INACTI

Sean Hunter

/'I MANNING

Au ré

SAMPLE CHAPTER

https://itbook.store/books/9781617294785

Aurelia in Action

by Sean Hunter

Chapter 8

Copyright 2018 Manning Publications

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

brief contents

PART 1 INTRODUCTION TO AURELIA .ccuveereerccescescescosscescescossossons 1

1 w» Introducing Aurelia 3

2w Building your first Aurelia application 26

PART 2 EXPLORING AURELIA....ccceuuueierernneceeennnesseseensesssssennennes 61
3 = View resources, custom elements,
and custom attributes 63
= Aurelia templating and data binding 83
» Value converters and binding behaviors 104
Intercomponent communication 119
= Working with forms 156
» Working with HTTP 188
= Routing 206
10 = Authentication 243
11 = Dynamic composition 264
12 = Web Components and Aurelia 275

© 00 N O O K
[]

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

viii BRIEF CONTENTS

13 = Extending Aurelia 305

14 w» Animation 322

PART 3 AURELIA IN THE REAL WORLD
15 = Testing 337

16 = Deploying Aurelia applications 363

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Working with H1T'I'P

This chapter covers

= Examining the Fetch API browser
= |Looking at the Aurelia fetch client
= [ntercepting HTTP requests

= Using the Aurelia HTTP client

In the real world, no SPA lives in isolation. SPAs are typically part of an ecosystem
that involves a multitude of components, such as REST APIs and other dependen-
cies, both internal to your application and external. The first Aurelia application I
built integrated with a backend REST API to fetch application data and statistics,
the Octopus Deploy REST API to retrieve a list of servers that we were interested in,
and other APIs with information pertinent to the application. Integrating with
these kinds of external dependencies brings your application to life.

With the growing popularity of serverless architectures, it’s increasingly com-
mon to host a simple SPA and use it to knit together a suite of external utilities—
from cloud databases to SaaS (software as a service) offerings like Salesforce. The
technology required to build these kinds of applications has existed for quite some
time, starting with Microsoft’s invention of AJAX, back in 2000. The built-in browser
API for working with AJAX, the XMLHttpRequest API, is beginning to show its age,

188

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Overview of the Aurelia HTTP toolkit 189

and developers are starting to expect a cleaner and more modern HTTP browser API.
Because of this, libraries like jQuery have created higher-level APIs to make it easier to
work with HTTP requests in general, and AJAX specifically.

Recently, a more modern native API has started making its way into browsers. It’s
called the Fetch API and makes working with HTTP much simpler. It provides built-in
support for concepts such as CORS- and HTTP-origin header semantics, which were
not on the radar when the XMLHttpRequest API was invented. Aurelia provides two
packages, aurelia-http-client and aurelia-fetch-client (which uses the new
Fetch API under the hood), that simplify HTTP communication by providing a higher-
level API on top of Fetch. The aurelia-fetch-client makes it significantly easier
to use the Fetch API as part of the Aurelia application architecture due to its sup-
port for DI.

In this chapter, you’ll learn how to build HTTP interactions into your Aurelia
applications, connecting the my-books SPA to the my-books REST API by means of the
aurelia-fetch-client and aurelia-http-client packages.

8.1 Overview of the Aurelia HTTP toolkit

The fetch-client and http-client plugins have a lot of overlap in terms of core
functionality, each providing support for all HTTP verbs. The differentiating factor is
the browser API that they’re built on. aurelia-http-client aims to provide a simple-
to-use abstraction over the traditional XMLHttpRequest object, which has been in
browsers since 2000. This is the object that existing utilities, such as jQuery’s AJAX
library, are built on.

Because it was created so long ago, many things that we’ve come to expect from a
modern HTTP client API aren’t supported. Further, the functionality that is sup-
ported is verbose and requires a lot of boilerplate code. In contrast, the aurelia-
fetch-client plugin is built on the recent Fetch API and provides access to some of
the more recent browser APIs, such as service workers and the Cache API. It also pro-
vides support for concepts such as CORS.

The recommendation from the Aurelia core team is to use aurelia-fetch-client
where possible and fall back to aurelia-http-client in cases where the functionality
you need isn’t supported. An example of this is if you require download progress or
request cancelation.

