
M A N N I N G

Jon P Smith

Sample Chapter

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

Key topics covered in this book: the primary chapter covering each topic is listed first.
Key figures that go with the topic are also listed.

Topics Chapters Key figures

Setting up EF Core 1, 2, 6, 7, 8, 5 1.4, 1.5, 2.6

Query the database 2, 5, 10 2.5, 2.9,

Create, update, delete 3, 5, 7, 10 3.1, 3.2, 3.3, 3.4

Business logic 4, 5, 10 4.2, 5.1, 5.4

ASP.NET Core 5, 2 5.1, 5.4

Dependency injection 5, 14, 15 5.2, 5.3

Async/await 5, 12 5.8, 5.9, 5.10

Configure non-relational 6 6.1, 6.2

Configure relationships 7, 8 7.1, 7.2, 7.3, 7.4

Configure table mappings 7 7.10, 7.11

Concurrency issues 8, 13 8.3, 8.4, 8.5, 8.6, 8.7

How EF Core works inside 1, 9, 14 1.6, 1.8, 1.10, 9.1

Design patterns 10, 4, 12 5.1, 10.1, 10.5, 10.6, 14.1, 14.2

Domain-driven design 10, 4 4.2, 10.5, 10.6

Database migrations 11, 5 11.1, 11.2, 11.3, 11.4, 11.5, 11.6

Performance tuning 12, 13, 14 12.1, 11.2, 11.4, 13.7, 14.5

Different databases 14

Data validation 6, 4, 10 10.7

Unit testing 15 15.2

LINQ language Appendix A, 2 A.2, A.1

Application’s DbContext
property access

A series of LINQ and/or
EF Core commands

An execute
command

context.Books.Where(p => p.Title.StartsWith(”Quantum”).ToList()

An example of an Entity Framework Core database query

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

Entity Framework Core
in Action

by Jon P Smith

Chapter 4

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

v

brief contents
Part 1	 Getting started... 1

1	 ■	 Introduction to Entity FrameworkCore  3
2	 ■	 Querying the database  27
3	 ■	 Changing the database content  57
4	 ■	 Using EF Core in business logic  88
5	 ■	 Using EF Core in ASP.NET Core web applications  115

Part 2	 Entity Framework in depth.....................................145
6	 ■	 Configuring nonrelational properties  147
7	 ■	 Configuring relationships  174
8	 ■	� Configuring advanced features and

handling concurrency conflicts  206
9	 ■	 Going deeper into the DbContext  238

Part 3	 �Using Entity Framework Core in real-world
applications...269

10	 ■	 Useful software patterns for EF Core applications  271
11	 ■	 Handling database migrations  300
12	 ■	 EF Core performance tuning  332
13	 ■	 A worked example of performance tuning  358
14	 ■	 Different database types and EF Core services  390
15	 ■	 Unit testing EF Core applications  421

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

88

4Using EF Core
in business logic

This chapter covers
¡	Understanding business logic and its use of

EF Core

¡	Using a pattern for building business logic

¡	Working through a business logic example

¡	Adding validation of data before it’s written to
the database

¡	Using transactions to daisy-chain code
sequences

Real-world applications are built to supply a set of services, ranging from holding
a simple list of things on your computer to managing a nuclear reactor. Every real-
world problem has a set of rules, often referred to as business rules, or by the more
generic name domain rules (this book uses business rules).

The code you write to implement a business rule is known as business logic or
domain logic. Because business rules can be complex, the business logic you write can
also be complex. Just think about all the checks and steps that should be done when
you order something online.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 89Why is business logic so different from other code?

Business logic can range from a simple check of status to massive artificial intelligence
(AI) code, but in nearly all cases, business logic needs access to a database. Although the
approaches in chapters 2 and 3 all come into play, the way you apply those EF Core com-
mands in business logic can be a little different, which is why I’ve written this chapter.

This chapter describes a pattern for handling business logic that compartmentalizes
some of the complexity in order to reduce the load on you, the developer. You’ll also
learn several techniques for writing business logic that uses EF Core to access the data-
base. These techniques range from using software classes for validation to standardizing
your business logic’s interface in order to make frontend code simpler. The overall aim is
to help you quickly write accurate, understandable, and well-performing business logic.

4.1	 Why is business logic so different from other code?
Our CRUD code in chapters 2 and 3 adapted and transformed data as it moved into
and out of the database. Some of that code got a little complex, and I showed you the
Query Object pattern to make a large query more manageable. Convesely, business
logic can reach a whole new level of complexity. Here’s a quote from one of the lead-
ing books on writing business logic:

The heart of software is its ability to solve domain (business)-related problems for its users.
All other features, vital though they may be, support this basic purpose. When the domain
is complex, this is a difficult task, calling for the concentrated effort of talented and skilled
people.

Eric Evans, Domain-Driven Design1

Over the years, I’ve written quite a bit of complex business logic, and I’ve found Eric
Evan’s comment “this is a difficult task” to be true. When I came back to software devel-
opment after a long gap, the first applications I wrote were for geographic modeling
and optimization, which have complex business rules. The business code I wrote ended
up being hundreds of lines long, all intertwined. The code worked, but it was hard to
understand, debug, and maintain.

So, yes, you can write business logic just like any other bit of code, but there’s a case
for a more thought-through approach. Here are a few of the questions you should ask
when writing business logic:

¡	Do you fully understand the business rule you’re implementing?
¡	Are there any edge cases or exceptions that you need to cover?
¡	How can you prove that your implementation is correct?
¡	How easy will it be to change your code if the business rules change?
¡	Will you, or someone else, understand the code if it needs changing later?

1	 Domain-Driven Design: Tackling Complexity in the Heart of Software was published in 2003 by
Addison-Wesley Professional.

4

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

90 Chapter 4  Using EF Core in business logic

4.2	 Our business need—processing an order for books
Let’s start by describing the business issue that we want to implement. The example
you’ll use is handling a user’s order for books. Figure 4.1 shows the checkout page of
our book app. You’re going to implement the code that runs when the user clicks the
Purchase button.

Figure 4.1   The checkout page of the book app. Clicking Purchase
calls the business logic to create the order.

NOTE    You can try the checkout process on the live site at http://efcoreinaction
.com/. The site uses an HTTP cookie to hold your basket and your identity
(which saves you from having to log in). No money needed—as the Terms and
Conditions says, you aren’t actually going to buy a book.

4.2.1	 The business rules that you need to implement

The following list gives the rules set for this business need. As I’m sure you can imag-
ine, a real order-processing piece of business logic would have a lot more steps, espe-
cially on payment and shipping, but these six rules are enough for this example:

1	 The Terms and Conditions box must be ticked.

2	 An order must include at least one book.

3	 A book must be available for sale, as defined by the price being positive in value.

4	 The price of the book must be copied to the order, because the price could
change later.

5	 The order must remember the person who ordered the books.

6	 Good feedback must be provided to the user so they can fix any problems in the
order.

www.itbook.store/books/9781617294563

http://efcoreinaction.com/
http://efcoreinaction.com/
https://itbook.store/books/9781617294563

	 91Using a design pattern to help implement business logic

The quality and quantity of the business rules will change with the project. The preceding
rules aren’t bad, but they don’t cover things such as what to do if the book selected by the
user has been removed (unlikely, but possible), nor how to weed out malicious input. This
is where you, as a developer, need to think through the problem and try to anticipate issues.

4.3	 Using a design pattern to help implement business logic
Before you start writing code to process an order, you should describe a pattern that
you’re going to follow. This pattern helps you to write, test, and performance-tune
your business logic. The pattern is based on the domain-driven design (DDD) con-
cepts expounded by Eric Evans, but where the business logic code isn’t inside the
entity classes. This is known as a transactions script or procedural pattern of business logic
because the code is contained in a standalone method.

