INACTI

Sean Hunter

/'I MANNING

Au ré

SAMPLE CHAPTER

https://itbook.store/books/9781617294785

Aurelia in Action

by Sean Hunter

Chapter 1

Copyright 2018 Manning Publications

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

brief contents

PART 1 INTRODUCTION TO AURELIA .ccuveereerccescescescosscescescossossons 1

1 w» Introducing Aurelia 3

2w Building your first Aurelia application 26

PART 2 EXPLORING AURELIA....ccceuuueierernneceeennnesseseensesssssennennes 61
3 = View resources, custom elements,
and custom attributes 63
= Aurelia templating and data binding 83
» Value converters and binding behaviors 104
Intercomponent communication 119
= Working with forms 156
» Working with HTTP 188
= Routing 206
10 = Authentication 243
11 = Dynamic composition 264
12 = Web Components and Aurelia 275

© 00 N O O K
[]

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

viii BRIEF CONTENTS

13 = Extending Aurelia 305

14 w» Animation 322

PART 3 AURELIA IN THE REAL WORLD
15 = Testing 337

16 = Deploying Aurelia applications 363

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Introducing Aurelia

This chapter covers

= Examining what Aurelia is and is not, and why you
should care

= |dentifying applications suited to development
using the Aurelia framework

= Looking at what you’ll learn in this book
= Touring the Aurelia framework

Aurelia is a frontend JavaScript framework focused on building rich web applica-
tions. Like other frameworks, such as Angular and Ember.js, Aurelia is a single-page
application (SPA) development framework. This means that Aurelia applications
deliver the entire user experience (UX) on one page without requiring the page to
be reloaded during use. At its core, writing an Aurelia application means writing a
JavaScript application. But Aurelia applications are written with the latest versions
of JavaScript (ES2015 and beyond, which we’ll dig into as we go along, or Type-
Script). The Aurelia framework has all the tools you need to build the rich and
responsive web applications that users expect today, using coding conventions
closely aligned to web standards.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

4 CHAPTER 1 Introducing Aurelia

1.1 Why should you care?

Imagine you're having a Facebook chat session with your friend Bob, and every time
you send a message, you need to wait because there’s a three-second delay while the
page reloads to show you whether you’ve successfully sent the message, whether Bob
has received it, and whether you’ve received any other messages from Bob in the
meantime. In this scenario, it would be difficult to have a fluid conversation because
of the jarring pause between entering your message and receiving feedback from the
application. You may ask Bob a question, only to find that by the time the page
reloads, he’s already answered it. Today, however, the experience is much different. As
soon as you start typing a message, Bob can see that you’re composing a message for
him, and when you click Send you receive visual feedback in the form of a checkmark
to indicate that the message was delivered successfully. It’s easy to gloss over function-
ality like this today because it’s a part of so many applications we use all the time, such
as Slack, Skype, and Facebook Messenger.

Now imagine that you’ve been tasked with building a line-of-business application
for your department. The HR department has implemented an employee-of-the-month
system where staff nominate and vote on who most deserves a monthly prize. This app
would be expected to provide things like the following:

A responsive voting system
Live updating charts showing an overview of who has the most votes
Validation to prevent employees from voting more than once

DEFINITION Responsive web applications can be used across a variety of devices,
from smartphones to desktop PCs. Typically, this is achieved using CSS media
queries to resize various sections of the page or even hide them entirely so
that the UX is optimal for the device at hand.

The features listed for your HR application are common examples of the kinds of
things that users—like your fictional HR department—expect in rich web applica-
tions. Applications like Facebook and Slack have raised the bar in terms of what users
expect from all web applications. I've noticed a trend over the past few years where cli-
ents have begun to expect the same kind of richness out of a line-of-business applica-
tion that they’re used to seeing in applications they use outside of the office. Using an
SPA framework like Aurelia makes it vastly simpler to build these kinds of applica-
tions, compared with the traditional request/response style of architecture used with
frameworks such as ASP.NET MVC, JSP, or Ruby on Rails, to name a few.

Given that you want to create rich, responsive web applications, the next logical
question is, which technology should you use to do this? A useful technique for
answering this kind of question is to analyze the kinds of attributes that are important
to you and your team with a set of questions like this:

How complicated are the applications you're trying to build? You don’t want to use a
jackhammer to crush a walnut when a nutcracker will do the job. Conversely,

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Why should you care? 5

you want to make sure that you have a sufficient foundation in place that will
support the kind of application you’re trying to build.

How important is web-standards compliance to the team? A framework that adheres
more closely to web standards is more likely to look familiar to anybody with
web-development experience, regardless of whether they’ve used a given frame-
work in the past. Such a framework is also more likely to play nicely with other
web technologies such as third-party libraries and frameworks.

What past development experience does the team have? Frameworks and libraries
can have a steeper or shallower learning curve, depending on the experience
of the team.

How 1is the team organized? Do you need designers and developers to be able to
work together on the same project? Do you have a team of 1 to 5 or 100 to 5007
What kind of commercial and community support do you need? How important is it
to be able to pick up the phone or send an email to the team or company
responsible for the framework? What kind of community are you looking
to join?

Let’s look at where Aurelia sits in terms of each of these questions; in doing so, you’ll
get a feel for the kinds of problems Aurelia helps you solve, and some of the features
available in Aurelia’s toolbox.

1.1.1 How complicated are the applications you’re building?

With most SPAs, it’s helpful to have a minimal set of tools to build the kind of experi-
ence that users expect. If these tools aren’t present in the framework, then you may
need to either bring them in as a third-party project dependency or build a bespoke
implementation. Aurelia provides a core set of functionalities that most SPAs need out
of the box, as a set of base modules. Most of these modules are available as optional
plugins, so if you don’t need a part, you can leave it out. The following subsection
presents a basic list of the features that Aurelia offers. I'll include only a brief defini-
tion at this point to give you a taste of what’s available. We’ll dive into each of these
topics in more detail later.

