

Jamie Duncan
John Osborne
Foreword by Jim Whitehurst

SAMPLE CHAPTER

M A N N I N G

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

OpenShift in Action

by Jamie Duncan

and John Osborne

Chapter 3

Copyright 2018 Manning Publications

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

brief contents

PART 1 FUNDAMENTALS..1

1 ■ Getting to know OpenShift 3

2 ■ Getting started 20

3 ■ Containers are Linux 37

PART 2 CLOUD-NATIVE APPLICATIONS ...59

4 ■ Working with services 61

5 ■ Autoscaling with metrics 80

6 ■ Continuous integration and continuous deployment 91

PART 3 STATEFUL APPLICATIONS ..125

7 ■ Creating and managing persistent storage 127

8 ■ Stateful applications 147

PART 4 OPERATIONS AND SECURITY..169

9 ■ Authentication and resource access 171

10 ■ Networking 194

11 ■ Security 217

vii

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

Containers are Linux

This chapter covers
 How OpenShift, Kubernetes, and docker work together

 How containers isolate processes with namespaces

In the previous chapter, you deployed your first applications in OpenShift. In this
chapter, we’ll look deeper into your OpenShift cluster and investigate how these
containers isolate their processes on the application node.

 Knowledge of how containers work in a platform like OpenShift is some of the
most powerful information in IT right now. This fundamental understanding of
how a container actually works as part of a Linux server informs how systems are
designed and how issues are analyzed when they inevitably occur.

 This is a challenging chapter—not because you’ll be editing a lot of configura
tions and making complex changes, but because we’re talking about the funda
mental layers of abstraction that make a container a container. Let’s get started by
attempting to define exactly what a container is.

3.1 Defining containers
You can find five different container experts and ask them to define what a con
tainer is, and you’re likely to get five different answers. The following are some of
our personal favorites, all of which are correct from a certain perspective:

37

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

38	 CHAPTER 3 Containers are Linux

 A transportable unit to move applications around. This is a typical developer’s
answer.

 A fancy Linux process (one of our personal favorites).
 A more effective way to isolate processes on a Linux system. This is a more

operations-centered answer.

What we need to untangle is the fact that they’re all correct, depending on your point
of view.

 In chapter 1, we talked about how OpenShift uses Kubernetes and docker to
orchestrate and deploy applications in containers in your cluster. But we haven’t
talked much about which application component is created by each of these services.
Before we move forward, it’s important for you to understand these responsibilities as
you begin interacting with application components directly.

3.2 How OpenShift components work together
When you deploy an application in OpenShift, the request starts in the OpenShift
API. We discussed this process at a high level in chapter 2. To really understand how
containers isolate the processes within them, we need take a more detailed look at
how these services work together to deploy your application. The relationship
between OpenShift, Kubernetes, docker, and, ultimately, the Linux kernel is a chain
of dependencies.

When you deploy an application in OpenShift, the process starts with the Open
Shift services.

3.2.1 OpenShift manages deployments

Deploying applications begins with application components that are unique to Open
Shift. The process is as follows:

1	 OpenShift creates a custom container image using your source code and the
builder image template you specified. For example, app-cli and app-gui use the
PHP builder image.

2	 This image is uploaded to the OpenShift container image registry.
3	 OpenShift creates a build config to document how your application is built.

This includes which image was created, the builder image used, the location of
the source code, and other information.

4	 OpenShift creates a deployment config to control deployments and deploy and
update your applications. Information in deployment configs includes the
number of replicas, the upgrade method, and application-specific variables and
mounted volumes.

5	 OpenShift creates a deployment, which represents a single deployed version of
an application. Each unique application deployment is associated with your
application’s deployment config component.

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

39 How OpenShift components work together

6	 The OpenShift internal load balancer is updated with an entry for the DNS
record for the application. This entry will be linked to a component that’s cre
ated by Kubernetes, which we’ll get to shortly.

7	 OpenShift creates an image stream component. In OpenShift, an image stream
monitors the builder image, deployment config, and other components for
changes. If a change is detected, image streams can trigger application rede
ployments to reflect changes.

Figure 3.1 shows how these components are linked together. When a developer cre
ates source code and triggers a new application deployment (in this case, using the oc
command-line tool), OpenShift creates the deployment config, image stream, and
build config components.

Users want to use1. The developers
application but havecreate application
no access (and nosource code.
application…)

Developers 2. The developers trigger
 a new application
 deployment.

Users

oc new-app
...

Source
code

External

OpenShift

Builder Build config ImageCustom Deployment
image image	 stream config

Image registry

DNS
route

Load balancer
3. A custom container

Deployment

4. The deployment config creates
 image is created a unique deployment for each
 and referenced in application version.
the build config.

3b. A DNS route is created 3a. The image stream monitors
in the OpenShift load the images and deployment
balancer. config for changes, triggering

upgrades and rebuilds as
needed to serve the new
configuration.

Figure 3.1 Application components created by OpenShift during application deployment

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

40	 CHAPTER 3 Containers are Linux

The build config creates an application-specific custom container image using the
specified builder image and source code. This image is stored in the OpenShift image
registry. The deployment config component creates an application deployment that’s
unique for each version of the application. The image stream is created and monitors
for changes to the deployment config and related images in the internal registry. The
DNS route is also created and will be linked to a Kubernetes object.