Both Aurelia HTTP clients can be globally configured, avoiding the need to
repeatedly specify options such as the base URL and credentials that should be
applied to every request. Both clients also support request interception. Request intercep-
tion is used to hook into an HTTP request on its way out to an HTTP endpoint (for
header manipulation or request logging) and on its way back. Interception provides
flexibility in the way HTTP requests are handled in your SPA. An overview of the Aure-
lia HTTP toolkit can be seen in figure 8.1.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

190 CHAPTER 8 Working with HTTP

XMLHttpRequest Old browser API Fetch API New browser API

Aurelia
framework plugin

Aurelia

’ aurelia-fetch-client
framework plugin

aurelia-http-client

Compatible with older browsers - Forward looking

without requiring a polyfill
Built on XMLHttpRequest
Download progress

Built on top of the Fetch API
Service workers
Request/Response caching

- AllHTTP verbs

Request cancellation
- JSONP
- AIHTTP verbs

Figure 8.1 Overview of the Aurelia HTTP toolkit. This consists of aurelia-http-client,
which is built on the XMLHttpRequest API, and aurelia-fetch-client, which is built on
the Fetch API.

8.2 Using aurelia-fetch-client

aurelia-fetch-client is a wrapper over the browser’s native Fetch API. This article on
the Mozilla Developer Network is a great resource if you're interested in learning more
about the Fetch API: https://developer.mozilla.org/en/docs/Web/API/Fetch_APL
aurelia-fetch-client supports the same methods as the native Fetch API, but it also
provides the following advantages:

Request tracking—Every request sent from aurelia-fetch-client is tracked,
giving you an overview of the HTTP interaction across your application.

HTTP interception—You can intercept and optionally manipulate requests com-
ing in and going out of your application. This is useful for cross-cutting tasks,
such as logging or providing feedback to the user, when your application is per-
forming HTTP communication.

Injection—This module is injectable into the services and view-models across
your Aurelia application.

Default value configuration—You can set default values, such as a base URL
for your API, request headers, or credentials, which are then applied to every
request.

82.1 Adding fetch to my-books

In the previous chapters, you emulated HTTP interaction in my-books using the
combination of an HTTP request to a seed JSON file and simulated backend calls to
the BookApi service that return hardcoded data. In this section, swap out this fake

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Using aurelia-fetch-client 191

backend for a simple REST API built using Node.js, Express.js, and MongoDB. This
REST API has the following endpoints:

/BOOKS (GET)—Retrieves a list of books

/BOOKS (POST)—Creates a new book

/BOOK/ID (GET)—Retrieves a specific book by ID
/BOOK/ID (DELETE)—Deletes a book by ID
/BOOK/ID (PUT)—Updates a book by ID

/GENRES (GET)—Lists all genres

/SHELVES (GET)—Lists all shelves

The updated architecture of the my-books application encapsulates HTTP calls to the
my-books REST API within the BookApi class, which depends on aurelia-fetch-client.
You can see an overview of this architecture in figure 8.2.

The Books and EditBook

BooksViewModel EditBookViewModel «——__ View-models depend on
the BookApi-to-REST-API
\ / interaction.
BookApi /\/ The aurelia-fetch-client dependency
is encapsulated in the BookApi class.

aurelia-fetch-client

T 7

\ POST: {PUT /
GET\ %\ | /DELETE

\

.

my-books-server
REST API

Figure 8.2 The my-books application modified to communicate with the my-books-server REST
APl via aurelia-fetch-client

Before making any changes to my-books, you need to set up the my-books-server,
which is available from GitHub. Instructions for how to do this can be found in the
appendix and in the GitHub repository at https://github.com/freshcutdevelop-
ment/my-books-server. This is a simple Node js-based REST API with a MongoDB
backend. We won’t cover how this server was built because it’s outside the scope of this

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

192 CHAPTER 8 Working with HTTP

book. But if you’re interested, you can read more on this topic in Simon Holmes’ ter-
rific book, Getting MEAN (Manning, 2015) at http://mng.bz/87FF.

TIP The Fetch APl is a relatively recent addition to browsers. If you need to
support users on Internet Explorer (any version other than Edge), or browser
versions lower than Edge version 14, Firefox version 39, Chrome version 42,
or Safari version 10.1, you’ll need to use a polyfill to patch the missing func-
tionality for these browsers. The polyfill fetch library from GitHub is a good
option: https://github.com/github/fetch.