THE BAsICS: SPA BREAD AND BUTTER
The following functionality is bread and butter to almost every SPA, regardless of the
complexity level:

Routing—SPA users expect your application to behave like a standard website.
This means that they should be able to bookmark a URL to get back to it later
and navigate between the different states of your application using the browser’s
Forward and Back buttons. The Aurelia router solves this problem by allowing
you to build URL-based routing into the core of your application. Routing also
allows you to take advantage of a technique called deep linking, which allows users
to bookmark a URL from deep inside the application (for example, a specific
product on an e-commerce site) and return to it later.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

6 CHAPTER 1 Introducing Aurelia

Data binding and templating—Virtually every SPA needs a way to take input from
the page (either via DOM events or input fields) and push it through to the
JavaScript application. Conversely, you’ll also need to push state changes back
to the DOM to provide feedback to the user. Take a contact form as an exam-
ple. You need a way of knowing when the email field is modified so that you can
validate it in your JavaScript application. You also need to know what the value
of the input field is so you can determine the validation result. Once you vali-
date the input field, you need to return the result to the user. Data binding and
templating are Aurelia’s way of achieving this.

HTTP services—Most SPAs aren’t standalone; they need to communicate with or
get their data from external services. Aurelia provides several options out of the
box to make this easy, without the need to pull in any third-party JavaScript
libraries like jQuery AJAX.

GETTING MORE ADVANCED—BEYOND BREAD AND BUTTER
As an SPA increases in size and complexity, you’ll often run into a new set of prob-
lems. When you run into these problems, it’s useful to have the tools to solve them:

Components—One set of tools Aurelia provides for dealing with complexity is
components. Components are a way of taking a user-interface (UI) layout and
breaking it into small chunks to be composed into an entire view of your SPA.
In a way, you can think of the components of your page like objects in a back-
end system built using object-oriented programming (OOP), such as Ruby,
Java, or G#.

Intercomponent communication—Following the OOP analogy, wherein OOP objects
can notify each other of application-state changes, your components also need
a way of talking to each other. Aurelia has several options for how you can
implement this kind of behavior. The appropriate option again depends on the
complexity of your application in terms of the number of components and how
interrelated they are. We’ll dive into intercomponent communication in depth
in chapter 6.

Most SPAs start basic and become more complicated over time. Aurelia allows you to
reach for tools to deal with a given level of complexity when you need to but avoids
overloading you with that complexity unnecessarily. By the end of this book, you’ll be
equipped to handle SPAs with varying complexity levels, and you’ll know the suitable
tool to retrieve from your Aurelia toolbox to solve the problem at hand.

1.1.2 How important is web-standards compliance to the team?

Imagine you're tasked with building an international website that needs to be accessi-
ble by users across the globe, some of whom may be vision impaired or have poor-
quality internet connections. Enter web standards. Web standards provide a common
base for the web. Devices and browsers are built to web-standards specifications, and
as such, sticking to these specifications when building websites gives you the best

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Why should you care? 7

chance of supporting a plethora of devices. These standards are also focused on acces-
sibility; a working group called the Web Content Accessibility Guidelines (WCAG) is
devoted to it. Following web standards also gives you a set of tools to enable support
for users with a diverse set of accessibility requirements. A simple example of this is alt
text (alternative text) on images, which allows screen readers to give vision-impaired
users a description of the images on your site.

At the same time, you can reduce your future development costs by building on a sta-
ble and well-understood technology set. This makes it easier to bring new team mem-
bers onto a project who don’t necessarily know Aurelia, and allows you to make use of
the vast array of third-party JavaScript and CSS libraries that weren’t built with Aurelia in
mind, which in turn improves maintainability and reduces development costs.

Wherever possible, Aurelia uses existing browser technology rather than reinvent-
ing the wheel. A simple example of this is HTML markup. Aurelia uses standards-
compliant HTML, which allows both humans and screen readers to read the page
source without needing to understand how Aurelia works. As we explore the frame-
work, I’ll highlight various points where the core team have leaned on an existing
standard web technology to implement a given feature.

1.1.3 What past development experience does the team have?

In the world of web development, the number of new technologies to learn can often
seem overwhelming. Given this reality, any boost your team can get in terms of build-
ing on past development experience can save you a lot of time. Some of the concepts
in Aurelia will feel familiar to those with OOP experience, such as patterns like depen-
dency injection, Model-View-ViewModel, or Event Aggregator. Don’t worry if these
concepts aren’t familiar to you at this point, because we’ll delve into each of these
throughout the course of the book. On the other hand, Aurelia should also be easy to
pick up for people with a good amount of experience with vanilla JavaScript, HTML,
and CSS due to Aurelia’s close adherence to web standards.

1.1.4 How is the team organized?

The concept of separation of concerns between your HTML file (which provides the struc-
ture of the page), your CSS file (which determines how the page looks), and your Java-
Script (which determines how the page behaves) has existed in web development for
some time. The idea is that by splitting these concerns and managing them separately,
you should be able to work on any of them independently of the others. It also means
that team members with the relevant skill set should be able to work on one piece of the
picture without needing to know the in-depth details of the other pieces. For example, a
developer should be able to put together the basic HTML structure and JavaScript
behavior to then be styled by a team member with more of a focus on UX or design.

Aurelia’s opinion on this is that that this concept of separation of concerns is no
less important in the world of SPA development than it is in a more traditional server-
centric web-development approach.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

8 CHAPTER 1 Introducing Aurelia

This approach gives you maximum flexibility. You still have the option of having
one person manage an entire vertical slice of the application—]JavaScript, HTML, and
CSS—but you also have the option of splitting these out if that’s the way you’d prefer
to work within your team or company, as depicted in figure 1.1.

Aurelia view-model layer Aurelia view layer
—> Plain JavaScript classes —> HTML and CSS$

JS 4 HTML / CSS
<2
E CoOCoO

| can focus on what’s
rendered on the screen. The
standards-compliance view
syntax is familiar.

| can focus on application
behavior and frontend JavaScript

business logic. i

Developer Designer

Figure 1.1 Aurelia maintains a separation of concerns between the structure, style,
and behavior of pages. This allows for these pieces to be worked on independently, and
by the person best suited for the job.

1.1.5 What kind of commercial and community support do you need?

Besides the technical details of any technology choice, an important aspect to con-
sider is how well the product is supported. The level of support available for a given
technology can have an enormous impact on how successful it is within your company.
Following are some metrics to consider.

LEARNING/ TRAINING
How easy is it to take somebody with no experience in the technology and up-skill
them to the stage that they're productive with it? Several factors play into this:

Documentation—Aurelia has a detailed set of documentation on the project web-
site (http://aurelia.io/docs). This is actively maintained by the project core
team. Often, issues that are raised on GitHub result in a documentation update
that clarifies how a feature should be used.

