
M A N N I N G

Dean Alan Hume
FOREWORD BY Addy Osmani

S A M P L E C H A P T E R

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

Progressive Web Apps

by Dean Alan Hume

 Chapter 3

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

vii

brief contents
PART 1 DEFINING PROGRESSIVE WEB APPS1

1 ■ Understanding Progressive Web Apps 3
2 ■ First steps to building a Progressive Web App 15

PART 2 FASTER WEB APPS ..29
3 ■ Caching 31
4 ■ Intercepting network requests 51

PART 3 ENGAGING WEB APPS ...65
5 ■ Look and feel 67
6 ■ Push notifications 81

PART 4 RESILIENT WEB APPLICATIONS97
7 ■ Offline browsing 99
8 ■ Building more resilient applications 111
9 ■ Keeping your data synchronized 120

PART 5 THE FUTURE OF PROGRESSIVE WEB APPS...................133
10 ■ Streaming data 135
11 ■ Progressive Web App Troubleshooting 147
12 ■ The future is looking good 157

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

31

Caching

Imagine you’re on a train using your mobile phone to browse your favorite website.
Every time the train enters an area with an unreliable network, the website takes
ages to load—an all-too-familiar scene. This is where Service Worker caching comes
to the rescue. Caching ensures that your website loads as efficiently as possible for
repeat visitors.

 This chapter starts off by looking at the basics of HTTP caching and what hap-
pens under the hood when your browser navigates to a URL. We’ll also look closely
at how you can use Service Worker caching to provide your users with a faster, more
reliable website and how it works hand-in-hand with traditional HTTP caching.
You’ll learn how you can use Service Worker caching in a real-world application,
including versioning and precaching resources. Finally, you’ll discover one of my
favorite Service Worker libraries: Workbox.

3.1 The basics of HTTP caching
Modern browsers are clever. They can interpret and understand a variety of HTTP
requests and responses and are capable of storing and caching data until it’s
needed. I like to think of the browser’s ability to cache information as the sell-by
date on milk. In the same way you might keep milk in your fridge until it reaches
the expiry date, browsers can cache information about a website for a set duration
of time. After the data has expired, it will go and fetch the updated version. This
ensures that web pages load faster and use less bandwidth.

 Before we dive into Service Worker caching, let’s take a step back and see how
traditional HTTP caching works. Web developers have been able to use HTTP

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

32 CHAPTER 3 Caching

caching since the introduction of HTTP/1.0 around the early 1990s.1 HTTP caching
allows the server to send the correct HTTP headers that will instruct the browser to
cache the response for a certain amount of time.

 A web server can take advantage of the browser’s ability to cache data and use it to
improve the repeat request load time. If the user visits the same page twice within one
session, there’s often no need to serve them a fresh version of the resources if the data
hasn’t changed. This way, a web server can use the Expires header to notify the web
client that it can use the current copy of a resource until the specified “Expiry date.”
In turn, the browser can cache this resource and only check again for a new version
when it reaches the expiry date. Figure 3.1 illustrates HTTP caching.

In figure 3.1, you can see that when a browser makes a request for a resource, the
server returns the resource with a collection of HTTP headers. These headers contain
useful information that the browser can then use to understand more about the
resource. The HTTP response tells the browser what type of resource this is, how long
to cache it for, whether it’s compressed, and much more.

 HTTP caching is a fantastic way to improve the performance of your website, but it
isn’t without flaws. Using HTTP caching means that you’re relying on the server to tell
you when to cache a resource and when it expires. If you have content that has depen-
dencies, any updates can cause the expiry dates sent by the server to easily become out
of sync and affect your site.

 With great power comes great responsibility, and this is quite true for HTTP cach-
ing. When you make significant changes to HTML, you’re likely to also change the
CSS to reflect the new structure and update any JavaScript to accommodate changes
to the style and content. If you’ve ever released changes to a website but haven’t quite
got your HTTP caching right, I’m sure you’ve seen the website break because of incor-
rectly cached resources.

1 https://hpbn.co/brief-history-of-http/

Browser GET/file Server

200 OK
Content-Length: 1024
Cache-Control: max-age=120
ETag: “a4cctyx”

Figure 3.1 When a browser makes an HTTP request for a resource, the
server sends an HTTP response containing useful information about the
resource.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

33The basics of HTTP caching

 Figure 3.2 shows what my own personal blog looks like when I have files cached
incorrectly.