Now that you’ve set up the my-books-server REST API and have it running at http://
localhost:8333/api, modify the BookApi class to make use of the new endpoints. To
begin, import two modules from the aurelia-fetch-client package: the HttpClient
module (which you’ll use for HTTP communication) and the json module (which
allows you to serialize book objects to JSON before they’re sent to the backend). With
the transition to a REST API rather than the simple books.json seed file, you’ll need to
configure the base URL that the HTTP client should use when making each of its
requests. This is done using the configure method on the HttpClient module. This
method takes a function that returns an HttpClientConfiguration object, http
.configure (config => {}), which you configure to the following options:

config.withDefaults ({credentials:...}, {headers...})—Allows you to
configure default parameters to be passed with each HTTP request. Any config-
uration options available on the Fetch API are configurable here. This is most
useful when you have headers or credential options that need to be the same
with every HTTP request you send.

config.withBaseUrl (url)—Allows you to configure the base URL used for
HTTP requests.

config.useStandardConfiguration ()—Sets up reasonable defaults on the
httpClient object, such as the same-origin CORS policy for credentials.
config.withIntercepter ()—Allows you to configure a pre-/post-request inter-
ceptor function. We’ll cover this shortly.

After configuring the base URL, you need to modify each of the BookApi methods to
call the my-books-server endpoints rather than sending back hardcoded values. The
pattern is similar in each case. Use the this.http.fetch(URL) method to make the
HTTP call, unwrap the promise, and deserialize the JSON message into an object with
the response.json () method, returning the resulting value as a POJO to the caller.
The HTTP GET verb is used by default when you call httpClient.fetch(), so in the
cases where you’re deleting, updating, or creating data, you need to specify the rele-
vant verb (method) as a part of the fetch options.

Additionally, when creating or updating items, you need to serialize the message
body using the json method. You’ll also perform a little housekeeping, removing all
simulated latency from the service, because you’re no longer working with mock data.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Using aurelia-fetch-client 193

Connecting to a real HTTP API introduces a chance for errors. To handle this, add a
catch block to trap errors on each HTTP call, logging the error details to the console.
Modify the ./src/services/book-api.js service class as shown in the following listing.

Listing 8.1 Using the my-books-server REST APl in BookApi (book-api.js)

import {HttpClient, json} from 'aurelia-fetch-client';

import {inject} from 'aurelia-framework'; Imports the

HttpClient and JSON
modules, and injects
the http client into
the BookApi class via
constructor injection

@inject (HttpClient)
export class BookApi{

constructor (http) {
this.http = http;

const baseUrl = 'http://localhost:8333/api/"';
Configures the base
http.configure (config => { URL of the REST API
config.withBaseUrl (baseUrl) ;
)
}

Switches the getBooks
method to fetch from
the API endpoint

getBooks () {

return this.http.fetch('books"')

.then (response => response.json())

.then (books => {
return books;

3

.catch(error => {
console.log('Error retrieving books.') ;
return [];

1)

}

Switches the getShelves
method to fetch from
the APl endpoint

getShelves () {

return this.http.fetch('shelves')
.then (response => response.json())
.then(shelves => {
return shelves;
}

.catch(error => {
console.log('Error retrieving shelves.');
return [];

)

1

Switches the getGenres
method to fetch from
the API endpoint

getGenres () {
return this.http.fetch('genres')

.then (response => response.json())
.then (genres => {

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

194 CHAPTER 8 Working with HTTP

return genres;
.
.catch(error => {
console.log('Error retrieving genres.');
return [];

I3

addBook (book) {
return this.http.fetch('books', {

method: 'post’, Configures the
body: json (book) addBook method with
j9) the HTTP POST verb

.then (response => response.json())
.then (createdBook => {
return createdBook;
3]
.catch(error => {
console.log ('Error adding book.');

)

deleteBook (book) {
return this.http.fetch(book/${book. id}~, {

method: 'delete' Configures the
b . addBook method with
.then (response => response.json()) the HTTP DELETE verb

.then (responseMessage => {
return responseMessage;
3]
.catch(error => {
console.log('Error deleting book.');

13K

saveBook (book) {
return this.http.fetch(book/${book. id}~, {

method: 'put', Configures the

body: json (book) saveBook method
9) with the HTTP
.then (response => response.json()) PUT verb

.then (savedBook => {
return savedBook;
1)
.catch(error => {

console.log('Error saving book.'); Catches errors

b and logs to
console

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Using aurelia-fetch-client 195

TIP In this case, you've handled errors by catching them and logging an
error message to the console. By contrast, in a real-world application, you’d
want to notify the user that there was an issue connecting to the backend ser-
vice and potentially retry the request. One way to implement this kind of
error notification is to use the Aurelia Event Aggregator to raise an error
event, passing along the error message. You can then listen for error events in
a component higher up in the hierarchy and add global error-notification
logic via an error-notification component or similar. You could also transmit
the error to an error-tracking and reporting service, such as Track]S or Ray-
gun, to give you visibility into errors encountered by users.