Training—Aurelia has a training program that makes it possible to receive in-
person or online training from an Aurelia expert. This training is official and
endorsed by the Aurelia core team. Often, it’s even provided by core team

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

What kind of projects make Aurelia shine? 9

members, giving you direct access to people with the most experience working
with Aurelia.

Community—If you haven’t come across it before, Gitter is a chat client like
Slack but focused on allowing threaded conversations on open source projects.
The Aurelia community has an active Gitter chat room, and often you’ll get a
detailed answer to any questions you might have. You can also ask questions and
learn about best practices on the Aurelia Discourse forum (https://discourse
.aurelia.io/).

SUPPORT

Like most popular JavaScript frameworks today, Aurelia is open source. But unlike
most alternatives, Aurelia is one of two SPA frameworks that has commercial support
available. Where frameworks such as Angular or React are developed and maintained
by Google and Facebook respectively, it’s not possible to pay for somebody from these
companies to assist you if you get into trouble or want a little extra guidance on a proj-
ect. Conversely, Blue Spire—the company behind Aurelia—offers commercial sup-
port contracts that can be tailored to the needs of your company.

Support is also available in the standard forms that you’d expect from an open
source project. Aurelia core team members are quick to respond to GitHub issues or
questions on Gitter.

For somebody from a technical background, it can be easy to overlook the fluffier
aspects of choosing a technology like support and training. But these aspects make a
difference when you look at how a technology will be picked up and used by the com-
pany long term.

12 What kind of projects make Aurelia shine?
To understand what kind of projects Aurelia works best with, let’s look at the web-
development models that are available, and how they might consider the context of a
sample application. Imagine that you're tasked with building an ecommerce system.
This system consists of a set of the following distinct groups of functionalities:

Blog—News and updates about new products or events. This needs to be search-
able and is mainly a read-only system.

Product list—A listing of all the products that your company has on offer.
Admanistration—Administrators need to be able to add new products and view
statistics of what users are doing on the site.

You can structure an SPA several ways, but for our purposes, you can split these into
the following four main categories:

Server-side application with a sprinkling of JavaScript
Client-side-rendered SPA

Hybrid SPA

Server-side rendered SPA with client-side continuation

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

10 CHAPTER 1 Introducing Aurelia

1.2.1 Server-side application with a sprinkling of JavaScript
Figure 1.2 represents a traditional PHP/JSP/ASP.NET/Ruby on Rails-style website. In
this model, the user requests the product list. The server is then responsible for ren-
dering it to HTML and returning it to the user. Once the page has reached the client
side, you may have a few simple JavaScript widgets such as a product-image lightbox
jQuery plugin.

Style 1: Server-side application with a sprinkling of JS

The product list is suited
to classic consumer-type
interactions. It also
should be crawl-able.

buy-stuff.com [X|

oo product/list In a traditional server-side
] product — 1 application, everything is
LX) - -
product-list-page.html product — 2 loaded on the server side.
(X]
product — 3

The page may contain some
JavaScript for simple things

///// like showing a lightbox

image of the product.

Figure 1.2 Server-side applications retrieve the entire page load as one rendered resource from the
server (in addition to any CSS and JavaScript that is typically loaded separately).

The benefits of this approach are as follows:

The entire page is rendered on the server—By scaling the server, you can improve
page-load times without worrying about a device’s native client-side render per-
formance.

The crawler issue—Page crawlers can effectively crawl a site for products and blog
entries because JavaScript (which has patchy support by these technologies at
best) isn’t required to render the page.

Initial page load is generally fast—The user isn’t returned to the page by the server
until the page is ready to go.

But there are drawbacks, such as slower subsequent page loads. Although the initial
page-load time is relatively quick, subsequent interactions to the page also go through
the same lifecycle of a full HTTP request to the server and rerender the entirely new
page in the browser. This is OK for features such as the blog and product list but isn’t
ideal when the user needs to perform a set of interactions on the site and receive
rapid feedback (such as commenting on a blog or creating a new product).

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

What kind of projects make Aurelia shine? 11

1.2.2 SPA rendered on the client side

In contrast to the server-side application, in this scenario the entire payload is loaded
up front and returned to the browser in a single batch in a client-side SPA. This pay-
load contains the application scripts and templates along with (optionally) some seed
data required on the initial page load (see figure 1.3). In this case, the page is ren-
dered on the client side rather than the server side. Traditionally, in this model, you
have the entire e-commerce website returned when the user visits the initial page. Fol-
lowing this, as the user browses through various pages such as products and blog
entries, you rerender the page on the client side based on data you received from the

server via AJAX.
Style 2: Full client-side SPA @ Aurelia’s current sweet spot
A full SPAis returned
as part of the initial
request payload. buy-stufficom X
oo store/# o e
= Full SPA product — 1 Ina full client-side
application, you receive the
(X api/oroducts.ison product — 2 entire SPA and render it on
PR g product - 3 the client side. Any URL
changes are also handled
///// on the client side.
Subsequent AJAX requests are
completed in order to retrieve
data that you didn't need in
the initial page render.
- store/#products
- store/#products/1

Figure 1.3 Full client-side SPA. An entire application is bundled and returned in one or two responses
from the server and rendered in the browser. Subsequent AJAX requests completed to populate data
that isn’t required in the initial page load.

The benefits of this approach are as follows:

Your app feels lightning fast—As the user clicks around, viewing products and
comments on blog threads, the response times are fantastic, with minimal fric-
tion. The only time the client needs to talk to the server is when it needs data
that the user hasn’t seen before. This is often optional data that may not need
to be loaded at all. In these cases, it’s generally easy to show a spinner or a simi-
lar indicator to give the user instant feedback that the data they want is being
fetched, and then proceed to show them the rerendered Ul once the data has
been received.

Selectively load and render UI fragments with AJAX—After initial page load, you can
also make the page feel more responsive by executing multiple concurrent
asynchronous calls to the backend API. When these asynchronous calls com-

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

12 CHAPTER 1 Introducing Aurelia

plete, you can provide the results to the user by rerendering only the impacted
DOM fragment. An example is retrieving the list of products as JSON from an
HTTP response and rerendering only the product list, leaving the rest of the
page intact.