 As you can imagine, this can be quite frustrating for both the developer and the
user. In figure 3.2, you can see that the CSS styles for the page aren’t loading. That’s
because incorrect caching caused a mismatch.

Figure 3.2 When cached files become out of sync, the look and feel of your website can be affected.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

34 CHAPTER 3 Caching

3.2 The basics of caching Service Worker caching
You may be wondering why you even need Service Worker caching if you have HTTP
caching. How is Service Worker caching different? Well, instead of the server telling
the browser how long to cache a resource, you are in complete control. Service
Worker caching is extremely powerful because it gives you programmatic control
over exactly how you cache your resources. As with all Progressive Web App (PWA)
features, Service Worker caching is an enhancement to HTTP caching and works
hand-in-hand with it.

 The power of Service Workers lies in their ability to intercept HTTP requests. In
this chapter, you’ll use this ability to intercept HTTP requests and responses to pro-
vide users with a lightning fast response directly from cache.

3.2.1 Precaching during Service Worker installation

Using Service Workers, you can tap into any incoming HTTP requests and decide
exactly how you want to respond. In your Service Worker, you can write logic to decide
what resources you’d like to cache, what conditions need to be met, and how long to
cache a resource for. You are in total control.

 You may be familiar with figure 3.3—we looked at this briefly in earlier chapters of
this book. When the user visits the website for the first time, the Service Worker begins
downloading and installing itself. During the installation stage, you can tap into this
event and prime the cache with all the critical assets for the web app.

Using this figure as an example, let’s see a basic caching example in order to get a bet-
ter understanding about how this work in reality. The next listing shows a simple
HTML page that registers a Service Worker file.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Hello Caching World!</title>

Listing 3.1 Simple HTML page that registers a Service Worker file

Service Worker
install

Service WorkerPage Server

Figure 3.3 During the Service Worker installation step, you can fetch resources and prime the cache
for the next visit.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

35The basics of caching Service Worker caching

 </head>
 <body>
 <!-- Image -->

 <!-- JavaScript -->
 <script async src="/js/script.js"></script>
<script>
// Register the service worker if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('/service-

worker.js').then(function(registration) {
 // Registration was successful
 console.log('ServiceWorker registration successful with scope: ',

registration.scope);
}).catch(function(err) {
 // registration failed :(
 console.log('ServiceWorker registration failed: ', err);
 });
}
</script>
 </body>
</html>

In listing 3.1, you see a simple web page that references an image and a JavaScript file.
The web page isn’t anything fancy, but you’ll use it to learn how to cache resources
using Service Worker caching. The code checks whether your browser supports Ser-
vice Workers; if so, it will try to register a file called service-worker.js, assuming you’re
playing along at home.

 We have our basic page ready. Next you need to create the code that will cache
your resources. The code in the following listing goes inside the Service Worker file
service-worker.js.

var cacheName = 'helloWorld';

self.addEventListener('install', event => {
 event.waitUntil(
 caches.open(cacheName)
 .then(cache => cache.addAll([
 '/js/script.js',
 '/images/hello.png'
]))
);
});

In chapter 1, we looked at the Service Worker lifecycle and the different stages it
goes through before it becomes active. One of these stages is the install event, which
happens when the browser installs and registers the Service Worker. This is the per-
fect time to add anything into cache that you think might be used at a later stage.

Listing 3.2 Code in service-worker.js

Reference to a
“hello” image

Reference to a
basic JavaScript file

Check to
see if the
current
browser
supports
Service
Workers.

If error during Service Worker
registration, you can catch it

and respond appropriately

Name of the cache

Tap into the Service
Worker install event

Open a cache using the
cache name we specified

Add the JavaScript and
image into the cache

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

36 CHAPTER 3 Caching

For example, if you know that a specific JavaScript file might be used throughout
the site, you can decide to cache it during installation. That would mean that any
other pages referencing this JavaScript file will easily be able to retrieve it from
cache at a later stage.

