4

Dependency injection 5, 14, 15 5.2, 5.3

Async/await 5, 12 5.8, 5.9, 5.10

Configure non-relational 6 6.1, 6.2

Configure relationships 7, 8 7.1, 7.2, 7.3, 7.4

Configure table mappings 7 7.10, 7.11

Concurrency issues 8, 13 8.3, 8.4, 8.5, 8.6, 8.7

How EF Core works inside 1, 9, 14 1.6, 1.8, 1.10, 9.1

Design patterns 10, 4, 12 5.1, 10.1, 10.5, 10.6, 14.1, 14.2

Domain-driven design 10, 4 4.2, 10.5, 10.6

Database migrations 11, 5 11.1, 11.2, 11.3, 11.4, 11.5, 11.6

Performance tuning 12, 13, 14 12.1, 11.2, 11.4, 13.7, 14.5

Different databases 14

Data validation 6, 4, 10 10.7

Unit testing 15 15.2

LINQ language Appendix A, 2 A.2, A.1

Application’s DbContext
property access

A series of LINQ and/or
EF Core commands

An execute
command

context.Books.Where(p => p.Title.StartsWith(”Quantum”).ToList()

An example of an Entity Framework Core database query

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

Entity Framework Core
in Action

by Jon P Smith

Chapter 1

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

v

brief contents
Part 1	 Getting started... 1

1	 ■	 Introduction to Entity FrameworkCore  3
2	 ■	 Querying the database  27
3	 ■	 Changing the database content  57
4	 ■	 Using EF Core in business logic  88
5	 ■	 Using EF Core in ASP.NET Core web applications  115

Part 2	 Entity Framework in depth.....................................145
6	 ■	 Configuring nonrelational properties  147
7	 ■	 Configuring relationships  174
8	 ■	� Configuring advanced features and

handling concurrency conflicts  206
9	 ■	 Going deeper into the DbContext  238

Part 3	 �Using Entity Framework Core in real-world
applications...269

10	 ■	 Useful software patterns for EF Core applications  271
11	 ■	 Handling database migrations  300
12	 ■	 EF Core performance tuning  332
13	 ■	 A worked example of performance tuning  358
14	 ■	 Different database types and EF Core services  390
15	 ■	 Unit testing EF Core applications  421

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

3

1Introduction to
Entity FrameworkCore

This chapter covers
¡	Understanding the anatomy of an EF Core

application

¡	Accessing and updating a database with
EF Core

¡	Exploring a real-world EF Core application

¡	Deciding whether to use EF Core in your
application

Entity Framework Core, or EF Core, is a library that allows software developers to access
databases. There are many ways to build such a library, but EF Core is designed as an
object-relational mapper (O/RM). O/RMs work by mapping between the two worlds:
the relational database with its own API, and the object-oriented software world of
classes and software code. EF Core’s main strength is allowing software developers
to write database access code quickly.

EF Core, which Microsoft released in 2016, is multiplatform-capable: it can run on
Windows, Linux, and Apple. It does this as part of the .NET Core initiative, hence the
Core part of the EF Core name. (But EF Core can be used with the existing .NET Frame-
work too—see the note in section 1.10.5.) EF Core, ASP.NET Core (a web server-side

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

4 Chapter 1  Introduction to Entity FrameworkCore

application), and .NET Core are also all open source, each with an active issues page for
interacting with development teams.

EF Core isn’t the first version of Entity Framework; an existing, non-Core, Entity
Framework library is known as EF6.x. EF Core starts with years of experience built into it
via feedback from these previous versions, 4 to 6.x. It has kept the same type of interface
as EF6.x but has major changes underneath, such as the ability to handle nonrelational
databases, which EF6.x wasn’t designed to do. As a previous user of EF5 and EF6.x, I can
see where EF Core has been improved, as well as where it’s still missing features of the
old EF6.x library that I liked (although those features are on the roadmap).

This book is intended for both software developers who’ve never used Entity Frame-
work and seasoned EF6.x developers, plus anyone who wants to know what EF Core is
capable of. I do assume that you’re familiar with .NET development with C# and that
you have at least some idea of what relational databases are. I don’t assume you know
how to write Structured Query Language (SQL), the language used by a majority of
relational databases, because EF Core can do most of that for you. But I do show the
SQL that EF Core produces, because it helps you understand what’s going on; using
some of the EF Core advanced features requires you to have SQL knowledge, but the
book provides plenty of diagrams to help you along the way.

TIP   If you don’t know a lot about SQL and want to learn more, I suggest the
W3Schools online resource: www.w3schools.com/sql/sql_intro.asp. The SQL
set of commands is vast, and EF Core queries use only a small subset (for exam-
ple, SELECT, WHERE, and INNER JOIN), so that’s a good place to start.

This chapter introduces you to EF Core through the use of a small application that
calls into the EF Core library. You’ll look under the hood to see how EF Core interprets
software commands and accesses the database. Having an overview of what’s happen-
ing inside EF Core will help you as you read through the rest of the book.

1.1	 What you’ll learn from this book
The book is split into three parts. In addition to this chapter, part 1 has four other
chapters that cover:

¡	Querying the database with EF Core
¡	Updating the database with EF Core (creating, updating, and deleting data)
¡	Using EF Core in business logic
¡	Building an ASP.NET Core web application that uses EF Core

By the end of part 1, you should be able to build a .NET application that uses a rela-
tional database. But the way the database is organized is left to EF Core; for instance,
EF Core’s default configuration sets the type and size of the database columns, which
can be a bit wasteful on space.

Part 2 covers how and why you can change the defaults, and looks deeper into some
of the EF Core commands. After part 2, you’ll be able to use EF Core to create a database

www.itbook.store/books/9781617294563

http://www.w3schools.com/sql/sql_intro.asp
https://itbook.store/books/9781617294563

	 5My “lightbulb moment” with Entity Framework

in exactly the way you want it, or link to an existing database that has a specific schema,
or design. In addition, by using some of EF Core’s advanced features, you can change
the way the database data is exposed inside your .NET application—for instance, con-
trolling software access to data more carefully or building code to automatically track
database changes.

Part 3 is all about improving your skills and making you a better developer, and
debugger, of EF Core applications. I present real-world applications of EF Core, starting
with a range of known patterns and practices that you can use. You’ll read chapters on
unit testing EF Core applications, extending EF Core, and most important, finding and
fixing EF Core performance issues.

1.2	 My “lightbulb moment” with Entity Framework
Before we get into the nitty-gritty, let me tell you one defining moment I had when
using Entity Framework that put me on the road to embracing EF. It was my wife who
got me back into programming after a 21-year gap (that’s a story in itself!).

My wife, Dr. Honora Smith, is a lecturer in mathematics at the University of South-
ampton who specializes in the modeling of healthcare systems, especially focusing on
where to locate health facilities. I had worked with her to build several applications to
do geographic modeling and visualization for the UK National Health Service and work
for South Africa on optimizing HIV/AIDS testing.

At the start of 2013, I decided to build a web application specifically for healthcare
modeling. I used ASP.NET MVC4 and EF5, which had just come out and supported
SQL spatial types that handle geographic data. The project went okay, but it was hard
work. I knew the frontend was going to be hard; it was a single-page application using
Backbone.js, but I was surprised at how long it took me to do the server-side work.

