
M A N N I N G

Dean Alan Hume
FOREWORD BY Addy Osmani

S A M P L E C H A P T E R

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

Progressive Web Apps

by Dean Alan Hume

 Chapter 4

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

vii

brief contents
PART 1 DEFINING PROGRESSIVE WEB APPS1

1 ■ Understanding Progressive Web Apps 3
2 ■ First steps to building a Progressive Web App 15

PART 2 FASTER WEB APPS ..29
3 ■ Caching 31
4 ■ Intercepting network requests 51

PART 3 ENGAGING WEB APPS ...65
5 ■ Look and feel 67
6 ■ Push notifications 81

PART 4 RESILIENT WEB APPLICATIONS97
7 ■ Offline browsing 99
8 ■ Building more resilient applications 111
9 ■ Keeping your data synchronized 120

PART 5 THE FUTURE OF PROGRESSIVE WEB APPS...................133
10 ■ Streaming data 135
11 ■ Progressive Web App Troubleshooting 147
12 ■ The future is looking good 157

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

51

Intercepting
network requests

Chapter 3 looked into using Service Worker caching to dramatically speed up the
performance of your website. Instead of the user making a request to the server,
the Service Worker intercepts the request and decides to serve it from cache
instead. We also briefly touched on how to use Service Workers to transform the
requests and responses made by the client using the fetch event.

 In this chapter, we’ll dive deeper into the fetch event and you’ll learn more
about the many use cases it offers. Service Workers are the key to unlocking the
power that lies within your browser. By the end of the chapter, you’ll know how to
serve lighter, leaner web pages depending on your user’s browser or preferences.
In this section of the book, we’re focusing on the faster part of Progressive Web
Apps (PWAs), although it’s important to also ensure that your web apps are resil-
ient and engaging, too.

4.1 The Fetch API
As web developers, we often need the ability to retrieve data from the server in order
to update our applications asynchronously. Traditionally, this data is retrieved using
JavaScript and the XMLHttpRequest object. Otherwise known as AJAX, this is a devel-
oper’s dream because it allows you to update a web page without reloading the page
by making HTTP requests in the background. In our sample application, Progressive
Times, you use this code to retrieve a list of news articles.

 If you’ve ever implemented complex logic to retrieve data from the server, writ-
ing code using the XMLHttpRequest object can be quite tricky. As you start to add
more and more logic and callbacks, it can quickly become messy, as you can see in
the following listing.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

52 CHAPTER 4 Intercepting network requests

var request;
if (window.XMLHttpRequest) {
 request = new XMLHttpRequest();
} else if (window.ActiveXObject) {
 try {
 request = new ActiveXObject('Msxml2.XMLHTTP');
 } catch (e) {
 try {
 request = new ActiveXObject('Microsoft.XMLHTTP');
 } catch (e) {}
 }
}

request.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 doSomething(this.responseText);
 }
 };

// Open, send.
request.open('GET', '/some/url', true);
request.send();

The code in listing 4.1 seems like a lot of code to make an HTTP request. The inter-
esting thing is that the XMLHttpRequest object was originally created by the developers
of Outlook Web Access for Microsoft Exchange Server. After a number of permuta-
tions, it eventually became the standard for what we use today to make HTTP requests
in JavaScript. The example in the listing fulfills its purpose, but it isn’t as clean as it
could be. The other problem with the code in the listing is that the more complex
your logic becomes, the more complex this code will become. In the past, a number of
libraries and techniques were available to make this code simpler and easier to read,
with popular libraries such as jQuery and Zepto, including cleaner APIs.

 Fortunately, modern browser vendors have realized that this situation needed to be
updated, and this is where the Fetch API comes in. The Fetch API is a part of the Service
Worker global scope, and you can use it to make HTTP requests inside any Service
Worker. Up until now, you’ve been using the Fetch API inside your Service Worker code,
but we haven’t dived deeper into it. Let’s look at a few code examples in order to get a
better understanding of the Fetch API, beginning with the following listing.

fetch('/some/url', {
 method: 'GET'
}).then(function(response) {
 // success
}).catch(function(err) {
 // something went wrong
});

Listing 4.1 HTTP eequest using the XMLHTTPRequest object

Listing 4.2 An HTTP Request Using the Fetch API

The URL to access
using a GET request

If successful, return
the response.

