
M A N N I N G

Dr. Jonathan Carroll

A beginner’s guide to R and RStudio

Sample Chapter

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

Beyond Spreadsheets with R

by Dr. Jonathan Carroll

Chapter 3

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

v

brief contents
1 ■ Introducing data and the R language 1
2 ■ Getting to know R data types 26
3 ■ Making new data values 53
4 ■ Understanding the tools you’ll use: Functions 67
5 ■ Combining data values 106
6 ■ Selecting data values 139
7 ■ Doing things with lots of data 182
8 ■ Doing things conditionally: Control structures 213
9 ■ Visualizing data: Plotting 235

10 ■ Doing more with your data with extensions 281

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

53

3Making new data values

This chapter covers
¡	Performing operations between two or more

data values

¡	Comparing values of the same or different type

¡	How R changes the data type as it needs to

You have your data values, but there’s a good chance you’ll want to do something
with them, like add or multiply. It’s time to go back to basics and see how R deals
with combining data. Thankfully, R is a readable language for things like this, and
with any luck you’ll be able to code up what you’re trying to do with the operators
you expect. Follow along with this chapter in the Console and try some values your-
self to see if you get the results you expect.

3.1 Basic mathematics
The simplest thing you might want to do to two values is add them. No surprises
here, the + symbol (operator) between two values will do just that, the same as you
would on a calculator:

2 + 2
#> [1] 4

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

54 ChapTEr 3 Making new data values

The same goes for subtraction:

4 - 3
#> [1] 1

Multiplication in programming tends to use the asterisk (*) rather than a multiply sign
(technically, ×, but commonly seen as an x):

3 * 6
#> [1] 18

Division uses a slash (/) like you might use in writing a fraction:

12 / 4
#> [1] 3

One that might not be so obvious is the exponentiation operator, which raises a number
to a power. This one is used, for example, when you need to square a value. There are
two options, though in reality they’re different ways of writing the same thing. Here’s the
first:

2 ^ 10
#> [1] 1024

The second is much less common and may be confused with multiplication on too fast
a skim-read,

2 ** 10
#> [1] 1024

Notice that no parentheses (()) were needed to group together the digits 1 and 0
into a 10 — R does some guesswork behind the scenes to interpret what you mean,
and treats this as the value 10 rather than an invalid expression. The spaces between
values and operators are also cleverly interpreted; you could remove them and write
3+2 or 3^2, but for the sake of clarity, it’s often best to space things out a little. The
less-common variant ** does, however, require that there be no spaces between the two
asterisks.

Dates are a special type in R (recall section 2.1.4), and you can now see why. Although
you can certainly subtract dates to calculate a period of time, which R interprets sensibly
for suitably encoded values

as.POSIXct(x = "2016-12-31") - as.POSIXct(x = "2016-01-01")
#> Time difference of 365 days

adding dates doesn’t make sense:

as.POSIXct(x = "2016-12-31") + as.POSIXct(x = "2016-01-01")

#> Error: binary '+' is not defined for "POSIXt" objects

Somewhat related, R won’t let you perform operations between incompatible types for
a given operator. You might understand the intention of the following perfectly well:

2 + "2"

#> Error: non-numeric argument to binary operator

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

 55Basic mathematics

But R won’t take the leap of faith in assuming that you mean to add these as numbers.
A spreadsheet may have the same apprehensions about adding a number to a string,
an example of which is shown in figure 3.1.

Spreadsheets may, however, be more flexible when attempting this within a formula, as
in figure 3. 2.

R is less fussy over the difference between numeric and integer types, and will allow you
to work with these interchangeably if you ask. It returns the result in the most general
type possible (in this case, numeric, which is more general than integer):

numPlusInt <- 7 + 3L
str(object = numPlusInt)
#> num 10

It should come as no surprise then that certain combinations are out of the question:

"7" - "4"

#> Error: non-numeric argument to binary operator

"7" + "4"

#> Error: non-numeric argument to binary operator

Others may surprisingly work just fine:

as.POSIXct(x = "2016-12-31") + 1
#> [1] "2016-12-31 00:00:01 ACDT"

Here R has treated the 1 as some number of seconds to add to the date-time object on
the left side of the + operator. To add a whole day, then you need to add 24 hours, each
of which has 60 minutes, each of which has 60 seconds:

as.POSIXct(x = "2016-12-31") + 60*60*24
#> [1] "2017-01-01 ACDT"

Figure 3.1 Attempting to add a number to a string
in a spreadsheet, resulting in an error

Figure 3.2 Attempting to add a number to a string
within a formula in a spreadsheet, which doesn’t
result in an error

Remember that the time zone shown here (Australian
Central Daylight Time, ACDT) is likely to be different
from your own output in your time zone.