I had applied good software practices and made sure the database and business logic
were matched to the problem space—that of modeling and optimizing the location of
health facilities. That was fine, but I spent an inordinate amount of time writing code to
convert the database entries and business logic into a form suitable to show to the user.
Also, I was using a Repository/Unit of Work pattern to hide EF5 code, and I was contin-
ually having to tweak areas to make the repository work properly.

At the end of a project, I always look back and ask, “Could I have done that better?”
As a software architect, I’m always looking for parts that (a) worked well, (b) were rep-
etitious and should be automated, or (c) had ongoing problems. This time, the list was
as follows:

¡	Worked well—The ServiceLayer, a layer in my application that isolated/adapted
the lower layers of the application from the ASP.NET MVC4 frontend, worked
well. (I introduce this layered architecture in chapter 2.)

¡	Was repetitious—I used ViewModel classes, also known as data transfer objects
(DTOs), to represent the data I needed to show to the user. Using a View-
Model/DTO worked well, but writing the code to copy the database tables to

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

6 Chapter 1  Introduction to Entity FrameworkCore

the ViewModel/DTO was repetitious and boring. (I also talk about ViewModels/
DTOs in chapter 2.)

¡	Had ongoing problems—The Repository/Unit of Work pattern didn’t work for me.
Ongoing problems occurred throughout the project. (I cover the Repository pat-
tern and alternatives in chapter 10.)

As a result of my review, I built a library called GenericServices (https://github.com/
JonPSmith/GenericServices) to use with EF6.x. This automated the copying of data
between database classes and ViewModels/DTOs and removed the need for a Repos-
itory/Unit of Work pattern. It seemed to be working well, but to stress-test Generic-
Services, I decided to build a frontend over one of Microsoft’s example databases, the
AdventureWorks 2012 Light database. I built the whole application with the help of a
frontend UI library in 10 days!

Entity Framework + the right libraries + the right approach
= very quick development of database access code

The site isn’t that pretty, but that wasn’t the point. My GenericServices library allowed
me to quickly implement a whole range of database Create, Read, Update, and Delete
(CRUD) commands. Definitely a “lightbulb moment,” and I was hooked on EF. You
can find the site at http://complex.samplemvcwebapp.net/.

Since then, I’ve built other libraries, some open source and some private, and used
them on several projects. These libraries significantly speed up the development of
90% of database accesses, leaving me to concentrate on the harder topics, such as build-
ing great frontend interfaces, writing custom business logic to meet the client’s specific
requirements, and performance tuning where necessary.

1.3	 Some words for existing EF6.x developers

TIME-SAVER   If you’re new to Entity Framework, you can skip this section.

If you’re a reader who knows EF6.x, much of EF Core will be familiar to you. To help
you navigate quickly through this book, I’ve added EF6 notes.

EF6   Watch for notes like this throughout the book. They point out the places
where EF Core is different from EF6.x. Also, be sure to look at the summaries at
the end of each chapter. They point out the biggest changes between EF6 and
EF Core in the chapter.

I’ll also give you one tip from my journey of learning EF Core. I know EF6.x well, but
that became a bit of a problem at the start of using EF Core. I was using an EF6.x
approach to problems and didn’t notice that EF Core had new ways to solve them. In
most cases, the approach is similar, but in some areas, it isn’t.

www.itbook.store/books/9781617294563

http:// mng.bz/2x0T
http:// mng.bz/2x0T
http://complex.samplemvcwebapp.net/
https://itbook.store/books/9781617294563

	 7An overview of EF Core

My advice to you as an existing EF6.x developer is to approach EF Core as a new
library that someone has written to mimic EF6.x, but understand that it works in a dif-
ferent way. That way, you’ll keep your eyes open for the new and different ways of doing
things in EF Core.

1.4	 An overview of EF Core
EF Core can be used as an O/RM that maps between the relational database and the
.NET world of classes and software code. Table 1.1 shows how EF Core maps the two
worlds of the relational database and .NET software.

Table 1.1   EF Core mapping between a database and .NET software

Relational database .NET software

Table .NET class

Table columns Class properties/fields

Rows Elements in .NET collections—for instance, List

Primary keys: unique row A unique class instance

Foreign keys: define a relationship Reference to another class

SQL—for instance, WHERE .NET LINQ—for instance, Where(p => …

1.4.1	 The downsides of O/RMs

Making a good O/RM is complex. Although EF6.x or EF Core can seem easy to use, at
times the EF Core “magic” can catch you by surprise. Let me mention two issues to be
aware of before we dive into how EF Core works.

The first issue is object-relational impedance mismatch. Database servers and object-ori-
ented software use different principles: databases use primary keys to define that a row
is unique, whereas .NET class instances are, by default, considered unique by their ref-
erence. EF Core handles most of this for you, but your nice .NET classes get “polluted”
by these keys, and their values matter. In most cases, EF Core is going to work fine, but
sometimes you need to do things a little differently to a software-only solution to suit the
database. One example you’ll see in chapter 2 is a many-to-many relationship: easy in
C#, but a bit more work in a database.

The second issue is that an O/RM—and especially an O/RM as comprehensive as
EF Core—hides the database so well that you can sometimes forget about what’s going
on underneath. This problem can cause you to write code that works great in your test
application, but performs terribly in the real world when the database is complex and
has many simultaneous users.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

8 Chapter 1  Introduction to Entity FrameworkCore

That’s why I spend time in this chapter showing how EF Core works on the inside,
and the SQL it produces. The more you understand about what EF Core is doing, the
better equipped you’ll be to write good EF Core code, and more important, know what
to do when it doesn’t work.

NOTE   Throughout this book, I use a “get it working, but be ready to make it
faster if I need to” approach to using EF Core. EF Core allows me to develop
quickly, but I’m aware that because of EF Core, or my poor use of it, the perfor-
mance of my database access code might not be good enough for a particular
business need. Chapter 5 covers how to isolate your EF Core so you can tune it
with minimal side effects, and chapter 13 shows how to find and improve data-
base code that isn’t fast enough.

1.5	 What about NoSQL?
We can’t talk about relational databases without mentioning nonrelational databases,
also known colloquially as NoSQL (see http://mng.bz/DW63). Both relational and
nonrelational databases have a role in modern applications. I’ve used both SQL Server
(relational database) and Azure Tables (nonrelational database) in the same applica-
tion to handle two business needs.

EF Core is designed to handle both relational and nonrelational databases—a depar-
ture from EF6.x, which was designed around relational databases only. Many of the
principles covered in this book apply to both types of databases, but because relational
databases are inherently much more complex than nonrelational databases, more com-
mands are needed to use relational databases. You’ll see whole chapters dedicated to
commands that are used only in a relational database. Chapter 7, for instance, is all
about modeling database relationships.

EF Core 2.0 will contain a preview database provider for the Azure NoSQL database,
Cosmos DB. The aim is to use this as a learning exercise for handling NoSQL databases,
with a robust solution coming out in EF Core 2.2. More NoSQL database providers are
likely to be written for EF Core over time, either by Microsoft or the writers of NoSQL
databases.