 The code in listing 3.2 taps into the install event and adds the JavaScript file and
the hello image during this stage. It also references a variable called cacheName. This
is a string value that I’ve set to name the cache. You can name each cache differently
and you can even have multiple different copies of the cache because each new string
makes it unique. This will come in handy later in the chapter when we look at version-
ing and cache busting.

 In listing 3.2, you can see that once the cache has been opened, you can then
begin to add resources into it. Next you call cache.addAll() and pass in your array of
files. The event.waitUntil() method uses a JavaScript promise to know how long
installation takes and whether it succeeded.

 If all the files are successfully cached, the Service Worker will be installed. If any of
the files fails to download, the install step will fail. This is important because it
means you need to rely on all the assets being present on the server and you need to
be careful with the list of files that you decide to cache in the install step. Defining a
long list of files will increase the chances that one file may fail to cache, leading to
your Service Worker not being installed.

 Now that your cache is primed and ready to go, you’re able to start reading assets
from it. You need to add the code in the next listing to your Service Worker in order
to start listening to the fetch event.

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.match(event.request)
 .then(function(response) {
 if (response) {
 return response;
 }
 return fetch(event.request); #E
 }
)
);
});

The code in listing 3.3 is the final piece of our Service Worker masterpiece. You start off
by adding an event listener for the fetch event. Next, you check if the incoming URL
matches anything that might exist in your current cache using the caches.match()
function. If it does, return that cached resource, but if the resource doesn’t exist in
cache, continue as normal and fetch the requested resource.

Listing 3.3 Code to add to Service Worker to start listening to the fetch event

Add an event listener
to the fetch event

Check whether incoming
request URL matches anything
that exists in the current cache

If there’s a response and
it isn’t undefined/null,
then return itElse continue as normal

and fetch the resource
as intended

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

37The basics of caching Service Worker caching

 If you open a browser that supports Service Workers and navigate to this newly cre-
ated page, you should notice something similar to figure 3.4.

The requested resources should now be available in the Service Worker cache. When I
refresh the page, the Service Worker will intercept the HTTP request and load the
appropriate resources instantly from cache instead of making a network request to the
server. In a few lines of code inside a Service Worker, you’ve made a site that loads
directly from cache and responds instantly for repeat visits.

NOTE Service workers only work on secure origins such as HTTPS. But when
you’re developing Service Workers on your local machine, you can use
http://localhost. Service Workers have been built this way in order to ensure
safety when deployed to live, and also for flexibility, to make it easier for
developers to work on their local machine.

Some modern browsers can see what’s inside the Service Worker cache using the
developer tools built into the browser. For example, if you open Google Chrome’s
Developer Tools and navigate to the Application tab, you’ll see something similar to
figure 3.5.

Figure 3.4 The sample code produces
a basic web page with an image and a
JavaScript file.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

38 CHAPTER 3 Caching

Figure 3.5 shows the cache entries for both the scripts.js and hello.png files stored in
the cache named helloWorld. Now that the resources have been stored in cache, any
future requests for those resources will be instantly fetched from cache.

3.2.2 Intercept and cache

Listing 3.2 showed how you can cache important resources during the installation of a
Service Worker, which is known as precaching. This example works well when you
know exactly the resources that you want to cache, but what about resources that
might be dynamic or that you might not know about? For example, your website
might be a sports news website that needs constant updating during a match; you
won’t know about those files during Service Worker installation.

 Because Service Workers can intercept HTTP requests, this is the perfect opportu-
nity to make the HTTP request and then store the response in cache. This means that
instead you request the resource and then cache it immediately. That way, as the next
HTTP request is made for the same resource, you can instantly fetch it out of the Ser-
vice Worker cache, as shown in figure 3.6.

 The next listing updates the code you previously used to include a new resource.