If something went wrong, you
can respond appropriately.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

53The fetch event

The code in listing 4.2 is a basic example of the Fetch API in action. You might also
notice that there are no callbacks and events—they’ve been replaced with the then()
method. This method is part of ES6’s new promises functionality and aims to make
your code much more readable and easier for developers to understand. A promise
represents the eventual result of an asynchronous operation, even if the value won’t
be known until the operation completes at some point in the future.

 Listing 4.2 seems easy enough to understand, but what about a POST request using
the fetch API? Check out the next listing.

fetch('/some/url', {
 method: 'POST',
 headers: {
 'auth': '1234'
 },
 body: JSON.stringify({
 name: 'dean',
 login: 'dean123',
 })
 })
 .then(function (data) {
 console.log('Request success: ', data);
 })
 .catch(function (error)
 console.log('Request failure: ', error);
 });

Say you wanted to send some user details to the server and needed to do so using a
POST request. In listing 4.3, you change the method to POST and add a body parameter
in the fetch options. Not only does using promises make your code cleaner, it also
allows you to chain code together to share logic across fetch requests.

 The Fetch API is currently available in all browsers that support Service Workers,
but if you intend to use this API on browsers that aren’t supported, you may want to
consider using a polyfill. A polyfill is a piece of code that provides you with the func-
tionality you expect from a modern browser. For example, if the latest version of Inter-
net Explorer has some functionality you need, but it doesn’t exist in an older version,
you can use a polyfill to provide similar functionality for the older browser. Think of it
as a wrapper around an API that’s used to keep the API landscape flattened. A polyfill
written by the team at GitHub (https://github.com/github/fetch) will ensure that
older browsers are able to make requests using the Fetch API. Include it in your web
page and you’ll be able to start writing code using this API.

4.2 The fetch event
A Service Worker’s ability to intercept any outgoing HTTP requests is what makes it so
powerful. Every HTTP request that falls within this service worker’s scope will trigger

Listing 4.3 An HTTP POST request using the Fetch API

The URL to access
using a POST request

Headers can be included
in the request.

The body of the
POST request

If successful, return
the response.

If something went
wrong, you can respond
appropriately.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

54 CHAPTER 4 Intercepting network requests

this event—for example, HTML pages, scripts, images, CSS, and so on. This gives you
as a developer total control over how you want to handle the way the browser responds
to any of these fetches.

 In chapter 1, we looked at a basic example of the fetch event in action. Remember
the unicorn (shown in the next listing)?

self.addEventListener('fetch', function(event) {
 if (/\.jpg$/.test(event.request.url)) {
 event.respondWith(
 fetch('/images/unicorn.jpg'));
 }
});

In listing 4.4, you’re listening out for the fetch event, and if the HTTP request is for a
JPEG file, you’re intercepting it and forcing it to return a picture of a unicorn instead
of its original intended URL. The code here will do this for each and every HTTP
request made for a JPEG file from the website. For any other file types, it will ignore
them and move on.

 Although the code in listing 4.4 is a fun example, it doesn’t show you what Service
Workers are capable of. Let’s take this a step further and see how to return your own
custom HTTP response, as shown in the following listing.

self.addEventListener('fetch', function(event) {
 if (/\.jpg$/.test(event.request.url)) {
 event.respondWith(
 new Response('<p>This is a response that comes from your service

worker!</p>', {
 headers: { 'Content-Type': 'text/html' }
 });
);
 }
});

In listing 4.5, the code intercepts any HTTP requests by listening for the fetch event to
be triggered. Next it determines if the incoming request is for a JPEG file, and if it is,
it will respond with a custom HTTP response. Using Service Workers, you can build
your own custom HTTP responses, including editing their headers. This functionality
makes Service Workers extremely powerful—which is why you can understand that
they need to serve requests over HTTPS. Imagine the malicious things a hacker could
get up to with this at their fingertips.