NOTE   In section 14.2, you’ll build an application using both an SQL/relational
database and a NoSQL database in a Command Query Responsibility Segrega-
tion (CQRS) architectural pattern to get a higher-performing application.

1.6	 Your first EF Core application
In this chapter, you’ll start with a simple example so that we can focus on what EF
Core is doing, rather than what the code is doing. For this, you’re going to use a small
console application called MyFirstEfCoreApp, which accesses a simple database. The
MyFirstEfCoreApp application’s job is to list and update books in a supplied database.
Figure 1.1 shows the console output.

www.itbook.store/books/9781617294563

http://mng.bz/DW63
https://itbook.store/books/9781617294563

	 9Your first EF Core application

List all four books

Update Quantum
Networking book

Commands: 1 (list), u (change url) and e (exit)
> 1
Refactoring by Martin Fowler
 Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler
 Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans
 Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person
 Published on 01-Jan-2057. - no web url given -
> u
New Quantum Networking WebUrl > httqs://entangled.moon
... Saved Changes called.
Refactoring by Martin Fowler
 Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler
 Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans
 Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person
 Published on 01-Jan-2057. httqs://entangled.moon
>

Figure 1.1   The output from the console application you’ll use to look at how EF Core works

This application isn’t going to win any prizes for its interface or complexity, but it’s a
good place to start, especially because I want to show you how EF Core works internally
in order to help you understand what’s going on later in this book.

You can download this example application from the Chapter01 branch of the Git
repo at http://mng.bz/KTjz. You can look at the code and run the application. To do
this, you need software development tools.

1.6.1	 What you need to install

You can use two main development tools to develop a .NET Core application: Visual
Studio 2017 (VS 2017) or Visual Studio Code (VS Code). I describe using VS 2017
for your first application, because it’s slightly easier to use for newcomers to .NET
development.

You need to install Visual Studio 2017 (VS 2017) from www.visualstudio.com. Numer-
ous versions exist, including a free community version, but you need to read the license
to make sure you qualify; see www.visualstudio.com/vs/community/.

When you install VS 2017, make sure you include the .NET Core Cross-Platform
Development feature, which is under the Other Toolsets section during the Install
Workloads stage. This installs .NET Core on your system. Then you’re ready to build a
.NET Core application. See http://mng.bz/2x0T for more information.

1.6.2	 Creating your own .NET Core console app with EF Core

I know many developers like to create their own applications, because building the code
yourself means that you know exactly what’s involved. This section details how to create
the .NET Core console application MyFirstEfCoreApp by using Visual Studio 2017.

www.itbook.store/books/9781617294563

http://mng.bz/KTjz
http://www.visualstudio.com
http://www.visualstudio.com/vs/community/
http://mng.bz/2x0T
https://itbook.store/books/9781617294563

10 Chapter 1  Introduction to Entity FrameworkCore

Creating a .NET Core console application

The first thing you need to do is create a .NET Core console application. Using VS
2017, here are the steps:

1	 In the top menu of VS 2017, click File > New > Project to open the New Project form.

2	 From the installed templates, select Visual C# > .NET Core > Console App
(.NET Core).

3	 Type in the name of your program (in this case, MyFirstEfCoreApp) and make
sure the location is sensible. By default, VS 2017 will put your application in a
directory ending with \Source\Repos.

4	 Make sure the Create Directory for Solution box is ticked so that your application
has its own folder.

5	 If you want to create a Git repo for this project, make sure the Create New Git
Repository box is selected too. Then click OK.

At this point, you’ve created a console application, and the editor should be in the file
called Program.cs.

TIP   You can find out which level of .NET Core your application is using by
choosing Project > MyFirstEfCoreApp Properties from the main menu; the
Application tab shows the Target Framework.

Adding the EF Core library to your application

You need to install the correct EF Core NuGet library for the database you’re going
to use. For local development, Microsoft.EntityFrameworkCore.SqlServer is the best
choice, because it’ll use the development SQL Server that was installed when you
installed VS 2017.

You can install the NuGet library in various ways. The more visual way is to use the
NuGet Package Manager. The steps are as follows:

1	 In the Solution Explorer, typically on the right-hand side of VS 2017, right-click
the Dependencies line in your console application and select the Manage NuGet
Packages option.

2	 At the top right of the NuGet Package Manager page that appears, click the
Browse link.

3	 In the Search box below the Browse link, type Microsoft.EntityFramework-
Core.SqlServer and then select the NuGet package with that name.

4	 A box appears to the right of the list of NuGet packages with the name
Microsoft.EntityFrameworkCore.SqlServer at the top and an Install button below
it, showing which version will install.

5	 Click the Install button and then accept the license agreements. The package
installs. Installation could take a little while, depending on your internet connec-
tion speed.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 11Your first EF Core application

Downloading and running the example application from the Git repo
You have two options for downloading and running the MyFirstEfCoreApp console appli-
cation found in the Git repo: either VS 2017 or VS Code. I describe both.

Using Visual Studio 2017, version 15.3.3 or above (VS 2017), follow these steps:

1	 Clone the Git repo. First you need to select the Team Explorer view and select the
Manage Connections tab. In the Local Git Repositories section, click the Clone
button. This opens a form containing an input line saying “Enter the URL of a Git
repo to clone” in which you should input the URL https://github.com/JonPSmith/
EfCoreInAction. The local directory path shown below the URL should update to
end with EfCoreInAction. Now click the Clone button at the bottom of the form.

2	 Select the right branch. After the clone has finished, the list of local Git reposi-
tories should have a new entry called EfCoreInAction. Double-click this, and the
Home tab appears. Currently, the Git repo will be on the master branch, which
doesn’t have any code. You need to select the remotes/origin > Chapter01 branch:
click the Branches button, click the Remotes/Origin drop-down, and select Chap-
ter01. Next, click the Home button. You’ll see a Solution called EfCoreInAction.sln,
which you need to click. That loads the local solution, and you’re ready to run the
application.

3	 Run the application. Go to the Solutions Explorer window, which shows you the
code. Click any of the classes to see the code. If you press F5 (Start Debugging),
the console application will start in a new command-line window. The first line
shows you the commands you can type. Have fun!

Using Visual Studio Code (VS Code), follow these steps:

Note: I assume that you’ve set up VS Code to support C# development.

1	 Clone the Git repo. In the command palette (Ctrl-Shift-P), type Git: Clone. This
presents you with a Repository Url input line, in which you should place the https://
github.com/JonPSmith/EfCoreInAction URL and then press the Return key. You’ll
then see a Parent Directory input line; indicate the directory that will contain the
Git repo and then press the Return key. This clones the Git repo to your local stor-
age, in a directory called EfCoreInAction.

2	 Select the right branch. After the clone, you’ll see a message asking, “Would you
like to open the cloned repository?” Click the Open Repository button to do that.
You should see just a few files in the master branch, but no code. Select the Chap-
ter01 branch by typing Git: Checkout to in the command palette (Ctrl-Shift-P)
and selecting the origin/Chapter01 branch. The files change, and you’ll now have
the code for the MyFirstEfCoreApp console application.