This procedural pattern is easier to understand and uses the basic EF Core com-
mands you have already seen. But many see the procedural approach as a DDD
antipattern, known as an anemic domain model (see www.martinfowler.com/bliki/Ane-
micDomainModel.html). After you have learned about EF Core’s backing field feature
and the DDD entity pattern, you will extend this approach to a fully DDD design in
section 10.4.2.

This section, and section 10.4, present my interpretation of Eric Evans’ DDD
approach, and plenty of other ways for applying DDD with EF. Although I offer
my approach, which I hope will help some of you, don’t be afraid to look for other
approaches.

4.3.1	 Five guidelines for building business logic that uses EF Core

The following list explains the five guidelines that make up the business logic pattern
you’ll be using in this chapter. Most of the pattern comes from DDD concepts, but some
are the result of writing lots of complex business logic and seeing areas to improve.

1	 The business logic has first call on how the database structure is defined. Because the
problem you’re trying to solve (called the domain model by Eric Evans) is the
heart of the problem, it should define the way the whole application is designed.
Therefore, you try to make the database structure, and the entity classes, match
your business logic data needs as much as you can.

2	 The business logic should have no distractions. Writing the business logic is difficult
enough in itself, so you isolate it from all the other application layers, other than
the entity classes. When you write the business logic, you must think only about
the business problem you’re trying to fix. You leave the task of adapting the data
for presentation to the service layer in your application.

3	 Business logic should think it’s working on in-memory data. This is something Eric
Evans taught me: write your business logic as if the data is in-memory. Of course,
you need to have some load and save parts, but for the core of your business
logic, treat the data, as much as is practical, as if it’s a normal, in-memory class or
collection.

www.itbook.store/books/9781617294563

https://www.martinfowler.com/bliki/AnemicDomainModel.html
https://www.martinfowler.com/bliki/AnemicDomainModel.html
https://itbook.store/books/9781617294563

92 Chapter 4  Using EF Core in business logic

4	 Isolate the database access code into a separate project. This fairly new rule came out
of writing an e-commerce application with complex pricing and delivery rules.
Before this, I used EF directly in my business logic, but I found that it was hard
to maintain and difficult to performance-tune. Instead, you should use another
project, which is a companion to the business logic, to hold all the database
access code.

5	 The business logic shouldn’t call EF Core’s SaveChanges directly. You should have a class
in the service layer (or a custom library) whose job it is to run the business logic.
If there are no errors, this class calls SaveChanges. The main reason for this rule
is to have control of whether to write out the data, but there are other benefits I’ll
describe later.

Figure 4.2 shows the application structure you’ll create to help you apply these guide-
lines when implementing business logic. In this case, you’ll add two new projects to the
original book app structure described in chapter 2:

¡	The pure business logic project, which holds the business logic classes that
work on the in-memory data provided by its companion business database
access methods.

¡	The business database access project, which provides a companion class for each
pure business logic class that needs database access. Each companion class makes
the pure business logic class think it’s working on an in-memory set of data.

Figure 4.2 has five numbers, with comments, that match the five guidelines listed
previously.

SQL
server

1. The database format
 is defined by the
 business logic.

2. This project contains the
 pure business logic code.
 It has no distractions.

3. The business logic works
on in-memory data.

4. This project isolates all the database
 access that the business logic needs.

5. The service layer is in charge of running
the business logic and calling SaveChanges.

ASP.NET
Core
web
app

Service
layer

Data
access

HTML
pages

Pure
business

logic

Business
database
access

JavaScript
/Ajax

Figure 4.2   The projects inside our book app, with two new projects for handling business logic

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 93Implementing the business logic for processing an order

Does all business logic in an application live in the BizLogic layer?
In real-world applications, especially ones that interact with a human being, you want
the user experience to be as great as possible. As a result, the business logic may move
outside the BizLogic layer into other layers, especially the presentation layer. So, no, all
business logic in an application doesn’t live in the BizLogic layer.

As a developer, I find it useful to separate the distinct parts of the business rules that my
clients present into three types:

¡	Manipulation of a state or data —For instance, creating an order
¡	Validation rules —For instance, checking that a book is available to buy
¡	A sequence or flow —For instance, the steps in processing an order

The manipulation of a state or data is the core business logic. The code for this
manipulation can be complicated and may require a lot of design and programming
effort to write. This chapter focuses on server-side business logic, but with sophisti-
cated frontend JavaScript libraries, some data or state manipulation may move out
to the frontend.

Validation of data is ubiquitous, so you find validation code cropping up in every layer
of your application. In human-facing applications, I generally move the validation as far
forward as possible so that the user gets feedback quickly. But, as you’ll see in the exam-
ples, plenty of extra validation can exist in the business logic.

A sequence or flow is often shown to a human user as a sequence of pages or steps in a
wizard, but backed up by the data manipulations that each stage needs done by some
sort of CRUD and/or business logic.

None of this invalidates the approach of having a specific area in your server-side appli-
cation dedicated to business logic. There’s plenty of complex code to write, and having a
zone where business rules are the number one focus helps you to write better code.

4.4	 Implementing the business logic for processing an order
Now that I’ve described the business need, with its business rules, and the pattern
you’re going to use, you’re ready to write code. The aim is to break the implementa-
tion into smaller steps that focus on specific parts of the problem at hand. You’ll see
how this business logic pattern helps you to focus on each part of the implementation
in turn.

You’re going to implement the code in sections that match the five guidelines listed
in section 4.3.1. At the end, you’ll see how this combined code is called from the ASP
.NET Core application that the book app is using.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

94 Chapter 4  Using EF Core in business logic

4.4.1	 Guideline 1: Business logic has first call on defining
the database structure

This guideline says that the design of the database should follow the business needs—
in this case, represented by six business rules. The three rules that are relevant to the
database design are as follows:

¡	An order must include at least one book (implying there can be more).
¡	The price of the book must be copied to the order, because the price could

change later.
¡	The order must remember the person who ordered the books.

From this, you come up with a fairly standard design for an order, with an Order entity
class that has a collection of LineItem entity classes—a one-to-many relationship. The
Order entity class holds the information about the person placing the order, while each
LineItem entity class holds a reference to the book order, how many, and at what price.

Figure 4.3 shows what these two tables, LineItem and Orders, look like in the data-
base. To make the image more understandable, I show the Books table (in gray) that
each LineItem row references.

Different users can buy a book, so there can
be zero to many LineItems linked to a Book.

An Order consists of one
or more LineItems.

Books

BookId

Title
Description
PublishedOn
Publisher
Price
ImageUrl

PK

LineItem

LineItemId

LineNum
NumBooks
BookPrice
BookId
OrderId

FK1
FK2

PK

Orders

OrderId

DateOrderedUtc
CustomerName

PK1 1

0..*
1..*

Figure 4.3   The new LineItem and Orders tables added to allow orders for books to be taken

NOTE   The Orders table name is plural because you added a DbSet<Order>
Orders property to the application’s DbContext, and EF Core, by default, uses
the property name, Orders, as the table name. You haven’t added a property for
the LineItem entity class because it’s accessed via the Order’s relational link. In
that case, EF Core, by default, uses the class name, LineItem, as the table name.

4.4.2	 Guideline 2: Business logic should have no distractions

Now you’re at the heart of the business logic code, and the code here will do most of
the work. It’s going to be the hardest part of the implementation that you write, but
you want to help yourself by cutting off any distractions. That way, you can stay focused
on the problem.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 95Implementing the business logic for processing an order

You do this by writing the pure business code with reference to only two other parts
of the system: the entity classes shown in figure 4.3, Order, LineItem, and Book, and
your companion class that will handle all the database accesses. Even with this minimi-
zation of scope, you’re still going to break the job into a few parts.

Checking for errors and feeding them back to the user—validation

The business rules contain several checks, such as “The Terms and Conditions box
must be ticked.” And they also say you need to give good feedback to the person, so
that they can fix any problems and complete their purchase. These sorts of checks,
called validation, are common throughout an application.