Listing 4.4 The fetch event inside a Service Worker

Listing 4.5 Creating a custom HTTP response inside a Service Worker

Add an event listener
to the fetch event.

Check to see whether
the HTTP request URL
requests a file ending in .jpg.Try to fetch an image of

a unicorn and respond
with it instead.

Add an event listener
to the fetch event.

Check to see
whether the HTTP

request URL
requests a file
ending in .jpg.

Build a custom
Response and respond

accordingly.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

55The fetch event

4.2.1 The Service Worker lifecycle

Right at the beginning of the book in chapter 1, you learned about the Service Worker
lifecycle and the role it plays when building PWAs. Let’s look closely at that diagram
again in figure 4.1.

Looking at figure 4.1, you’ll remember that when a user visits your website for the first
time, they don’t have an active Service Worker controlling the page. Only once the Ser-
vice Worker has been installed and they refresh the page, or navigate to another part of
the site, does the Service Worker become active and start intercepting requests.

 To explain this more clearly, imagine a Single Page Application (SPA) or a web
page with AJAX interactions that might take place after a page has been loaded. When
you register and install a Service Worker using the method you’ve been using in the
book up until now, any HTTP requests that take place after the page has loaded will
be missed. Only when the user reloads the page will the Service Worker become active
and start intercepting requests. This isn’t ideal because ultimately you want the Ser-
vice Worker to start working its magic as soon as possible and include these requests
that are made while the Service Worker isn’t active.

 If you want your Service Worker to start working immediately instead of waiting for
the user to navigate to another part of your site or reload the page, there’s a sneaky lit-
tle trick that you can use to activate your Service Worker immediately, shown in the
following listing.

1. User navigates to a URL

2. During the registration process,
the browser downloads, parses,
and executes the Service Worker

3. As soon as the Service
Worker executes, the install
event is activated

4. If succesful, the Service Worker
is now able to control clients and
handle functional events

Register

Install

Activated

Download,
parse, and

execute

Figure 4.1 Lifecycle of a Service Worker

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

56 CHAPTER 4 Intercepting network requests

self.addEventListener('install', function(event) {
 event.waitUntil(self.skipWaiting());
});

The code in listing 4.6 sits inside the install event of your Service Worker. By using
the skipWaiting() function, you’re ultimately triggering the activate event and tell-
ing the Service Worker to start working immediately without waiting for the user to
navigate or reload the page.

The skipWaiting() function forces the waiting Service Worker to become the active
Service Worker. The self.skipWaiting() function can also be used with the self
.clients.claim() function to ensure that updates to the underlying Service Worker
take effect immediately.

 The code in the next listing can be combined with the skipWaiting() function in
order to ensure that your Service Worker activates itself immediately.

self.addEventListener('activate', function(event) {
 event.waitUntil(self.clients.claim());
});

The code in listings 4.6 and 4.7 can be used together to kick-start the activation of
your Service Worker. If your site has complex AJAX requests taking place once the
page has loaded, these functions are perfect. If your site serves mostly static pages
without HTTP requests taking place once the page has loaded, you may not need to
use these functions.

Listing 4.6 Install the current Service Worker without waiting for reload

Listing 4.7 Activate a Service Worker immediately

Older version

Newer version

Using means that theskipWaiting()
new service worker activates

as soon as it’s finished installing.

Figure 4.2 self.skipWaiting() causes your Service Worker to kick out the
current active worker and activate itself as soon as it enters the waiting phase.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

57Fetch in action

4.3 Fetch in action
As we’ve seen in this chapter, Service Workers offer almost unlimited control of the
network. Intercepting HTTP requests, editing HTTP responses, and crafting your own
responses are a small part of what you can do by tapping into the fetch event.

 Up until now, most of the code samples we’ve looked at haven’t been real-world
examples. In the next section, we’re going to dive in to two useful techniques you can
use to make your website faster, more engaging, and resilient.