3	 Run the application. I’ve already set up the tasks.json and launch.json files for this
project, so you can press F5 to start debugging. The console application starts in
a new command-line window. The first line shows the commands you can type.
Have fun!

www.itbook.store/books/9781617294563

https://github.com/JonPSmith/EfCoreInAction
https://github.com/JonPSmith/EfCoreInAction
https://github.com/JonPSmith/EfCoreInAction
https://github.com/JonPSmith/EfCoreInAction
https://itbook.store/books/9781617294563

12 Chapter 1  Introduction to Entity FrameworkCore

1.7	 The database that MyFirstEfCoreApp will access
EF Core is about accessing databases, but where does that database come from? EF
Core gives you two options: EF Core can create it for you, known as code-first, or you can
provide an existing database you built outside EF Core, known as database-first.

EF6    In EF6, you could use an EDMX/database designer to visually design
your database, an option known as design-first. EF Core doesn’t support the
design-first approach, and there are no plans to add it.

In this chapter, we’re going to skip over how I created the database for the MyFirstEf-
CoreApp application and simply assume it exists.

NOTE   In my code, I use a basic EF Core command meant for unit testing to
create the database, because it’s simple and quick. Chapter 2 covers how to get
EF Core to create a database properly, and chapter 11 presents the whole issue
of creating and changing databases.

For this MyFirstEfCoreApp application example, I created a simple database, shown in
figure 1.2, with only two tables:

¡	A Books table holding the book information
¡	An Author table holding the author of each book

NOTE   The Books table name comes from the DbSet<Book> property name of
Books in the application’s DbContext, which I show in figure 1.5. The Author
table name doesn’t have a DbSet<T> property in the application’s DbContext,
so the table defaults to the class name, Author. Section 6.10.1 covers these con-
figuration rules in more detail.

Books

Tables

Columns

BookId

Title
Description
PublishedOn
AuthorId

PK

FK1

Author

AuthorId

Name
WebUrl

PK

Primary keys

Columns

Foreign key

Foreign-key
constraint

Figure 1.2   Our example relational database with two tables: Books and Author

Figure 1.3 shows the content of the database. It holds only four books, the first two of
which have the same author, Martin Fowler.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 13Setting up the MyFirstEfCoreApp application

Refactoring1

Patterns of Enterprise Ap2

Domain-Driven Design3

Quantum Networking

Improving h

Written in d

Linking bus

Entanged q

08-Jul-1999

15-Nov-2002

30-Aug-2003

01-Jan-20574

1

1

2

3

Martin Fowler1

Eric Evans2

Future Person3

http://ma

http://don

null

Book Title Description AvailableFrom Auth Auth Name WebUrlRows

Figure 1.3   The content of the database, showing four books, two of which have the same author

1.8	 Setting up the MyFirstEfCoreApp application
Having created and set up a .NET Core console application, you can now start writing
EF Core code. You need to write two fundamental parts before creating any database
access code:

1	 The classes that you want EF Core to map to the tables in your database

2	 The application’s DbContext, which is the primary class that you’ll use to config-
ure and access the database

1.8.1	 The classes that map to the database—Book and Author

EF Core maps classes to database tables. Therefore, you need to create a class that will
define the database table, or match a database table if you already have a database. Lots
of rules and configurations exist (covered later in the book), but figure 1.4 gives the
typical format of a class that’s mapped to a database table.

EF Core maps
.NET classes to
database tables.

In this case, the class
Book is mapped to
the table Books.

A class needs a primary key.
We’re using an EF Core naming
convention that tells EF Core
that the property BookId is
the primary key.

The AuthorId foreign key is used in the
database to link a row in the Books table
to a row in the Author table.

The Author property is an EF Core navigational property. EF Core uses this on a save
to see whether the Book has an Author class attached—if so, it sets the foreign key, AuthorId.

Upon loading a Book class, the method Include will fill this property with the Author
class that’s linked to this Book class by using the foreign key, AuthorId.

Books

BookId

Title

Description

PublishedOn

AuthorId

public class Book
{
 public int BookId { get; set; }

 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime PublishedOn { get; set; }

 public int AuthorId { get; set; }

 public Author Author { get; set; }
}

PK

FK1

These properties
are mapped to the

table’s columns.

Figure 1.4   The.NET class Book, on the left, maps to a database table called Books, on the right. This is
a typical way to build your application, with multiple classes that map to database tables.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

14 Chapter 1  Introduction to Entity FrameworkCore

Listing 1.1 shows the other class you’ll be using: Author. This has the same structure
as the Book class in figure 1.4, with a primary key that follows the EF Core naming con-
ventions of <ClassName>Id (see section 6.3.15). The Book class has a property called
AuthorId, which EF Core knows is a foreign key because it has the same name as the
Author primary key.

Listing 1.1   The Author class from MyFirstEfCoreApp

public class Author
{
 public int AuthorId { get; set; }
 public string Name { get; set; }
 public string WebUrl { get; set; }
}

1.8.2	 The application’s DbContext

The other important part of the application is its DbContext. This is a class that
you create that inherits from EF Core’s DbContext class. This holds the informa-
tion EF Core needs to configure that database mapping, and is also the class you
use in your code to access the database (see section 1.9.2). Figure 1.5 shows the
application’s DbContext, called AppDbContext, that the MyFirstEfCoreApp console
application uses.

You must have a class that inherits from the EF Core class DbContext. This
class holds the information and configuration for accessing your database.

Our database has a table called Author, but you purposely didn’t create a property for that table.
EF Core finds that table by finding a navigational property of type Author in the Book class.

The database connection string holds
information about the database:
• How to find the database server
• The name of the database
• Authorization to access the database

In a console application, you configure
EF Core’s database options by
overriding the OnConfiguring method.
In this case you tell it you’re using an
SQL Server database by using the
UseSqlServer method.

By creating a property called Books
of type DbSet<Book>, you tell EF Core
that there’s a database table named
Books, and it has the columns and
keys as found in the Book class.

public class AppDbContext : DbContext
{
 private const string ConnectionString =
 @” Server = (local db)\nssql local dv;
 Database=MyFirstEfCoreDb;
 Trusted_Connection=True”;

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder
 .UseSqlServer(connectionString);
 }

 public DbSet<Book> Books { get; set; }

}

Figure 1.5   Two main parts of the application’s DbContext created for the MyFirstEfCoreApp console
application. First, the setting of the database options to define what type of database to use and where
it can be found. Second, the DbSet<T> property(s) that tell EF Core what classes should be mapped to
the database.

Holds the primary key of the Author row
in the DB. Note that the foreign key in
the Book class has the same name.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 15Looking under the hood of EF Core

In our small example application, all the decisions on the modeling are done by EF
Core, which works things out by using a set of conventions. You have loads of extra
ways to tell EF Core what the database model is, and these commands can get complex.
It takes both chapter 6 and chapter 7 to cover all the options available to you as a
developer.

Also, you’re using a standard approach to define the database access in a console
application: overriding the OnConfiguring method inside the application’s DbContext
and providing all the information EF Core needs to define the type and location of the
database. The disadvantage of this approach is that it has a fixed connection string,
which makes development and unit testing difficult.

For ASP.NET Core web applications, this is a bigger problem, because you want to
access a local database for testing, and a different hosted database when running in pro-
duction. In chapter 2, as you start building an ASP.NET Core web application, you’ll use
a different approach that allows you to change the database string (see section 2.2.2).