To help, you’ll create a small abstract class called BizActionErrors, shown in list-
ing 4.1. This provides a common error-handling interface for all your business logic.
This class contains a C# method called AddError that the business logic can call to add
an error, and an immutable list (a list that can’t be changed) called Errors, which holds
all the validation errors found while running the business logic.

You’ll use a class called ValidationResult for storing each error because it’s the
standard way of returning errors with optional, additional information on what exact
property the error was related to. Using the ValidationResult class instead of a simple
string fits in with another validation method you’ll add later in this chapter.

NOTE    You have two main approaches to handling the passing of errors back
up to higher levels. One is to throw an exception when an error occurs, and
the other is to pass back the errors to the caller. Each has its own advantages
and disadvantages; this example uses the second approach—passing the errors
back for the higher level to check.

Listing 4.1   Abstract base class providing error handling for your business logic

public abstract class BizActionErrors
{
 private readonly List<ValidationResult> _errors
 = new List<ValidationResult>();

 public IImmutableList<ValidationResult>
 Errors => _errors.ToImmutableList();

 public bool HasErrors => _errors.Any();

 protected void AddError(string errorMessage,
 params string[] propertyNames)
 {
 _errors.Add(new ValidationResult
 (errorMessage, propertyNames));
 }
}

Abstract class that provides error
handling for business logic

Holds the list of validation
errors privately

Provides a public, immutable
list of errors

Creates a bool HasErrors to
make checking for errors easier

Allows a simple error message,
or an error message with
properties linked to it, to be
added to the errors list.

Validation result has an error message and a
possibly empty list of properties it’s linked to.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

96 Chapter 4  Using EF Core in business logic

Using this abstract class means your business logic is easier to write and all your busi-
ness logic has a consistent way of handling errors. The other advantage is that you can
change the way errors are handled internally without having to change any of your
business logic code.

Your business logic for handling an order does a lot of validation; that’s typical for an
order, because it often involves money. Other business logic may not do any tests, but
the base class BizActionErrors will automatically return a HasErrors of false, which
means all business logic can be dealt with in the same way.

4.4.3	 Guideline 3: Business logic should think it’s working on
in-memory data

Now you’ll start on the main class, PlaceOrderAction, that contains the pure business
logic. It relies on the companion class, PlaceOrderDbAccess, to present the data as an
in-memory set (in this case, a dictionary) and to take the created order and write it to
the database. Although you’re not trying to hide the database from the pure business
logic, you do want it to work as if the data were normal .NET classes.

Listing 4.2 shows the PlaceOrderAction class, which inherits the abstract class
BizActionErrors to handle returning error messages to the user. It also uses two meth-
ods that the companion PlaceOrderDbAccess class provides:

¡	FindBooksByIdsWithPriceOffers—Takes the list of BookIds and returns a dic-
tionary with the BookId as the key and the Book entity class as the value (null if
no book found), and any associated PriceOffers

¡	Add—Adds the Order entity class with its LineItem collection to the database

Listing 4.2   PlaceOrderAction class contains build-a-new-order business logic

public class PlaceOrderAction :
 BizActionErrors,
 IBizAction<PlaceOrderInDto,Order>
{
 private readonly IPlaceOrderDbAccess _dbAccess;

 public PlaceOrderAction(IPlaceOrderDbAccess dbAccess)
 {
 _dbAccess = dbAccess;
 }

 public Order Action(PlaceOrderInDto dto)
 {
 if (!dto.AcceptTAndCs)
 {
 AddError(
"You must accept the T&Cs to place an order.");
 return null;
 }

Provides all the error handling
required for the business logic

Makes the business logic conform to a
standard interface for business logic that
has an input and an output

Needs the companion
PlaceOrderDbAccess

class to handle all the
database accesses

The method called by BizRunner
to execute this business logic.

You start with basic
validation.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 97Implementing the business logic for processing an order

 if (!dto.LineItems.Any())
 {
 AddError("No items in your basket.");
 return null;
 }

 var booksDict =
 _dbAccess.FindBooksByIdsWithPriceOffers
 (dto.LineItems.Select(x => x.BookId));
 var order = new Order
 {
 CustomerName = dto.UserId,
 LineItems =
 FormLineItemsWithErrorChecking
 (dto.LineItems, booksDict)
 };

 if (!HasErrors)
 _dbAccess.Add(order);

 return HasErrors ? null : order;
 }

 private List<LineItem> FormLineItemsWithErrorChecking
 (IEnumerable<OrderLineItem> lineItems,
 IDictionary<int,Book> booksDict)

 {
 var result = new List<LineItem>();
 var i = 1;

 foreach (var lineItem in lineItems)
 {
 if (!booksDict.
 ContainsKey(lineItem.BookId))
 throw new InvalidOperationException
("An order failed because book, " +
 $"id = {lineItem.BookId} was missing.");

 var book = booksDict[lineItem.BookId];
 var bookPrice =
 book.Promotion?.NewPrice ?? book.Price;
 if (bookPrice <= 0)
 AddError(
$"Sorry, the book '{book.Title}' is not for sale.");
 else
 {
 //Valid, so add to the order

You start with basic
validation.

You ask the PlaceOrderDbAccess class to find all the
books you need, with any optional PriceOffers.

Creates the Order entity class.
Calls the private method

FormLineItemsWithErrorChecking,
which creates the LineItems.

Adds the order to the database
only if there are no errors

If there are errors, you return null;
otherwise, you return the order.

Private method handles the
creation of each LineItem entity

class for each book ordered.

Goes through each book type
that the person has ordered

Treats a book being
missing as a system
error and throws an
exception.

Calculates the price at
the time of the order

More validation where
you check that the book
can be sold

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

98 Chapter 4  Using EF Core in business logic

 result.Add(new LineItem
 {
 BookPrice = bookPrice,
 ChosenBook = book,
 LineNum = (byte)(i++),
 NumBooks = lineItem.NumBooks
 });
 }
 }
 return result;
 }
}

You’ll notice that you add another check that the book selected by the person is still in
the database. This wasn’t in the business rules, but this could occur, especially if malicious
inputs were provided. In this case, you make a distinction between errors that the user
can correct, which are returned by the Errors property, and system errors (in this case, a
book being missing), for which you throw an exception that the system should log.

You may have seen at the top of the class that you apply an interface in the form of
IBizAction<PlaceOrderInDto,Order>. This ensures that this business logic class con-
forms to a standard interface you use across all your business logic. You’ll see this later
when you create a generic class to run and check the business logic.

4.4.4	 Guideline 4: Isolate the database access code into a
separate project

Our guideline says to put all the database access code that the business logic needs
into a separate, companion class. This ensures that the database accesses are all in one
place, which makes testing, refactoring, and performance tuning much easier.

Another benefit that a reader of my blog noted is that this guideline can help if you’re
working with an existing, older database. In this case, the database entities may not be a
good match for the business logic you want to write. If so, you can use the BizDbAccess
methods as an Adapter pattern that converts the older database structure to a form more
easily processed by your business logic.

DEFINITION    The Adapter pattern converts the interface of a class into another
interface that the client expects. This pattern lets classes work together that
couldn’t otherwise do so because of incompatible interfaces. See https://
sourcemaking.com/design_patterns/adapter.

You make sure that your pure business logic, class PlaceOrderAction, and your busi-
ness database access class PlaceOrderDbAccess are in separate projects. That allows
you to exclude any EF Core libraries from the pure business logic project, which ensures
that all database access is done via the companion class, PlaceOrderDbAccess. In my
own projects, I split the entity classes into a separate project from the EF code. Then
my business logic accesses only the project containing the entity classes, and not

All is OK, so now you can
create the LineItem entity
class with the details.