The drawbacks are as follows:

Large response payload—Because the entire page loads in one request, users are
forced to wait while this happens. Typically, you’d show a spinner or a similar
visual device to smooth this interaction. But with large applications, this can be
time consuming. Because 47% of users expect a website to load in 2 seconds or
less, there’s a risk that you may lose some of the visitors to your site if the initial
application load exceeds this boundary.

Unpredictable page-load times—Because you’re delivering a substantial chunk of
JavaScript and state to the application, page-render times can also be unpredict-
able. If you visit the page from a modern device with a fast processor and high
internet bandwidth, there’s a good chance you’ll have the lightning-fast experi-
ence you've come to expect from SPAs. But what if you're in the outback in Aus-
tralia attempting to load the application on a 5-year-old smartphone over a flaky
3G connection? The experience will be altogether different. Conversely, a tradi-
tional server-rendered web application is more predictable (at least in terms of
the time required to render the application before it’s returned to the user).
HTTP servers can be more easily updated and scaled to improve these render
times, bringing the issue back into something that you can control, rather than
being subject to whatever device the user happens to be visiting the page from.

The crawler issue—Some technologies, such as web crawlers, aren’t built with the
ability to process JavaScript. This can be a significant issue when building a pub-
lic-facing SPA that needs to appear in search engine results.

BEST OF BOTH WORLDS

A good option would be to split the application into several separate sites. The blog might
still be done in the traditional server-side rendered style (mainly for SEO purposes). But
you could potentially develop the administrative site and shopping cart as separate
microsites, providing the user with that rich interaction needed for this style of UL

1.2.3 The hybrid approach: server side with SPA islands
Imagine a new set of requirements have come down from management. After great
initial success, the company is looking to expand the use of the site and sell directly
from the site. As such, the site needs some interactive pieces like a shopping cart and
order screen. Taking the hybrid approach, you’d create the following three new routes
in the website (see figure 1.4):

site/store/ cart
site/store/order
site/admin

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

What kind of projects make Aurelia shine? 13

Style 3: Hybrid SPA

The product list is suited
to classic consumer-type
interactions. It also

should be crawl-able. buy-stufi.com X
(X product/list]
oo product-list-page.html product — 1 I i ol Elpieaei
some pages are server
oo cart/#t product =2 rendered, whereas more
B e product — 3 complex/rich components
______________ CartSPA | are implemented as
///// SPA islands.
A shopping cart component
is suited to input- and

feedback-rich interaction. So, it
can be implemented as an SPA.

Figure 1.4 Hybrid SPA approach. In this model, the main content parts of the site are done with the
traditional server-side approach. The product list and blog endpoints return the relevant HTML rendered
from the server. But you then create multiple smaller SPAs to add rich interaction to the parts of the
site that need it, such as the store.

Each of these new routes hosts an individual SPA. This approach avoids the need to
immediately rewrite the entire site as an SPA, but still gives you the benefit of building
the rich interactive parts of the site in a technology designed for that purpose. It also
avoids the large payload size to some extent by splitting the SPA into smaller chunks
that can be more quickly retrieved from the server and rendered.

The benefits of this approach are as follows:

The crawler issue has been solved—This resolves the SEO and unpredictable page-
load issues while still providing an interactive experience.

Faster on-ramp—If you’ve already got a server-side application, you don’t need to
rewrite it as an SPA from the ground up, but instead can break out components
of the application that are good candidates for SPA-style interaction over time.

The drawbacks are as follows:

Added complexity—Managing application state and page navigation can get tricky
when these concerns are dealt with both at the client-side and server-side level.
With each new feature, there’s a cognitive burden of deciding where everything
fits best.

Tightly coupled frontend and backend—In this style of architecture, your backend
API is vulnerable to changes on the frontend, and vice versa. Without a clean
boundary between the UI and the backend, API changes on either side are
likely to trigger changes on the other. This increases the maintenance burden
and makes it less likely you’ll be able to use your backend API for other client
types (such as mobile) in the future.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

14 CHAPTER 1 Introducing Aurelia

1.2.4 Server-side-rendered SPA

The Aurelia team has released a technology called Server Render. As the name implies,
using this approach, the application is rendered on the server side before it’s returned
to the browser. This technology resolves both the unpredictable page-load times and
crawler issues. This goes a long way toward expanding the set of applications that fall
into Aurelia’s sweet spot. You can find out more about server-side rendering on the
Aurelia documentation site (https://aurelia.io/docs/ssr/introduction/). Take a look
at figure 1.5.

Style 4: Server-side-rendered SPA

A full SPA is rendered
on the server and

returned to the client. buy-stufficom X
00 store/# Ina serv.elr-lmde-rendered
- SPA, the initial page load for
e index html product — 1 a particular URL on the site
oo .) product — 2 is achieved by rendering the
' w..._____apiproductsjson | product — 3 page on the server. Once the
| ___________productsjson - page has loaded, it behaves
///// like a standard SPA with
Subsequent AJAX requests are snappy client-side interaction.
completed in order to retrieve

data that you didn't need in
the initial page render.

- store/#products
- store/#products/1

Figure 1.5 In this server-side-rendered SPA model, the initial page render is done on the server side,
but once the application has been loaded into the browser, the SPA framework takes over, and
subsequent interactions are done on the client side.

The benefit of this approach is that, in a way, this model gives you the best of both
worlds. The initial render can be done on the server side, which resolves the issues of
unpredictable page-load times and crawler accessibility, but still provides the rich
interactive experience that users expect when the page is loaded. This approach may
add more complexity to the system architecture by requiring the setup of additional
components on the server side.

1.2.5 Where does Aurelia sit?

At its heart, Aurelia is designed to manage your entire web application in the style of a
client-side-rendered SPA. Any web application where you need a significant level of
interaction from the user that goes beyond simple content consumption is a good fit for
Aurelia. Example applications that would be a great fit for Aurelia include the following:

A messaging client
A reporting/analytics portal for a website

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

What kind of projects make Aurelia shine? 15

A CRUD (create, read, update, delete) application (like a typical forms-over-data
example)

An office-style application (such as Google Docs)

An admin portal for a website (like the WordPress admin panel)

What these have in common is a user-interaction model more like a traditional desk-
top application than what you’d historically think of as a website. In the e-commerce
example in figures 1.2-1.5 (buy-stuff.com), a great candidate would be a separate side-
kick site to the main website that would be used to handle the administrative opera-
tions. You might also use Aurelia to build the shopping-cart or blog-comment website
components as modules of the larger site.