4.3.1 An example using WebP images

Images play an important role on the web today. Imagine a world without images on
our web pages. High-quality images can make a website stand out, but unfortunately
they come with a price. Due to their large file sizes, they’re bulky to download and
result in slow page load times. If you’ve ever been on a device with a poor network
connection, you’ll know how frustrating this experience can be.

 You may be familiar with the image format WebP. Developed by the team at
Google, WebP files are 26% smaller than PNG images and around 25–34% smaller
than JPEG images. That’s a pretty decent savings, and the best thing about them is
that the image quality isn’t noticeably affected when choosing this format, as you can
see in figure 4.3.

Figure 4.3 shows a WebP image next to its equivalent JPEG image with negligible dif-
ference to image quality. By default, WebP images are supported in Chrome, Opera,
and Android, but unfortunately not by Safari, Firefox, or Internet Explorer.

Figure 4.3 WebP images are significantly smaller in file size compared to their
original format with little noticeable difference to the quality of the image.

Original image WebP image

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

58 CHAPTER 4 Intercepting network requests

 Browsers that support WebP images notify you of that fact by passing through an
accept: image/webp header with each HTTP request. Given that you have Service
Workers at your disposal, this seems like a perfect opportunity to start intercepting
requests and returning lighter, leaner images to browsers that can render them.

 The basic web page in the following listing references an image of Brooklyn Bridge
in New York.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Brooklyn Bridge - New York City</title>
 </head>
 <body>
<h1>Brooklyn Bridge</h1>

 <script>
 // Register the service worker
 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('./service-

worker.js').then(function(registration) {
 // Registration was successful
console.log('ServiceWorker registration successful with scope: ',

registration.scope);
 }).catch(function(err) {
 // registration failed :(
 console.log('ServiceWorker registration failed: ', err);
 });
 }
 </script>
 </body>
</html>

That image is in JPEG format and comes in at 137 KB. If you convert it to WebP and
store it on the server, you can choose to return this for browsers that support it and
fall back to the original for those that don’t.

 The next listing shows code in your Service Worker that you can use to start inter-
cepting the HTTP request for this image.

"use strict";

// Listen to fetch events
self.addEventListener('fetch', function(event) {

 if (/\.jpg$|.png$/.test(event.request.url)) {

 var supportsWebp = false;
 if (event.request.headers.has('accept')) {
 supportsWebp = event.request.headers

Listing 4.8 A basic HTML web page including a JPEG image

Listing 4.9 Service Worker Code to Return WebP Images if the Browser Supports It

Check whether the
incoming request is
for an image of type
JPEG or PNG.

Inspect the accept header
for WebP support.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

59Fetch in action

 .get('accept')
 .includes('webp');
 }

 if (supportsWebp) {
 var req = event.request.clone();

 var returnUrl = req.url.substr(0, req.url.lastIndexOf(".")) + ".webp";

 event.respondWith(
 fetch(returnUrl, {
 mode: 'no-cors'
 })
);
 }
 }
});

There’s a lot of code going on in listing 4.9. Let’s step back and break it down fur-
ther. In the first few lines, you’re adding an event listener to listen out for any fetch
events that take place. For each HTTP request that takes place, you check to see
whether the current request is for a JPEG or PNG image. If you know the current
request is for an image, you can then determine the best content to return based on
the HTTP headers that are passed through. In this case, you’re inspecting each
header and looking for the image/webp mime type. Once you know the header val-
ues, you can determine whether the browser supports WebP images and return the
corresponding WebP image.

 Once the Service Worker has activated and is ready, any requests for a JPEG or
PNG image will be returned as its WebP equivalent for any browsers that support it. If
the browser doesn’t support WebP images, it won’t advertise the support in the HTTP
request header, and the Service Worker will ignore the request and work as normal.

 The WebP equivalent comes in at 87 KB, and compared to its JPEG equivalent,
you’ve managed to save 59 KB—around 37% of the original file size. For users on a
mobile device, this could add up to a big bandwidth saver across your site.