Returns all the LineItems
for this order

www.itbook.store/books/9781617294563

https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/adapter
https://itbook.store/books/9781617294563

	 99Implementing the business logic for processing an order

the project that contains EF Core. For simplicity, the example code holds the entity
classes in the same project as the application’s DbContext. Listing 4.3 shows our
PlaceOrderDbAccess class, which implements two methods to provide the database
accesses that the pure business logic needs:

1	 FindBooksByIdsWithPriceOffers method, which finds and loads the Book entity
class, with any optional PriceOffer.

2	 Add method, which adds the finished Order entity class to the application’s
DbContext property, Orders, so it can be saved to the database after EF Core’s
SaveChanges method is called.

Listing 4.3   PlaceOrderDbAccess, which handles all the database accesses

public class PlaceOrderDbAccess : IPlaceOrderDbAccess
{
 private readonly EfCoreContext _context;

 public PlaceOrderDbAccess(EfCoreContext context)
 {
 _context = context;
 }

 public IDictionary<int, Book>
 FindBooksByIdsWithPriceOffers
 (IEnumerable<int> bookIds)
 {
 return _context.Books
 .Where(x => bookIds.Contains(x.BookId))
 .Include(r => r.Promotion)
 .ToDictionary(key => key.BookId);
 }

 public void Add(Order newOrder)
 {
 _context.Add(newOrder);
 }
}

The PlaceOrderDbAccess class implements an interface called IPlaceOrderDbAccess,
which is how the PlaceOrderAction class accesses this class. In addition to helping with
dependency injection, which is covered in chapter 5, using an interface allows you to
replace the PlaceOrderDbAccess class with a test version, a process called mocking, when
you’re unit testing the PlaceOrderAction class. Section 15.8 covers this in more detail.

BizDbAccess needs the
application’s DbContext
to access the database,
so it’s provided via the
constructor

Finds all the books that
the user wants to buy

BizLogic hands it a collection of BookIds,
which the checkout has provided.

Finds a book, if
present, for each ID

Includes any optional promotion, as the BizLogic
needs that for working out the price

Returns the result as a
dictionary to make it
easier for the BizLogic
to look them up

Adds the new order that the BizLogic built into
the DbContext’s Orders DbSet collection

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

100 Chapter 4  Using EF Core in business logic

4.4.5	 Guideline 5: Business logic shouldn’t call EF Core’s SaveChanges

The final rule says that the business logic doesn’t call EF Core’s SaveChanges, which
would update the database directly. There are a few reasons for this. First, you consider
the service layer as the main orchestrator of database accesses: it’s in command of what
gets written to the database. Second, the service layer calls SaveChanges only if the
business logic returns no errors.

To help you run your business logic, I’ve built a series of simple classes that I use to
run any business logic; I call these BizRunners. They’re generic classes, able to run busi-
ness logic with different input and output types. Different variants of the BizRunner
can handle different input/output combinations and async methods (chapter 5 covers
async/await with EF Core), plus some with extra features, which are covered later in this
chapter.

Each BizRunner works by defining a generic interface that the business logic
must implement. Your PlaceOrderAction class in the BizLogic project runs an
action that expects a single input parameter of type PlaceOrderInDto and returns
an object of type Order. Therefore, the PlaceOrderAction class implements the
interface as shown in the following listing, but with its input and output types
(IBizAction<PlaceOrderInDto,Order>).

Listing 4.4   The interface that allows the BizRunner to execute business logic

public interface IBizAction<in TIn, out TOut>
{
 IImmutableList<ValidationResult>
 Errors { get; }
 bool HasErrors { get; }
 TOut Action(TIn dto);
}

By having the business logic class implement this interface, the BizRunner knows how
to run that code. The BizRunner itself is small, as you’ll see in the following listing,
which shows that it called RunnerWriteDb<TIn, TOut>. This BizRunner variant is
designed to work with business logic that has an input, provides an output, and writes
to the database.

Listing 4.5   The BizRunner that runs the business logic and returns a result or errors

public class RunnerWriteDb<TIn, TOut>
{
 private readonly IBizAction<TIn, TOut> _actionClass;
 private readonly EfCoreContext _context;

 public IImmutableList<ValidationResult>
 Errors => _actionClass.Errors;
 public bool HasErrors => _actionClass.HasErrors;

BizAction has both a TIn and a TOut

Returns the error information
from the business logic

The action that the
BizRunner will call

Error information from the business logic is
passed back to the user of the BizRunner

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 101Implementing the business logic for processing an order

 public RunnerWriteDb(
 IBizAction<TIn, TOut> actionClass,
 EfCoreContext context)
 {
 _context = context;
 _actionClass = actionClass;
 }

 public TOut RunAction(TIn dataIn)
 {
 var result = _actionClass.Action(dataIn);
 if (!HasErrors)
 _context.SaveChanges();

 return result;
 }
}

The BizRunner pattern hides the business logic and presents a common interface/
API that other classes can use. The caller of the BizRunner doesn’t need to worry about
EF Core, because all the calls to EF Core are in the BizDbAccess code or in the Biz-
Runner. That in itself is reason enough to use it, but, as you’ll see later, this BizRunner
pattern allows you to create other forms of BizRunner that add extra features.

NOTE   You may want to check out an open source library I created, called
EfCore.GenericBizRunner. This library, which is available as a NuGet package,
provides a more sophisticated version of the BizRunner described in this chap-
ter; see https://github.com/JonPSmith/EfCore.GenericBizRunner for more
information.

One important point about the BizRunner is that it should be the only method allowed
to call SaveChanges during the lifetime of the application’s DbContext. Why? Because
some business logic might add/update an entity class before an error is found. To stop
these changes from being written to the database, you’re relying on SaveChanges not
being called at all during the lifetime of the application’s DbContext.

In an ASP.NET application, controlling the lifetime of the application’s DbContext is
fairly easy to manage, because a new instance of the application’s DbContext is created
for each HTTP request. In longer-running applications, this is a problem. In the past,
I’ve avoided this by making the BizRunner create a new, hidden instance of the appli-
cation’s DbContext so that I can be sure no other code is going to call SaveChanges on
that DbContext instance.

4.4.6	 Putting it all together—calling the order-processing business logic

Now that you’ve learned all the parts of the business logic pattern, you’re ready to see
how to call this code. Listing 4.6 shows the PlaceOrderService class in the service
layer, which calls the BizRunner to execute the PlaceOrderAction that does the order
processing. If the business logic is successful, the code clears the checkout cookie and

Handles business logic that conforms to
the IBizAction<TIn, TOut> interface.

Calls RunAction in your service layer, or
in your presentation layer if the data
comes back in the right form

Runs the business
logic you gave it

If there are no errors, it calls
SaveChanges to execute any add,
update, or delete methods.

Returns the result that the
business logic returned

www.itbook.store/books/9781617294563

https://github.com/JonPSmith/EfCore.GenericBizRunner
https://itbook.store/books/9781617294563

102 Chapter 4  Using EF Core in business logic

returns the Order entity class key, so that a confirmation page can be shown to the user.
If the order fails, it doesn’t clear the checkout cookie, and the checkout page is shown
again, with the error messages, so that the user can correct any problems and retry.

Listing 4.6   The PlaceOrderService class that calls the business logic

public class PlaceOrderService
{

 private readonly CheckoutCookie _checkoutCookie;
 private readonly
 RunnerWriteDb<PlaceOrderInDto, Order> _runner;

 public IImmutableList<ValidationResult>
 Errors => _runner.Errors;

 public PlaceOrderService(
 IRequestCookieCollection cookiesIn,
 IResponseCookies cookiesOut,
 EfCoreContext context)
 {
 _checkoutCookie = new CheckoutCookie(
 cookiesIn, cookiesOut);
 _runner =
 new RunnerWriteDb<PlaceOrderInDto, Order>(
 new PlaceOrderAction(
 new PlaceOrderDbAccess(context)),
 context);
 }

 public int PlaceOrder(bool acceptTAndCs)

 {
 var checkoutService = new CheckoutCookieService(
 _checkoutCookie.GetValue());

 var order = _runner.RunAction(
 new PlaceOrderInDto(acceptTAndCs,
 checkoutService.UserId,
 checkoutService.LineItems));

 if (_runner.HasErrors) return 0;

Handles the checkout cookie. This is a cookie,
but with a specific name and expiry time.

