
M A N N I N G

Andrew Lock

SAMPLE CHAPTER

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

ASP.NET Core in Action
by Andrew Lock

Chapter 1

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

v

brief contents
PART 1 GETTING STARTED WITH MVC.. 1

1 ■ Getting started with ASP.NET Core 3
2 ■ Your first application 28
3 ■ Handling requests with the middleware pipeline 61
4 ■ Creating web pages with MVC controllers 93
5 ■ Mapping URLs to methods using conventional routing 120
6 ■ The binding model: retrieving and validating user input 148
7 ■ Rendering HTML using Razor views 174
8 ■ Building forms with Tag Helpers 204
9 ■ Creating a Web API for mobile and client applications

using MVC 234

PART 2 BUILDING COMPLETE APPLICATIONS.............................. 265
10 ■ Service configuration with dependency injection 267
11 ■ Configuring an ASP.NET Core application 303
12 ■ Saving data with Entity Framework Core 334
13 ■ The MVC filter pipeline 369
14 ■ Authentication: adding users to your application with

Identity 400
15 ■ Authorization: securing your application 432
16 ■ Publishing and deploying your application 461

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

BRIEF CONTENTSvi

PART 3 EXTENDING YOUR APPLICATIONS...................................499
17 ■ Monitoring and troubleshooting errors with logging 501
18 ■ Improving your application’s security 534
19 ■ Building custom components 572
20 ■ Testing your application 607

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

Part 1

Getting started with MVC

Web applications are everywhere these days, from social media web apps
and news sites, to the apps on your phone. Behind the scenes, there is almost
always a server running a web application or web API. Web applications are
expected to be infinitely scalable, deployed to the cloud, and highly performant.
Getting started can be overwhelming at the best of times and doing so with such
high expectations can be even more of a challenge.

 The good news for you as readers is that ASP.NET Core was designed to meet
those requirements. Whether you need a simple website, a complex e-commerce
web app, or a distributed web of microservices, you can use your knowledge of
ASP.NET Core to build lean web apps that fit your needs. ASP.NET Core lets you
build and run web apps on Windows, Linux, or macOS. It’s highly modular, so
you only use the components you need, keeping your app as compact and per-
formant as possible.

 In part 1, you’ll go from a standing start all the way to building your first web
applications and APIs. Chapter 1 gives a high-level overview of ASP.NET Core,
which you’ll find especially useful if you’re new to web development in general.
You’ll get your first glimpse of a full ASP.NET Core application in chapter 2, in
which we look at each component of the app in turn and see how they work
together to generate a response.

 Chapter 3 looks in detail at the middleware pipeline, which defines how
incoming web requests are processed and how a response is generated. We take a
detailed look at one specific piece of middleware, the MVC middleware, in chap-
ters 4 through 6. This is the main component used to generate responses in
ASP.NET Core apps, so we examine the behavior of the middleware itself, routing,

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

2 PART 1 Getting started with MVC

and model binding. In Chapters 7 and 8, we look at how to build a UI for your appli-
cation using the Razor syntax and Tag Helpers, so that users can navigate and interact
with your app. Finally, in chapter 9, we explore specific features of ASP.NET Core that
let you build web APIs, and how that differs from building UI-based applications.

 There’s a lot of content in part 1, but by the end, you’ll be well on your way to
building simple applications with ASP.NET Core. Inevitably, I gloss over some of the
more complex configuration aspects of the framework, but you should get a good
understanding of the MVC middleware and how you can use it to build dynamic web
apps. In later parts of this book, we’ll dive deeper into the framework, where you’ll
learn how to configure your application and add extra features, such as user profiles.

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

3

Getting started
with ASP.NET Core

Choosing to learn and develop with a new framework is a big investment, so it’s
important to establish early on whether it’s right for you. In this chapter, I’ll pro-
vide some background about ASP.NET Core, what it is, how it works, and why you
should consider it for building your web applications.

 If you’re new to .NET development, this chapter will help you to choose a devel-
opment platform for your future apps. For existing .NET developers, I’ll also pro-
vide guidance on whether now is the right time to consider moving your focus to
.NET Core, and the advantages ASP.NET Core can bring over previous versions of
ASP.NET.

 By the end of this chapter, you should have a good idea of the model you intend to
follow, and the tools you’ll need to get started—so without further ado, let’s dive in!

This chapter covers
 What is ASP.NET Core?

 How ASP.NET Core works

 Choosing between .NET Core and .NET
Framework

 Preparing your development environment

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

4 CHAPTER 1 Getting started with ASP.NET Core

1.1 An introduction to ASP.NET Core
ASP.NET Core is the latest evolution of Microsoft’s popular ASP.NET web framework,
released in June 2016. Recent versions of ASP.NET have seen many incremental
updates, focusing on high developer productivity and prioritizing backwards compati-
bility. ASP.NET Core bucks that trend by making significant architectural changes that
rethink the way the web framework is designed and built.

 ASP.NET Core owes a lot to its ASP.NET heritage and many features have been car-
ried forward from before, but ASP.NET Core is a new framework. The whole technol-
ogy stack has been rewritten, including both the web framework and the underlying
platform.

 At the heart of the changes is the philosophy that ASP.NET should be able to hold
its head high when measured against other modern frameworks, but that existing
.NET developers should continue to be left with a sense of familiarity.

1.1.1 Using a web framework

If you’re new to web development, it can be daunting moving into an area with so
many buzzwords and a plethora of ever-changing products. You may be wondering if
they’re all necessary—how hard can it be to return a file from a server?

 Well, it’s perfectly possible to build a static web application without the use of a
web framework, but its capabilities will be limited. As soon as you want to provide any
kind of security or dynamism, you’ll likely run into difficulties, and the original sim-
plicity that enticed you will fade before your eyes!

 Just as you may have used desktop or mobile development frameworks for building
native applications, ASP.NET Core makes writing web applications faster, easier, and
more secure. It contains libraries for common things like

 Creating dynamically changing web pages
 Letting users log in to your web app
 Letting users use their Facebook account to log in to your web app using OAuth
 Providing a common structure to build maintainable applications
 Reading configuration files
 Serving image files
 Logging calls to your web app

The key to any modern web application is the ability to generate dynamic web pages.
A dynamic web page displays different data depending on the current logged-in user, for
example, or it could display content submitted by users. Without a dynamic frame-
work, it wouldn’t be possible to log in to websites or to have any sort of personalized
data displayed on a page. In short, websites like Amazon, eBay, and Stack Overflow
(seen in figure 1.1) wouldn’t be possible.

 Hopefully, it’s clear that using a web framework is a sensible idea for building high-
quality web applications. But why choose ASP.NET Core? If you’re a C# developer, or
even if you’re new to the platform, you’ve likely heard of, if not used, the previous ver-
sion of ASP.NET—so why not use that instead?