1.2.6 What makes Aurelia different?

With the substantial number of SPA frameworks available today from the heavy hitters
like Angular, React, and Vue, to up-and-comers like Mithril, it’s important to consider
what makes Aurelia different. What unique value does Aurelia provide that makes it a
standout choice for building your web applications? I present you with the Aurelia
cheat sheet, four reasons that you can give to your teammates when they ask you this
question:

It gets out of your way. Aurelia applications are developed by combining compo-
nents built with plain JavaScript and HTML. In contrast, many other MV*
frameworks today require a comparatively large amount of framework-specific
code in both the view layer and the model/controller layer. This increases the
concept count, making them more difficult to master and maintain.

Auwrelia is developed following the convention-over-configuration pattern. Convention
over configuration means having reasonable defaults rather than requiring
developers to manually specify every option. But what if the convention doesn’t
suit you? Aurelia makes it easy to override the default conventions when neces-
sary, and we’ll go into this in more detail as we proceed through the chapter.
When it comes to web standards, Aurelia’s a pro. Although other frameworks may
pay lip service to web standards, Aurelia has them at its core, in its bones. Wher-
ever possible, Aurelia adopts the standard browser implementation of a feature,
rather than creating a framework-specific abstraction. A simple example of this
is Aurelia’s HTML templates, which come directly out of the Web Components
Specifications (covered in depth in chapter 12).

When it comes to open source, community is king. Aurelia has a thriving open source
community. With core team members, and other Aurelia aficionados available
on Slack (https://aurelia-js.slack.com/), Gitter, Stack Overflow, and GitHub
help, you can always get the help you need to keep up the momentum while
building your Aurelia applications.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

16 CHAPTER 1 Introducing Aurelia

1.3 A tour of Aurelia

Often, when you arrive at your hotel in a new city, one of the first things the concierge
provides is a tourist map. Perhaps it’s not a street-level map with the detail of the indi-
vidual winding roads you need to take, but it’s enough to give you an idea of where
the major attractions and suburbs are. With a high-level map in hand, if you get lost,
you can generally find your way by aiming for the attraction you want to visit and
heading in the right direction. If you need a bit more detail, you might pull out a
smartphone to navigate your way through some tricky areas. Similarly, you can think
of figure 1.6 as your high-level map of the Aurelia framework.

Aurelia applications are built by combining view/view-model pairs called compo-
nents. A view is a standards-compliant HTML template, and a view-model is a simple
JavaScript class. Binding is used to connect fragments of the view (such as an <input
value>) with properties on a view-model. Events raised on the view (such as an input-
value change) trigger a corresponding method call in the view-model. Aurelia uses
dependency injection to construct instances of view-models, providing them with their
dependencies at runtime. These dependencies can be service classes (as seen in fig-
ure 1.6) or framework dependencies, such as the @inject decorator.

Aurelia applications are built Properties on view-models View-models delegate functions like
by composing components, are bound to fragments of business logic and HTTP access to
which are made up of the view, such as an input service classes (simple JS classes).
view/view-model pairs. element’s value. \

Service classes

Component

Aurelia router

{

___) DI container

View (HTML template)

ViewModel (JavaScript class)

fhats

Bindings in Aurelia can be one-way Events raised from the view (such as input 'change’)

(from the view-model to the view) are bound to methods on the view-model.

or two-way. Value changes on the

view-model are propagated to the The Aurelia router is responsible for constructing the relevant

view, and vice versa. view-model for a particular route (for example, /home). It does
this with the help of the Aurelia DI container.

Figure 1.6 A high-level map of the Aurelia framework. At its core, Aurelia is an MV* framework.

DEFINITION Decorators are a new ECMAScript feature that at the time of writ-
ing are in stage 2 of the TC-39’s proposal process for ECMAScript. Fortunately,
the Babel transpiler allows us to use them today, even though they need to
make it to stage 4 of this proposal process before they’re officially adopted
as a part of the language. Decorators allow you to easily and transparently

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

A tour of Aurelia 17

augment the behavior of an object, wrapping it with additional functionality
(for example, logging). Decorators are used throughout the Aurelia frame-
work to change the way that objects behave and can be recognized by their @
prefix. One example of this is the @bindable decorator from the Aurelia
framework package. Properties can then be declared as @bindable using the
imported decorator.

The Aurelia router is used to pick the correct component to load for a given applica-
tion URL.

The map is highly detailed, but don’t worry if you see blocks that you’re not familiar
with. We’ll delve into each area of this diagram to give you a well-rounded understand-
ing of how Aurelia does its thing. Like the concierge, I'm going to draw a line through
some of the paths that you'll follow through the framework. These are the code paths
that users interacting with the system will trigger every time they load a page or click a
button. Like pulling out a smartphone to see a given location in greater detail, we’ll
zoom in on specific parts of the map that represent important aspects of the framework
that we’ll expand on throughout this book. Like any good tour, there will be a few inter-
esting detours along the way, but by the time I'm finished guiding you through, you’ll
have a much clearer idea of where you're going. Let’s get started.

1.3.1 Binding

Aurelia’s core building blocks, components, are view/view-model pairs, where the
view is an HTML template and the view-model is a simple JavaScript class.

NOTE Some components, such as custom attributes and value converters,
don’t have a corresponding HTML file, but we’ll come back to these later.

A technique called binding is used to connect DOM fragments on the view (such as
<input value> or <hl> content) to corresponding properties on the view-model.
Changes to properties on the view-model are automatically propagated to the view, caus-
ing the relevant fragment of the DOM to be rerendered with the updated value. Several
options are available to control the behavior of how and when the view or view-model is
notified of changes in the pair. This binding workflow is illustrated in figure 1.7.

1.3.2 Handling DOM events

Aurelia’s binding system also handles DOM events. Events raised on the view, such as
input value change, checkbox checked, and button clicked, are connected to corre-
sponding view-model methods via binding commands. Binding commands in Aurelia
are declared in the view template and are used to connect a view event with a view-
model method, such as delegate and trigger—we’ll delve into these in detail in
chapter 4. As in the case of binding, Aurelia provides tools (such as binding behaviors,
which you’ll encounter in chapter 3) to control when and why the view-model is
notified of events raised from the view. Aurelia’s event-handling workflow is illustrated
in figure 1.8.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

18 CHAPTER 1 Introducing Aurelia

The message property on the app’s view-model is
bound to <h1> content in the app.html view.