Figure 3.5 Google Chrome’s Developer tools are helpful when you want to see what’s stored
in cache.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

39The basics of caching Service Worker caching

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Hello Caching World!</title>
 <link href="https://fonts.googleapis.com/css?family=Lato"

rel="stylesheet">
 <style>
 #body{ font-family: 'Lato', sans-serif; }
 </style>
</head>
 <body>
 <h1>Hello Service Worker Cache!</h1>
 <!-- JavaScript -->
 <script async src="/js/script.js"></script>
<script>
if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('/service-

worker.js').then(function(registration) {
 console.log('ServiceWorker registration successful with scope: ',

registration.scope);
}).catch(function(err) {
 console.log('ServiceWorker registration failed: ', err);
 });
}
</script>
 </body>
</html>

In listing 3.4, the code hasn’t changed much compared to listing 3.1, except that
you’ve added a reference to web fonts in the HEAD tag. Because this is an extra
resource that may be likely to change, you can cache the resource once the HTTP

Listing 3.4 A basic web page to display Google fonts

Cache

Service WorkerPage

Server

If it doesn’t, retrieve it
over the network

First check if the resource
exits in cache

Figure 3.6 For any HTTP requests made, you can then check whether the resource
already exists in cache, and if not we retrieve it via the network.

Add a reference
to web fonts.

JavaScript file that
provides functionality
for the current page

First check whether
the browser supports
service workers.

If there is an error during the
service worker registration, you can
catch it and respond appropriately.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

40 CHAPTER 3 Caching

request has been made. You’ll also notice that the JavaScript code used to register the
Service Worker hasn’t changed. In fact, with a few exceptions, this code is a pretty
standard way of registering your Service Worker. You’ll be using this boilerplate code
to register a Service Worker repeatedly throughout the book.

 Now that the page is complete, you’re ready to start adding some code to the Ser-
vice Worker file. The next listing shows the code you’ll be using.

var cacheName = 'helloWorld';

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.match(event.request)
 .then(function(response) {
 if (response) {
 return response;
 }

 var requestToCache = event.request.clone();

 return fetch(requestToCache).then(
 function(response) {
 if(!response || response.status !== 200) {
 return response;
 }

 var responseToCache = response.clone();

 caches.open(cacheName)
 .then(function(cache) {
 cache.put(requestToCache, responseToCache);
 });

 return response;
 }
);
 })
);
});

Listing 3.5 seems like a lot of code. Let’s break it down and explain each section. The
code starts off by tapping into the fetch event by adding an event listener. The first
thing you want to do is check whether the requested resource already exists in cache.
If it does, you can return it at this point and go no further.

 But if the requested resource doesn’t already exist in the cache, you make the
request as originally intended. Before the code goes any further you we need to clone
the request because a request is a stream that can only be consumed once. Because
you’re consuming this once by cache and then again when you make the HTTP
request for it, you need to clone the response at this point. You then need to check

Listing 3.5 Adding code to the Service Worker file

Name
of the
cache

Add an event listener
for the fetch event to
intercept requests.

Does the current request
match anything you might
have in cache?

If it does, return it at this
point and continue no further.

Clone the request—a
request is a stream and can
only be consumed once. Try to make

the original
HTTP request
as intended.

If request fails or
server responds with
an error code, return
that error immediately

Again clone the
response because
you need to add it

into cache and
because it’s used

for the final
return response.

Open
helloWorld
cache.

Add response
into cache.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

41The basics of caching Service Worker caching

the HTTP response and ensure that the server returned a successful response and
that nothing went wrong. You don’t want to cache an errored result.

 If the response was successful, you’re clone the response again. You’re probably won-
dering why you need to clone the response again, but remember that a response is a
stream that can only be consumed once. Because you want the browser to consume the
response as well as the cache consuming the response, you need to clone it so you have
two streams.

 Finally, the code then uses this response and adds it to the cache so you can use it
again next time. If the user then refreshes the page or visits another page on the site
that requires these resources, it will be fetched from cache instantly instead of via the
network.

 In figure 3.7, notice that there are new entries in the cache for the three resources
on the page. In the coding example covered earlier, you were able to dynamically add
a resource into cache as each successful HTTP response was returned. This technique
is perfect for when you might want to cache resources but aren’t quite sure how often
they may change or exactly where they might be coming from.

Figure 3.7 Using Google Chrome’s Developer tools you see that the web fonts were retrieved
from the network and then added to cache in order to ensure faster repeat requests.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

42 CHAPTER 3 Caching

Service Workers give a developer total control over the code and allow you to easily
build custom caching solutions that fit your needs. In fact, the two caching techniques
covered earlier can be combined to produce even faster load times. The control is in
your hands.