 In figure 3.1, notice that the users are sitting by themselves with no access to the
application. There is no application. OpenShift depends on Kubernetes, as well as
docker, to get the deployed application to the user. Next, we’ll look at Kubernetes’
responsibilities in OpenShift.

3.2.2 Kubernetes schedules applications across nodes

Kubernetes is the orchestration engine at the heart of OpenShift. In many ways, an
OpenShift cluster is a Kubernetes cluster. When you initially deployed app-cli, Kuber
netes created several application components:

 Replication controller—Scales the application as needed in Kubernetes. This com
ponent also ensures that the desired number of replicas in the deployment con-
fig is maintained at all times.

 Service—Exposes the application. A Kubernetes service is a single IP address
that’s used to access all the active pods for an application deployment. When
you scale an application up or down, the number of pods changes, but they’re
all accessed through a single service.

 Pods—Represent the smallest scalable unit in OpenShift.

NOTE Typically, a single pod is made up of a single container. But in some sit
uations, it makes sense to have a single pod consist of multiple containers.

Figure 3.2 illustrates the relationships between the Kubernetes components that are
created. The replication controller dictates how many pods are created for an initial
application deployment and is linked to the OpenShift deployment component.

Also linked to the pod component is a Kubernetes service. The service represents
all the pods deployed by a replication controller. It provides a single IP address in
OpenShift to access your application as it’s scaled up and down on different nodes in
your cluster. The service is the internal IP address that’s referenced in the route cre
ated in the OpenShift load balancer.

NOTE The relationship between deployments and replication controllers is
how applications are deployed, scaled, and upgraded. When changes are
made to a deployment config, a new deployment is created, which in turn cre
ates a new replication controller. The replication controller then creates the
desired number of pods within the cluster, which is where your application is
actually deployed.

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

41 How OpenShift components work together

The Kubernetes service is associated with
the DNS route created in the load balancer.

OpenShift

Kubernetes

ServicePod

DNS
route

Load balancer

OpenShift deployments
are associated with the
Kubernetes replication
controller.

The Kubernetes service
is linked to pods for
each deployment.

Replication controllers
are associated with pods
in Kubernetes.

Deployment

Replication
controller

Figure 3.2 Kubernetes components that are created when applications are deployed

We’re getting closer to the application itself, but we haven’t gotten there yet. Kuberne
tes is used to orchestrate containers in an OpenShift cluster. But on each application
node, Kubernetes depends on docker to create the containers for each application
deployment.

3.2.3 Docker creates containers

Docker is a container runtime. A container runtime is the application on a server that
creates, maintains, and removes containers. A container runtime can act as a stand
alone tool on a laptop or a single server, but it’s at its most powerful when being
orchestrated across a cluster by a tool like Kubernetes.

NOTE Docker is currently the container runtime for OpenShift. But a new
runtime is supported as of OpenShift 3.9. It’s called cri-o, and you can find
more information at http://cri-o.io.

Kubernetes controls docker to create containers that house the application. These
containers use the custom base image as the starting point for the files that are visible
to applications in the container. Finally, the docker container is associated with the
Kubernetes pod (see figure 3.3).

 To isolate the libraries and applications in the container image, along with other
server resources, docker uses Linux kernel components. These kernel-level resources
are the components that isolate the applications in your container from everything
else on the application node. Let’s look at these next.

www.itbook.store/books/9781617294839

http://cri-o.io
https://itbook.store/books/9781617294839

42	 CHAPTER 3 Containers are Linux

OpenShift

Kubernetes

Container

PodReplication
controller

Containers use the custom container image
as the basis for the container filesystem.

Containers are associated

docker

Builder
image

Custom
image

Image registry

with a Kubernetes pod.

Figure 3.3 Docker containers are associated with Kubernetes pods.

3.2.4 Linux isolates and limits resources

We’re down to the core of what makes a container a container in OpenShift and
Linux. Docker uses three Linux kernel components to isolate the applications run
ning in containers it creates and limit their access to resources on the host:

 Linux namespaces—Provide isolation for the resources running in the container.
Although the term is the same, this is a different concept than Kubernetes
namespaces (http://mng.bz/X8yz), which are roughly analogous to an Open
Shift project. We’ll discuss these in more depth in chapter 7. For the sake of
brevity, in this chapter, when we reference namespaces, we’re talking about
Linux namespaces.

 Control groups (cgroups)—Provide maximum, guaranteed access limits for CPU
and memory on the application node. We’ll look at cgroups in depth in chapter 9.

 SELinux contexts—Prevent the container applications from improperly access
ing resources on the host or in other containers. An SELinux context is a
unique label that’s applied to a container’s resources on the application node.
This unique label prevents the container from accessing anything that doesn’t
have a matching label on the host. We’ll discuss SELinux contexts in more
depth in chapter 11.

The docker daemon creates these kernel resources dynamically when the container is
created. These resources are associated with the applications that are launched for the
corresponding container; your application is now running in a container (figure 3.4).