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

5An introduction to ASP.NET Core

1.1.2 The benefits and limitations of ASP.NET

To understand why Microsoft decided to build a new framework, it’s important to
understand the benefits and limitations of the existing ASP.NET web framework.

 The first version of ASP.NET was released in 2002 as part of .NET Framework 1.0,
in response to the then conventional scripting environments of classic ASP and PHP.
ASP.NET Web Forms allowed developers to rapidly create web applications using a
graphical designer and a simple event model that mirrored desktop application-
building techniques.

 The ASP.NET framework allowed developers to quickly create new applications,
but over time, the web development ecosystem changed. It became apparent that
ASP.NET Web Forms suffered from many issues, especially when building larger appli-
cations. In particular, a lack of testability, a complex stateful model, and limited influ-
ence over the generated HTML (making client-side development difficult) led
developers to evaluate other options.

 In response, Microsoft released the first version of ASP.NET MVC in 2009, based
on the Model-View-Controller pattern, a common web design pattern used in other
frameworks such as Ruby on Rails, Django, and Java Spring. This framework allowed
you to separate UI elements from application logic, made testing easier, and provided
tighter control over the HTML-generation process.

 ASP.NET MVC has been through four more iterations since its first release, but
they have all been built on the same underlying framework provided by the System
.Web.dll file. This library is part of .NET Framework, so it comes pre-installed with all

User otificationsn Currently logged in user

Viewing statistics

Events and jobs
based on location
and user profile

Questions
submitted

uby sers

User votes
update scores
on the server

Answers
submitted
by users

Figure 1.1 The Stack Overflow website (http://stackoverflow.com) is built using ASP.NET and is almost entirely
dynamic content.

www.itbook.store/books/9781617294617

http://stackoverflow.com
https://itbook.store/books/9781617294617

6 CHAPTER 1 Getting started with ASP.NET Core

versions of Windows. It contains all the core code that ASP.NET uses when you build a
web application.

 This dependency brings both advantages and disadvantages. On the one hand, the
ASP.NET framework is a reliable, battle-tested platform that’s a great choice for build-
ing modern applications on Windows. It provides a wide range of features, which
have seen many years in production, and is well known by virtually all Windows web
developers.

 On the other hand, this reliance is limiting—changes to the underlying System
.Web.dll are far-reaching and, consequently, slow to roll out. This limits the extent to
which ASP.NET is free to evolve and results in release cycles only happening every few
years. There’s also an explicit coupling with the Windows web host, Internet Informa-
tion Service (IIS), which precludes its use on non-Windows platforms.

 In recent years, many web developers have started looking at cross-platform web
frameworks that can run on Windows, as well as Linux and macOS. Microsoft felt the
time had come to create a framework that was no longer tied to its Windows legacy,
thus ASP.NET Core was born.

1.1.3 What is ASP.NET Core?

The development of ASP.NET Core was motivated by the desire to create a web frame-
work with four main goals:

 To be run and developed cross-platform
 To have a modular architecture for easier maintenance
 To be developed completely as open source software
 To be applicable to current trends in web development, such as client-side

applications and deploying to cloud environments

In order to achieve all these goals, Microsoft needed a platform that could provide
underlying libraries for creating basic objects such as lists and dictionaries, and per-
forming, for example, simple file operations. Up to this point, ASP.NET development
had always been focused, and dependent, on the Windows-only .NET Framework. For
ASP.NET Core, Microsoft created a lightweight platform that runs on Windows,
Linux, and macOS called .NET Core, as shown in figure 1.2.

 .NET Core shares many of the same APIs as .NET Framework, but it’s smaller and
currently only implements a subset of the features .NET Framework provides, with the
goal of providing a simpler implementation and programming model. It’s a com-
pletely new platform, rather than a fork of .NET Framework, though it uses similar
code for many of its APIs.

 With .NET Core alone, it’s possible to build console applications that run cross-
platform. Microsoft created ASP.NET Core to be an additional layer on top of console
applications, such that converting to a web application involves adding and compos-
ing libraries, as shown in figure 1.3.

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

7An introduction to ASP.NET Core

Figure 1.2 The relationship between ASP.NET Core, ASP.NET, .NET Core, and
.NET Framework. ASP.NET Core runs on both .NET Framework and .NET Core, so
it can run cross-platform. Conversely, ASP.NET runs on .NET Framework only, so
is tied to the Windows OS.

ASP.NET Core ASP.NET /
ASP.NET MVC

.NET Core .NET Framework

Web rameworkf

.NET latformp

Windows
Linux

macOS
WindowsOperating ystems

.NET Core runs on
.multiple platforms

.NET Framework runs
.on Windows only

ASP.NET Core runs on
both .NET Core and

..NET Framework
ASP.NET 4.5 runs on
.NET Framework only.

ASP.NET Core console application

ASP.NET Core Kestrel
web server

Web application logic

You write a .NET Core console
app that starts up an instance

.of an ASP.NET Core web server

Configuration

Logging Static files

HTML
generation

Your web application logic is run by
Kestrel. You’ll use various libraries
to enable features such as logging
and HTML generation as required.

Microsoft provides, by default,
a cross-platform web server
called Kestrel.

Figure 1.3 The ASP.NET Core application model. The .NET Core platform
provides a base console application model for running command-line apps.
Adding a web server library converts this into an ASP.NET Core web app.
Additional features, such as configuration and logging, are added by way of
additional libraries.

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

8 CHAPTER 1 Getting started with ASP.NET Core

By adding an ASP.NET Core web server to your .NET Core app, your application can
run as a web application. ASP.NET Core is composed of many small libraries that you
can choose from to provide your application with different features. You’ll rarely need
all the libraries available to you and you only add what you need. Some of the libraries
are common and will appear in virtually every application you create, such as the ones
for reading configuration files or performing logging. Other libraries build on top of
these base capabilities to provide application-specific functionality, such as third-party
logging-in via Facebook or Google.

 Most of the libraries you’ll use in ASP.NET Core can be found on GitHub, in the
Microsoft ASP.NET Core organization repositories at https://github.com/aspnet. You
can find the core libraries here, such as the Kestrel web server and logging libraries, as
well as many more peripheral libraries, such as the third-party authentication libraries.

 All ASP.NET Core applications will follow a similar design for basic configuration,
as suggested by the common libraries, but in general the framework is flexible, leaving
you free to create your own code conventions. These common libraries, the extension
libraries that build on them, and the design conventions they promote make up the
somewhat nebulous term ASP.NET Core.