 For example, let’s say you were building a new web application that used the App
Shell Architecture. You might want to precache the shell using the code in listing 3.2.
Then any further HTTP requests that are made can be cached using the intercept and
cache technique. Or perhaps you want to cache parts of an existing site that you know
don’t change often. By intercepting and caching these resources, you’ll provide your
users with improved performance in a few lines of code. Depending on your situation,
Service Worker caching can be adapted to suit your needs and make an instant differ-
ence to the experience your users receive.

3.2.3 Putting it all together

The code examples we’ve run through so far have been helpful, but it isn’t easy to
imagine them on their own. In chapter 1, we talked about the many different ways
that you could use Service Workers to build amazing web apps. One of those con-
cepts was a newspaper web app, which we can use to play with everything you’ve
learned about Service Worker caching in a real-world scenario. I’m going to call our
sample application Progressive Times. The web app is a news site where people will
regularly visit and read multiple pages, so it makes sense to cache future pages
ahead of time so they load instantly. You could even save the content so that a user
could browse while offline.

 The sample web application contains a collection of funny news facts from around
the world (figure 3.8). Believe it or not, all the stories in this news site are true and
came from credible news sources. The web app contains most of the basic elements of
a website that you can imagine, such as CSS, JavaScript, and images. To keep the sam-
ple code basic, I’ve also used a flat JSON file for each article; in real life, this would
point to a back-end endpoint to retrieve the data in a similar format. On its own, this
web app is not that impressive, but when you start to use the power of Service Workers,
you can take it to the next level.

 The web application uses the App Shell Architecture to dynamically fetch the con-
tents of each article and inject the data onto the page, as shown in figure 3.8.

 Using the App Shell Architecture also means you can use precaching to ensure
that the web app loads instantly for repeat visits. You can also assume that a visitor will
tap a link and follow through to the full contents of a news article. If you cached this
when the Service Worker was installed, it would mean that the next page would load
significantly faster for them.

 Let’s put everything you learned this far in the chapter together and see how to
add a Service Worker to the Progressive Times app that will precache important
resources and cache any other requests as they are made, as shown in the next listing.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

43The basics of caching Service Worker caching

var cacheName = 'latestNews-v1';

// Cache our known resources during install
self.addEventListener('install', event => {
 event.waitUntil(
 caches.open(cacheName)
 .then(cache => cache.addAll([
 './js/main.js',
 './js/article.js',
 './images/newspaper.svg',
 './css/site.css',
 './data/latest.json',
 './data/data-1.json',
 './article.html',
 './index.html'
]))
);
});

Listing 3.6 Service Worker code to precache and Ccche resources during runtime

Figure 3.8 The Progressive Times sample application uses the App Shell Architecture.

Empty Shell without content Shell populated with content

Open the cache and
store an array of
resources to cache
during install time.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

44 CHAPTER 3 Caching

// Cache any new resources as they are fetched
self.addEventListener('fetch', event => {
 event.respondWith(
 caches.match(event.request, { ignoreSearch: true })
 .then(function(response) {
 if (response) {
 return response;
 }
 var requestToCache = event.request.clone();

 return fetch(requestToCache).then(
 function(response) {
 if(!response || response.status !== 200) {
 return response;
 }

 var responseToCache = response.clone();
 caches.open(cacheName)
 .then(function(cache) {
 cache.put(requestToCache, responseToCache);
 });

 return response;
 });
 })
);
});

The code in listing 3.6 is a combination of precaching during install time and storing
in cache as you fetch a resource. The web app is using an App Shell Architecture,
which means you can take advantage of Service Worker caching to request only the
data needed to populate the page. You’ve already successfully stored the assets for the
shell, so all that’s left is the dynamic news content from the server.

 If you’d like to see this web page in action, it’s available on GitHub and can be eas-
ily accessed at bit.ly/chapter-pwa-3. In fact, I’ve added all the code samples that you’ll
use throughout this book to that GitHub repo.

 Each chapter has a readme file that explains what you need to do to start building
and experimenting with the sample code in each chapter. About 90% of the chapters
are front-end code, so all you need to do is fire up your localhost and get started. It’s
also worth noting that you need to be running the code on http://localhost environ-
ment and not on file:// environment.

