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1Getting started: establishing 
your data pipeline

This chapter covers
¡	Understanding the what and why of data wrangling

¡	Defining the difference between data wrangling 
and data analysis

¡	Learning when it’s appropriate to use JavaScript for 
data analysis

¡	Gathering the tools you need in your toolkit for 
JavaScript data wrangling

¡	Walking through the data-wrangling process

¡	Getting an overview of a real data pipeline

1.1 Why data wrangling?
Our modern world seems to revolve around data. You see it almost everywhere you 
look. If data can be collected, then it’s being collected, and sometimes you must try 
to make sense of it.

Analytics is an essential component of decision-making in business. How are users 
responding to your app or service? If you make a change to the way you do business, 
does it help or make things worse? These are the kinds of questions that businesses 
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2 CHAPTER 1 Getting started: establishing your data pipeline

are asking of their data. Making better use of your data and getting useful answers can 
help put us ahead of the competition.

Data is also used by governments to make policies based on evidence, and with more 
and more open data becoming available, citizens also have a part to play in analyzing and 
understanding this data.

Data wrangling, the act of preparing your data for interrogation, is a skill that’s in 
demand and on the rise. Proficiency in data-related skills is becoming more and more 
prevalent and is needed by a wider variety of people. In this book you’ll work on your 
data-wrangling skills to help you support data-related activities.

These skills are also useful in your day-to-day development tasks. How is the perfor-
mance of your app going? Where is the performance bottleneck? Which way is your bug 
count heading? These kinds of questions are interesting to us as developers, and they 
can also be answered through data.

1.2 What’s data wrangling?
Wikipedia describes data wrangling as the process of converting data, with the help 
of tools, from one form to another to allow convenient consumption of the data. This 
includes transformation, aggregation, visualization, and statistics. I’d say that data 
wrangling is the whole process of working with data to get it into and through your 
pipeline, whatever that may be, from data acquisition to your target audience, whoever 
they might be.

Many books only deal with data analysis, which Wikipedia describes as the process 
of working with and inspecting data to support decision-making. I view data analysis as 
a subset of the data-wrangling process. A data analyst might not care about databases, 
REST APIs, streaming data, real-time analysis, preparing code and data for use in pro-
duction, and the like. For a data wrangler, these are often essential to the job.

A data analyst might spend most of the time analyzing data offline to produce reports 
and visualizations to aid decision-makers. A data wrangler also does these things, but 
they also likely have production concerns: for example, they might need their code to 
execute in a real-time system with automatic analysis and visualization of live data.

The data-wrangling puzzle can have many pieces. They fit together in many different 
and complex ways. First, you must acquire data. The data may contain any number of 
problems that you need to fix. You have many ways you can format and deliver the data 
to your target audience. In the middle somewhere, you must store the data in an effi-
cient format. You might also have to accept streaming updates and process incoming 
data in real time.

Ultimately the process of data wrangling is about communication. You need to 
get your data into a shape that promotes clarity and understanding and enables fast 
decision-making. How you format and represent the data and the questions you need 
to ask of it will vary dramatically according to your situation and needs, yet these ques-
tions are critical to achieving an outcome.

Through data wrangling, you corral and cajole your data from one shape to another. 
At times, it will be an extremely messy process, especially when you don’t control the 
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 3Why a book on JavaScript data wrangling?

source. In certain situations, you’ll build ad hoc data processing code that will be run 
only once. This won’t be your best code. It doesn’t have to be because you may never 
use it again, and you shouldn’t put undue effort into code that you won’t reuse. For this 
code, you’ll expend only as much effort as necessary to prove that the output is reliable.

At other times, data wrangling, like any coding, can be an extremely disciplined pro-
cess. You’ll have occasions when you understand the requirements well, and you’ll have 
patiently built a production-ready data processing pipeline. You’ll put great care and 
skill into this code because it will be invoked many thousands of times in a production 
environment. You may have used test-driven development, and it’s probably some of the 
most robust code you’ve ever written.

More than likely your data wrangling will be somewhere within the spectrum between 
ad hoc and disciplined. It’s likely that you’ll write a bit of throw-away code to transform 
your source data into something more usable. Then for other code that must run in 
production, you’ll use much more care.

The process of data wrangling consists of multiple phases, as you can see in figure 1.1. 
This book divides the process into these phases as though they were distinct, but they’re 
rarely cleanly separated and don’t necessarily flow neatly one after the other. I sepa-
rate them here to keep things simple and make things easier to explain. In the real 
world, it’s never this clean and well defined. The phases of data wrangling intersect and 
interact with each other and are often tangled up together. Through these phases you 
understand, analyze, reshape, and transform your data for delivery to your audience.