 Service Workers open up a world of endless possibilities, and this example could
be extended to include other image formats, and even caching. You could easily add
support for Internet Explorer’s improved image format called JPEGXR. There’s no
reason why you can’t reward your users with fast web pages right now.

4.3.2 An example using the Save-Data header

I was recently travelling abroad when I urgently needed to get some information from
my airline’s website. I was on a sketchy 2G connection that took forever to load the
page and eventually I gave up completely. I was also paying a fortune for this daily ser-
vice from my mobile provider back home—so frustrating!

 4G-network coverage is rapidly accelerating worldwide, but there’s still a long way
to go. 3G networks were only launched in late 2007 in countries such as Bangladesh,
Brazil, China, India, Nigeria, Pakistan, and Russia—where almost 50% of the global

Does the browser
support WebP?

Build the
return

URL.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

60 CHAPTER 4 Intercepting network requests

population is located.1 Although mobile coverage is growing, it’s crazy to think that a
500 MB data plan can cost around 17 hours’ worth of minimum wage work in India.2

 Fortunately, browser vendors such as Google Chrome, Opera, and Yandex have
realized the pain that many users face. With the latest versions of these browsers, users
can opt-in to a feature that will save them data. Once this feature is enabled, the
browser will add a new header to each HTTP request. Developers can look out for this
header and return the appropriate content to save users data. For example, if a user
has opted-in to save data, you could return lighter images, smaller videos, or even dif-
ferent markup. It’s a simple concept, but effective.

 This sounds like a perfect situation to use a Service Worker. In the next section,
you’ll build code that will intercept whether or not a user has opted-in to save data
and return a lighter version of your PWA.

 Remember the PWA you built in chapter 3? Called Progressive Times, it contains a
collection of funny news facts from around the world (figure 4.4).

1 https://gsmaintelligence.com/research/2014/12/mobile-broadband-reach-expanding-globally/453
2 http://blog.jana.com/2015/05/21/the-data-trap-affordable-smartphones-expensive-data

Figure 4.4 The Progressive Times sample application is a basic app we’ll revisit throughout the book.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

61Fetch in action

In the Progressive Times app, you’re using web fonts to improve the look and feel of
the app.

 These fonts are downloaded from a third-party service and come in at around 30
KB. Web fonts do enhance the look and feel of a web page, but if users are trying to
save data and money at the same time, web fonts seem unnecessary. There’s no reason
why your PWA can’t cater to users regardless of their network connection.

 Whether you’re on a desktop or mobile device, enabling this feature is a relatively
straightforward process. If you’re on a mobile device, you can enable this under the
Settings in your menu, as shown in figure 4.5.

Once the setting is enabled, each HTTP request to the server will include the Save-
Data header. If you view this using your developer tools, it might look a little some-
thing like figure 4.5.

 Once the Save-Data feature has been enabled, you can use a few different tech-
niques to return data to the user. Because each HTTP request will go to the server, you
could decide to serve different content based on the Save-Data header directly from
server-side code. But with a few lines of JavaScript and using the power of Service
Workers, you could easily intercept the HTTP requests and serve lighter content
accordingly. If you’re developing a front-end application that’s API-driven and don’t
have access to the server, this is a perfect option.

 Service Workers allow you to intercept outgoing HTTP requests, inspect them, and
act on this information. Using the Fetch API, you can easily implement a solution to
detect the Save-Data header and serve lighter content.

Figure 4.5 You can enable the Save-Data feature on your mobile device or on a phone. Note the highlighted areas
in red.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

62 CHAPTER 4 Intercepting network requests

You’ll get started by creating a JavaScript file called service-worker.js and adding the
code in listing 4.10 to it.