With the BookApi changes in place, you need to modify the components in the appli-
cation to work with the slightly revised data structure returned from the REST API
and MongoDB. The revision to this structure incorporates the MongoDB database ID
format (" _id": "5991713£95£d5759604££fb7b") and refers to genres by ID reference
rather than name ("genre": "5991713f95£d5759604ffb70"). Because the concepts
in the following section have been covered already, feel free to skip these steps and
download the complete version from chapter 7 at https://github.com/freshcut-
development/Aurelia-in-Action. The changes you’ll need to make are as follows:

= Modify the EditBook view-model to use the new books data structure.
= Modify the edit-book.html view to make use of the new books data structure.
= Modify the Books view-model to make use of the new books data structure.

STEP 1: MobDIFY EDITBOOK VIEW-MODEL
Modify the contents of the EditBook view-model, ./src/resources/elements/edit-book js.

Listing 8.2 Modifying EditBook to use the new data structure (edit-book.js)

export class EditBook{ Replaces ID with _id to use

the database ID returned

bind () { from MongoDB
this.selectedGenre = this.genres
.find(g => g._id == this.book.genre) ;
this.selectedShelves = this.shelves
.filter (shelf =>
this.temporaryBook
.shelves
.indexOf (shelf .name) !== -1);
Replaces ID
with _id to use } Populates the
the database ID selectedGenreChanged (newValue, oldvValue) { selectedShelves array;

returned from
MongoDB

these are now objects

if (!newValue) return; a
rather than strings

this.temporaryBook.genre = newValue. id;

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

196 CHAPTER 8 Working with HTTP

attached () {
this.bookSaveCompleteSubscription =
this.eventAggregator
.subscribe (“book-save-complete-${this.book. id}"~,
() => this.bookSaveComplete()) ;

Replaces ID with _id to
use the database ID
} returned from MongoDB

STEP 2: MODIFY EDIT-BOOK VIEW
Modify the contents of the edit-book view, ./src/resources/elements/edit-book.html.

Listing 8.3 Maodifying edit-book to use the new data structure (edit-book.html)

<label for="shelves" class="mb-2 mr-sm-2 mb-sm-0">Shelves</label>
<select show.bind="editingShelves"
name="shelves"
class="form-control mb-1 mr-sm-1 mb-sm-0" . L
multiple multiselect blnqlng
value.bind="selectedShelves"> Lits';ilr than string-
<option repeat.for="shelf of shelves"
model.bind="shelf">
${shelf.name}
</option>
</select>
<button show.bind="editingShelves"...>ok</buttons>

Uses object-based

STEP 3: MoODIFY BOOKS VIEW-MODEL
Modify the contents of the Books view-model, ./src/resources/elements/books.js.

Listing 8.4 Modifying the Books view-model (books.js)

Modifies the addBook method
to call book-api to POST book

export class Books {

addBook () {
this.bookApi.addBook ({title : this.bookTitle}).then(createdBook => {
this.books.push (createdBook) ;
this.bookTitle = "";
I3
}

removeBook (toRemove) {

Modifies the
this.bookApi.deleteBook (toRemove) .then(() => { removeBook method to
let bookIndex = _.findIndex(this.books, book => { hit the API endpoint

return book. id === toRemove. id; and updates the books
K array with the result

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Using aurelia-fetch-client 197

this.books.splice (bookIndex, 1) ;
I3
1

bookSaved (updatedBook) { Modifies the bookSaved
this.bookApi callback method to hit the API
. saveBook (updatedBook) PUT endpoint and updates the
.then ((savedBook) => { books array with the result

let index = this.books
.findIndex (book =>
book. id == savedBook. id) ;

Object.assign (this.books [index], savedBook) ;

this.eventAggregator
.publish(book-save-complete-${savedBook. id}~);

I3

With this housekeeping taken care of, the application should look the same as it did
before, but if you lift the hood and take a look, you can see that the data is now
retrieved from the REST API, as shown in figure 8.3.