 Applications in OpenShift are run and associated with these kernel components.
They provide the isolation that you see from inside a container. In upcoming sections,

www.itbook.store/books/9781617294839

http://mng.bz/X8yz
https://itbook.store/books/9781617294839

43 How OpenShift components work together

The docker container creates SELinux limits containers’ access

Linux kernel resources to to only what they should be able

Container

isolate applications. to access on the application node.

docker

Linux kernel

User space

Application

Kernel space

Namespaces Control
groups

SELinux
contexts

The application is Namespaces isolate Control groups limit
linked to the container applications in the CPU and memory
namespaces to isolate container from other resources available
it from everything else. applications on the to each container.

host.

Figure 3.4 Linux kernel components used to isolate containers

we’ll discuss how you can investigate a container from the application node. From the
point of view of being inside the container, an application only has the resources allo
cated to it that are included in its unique namespaces. Let’s confirm that next.

Userspace and kernelspace
A Linux server is separated into two primary resource groups: the userspace and the
kernelspace. The userspace is where applications run. Any process that isn’t part of
the kernel is considered part of the userspace on a Linux server.

The kernelspace is the kernel itself. Without special administrator privileges like
those the root user has, users can’t make changes to code that’s running in the ker
nelspace.

The applications in a container run in the userspace, but the components that isolate
the applications in the container run in the kernelspace. That means containers are
isolated using kernel components that can’t be modified from inside the container.

In the previous sections, we looked at each individual layer of OpenShift. Let’s put all
of these together before we dive down into the weeds of the Linux kernel.

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

44 CHAPTER 3 Containers are Linux

3.2.5 Putting it all together

The automated workflow that’s executed when you deploy an application in Open
Shift includes OpenShift, Kubernetes, docker, and the Linux kernel. The interactions
and dependencies stretch across multiple services, as outlined in figure 3.5.

Developers

oc new-app
...

Source
code

External

Builder
image Build config Image

stream
Custom
image

Image registry

Deployment
config

Deployment

Users

OpenShift

Kubernetes

ServicePodReplication
controller

DNS
route

Load
balancer

docker
Container

Linux

Application

User space Kernel space

Namespaces Control
groups

SELinux
contexts

Figure 3.5 OpenShift deployment including components that make up the container

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

45 Application isolation with kernel namespaces

Developers and users interact primarily with OpenShift and its services. OpenShift
works with Kubernetes to ensure that user requests are fulfilled and applications are
delivered consistently according to the developer’s designs.

 As you’ll recall, one of the acceptable definitions for a container earlier in this
chapter was that they’re “fancy processes.” We developed this definition by explaining
how a container takes an application process and uses namespaces to limit access to
resources on the host. We’ll continue to develop this definition by interacting with
these fancy processes in more depth in chapters 9 and 10.

 Like any other process running on a Linux server, each container has an assigned
process ID (PID) on the application node.

3.3 Application isolation with kernel namespaces
Armed with the PID for the current app-cli container, you can begin to analyze how
containers isolate process resources with Linux namespaces. Earlier in this chapter, we
discussed how kernel namespaces are used to isolate the applications in a container
from the other processes on a host. Docker creates a unique set of namespaces to iso
late the resources in each container. Looking again at figure 3.4, the application is
linked to the namespaces because they’re unique for each container. Cgroups and
SELinux are both configured to include information for a newly created container,
but those kernel resources are shared among all containers running on the applica
tion node.

 To get a list of the namespaces that were created for app-cli, use the lsns com
mand. You need the PID for app-cli to pass as a parameter to lsns. Appendix C walks
you through how to use the docker daemon to get the host PID for a container, along
with some other helpful docker commands. Use this appendix as a reference to get
the host PID for your app-cli container.

 The lsns command accepts a PID with the -p option and outputs the namespaces
associated with that PID. The output for lsns has the following six columns:

 NS—Inode associated with the namespace
 TYPE—Type of namespace created
 NPROCS—Number of processes associated with the namespace
 PID—Process used to create the namespace
 USER—User that owns the namespace
 COMMAND—Command executed to launch the process to create the namespace

When you run the command, the output from lsns shows six namespaces for app-cli.
Five of these namespaces are unique to app-cli and provide the container isolation
that we’re discussing in this chapter. There are also two additional namespaces in
Linux that aren’t used directly by OpenShift. The user namespace isn’t currently used
by OpenShift, and the cgroup namespace is shared between all containers on
the system.

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

46	 CHAPTER 3 Containers are Linux

NOTE On an OpenShift application node, the user namespace is shared
across all applications on the host. The user namespace was created by PID 1
on the host, has over 200 processes associated with it, and is associated with
the systemd command. The other namespaces associated with the app-cli PID
have far fewer processes and aren’t owned by PID 1 on the host.

OpenShift uses five Linux namespaces to isolate processes and resources on applica
tion nodes. Coming up with a concise definition for exactly what a namespace does is
a little difficult. Two analogies best describe their most important properties, if you’ll
forgive a little poetic license:

 Namespaces are like paper walls in the Linux kernel. They’re lightweight and
easy to stand up and tear down, but they offer sufficient privacy when they’re in
place.

 Namespaces are similar to two-way mirrors. From within the container, only the
resources in the namespace are available. But with proper tooling, you can see
what’s in a namespace from the host system.