"use strict";

this.addEventListener('fetch', function (event) {

 if(event.request.headers.get('save-data')){
 // We want to save data, so restrict icons and fonts
 if (event.request.url.includes('fonts.googleapis.com')) {
 // return nothing
 event.respondWith(new Response('', {status: 417, statusText: 'Ignore

fonts to save data.' }));
 }
 }
});

Based on the examples we’ve looked at already, the code in listing 4.10 should look
familiar. In the first few lines, you’re adding an event listener to listen out for any
fetch events that take place. For each request that takes place, you’re inspecting the
header and checking to see if the Save-Data header has been enabled. If it has been,
you then check to see if the current HTTP request is for a web font from the domain
fonts.googleapis.com. Because you’re looking to save your users unnecessary data, you
return a custom HTTP response with a 417-status code and your own custom status
text. HTTP status codes provide users with specific information from the server;3 in
the case of a 417 status code, it’s “The server cannot meet the requirements of the
Expect request-header field.”

Listing 4.10 Service Worker code to check for the save-data HTTP header

3 https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Figure 4.6 With the Save-Data feature enabled, each HTTP request will include this in the
header.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

63Summary

 Using this simple technique and a few lines of code, you were able to reduce the
overall download size of the page and ensure that the user saved on any unnecessary
data. You could extend this technique further and return images of a lower quality, or
other larger downloads on your site.

 You can see any of the code in this chapter in action on GitHub at http://bit.ly/
chapter-pwa-4.

4.4 Summary
The Fetch API is a new browser API that aims to make your code cleaner and easier
to read.

 The fetch event allows you to intercept any outgoing HTTP requests to and from
your browser. This functionality is extremely powerful and allows you to alter responses
or even create your own custom HTTP responses without even hitting the server.

 WebP images are 26% smaller in file size than PNG images and around 25–34%
smaller in file size than JPEG images.

 Using Service Workers, you can tap into the fetch event and intercept if the
browser supports WebP images. Using this technique, you can serve smaller images to
your users and speed up your page load times.

 Some modern browsers have an opt-in to a feature that allows users to save data. If
the feature is enabled, the browser adds a new header to each HTTP request. Using
Service Workers you can tap into the fetch event and decide if you want to return a
lighter version of your site.

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

Dean Alan Hume

O
ffl ine websites that work. Near-instant load times.
Smooth transitions between high/low/no bandwidth.
Fantasy, right? Not with progressive web applications.

PWAs use modern browser features like push notifi cations,
smart caching, and Service Workers to manage data, minimize
server usage, and allow for unstable connections, giving you
better control and happier customers. Better still, all you need
to build PWAs are JavaScript, HTML, and the easy-to-master
techniques you’ll fi nd in this book.

Progressive Web Apps teaches you PWA design and the skills
you need to build fast, reliable websites. There are lots of
ways you can use PWA techniques, and this practical tutorial
presents interesting, standalone examples so you can jump
to the parts that interest you most. You’ll discover how Web
Service Workers vastly improve site loading, how to effectively
use push notifi cations, and how to create sites with a no-
compromise offl ine mode.

Inside, you’ll find
● Improved caching with Service Workers
● Using manifest fi les and HTML markup
● Push notifi cations
● Offl ine-fi rst web designs
● Techniques for data synchronization

Written for readers with experience developing websites using
HTML, CSS, and JavaScript.

Dean Hume is a coder, author, and Google Developer Expert.
He’s passionate about web performance and user experience.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/progressive-web-apps

$39.99 / Can $52.99 [INCLUDING eBOOK]

Progressive Web Apps

WEB DEVELOPMENT

M A N N I N G

“Takes a practical, example-
driven approach to learning

how PWAs can help you
 build fast, engaging sites.”

—From the Foreword by
Addy Osmani, Google

“A pioneering work that will
take your web app offl ine
and onto the fast lane.”

—Michal Paszkiewicz
Transport for London

“The very best resource
for understanding and

implementing progressive
web applications.”—Evan Wallace

Berkley Insurance Australia

“Thorough, methodical
coverage for novice users,

with handy insights
and many ‘aha’ moments
 for advanced users.”

—Dev Paliwal, Synapse

SEE INSERT

www.itbook.store/books/9781617294587

https://itbook.store/books/9781617294587