Although you certainly mean to be multiplying
integers, which you would specify with an L
suffix, you can be lazy and multiply numeric
values and get the same result.

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

56 ChapTEr 3 Making new data values

Math with NA
Involving the missing data value NA typically leads to more missing data. Trying to add
missing data to known data results in the total value going missing:

7 + NA
#> [1] NA
NA + 0
#> [1] NA

This can lead to some unwanted effects if you have a lot of data values and just one miss-
ing value, perhaps because it was converted from another type incorrectly. The sum()
function, which calculates the sum of its inputs, has an option specifically for this scenario
(as do several functions). If you try to take the sum of some values including an NA value

sum(3, 7, 0, 9, NA)
#> [1] NA

the result is missing. But if you tell this function to first remove any NA values with the
option na.rm = TRUE

sum(3, 7, 0, 9, NA, na.rm = TRUE)
#> [1] 19

the NA value is removed before the sum is calculated.

It’s best to be suspicious any time you may have NA values in your data.

3.2 Operator precedence
When multiple operations are acting together, R has rules that determine the order in
which they will be evaluated, called precedence.

DEFINITION Precedence refers to the order or ranking of a group. In R, this refers
to which operations will be performed before others.

For example, perhaps you’ve seen the “challenges” floating around social media, with
“99% of people won’t get this right” posted alongside a short and semi-ambiguous
mathematical statement, such as

2 + 3 * 0 - 1 = ?

These should be no hassle for anyone who remembers their order of operations from
school: the acronym PEMDAS stands for Parentheses, Exponents, Multiplication and
Division, and Addition and Subtraction — the order in which these operations should
be carried out. In the preceding case, given the lack of parentheses (()) or exponents
(raised to a power), the next step is to perform the multiplication of 3 and 0, which is
0. This leaves the addition and subtraction steps, which don’t depend on their order:

2 + 0 - 1 = 1

Nonetheless, the comments on said “challenge” will contain any number of answers
and people fighting tooth and nail to defend their incorrect justifications.

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

 57String concatenation (joining)

R has a similar hierarchy for order of operations, but it includes some other oper-
ators we haven’t discussed yet. Nonetheless, it’s good practice to include parentheses
where there is doubt about what the intended order of operations is, or to force a par-
ticular grouping. In the preceding case, writing this as

2 + (3 * 0) - 1

would help make it clearer that the 3 is multiplied by the 0 and the result of that takes
part in the subsequent addition and subtraction. This becomes essential when you
want to exponentiate to the result of some combination of multiple values:

2 ^ (5 * 2)

The parentheses dictate that this group needs to be evaluated first, before the expo-
nentiation. This can significantly alter the way an expression is evaluated. Consider for
a moment the following odd-looking expression:

x <- y <- 3 + 1

This is perfectly valid, and R will process it as it understands it (assign the result of 3 +
1 to y, and assign that result to x), producing the following:

x
#> [1] 4

y
#> [1] 4

Including some more parentheses, though,

x <- (y <- 3) + 1

you can change what the expression means (now assign 3 to y, then add 1, and then
assign that result to x) producing

x
#> [1] 4

y
#> [1] 3

The computer and R have no problems understanding what you’ve written (a certain
way). Do your best to make sure that what you’ve written is what you mean.

3.3 String concatenation (joining)
You saw earlier that adding two strings ("7" + "4") produced an error, because the +
operator works for numbers (numeric or integer). We could envisage trying to “add”
two words together, though, perhaps "butter" and "fly". But we don’t really mean
add — we mean join, or more strictly, concatenate.