3.3 Performance comparison: before and after caching
At this point, I hope I’ve managed to convince you how great Service Worker caching
is. Not yet!? Okay, well, hopefully the performance improvements you’ll gain when
using caching will change your mind.

 Using our Progressive Times sample application, we can compare the difference
with and without Service Worker caching. One of my favorite ways to test the real-world
performance of a website is to use a tool called WebPagetest.org, shown in figure 3.9.

Listen for the
fetch event.

Ignore any querystring
parameters so you
don’t get any cache
misses.

If you found a successful
match, return it at this
point and go no further.

If you didn’t find
anything in cache,
make the request

Store it in cache
so we won’t need
to make that
request again

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

45Performance comparison: before and after caching

WebPagetest.org is a great tool. Enter the URL of your website, and it allows you to
profile your website from any location around the world using a real-world device and
a wide range of browsers. The tests run on real devices and provide you with a helpful
breakdown and profile of the performance of your website. Best of all, it’s open
source and completely free to use.

 If I run our sample application through WebPagetest.org, it produces something
similar to figure 3.7.

 To test how our sample web application performed on a real-world device, I used
WebPagetest with a 2G mobile connection from an endpoint in Singapore. If you’ve
ever tried to access a website over a slow network connection, you’ll know how annoy-
ing it can be while you wait for the site to finish loading. As web developers, it’s
important that we test our websites as our users would use them, and that includes

Figure 3.9 WebPagetest.org is a free tool you can use to test your websites using real devices from around the
world.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

46 CHAPTER 3 Caching

using slower mobile connection speeds and low-end devices, too. Once WebpPagetest
completed profiling the web app, it produced the results shown in figure 3.10.

In the first view, the page took around 12 seconds to load. This isn’t ideal, but not
unexpected over a slow 2G connection. But if you look at the repeat view, the site
loaded in less than 0.5 seconds and made zero HTTP requests to the server. The sam-
ple application used the App Shell Architecture, and if you remember the layout,
you’ll know that any future requests will be served as quickly because the resources
needed have already been cached. If used correctly, Service Worker caching signifi-
cantly improves the overall speed of your application and enhances the browsing
experience regardless of the device or connection used.

3.4 Diving deeper into Service Worker caching
In this chapter, we’ve started to look at how Service Worker caching can be used to
improve the performance of your web application. As we progress through the rest of
this chapter, we’ll look closely at how you can version your files in order to ensure that
there are no cache mismatches, as well as to avoid some of the common gotchas you
might encounter while using Service Worker caching.

3.4.1 Versioning your files

There will be a point in time where your Service Worker cache will need updating. If
you make changes to your web application, be sure users receive the newer version of
files instead of older versions. As you can imagine, serving older files by mistake would
cause havoc on a site.

 The great thing about Service Workers is that each time you make any changes to
the Service Worker file itself, it automatically triggers the Service Worker update flow.
In chapter 1, we looked at the Service Worker lifecycle. Remember that when a user
navigates to your site, the browser tries to re-download the Service Worker in the back-
ground. If there’s even a byte’s difference in the Service Worker file compared to what
it currently has, it considers it new.

 This useful functionality gives you the perfect opportunity to update your cache
with new files. You can use two approaches when updating the cache. First, you can
update the name of the cache that you use to store against. Referring back to the code

Figure 3.10 WebPagetest.org produces useful information about the performance of your web
application by using a real device.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

47Diving deeper into Service Worker caching

in listing 3.2, you can see the cacheName variable with a value 'helloWorld'. If you
updated this value to 'helloWorld-2', that would automatically create a new cache
and start serving your files from that cache. The original cache would be orphaned
and no longer used.

 The second option, which I personally feel is the more bulletproof one, is to ver-
sion your files. This technique is known as cache busting and has been around for many
years. When a static file gets cached, it can be stored for long periods of time before it
ends up expiring. That can be an annoyance in the event that you make an update to
a site, but because the cached version of the file is stored in your visitors’ browsers,
they may be unable to see the changes made. Cache busting solves this problem by
using a unique file version identifier to tell the browser that a new version of the file
is available.