1.2 When to choose ASP.NET Core
Hopefully, you now have a general grasp of what ASP.NET Core is and how it was
designed. But the question remains: should you use it? Microsoft will be heavily pro-
moting ASP.NET Core as its web framework of choice for the foreseeable future, but
switching to or learning a new web stack is a big ask for any developer or company.
This section describes some of the highlights of ASP.NET Core and gives advice on the
sort of applications you should build with it, as well as the sort of applications you
should avoid.

1.2.1 What type of applications can you build?

ASP.NET Core provides a generalized web framework that can be used on a variety of
applications. It can most obviously be used for building rich, dynamic websites,
whether they’re e-commerce sites, content-based sites, or large n-tier applications—
much the same as the previous version of ASP.NET.

 Currently, there’s a comparatively limited number of third-party libraries available
for building these types of complex applications, but there are many under active
development. Many developers are working to port their libraries to work with
ASP.NET Core—it will take time for more to become available. For example, the open
source content management system (CMS), Orchard1 (figure 1.4), is currently avail-
able as a beta version of Orchard Core, running on ASP.NET Core and .NET Core.

 Traditional, server-side-rendered web applications are the bread and butter of
ASP.NET development, both with the previous version of ASP.NET and ASP.NET

1 The Orchard project (www.orchardproject.net/). Source code at https://github.com/OrchardCMS/.

www.itbook.store/books/9781617294617

https://github.com/aspnet
http://www.orchardproject.net/
https://github.com/OrchardCMS/
https://itbook.store/books/9781617294617

9When to choose ASP.NET Core

Core. Additionally, single-page applications (SPAs), which use a client-side framework
that commonly talks to a REST server, are easy to create with ASP.NET Core. Whether
you’re using Angular, Ember, React, or some other client-side framework, it’s easy to
create an ASP.NET Core application to act as the server-side API.

DEFINITION REST stands for REpresentational State Transfer. RESTful appli-
cations typically use lightweight and stateless HTTP calls to read, post (cre-
ate/update), and delete data.

ASP.NET Core isn’t restricted to creating RESTful services. It’s easy to create a web
service or remote procedure call (RPC)-style service for your application, depending
on your requirements, as shown in figure 1.5. In the simplest case, your application
might expose only a single endpoint, narrowing its scope to become a microservice.
ASP.NET Core is perfectly designed for building simple services thanks to its cross-
platform support and lightweight design.

 You should consider multiple factors when choosing a platform, not all of which
are technical. One example is the level of support you can expect to receive from its
creators. For some organizations, this can be one of the main obstacles to adopting
open source software. Luckily, Microsoft has pledged to provide full support for each

Figure 1.4 The ASP.NET Community Blogs website (https://weblogs.asp.net) is built using the Orchard CMS.
Orchard 2 is available as a beta version for ASP.NET Core development.

www.itbook.store/books/9781617294617

https://weblogs.asp.net
https://itbook.store/books/9781617294617

10 CHAPTER 1 Getting started with ASP.NET Core

major and minor point release of the ASP.NET Core framework for three years2. And
as all development takes place in the open, you can sometimes get answers to your
questions from the general community, as well as Microsoft directly.

 When deciding whether to use ASP.NET Core, you have two primary dimensions
to consider: whether you’re already a .NET developer, and whether you’re creating a
new application or looking to convert an existing one.

1.2.2 If you’re new to .NET development

If you’re new to .NET development and are considering ASP.NET Core, then wel-
come! Microsoft is pushing ASP.NET Core as an attractive option for web develop-
ment beginners, but taking .NET cross-platform means it’s competing with many
other frameworks on their own turf. ASP.NET Core has many selling points when
compared to other cross-platform web frameworks:

 It’s a modern, high-performance, open source web framework.
 It uses familiar design patterns and paradigms.

2 View the support policy at www.microsoft.com/net/core/support.

Figure 1.5 ASP.NET Core can act as the server-side application for a variety of different
clients: it can serve HTML pages for traditional web applications, it can act as a REST API for
client-side SPA applications, or it can act as an ad-hoc RPC service for client applications.

Browser
Traditional

web application

ServerClient Synchronous
request via HTTP

Response:
HTML web page

SPA web application REST API

Asynchronous
request via HTTP

Response: partial page
data as JSON or XML

Client application RPC service

Synchronous or
asynchronous
request via HTTP

Response:
data as JSON,
XML or binary

www.itbook.store/books/9781617294617

https://www.microsoft.com/net/core/support
https://itbook.store/books/9781617294617

11When to choose ASP.NET Core

 C# is a great language (or you can use VB.NET or F# if you prefer).
 You can build and run on any platform.

ASP.NET Core is a re-imagining of the ASP.NET framework, built with modern soft-
ware design principles on top of the new .NET Core platform. Although new in one
sense, .NET Core has drawn significantly from the mature, stable, and reliable .NET
Framework, which has been used for well over a decade. You can rest easy knowing
that by choosing ASP.NET Core and .NET Core, you’ll be getting a dependable plat-
form as well as a fully-featured web framework.

 Many of the web frameworks available today use similar, well-established design
patterns, and ASP.NET Core is no different. For example, Ruby on Rails is known for
its use of the Model-View-Controller (MVC) pattern; Node.js is known for the way it
processes requests using small discrete modules (called a pipeline); and dependency
injection is found in a wide variety of frameworks. If these techniques are familiar to
you, you should find it easy to transfer them across to ASP.NET Core; if they’re new to
you, then you can look forward to using industry best practices!

NOTE You’ll encounter MVC in chapter 4, a pipeline in chapter 3, and
dependency injection in chapter 10.

The primary language of .NET development, and ASP.NET Core in particular, is C#.
This language has a huge following, and for good reason! As an object-oriented C-
based language, it provides a sense of familiarity to those used to C, Java, and many
other languages. In addition, it has many powerful features, such as Language Inte-
grated Query (LINQ), closures, and asynchronous programming constructs. The C#
language is also designed in the open on GitHub, as is Microsoft’s C# compiler, code-
named Roslyn.3

NOTE I will use C# throughout this book and will highlight some of the newer
features it provides, but I won’t be teaching the language from scratch. If you
want to learn C#, I recommend C# in Depth by Jon Skeet (Manning, 2008).

One of the major selling points of ASP.NET Core and .NET Core is the ability to develop
and run on any platform. Whether you’re using a Mac, Windows, or Linux, you can run
the same ASP.NET Core apps and develop across multiple environments. As a Linux
user, a wide range of distributions are supported (RHEL, Ubuntu, Debian, CentOS,
Fedora, and openSUSE, to name a few), so you can be confident your operating system
of choice will be a viable option. Work is even underway to enable ASP.NET Core to run
on the tiny Alpine distribution, for truly compact deployments to containers.