© Component i
: ViewModel C> View E
i - JavaScript class <j - HTML template]
-- <« C @ localhost:9000
app.js AN app.html AN i-il-ﬁ-;\;;-lj'-{ """""""
/-f,", o
export class App { <template> | '
constructor() { _ _ _ __ _ _ O [<h1>$ (message}<hl> |)
[this.message = 'Hello wOrldi'Lt’/' </template> E
) E
} E app.html
(The view-model) (The view) oo

Aurelia binds view-fragments to view-model
properties using a feature called data binding.

Figure 1.7 The app view-model (from the app.js file) is bound to its pair (the app view from the app.html file).
When the app view-model is constructed, the 'message' property is set to the 'Hello World! ' value. This
value is bound to the view using data binding. When this view is rendered, the bound value of the message
property is rendered to the view, and you can see the “Hello World!” text rendered in the Chrome browser.

Component

ViewModel C> View
| " i

- JavaScript class - HTML template
I e e o L o L T T o o I
app.js AN app.html AN ¢ ¢ [baneon «
localhost500 says:
export class App { <template>) Hello World "
constructor () { <hl>${message}</hl> = =
this.message = 'Hello World!'; <hr/>
} _<button
"_sa_yl-ngo(_) {_ _____ -: | click.delegate="'sayHello() ‘Ll
‘ alert (this.message) ; | greet
| L 777777777 N </button>
(The view-model) (The view)

The button-click event is delegated to the sayHello() method on the app’s
view-model using the delegate binding command. This method shows an
alert on the page with the contents of the message property.

Figure 1.8 The Aurelia delegate binding command is used to delegate the click event to the sayHello
method on the app . js view-model. When the button is clicked, the event is raised, and the sayHello method
is called. This results in a greeting alert being presented to the user.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

A tour of Aurelia 19

1.3.3 Routing

One of the tools required in most SPAs today is routing. Routing provides a way of
mapping URLSs to application routes. The benefit is that you can build an SPA in a way
that makes it feel like a real website, so conventions such as the Back button returning
to the previous page work like the user expects. As mentioned, taking advantage of a
routing tool in your SPA allows you to implement deep linking, which allows users to
visit a path deep within your application (for example, /products?id=1) and have the
page rendered with the state that they expect (in that case, the product with the given
ID). Aurelia lets you configure an array of URLs called routes. When you navigate to a
route, it looks up the URL entry in the dictionary and finds the view-model that corre-
sponds to this route. It then constructs that view-model on your behalf. But how do you
get from that constructed JavaScript class to something that’s rendered on the page?
Figure 1.9 gives you a vital clue, outlining how a typical routing setup in Aurelia works.

2. The Aurelia router looks in its dictionary of routes and

finds that the about component should be loaded for 1. The user visits the

this URL. It creates an instance of this component, #/about URL.

ready for render into its <router-view>.

Aurelia router J
AN R AN f#/about 1

app.js app.html & cC o |0(a|hosl'90004:‘/ibfu£ !
T Fr@(te?—?ie?z? N Y= =
| routes , iy T Ty i
' : | | /About |
. vl ‘ i i \
H '/home', 'home'; ' <j | |) ‘ ; Aurelia ‘Hello' sample app. ‘ ‘
R e Lo L.
' L ' /about', 'about'; } ' | } ‘ s about.html | [
v 1 ‘ | | <router-view> J
S E |</router-view- | T apphtm

index.html

3. The contents of the about.html template are
rendered into the <router-view> element.

Figure 1.9 Zooming in on the routing component of your Aurelia map, the router works by looking up a URL (in
the case of the example, the /about URL) and matching it to a route found in the route dictionary. The route
dictionary determines which view-model to load. In this case, you’ve specified that you want the about view-
model to load whenever a user visits the #/about URL.

In this example, you’ve added routing to your app. js view-model by configuring a set
of URLs (home and about) that corresponds to components in your application. Fig-
ure 1.9 consists of two components: about and index. The router takes care of con-
structing the view-model for a component. The component is then rendered inside
the <router-views element in the app.html view.

To get a better understanding of how this process works, bear with me as I take
you on a brief diversion that will give you some insights into Aurelia’s personality.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

20

CHAPTER 1 Introducing Aurelia

Understanding Aurelia’s personality provides some clues as to why the framework
behaves the way it does. Aurelia is a framework with many strong opinions, held
weakly. This means that for any scenario you might face in your application—in this
case, picking the view to show in relation to a view-model—Aurelia thinks it should be
handled a certain way. But like an open-minded person, Aurelia’s opinions are flexi-
ble. If you have a different opinion about the framework, you can tell Aurelia, “No, in
this case I want you to pick the view to render based on the Fibonacci sequence,” and
it will do that instead.

These opinions are often called conventions. Typically, the default conventions will
get you where you need to be about 80% of the time; for the other 20%, you’ll need to
override them with your own. Your mileage may vary based on how opinionated you
are, and how much your opinions diverge from the default.

One of Aurelia’s opinions is that naming is important. Programmers typically put a
lot of thought into how we name things. First, it appeals to our sense of organization
(sometimes to the annoyance of those around us). But beyond that, it allows us to
remember where everything is in a project and what it does. Naming conventions also
allow our team members, when they first start a project, to make educated guesses
about a file’s content and have a fighting chance of being correct. Aurelia has the con-
vention that each view-model file should be named the same as the view file but with
a different file extension. For example, a view-model class named App should live in a
file called app.js. The view corresponding to this view-model should then be named
app.html (see figure 1.10).

| this.message

= this.getMessage() ;

app.js AN app.html AN
export class App { <template>
constructor (greeter) { <hl>§{éééééééjk/hl>
this.greeter = greeter; (S gt s
) bindin
created () { 9 </template>

}
getMessage () {
return this.greeter.greet();

}
}

(The view-model) (The view)

Example of how view/view-model pairs should
be named the same (apart from the filename)
so that they are bound together by convention

Figure 1.10 Naming the view-model and view files in this way allows
Aurelia to bind the view-model and view together by convention.