For these circumstances, there is a specific function to perform this operation, the
paste() function, but it has a default of joining strings with a space between them
(which is often what you want):

paste("butter", "fly")
#> [1] "butter fly"

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

58 ChapTEr 3 Making new data values

This is the result of the default argument sep = " ", which specifies the separator to
place between the inputs, with a default of using a space. You can change this to sep = ""
to remove it entirely, or use the convenience function

paste0("butter", "fly")
#> [1] "butterfly"

which performs the same operation but with 0 spaces between inputs.
The paste() (and paste0()) function converts its input to character before past-

ing together, so you can use other types here too:

paste0("value", 31)
#> [1] "value31"

You can even use variables you’ve defined, or other paste() calls:

address_number <- 221
address_suffix <- "B"
address_street <- "Baker Street"

paste(
 paste0(
 address_number,
 address_suffix
),
 address_street
)
#> [1] "221B Baker Street"

Joining NA values
This is one scenario in which a missing value can become non-missing, perhaps unex-
pectedly. By default, the inputs to paste() are converted to type character with the
as.character() function. But that function preserves missing values, so these two are
different results:

as.character(x = NA)
#> [1] NA
as.character(x = "NA")
#> [1] "NA"

You might expect then that paste() would produce a missing value when one of its
inputs is NA, but it handles this smoothly:

paste("a missing value is denoted", NA)
#> [1] "a missing value is denoted NA"

This is noteworthy enough to receive special mention in the help() page for paste():
“Note that paste() coerces NA_character_, the character missing value, to ‘NA’ which
may seem undesirable, e.g., when pasting two character vectors, or very desirable, e.g. in
paste('the value of p is ', p).”

 Inputs to the innermost paste0()

Input to the outermost paste()

A missing value

The string "NA"

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

 59Comparisons

Enter some more values into the Console with combinations of these operators and
make sure you’re comfortable with them. In the next section, you’ll see how to make
comparisons between values.

3.4 Comparisons
The essence of scientific results boils down to comparing values. Are there fewer y
than a decade ago? Has z grown this week? Is j faster than k? Are any of m significant
effects (fitting some criteria)? If we didn’t require comparisons between data, coding
analyses would be fairly straightforward — always do this, then that, then the other
thing. Because we do require comparisons, though, we must know how to tell R to
compare values.

The result of a comparison will always be a logical value (recall from section 2.1.5):
either TRUE or FALSE (or missing: NA). The simplest comparisons you can make are “Is
x greater than y?” (x > y) and “Is x less than y?” (x < y), using the “greater than” and
“less than” operators, < and >:

7 > 4
#> [1] TRUE

9 < 3
#> [1] FALSE

CAUTION Recall the example in section 2.2.3, which accidentally included a
space in <- and produced a comparison. Be very careful with spaces. Whitespace
can (and should) be included around the comparison operators to help make
the code clear. It’s all too easy to miss the difference between x< -3 and x <- 3.

You can also allow for the possibility of “Is x greater than or equal to y?” (x >= y) and
its partner “Is x less than or equal to y?” (x <= y):

5 >= 6
#> [1] FALSE

3 <= 3
#> [1] TRUE

You can test whether two numbers are equal to each other with a “double equals” (==),
which asks “Is x the same value as y?” (x == y). The opposite question can be asked
also: “Is x a different value than y?” or “Does x not equal y?” (x != y):

3 == 3
#> [1] TRUE

7 != 4
#> [1] TRUE

Some care needs to be taken with these operators. They test whether two values
appear to be the same, but not whether they are precisely the same. Even though
you can specify an integer-like value as either an integer or a real number, these are

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

60 ChapTEr 3 Making new data values

stored differently. They represent the same value, though, so == treats these as equal
when testing:

5L == 5
#> [1] TRUE

If you truly want to test whether these are the same thing, the identical() function
checks the types of the input values before declaring things identical:

identical(x = 5L, y = 5)
#> [1] FALSE

Comparisons between real values
Be very careful when comparing non-integer (real) numbers against each other. Recall
from chapter 2 that computers store data in binary (as ones and zeroes). Because of
this, there is a limitation to the precision with which decimal numbers can be stored. You
may enter the value 0.3, but the computer attempts to store as many digits (zeroes in
this case) at the end of that as it can. In the same way that you can’t really write 1/3 =
0.33333... exactly without going on forever, computers can’t store values that aren’t
exact powers of 2 without being off by a little.