3 The C# language and .NET Compiler Platform GitHub source code repository can be found at https://
github.com/dotnet/roslyn.

www.itbook.store/books/9781617294617

https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://itbook.store/books/9781617294617

12 CHAPTER 1 Getting started with ASP.NET Core

As well as running on each platform, one of the selling points of .NET is the ability to
write and compile only once. Your application is compiled to Intermediate Language
(IL) code, which is a platform-independent format. If a target system has the .NET
Core platform installed, then you can run compiled IL from any platform. That
means you can, for example, develop on a Mac or a Windows machine and deploy the
exact same files to your production Linux machines. This compile-once, run-anywhere
promise has finally been realized with ASP.NET Core and .NET Core.

1.2.3 If you’re a .NET Framework developer creating a new application

If you’re currently a .NET developer, then the choice of whether to invest in ASP.NET
Core for new applications is a question of timing. Microsoft has pledged to provide
continued support for the older ASP.NET framework, but it’s clear their focus is pri-
marily on the newer ASP.NET Core framework. In the long term then, if you want to
take advantage of new features and capabilities, it’s likely that ASP.NET Core will be
the route to take.

 Whether ASP.NET Core is right for you largely depends on your requirements and
your comfort with using products that are early in their lifecycle. The main benefits
over the previous ASP.NET framework are

 Cross-platform development and deployment
 A focus on performance as a feature
 A simplified hosting model
 Regular releases with a shorter release cycle
 Open source
 Modular features

Built with containers in mind
Traditionally, web applications were deployed directly to a server, or more recently, to
a virtual machine. Virtual machines allow operating systems to be installed in a layer
of virtual hardware, abstracting away the underlying hardware. This has several
advantages over direct installation, such as easy maintenance, deployment, and
recovery. Unfortunately, they’re also heavy both in terms of file size and resource use.

This is where containers come in. Containers are far more lightweight and don’t have
the overhead of virtual machines. They’re built in a series of layers and don’t require
you to boot a new operating system when starting a new one. That means they’re
quick to start and are great for quick provisioning. Containers, and Docker in partic-
ular, are quickly becoming the go-to platform for building large, scalable systems.

Containers have never been a particularly attractive option for ASP.NET applications,
but with ASP.NET Core, .NET Core, and Docker for Windows, that’s all changing. A
lightweight ASP.NET Core application running on the cross-platform .NET Core frame-
work is perfect for thin container deployments. You can learn more about your deploy-
ment options in chapter 16.

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

13When to choose ASP.NET Core

As a .NET developer, if you aren’t using any Windows-specific constructs, such as the
Registry, then the ability to build and deploy applications cross-platform opens the
door to a whole new avenue of applications: take advantage of cheaper Linux VM
hosting in the cloud, use Docker containers for repeatable continuous integration, or
write .NET code on your Mac without needing to run a Windows virtual machine.
ASP.NET Core, in combination with .NET Core, makes all of this possible.

 It’s important to be aware of the limitations of cross-platform applications—not all
the .NET Framework APIs are available in .NET Core. It’s likely that most of the APIs
you need will make their way to .NET Core over time, but it’s an important point to be
aware of. See the “Choosing a platform for ASP.NET Core” section later in this chap-
ter to determine if cross-platform is a viable option for your application.

NOTE With the release of .NET Core 2.0 in August 2017, the number of APIs
available dramatically increased, more than doubling the API surface area.

The hosting model for the previous ASP.NET framework was a relatively complex one,
relying on Windows IIS to provide the web server hosting. In a cross-platform environ-
ment, this kind of symbiotic relationship isn’t possible, so an alternative hosting
model has been adopted, one which separates web applications from the underlying
host. This opportunity has led to the development of Kestrel: a fast, cross-platform
HTTP server on which ASP.NET Core can run.

 Instead of the previous design, whereby IIS calls into specific points of your appli-
cation, ASP.NET Core applications are console applications that self-host a web server
and handle requests directly, as shown in figure 1.6. This hosting model is conceptu-
ally much simpler and allows you to test and debug your applications from the com-
mand line, though it doesn’t remove the need to run IIS (or equivalent) in
production, as you’ll see in section 1.3.

 Changing the hosting model to use a built-in HTTP web server has created
another opportunity. Performance has been somewhat of a sore point for ASP.NET
applications in the past. It’s certainly possible to build high-performing applications—
Stack Overflow (http://stackoverflow.com) is testament to that—but the web frame-
work itself isn’t designed with performance as a priority, so it can end up being some-
what of an obstacle.

 To be competitive cross-platform, the ASP.NET team have focused on making the
Kestrel HTTP server as fast as possible. TechEmpower (www.techempower.com/
benchmarks) has been running benchmarks on a whole range of web frameworks
from various languages for several years now. In Round 13 of the plain text bench-
marks, TechEmpower announced that ASP.NET Core with Kestrel was the fastest
mainstream full-stack web framework, in the top ten of all frameworks!4

4 As always in web development, technology is in a constant state of flux, so these benchmarks will evolve over
time. Although ASP.NET Core may not maintain its top ten slot, you can be sure that performance is one of
the key focal points of the ASP.NET Core team.

www.itbook.store/books/9781617294617

http://stackoverflow.com
http://stackoverflow.com
http://stackoverflow.com
http://stackoverflow.com
http://www.techempower.com/benchmarks
http://www.techempower.com/benchmarks
http://www.techempower.com/benchmarks
https://itbook.store/books/9781617294617

14 CHAPTER 1 Getting started with ASP.NET Core

ASP.NET application
A request is
sent to IIS.

Request

Response

IIS calls into specific
methods in
the ASP.NET

.application

Control transfers
back and forth between
IIS and ASP.NET as

.events are raised

Application_BeginRequest() {}

Application_AuthenticateRequest(){}

Application_AuthorizeRequest(){}

Application_ProcessRequest() {}

Application_EndRequest() {}

Application_HandleError() {}

IIS

ASP.NET Core application

A request is
sent to IIS.

Request

Response

IIS passes raw request
.to Kestrel web server

Kestrel processes the
incoming request and
passes it to the rest of

.the application

IIS /
Apache /

Nginx

ASP.NET Core Kestrel
web server

Application handles
request and generates

response

Figure 1.6 The difference between hosting models in ASP.NET (top) and ASP.NET Core
(bottom). With the previous version of ASP.NET, IIS is tightly coupled with the application.
The hosting model in ASP.NET Core is simpler; IIS hands off the request to a self-hosted
web server in the ASP.NET Core application and receives the response, but has no deeper
knowledge of the application.

Web servers: naming things is hard
One of the difficult aspects of programing for the web is the confusing array of often
conflicting terminology. For example, if you’ve used IIS in the past, you may have
described it as a web server, or possibly a web host. Conversely, if you’ve ever built
an application using Node.js, you may have also referred to that application as a web
server. Alternatively, you may have called the physical machine on which your appli-
cation runs a web server!