The following snippet lists all namespaces for app-cli with lsns:

lsns -p 4470 Mount namespace
NS TYPE NPROCS PID USER COMMAND

4026531837 user 254 1 root /usr/lib/systemd/systemd -

➥ switched-root --system --deserialize 20
UTS 4026532211 mnt 12 4470 1000080000 httpd -D FOREGROUND

namespace 4026532212 uts 12 4470 1000080000 httpd -D FOREGROUND

4026532213 pid 12 4470 1000080000 httpd -D FOREGROUND

4026532420 ipc 13 3476 1001 /usr/bin/pod
 PIDIPC
4026532423 net 13 3476 1001 /usr/bin/pod
 namespace namespace

Network namespace

As you can see, the five namespaces that OpenShift uses to isolate applications are as
follows:

 Mount—Ensures that only the correct content is available to applications in the
container

 Network—Gives each container its own isolated network stack
 PID—Provides each container with its own set of PID counters
 UTS—Gives each container its own hostname and domain name
 IPC—Provides shared memory isolation for each container

There are currently two additional namespaces in the Linux kernel that aren’t used by
OpenShift:

 Cgroup—Cgroups are used as a shared resource on an OpenShift node, so this
namespace isn’t required for effective isolation.

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

47 Application isolation with kernel namespaces

 User—This namespace can map a user in a container to a different user on the
host. For example, a user with ID 0 in the container could have user ID 5000
when interacting with resources outside the container. This feature can be
enabled in OpenShift, but there are issues with performance and node configu
ration that fall out of scope for our example cluster. If you’d like more informa
tion on enabling the user namespace to work with docker, and thus with
OpenShift, see the article “Hardening Docker Hosts with User Namespaces” by
Chris Binnie (Linux.com, http://mng.bz/Giwd).

What is /usr/bin/pod?
The IPC and network namespaces are associated with a different PID for an applica
tion called /usr/bin/pod. This is a pseudo-application that’s used for containers cre
ated by Kubernetes.

Under most circumstances, a pod consists of one container. There are conditions,
however, where a single pod may contain multiple containers. Those situations are
outside the scope of this chapter; but when this happens, all the containers in the
pod share these namespaces. That means they share a single IP address and can
communicate with shared memory devices as though they’re on the same host.

We’ll discuss the five namespaces used by OpenShift with examples, including how
they enhance your security posture and how they isolate their associated resources.
Let’s start with the mount namespace.

3.3.1 The mount namespace

The mount namespace isolates filesystem content, ensuring that content assigned to
the container by OpenShift is the only content available to the processes running in
the container. The mount namespace for the app-cli container allows the applications
in the container to access only the content in the custom app-cli container image, and
any information stored on the persistent volume associated with the persistent volume
claim (PVC) for app-cli (see figure 3.6).

NOTE Applications always need persistent storage. Persistent storage allows
data to persist when a pod is removed from the cluster. It also allows data to
be shared between multiple pods when needed. You’ll learn how to configure
and use persistent storage on an NFS server with OpenShift in chapter 7.

The root filesystem, based on the app-cli container image, is a little more difficult to
uncover, but we’ll do that next.

www.itbook.store/books/9781617294839

http://mng.bz/Giwd
http:Linux.com
https://itbook.store/books/9781617294839

48 CHAPTER 3 Containers are Linux

Anything in the app-cli namespace
must be available on the host on
the local filesystem or as a
mounted remote volume. 1. Content from the app-cli container

Applications
Launched by the

app-cli initial process

Application
Starts app-cli

image is made available in the
 app-cli mount namespace.

2. The application is launched
 using the files and libraries
 in the app-cli namespace.

Applications using
the mount namespace
created for the app-cli
container can see only
the content in that
namespace.

An application launched
by another application
inherits the same
namespace as its
parent.

Volumes can be added
before or after a pod is
started, depending on
the application's needs.

Application node filesystem
All content available on

the host by default

app-cli image
Cached copy of the

app-cli container image
from the image registry

NFS mount
Volume added to
app-cli via PVC

Mount namespace
Created for the

app-cli container

The NFS mount for the app-cli persistent volume
is added to the mount namespace and made
available at /opt/app-root/src/uploads.

Figure 3.6 The mount namespace takes selected content and makes it available to the app-cli
applications.

ACCESSING CONTAINER ROOT FILESYSTEMS

When you configured OpenShift, you specified a block device for docker to use for
container storage. Your OpenShift configuration uses logical volume management
(LVM) on this device for container storage. Each container gets its own logical vol
ume (LV) when it’s created. This storage solution is fast and scales well for large pro
duction clusters.

 To view all LVs created by docker on your host, run the lsblk command. This
command shows all block devices on your host, as well as any LVs. It confirms that
docker has been creating LVs for your containers:

lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 253:0 0 8G 0 disk
 vda1 253:1 0 8G 0 part /

vdb 253:16 0 20G 0 disk

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

49 Application isolation with kernel namespaces

 vdb1 253:17 0 20G 0 part

 docker_vg-docker--pool_tmeta 252:0 0 24M 0 lvm

 docker_vg-docker--pool 252:2 0 8G 0 lvm

 docker-253:1-10125-e27ee79f... 252:3 0 10G 0 dm

 docker-253:1-10125-6ec90d0f... 252:4 0 10G 0 dm

...

 docker_vg-docker--pool_tdata 252:1 0 8G 0 lvm

 docker_vg-docker--pool 252:2 0 8G 0 lvm

 docker-253:1-10125-e27ee79f... 252:3 0 10G 0 dm

 docker-253:1-10125-6ec90d0f... 252:4 0 10G 0 dm

...