The main phases of data wrangling are data acquisition, exploration, cleanup, trans-
formation, analysis, and finally reporting and visualization.

Data wrangling involves wrestling with many different issues. How can you filter or 
optimize data, so you can work with it more effectively? How can you improve your code 
to process the data more quickly? How do you work with your language to be more 
effective? How can you scale up and deal with larger data sets?

Throughout this book you’ll look at the process of data wrangling and each of its con-
stituent phases. Along the way we’ll discuss many issues and how you should tackle them.

1.3 Why a book on JavaScript data wrangling?
JavaScript isn’t known for its data-wrangling chops. Normally you’re told to go to other 
languages to work with data. In the past I’ve used Python and Pandas when working 
with data. That’s what everyone says to use, right? Then why write this book?

Python and Pandas are good for data analysis. I won’t attempt to dispute that. They 
have the maturity and the established ecosystem.

Acquire, store,
retrieve

Explore Clean

Data wrangling

Analyze Visualize

Figure 1.1  Separating data wrangling into phases
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4 CHAPTER 1 Getting started: establishing your data pipeline

Jupyter Notebook (formerly IPython Notebook) is a great environment for explor-
atory coding, but you have this type of tool in JavaScript now. Jupyter itself has a plugin 
that allows it to run JavaScript. Various JavaScript-specific tools are also now available, 
such as RunKit, Observable, and my own offering is Data-Forge Notebook.

I’ve used Python for working with data, but I always felt that it didn’t fit well into 
my development pipeline. I’m not saying there’s anything wrong with Python; in many 
ways, I like the language. My problem with Python is that I already do much of my work 
in JavaScript. I need my data analysis code to run in JavaScript so that it will work in the 
JavaScript production environment where I need it to run. How do you do that with 
Python?

You could do your exploratory and analysis coding in Python and then move the 
data to JavaScript visualization, as many people do. That’s a common approach due 
to JavaScript’s strong visualization ecosystem. But then what if you want to run your 
analysis code on live data? When I found that I needed to run my data analysis code in 
production, I then had to rewrite it in JavaScript. I was never able to accept that this was 
the way things must be. For me, it boils down to this: I don’t have time to rewrite code.

But does anyone have time to rewrite code? The world moves too quickly for that. We 
all have deadlines to meet. You need to add value to your business, and time is a luxury 
you can’t often afford in a hectic and fast-paced business environment. You want to 
write your data analysis code in an exploratory fashion, à la Jupyter Notebook, but using 
JavaScript and later deploying it to a JavaScript web application or microservice.

This led me on a journey of working with data in JavaScript and building out an open 
source library, Data-Forge, to help make this possible. Along the way I discovered that 
the data analysis needs of JavaScript programmers were not well met. This state of affairs 
was somewhat perplexing given the proliferation of JavaScript programmers, the easy 
access of the JavaScript language, and the seemingly endless array of JavaScript visual-
ization libraries. Why weren’t we already talking about this? Did people really think that 
data analysis couldn’t be done in JavaScript?

These are the questions that led me to write this book. If you know JavaScript, and 
that’s the assumption I’m making, then you probably won’t be surprised that I found 
JavaScript to be a surprisingly capable language that gives substantial productivity. For 
sure, it has problems to be aware of, but all good JavaScript coders are already working 
with the good parts of the language and avoiding the bad parts.

These days all sorts of complex applications are being written in JavaScript. You 
already know the language, it’s capable, and you use it in production. Staying in JavaScript 
is going to save you time and effort. Why not also use JavaScript for data wrangling?

1.4 What will you get out of this book?
You’ll learn how to do data wrangling in JavaScript. Through numerous examples, 
building up from simple to more complex, you’ll develop your skills for working with 
data. Along the way you’ll gain an understanding of the many tools you can use that are 
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 5Why use JavaScript for data wrangling?

already readily available to you. You’ll learn how to apply data analysis techniques in 
JavaScript that are commonly used in other languages.

Together we’ll look at the entire data-wrangling process purely in JavaScript. You’ll 
learn to build a data processing pipeline that takes the data from a source, processes 
and transforms it, then finally delivers the data to your audience in an appropriate form.

You’ll learn how to tackle the issues involved in rolling out your data pipeline to your 
production environment and scaling it up to large data sets. We’ll look at the prob-
lems that you might encounter and learn the thought processes you must adopt to find 
solutions.