Similarly, you may have built an application for the internet and called it a website or
a web application, probably somewhat arbitrarily based on the level of dynamism it
displayed.

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

15When to choose ASP.NET Core

Many of the performance improvements made to Kestrel did not come from the
ASP.NET team themselves, but from contributors to the open source project on
GitHub.5 Developing in the open means you typically see fixes and features make
their way to production faster than you would for the previous version of ASP.NET,
which was dependent on .NET Framework and, as such, had long release cycles.

 In contrast, ASP.NET Core is completely decoupled from the underlying .NET
platform. The entire web framework is implemented as NuGet packages, independent
of the underlying platform on which it builds.

NOTE NuGet is a package manager for .NET that enables importing libraries
into your projects. It’s equivalent to Ruby Gems, npm for JavaScript, or Maven
for Java.

To enable this, ASP.NET Core was designed to be highly modular, with as little cou-
pling to other features as possible. This modularity lends itself to a pay-for-play
approach to dependencies, where you start from a bare-bones application and only
add the additional libraries you require, as opposed to the kitchen-sink approach of
previous ASP.NET applications. Even MVC is an optional package! But don’t worry,
this approach doesn’t mean that ASP.NET Core is lacking in features; it means you
need to opt in to them. Some of the key infrastructure improvements include

 Middleware “pipeline” for defining your application’s behavior
 Built-in support for dependency injection
 Combined UI (MVC) and API (Web API) infrastructure
 Highly extensible configuration system
 Scalable for cloud platforms by default using asynchronous programming

5 The Kestrel HTTP server GitHub project can be found at https://github.com/aspnet/KestrelHttpServer.

In this book, when I say “web server” in the context of ASP.NET Core, I am referring
to the HTTP server that runs as part of your ASP.NET Core application. By default, this
is the Kestrel web server, but that’s not a requirement. It would be possible to write
a replacement web server and substitute if for Kestrel if you desired.

The web server is responsible for receiving HTTP requests and generating responses.
In the previous version of ASP.NET, IIS took this role, but in ASP.NET Core, Kestrel is
the web server.

I will only use the term web application to describe ASP.NET Core applications in this
book, regardless of whether they contain only static content or are completely
dynamic. Either way, they’re applications that are accessed via the web, so that name
seems the most appropriate!

www.itbook.store/books/9781617294617

https://github.com/aspnet/KestrelHttpServer
https://itbook.store/books/9781617294617

16 CHAPTER 1 Getting started with ASP.NET Core

Each of these features was possible in the previous version of ASP.NET but required a
fair amount of additional work to set up. With ASP.NET Core, they’re all there, ready,
and waiting to be connected!

 Microsoft fully supports ASP.NET Core, so if you have a new system you want to
build, then there’s no significant reason not to. The largest obstacle you’re likely to
come across is a third-party library holding you back, either because they only support
older ASP.NET features, or they haven’t been converted to work with .NET Core yet.

 Hopefully, this section has whetted your appetite with some of the many reasons to
use ASP.NET Core for building new applications. But if you’re an existing ASP.NET
developer considering whether to convert an existing ASP.NET application to
ASP.NET Core, that’s another question entirely.

1.2.4 Converting an existing ASP.NET application to ASP.NET Core

In contrast with new applications, an existing application is presumably already pro-
viding value, so there should always be a tangible benefit to performing what may
amount to a significant rewrite in converting from ASP.NET to ASP.NET Core. The
advantages of adopting ASP.NET Core are much the same as for new applications:
cross-platform deployment, modular features, and a focus on performance. Determin-
ing whether or not the benefits are sufficient will depend largely on the particulars of
your application, but there are some characteristics that are clear indicators against
conversion:

 Your application uses ASP.NET Web Forms
 Your application is built using WCF or SignalR
 Your application is large, with many “advanced” MVC features

If you have an ASP.NET Web Forms application, then attempting to convert it to
ASP.NET Core isn’t advisable. Web Forms is inextricably tied to System.Web.dll, and as
such will likely never be available in ASP.NET Core. Converting an application to
ASP.NET Core would effectively involve rewriting the application from scratch, not
only shifting frameworks but also shifting design paradigms. A better approach would
be to slowly introduce Web API concepts and try to reduce the reliance on legacy Web
Forms constructs such as ViewData. You can find many resources online to help you
with this approach, in particular, the www.asp.net/web-api website.

 Similarly, if your application makes heavy use of SignalR, then now may not be the
time to consider an upgrade. ASP.NET Core SignalR is under active development but
has only been released in alpha form at the time of writing. It also has some significant
architectural changes compared to the previous version, which you should take into
account.

 Windows Communication Foundation (WCF) is currently not supported either,
but it’s possible to consume WCF services by jumping through some slightly obscure
hoops. Currently, there’s no way to host a WCF service from an ASP.NET Core applica-
tion, so if you need the features WCF provides and can’t use a more conventional
REST service, then ASP.NET Core is probably best avoided.

www.itbook.store/books/9781617294617

http://www.asp.net/web-api
https://itbook.store/books/9781617294617

17How does ASP.NET Core work?

 If your application was complex and made use of the previous MVC or Web API
extensibility points or message handlers, then porting your application to ASP.NET
Core could be complex. ASP.NET Core is built with many similar features to the previ-
ous version of ASP.NET MVC, but the underlying architecture is different. Several of
the previous features don’t have direct replacements, and so will require rethinking.

 The larger the application, the greater the difficulty you’re likely to have convert-
ing your application to ASP.NET Core. Microsoft itself suggests that porting an appli-
cation from ASP.NET MVC to ASP.NET Core is at least as big a rewrite as porting from
ASP.NET Web Forms to ASP.NET MVC. If that doesn’t scare you, then nothing will!

 So, when should you port an application to ASP.NET Core? As I’ve already men-
tioned, the best opportunity for getting started is on small, green-field, new projects
instead of existing applications. That said, if the application in question is small, with
little custom behavior, then porting might be a viable option. Small implies reduced
risk and probably reduced complexity. If your application consists primarily of MVC
or Web API controllers and associated Razor views, then moving to ASP.NET Core
may be feasible.

1.3 How does ASP.NET Core work?
By now, you should have a good idea of what ASP.NET Core is and the sort of applica-
tions you should use it for. In this section, you’ll see how an application built with
ASP.NET Core works, from the user requesting a URL, to a page being displayed on
the browser. To get there, first you’ll see how an HTTP request works for any web
server, and then you’ll see how ASP.NET Core extends the process to create dynamic
web pages.

1.3.1 How does an HTTP web request work?

As you know, ASP.NET Core is a framework for building web applications that serve
data from a server. One of the most common scenarios for web developers is building
a web app that you can view in a web browser. The high-level process you can expect
from any web server is shown in figure 1.7.