By adding aurelia-fetch-client to my-books, you’ve seen how a default configu-
ration can be configured on the httpClient object and used for each request. You
used this default configuration to minimize duplicate code across the HTTP calls, iso-
lating the base URL so that you could define it in one place. You've also seen how to
modify the HTTP verb on requests, which allows you to easily create, delete, and
update data on any REST API you want to use.

Next, we’ll look at another configuration option available on aurelia-fetch-
client: interceptors. You’ll use interceptors to log each of the HTTP interactions that

you’ve added to the Aurelia application and observe the requests being made under
the hood.

8.2.2 Intercepting and manipulating requests

Interceptors give you a straightforward way to manipulate requests coming to and
from your Aurelia application via aurelia-fetch-client. You can think of a intercep-
tor like a middleman for your requests, allowing you to take the request or response
and modify it in any way (including swapping it out and replacing it with a new
request/response entirely, if that suits your purpose). Most commonly, interceptors
are used for tasks such as appending request headers and logging. The interceptor
flow is depicted in figure 8.4.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

198 CHAPTER 8 Working with HTTP

Book deletions are now No changes in the Ul, but
Updates are persisted persisted into MongoDB books are now loaded from
via the REST API. between sessions. the REST API.

War and Peace

3

01/01/2017 11:00:00 am
Title

War and Peace

Description

Really enjoyed this one.

(Genre Drama v—‘ oW

===
Own a copy?. Times Read! 3 |Shelves (21 ¢
N L

e

l ,,,,,,,,,,, 7’7 || genres 77J

= Status Code: ® 304 Not Modified
/_/ Remote Address: [::1]:8333

Referrer Policy: no-referrer-when-downgrade
Data is now retrieved from

N ¥ Response Headers view source
the my—bOOks REST API via Access-Control-Allow-Headers: Origin, X-Requested-Wit
aurelia-fetch-client. h, Content-Type, Accept
Access-Control-Allow-Methods: GET,PUT,POST,DELETE
Access-Control-Allow-Origin: *
Connection: keep-alive
Date: Sat, 24 Jun 2017 ©0:43:47 GMT
ETag: W/"2b2-T2mic+LQZRolGkE+G4WmgTo5d3U"
X-Powered-By: Express

Figure 8.3 Fetching, adding, updating, and deleting books is now achieved via REST calls to the
my-books-server APl using aurelia-fetch-client.

fetch (books)

Aurelia service class books [] aurelia-fetch-client
books (JSON) fetch (books)
- Adds headers
/ Interceptor a Logs request
::?::::zsn::d logs books (JSON) GET /books
L]
HTTP endpoint

Figure 8.4 Requests made via aurelia-fetch-client can be intercepted and manipulated.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Using aurelia-fetch-client 199

To see it in action, modify the BookApi class to intercept and log all my-books HTTP
interactions. Modify the ./src/services/book-api.js class.

Listing 8.5 Logging HTTP requests from BookApi (book-api.js)

export class BookApi{

constructor (http) {
this.http = http;

const baseUrl = 'http://localhost:8333/api/';
http.configure (config => { Adds an interceptor
config.withBaseUrl (baseUrl) tot?eh“RChe“t
.withInterceptor ({ configuration
Adds a callback request (request) {
console.log("request", request) ; Adds a callback
request to log o]
the content of return request; response to log
each request } the content of
response (response) { each response

console.log ("response", response) ;
return response;

Refresh the browser, and then you should see the request and response bodies logged
into the Chrome Developer Tools (F12). In this example (figure 8.5), I reloaded the
page, causing the initial set of books, genres, and shelves to be loaded. I then deleted
and created a book. The pertinent details of the requests are logged, including the
type (CORS, in this case, because of calling an HTTP endpoint with a different URL
than the Aurelia site), the request URL, the method (or HTTP verb), and, in the case
of the response, a status code and a Boolean value to indicate whether the request was
redirected. Figure 8.5 depicts a log of each of these interactions.

Aside from using them to analyze and debug HTTP communications in your
Aurelia application, you can use interceptors to manipulate HTTP requests. For
example, say you wanted to add an awesome custom header to each request. One
option is to include it in the base configuration, but the drawback is that it would
then be included in every request. What if you wanted to include the header only on
a POST? Easy, let’s give it a try. To do this, conditionally add a header to the awesome-
custom-header HTTP requests, but only when the method is of the POST type.
Modify the interceptor in ./src/services/book-api.js and add a custom header for
POST requests only.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