1.9	 Looking under the hood of EF Core
Having built your MyFirstEfCoreApp application, you can now use it to see how an EF
Core library works. The focus isn’t on the application code but on what happens inside
the EF Core library when you read and write data to the database. My aim is to provide
you with a mental model of what happens when a database access code uses EF Core.
This should help as you dig into myriad commands described throughout the rest of
this book.

Do you really need to know how EF Core works inside to use it?
You can use the EF Core library without bothering to learn how it works. But knowing
what’s happening inside EF Core will help you understand why the various commands
work the way they do. You’ll also be better armed when you need to debug your database
access code.

The following pages include lots of explanations and diagrams to show you what hap-
pens inside EF Core. EF Core “hides” the database so that you as a developer can write
database access code easily—which does work well in practice. But, as I stated earlier,
knowing how EF Core works can help you if you want to do something more complex, or
things don’t work the way you expect.

1.9.1	 Modeling the database

Before you can do anything with the database, EF Core must go through a process that
I refer to as modeling the database. This modeling is EF Core’s way of working out what
the database looks like by looking at the classes and other EF Core configuration data.
The resulting model is then used by EF Core in all database accesses.

The modeling process is kicked off the first time you create the application’s DbCon-
text, in this case called AppDbContext (shown in figure 1.5). This has one property,
DbSet<Book>, which is the way that the code accesses the database.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

16 Chapter 1  Introduction to Entity FrameworkCore

Figure 1.6 provides an overview of the modeling process, which will help you under-
stand the process EF Core uses to model the database. Later chapters introduce you to
a range of commands that allow you to more precisely configure your database, but for
now you’ll use the default configurations.

1. Looks at all the DbSet properties.

2. Looks at the
 properties in
 the class.

3. Does the same to
 any linked classes.

4. Runs OnModelCreating,
 if present.

5. The final result:
 a model of the
 database.

Your Application

AppDbContext
Class Model the database

1. Look at DbSet<T> properties
2. Look at the class for columns
3. Inspect linked classes
4. Run OnModelCreating method

Properties
 Books : DbSet<Book>
Methods
 void OnModelCreating(...

The EF Core library

Output

Database model (cached)Book
Class
Properties
 BookId : int
 ...

Author
Class
Properties
 AuthorId : int
 ...

AuthorBooks

Figure 1.6   How EF Core models the database

Figure 1.6 shows the modeling steps that EF Core uses on our AppDbContext. The fol-
lowing text gives a more detailed description of the process:

1	 EF Core looks at the application’s DbContext and finds all the public DbSet<T>
properties. From this, it defines the initial name for the one table it finds, Books.

2	 EF Core looks through all the classes referred to in DbSet<T> and looks at its
properties to work out the column names, types, and so forth. It also looks for
special attributes on the class and/or properties that provide extra modeling
information.

3	 EF Core looks for any classes that the DbSet<T> classes refer to. In our case, the
Book class has a reference to the Author class, so EF Core scans that too. It carries
out the same search on the properties of the Author class as it did on the Book
class in step 2. It also takes the class name, Author, as the table name.

4	 For the last input to the modeling process, EF Core runs the virtual method
OnModelCreating inside the application’s DbContext. In this simple application,
you don’t override the OnModelCreating method, but if you did, you could pro-
vide extra information via a fluent API to do more configuration of the modeling.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 17Looking under the hood of EF Core

5	 EF Core creates an internal model of the database based on all the information
it gathered. This database model is cached so that later accesses will be quicker.
This model is then used when performing all database accesses.

You might have noticed that figure 1.6 shows no database. This is because when EF
Core is building its internal model, it doesn’t look at the database. I emphasize that to
show how important it is to build a good model of the database you want; otherwise,
problems could occur if a mismatch exists between what EF Core thinks the database
looks like and what the actual database is like.

In your application, you may use EF Core to create the database, in which case there’s
no chance of a mismatch. Even so, if you want a good and efficient database, it’s worth
taking care to build a good representation of the database you want in your code so that
the created database performs well. The options for creating, updating, and manag-
ing the database structure are a big topic, which are detailed in chapter 11.

1.9.2	 Reading data from the database

You’re now at the point where you can access the database. Let’s use the list (l) com-
mand, which reads the database and prints the information on the terminal. Figure 1.7
shows the result.

Commands: 1 (list), u (change url) and e (exit)
> 1
Refactoring by Martin Fowler
 Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler
 Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans
 Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person
 Published on 01-Jan-2057. - no web url given -
>

Figure 1.7   Output of the console application when listing the content of the database

The following listing shows the code that’s called to list all the books, with each author,
out to the console.

Listing 1.2   The code to read all the books and output them to the console

public static void ListAll()
{
 using (var db = new AppDbContext())
 {
 foreach (var book in
 db.Books.AsNoTracking()

 .Include(a => a.Author))
 {
 var webUrl = book.Author.WebUrl == null

You create the application’s DbContext
through which all database accesses
are done.

Reads all the books. AsNoTracking
indicates this is a read-only access.

The “include” causes the author
information to be eagerly loaded
with each book. See chapter 2 for
more on this.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

18 Chapter 1  Introduction to Entity FrameworkCore

 ? "- no web URL given -"
 : book.Author.WebUrl;
 Console.WriteLine(
 $"{book.Title} by {book.Author.Name}");
 Console.WriteLine(" " +
 "Published on " +
 $"{book.PublishedOn:dd-MMM-yyyy}" +
 $". {webUrl}");
 }
 }
}

EF Core uses Microsoft’s .NET’s Language Integrated Query (LINQ) to carry the com-
mands it wants done, and normal .NET classes to hold the data. Listing 1.2 includes
minimal use of LINQ, but later in the book you’ll see much more complex examples.

NOTE   If you’re not familiar with LINQ, you’ll be at a disadvantage in reading
this book. Appendix A provides a brief introduction to LINQ. Plenty of online
resources are also available; see https://msdn.microsoft.com/en-us/library/
bb308959.aspx.

Two lines of code in bold in listing 1.2 cause the database access. Now let’s see how EF
Core uses that LINQ code to access the database and return the required books with
their authors. Figure 1.8 follows those lines of code down into the EF Core library,
through the database, and back.

Refactoring

LINQ query translation

foreach (var book in
 db.Books
 .AsNoTracking()
 .Include (a => a.Author))

1. Create classes
2. Relationship fixup
3. Tracking snapshot

Instances

Relational
links

Database provider

1

Patterns of Ent2

Domain-Driven3

Quantum Netw

Improving the

Written in dire

Linking busine

Entanged qua

Martin Fowler

Martin Fowler

Eric Evans

Future Person

08-Jul-1999

15-Nov-2002

30-Aug-2003

01-Jan-20574

1

1

2

3

http://martinfo

http://martinfo

http://domainl

null

1

1

2

3

LINQ query
translation

cache

Database
SQL server

Database commands; e.g.,
SELECT
 Books.BookId,
 Books.Title,
 etc. ...