 The process begins when a user navigates to a website or types a URL in their
browser. The URL or web address consists of a hostname and a path to some resource on
the web app. Navigating to the address in your browser sends a request from the user’s
computer to the server on which the web app is hosted, using the HTTP protocol.

DEFINITION The hostname of a website uniquely identifies its location on the
internet by mapping via the Domain Name Service (DNS) to an IP Address.
Examples include microsoft.com, www.google.co.uk, and facebook.com.

The request passes through the internet, potentially to the other side of the world,
until it finally makes its way to the server associated with the given hostname on which
the web app is running. The request is potentially received and rebroadcast at multi-
ple routers along the way, but it’s only when it reaches the server associated with the
hostname that the request is processed.

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

18 CHAPTER 1 Getting started with ASP.NET Core

Once the server receives the request, it will check that it makes sense, and if it does,
will generate an HTTP response. Depending on the request, this response could be a
web page, an image, a JavaScript file, or a simple acknowledgment. For this example,
I’ll assume the user has reached the homepage of a web app, and so the server
responds with some HTML. The HTML is added to the HTTP response, which is then
sent back across the internet to the browser that made the request.

 As soon as the user’s browser begins receiving the HTTP response, it can start dis-
playing content on the screen, but the HTML page may also reference other pages
and links on the server. To display the complete web page, instead of a static, colorless,

http://thewebsite.com/the/page.html

1. User requests a web page by a URL.

http://thewebsite.com/the/page.html

Welcome to the web page!

5. Browser renders HTML on page.

4. Server sends HTML in HTTP
response back to browser.

HTTP response

3. Server interprets request and
generates appropriate HTML.

2. Browser sends HTTP
request to server.

HTTP request

<HTML>
<HEAD></HEAD
<BODY></BODY>
</HTML>

Figure 1.7 Requesting a web page. The user starts by requesting a web page, which
causes an HTTP request to be sent to the server. The server interprets the request,
generates the necessary HTML, and sends it back in an HTTP response. The browser
can then display the web page.

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

19How does ASP.NET Core work?

raw HTML file, the browser must repeat the request process, fetching every refer-
enced file. HTML, images, CSS for styling, and JavaScript files for extra behavior are
all fetched using the exact same HTTP request process.

 Pretty much all interactions that take place on the internet are a facade over this
same basic process. A basic web page may only require a few simple requests to fully
render, whereas a modern, large web page may take hundreds. The Amazon.com
homepage (www.amazon.com), for example, currently makes 298 requests, including
6 CSS files, 14 JavaScript files, and 245 image files!

 Now you have a feel for the process, let’s see how ASP.NET Core dynamically gen-
erates the response on the server.

1.3.2 How does ASP.NET Core process a request?

When you build a web application with ASP.NET Core, browsers will still be using the
same HTTP protocol as before to communicate with your application. ASP.NET Core
itself encompasses everything that takes place on the server to handle a request,
including verifying the request is valid, handling login details, and generating HTML.

 Just as with the generic web page example, the request process starts when a user’s
browser sends an HTTP request to the server, as shown in figure 1.8. A reverse-proxy
server captures the request, before passing it to your application. In Windows, the
reverse-proxy server will typically be IIS, and on Linux or macOS it might be NGINX
or Apache.

DEFINITION A reverse proxy is software responsible for receiving requests and
forwarding them to the appropriate web server. The reverse proxy is exposed
directly to the internet, whereas the underlying web server is exposed only to
the proxy. This setup has several benefits, primarily security and performance
for the web servers.

The request is forwarded from the reverse proxy to your ASP.NET Core application.
Every ASP.NET Core application has a built-in web server, Kestrel by default, which is
responsible for receiving raw requests and constructing an internal representation of
the data, an HttpContext object, which can be used by the rest of the application.

 From this representation, your application should have all the details it needs to
create an appropriate response to the request. It can use the details stored in Http-
Context to generate an appropriate response, which may be to generate some HTML,
to return an “access denied” message, or to send an email, all depending on your
application’s requirements.

 Once the application has finished processing the request, it will return the
response to the web server. The ASP.NET Core web server will convert the representa-
tion into a raw HTTP response and send it back to the reverse proxy, which will for-
ward it to the user’s browser.

www.itbook.store/books/9781617294617

http://www.amazon.com
https://itbook.store/books/9781617294617

20 CHAPTER 1 Getting started with ASP.NET Core

To the user, this process appears to be the same as for the generic HTTP request
shown in figure 1.7—the user sent an HTTP request and received an HTTP response.
All the differences are server-side, within our application.

 You may be thinking that having a reverse proxy and a web server is somewhat
redundant. Why not have one or the other? Well, one of the benefits is the decoupling
of your application from the underlying operating system. The same ASP.NET Core
web server, Kestrel, can be cross-platform and used behind a variety of proxies without
putting any constraints on a particular implementation. Alternatively, if you wrote a
new ASP.NET Core web server, you could use that in place of Kestrel without needing
to change anything else about your application.

 Another benefit of a reverse proxy is that it can be hardened against potential
threats from the public internet. They’re often responsible for additional aspects,

ASP.NET Core infrastructure
and application logic

Reverse proxy
(IIS/NGINX/Apache)

ASP.NET Core web server
(Kestrel)

1. HTTP request is made to the
server and is received by the
reverse proxy.

7. HTTP response
is sent to browser.

2. Request is forwarded by IIS/
NGINX/Apache to ASP.NETCore.

3. ASP.NET Core web
server receives the HTTP
request and passes it to
the middleware.

Request Response

5. Response passes through
middleware back to web server.

4. Request is processed by the application,
which generates a response.

ASP.NET Core application

6. Web server forwards
response to reverse proxy.

Figure 1.8 How an ASP.NET Core application processes a request. A request is received from a
browser at the reverse proxy, which passes the request to the ASP.NET Core application, which
runs a self-hosted web server. The web server processes the request and passes it to the body of
the application, which generates a response and returns it to the web server. The web server
relays this to the reverse proxy, which sends the response to the browser.

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

21Choosing a platform for ASP.NET Core

such as restarting a process that has crashed. Kestrel can stay as a simple HTTP server
without having to worry about these extra features when it’s used behind a reverse
proxy. Think of it as a simple separation of concerns: Kestrel is concerned with gener-
ating HTTP responses; a reverse proxy is concerned with handling the connection to
the internet.

 You’ve seen how requests and responses find their way to and from an ASP.NET
Core application, but I haven’t yet touched on how the response is generated. In part
1 of this book, we’ll look at the components that make up a typical ASP.NET Core appli-
cation and how they all fit together. A lot goes into generating a response in ASP.NET
Core, typically all within a fraction of a second, but over the course of the book we’ll
step through an application slowly, covering each of the components in detail.