200 CHAPTER 8 Working with HTTP

The interceptor logs each request Initial load: books, genres, and
and corresponding response. shelves are fetched from the API.
INFO [aurelia] Aurelia Started vendor-bundle.js:14034
request book-api.js:16 R
Request {method: "GET", url: "http://localhost:8333/api/books",
headers: Headers, referrer: "about:client", referrerPolicy: "".}
request book-api.js:16
Request {methed: "GET", url: "http://localhost:8333/api/shelves"”,
headers: Headers, referrer: "about:client", referrerPolicy: "".}
request book-api.js:16
Request {method: "GET", url: "http://localhost:8333/api/genres”,
headers: Headers, referrer: "about:client", referrerPolicy: "".} >
response book-api.js:2@

Response {type: "cors", url: "http://localhost:8333/api/books",
redirected: false, status: 200, ok: true..}

response book-api.js:2e
Response {type: "cors", url: "http://localhost:8333/api/shelves"”,
redirected: false, status: 200, ok: true..}

response book-api.js:2e
Response {type: "cors", url: "http://localhost:8333/api/genres"”,
redirected: false, status: 20@, ok: true..} _J
i request book-api.js:16

Request {method: "DELETE", url:
» "http://Llocalhost:8333/api/book/594624d25964fc3280b866d4",

headers: Headers, referrer: "about:client", referrerPolicy: "".}
response book-api.js:20

Response {type: "cors", url:
» "http://localhost:8333/api/book/594624d25964fc3286b866d4",

Response {type: "cors", url: "http://localhost:8333/api/books",
redirected: false, status: 2e@, ok: true..}

I request book-api.js:16
} Request {method: "POST", url: "http://localhost:8333/api/books”,
l headers: Headers, referrer: "about:client", referrerPolicy: "".}

1
; response book-api.js:20 |
‘ i
I 1
1 {

>
A DELETE request is logged A POST request is logged
when a book is deleted. when a new book is added.

Figure 8.5 Intercepting and logging requests between the my-books Aurelia client and the Node.js
server

Listing 8.6 Adding a custom header to POST requests (book-api.js)

export class BookApi{

constructor (http) {
this.http = http;

const baseUrl = 'http://localhost:8333/api/';
http.configure (config => {
config.withBaseUrl (baseUrl)

.withInterceptor ({
request (request) {

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Working with aurelia-http-client 201

Adds custom if (request.method == 'POST') {
header for request
POST requests .headers ['awesome-custom-header']

= 'aurelia-in-action';

}

console.log ("request", request);
return request;

}

response (response) {
console.log ("response", response) ;
return response;

You can use the logging that you set up to see this new interception logic in action.
Navigate back to the browser, add and delete a book, and check the developer console
log. You’ll see that the custom header is applied only for the POST request, as shown
in figure 8.6.

8.3 Working with aurelia-http-client

aurelia-fetch-client solves most of the HTTP communication requirements that
you’ll come across in your Aurelia development, but you may run into the occasional
scenario where the functionality that you need hasn’t made it into the Fetch API
browser yet. In these cases, you’ll need to fall back to the aurelia-http-client pack-
age. As mentioned earlier, a common case for this is if you need to communicate with
aJSONP API.

JSONP provides a mechanism for sharing data between different domains, so it’s a
common requirement of third-party REST APIs. This makes it a useful tool to keep in
your back pocket. To see how this can be used in practice, add a new service class to
my-books that retrieves the books API using a JSONP request. Then, add a reference
to this new service in the Books view-model class to log the results.

Begin by importing the HttpClient and configuring the base URL, as you did with
the fetch-client example. The difference in this case is that you import the module
from the aurelia-http-client package instead of the aurelia-fetch-client pack-
age. Then, in a new method, getBooksJsonp, make a JSONP call using the jsonp
method on the HttpClient class, this.http.jsonp ('booksjsonp'). This method
takes a URL and a callback-parameter name—the name of the URL parameter that
specifies the function used to wrap the JSONP response (which, in your case, is set to
'callback' in the my-books-server response). If you’re interested in learning more
about cross-site requests and JSONP, I recommend checking out CORS in Action by
Monsur Hossain (Manning, 2014), which delves into these concepts in much greater
depth, at http://mng.bz/BASc.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