Aurelia has many other opinions, and we’ll look at those later, but for now let’s return
to the dilemma of how you get from the view-model that the router loaded to the view
rendered on the page. One option is to define a property in your view-model to hold

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

A tour of Aurelia 21

the path of the view that you want to load. Then, when the view-model is loaded, the
framework will look up this property, fetch the page, and render it into the DOM.
This is a fine approach that’s taken by many frameworks, but Aurelia instead uses con-
ventions to create smart defaults regarding which view should be loaded given a spe-
cific view-model.

1.3.4 Inside the view-model, and what’s this about components?

Now you know that users interact with the Aurelia framework either by navigating to a
URL or by interacting with the view, which raises DOM events. In the first case, the
appropriate view-model will be loaded and instantiated. In the second case, you're
already on the page, so the view-model has been instantiated as a part of the applica-
tion startup.

In the example application shown in figure 1.8, you’ve only got one view-model
view pair (the app.js and app.html files). This pair is called a component. A component
in Aurelia can represent a section of the UI (for example, it could be a nav bar or a
product list). Components can also be used to encapsulate functionality within your
application (for example, formatting a date field for display in the view with a value
converter). Examples of these kinds of components include value converters, binding
behaviors, and view-engine hooks. We’ll cover these kinds of components in chapter
5. Using custom-element components is a way of reducing complexity as your applica-
tion grows by splitting the application into a set of small, well-defined pieces that do
one thing well. Those of you from an OOP background can think of this as another
use case of the single-responsibility principle.

The first thing that Aurelia does after the view-model has been initialized is call the
view-model constructor. This is the first step in something called the component lifecycle.

1.3.5 The Aurelia component lifecycle

As you interact with the components in the Aurelia application, these components go
through a lifecycle. The lifecycle includes from when a component is constructed (for
example, when you first visit a route that causes a component to be created) and ren-
dered into the DOM to when you navigate away from this route, causing the compo-
nent to be cleaned up and removed from the DOM.

Aurelia provides hooks into this lifecycle, allowing you to execute behavior rele-
vant at that point in the life of the component. An example of this is the activate lifecy-
cle hook. To hook into when a component is attached to the DOM, you can create an
attached method on your component’s view-model. You can think of this lifecycle like
a tour bus, where you let the driver know in advance which attractions you’re inter-
ested in seeing. The driver will then let you know at certain points in the tour that
“We’ve reached the picnic spot,” or “We’ve reached the scenic lookout destination.”
Then, when you arrive at a destination, you can decide on the action you want to take.
We’ll cover the Aurelia component lifecycle and look at each of the lifecycle hooks
available in chapter 6 when we cover intercomponent communication with Aurelia.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

22 CHAPTER 1 Introducing Aurelia

1.3.6 Loading data from an API

Suppose that when your page loads, you want to retrieve a greeting from a REST API
and render it in the app view. To load this data, you can hook into the created call-
back method from the component lifecycle (as shown in figure 1.11), or the activate
callback method from the router lifecycle in the case of a routed component (covered
in chapter 9). Zooming in on the data-retrieval area of your map shows the app.js
view-model using an external service called app-service to retrieve data from a back-
end API using aurelia-fetch-client. Figure 1.11 illustrates a typical workflow used
to retrieve data from an HTTP API and render it in the DOM.

A greeting could even be

returned from an HTTP API i Component
using Aurelia-fetch-client.] ViewModel C> View
i - JavaScript class <j - HTML template E
greetings-service.js [N app.js AN app.html AN
export class App { <template>
export class GreetingsService { constructor (greeter) { <hl:>7$7{;nieisisia§ei}]:/hl>
constructor () { } this.greeter = jwbindingl/r 7777777777 ’
} created () { </templates>

greet () {m} (Eﬁ{é;&*&;§é1= this.getMessage () ;
N ’
getMessage () {

return this.greeter.greet();
}
}

(service class) (The view-model) (The view)

Service classes X DI container Constructs the app’s
view-model with an instance
Gets an instance of the Greetings service

Figure 1.11 The architecture of a sample Hello World application modified to show how a service class could be
used to encapsulate functionality such as HTTP API access

The Aurelia DI container is used to get an instance of the GreetingsService class and
inject this into the app view-model when it constructs it. This service is then used to
retrieve a greeting from an HTTP API. The greeting message is data-bound from the
app view-model to the app view, so when your response returns from the HTTP API,
it’s immediately rendered to the DOM.

Having determined where you’re going to implement this logic, how do you go
about doing it? One of the most popular choices in Aurelia is via the use of a service
class (figure 1.11). There’s nothing special about a service class. In fact, it’s a plain old
JavaScript object (or POJO). Service classes allow you to separate the concern of
retrieving data from an API from the view-model concerns of getting data rendered to
the screen. In this case, you’d fill out the logic for retrieving the data via AJAX (most

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

A tour of Aurelia 23

likely via aurelia-fetch-client, an HTTP client that makes your life much simpler
than the jQuery AJAX $.get method, but we’ll get into that in more detail later). An
instance of this service class can be automatically injected into the view-model using
dependency injection.

DEFINITION Traditionally, objects in a system are responsible for managing
their own dependencies. This can become challenging as the application
grows in scale, increasing the complexity of the relationships between these
objects. Dependency injection (DI) simplifies this problem by moving the respon-
sibility of creating objects away from the objects themselves and placing it in
the hands of the DI framework. This transition of responsibility is known as
inversion of control (IoC). Typically, in an application using DI, an object declares
which dependencies it requires (often as constructor parameters), and the DI
framework provides the relevant implementation of these dependencies at
runtime.

1.3.7 Dependency injection with Aurelia

In your simple example view-model, there’s only one basic screen (the app view), so it
will be easy to create a new instance of the class directly in the constructor and do
what you need to do. In the real world, however, applications are never that simple.
Take Facebook as an example. It has a chat box, a notification widget that tells you
how many unread messages you’ve got, an area that shows you all the ongoing conver-
sations with your friends—and this is only on the chat side of things. If you were to
build this in Aurelia, each area would be made up of a set of components. Depen-
dency injection becomes useful when you have multiple components and need to
manage dependences (such as service classes) between these components. We’ll look
at how DI simplifies this process in more detail when we explore intercomponent
communication in chapter 6.