 Before we dive in, you need to choose an underlying platform for your first
ASP.NET Core application and set up a development environment in which to build it.

1.4 Choosing a platform for ASP.NET Core
ASP.NET Core was developed along with .NET Core and is often mentioned in the
same breath, so it can be easy to forget that ASP.NET Core is platform-agnostic. You
can build and run an ASP.NET Core application on both .NET Core or .NET Frame-
work. The same features will be available in both cases, so why would you choose one
over the over? Which route is right for you depends on both your history and the
application you’re looking to build, so in this section I’ve highlighted some advan-
tages and disadvantages to consider.

1.4.1 Advantages of using .NET Framework

One of the most significant advantages of the full .NET framework is its maturity—it
has been developed for 16 years, has been battle-hardened, and extensively deployed.
For some, this maturity will be a significant deciding factor. It will already be installed
on your servers and building an ASP.NET Core on top involves (relatively) little risk to
your existing environment.

 For others, particularly existing ASP.NET developers, the cross-platform and
container-friendly .NET Core won’t hold any appeal. These developers will, by neces-
sity, be used to deploying to Windows servers, and it’s perfectly reasonable to want to
continue to do so, while still taking advantage of all ASP.NET Core has to offer.

 The biggest reason to stick with the full .NET Framework when .NET Core was first
released was because you needed to make use of Windows-specific features, such as
the Registry or Directory Services. Microsoft have since released a compatibility pack6

that makes these APIs available in .NET Core, but they’re only available when running
.NET Core on Windows, not on Linux or macOS. If you know your app relies on many
Windows-only features, then .NET Framework may be the easiest option.

6 The Windows Compatibility Pack is designed to help port code from .NET Framework to .NET Core. See
http://mng.bz/50hu.

www.itbook.store/books/9781617294617

http://mng.bz/50hu
https://itbook.store/books/9781617294617

22 CHAPTER 1 Getting started with ASP.NET Core

WARNING If you choose to run on .NET Framework only, you won’t be able
to easily run your application cross-platform.

One advantage of using .NET Framework is that it has the greatest library support, in
the form of NuGet packages. Library authors are being encouraged to make their
libraries work identically on both .NET Framework and .NET Core by targeting .NET
Standard, but that transition is a slow process.

 .NET Standard7 defines the APIs that are available on a given .NET platform. It’s
made up of multiple versions (for example, 1.1 and 1.2), each of which adds addi-
tional APIs compared to previous versions. Think of it as an “interface” for various
.NET frameworks; the frameworks (such as .NET Core, .NET Framework, and Mono)
all “implement” a version of .NET Standard.

TIP You can create a new type of library that targets .NET Standard instead
of targeting a specific framework. That allows you to use your library across
multiple platforms, including .NET Core and .NET Framework. See appendix
A for further details.

.NET Standard 2.0 vastly increases the number of APIs available to libraries that target
it, covering almost the same area as .NET Framework 4.6.1. At the time of writing,
56% of packages on NuGet.org target the full framework rather than .NET Standard,
so if your application currently relies on one of those packages, you’ll have to choose
.NET Framework for your ASP.NET Core application.

TIP .NET Standard 2.0 contains a compatibility shim that allows you to refer-
ence .NET Framework 4.6.1 libraries from a .NET Standard library. For
details, see http://mng.bz/jH8Y and appendix A.

1.4.2 Advantages of using .NET Core

If you’re considering ASP.NET Core for a project, the chances are you’re also inter-
ested in the associated features .NET Core brings, such as the cross-platform capabili-
ties. If that’s the case, then those features are obvious reasons to choose .NET Core as
the underlying platform to use with ASP.NET Core.

 The open source nature of .NET Core development can be a big deciding factor
for some people. Open source development means you can clearly see how features
and bugs are being addressed. If there’s a particular feature you feel strongly about or
a bug that’s plaguing you, you can always submit a pull-request and see your code in
the .NET Core platform!

 Related to this, and the highly modular design of .NET Core, it’s likely that the plat-
form will see a faster release cycle than other platforms. Updates to .NET Framework
require a massive amount of regression testing to ensure there are no subtle interac-
tions that could break old applications. In contrast, installations of .NET Core are

7 The .NET Standard GitHub repository can be found at https://github.com/dotnet/standard/blob/master/
docs/faq.md.

www.itbook.store/books/9781617294617

https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
https://github.com/dotnet/standard/blob/master/docs/faq.md
http://mng.bz/jH8Y
https://itbook.store/books/9781617294617

23Preparing your development environment

independent of one another, so you can install multiple versions of .NET Core side-by-
side. .NET Core also follows semantic versioning (SemVer), so you can be sure that
your old applications won’t be affected by installing a new version of the framework.

WARNING Be aware that the faster release cycle generally means larger
changes between .NET Core versions when you update your apps. For exam-
ple, upgrading from .NET Core 1.0 to 2.0 is a significant and potentially
breaking change.

Which platform you choose will depend on your use case. The full .NET Framework is
still supported, and is being actively developed, but it’s clear the focus of Microsoft is
with .NET Core right now. If you’re starting a new application from scratch and the
libraries you require have been updated to use .NET Standard, then .NET Core seems
to make the most logical choice for the future.

 One final option is to multitarget your application, allowing it to run on both .NET
Core and .NET Framework. This requires a little more effort to set up and maintain in
terms of dependency wrangling, but it’s a viable option if you’re going to need to run
in both environments. In this book, I’m going to be targeting the .NET Core plat-
form, but all the examples should work equally with .NET Framework without any
modification.

 Once you’ve selected a platform for your ASP.NET Core applications, it’s time to
prepare your development environment—the last step before you build your first
ASP.NET Core application!

1.5 Preparing your development environment
For .NET developers in a Windows-centric world, Visual Studio was pretty much a
developer requirement in the past. But with .NET Core and ASP.NET Core going
cross-platform, that’s no longer the case.

 All of ASP.NET Core (creating new projects, building, testing, and publishing) can
be run from the command line for any supported operating system. All you need is
the .NET Core SDK and tooling, which provides the .NET Command Line Interface
(CLI). Alternatively, if you’re on Windows, and not comfortable with the command
line, you can still use File > New Project in Visual Studio to dive straight in. With
ASP.NET Core, it’s all about choice!

 In a similar vein, you can now get a great editing experience outside of Visual Stu-
dio thanks to the OmniSharp project.8 This is a set of libraries and editor plugins that
provide code suggestions and autocomplete (IntelliSense) across a wide range of edi-
tors and operating systems. How you setup your environment will likely depend on
which operating system you’re using and what you’re used to.