Book Author
Book

Book
Book

Author

Author

BookId Title Description AvailableFrom Auth Auth Name WebUrl

1. The LINQ code is translated
 into SQL and is cached.

3. Because of the .AsNoTracking method,
 no tracking snapshot is made.

2. The data is turned into instances of .NET classes,
 and the relational links are set up appropriately.

All data read in one
command, (Books and
Authors combined)

Figure 1.8   A look inside EF Core as it executes a database query

www.itbook.store/books/9781617294563

https://msdn.microsoft.com/en-us/library/bb308959.aspx
https://msdn.microsoft.com/en-us/library/bb308959.aspx
https://itbook.store/books/9781617294563

	 19Looking under the hood of EF Core

The process to read data from the database is as follows:

1	 The LINQ query db.Books.AsNoTracking().Include(a => a.Author) accesses
the DbSet<Book> property in the application’s DbContext and adds a .Include
(a => a.Author) at the end to ask that the Author parts of the relationship are
loaded too. This is converted by the database provider into an SQL command to
access the database. The resulting SQL is cached to avoid the cost of retransla-
tion if the same database access is used again.
EF Core tries to be as efficient as possible on database accesses. In this case, it
combines the two tables it needs to read, Books and Author, into one big table so
that it can do the job in one database access. The following listing shows the SQL
created by EF Core and the database provider.

Listing 1.3   SQL command produced to read Books and Author

SELECT [b].[BookId],
[b].[AuthorId],
[b].[Description],
[b].[PublishedOn],
[b].[Title],
[a].[AuthorId],
[a].[Name],
[a].[WebUrl]
FROM [Books] AS [b]
INNER JOIN [Author] AS [a] ON
[b].[AuthorId] = [a].[AuthorId]

2	 After the database provider has read the data, EF Core puts the data through a
process that (a) creates instances of the .NET classes and (b) uses the database
relational links, called foreign keys, to correctly link the .NET classes together by
reference—called a relationship fixup. The result is a set of .NET class instances
linked in the correct way. In this example, two books have the same author, Mar-
tin Fowler, so the Author property of those two books points to one Author class.

3	 Because the code includes the command AsNoTracking, EF Core knows to sup-
press the creation of a tracking snapshot. Tracking snapshots are used for spotting
changes to data; you’ll see this in the example of editing the WebUrl. Because
this is a read-only query, suppressing the tracking snapshot makes the command
faster.

1.9.3	 Updating the database

Now you want to use the second command, update (u), in MyFirstEfCoreApp to update
the WebUrl column in the Author table of the book Quantum Networking. As shown in
figure 1.9, you first list all the books to show that the last book has no author URL
set. You then run the command u, which asks for a new author URL for the last book,
Quantum Networking. You input a new URL of httqs://entangled.moon (it’s a fictitious

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

20 Chapter 1  Introduction to Entity FrameworkCore

future book, so why not a fictitious URL), and after the update, the command lists all
the books again, showing that the author’s URL has changed (the two ovals show you
the before and after URLs).

No URL set on
the last book

URL set via the
u command

Commands: 1 (list), u (change url) and e (exit)
> 1
Refactoring by Martin Fowler
 Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler
 Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans
 Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person
 Published on 01-Jan-2057. - no web url given -
> u
New Quantum Networking WebUrl > httqs://entangled.moon
... Saved Changes called.
Refactoring by Martin Fowler
 Published on 08-Jul-1999. http://martinfowler.com/
Patterns of Enterprise Application Architecture by Martin Fowler
 Published on 15-Nov-2001. http://martinfowler.com/
Domain-Driven Design by Eric Evans
 Published on 30-Aug-2003. http://domainlanguage.com/
Quantum Networking by Future Person
 Published on 01-Jan-2057. httqs://entangled.moon
>

Figure 1.9   The book information before and after the WebUrl of the last book’s author is updated

The code for updating the WebUrl of the last book, Quantum Networking, is shown here.

Listing 1.4   The code to update the author’s WebUrl of the book Quantum Networking

public static void ChangeWebUrl()
{
 Console.Write("New Quantum Networking WebUrl > ");
 var newWebUrl = Console.ReadLine();

 using (var db = new AppDbContext())
 {
 var book = db.Books
 .Include(a => a.Author)
 .Single(b => b.Title == "Quantum Networking");

 book.Author.WebUrl = newWebUrl;
 db.SaveChanges();
 Console.WriteLine("... SavedChanges called.");
 }

 ListAll();
}

Reads in from the console the new URL

Makes sure the author information
is eager loaded with the book

Selects only the book
with the title Quantum
Networking

To update the database,
you change the data that
was read in.

SaveChanges tells EF Core to check
for any changes to the data that has
been read in and write out those
changes to the database.

Lists all the book information

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 21Looking under the hood of EF Core

Figure 1.10 shows what is happening inside the EF Core library and follows its prog-
ress. This is a lot more complicated than the previous read example, so let me give you
some pointers on what to look for.

First, the read stage, at the top of the diagram, is similar to the read example and so
should be familiar. In this case, the query loads a specific book, using the book’s title as
the filter. The important change is point 2: that a tracking snapshot is taken of the data.

This change occurs in the update stage, in the bottom half of the diagram. Here you
can see how EF Core compares the loaded data with the tracking snapshot to find the
changes. From this, it sees that only the WebUrl has been updated, and from that it can
create an SQL command to update only that column in the right row.

LINQ query translation

var book = db.Books
 .Include(a => a.Author)
 .Single(b =>
 b.Title == "Quantum Networking");

book =

1. Create classes
2. Relationship fixup
3. Tracking snapshot

Database provider

Quantum Netw Entanged qua Future Person01-Jan-20574 3 null3

LINQ query
translation

cache

Database
SQL server

Database commands, e.g.,
SELECT TOP(2)
 Books.BookId
 etc. ...
WHERE Title = 'Q...

Book Author Book

OK

Author

Database
SQL server

1. Detect changes
2. Start transaction

3. End transaction

book.Author.WebUrl =
 “http://entangled.com”;
db.SaveChanges();

Database provider

BookId Title Description AvailableFrom Auth Auth Name WebUrl

1. The LINQ code is translated
 into SQL commands.

Get book

Update WebUrl

2. A tracking snapshot
 is created to hold
 the original values.

5. SQL command to
 update database is
 created and run.3. The Detect Changes stage

 works out what has changed.

4. A transaction is started.
 Either all changes are
 applied, or none are applied
 if there’s a problem.

Compares tracked classes with
snapshot to find changes.

Database commands, e.g.,
UPDATE Authors
 SET WebUrl = @p0
 WHERE AuthorId = @p1

Figure 1.10   A look inside EF Core as it executes and reads, followed by a database update

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

22 Chapter 1  Introduction to Entity FrameworkCore

I’ve described most of the steps, but here is a blow-by-blow account of how the author’s
WebUrl column is updated:

1	 The application uses a LINQ query to find a single book with its author infor-
mation. EF Core turns the LINQ query into an SQL command to read the rows
where the Title is Quantum Networking, returning an instance of both the Book
and the Author classes, and checks that only one row was found.

2	 The LINQ query doesn’t include the .AsNoTracking method you had in the pre-
vious read versions, so the query is considered to be a tracked query. Therefore, EF
Core creates a tracking snapshot of the data loaded.

3	 The code then changes the WebUrl property in the Author class of the book.
When SaveChanges is called, the Detect Changes stage compares all the classes
that were returned from a tracked query with the tracking snapshot. From this, it
can detect what has changed—in this case, just the WebUrl property of the Author
class that has a primary key of 3.