1.3.8 Rendering the view

After you've retrieved the data via the service class, you need some way of rendering it
back to the screen. One approach that you may be familiar with is to use jQuery. In
the world of jQuery, you start by pulling your JSON blob into an array of JavaScript
objects. You then have to query the DOM to retrieve the Table element object. After
that, you cycle through each of the values in the array and add these as rows to the
table, but there are two downsides to this approach:

Performance—It’s possible to update the DOM efficiently by carefully replacing
only the affected DOM branches that correspond to a change in your JavaScript
model even with plain JavaScript or jQuery. But because this optimization step
is tedious and time-consuming, many developers skip it and instead replace a
larger fragment of the DOM than is necessary. Data binding performs this opti-
mization for you, which makes skipping this step a non-issue.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

24 CHAPTER 1 Introducing Aurelia

Difference of abstraction level—In an ideal world, when writing application code,
you only need to concern yourself with the business problem you’re solving. If
you’re in the flow of solving this problem, and then need to change gears and
think instead about the mechanics of getting the relevant state changes
reflected in the DOM, it can break you out of this flow. Any break in flow causes
a slowdown in development pace and introduces an opportunity for errors to
creep in. Imagine if every time you wanted to accelerate your car you needed to
think about the process of how the internal combustion engine worked to pro-
duce forward motion. Focusing on these details might increase the likelihood
of accidents. The accelerator pedal is an abstraction that obviates you needing
to think about all of this. All you need to do is push the pedal, and off you go.
Aurelia’s binding system brings you to a higher level of abstraction, much like
the accelerator pedal does when you’re driving.

To render the results from your service-class call, save those results into a property
bound to an element in the view. Aurelia then takes care of it, first notifying itself that
a change has taken place, and then applying the relevant changes to the DOM. This
keeps you at the same level of abstraction throughout the process and allows you to
focus on the task at hand. It also allows Aurelia to optimize the changes to the DOM.
Aurelia has a high-level picture of the changes that need to be made to the DOM.
Given this perspective, it’s able to find an optimal way to perform these changes to
minimize browser rerendering, and so on. (We’ll look at Aurelia’s DOM optimizations
in more depth later in this book.)

We started our virtual tour with user interaction on the page (either a URL naviga-
tion event or a DOM event). In the case of the navigation event, you've loaded the
appropriate view-model and initiated it via the constructor, which is the first step in its
component lifecycle. In the case of the DOM event, you’ve responded to an event trig-
gered in the UI that was bound to a method in the view-model via data binding. In
both cases, you responded to the event by retrieving data from a web API via a service
class that was injected into your view-model via dependency injection. Once you
received the data back from the service class, you saved it into a property value on the
view-model that was data-bound to a property on the view. This caused that part of the
view to rerender and display the list of values to the user.

You now have an idea of the kinds of problems that Aurelia solves and, at a high
level, how it solves them. But if you’re anything like me, you’re eager to learn how to put
this into practice. In the next chapter, you’ll get your hands dirty creating an Aurelia
application from the ground up. We’ll build a virtual bookshelf SPA and begin by creat-
ing the ability to add and list books. By the end of this book, we’ll have built a full-
fledged SPA with multiple interrelated components, third-party libraries (such as
Bootstrap and Font Awesome), and the ability to send and receive data from an HTTP
REST API built with Node.js, MongoDB, and Express.js. This will give you an under-
standing of the variety of tools that Aurelia offers, and by the time you’re finished, you’ll
have everything you need to build your own componentoriented SPA with Aurelia.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Summary 25

Summary

Certain styles of web applications are difficult to develop using the traditional
request/response style of web-application architecture.

Many of these applications (such as admin portals or messaging applications)
would’ve been built as desktop applications.

The SPA architecture makes it easier to build this style of application, by provid-
ing a set of tools such as data binding and routing.

Aurelia is an MV* SPA application framework that provides a similar set of tools
to other frameworks, such as Angular]S or Ember,js, and is more similar to
these frameworks than the SPA libraries, such as React, which are more of a ren-
dering layer.

Aurelia is the standout choice in today’s web-development world due to its focus
on clean code, simplicity, and convention over configuration.

Aurelia applications are built by composing components of view/view-model pairs,
where the view is an HTML template and the view-model is a JavaScript class.

Data binding is used to handle events from the view in the view-model, propa-
gate changes in view-model properties to the view, and propagate changes from
the view back to view-models.

Dependency injection is used to simplify the management of dependencies in
Aurelia applications by moving the dependency-management responsibility out
of the components themselves and into the DI container.

Aurelia provides routing to allow developers to build SPAs that feel like real
websites, supporting the standard web-interaction patterns that users are famil-
iar with.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

WEB DEVELOPMENT

Avurelia v AcTion

Sean Hunter See first PG

ry Aurelia, and you may not go back to your old web

framework. Flexible and efficient, Aurelia enforces mod-

ern design practices and a modular architecture based on ¢ Makes building single-page
web components. I¢’s perfect for hybrid web + mobile apps,
with hot features like dynamic routes, pluggable pipelines,
and APIs for nearly every flavor of JavaScript.

applications easy and fun.??

—Alessandro Campeis, Vimar

teaches you how to build extraordinary web ¢CThe perfect way to

applications using the Aurelia framework. You'll immediately transform your applications
take advantage of key elements like web components and
decorators when you start to explore the book’s running
example: a virtual bookshelf. As the app unfolds, you'll dig
into templating and data binding the Aurelia way. To complete)
the project, you'll take on routing and HTTP, along with ¢¢All navigators need a
tuning, securing, and deploying your finished product. map, and this book provides

a path into the jungle of

production-ready web-
development frameworks.??

into successes.”?
—Philippe Charriere, Clever Cloud

e Templating and data binding
» Communication between components —Joseph Tingsanchali, Netspend

e Server-side and SPA design techniques)
¢¢Learn how to build

a single-page app that
Written for developers comfortable with JavaScript and aims for simplicity,
MVC-style web development. modularity, and convention
over configuration.??

* View composition

is a software developer in Melbourne, Australia,

.) . —Peter Perlepes, Growth
with nine years of web-development experience.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/aurelia-in-action

ISBN-13: 978-1-b1729-478-5
4-0

ISBN-10: 1-E1729-478-
“‘ ““ H ‘ ‘|5499‘|9
oN7816171294785
$49.99 / Can $65.99 [INCLUDING eBOOK]

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