The BizRunner you’ll use to execute
the business logic. It’s of type
RunnerWriteDb<TIn, TOut>.

Holds any errors sent back from the business
logic. The caller can use these to redisplay the
page and show the errors that need fixing.

The constructor needs access to the
cookies, both in and out, and the
application’s DbContext.

Creates a
CheckoutCookie
using the cookie

in/out access parts
from ASP.NET Core

Creates the BizRunner with the business logic,
PlaceOrderAction, that you want to run. PlaceOrderAction

needs PlaceOrderDbAccess when it’s created.

The method you call from the ASP.NET action that’s
called when the user clicks the Purchase button

Encodes/decodes the checkout data into a string
that goes inside the checkout cookie.

You’re ready to run the business logic,
handing it the checkout information in
the format that it needs.

If the business logic has any errors,
you return immediately. The checkout
cookie hasn’t been cleared, so the user
can try again.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 103Implementing the business logic for processing an order

 //successful, so clear the cookie line items
 checkoutService.ClearAllLineItems();
 _checkoutCookie.AddOrUpdateCookie(
 checkoutService.EncodeForCookie());

 return order.OrderId;
 }
}

In addition to running the business logic, this class acts as an Adapter pattern: it trans-
forms the data from the checkout cookie into a form that the business logic accepts,
and on a successful completion, it extracts the Order primary key, OrderId, to send
back to the ASP.NET Core presentation layer.

This Adapter pattern role is typical of the code that calls the business logic, because
a mismatch often occurs between the presentation layer format and the business logic
format. This mismatch can be small, as in this example, but you’re likely to need to do
some form of adaptation in all but the simplest calls to your business logic. That’s why
my more sophisticated EfCore.GenericBizRunner library has a built-in Adapter pattern
feature.

4.4.7	 Any disadvantages of this business logic pattern?

I find the business logic pattern I’ve described useful, yet I’m aware of a few downsides,
especially for developers who are new to a DDD approach. This section presents some
thoughts to help you evaluate whether this approach is for you.

The first disadvantage is that the pattern is more complicated than just writing a class
with a method that you call to get the job done. This business logic pattern relies on
interfaces and code/libraries such as the BizRunners, and at least four projects in your
solution. For small applications, this can be overkill.

The second disadvantage is, even in medium-sized projects, you can have simple
business logic that may be only 10 lines long. In this case, is it worth creating both the
pure business logic class and the companion data access class? For small business logic
jobs, maybe you should create one class that combines the pure business logic and the
EF Core calls. But be aware: if you do this to cut corners, it can come back and bite you
when you need to refactor.

There’s also a development cost inherent in the business logic pattern’s guideline 2,
the “no distraction” rule. The data that the business logic takes in and returns can be
different from what the caller of the business logic needs. For instance, in our exam-
ple, the checkout data was held in an HTTP cookie; the business logic has no concept
of what a cookie is (nor should it), so the calling method had to convert the cookie
content into the format that the business logic wanted. Therefore, the Adapter pattern
is used a lot in the service layer to transform data between the business logic and the
presentation layer—which is why I included an Adapter pattern feature in the EfCore
.GenericBizRunner library.

The order was placed successfully.
You therefore clear the checkout
cookie of the order parts.

Returns the OrderId, the primary key of the order,
which ASP.NET uses to show a confirmation page
that includes the order details

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

104 Chapter 4  Using EF Core in business logic

Having listed all these disadvantages, I still find this approach far superior to my earlier
approach of considering business logic as “just another piece of code.” In chapter 10
I further enhance this business logic pattern once you have learned how to apply the
DDD principals to the entity classes themselves. DDD-styled entity classes are “locked
down”; that is, their properties have private setters and all creates/updates are done via
methods inside the entity class. These methods can contain some of your business logic,
which improves the overall robustness of your solution because no one can bypass your
business logic by simply altering properties in the entity class. After you have learned
about the features needed to truly lock down an entity class, I recommend you read
about the business logic enhancements in section 10.4.2.

4.5	 Placing an order on the book app
Now that we’ve covered the business logic for processing an order, the BizRunner, and
the PlaceOrderService that executes the business logic, let’s see how to use these in
the context of the book app. Figure 4.4 shows the process, from the user clicking the
Purchase button through running the business logic and returning a result.

I don’t go into the presentation code in detail here, as this chapter is about using EF
Core in business logic, but I do cover some of this in the next chapter, which is about
using EF Core in ASP.NET Core applications.

public class CheckoutController
{
 public IActionResult PlaceOrder(...)
 {
 ...
 var orderId = service.PlaceOrder(...);

public class PlaceOrderService
{
 public int PlaceOrder(...)
 {
 ...
 var orderId = _runner.RunAction(...);

public class RunnerWriteDb<TIn, TOut>
{
 public TOut RunAction(TIn dataIn)
 {
 ...
 var orderId = _actionClass.Action(...)

Presentation Layer (ASP.NET Core)

1. The customer clicks the Purchase
 button to start the process.

Service Layer

Click

User

2. The PlaceOrder action creates
 PlaceOrderService, giving it
 access to the HTTP cookies.

3. The PlaceOrder service
 asks the BizRunner to
 execute the business
 logic, handing it the data
 from the checkout cookie.

5. The business logic runs
 and returns either a valid
 order or errors.

4. The BizRunner runs
 the business logic as
 requested. If successful,
 it calls SaveChanges to
 update the database.

Figure 4.4   The series of steps, from the user clicking the Purchase button, to the service layer, where the
BizRunner executes the business logic to process the order

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 105Adding extra features to your business logic handling

From the click of the Purchase button in figure 4.4, the ASP.NET Core action,
PlaceOrder, in the CheckoutController is executed. This creates a class called
PlaceOrderService in the service layer, which holds most of the Adapter pattern logic.
The caller provides that class with read/write access to the cookies, as the checkout data
is held in an HTTP cookie on the user’s device.

You’ve already seen the PlaceOrderService class in listing 4.6. Its PlaceOrder
method extracts the checkout data from the HTTP cookie and creates a DTO in the
form that the business logic needs. It then calls the generic BizRunner to run the busi-
ness logic that it needs to execute. When the BizRunner has returned from the business
logic, two routes are possible:

¡	The order was successfully placed—no errors. In this case, the PlaceOrder method clears
the checkout cookie and returns the OrderId of the placed order, so that the ASP.
NET Core code can show a confirmation page with a summary of the order.

¡	The order was unsuccessful—errors present. In this case, the PlaceOrder method
returns immediately to the ASP.NET Core code. That detects that errors occurred
and redisplays the checkout page, and adds the error messages so that the user
can rectify them and try again.

NOTE   You can try the checkout process on the live book app at http://efcore-
inaction.com/ and see the results. To try the error path, don’t tick the Terms
and Conditions (T&C) box.

4.6	 Adding extra features to your business logic handling
This pattern for handling business logic makes it easier to add extra features to your
business logic handling. In this section, you’ll add two features:

¡	Entity class validation to SaveChanges
¡	Transactions that daisy-chain a series of business logic code

These features use EF Core commands that aren’t limited to business logic. Both could
be used in other areas, so you might want to keep these features in mind when you’re
working on your application.

4.6.1	 Validating the data that you write to the database

.NET contains a whole ecosystem to validate data, to check the value of a property
against certain rules (for example, checking that an integer is within the range of 1 to
10, or that a string isn’t longer than 20 characters).