4	 As a change is detected, EF Core starts a transaction. Every database update is
done as an atomic unit: if multiple changes to the database occur, they either all
succeed, or they all fail. This is important, because a relational database could get
into a bad state if only part of an update was applied.

5	 The update request is converted by the database provider into an SQL command
that does the update. If the SQL command is successful, the transaction is com-
mitted and the SaveChanges method returns; otherwise, an exception is raised.

1.10	 Should you use EF Core in your next project?
Having given you a quick overview of what EF Core is and how it works, the next ques-
tion is whether you should start using EF Core in your project. For anyone planning
to switch to EF Core, the key question is, “Is EF Core sufficiently superior to the data
access library I currently use to make it worth using for our next project?” A cost is asso-
ciated with learning and adopting any new library, especially complex libraries such as
EF Core, so it’s a valid question.

I’ll give you a detailed answer, but as you can see, I think visually. Figure 1.11 captures
my view of EF Core’s strengths and weaknesses: good things to the right, and not-so-
good to the left. The width of each block shows the time period over which I think that
topic will improve—the wider the block, the longer this will take. It’s only my view, so
don’t take it as the truth, especially if you’re reading this book some time after I wrote
this section. I hope that it at least helps you to think through the issues that affect your
using EF Core in your project.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 23Should you use EF Core in your next project?

Not so good Neutral Good

EF Core 1.0.0 – Aug 2016
EF Core 2.0.0 – Aug 2017

New releases coming
roughly every six months.

Faster database libraries exist (e.g.,
ADO.NET), but they take a lot more

development effort. You can achieve
good performance with EF Core—

see chapters 12 and 13.

.NET standard 2.0
released Aug 2017

Stable
library

Fully
featured

ORM

Access
NuGet

libraries

Multiplatform
&

open source

Always high
performance

Well
supported

Rapid
development

Latest
generation

Figure 1.11   My view of the strengths and weaknesses of EF Core

Let me give you more details about each of the blocks in figure 1.11, starting with the
good stuff on the right.

1.10.1	 Latest generation

I swapped from Microsoft’s LINQ to SQL O/RM, which I liked, to EF4 because EF was
the future, and no further effort was being put into LINQ to SQL. It’s the same now
for EF Core. It’s where Microsoft is putting its effort, and it’s going to be extended and
well supported for many years. EF Core is much more lightweight and generally faster
than EF6.x, and I think the improvements in its API are good.

If you’re starting a new project, and .NET Core and EF Core have the necessary fea-
tures your project needs, then moving to EF Core means you won’t be left behind.

1.10.2	 Multiplatform and open source

As I said at the start of the chapter, EF Core is multiplatform-capable: you can develop
and run EF Core applications on Windows, Linux, and Apple. EF Core is also open
source, so you have access to the source code and an open list of issues and defects—
see https://github.com/aspnet/EntityFramework/issues.

1.10.3	 Rapid development

In a typical data-driven application, I write a lot of database access code, some of it
complex. I’ve found that EF6.x, and now EF Core, allow me to write data access code
quickly, and in a way that’s easy to understand and refactor. This is one of the main
reasons I use EF.

EF Core also is developer-friendly, and tends to create working queries even if I
didn’t write the most efficient code. Most properly formed LINQ queries work, though
maybe they won’t produce the best-performing SQL—and having a query that works is
a great start. Chapter 12 covers the whole area of performance tuning.

www.itbook.store/books/9781617294563

https://github.com/aspnet/EntityFramework/issues
https://itbook.store/books/9781617294563

24 Chapter 1  Introduction to Entity FrameworkCore

1.10.4	 Well supported

EF Core has good documentation (https://docs.microsoft.com/en-us/ef/core/index)
and, of course, you now have this book, which brings together the documentation with
deeper explanations and examples, plus patterns and practices to make you a great
developer. Because a large group of EF6.x developers will migrate to EF Core, the inter-
net will be full of blogs on EF Core, and Stack Overflow is likely to have the answers to
your problems already.

The other part of support is the development tools. Microsoft seems to have
changed focus by providing support for multiple platforms, but also has created a
cross-platform development environment that’s free—called Visual Studio Code
(https://code.visualstudio.com/). Microsoft has also made its main development
tool, Visual Studio, free for individual developers and small businesses; the Usage sec-
tion near the bottom of its web page at www.visualstudio.com/vs/community/ details
the terms. That’s a compelling offer.

1.10.5	 Access to NuGet libraries

Although some early difficulties arose with .NET Core 1, the introduction of .NET
Standard 2.0 in August 2017, with its .NET Framework compatibility mode, overcame much
of this, which is what EF Core 2.0 is built on. .NET Standard 2.0 allows (most) existing
NuGet libraries that use earlier .NET versions to be used. The only problem occurs if
the NuGet package uses an incompatible .NET feature, such as System.Reflection.
.NET Standard 2.0 also supports a much bigger range of system methods, which makes
it easier to convert a package to .NET Standard 2.0.

NOTE   If you want to stay on .NET 4.x, you can still use EF Core if you upgrade
to .NET 4.6.1 or higher. For more information, see http://mng.bz/sB0y.

1.10.6	 Fully featured O/RM

Entity Framework in general is a feature-rich implementation of an O/RM, and EF
Core continues this trend. It allows you to write complex data access code covering
most of the database features you’ll want to use. As I have moved through ADO.NET,
LINQ to SQL, EF 4 to 6, and now EF Core, I believe this is already a great O/RM.

But, at the time of writing this book, EF Core (version 2.0) still has some features yet
to be added. That’s why the block is so wide in figure 1.11. If you’re a user of EF6.x, you’ll
notice that some features available in EF6.x aren’t yet available in EF Core, but as time
goes on, these will appear. I suggest you look at the Feature Comparison page on the
EF Core docs site, http://mng.bz/ek4D, for the latest on what has been implemented.

1.10.7	 Stable library

When I started writing this book, EF Core wasn’t stable. It had bugs and missing fea-
tures. I found an error on using the year part of a DateTime in the version 1.0.0 release,
along with a whole load of other LINQ translation issues that were fixed in 1.1.0.

www.itbook.store/books/9781617294563

https://docs.microsoft.com/en-us/ef/core/index
https://code.visualstudio.com/
http://www.visualstudio.com/vs/community/
http://mng.bz/sB0y
http://mng.bz/ek4D
https://itbook.store/books/9781617294563

	 25Summary

By the time you read this, EF Core will be much better, but still changing, albeit at
a much slower rate. If you want something stable, EF6.x is a good O/RM, or there are
other database access technologies. The choice is yours.

1.10.8	 Always high-performance

Ah, the database performance issue. Look, I’m not going to say that EF Core is going to,
out of the box, produce blistering database access performance with beautiful SQL and
fast data ingest. That’s the cost you pay for quick development of your data access code:
all that “magic” inside EF Core can’t be as good as hand-coded SQL, but you might be
surprised how good it can be--see chapter 13

But you can do something about it. In my applications, I find only about 5% to 10%
of my queries are the key ones that need hand-tuning. Chapters 12 and 13 are dedi-
cated to performance tuning, plus part of chapter 14. These show that there’s a lot you
can do to improve the performance of EF Core database accesses.