The LV device that the app-cli container uses for storage is recorded in the informa
tion from docker inspect. To get the LV for your app-cli container, run the following
command:

docker inspect -f '{{ .GraphDriver.Data.DeviceName }}' fae8e211e7a7

You’ll get a value similar to docker-253:1-10125-8bd64caed0421039e83ee4f1cdc
bcf25708e3da97081d43a99b6d20a3eb09c98. This is the name for the LV that’s being
used as the root filesystem for the app-cli container.

 Unfortunately, when you run the following mount command to see where this LV is
mounted, you don’t get any results:

mount | grep docker-253:1-10125

➥ 8bd64caed0421039e83ee4f1cdcbcf25708e3da97081d43a99b6d20a3eb09c9

You can’t see the LV for app-cli because it’s in a different namespace. No, we’re not
kidding. The mount namespace for your application containers is created in a differ
ent mount namespace from your application node’s operating system.

When the docker daemon starts, it creates its own mount namespace to contain filesys
tem content for the containers it creates. You can confirm this by running lsns for the
docker process. To get the PID for the main docker process, run the following pgrep com
mand (the process dockerd-current is the name for the main docker daemon process):

pgrep -f dockerd-current

Once you have the docker daemon’s PID, you can use lsns to view its namespaces.
You can tell from the output that the docker daemon is using the system namespaces
created by systemd when the server booted, except for the mount namespace:

lsns -p 2385

NS TYPE NPROCS PID USER COMMAND

4026531836 pid 221 1 root /usr/lib/systemd/systemd --switched-root

➥ --system --deserialize 20
4026531837 user 254 1 root /usr/lib/systemd/systemd --switched-root

➥ --system --deserialize 20
4026531838 uts 223 1 root /usr/lib/systemd/systemd --switched-root

➥ --system --deserialize 20

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

50 CHAPTER 3 Containers are Linux

4026531839 ipc 221 1 root /usr/lib/systemd/systemd --switched-root

➥ --system --deserialize 20
4026531956 net 223 1 root /usr/lib/systemd/systemd --switched-root

➥ --system --deserialize 20
4026532298 mnt 12 2385 root /usr/bin/dockerd-current --add-runtime

➥ docker-runc=/usr/libexec/docker/docker-runc-current
--default-runtime=docker-runc --exec-opt native.cgroupdriver=systemd

➥ --userland-proxy-p

You can use a command-line tool named nsenter to enter an active namespace for
another application. It’s a great tool to use when you need to troubleshoot a container
that isn’t performing as it should. To use nsenter, you give it a PID for the container
with the --target option and then instruct it regarding which namespaces you want
to enter for that PID:

$ nsenter --target 2385

When you run the command, you arrive at a prompt similar to your previous prompt.
The big difference is that now you’re operating from inside the namespace you speci
fied. Run mount from within docker’s mount namespace and grep for your app-cli LV
(the output is trimmed for clarity):

mount | grep docker-253:1-10125-8bd64cae...
/dev/mapper/docker-253:1-10125-8bd64cae... on ➥
/var/lib/docker/devicemapper/mnt/8bd64cae... type xfs (rw,relatime,➥
context="system_u:object_r:svirt_sandbox_file_t:s0:c4,c9",nouuid,attr2,inode64,

➥ sunit=1024,swidth=1024,noquota)

From inside docker’s mount namespace, the mount command output includes the
mount point for the root filesystem for app-cli. The LV that docker created for app-cli
is mounted on the application node at /var/lib/docker/devicemapper/mnt/8bd64
cae… (directory name trimmed for clarity).

 Go to that directory while in the docker daemon mount namespace, and you’ll find
a directory named rootfs. This directory is the filesystem for your app-cli container:

ls -al rootfs

total 32

-rw-r--r--. 1 root root 15759 Aug 1 17:24 anaconda-post.log

lrwxrwxrwx. 1 root root 7 Aug 1 17:23 bin -> usr/bin

drwxr-xr-x. 3 root root 18 Sep 14 22:18 boot

drwxr-xr-x. 4 root root 43 Sep 21 23:19 dev

drwxr-xr-x. 53 root root 4096 Sep 21 23:19 etc

-rw-r--r--. 1 root root 7388 Sep 14 22:16 help.1

drwxr-xr-x. 2 root root 6 Nov 5 2016 home

lrwxrwxrwx. 1 root root 7 Aug 1 17:23 lib -> usr/lib

lrwxrwxrwx. 1 root root 9 Aug 1 17:23 lib64 -> usr/lib64

drwx------. 2 root root 6 Aug 1 17:23 lost+found

drwxr-xr-x. 2 root root 6 Nov 5 2016 media

drwxr-xr-x. 2 root root 6 Nov 5 2016 mnt

drwxr-xr-x. 4 root root 32 Sep 14 22:05 opt

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

51 Application isolation with kernel namespaces

drwxr-xr-x. 2 root root 6 Aug 1 17:23 proc

dr-xr-x---. 2 root root 137 Aug 1 17:24 root

drwxr-xr-x. 11 root root 145 Sep 13 15:35 run

lrwxrwxrwx. 1 root root 8 Aug 1 17:23 sbin -> usr/sbin

...