202 CHAPTER 8 Working with HTTP

request book-api.js:19
Request {method: "POST", url:
¥ "http://localhost:8333/api/books”, headers: Headers, referrer:
"about:client”, referrerPolicy: "".}
bodyUsed: true
credentials: "omit"
} awesesome-custom-header: "aurelia-in-action" } “=_ Custom header added
T » _proto_ i Headers T T TTTTTmTToT to the POST call
integrity:
method: "POST"
mode: "cors"
redirect: "follow"
referrer: "about:client”
referrerpPolicy: ""
url: "http://localhost:8333/api/books™
» proto_ : Request

response book-api.js:23
Response {type: "cors”, url: "http://localhost:8333/api/books”,
redirected: false, status: 2ee, ok: true..}

request book-api.js:19
Request {method: "DELETE", url:
"http://localhost:8333/api/book/594el161af122d5690684579",
headers: Headers, referrer: "about:client", referrerPolicy:

bodyUsed: false
credentials: "omit"
¥ headers: Headers “~~_ Custom header omitted
» __proto_ : Headers from the DELETE call
integrity: ""
method: "DELETE"
mode: "cors"
redirect: "follow"
referrer: "about:client"
referrerPolicy: ""
url: "http://localhost:8333/api/book/594el161af122d5050684579"
» _proto_ : Request

Figure 8.6 Custom headers added to POST requests sent via aurelia-fetch-client

The shape of the response object is slightly different than the JSON requests that you
made with fetch-client. In this case, the response body is already deserialized into
an array for you, so all you need to do is retrieve the response body from the
responseMessage . response message. To implement this change, add a new BookApi -
JSONP class under ./src/services/book-api-jsonp.js.

Listing 8.7 Adding the BookApi JSONP class (book-api-jsonp.js)

Imports the

HttpClient class

import {HttpClient} from 'aurelia-http-client';
import {inject} from 'aurelia-framework';

@inject (HttpClient)
export class BookApiJSONP{

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Working with aurelia-http-client 203

constructor (http) {
this.http = http;

this.baseUrl = 'http://localhost:8333/api/';
this.http.configure (config => { gg;fﬁ;fsthe
config.withBaseUrl (this.baseUrl) ;
1K
} Makes an HTTP
JSONP call

getBooksJsonp () { specifying the URL

return this.http.jsonp ('booksjsonp', 'callback') and the callback

.then (responseMessage => {

return re sponseMessage .response; <l—‘ Retl’ieves the

response body

)
.then (books => {
return books;

13K,

To see the results of this JSONP call, wire up the new service class in the Books view-
model and log the response, as shown in the following listing, importing the newly
created service and loading the books array from the bind lifecycle callback.

Listing 8.8 Including the JSONP request (books.js)

import {BookApiJSONP} from '../../services/book-api-jsonp';
@inject (BookApi, EventAggregator, BookApiJSONP) gnpzrsgghp
export class Books { 00K P*
service ciass
constructor (bookApi, eventAggregator,bookApiJSONP) {
this.bookApiJSONP = bookApiJSONP;
}
bind () { Loads the books array in
o the bind() component-
this.loadBooksJsonp () ; lifecycle callback
}
loadBooksJsonp () { Logs the result
this.bookApiJSONP.getBooksJsonp () to the console

.then (savedBooks => console
.log("jsonp books", savedBooks)) ;

Figure 8.7 depicts the JSONP-network request, the autogenerated callback-function name
injected into the URL callback parameter, and the wrapped JSONP-network response.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

204 CHAPTER 8 Working with HTTP

JSONP URL Callback parameter name
X | Headers | Preview Resp%@okies Timing \

¥ General e

. o " J 1
Request URL: : host: k 2 H
Reques ht-tp i//1ocalhost:8333/3pi/boo sjsanp1caﬂbac_klﬂgszni_c_al_lb_ac£_l_ﬁz_e_l —_— Autogenerated callback function
equest Method: GET "
Status Code: @ 260 0K
Remote Address: [::1]:8333
Referrer Policy: no-referrer-when-donngrade

Callback function used
to wrap the response

Headers Preview |Response | Cookies Timing — ——— — Lo
1| /#%/ typeof jsonp_callback_1680 === 'function’ &&:jscnp_callba:k_l&se(i("jd":"5991713f95fd5759694ffb7a","genr‘e":"5991713695fd5759594ffb76"
jsonp books books. js:54

v (6) [{-}s (ks Lo {ods Loy {u}]
»0: {_id: "5991713f95fd5759604fb7a"
> 1: {_id: "5991713f95fd5759604fb7b"
»2: {_id: "5991713f95fd5759604fb7c"

genre: "5991713f95fd5759604Ffb7@", title: "War and Peace", readDate: "2017-01-01T@@:80:00.00
genre: "5991713f95fd5759604ffb708", title: "Oliver", userName: "Bilbo", __v: @, ..}

genre: "5991713f95fd57596@4Ffb71", title: "Charlie and the Chocolate Factory", userName: "Bi.
»3: {_id: "5991713f95fd57596@4ffb7d", title: "The fellowship of the Ring", readDate: "2017-01-01T00:00:00.000Z", userName: "Frodo"
> 4: {_id: "5991713f95fd5759604ffb7e", title: "The Two Towers", userName: "Frodo", _ v: @, timesRead: @, ..}