EF6   If you’re scanning for EF6.x changes, read the next paragraph. EF Core’s
SaveChanges doesn’t validate the data before writing to the database, but this
section shows how to add this back.

In the previous version of EF (EF6.x), data that was being added or updated was vali-
dated by default before writing it out to the database. In EF Core, which is aimed at being
lightweight and faster, no validation occurs when adding or updating the database. The
idea is that the validation is often done at the frontend, so why repeat the validation?

www.itbook.store/books/9781617294563

http://efcoreinaction.com/
http://efcoreinaction.com/
https://itbook.store/books/9781617294563

106 Chapter 4  Using EF Core in business logic

As you’ve seen, the business logic contains lots of validation code, and it’s often
useful to move this into the entity classes as validation checks, especially if the error is
related to a specific property in the entity class. This is another case of breaking a com-
plex set of rules into several component parts.

Listing 4.7 moves the test to check that the book is for sale into the validation code,
rather than having to do it in the business logic. The listing also adds two new validation
checks to show you the various forms that validation checks can take, so that the exam-
ple is comprehensive.

Figure 4.5 shows the LineItem entity class with two types of validation added. The first is
a [Range(min,max)] attribute, known as DataAnnotation, which is added to the LineNum
property. The second validation method to apply is the IValidatableObject interface.
This requires you to add a method called IValidatableObject.Validate, in which you
can write your own validation rules and return errors if those rules are violated.

Listing 4.7   Validation rules applied to the LineNum entity class

public class LineItem : IValidatableObject
{
 public int LineItemId { get; set; }

 [Range(1,5, ErrorMessage =
 "This order is over the limit of 5 books.")]
 public byte LineNum { get; set; }

 public short NumBooks { get; set; }

 public decimal BookPrice { get; set; }

 // relationships

 public int OrderId { get; set; }
 public int BookId { get; set; }

 public Book ChosenBook { get; set; }

 IEnumerable<ValidationResult> IValidatableObject.Validate
 (ValidationContext validationContext)
 {
 var currContext =
 validationContext.GetService(typeof(DbContext));

 if (ChosenBook.Price < 0)
 yield return new ValidationResult(
$"Sorry, the book '{ChosenBook.Title}' is not for sale.");

By applying the IValidatableObject interface, the
validation will call the method the interface defines.

A validation DataAnnotation. Shows
your error message if the LineNum

property isn’t in range.

The method that the IValidatableObject
interface requires you to create

You can access the current DbContext that
this database access is using. In this case,

you don’t use it, but you could, to get better
error feedback information for the user.

Uses the ChosenBook link to look at the date the
book was published. You can also format your own
error message.

Moves the Price
check out of the
business logic

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 107Adding extra features to your business logic handling

 if (NumBooks > 100)
 yield return new ValidationResult(
If you want to order a 100 or more books"+
please phone us on 01234-5678-90",
 new[] { nameof(NumBooks) });
 }
}

I should point out that in the IValidatableObject.Validate method you access a
property outside the LineNum class: the Title of the ChosenBook. You need to be care-
ful when doing this, because you can’t be sure that the relationship isn’t null.
Microsoft says that EF Core will run the internal relationship fixup (see figure 1.6) when
DetectChanges is called, so this is fine when using the validation code in listing 4.8.

NOTE   In addition to using the extensive list of built-in validation attributes,
you can create your own validation attributes by inheriting the Validation-
Attribute class on your own class. See http://mng.bz/9ec for more on the
standard validation attributes that are available and how to use the Valida-
tionAttribute class.

After adding the validation rule code to your LineItem entity class, you need to add a val-
idation stage to EF Core’s SaveChanges method, called SaveChangesWithValidation.
Although the obvious place to put this is inside the application’s DbContext, you’ll create
an extension method instead. This will allow SaveChangesWithValidation to be used
on any DbContext, which means you can copy this class and use it in your application.

The following listing shows this SaveChangesWithValidation extension method,
and listing 4.9 shows the private method ExecuteValidation that SaveChangesWith-
Validation calls to handle the validation.

Listing 4.8   SaveChangesWithValidation added to the application’s DbContext

public static ImmutableList<ValidationResult>

 SaveChangesWithValidation(this DbContext context)
{
 var result = context.ExecuteValidation();

 if (result.Any()) return result;

 context.SaveChanges();

 return result;
}

Tests a property in this class
so you can return that
property with the error

 Returns a list of ValidationResults. If it’s an empty
collection, the data was saved. If it has errors, the

data wasn’t saved.

 Defined as an extension method, which means you
can call it in the same way you call SaveChanges.

Creates a private method to do the
validation, as you need to apply this
in SaveChangesWithValidation and
SaveChangesWithValidationAsync

If there are errors, you return them
immediately and don’t call SaveChanges.

No errors exist, so you’re
going to call SaveChanges.

Returns the empty set of errors, which
tells the caller that everything is OK

www.itbook.store/books/9781617294563

http://mng.bz/9ec
https://itbook.store/books/9781617294563

108 Chapter 4  Using EF Core in business logic

Listing 4.9   SaveChangesWithValidation calls ExecuteValidation method

private static ImmutableList<ValidationResult>
 ExecuteValidation(this DbContext context)
{
 var result = new List<ValidationResult>();
 foreach (var entry in
 context.ChangeTracker.Entries()
 .Where(e =>
 (e.State == EntityState.Added) ||
 (e.State == EntityState.Modified)))

 {
 var entity = entry.Entity;
 var valProvider = new
 ValidationDbContextServiceProvider(context);

 var valContext = new
 ValidationContext(entity, valProvider, null);
 var entityErrors = new List<ValidationResult>();
 if (!Validator.TryValidateObject(
 entity, valContext, entityErrors, true))
 {
 result.AddRange(entityErrors);
 }
 }
 return result.ToImmutableList();
}

The main code is in the ExecuteValidation method, because you need to use it in sync
and async versions of SaveChangesWithValidation. The call to context.ChangeTracker
.Entries calls the DbContext’s DetectChanges to ensure that all the changes you’ve
made are found before the validation is run. It then looks at all the entities that have
been added or modified (updated) and validates them all.

One piece of code I want to point out is that when you create ValidationContext,
you provide your own class called ValidationDbContextServiceProvider (which can
be found in the Git repo) that implements the IServiceProvider interface. This allows
any entity classes that have the IValidatableObject interface to access the current
DbContext in its Validate method, which could be used to gather better error feed-
back information or do deeper testing.

You design the SaveChangesWithValidation method to return the errors rather
than throw an exception, which is what EF6.x did. You do this to fit in with the business
logic, which returns errors as a list, not an exception. You can create a new BizRun-
ner variant, RunnerWriteDbWithValidation, that uses SaveChangesWithValidation
instead of the normal SaveChanges, and returns errors from the business logic or any
validation errors found when writing to the database. Listing 4.10 shows the BizRunner
class RunnerWriteDbWithValidation.

Calls ChangeTracker.DetectChanges,
which makes sure all your changes to
the tracked entity classes are found.

Filters out only those that need to be
added to, or updates the database

Creates an instance of the class that implements the
IServiceProvider interface, which makes the current

DbContext available in the IValidatableObject.Validate method

Calls method to find
any validation errors

If there are errors, you
add them to the list.

Returns the list of
all the errors found

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 109Adding extra features to your business logic handling

Listing 4.10   BizRunner variant, RunnerWriteDbWithValidation

public class RunnerWriteDbWithValidation<TIn, TOut>
{
 private readonly IBizAction<TIn, TOut> _actionClass;
 private readonly EfCoreContext _context;

 public IImmutableList<ValidationResult>
 Errors { get; private set; }
 public bool HasErrors => Errors.Any();

 public RunnerWriteDbWithValidation(
 IBizAction<TIn, TOut> actionClass,
 EfCoreContext context)
 {
 _context = context;
 _actionClass = actionClass;
 }

 public TOut RunAction(TIn dataIn)
 {
 var result = _actionClass.Action(dataIn);

 Errors = _actionClass.Errors;

 if (!HasErrors)
 {

 Errors =
 _context.SaveChangesWithValidation()
 .ToImmutableList();
 }
 return result;
 }
}

The nice thing about this new variant of the BizRunner pattern is that it has exactly
the same interface as the original, nonvalidating BizRunner. You can substitute
RunnerWriteDbWithValidation<TIn, TOut> for the original BizRunner without needing
to change the business logic or the way that the calling method executes the BizRunner.