It’s been quite a journey to uncover the root filesystem for app-cli. You’ve used infor
mation from the docker daemon to use multiple command-line tools, including
nsenter, to change from the default mount namespace for your server to the namespace
created by the docker daemon. You’ve done a lot of work to find an isolated filesystem.
Docker does this automatically at the request of OpenShift every time a container is cre
ated. Understanding how this process works, and where the artifacts are created, is
important when you’re using containers every day for your application workloads.

From the point of view of the applications running in the app-cli container, all
that’s available to them is what’s in the rootfs directory, because the mount namespace
created for the container isolates its content (see figure 3.7). Understanding how
mount namespaces function on an application node, and knowing how to enter a
container namespace manually, are invaluable tools when you’re troubleshooting a
container that’s not functioning as designed.

The system mount
namespace is for all
applications running
on the host.

The docker mount
namespace isolates
the mounted volumes
for the containers on
the system.

The app-cli namespace
isolates the content
available in the
container from
everything else
on the system.

Figure 3.7 The app-cli mount namespace isolates the contents of the rootfs directory.

System mount namespace

docker daemon mount namespace

app-cli container mount namespace

drwxr-xr-x. 18 root root 4096 Oct 9 12:39 .

drwxr-xr-x. 3 root root 30 Sep 21 12:49 ..

lrwxrwxrwx. 1 root root 7 Aug 1 17:23 bin

drwxr-xr-x. 3 root root 18 Sep 14 22:18 boot

drwxr-xr-x. 4 root root 43 Oct 9 12:39 dev

-rwxr-xr-x. 1 root root 0 Oct 9 12:39 .dockerenv

drwxr-xr-x. 53 root root 4096 Oct 9 12:39 etc

-rw-r--r--. 1 root root 7388 Sep 14 22:16 help.1

drwxr-xr-x. 2 root root 6 Nov 5 2016 home

lrwxrwxrwx. 1 root root 7 Aug 1 17:23 lib

lrwxrwxrwx. 1 root root 9 Aug 1 17:23 lib64

drwx------. 2 root root 6 Aug 1 17:23 lost+found

drwxr-xr-x. 2 root root 6 Nov 5 2016 media

drwxr-xr-x. 2 root root 6 Nov 5 2016 mnt

drwxr-xr-x. 4 root root 32 Sep 14 22:05 opt

drwxr-xr-x. 2 root root 6 Aug 1 17:23 proc

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

52 CHAPTER 3 Containers are Linux

Press Ctrl-D to exit the docker daemon’s mount namespace and return to the default
namespace for your application node. Next, we’ll discuss the UTS namespace. It won’t
be as involved an investigation as the mount namespace, but the UTS namespace is
useful for an application platform like OpenShift that deploys horizontally scalable
applications across a cluster of servers.

3.3.2 The UTS namespace

UTS stands for Unix time sharing in the Linux kernel. The UTS namespace lets each
container have its own hostname and domain name.

Time sharing
It can be confusing to talk about time sharing when the UTS namespace has nothing
to do with managing the system clock. Time sharing originally referred to multiple
users sharing time on a system simultaneously. Back in the 1970s, when this con
cept was created, it was a novel idea.

The UTS data structure in the Linux kernel had its beginnings then. This is where the
hostname, domain name, and other system information are retained. If you’d like to
see all the information in that structure, run uname -a on a Linux server. That com
mand queries the same data structure.

The easiest way to view the hostname for a server is to run the hostname command, as
follows:

hostname

You could use nsenter to enter the UTS namespace for the app-cli container, the same
way you entered the mount namespace in the previous section. But there are additional
tools that will execute a command in the namespaces for a running container.

NOTE On the application node, if you use the nip.io domain discussed in
appendix A, your hostname should look similar to ocp2.192.168.122.101
.nip.io.

One of those tools is the docker exec command. To get the hostname value for a run
ning container, pass docker exec a container’s short ID and the same hostname com
mand you want to run in the container. Docker executes the specified command for
you in the container’s namespaces and returns the value. The hostname for each
OpenShift container is its pod name:

docker exec fae8e211e7a7 hostname

app-cli-1-18k2s

Each container has its own hostname because of its unique UTS namespace. If you
scale up app-cli, the container in each pod will have a unique hostname as well. The

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

53 Application isolation with kernel namespaces

value of this is identifying data coming from each container in a scaled-up system. To
confirm that each container has a unique hostname, log in to your cluster as your
developer user:

oc login -u developer -p developer https://ocp1.192.168.122.100.nip.io:8443

The oc command-line tool has functionality that’s similar to docker exec. Instead of
passing in the short ID for the container, however, you can pass it the pod in which
you want to execute the command. After logging in to your oc client, scale the app-cli
application to two pods with the following command:

oc scale dc/app-cli --replicas=2

This will cause an update to your app-cli deployment config and trigger the creation
of a new app-cli pod. You can get the new pod’s name by running the command oc
get pods --show-all=false. The show-all=false option prevents the output of
pods in a Completed state, so you see only active pods in the output.