You can see this in effect by requesting more digits in the output from a print()
command:

print(x = 0.3, digits = 17)
#> [1] 0.29999999999999999

When mathematical operations take place, these extra or lacking bits also contribute. So
although you may see a nice rounded value in your output, in terms of the digits the com-
puter knows about, it may be slightly off from that, leading to unexpected results:

print(x = 0.1 + 0.2)
#> [1] 0.3
print(x = 0.1 + 0.2, digits = 17)
#> [1] 0.30000000000000004

This isn’t unique to R.1 Rather, it’s inherent in any computer language. The safest way
to avoid this issue is to never compare real numbers against each other if you need the
answer to be exact:

0.1 + 0.2 > 0.3

#> [1] TRUE

The ! in != represents the notion of not, as in not equal. This can appear in several dif-
ferent places with the same effect:

3 != 4
#> [1] TRUE

1 See the article “Floating Point Math” at http://0.30000000000000004.com.

www.itbook.store/books/9781617294594

http://0.30000000000000004.com
https://itbook.store/books/9781617294594

 61Comparisons

!(3 == 4)
#> [1] TRUE

(! 3 == 4)
#> [1] TRUE

What if you try to compare to a missing value? The comparison of anything to the miss-
ing value NA is NA

3 > NA
#> [1] NA

7 == NA
#> [1] NA

even if the comparison involves a “not” operator:

5 != NA
#> [1] NA

Comparison between the two logical values can be summarized in a truth table, where
the intersection of a row and a column shows the result of the comparison row ==
column, as shown in table 3.1. Notice that comparing anything to NA yields NA, includ-
ing NA itself.

Table 3.1 Truth table for the equals operator (==)

== TRUE FALSE NA

TRUE TRUE FALSE NA

FALSE FALSE TRUE NA

NA NA NA NA

Comparing anything to NULL results in nothing, but a particular “type” of noth-
ing — still a logical value, but one that is of length 0:

3 > NULL
#> logical(0)

TRUE == NULL
#> logical(0)

NA != NULL
#> logical(0)

There are other ways to compare logical values; you can also combine them with and
(&) and or (|) operators. Let's make another truth table for the logical options, as
shown in table 3.2 for and.

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

62 ChapTEr 3 Making new data values

Table 3.2 Truth table for the and operator (&)

& TRUE FALSE NA

TRUE TRUE FALSE NA

FALSE FALSE FALSE FALSE

NA NA FALSE NA

The surprising result of table 3.2 is the combination of NA and FALSE, which yields
FALSE. The help page for ?`&` explains: “NA is a valid logical object. Where a compo-
nent of x or y is NA, the result will be NA if the outcome is ambiguous.”

A similar table can be constructed for the or (|) operator, as shown in table 3.3.
Again, comparison with NA doesn’t necessarily lead to NA as long as the comparison is
unambiguous.

Table 3.3 Truth table for the or operator (|)

| TRUE FALSE NA

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NA

NA TRUE NA NA

Individual comparisons
Although it may be tempting to think that you can write logical combinations the way you
might read them, it’s important to remember that only one comparison can be made at a
time. To test whether some variable x was greater than 3, you would write the following:

x <- 4
x > 3
#> [1] TRUE

To also test whether x was less than 5, you might try adding in this condition as “also less
than 5”:

x > 3 & < 5
#> Error: unexpected '<' in "x > 3 & <"

This fails because when R reads in this expression, it breaks it down into the appropriate
levels of precedence (recall section 3.2), and < has a higher precedence (is evaluated
earlier) than &; but here < has nothing to compare to, so the call fails.

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

 63Automatic conversion (coercion)

Instead, you need to repeat a little and make the two comparisons explicit:

x > 3 & x < 5
#> [1] TRUE

There are also double forms of and (&&) and not (||) operators that evaluate, left to
right, one element at a time, until a result is definitely reached. This becomes important
and useful when you have collections of logical comparisons to test, but only require a
single answer. You may need to make a thousand & comparisons to test whether all the
values of two inputs are the same; but if they differ in the fourth pair then they’re defi-
nitely not the same, so the rest of the comparisons can be skipped.