If you’re worried about EF Core’s performance, I recommend you skim through chap-
ter 13, where you’ll progressively improve the performance of an application. You’ll see
that you can make an EF Core application perform well with little extra effort. I also have
two live demo sites, http://efcoreinaction.com/ and http://cqrsravendb.efcoreinaction
.com/; click the About menu to see how big the databases are.

1.11	 When should you not use EF Core?
I’m obviously pro EF Core, but I won’t use it on a client project unless it makes sense.
So, let’s look at a few blockers that might suggest you don’t use EF Core.

The first one is obvious: Does it support the database you want to use? You can find a
list of supported databases at https://docs.microsoft.com/en-us/ef/core/providers/.

The second factor is the level of performance you need. If you’re writing, say, a small,
RESTful service that needs to be quick and has a small number of database accesses, then
EF Core isn’t a good fit; you could use a fast, but development-time-hungry library because
there isn’t much to write. But if you have a large application, with lots of boring admin
accesses and a few important customer-facing accesses, then a hybrid approach could
work for you (see chapter 13 for an example of a mixed EF Core/Dapper application).

Summary
¡	EF Core is an object-relational mapper (O/RM) that uses Microsoft’s Language

Integrated Query (LINQ) to define database queries and return data into linked
instances of .NET classes.

¡	EF Core is designed to make writing code for accessing a database quick and intu-
itive. This O/RM has plenty of features to match many requirements.

¡	You’ve seen various examples of what’s happening inside EF Core. This will help
you understand what the EF Core commands described in later chapters can do.

www.itbook.store/books/9781617294563

http://efcoreinaction.com/
http://cqrsravendb.efcoreinaction.com/
http://cqrsravendb.efcoreinaction.com/
https://docs.microsoft.com/en-us/ef/core/providers/
https://itbook.store/books/9781617294563

26 Chapter 1  Introduction to Entity FrameworkCore

¡	There are many good reasons to consider using EF Core: it’s built on a lot of
experience, is well supported, and runs on multiple platforms.

¡	At the time this book was written, EF Core was at version 2.0 with added notes
about the next release, EF Core 2.1. Some features that you might want may not
be out yet, so check the online documentation for the latest state (https://docs.
microsoft.com/en-us/ef/core/index).

For readers who are familiar with EF6.x:

¡	Look for EF6 notes throughout the book. They mark differences between the EF
Core approach and EF6.x’s approach. Also check the summaries at the end of
each chapter, which will point you to the major EF Core changes in that chapter.

¡	Think of EF Core as a new library that someone has written to mimic EF6.x, but
that works in a different way. That will help you spot the EF Core improvements
that change the way you access a database.

¡	EF Core no longer supports the EDMX/database designer approach that earlier
forms of EF used.

www.itbook.store/books/9781617294563

https://docs.microsoft.com/en-us/ef/core/index
https://docs.microsoft.com/en-us/ef/core/index
https://itbook.store/books/9781617294563

EFC Core performance issue checklist: the section that discusses each issue is listed.

Speed performance issues Section

Have you picked the right feature to performance tune? 12.1.2

Are you loading too many columns? 12.4.1

Are you loading too many rows? 12.4.2

Are you using lazy loading? 12.4.3

Are you telling EF Core that your query is read-only? 12.4.4

Are you making too many calls to the database? 12.5.1

Are you calling SaveChanged multiple times? 12.5.2

Is part of your query being run in software? 12.5.3

Could you improve the SQL with a DbFunction? 12.5.4

Could pre-compiled queries help? 12.5.5

Have you checked the SQL that EF Core has produced? 12.5.6

Are you using the Find method to load via primary key? 12.5.7

Would an index help with sorting or filtering? 12.5.8

Do you have a mismatch on database types? 12.5.9

Are you making Detect Changes work too hard? 12.6.1

Would turning one DbContext into multiple DbContexts help? 12.6.2

700

1a. Straight EF Core

530 ms

390 ms

80 ms90 ms80 ms

230 ms

(ms)
Display 100 books, sort by votes

660 ms

1b. + DbFunction 2. Better SQL 3. Cached values

600

500

400

300

200

100

0

Display 100 books

The test data consists
of 100,000 books and
½ million votes.

Worked example of performance improvement with four stages, from Chapter 13

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

Jon P Smith

T
here’s a mismatch in the way OO programs and relational
databases represent data. Entity Framework is an object-
relational mapper (ORM) that bridges this gap, making it

radically easier to query and write to databases from a .NET
application. EF creates a data model that matches the structure
of your OO code so you can query and write to your database
using standard LINQ commands. It will even automatically
generate the model from your database schema.

Using crystal-clear explanations, real-world examples, and
around 100 diagrams, Entity Framework Core in Action teaches
you how to access and update relational data from .NET
applications. You’ll start with a clear breakdown of Entity
Framework, along with the mental model behind ORM.
Then you’ll discover time-saving patterns and best practices
for security, performance tuning, and even unit testing. As
you go, you’ll address common data access challenges and
learn how to handle them with Entity Framework.

What’s Inside
● Querying a relational database with LINQ
● Using EF Core in business logic
● Integrating EF with existing C# applications
● Applying domain-driven design to EF Core
● Getting the best performance out of EF Core
● Covers EF Core 2.0 and 2.1

For .NET developers with some awareness of how relational
databases work.

Jon P Smith is a full-stack developer with special focus on .NET
Core and Azure.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/entity-framework-core-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Entity Framework Core IN ACTION

MICROSOFT .NET

M A N N I N G

“An expertly written guide
to EF Core—quite

possibly the only reference
 you’ll ever need.”—Stephen Byrne, Action Point

“A solid book that deals
well with the topic at hand,
but also handles the wider

concerns around using EF in
real-world applications.”—Sebastian Rogers

Simple Innovations

“This is the next step
beyond the basics. It’ll help
 you get to the next level!”
—Jeff Smith, Agilify Automation

“Great book with excellent,
real-world examples.”

—Tanya Wilke, Sanlam

See first page

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	Entity Framework Core IN ACTION Sample Chapter
	brief contents
	1 Introduction to Entity FrameworkCore
	1.1 What you’ll learn from this book
	1.2 My “lightbulb moment” with Entity Framework
	1.3 Some words for existing EF6.x developers
	1.4 An overview of EF Core
	1.4.1 The downsides of O/RMs

	1.5 What about NoSQL?
	1.6 Your first EF Core application
	1.6.1 What you need to install
	1.6.2 Creating your own .NET Core console app with EF Core

	1.7 The database that MyFirstEfCoreApp will access
	1.8 Setting up the MyFirstEfCoreApp application
	1.8.1 The classes that map to the database—Book and Author
	1.8.2 The application’s DbContext

	1.9 Looking under the hood of EF Core
	1.9.1 Modeling the database
	1.9.2 Reading data from the database
	1.9.3 Updating the database

	1.10 Should you use EF Core in your next project?
	1.10.1 Latest generation
	1.10.2 Multiplatform and open source
	1.10.3 Rapid development
	1.10.4 Well supported
	1.10.5 Access to NuGet libraries
	1.10.6 Fully featured O/RM
	1.10.7 Stable library
	1.10.8 Always high-performance

	1.11 When should you not use EF Core?