 Because the container hostname is its corresponding pod name in OpenShift, you
know which pod you were working with using docker directly:

$ oc get pods --show-all=false

NAME READY STATUS RESTARTS AGE
 Original app-cli pod
app-cli-1-18k2s 1/1 Running 1 5d

app-cli-1-9hsz1 1/1 Running 0 42m
 New app-cli pod
app-gui-1-l65d9 1/1 Running 1 5d

To get the hostname from your new pod, use the oc exec command. It’s similar to
docker exec, but instead of a container’s short ID, you use the pod name to specify
where you want the command to run. The hostname for your new pod matches the
pod name, just like your original pod:

$ oc exec app-cli-1-9hsz1 hostname

app-cli-1-9hsz1

When you’re troubleshooting application-level issues on your cluster, this is an incred
ibly useful benefit provided by the UTS namespace. Now that you know how host-
names work in containers, we’ll investigate the PID namespace.

3.3.3 PIDs in containers

Because PIDs are how one application sends signals and information to other applica
tions, isolating visible PIDs in a container to only the applications in it is an important
security feature. This is accomplished using the PID namespace.

 On a Linux server, the ps command shows all running processes, along with their
associated PIDs, on the host. This command typically has a lot of output on a busy sys
tem. The --ppid option limits the output to a single PID and any child processes it has
spawned.

www.itbook.store/books/9781617294839

https://ocp1.192.168.122.100.nip.io:8443
https://itbook.store/books/9781617294839

54 CHAPTER 3 Containers are Linux

From your application node, run ps with the --ppid option, and include the PID
you obtained for your app-cli container. Here you can see that the process for
PID 4470 is httpd and that it has spawned several other processes:

ps --ppid 4470

PID TTY TIME CMD

4506 ? 00:00:00 cat

4510 ? 00:00:01 cat

4542 ? 00:02:55 httpd

4544 ? 00:03:01 httpd

4548 ? 00:03:01 httpd

4565 ? 00:03:01 httpd

4568 ? 00:03:01 httpd

4571 ? 00:03:01 httpd

4574 ? 00:03:00 httpd

4577 ? 00:03:01 httpd

6486 ? 00:03:01 httpd

Use oc exec to get the output of ps for the app-cli pod that matches the PID you col
lected earlier. If you’ve forgotten, you can compare the hostname in the docker con
tainer to the pod name. From inside the container, don’t use the --ppid option,
because you want to see all the PIDs visible from within the app-cli container.

When you run the following command, the output is similar to that from the previ
ous command:

$ oc exec app-cli-1-18k2s ps

PID TTY TIME CMD

1 ? 00:00:27 httpd

18 ? 00:00:00 cat

19 ? 00:00:01 cat

20 ? 00:02:55 httpd

22 ? 00:03:00 httpd

26 ? 00:03:00 httpd

43 ? 00:03:00 httpd

46 ? 00:03:01 httpd

49 ? 00:03:01 httpd

52 ? 00:03:00 httpd

55 ? 00:03:00 httpd

60 ? 00:03:01 httpd

83 ? 00:00:00 ps

There are three main differences in the output:

 The initial httpd command (PID 4470) is listed in the output.
 The ps command is listed in the output.
 The PIDs are completely different.

Each container has a unique PID namespace. That means from inside the container,
the initial command that started the container (PID 4470) is viewed as PID 1. All the
processes it spawned also have PIDs in the same container-specific namespace.

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

55 Application isolation with kernel namespaces

NOTE Applications that are created by a process already in a container auto
matically inherit the container’s namespace. This makes it easier for applica
tions in the container to communicate.

So far, we’ve discussed how filesystems, hostnames, and PIDs are isolated in a con
tainer. Next, let’s take a quick look at how shared memory resources are isolated.

3.3.4 Shared memory resources

Applications can be designed to share memory resources. For example, application A
can write a value into a special, shared section of system memory, and the value can be
read and used by application B. The following shared memory resources, docu
mented at http://mng.bz/Xjai, are isolated for each container in OpenShift:

 POSIX message queue interfaces in /proc/sys/fs/mqueue
 The following shared memory parameters:

– msgmax
– msgmnb
– msgmni

– sem

– shmall

– shmmax
– shmmni
– shm_rmid_forced

 IPC interfaces in /proc/sysvipc

If a container is destroyed, shared memory resources are destroyed as well. Because
these resources are application-specific, you’ll work with them more in chapter 8
when you deploy a stateful application.

 The last namespace to discuss is the network namespace.

3.3.5 Container networking

The fifth kernel namespace that’s used by docker to isolate containers in OpenShift is
the network namespace. There’s nothing funny about the name for this namespace.
The network namespace isolates network resources and traffic in a container.
The resources in this definition mean the entire TCP/IP stack is used by applications
in the container.

 Chapter 10 is dedicated to going deep into OpenShift’s software-defined network
ing, but we need to illustrate in this chapter how the view from within the container is
drastically different than the view from your host.

 The PHP builder image you used to create app-cli and app-gui doesn’t have the ip
utility installed. You could install it into the running container using yum. But a faster
way is to use nsenter. Earlier, you used nsenter to enter the mount namespace of the
docker process so you could view the root filesystem for app-cli.

www.itbook.store/books/9781617294839

http://mng.bz/Xjai
https://itbook.store/books/9781617294839

56 CHAPTER 3 Containers are Linux

The OSI model
It would be great if we could go through the OSI model here. Unfortunately, it’s out of
scope for this book. In short, it’s a model to describe how data travels in a TCP/IP
network. There are seven layers. You’ll often hear about layer 3 devices, or a layer 2
switch; when someone says that, they’re referring to the layer of the OSI model on
which a particular device operates. Additionally, the OSI model is a great tool to use
any time you need to understand how data moves through any system or application.