Testing whether a value is equal to NA
If you need to compare whether a value is NA, the handy built-in function is.na()
returns TRUE if the input is NA, and FALSE otherwise:

is.na(x = 7)
#> [1] FALSE
is.na(x = NA)

#> [1] TRUE

3.5 Automatic conversion (coercion)
Occasionally, R will perform a conversion on your behalf (whether you wanted it to or
not). Typically, this is a useful feature; to add an integer and a non-integer, you might
try this:

3L + 2.5
#> [1] 5.5

The result can be seen by examining the structure:

str(object = 3L + 2.5)
#> num 5.5

What has happened here? The C code underlying the + function has a few lines spe-
cifically for this scenario. If one (and only one) of the arguments (with the shorthand
+ notation, the left or right side) is of type numeric and the other is of type integer,
the integer value is coerced to a numeric value, and then the two are added, producing
a final numeric value. This is the result you want — converting an integer to a numeric
value is essentially trivial: no rounding is required. Converting from a numeric value
to an integer, however, has some potential complications, as you saw in section 2.3. If
automatic coercion takes place, R will always coerce to the more general structure. The
ordering from most specific to most general is shown in figure 3.3.

Equivalent to (x > 3) & (x < 5)

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

64 ChapTEr 3 Making new data values

Logical Integer Numeric Character

Figure 3.3 Ordering of coercion

R considers certain values to be equivalent to TRUE and others equivalent to FALSE.
For numbers, the value 0 (or 0L) converts to FALSE, whereas any other (positive or
negative) number converts to TRUE. You can observe this by requesting the conversion
explicitly:

as.logical(x = 0)
#> [1] FALSE

as.logical(x = 1)
#> [1] TRUE

Or compare with the approximate test ==:

0 == FALSE
#> [1] TRUE

1 == TRUE
#> [1] TRUE

The automatic conversion the other way means you can add logical and real values
together:

8 + TRUE
#> [1] 9

This becomes very handy for counting binary values:

sum(TRUE, FALSE, TRUE, TRUE)
#> [1] 3

Performing comparisons is when you are most likely to encounter automatic coercion.
You may not expect the following to work at all, but it does:

"a" > 5
#> [1] TRUE

When R notices you’re trying to compare two different types, it performs coercion to
the most general type — in this case, character is more general (it’s the most general)
than numeric. What happens next depends on where you live; the strings/characters are
compared by their place in the encoding scheme’s table. This is language-dependent
(which tends to depend on the locale your computer recognizes): this example is using
(Australian) English with a UTF-8 scheme (en_AU.UTF-8), for which letters come after
numbers. The help() page for the comparison operators (for example, ?`>`) notes
that in Estonian, Z comes between S and T,2 so be aware when using this feature that
your results may differ from someone else’s.

2 Read more about this in the Wikipedia article at http://mng.bz/5Yx8.

www.itbook.store/books/9781617294594

http://mng.bz/5Yx8
https://itbook.store/books/9781617294594

 65Try it yourself

This is also the reason the wayward space in the assignment operation back in section
2.3 produced a result. Recall that you tried to assign the value 3 to the variable a but
accidentally inserted a space inside <-, and so instead generated a logical value since a
already held the value "x":

a <- "x"
a < - 3
#> [1] FALSE

Here R sees a comparison between two different types, so R converts to the most gen-
eral type (in this case, character) and checks the encoding scheme’s table to see if "x"
comes before or after -3. In my locale, letters come after numbers, so this comparison
returns FALSE.

You could reasonably expect that the following is automatically coercing to numeric

"2" < "3"
#> [1] TRUE

which would produce the output as shown. A simple change shows that this isn’t the
case:

"2" < "13"
#> [1] FALSE

In these cases, no coercion is required, because both values are already of type character.
They are again compared via their positions in the encoding table, and these are sorted
numerically such that "13" (starting with a "1") is before "2".