 For example, if you were to add a reference to a JavaScript file in the HTML, you
might want to append a hashed string onto the end of the filename, similar to this:

<script type="text/javascript" src=“/js/main-xtvbas65.js"></script>

The idea behind cache busting is that you create a completely new filename each time
you make changes to the file in order to ensure that the browser fetches the freshest
content possible. Imagine the following scenario in our newspaper web app. Let’s say
you have a file called main.js and store it in cache exactly as it is. Depending on how
your Service Worker is set up, it will retrieve this version of the file from cache every
time. If you make a change to the main.js file with new code, the Service Worker will
still intercept and return the older cached version even though you want to serve the
newer version of the file. But if you rename the file to, say, main.v2.js and update your
code to point to this new version, you can ensure that the browser will get the fresh
version every time. That way, your newspaper will always return the freshest results to
your users.

 There are many different approaches to implementing this solution, and all of
them may depend on your coding environment. Some developers prefer to generate
these hashed filenames during build time, and others may do this using code and gen-
erate the filenames on the fly. Whichever approach you use, this technique is a tried-
and-tested way to ensure that you always serve the correct files.

3.4.2 Dealing with extra query parameters

When a Service Worker checks for a cached response, it uses a request URL as the key.
By default, the request URL must exactly match the URL used to store the cached
response, including any query parameters in the search portion of the URL.

 If you make any HTTP requests for files appended with query strings that some-
times change, this might end up causing you a few issues. For example, if you make a
request for a URL that previously matched, you may find that it misses because the
query string differs slightly. To ignore query strings when you check the cache, use the
ignoreSearch attribute and set the value to true, as shown in the following listing.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

48 CHAPTER 3 Caching

self.addEventListener('fetch', function(event) {
 event.respondWith(
 caches.match(event.request, {
 ignoreSearch: true
 }).then(function(response) {
 return response || fetch(event.request);
 })
);
});

The code in listing 3.7 uses the ignoreSearch option to ignore the search portion of
the URL in both the request argument and cached requests. You can extend this fur-
ther by using other ignore options such as ignoreMethod and ignoreVary. For exam-
ple, the ignoreMethod value will ignore the method of the request argument, so a
POST request can match a GET entry in the cache. The ignoreVary value will ignore
the vary header in cached responses.

3.4.3 How much memory do you need?

Whenever I talk to developers about Service Worker caching, the questions that regu-
larly arise involve memory and storage space. How much space does the Service
Worker use to cache? How will this memory usage affect my device?

 The honest answer is that it depends on your device and storage conditions. Like
all browser storage, the browser is free to throw it away if the device comes under
storage pressure. That’s not necessarily a problem because the data can then be
fetched again from the network as needed. In chapter 7, we’ll look at another type
of storage called persistent storage that can be used to store cached data on a more
permanent basis.

 Right now, older browsers are still able to store cached responses in their memory,
and the space they use isn’t different from the space that the Service Worker uses to
cache resources. The only difference is that Service Worker caching puts you in the
driving seat and allows you to programmatically create, update, and delete cached
entries, allowing you to access resources without a network connection.

3.4.4 Taking caching to the next level: Workbox

If you find yourself regularly writing code in your Service Workers that caches
resources, you might find Workbox (https://workboxjs.org/) helpful. Written by the
team at Google, it’s a library of helpers to get you started creating your own Service
Workers in no time, with built-in handlers to cover the most common network strate-
gies. In a few lines of code, you can decide whether you want to serve specific
resources solely from cache, serve resources from cache and then fall back, or perhaps
only return resources from the network and never cache. This library gives you total
control over your caching strategy. See figure 3.11.

Listing 3.7 Service Worker code to ignore query string parameters

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

49Diving deeper into Service Worker caching

Workbox provides you with a quick and easy way to reuse common network cach-
ing strategies instead of rewriting them again and again. For example, say you
wanted to ensure that you always retrieve your CSS files from the cache but only
fall back to the network if a resource wasn’t available. Using Workbox, you register
your Service Worker the same way you have throughout this chapter. Then you
import the library into your Service Worker file and start defining routes that you
want to cache.

 In listing 3.8, the code starts off by importing the Workbox library using the
importScripts function. Service Workers have access to a global function, called
importScripts(), which lets them import scripts in the same domain into their
scope. This is a handy way to load another script into an existing script. It keeps the
code clean and means you only load the file when it’s needed.