In the next section, you’ll produce yet another variant of the BizRunner that can run
multiple business logic classes in such a way that, from the database write point of view,
look like one single business logic method, known as a database atomic unit. This is
possible because of the business logic pattern described at the start of this chapter.

4.6.2	 Using transactions to daisy-chain a sequence of business logic code

As I said earlier, business logic can get complex. When it comes to designing and imple-
menting a large or complex piece of business logic, you have three options:

¡	Option 1 —Write one big method that does everything.

In this version, you need your own Errors
and HasErrors properties, because
errors can come from two sources.

Handles business logic that conforms to
the IBizAction<TIn, TOut> interface.

Calls RunAction in your service layer, or
in your presentation layer if the data
comes back in the right form

Runs the business
logic you gave it

Assigns any errors from the business
logic to your local errors list

If there are no errors, you call
SaveChangesWithValidation to execute
any add, update, or delete methods.

Extracts the error message part of the
ValidationResults and assigns the list to your Errors

Returns the result that the
business logic returned

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

110 Chapter 4  Using EF Core in business logic

¡	Option 2 —Write a few smaller methods, with one overarching method to run
them in sequence.

¡	Option 3 —Write a few smaller methods and get the system to run them as one unit.

Option 1 isn’t normally a good idea because the method will be so hard to understand
and refactor. It also has problems if parts of the business logic are used elsewhere,
because you could break the DRY (don’t repeat yourself) software principle.

Option 2 can work, but can have problems if later stages rely on database items writ-
ten by earlier stages, because this could break the atomic unit rule mentioned in chap-
ter 1: with multiple changes to the database, either they all succeed, or they all fail.

This leaves option 3, which is possible because of a feature in EF Core (and most rela-
tional databases) called transactions. When EF Core starts a relational database transac-
tion, the database creates an explicit, local transaction. This has two effects. First, any
writes to the database are hidden from other database users until you call the transac-
tion Commit command. Second, if you decide you don’t want the database writes (say,
because the business logic has an error), you can discard all database writes done in the
transaction by calling the transaction RollBack command.

Figure 4.5 shows three separate pieces of business logic being run by a class called
the transactional BizRunner. After each piece of business logic has run, the BizRunner
calls SaveChanges, which means anything it writes is now available for subsequent busi-
ness logic stages via the local transaction. On the final stage, the business logic, Biz 3,
returns errors, which causes the BizRunner to call the RollBack command. This has the
effect of removing any database writes that Biz 1 and Biz 2 did.

1. A special BizRunner runs each business logic class in turn. Each business logic stage
 uses an application DbContext that has an EF Core’s BeginTransaction applied to it.

2. BeginTransaction is called
 at the start. This marks the
 starting point of an explicit,
 local transaction.

3. Each business logic runs as
 normal, with writes to the
 database. BizRunner then calls
 SaveChanges to save each stage’s
 changes to the local transaction.

4. Biz 3 has an error, and
 RollBack is called. This
 removes all the database
 changes done within the
 transaction.

Biz 1

BeginTransaction()

Transactional BizRunner: using one EF Core transaction

Biz 2

SaveChanges()

Biz 3

SaveChanges()

Rollback()

Biz 3Biz 3

Figure 4.5   An example of executing three separate business logic stages under one transaction.
When the last business logic stage returns an error, the other database changes applied by the first two
business logic stages are rolled back.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 111Adding extra features to your business logic handling

Here’s the code for the new transactional BizRunner, which starts a transaction on the
application’s DbContext before calling any of the business logic.

Listing 4.11   RunnerTransact2WriteDb runs two business logic stages in series

public class RunnerTransact2WriteDb<TIn, TPass, TOut>
 where TOut : class
{
 private readonly IBizAction<TIn, TPass>
 _actionPart1;
 private readonly IBizAction<TPass, TOut>
 _actionPart2;
 private readonly EfCoreContext _context;

 public IImmutableList<ValidationResult>
 Errors { get; private set; }
 public bool HasErrors => Errors.Any();

 public RunnerTransact2WriteDb(
 EfCoreContext context,
 IBizAction<TIn, TPass> actionPart1,
 IBizAction<TPass, TOut> actionPart2)
 {
 _context = context;
 _actionPart1 = actionPart1;
 _actionPart2 = actionPart2;
 }

 public TOut RunAction(TIn dataIn)
 {
 using (var transaction =
 _context.Database.BeginTransaction())
 {
 var passResult = RunPart(
 _actionPart1, dataIn);
 if (HasErrors) return null;
 var result = RunPart(
 _actionPart2, passResult);

 if (!HasErrors)
 {
 transaction.Commit();
 }
 return result;
 }
 }

 private TPartOut RunPart<TPartIn, TPartOut>(
 IBizAction<TPartIn, TPartOut> bizPart,
 TPartIn dataIn)

Generic RunnerTransact2WriteDb takes three
types: the initial input, the class passed from

Part1 to Part2, and the final output.

Because the BizRunner returns null if an error
occurs, you have to say that the TOut type must
be a class.

Defines the generic BizAction
for the two business logic parts

Holds the error information
returned from the last
business logic code that ran

Takes the two instances of
the business logic, and the
application DbContext that
the business logic is using.

You start the transaction on the application’s
DbContext within a using statement. When it
exits the using statement, unless Commit has

been called, it’ll RollBack any changes.

You use a private
method, RunPart,

to run the first
business part.

If errors exist, you return null
(the rollback is handled by the
dispose of the transection).

Because the first part of the business
logic was successful, you run the
second part of the business logic.

If no errors occur, you commit
the transaction to the database.

Returns the result
from the last

business logic

A private method that
handles running each part
of the business logic.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

112 Chapter 4  Using EF Core in business logic

 where TPartOut : class
 {
 var result = bizPart.Action(dataIn);
 Errors = bizPart.Errors;
 if (!HasErrors)
 {
 _context.SaveChanges();
 }
 return result;
 }
}

In your RunnerTransact2WriteDb class, you execute each part of the business logic in
turn, and at the end of each execution, you do one of the following:

¡	No errors —You call SaveChanges to save to the transaction any changes the
business logic has run. That save is within a local transaction, so other methods
accessing the database won’t see those changes yet. You then call the next part of
the business logic, if there is one.

¡	Has errors —You copy the errors found by the business logic that just finished to
the BizRunner error list and exit the BizRunner. At that point, the code steps
outside the using clause that holds the transaction, which causes disposal of the
transaction. The disposal will, because no transaction Commit has been called,
cause the transaction to execute its RollBack method, which discards the data-
base writes to the transaction; they’re never written to the database.

If you’ve run all the business logic with no errors, you call the Commit command on the
transaction. This does an atomic update of the database to reflect all the changes to the
database that are contained in the local transaction.

Using the RunnerTransact2WriteDb class

To test the RunnerTransact2WriteDb class, you’ll split the order-processing code you
used earlier into two parts:

¡	PlaceOrderPart1—Creates the Order entity, with no LineItems
¡	PlaceOrderPart2—Adds the LineItems for each book bought to the Order

entity that was created by the PlaceOrderPart1 class

PlaceOrderPart1 and PlaceOrderPart2 are based on the PlaceOrderAction code
you’ve already seen, so I don’t repeat the business code here.