»5: {_id: "5991713f95fd57596@4ffb7f", title: "The Return of the King", userName: "Frodo", __v: @, timesRead: @, ..}

1 16

» __proto__: Array(@)

JSONP response logged to the console

Figure 8.7 JSONP-network call with json _callback 1680 autogenerated callback method used
to wrap the network response

This gives you a taste of the functionality available with aurelia-http-client. To see
the full API and additional configuration options, such as fluent configuration, you
can check out the latest documentation on the Aurelia Hub at http://aurelia.io/
docs/plugins/http-services.

With an Express.js backend added to your Aurelia project, you're one step closer
to creating a real-world, usable web application, but it still has a long way to go. Two
major shortcomings are navigation and authentication. Currently, the site consists of
two pages—the homepage and the books page—but the user doesn’t have a great deal
of indication as to which is active. Additionally, the application is devoid of authentica-
tion, allowing any Tom, Dick, or Harry to view any book collection. In the next chap-
ter, you'll remedy both shortcomings, adding a navigation bar and a much-needed
authentication system to the my-books application. In doing so, you’ll become famil-
iar with the ins and outs of Aurelia’s router.

Summary

Two HTTP modules are provided with the Aurelia framework. These modules
sit on top of the XMLHttpRequest object (aurelia-http-client) and the new
Fetch API (aurelia-fetch-client).

aurelia-fetch-client is a simple wrapper on top of the Fetch API. It’s inject-
able and, though the name may not make it obvious, it supports the full range
of HTTP verbs.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

Summary 205

Because aurelia-fetch-client is so new, some features, such as JSONP, aren’t
supported yet, and you’ll need to drop down to the alternative HTTP package:
aurelia-http-client.

The combination of these two packages gives you the power and flexibility that
you need to meet any HTTP-related challenge when developing your own
applications.

If you run into issues and need to diagnose your HTTP logic, interceptors can
save the day. These give you visibility into your Aurelia HTTP pipeline, allowing
you not only to trace incoming and outgoing requests, but also to manipulate
them on the way through.

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

WEB DEVELOPMENT

Avurelia v AcTion

Sean Hunter See first PG

ry Aurelia, and you may not go back to your old web

framework. Flexible and efficient, Aurelia enforces mod-

ern design practices and a modular architecture based on ¢ Makes building single-page
web components. I¢’s perfect for hybrid web + mobile apps,
with hot features like dynamic routes, pluggable pipelines,
and APIs for nearly every flavor of JavaScript.

applications easy and fun.??

—Alessandro Campeis, Vimar

teaches you how to build extraordinary web ¢CThe perfect way to

applications using the Aurelia framework. You'll immediately transform your applications
take advantage of key elements like web components and
decorators when you start to explore the book’s running
example: a virtual bookshelf. As the app unfolds, you'll dig
into templating and data binding the Aurelia way. To complete)
the project, you'll take on routing and HTTP, along with ¢¢All navigators need a
tuning, securing, and deploying your finished product. map, and this book provides

a path into the jungle of

production-ready web-
development frameworks.??

into successes.”?
—Philippe Charriere, Clever Cloud

e Templating and data binding
» Communication between components —Joseph Tingsanchali, Netspend

e Server-side and SPA design techniques)
¢¢Learn how to build

a single-page app that
Written for developers comfortable with JavaScript and aims for simplicity,
MVC-style web development. modularity, and convention
over configuration.??

* View composition

is a software developer in Melbourne, Australia,

.) . —Peter Perlepes, Growth
with nine years of web-development experience.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/aurelia-in-action

ISBN-13: 978-1-b1729-478-5
4-0

ISBN-10: 1-E1729-478-
“‘ ““ H ‘ ‘|5499‘|9
oN7816171294785
$49.99 / Can $65.99 [INCLUDING eBOOK]

www.itbook.store/books/9781617294785

https://itbook.store/books/9781617294785