3.6 Try it yourself
Daily temperatures are typically found in one of two scales: Celsius and Fahrenheit.
It’s useful to know how to convert between the two. If you have a temperature in Fahr-
enheit and want to convert it to Celsius, you can enter the Fahrenheit value into this
expression to find the Celsius value:

Celsius <- (5 * Fahrenheit - 32) / 9

So, if you have

temp_F <- 88

you can calculate the temperature in Celsius using

temp_C <- 5L * (temp_F - 32L) / 9L

(the L specifications aren’t essential, but are good practice). You can now examine
what value this takes:

temp_C
#> [1] 31.11111

Going the other way, you can invert the expression:

Fahrenheit = (9 * Celsius / 5) + 32

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

66 ChapTEr 3 Making new data values

So you should be able to obtain the original value again:

temp_F_recalculated <- (9L * temp_C / 5L) + 32L
temp_F_recalculated
#> [1] 88

You can reassure yourself that this is in fact the same value:

temp_F == temp_F_recalculated
#> [1] TRUE

Evaluate the preceding conversions (or better yet, write your own) and convert 0°C to
Fahrenheit. Convert 100°F to Celsius. Convert –40° from one scale to the other.

Terminology
¡	Operator — A symbol representing an operation to be performed on one or more

values: for example, +
¡	Precedence — The order in which operations will be evaluated
¡	Expression — A command for R to interpret; performing an operation on 0 or

more data values

Summary
¡	You can use R as a calculator more or less as you’d expect.
¡	Certain types of data can’t be added/subtracted.
¡	Operators have different precedence, which can be overridden with parentheses.
¡	Strings can be combined using paste().
¡	Coercion will result in data being converted to the most general type.
¡	Character is the most general type of data.
¡	Text can be compared to numbers because the latter will be coerced to character.
¡	Comparisons between real numbers is dangerous due to rounding differences.
¡	Comparing NA to anything produces NA, even NA itself.
¡	Strings can be compared, but doing so depends on your computer’s settings, usu-

ally dependent on where you live.

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

Dr. Jonathan Carroll

S
preadsheets are powerful tools for many tasks, but if you
need to interpret, interrogate, and present data, they
can feel like the wrong tools for the task. That’s when R

programming is the way to go. The R programming language
provides a comfortable environment to properly handle all
types of data. And within the open source RStudio develop-
ment suite, you have at your fi ngertips easy-to-use ways to
simplify complex manipulations and create reproducible
processes for analysis and reporting.

With Beyond Spreadsheets with R you’ll learn how to go from
raw data to meaningful insights using R and RStudio. Each
carefully crafted chapter covers a unique way to wrangle data,
from understanding individual values to interacting with
complex collections of data, including data you scrape from
the web. You’ll build on simple programming techniques like
loops and conditionals to create your own custom functions.
You’ll come away with a toolkit of strategies for analyzing and
visualizing data of all sorts.

What’s Inside
● How to start programming with R and RStudio
● Understanding and implementing important R
 structures and operators
● Installing and working with R packages
● Tidying, refi ning, and plotting your data

If you’re comfortable writing formulas in Excel, you’re ready
for this book.

Jonathan Carroll is a data science consultant providing R pro-
gramming services. He holds a PhD in theoretical physics.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/beyond-spreadsheets-with-r

$49.99 / Can $65.99 [INCLUDING eBOOK]

Beyond Spreadsheets with R

R/DATA SCIENCE

M A N N I N G

“A useful guide to facilitate
graduating from spreadsheets

to more serious data
wrangling with R.”
—John D. Lewis, DDN

“An excellent book to help
you understand how

 stored data can be used.”
—Hilde Van Gysel
Trebol Engineering

“A great introduction to
a data science programming
language. Makes you want

to learn more!”—Jenice Tom, CVS Health

“Handy to have when
your data spreads beyond

 a spreadsheet.”
—Danil Mironov, Luxoft Poland

See first page

www.itbook.store/books/9781617294594

https://itbook.store/books/9781617294594

	Beyond Spreadsheets with R
	brief contents
	3: Making new data values
	3.1	Basic mathematics
	3.2	Operator precedence
	3.3	String concatenation (joining)
	3.4	Comparisons
	3.5	Automatic conversion (coercion)
	3.6	Try it yourself