Listing 4.12 shows you the code changes that are required to PlaceOrderService
(shown in listing 4.6) to change over to using the RunnerTransact2WriteDb BizRunner.
The listing focuses on the part that creates and runs the two stages, Part1 and Part2,
with the unchanged parts of the code left out so you can easily see the changes.

Runs the business logic and copies the business
logic’s Errors property to the local Errors property

If the business logic was successful, you call
SaveChanges to apply any add/update/delete
commands to the transaction.

Returns the result
that the business
logic returned

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	 113Adding extra features to your business logic handling

Listing 4.12   The PlaceOrderServiceTransact class showing the changed parts

public class PlaceOrderServiceTransact
{
 //… code removed as the same as in listing 4.5

 public PlaceOrderServiceTransact(
 IRequestCookieCollection cookiesIn,
 IResponseCookies cookiesOut,
 EfCoreContext context)
 {
 _checkoutCookie = new CheckoutCookie(
 cookiesIn, cookiesOut);
 _runner = new RunnerTransact2WriteDb

 <PlaceOrderInDto, Part1ToPart2Dto, Order>(
 context,
 new PlaceOrderPart1(
 new PlaceOrderDbAccess(context)),
 new PlaceOrderPart2(
 new PlaceOrderDbAccess(context)));
 }

 public int PlaceOrder(bool tsAndCsAccepted)
 {
 //… code removed as the same as in listing 4.6
 }
}

The important thing to note is that the business logic has no idea whether it’s running
in a transaction. You can use a piece of business logic on its own or as part of a trans-
action. Similarly, listing 4.12 shows that only the caller of transaction-based business
logic, what I call the BizRunner, needs to change. This makes it easy to combine mul-
tiple business logic classes under one transaction without the need to change any of
your business logic code at all.

The advantage of using transactions like this is that you can split up and/or reuse
parts of your business logic while still making these multiple business logic calls look
to your application, especially its database, like one call. I’ve used this approach when I
needed to create and then immediately update a complex, multipart entity. Because
I needed the Update business logic for other cases, I used a transaction to call the Cre-
ate business logic followed by the Update business logic. That saved me development
effort and kept my code DRY.

The disadvantage of this approach is that it adds complexity to the database access.
That might make debugging a little more difficult, or the use of database transactions
could cause a performance issue. These are normally small issues, but you should be
aware of them if you use this approach.

A version of PlaceOrderService, but
using transactions to execute the
business logic in two parts

Creates the BizRunner variant called
RunnerTransact2WriteDb, which runs

the two business logic parts inside a
transaction

The BizRunner needs to know the data types used
for input, passing from part 1 to part 2, and output.

The BizRunner needs the
application’s DbContext.

Provides an instance
of the first part of the
business logic

Provides an instance of
the second part of the
business logic

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

114 Chapter 4  Using EF Core in business logic

Summary

¡	The term business logic describes code written to implement real-world business
rules. This type of code can be complex and difficult to write.

¡	Various approaches and patterns can make business logic easier to write, test,
and performance-tune.

¡	Isolating the database access part of your business logic into another class/project
can make the pure business logic simpler to write, and helps when performance
tuning.

¡	Creating a standardized interface for your business logic makes calling and run-
ning the business logic much simpler for the frontend.

¡	Sometimes it’s easier to move some of the validation logic into the entity classes
and run the checks when that data is being written to the database.

¡	For business logic that’s complex or being reused, it might be simpler to use
a database transaction to allow a sequence of business logic parts to be run in
sequence, but, from the database point of view, look like one atomic unit.

For readers who are familiar with EF6.x:

¡	Unlike EF6.x, EF Core’s SaveChanges method doesn’t validate data before it’s
written to the database. But it’s easy to implement a method that provides this
feature.

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

EFC Core performance issue checklist: the section that discusses each issue is listed.

Speed performance issues Section

Have you picked the right feature to performance tune? 12.1.2

Are you loading too many columns? 12.4.1

Are you loading too many rows? 12.4.2

Are you using lazy loading? 12.4.3

Are you telling EF Core that your query is read-only? 12.4.4

Are you making too many calls to the database? 12.5.1

Are you calling SaveChanged multiple times? 12.5.2

Is part of your query being run in software? 12.5.3

Could you improve the SQL with a DbFunction? 12.5.4

Could pre-compiled queries help? 12.5.5

Have you checked the SQL that EF Core has produced? 12.5.6

Are you using the Find method to load via primary key? 12.5.7

Would an index help with sorting or filtering? 12.5.8

Do you have a mismatch on database types? 12.5.9

Are you making Detect Changes work too hard? 12.6.1

Would turning one DbContext into multiple DbContexts help? 12.6.2

700

1a. Straight EF Core

530 ms

390 ms

80 ms90 ms80 ms

230 ms

(ms)
Display 100 books, sort by votes

660 ms

1b. + DbFunction 2. Better SQL 3. Cached values

600

500

400

300

200

100

0

Display 100 books

The test data consists
of 100,000 books and
½ million votes.

Worked example of performance improvement with four stages, from Chapter 13

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

Jon P Smith

T
here’s a mismatch in the way OO programs and relational
databases represent data. Entity Framework is an object-
relational mapper (ORM) that bridges this gap, making it

radically easier to query and write to databases from a .NET
application. EF creates a data model that matches the structure
of your OO code so you can query and write to your database
using standard LINQ commands. It will even automatically
generate the model from your database schema.

Using crystal-clear explanations, real-world examples, and
around 100 diagrams, Entity Framework Core in Action teaches
you how to access and update relational data from .NET
applications. You’ll start with a clear breakdown of Entity
Framework, along with the mental model behind ORM.
Then you’ll discover time-saving patterns and best practices
for security, performance tuning, and even unit testing. As
you go, you’ll address common data access challenges and
learn how to handle them with Entity Framework.

What’s Inside
● Querying a relational database with LINQ
● Using EF Core in business logic
● Integrating EF with existing C# applications
● Applying domain-driven design to EF Core
● Getting the best performance out of EF Core
● Covers EF Core 2.0 and 2.1

For .NET developers with some awareness of how relational
databases work.

Jon P Smith is a full-stack developer with special focus on .NET
Core and Azure.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/entity-framework-core-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Entity Framework Core IN ACTION

MICROSOFT .NET

M A N N I N G

“An expertly written guide
to EF Core—quite

possibly the only reference
 you’ll ever need.”—Stephen Byrne, Action Point

“A solid book that deals
well with the topic at hand,
but also handles the wider

concerns around using EF in
real-world applications.”—Sebastian Rogers

Simple Innovations

“This is the next step
beyond the basics. It’ll help
 you get to the next level!”
—Jeff Smith, Agilify Automation

“Great book with excellent,
real-world examples.”

—Tanya Wilke, Sanlam

See first page

www.itbook.store/books/9781617294563

https://itbook.store/books/9781617294563

	Entity Framework Core IN ACTION Sample Chapter
	brief contents
	4 Using EF Core in business logic
	4.1 Why is business logic so different from other code?
	4.2 Our business need—processing an order for books
	4.2.1 The business rules that you need to implement

	4.3 Using a design pattern to help implement business logic
	4.3.1 Five guidelines for building business logic that uses EF Core

	4.4 Implementing the business logic for processing an order
	4.4.1 Guideline 1: Business logic has first call on defining the database structure
	4.4.2 Guideline 2: Business logic should have no distractions
	4.4.3 Guideline 3: Business logic should think it’s working on in-memory data
	4.4.4 Guideline 4: Isolate the database access code into a separate project
	4.4.5 Guideline 5: Business logic shouldn’t call EF Core’s SaveChanges
	4.4.6 Putting it all together—calling the order-processing business logic
	4.4.7 Any disadvantages of this business logic pattern?

	4.5 Placing an order on the book app
	4.6 Adding extra features to your business logic handling
	4.6.1 Validating the data that you write to the database
	4.6.2 Using transactions to daisy-chain a sequence of business logic code