Figure 3.11 Workbox provides a library of helpers for use in creating your own Service Workers.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

50 CHAPTER 3 Caching

importScripts('workbox-sw.prod.v1.1.0.js');

const workboxSW = new self.WorkboxSW();

workboxSW.router.registerRoute(
 'https://test.org/css/(.*)',
 workboxSW.strategies.cacheFirst()
);

Once the script has been imported, you can start defining routes you want to cache.
In listing 3.8, you’re defining a route for anything that matches the ‘/css/’ path and
always serving it with a cache first approach. This means that the resources will always
be served from cache and will fall back to the network if they don’t exist. Workbox
also provides a number of other built-in caching strategies,2 such as cache only, net-
work only, network first, cache first, or fastest, which tries to find the fastest response
from either cache or the network. Each of these strategies can be applied to different
scenarios, and you can even mix and match them with different routes to achieve the
best effect.

 Workbox also provides you with functionality to precache resources. In the same
way that you precached resources during installation of the Service Worker in listing 3.2,
you can achieve this with a few lines of code using Workbox.

 Whenever I approach a new project, without a doubt my favorite library to use is
Workbox. It simplifies your code and provides you with tried-and-tested caching strat-
egies that you can implement in a few lines of code. In fact, the Twitter PWA we dis-
sected in chapter 2 uses Workbox to make the code simpler to understand and relies
on these tried-and-tested caching approaches.

3.5 Summary
HTTP caching is a fantastic way to improve the performance of your website, but it
isn’t without flaws.

 Service Worker caching is extremely powerful because it gives you programmatic
control over exactly how you cache your resources. When used hand-in-hand with
HTTP caching, you get the best of both worlds.

 Used correctly, Service Worker caching is a massive performance enhancement
and bandwidth saver.

 You can use a number of different approaches to cache resources, and each of
them can be adapted to suit the needs of your users.

 WebPagetest is a great tool for testing the performance of your web apps using
real-world devices.

 Workbox is a handy library that provides you with tried-and-tested caching tech-
niques.

Listing 3.8 Using Workbox

2 www.recode.net/2016/6/8/11883518/app-boom-over-snapchat-uber

Load the
Workbox library.

Start caching any
requests that match
the '/css' path.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

Dean Alan Hume

O
ffl ine websites that work. Near-instant load times.
Smooth transitions between high/low/no bandwidth.
Fantasy, right? Not with progressive web applications.

PWAs use modern browser features like push notifi cations,
smart caching, and Service Workers to manage data, minimize
server usage, and allow for unstable connections, giving you
better control and happier customers. Better still, all you need
to build PWAs are JavaScript, HTML, and the easy-to-master
techniques you’ll fi nd in this book.

Progressive Web Apps teaches you PWA design and the skills
you need to build fast, reliable websites. There are lots of
ways you can use PWA techniques, and this practical tutorial
presents interesting, standalone examples so you can jump
to the parts that interest you most. You’ll discover how Web
Service Workers vastly improve site loading, how to effectively
use push notifi cations, and how to create sites with a no-
compromise offl ine mode.

Inside, you’ll find
● Improved caching with Service Workers
● Using manifest fi les and HTML markup
● Push notifi cations
● Offl ine-fi rst web designs
● Techniques for data synchronization

Written for readers with experience developing websites using
HTML, CSS, and JavaScript.

Dean Hume is a coder, author, and Google Developer Expert.
He’s passionate about web performance and user experience.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/progressive-web-apps

$39.99 / Can $52.99 [INCLUDING eBOOK]

Progressive Web Apps

WEB DEVELOPMENT

M A N N I N G

“Takes a practical, example-
driven approach to learning

how PWAs can help you
 build fast, engaging sites.”

—From the Foreword by
Addy Osmani, Google

“A pioneering work that will
take your web app offl ine
and onto the fast lane.”

—Michal Paszkiewicz
Transport for London

“The very best resource
for understanding and

implementing progressive
web applications.”—Evan Wallace

Berkley Insurance Australia

“Thorough, methodical
coverage for novice users,

with handy insights
and many ‘aha’ moments
 for advanced users.”

—Dev Paliwal, Synapse

SEE INSERT

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