If you haven’t read up on the OSI model before, it’s worth your time to look at the
article “The OSI Model Explained: How to Understand (and Remember) the 7 Layer
Network Model” by Keith Shaw (Network World, http://mng.bz/CQCE).

If you run nsenter and include a command as the last argument, then instead of
opening an interactive session in that namespace, the command is executed in the
specified namespace and returns the results. Using this tool, you can run the ip
command from your server’s default namespace in the network namespace of your
app-cli container.

 If you compare this to the output from running the /sbin/ip a command on your
host, the differences are obvious. Your application node will have 10 or more active
network interfaces. These represent the physical and software-defined devices that
make OpenShift function securely. But in the app-cli container, you have a container-
specific loopback interface and a single network interface with a unique MAC and
IP address:

Loopback
device in the

container

eth0
 device in

 the container

nsenter -t 5136 -n /sbin/ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue

➥ state UNKNOWN qlen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

3: eth0@if12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue

➥ state UP
link/ether 0a:58:0a:81:00:2e brd ff:ff:ff:ff:ff:ff link-netnsid 0

IP address
for eth0

inet 10.129.0.46/23 scope global eth0
valid_lft forever preferred_lft forever

inet6 fe80::858:aff:fe81:2e/64 scope link

MAC address
for eth0

valid_lft forever preferred_lft forever

The network namespace is the first component in the OpenShift networking solution.
We’ll discuss how network traffic gets in and out of containers in chapter 10, when we
cover OpenShift networking in depth.

 In OpenShift, isolating processes doesn’t happen in the application, or even in the
userspace on the application node. This is a key difference between other types of soft
ware clusters, and even some other container-based solutions. In OpenShift, isolation

www.itbook.store/books/9781617294839

http://mng.bz/CQCE
https://itbook.store/books/9781617294839

Summary	 57

and resource limits are enforced in the Linux kernel on the application nodes. Isola
tion with kernel namespaces provides a much smaller attack surface. An exploit that
would let someone break out from a container would have to exist in the container run
time or the kernel itself. With OpenShift, as we’ll discuss in depth in chapter 11 when
we examine security principles in OpenShift, configuration of the kernel and the con
tainer runtime is tightly controlled.

 The last point we’d like to make in this chapter echoes how we began the discus
sion. Fundamental knowledge of how containers work and use the Linux kernel is
invaluable. When you need to manage your cluster or troubleshoot issues when they
arise, this knowledge lets you think about containers in terms of what they’re doing all
the way to the bottom of the Linux kernel. That makes solving issues and creating sta
ble configurations easier to accomplish.

 Before you move on, clean up by reverting back to a single replica of the app-cli
application with the following command:

oc scale dc/app-cli --replicas=1

3.4 Summary
 OpenShift orchestrates Kubernetes and docker to deploy and manage applica

tions in containers.
 Multiple levels of management are available in your OpenShift cluster that can

be used for different levels of information.
 Containers isolate processes in containers using kernel namespaces.
 You can interact with namespaces from the host using special applications and

tools.

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

SOFTWARE DEVELOPMENT/LINUX

OpenShift IN ACTION

Duncan ● Osborne

C
ontainers let you package everything into one neat place,
and with Red Hat OpenShift you can build, deploy, and
run those packages all in one place! Combining Docker

and Kubernetes, OpenShift is a powerful platform for cluster
management, scaling, and upgrading your enterprise apps.

OpenShift in Action is a full reference to Red Hat OpenShift
that breaks down this robust container platform so you can
use it day-to-day. Starting with how to deploy and run your
first application, you’ll go deep into OpenShift. You’ll dis
cover crystal-clear explanations of namespaces, cgroups, and
SELinux, learn to prepare a cluster, and even tackle advanced
details like software-defined networks and security, with real-
world examples you can take to your own work. It doesn’t
matter why you use OpenShift—by the end of this book you’ll
be able to handle every aspect of it, inside and out!

What’s Inside
● Written by lead OpenShift architects
● Rock-solid fundamentals of Docker and Kubernetes
● Keep mission-critical applications up and running
● Manage persistent storage

For DevOps engineers and administrators working in a Linux-
based distributed environment.

Jamie Duncan is a cloud solutions architect for Red Hat, focus
ing on large-scale OpenShift deployments. John Osborne is
a principal OpenShift architect for Red Hat.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/openshift-in-action

M A N N I N G $44.99 / Can $59.99 [INCLUDING eBOOK]

“The first holistic view of

OpenShift in print …

a soup-to-nuts approach that

combines both the developer

and operator perspectives.

—From the Foreword by ”

Jim Whitehurst, Red Hat

“At last, a much-needed

guide to OpenShift!

An excellent read crammed

with practical

hands-on exercises.”
 —Michael Bright, Containous

“The defi nitive guide
to the base technologies
of the containers era.

—Ioannis Sermetziadis ”
Numbrs Personal Finance

“An essential resource.

Gives a clear picture of

a complex ecosystem.”
 —Bruno Vernay, Schneider Electric

See first page

www.itbook.store/books/9781617294839

https://itbook.store/books/9781617294839