I’ll show that there’s no need for you to step out to other languages, such as Python, 
that are traditionally considered better suited to data analysis. You’ll learn how to do it 
in JavaScript.

The ultimate takeaway is an appreciation of the world of data wrangling and how it 
intersects with JavaScript. This is a huge world, but Data Wrangling with JavaScript will 
help you navigate it and make sense of it.

1.5 Why use JavaScript for data wrangling?
I advocate using JavaScript for data wrangling for several reasons; these are summa-
rized in table 1.1.

Table 1.1  Reasons for using JavaScript for data wrangling

Reason Details

You already know JavaScript. Why learn another language for working with data? 
(Assuming you already know JavaScript.)

JavaScript is a capable language. It’s used to build all manner of complex applications.

Exploratory coding. Using a prototyping process with live reload (dis-
cussed in chapter 5) is a powerful way to write appli-
cations using JavaScript.

Strong visualization ecosystem. Python programmers often end up in JavaScript to 
use its many visualization libraries, including D3, 
possibly the most sophisticated visualization library. 
We’ll explore visualization in chapters 10 and 13.

Generally strong ecosystem. JavaScript has one of the strongest user-driven eco-
systems. Throughout the book we’ll use many third-
party tools, and I encourage you to explore further to 
build out your own toolkit.

JavaScript is everywhere. JavaScript is in the browser, on the server, on the 
desktop, on mobile devices, and even on embedded 
devices.

JavaScript is easy to learn. JavaScript is renowned for being easy to get started 
with. Perhaps it’s hard to master, but that’s also true 
of any programming language.
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6 CHAPTER 1 Getting started: establishing your data pipeline

Reason Details

JavaScript programmers are easy to find. In case you need to hire someone, JavaScript pro-
grammers are everywhere.

JavaScript is evolving. The language continues to get safer, more reliable, 
and more convenient. It’s refined with each succes-
sive version of the ECMAScript standard.

JavaScript and JSON go hand in hand. The JSON data format, the data format of the web, 
evolved from JavaScript. JavaScript has built-in tools 
for working with JSON as do many third-party tools 
and libraries.

1.6 Is JavaScript appropriate for data analysis?
We have no reason to single out JavaScript as a language that’s not suited to data analy-
sis. The best argument against JavaScript is that languages such as Python or R, let’s say, 
have more experience behind them. By this, I mean they’ve built up a reputation and an 
ecosystem for this kind of work. JavaScript can get there as well, if that’s how you want 
to use JavaScript. It certainly is how I want to use JavaScript, and I think once data anal-
ysis in JavaScript takes off it will move quickly.

I expect criticism against JavaScript for data analysis. One argument will be that 
JavaScript doesn’t have the performance. Similar to Python, JavaScript is an interpreted 
language, and both have restricted performance because of this. Python works around this 
with its well-known native C libraries that compensate for its performance issues. Let it be 
known that JavaScript has native libraries like this as well! And while JavaScript was never 
the most high-performance language in town, its performance has improved significantly 
thanks to the innovation and effort that went into the V8 engine and the Chrome browser.

Another argument against JavaScript may be that it isn’t a high-quality language. The 
JavaScript language has design flaws (what language doesn’t?) and a checkered history. 
As JavaScript coders, you’ve learned to work around the problems it throws at us, and 
yet you’re still productive. Over time and through various revisions, the language con-
tinues to evolve, improve, and become a better language. These days I spend more time 
with TypeScript than JavaScript. This provides the benefits of type safety and intellisense 
when needed, on top of everything else to love about JavaScript.

One major strength that Python has in its corner is the fantastic exploratory coding 
environment that’s now called Jupyter Notebook. Please be aware, though, that Jupyter 
now works with JavaScript! That’s right, you can do exploratory coding in Jupyter with 
JavaScript in much the same way professional data analysts use Jupyter and Python. It’s 
still early days for this . . . it does work, and you can use it, but the experience is not yet as 
complete and polished as you’d like it.

Python and R have strong and established communities and ecosystems relating to 
data analysis. JavaScript also has a strong community and ecosystem, although it doesn’t 

Table 1.1  Reasons for using JavaScript for data wrangling (continued)
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 7Assembling your toolkit

yet have that strength in the area of data analysis. JavaScript does have a strong data 
visualization community and ecosystem. That’s a great start! It means that the output 
of data analysis often ends up being visualized in JavaScript anyway. Books on bridg-
ing Python to JavaScript attest to this, but working across languages in that way sounds 
inconvenient to me.