 Remember that, if you’re using .NET Core, the operating system you choose for
development has no bearing on the final systems you can run on—whether you

8 Information about the OmniSharp project can be found at www.omnisharp.net. Source code can be found
at https://github.com/omnisharp.

www.itbook.store/books/9781617294617

http://www.omnisharp.net/
https://github.com/omnisharp
https://itbook.store/books/9781617294617

24 CHAPTER 1 Getting started with ASP.NET Core

choose Windows, macOS, or Linux for development, you can deploy to any supported
system.

1.5.1 If you’re a Windows user

For a long time, Windows has been the best system for building .NET applications,
and with the availability of Visual Studio that’s still the case.

 Visual Studio (figure 1.9) is a full-featured integrated development environment
(IDE), which provides one of the best all-around experiences for developing ASP.NET
Core applications. Luckily, the Visual Studio Community edition is now free for open
source, students, and small teams of developers! Visual studio comes loaded with a
whole host of templates for building new projects, debugging, and publishing, with-
out ever needing to touch a command prompt.

Sometimes, though, you don’t want a full-fledged IDE. Maybe you want to quickly view
or edit a file, or you don’t like the sometimes unpredictable performance of Visual
Studio. In those cases, a simple editor may be all you want or need, and Visual Studio
Code is a great choice. Visual Studio Code (figure 1.10) is an open source, lightweight
editor that provides editing, IntelliSense, and debugging for a wide range of lan-
guages, including C# and ASP.NET Core.

Figure 1.9 Visual Studio provides the most complete ASP.NET Core development environment for Windows users.

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

25Preparing your development environment

Whether you install Visual Studio or another editor, such as Visual Studio Code, you’ll
need to install the .NET Core tooling to start building ASP.NET Core apps. You can
either download it from the ASP.NET website (https://get.asp.net) or select the .NET
Core cross-platform development workload during Visual Studio 2017 installation.

1.5.2 If you’re a Linux or macOS user

As a Linux or macOS user, you have a whole host of choices. OmniSharp has plugins
for most popular editors, such as Vim, Emacs, Sublime, Atom, and Brackets, not to
mention the cross-platform Visual Studio Code. Install the appropriate plugin to your
favorite and you’ll be writing C# in no time.

 Again, you’ll need to install the .NET Core SDK from the ASP.NET website
(https://get.asp.net) to begin .NET Core and ASP.NET Core development. This will
give you the .NET Core runtime and the .NET CLI to start building ASP.NET Core
applications.

 The .NET CLI contains everything you need to get started, including several pro-
ject templates. You don’t get a huge number to choose from by default, but you can

Figure 1.10 Visual Studio Code provides cross-platform IntelliSense and debugging.

www.itbook.store/books/9781617294617

https://get.asp.net
https://get.asp.net
https://itbook.store/books/9781617294617

26 CHAPTER 1 Getting started with ASP.NET Core

install new ones from GitHub or NuGet if you want more variety. You can easily create
applications from the predefined templates to quick-start your development, as shown
in figure 1.11.

 In addition, in May 2017, Microsoft released Visual Studio for Mac. With VS for
Mac you can build cross ASP.NET Core apps, using a similar editor experience to
Visual Studio, but on an app designed natively for macOS. VS for Mac is still young,
but if you’re a macOS user, then it’s a great choice and will no doubt see many
updates.

 In this book, I’ll be using Visual Studio for most of the examples, but you’ll be able
to follow along using any of the tools I’ve mentioned. The rest of the book assumes
you’ve successfully installed .NET Core and an editor on your computer.

 You’ve reached the end of this chapter; whether you’re new to .NET or an exist-
ing .NET developer, there’s a lot to take in—frameworks, platforms, .NET Framework
(which is a platform!). But take heart: you now have all the background you need
and, hopefully, a development environment to start building applications using
ASP.NET Core.

Figure 1.11 The .NET CLI includes several templates by default, as shown here. You can also install
additional templates or create your own.

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

27Summary

 In the next chapter, you’ll create your first application from a template and run it.
We’ll walk through each of the main components that make up your application and
see how they all work together to render a web page.

Summary
 ASP.NET Core is a new web framework built with modern software architecture

practices and modularization as its focus.
 It’s best used for new, “green-field” projects with few external dependencies.
 Existing technologies such as WCF and SignalR can’t currently be used with

ASP.NET Core, but work is underway to integrate them.
 Fetching a web page involves sending an HTTP request and receiving an HTTP

response.
 ASP.NET Core allows dynamically building responses to a given request.
 An ASP.NET Core application contains a web server, which serves as the entry-

point for a request.
 ASP.NET Core apps are protected from the internet by a reverse-proxy server,

which forwards requests to the application.
 ASP.NET Core can run on both .NET Framework and .NET Core. If you need

Windows-specific features such as the Windows Registry, you should use .NET
Framework, but you won’t be able to run cross-platform. Otherwise, choose
.NET Core for the greatest reach and hosting options.

 The OmniSharp project provides C# editing plugins for many popular editors,
including the cross-platform Visual Studio Code editor.

 On Windows, Visual Studio provides the most complete all-in-one ASP.NET
Core development experience, but development using the command line and
an editor is as easy as on other platforms.

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

Andrew Lock

T
he dev world has permanently embraced open platforms
with fl exible tooling, and ASP.NET Core has changed with
it. This free, open source web framework delivers choice

without compromise. You can enjoy the benefi ts of a mature,
well-supported stack and the freedom to develop and deploy
from and onto any cloud or on-prem platform.

ASP.NET Core in Action opens up the world of cross-platform
web development with .NET. You’ll start with a crash course
in .NET Core, immediately cutting the cord between ASP.NET
and Windows. Then, you’ll begin to build amazing web appli-
cations step by step, systematically adding essential features
like logins, confi guration, dependency injection, and custom
components. Along the way, you’ll mix in important process
steps like testing, multiplatform deployment, and security.

What’s Inside
● Covers ASP.NET Core 2.0
● Dynamic page generation with the Razor templating
 engine
● Developing ASP.NET Core apps for non-Windows servers
● Clear, annotated examples in C#

Readers need intermediate experience with C# or a similar
language.

Andrew Lock has been developing professionally with ASP.NET
for the last seven years. His focus is currently on the ASP.NET
Core framework.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/asp-net-core-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

ASP.NET Core IN ACTION

.NET DEVELOPMENT

M A N N I N G

“Comprehensive coverage
of the latest and greatest

.NET technology.”
—Jason Pike

Atlas RFID Solutions

“A thorough and easy-to-
read training guide to the
future of Microsoft cross-

platform web development.”—Mark Harris, Microsoft

“An outstanding
presentation of the concepts

and best practices.
Explains not only what to do,

 but why to do it.”
—Mark Elston, Advantest America

“Superb starting point
for .NET Core 2.0 with

valid and relevant
real-world examples.”
—George Onofrei, Devex

See first page

www.itbook.store/books/9781617294617

https://itbook.store/books/9781617294617