JavaScript will never take away the role for Python and R for data analysis. They’re 
already well established for data analysis, and I don’t expect that JavaScript could ever 
overtake them. Indeed, it’s not my intention to turn people away from those languages. 
I would, however, like to show JavaScript programmers that it’s possible for them to do 
everything they need to do without leaving JavaScript.

1.7 Navigating the JavaScript ecosystem
The JavaScript ecosystem is huge and can be overwhelming for newcomers. Experi-
enced JavaScript developers treat the ecosystem as part of their toolkit. Need to accom-
plish something? A package that does what you want on npm (node package manager) 
or Bower (client-side package manager) probably already exists.

Did you find a package that almost does what you need, but not quite? Most packages 
are open source. Consider forking the package and making the changes you need.

Many JavaScript libraries will help you in your data wrangling. At the start of writing, 
npm listed 71 results for data analysis. This number has now grown to 115 as I near com-
pletion of this book. There might already be a library there that meets your needs.

You’ll find many tools and frameworks for visualization, building user interfaces, 
creating dashboards, and constructing applications. Popular libraries such as Back-
bone, React, and AngularJS come to mind. These are useful for building web apps. 
If you’re creating a build or automation script, you’ll probably want to look at Grunt, 
Gulp, or Task-Mule. Or search for task runner in npm and choose something that makes 
sense for you.

1.8 Assembling your toolkit
As you learn to be data wranglers, you’ll assemble your toolkit. Every developer needs 
tools to do the job, and continuously upgrading your toolkit is a core theme of this 
book. My most important advice to any developer is to make sure that you have good 
tools and that you know how to use them. Your tools must be reliable, they must help 
you be productive, and you must understand how to use them well.

Although this book will introduce you to many new tools and techniques, we aren’t 
going to spend any time on fundamental development tools. I’ll take it for granted that 
you already have a text editor and a version control system and that you know how to 
use them.

For most of this book, you’ll use Node.js to develop code, although most of the code 
you write will also work in the browser, on a mobile (using Ionic), or on a desktop (using 
Electron). To follow along with the book, you should have Node.js installed. Packages 
and dependencies used in this book can be installed using npm, which comes with 
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8 CHAPTER 1 Getting started: establishing your data pipeline

Node.js or with Bower that can be installed using npm. Please read chapter 2 for help 
coming up to speed with Node.js.

You likely already have a favorite testing framework. This book doesn’t cover auto-
mated unit or integration testing, but please be aware that I do this for my most import-
ant code, and I consider it an important part of my general coding practice. I currently 
use Mocha with Chai for JavaScript unit and integration testing, although there are 
other good testing frameworks available. The final chapter covers a testing technique 
that I call output testing; this is a simple and effective means of testing your code when 
you work with data.

For any serious coding, you’ll already have a method of building and deploying your 
code. Technically JavaScript doesn’t need a build process, but it can be useful or neces-
sary depending on your target environment; for example, I often work with TypeScript 
and use a build process to compile the code to JavaScript. If you’re deploying your 
code to a server in the cloud, you’ll most certainly want a provisioning and deployment 
script. Build and deployment aren’t a focus of this book, but we discuss them briefly in 
chapter 14. Otherwise I’ll assume you already have a way to get your code into your tar-
get environment or that’s a problem you’ll solve later.

Many useful libraries will help in your day-to-day coding. Underscore and Lodash 
come to mind. The ubiquitous JQuery seems to be going out of fashion at the moment, 
although it still contains many useful functions. For working with collections of data linq, 
a port of Microsoft LINQ from the C# language, is useful. My own Data-Forge library is a 
powerful tool for working with data. Moment.js is essential for working with date and 
time in JavaScript. Cheerio is a library for scraping data from HTML. There are numer-
ous libraries for data visualization, including but not limited to D3, Google Charts, High-
charts, and Flot. Libraries that are useful for data analysis and statistics include jStat, 
Mathjs, and Formulajs. I’ll expand more on the various libraries through this book.

Asynchronous coding deserves a special mention. Promises are an expressive and 
cohesive way of managing your asynchronous coding, and I definitely think you should 
understand how to use them. Please see chapter 2 for an overview of asynchronous cod-
ing and promises.

Most important for your work is having a good setup for exploratory coding. This pro-
cess is important for inspecting, analyzing, and understanding your data. It’s often called 
prototyping. It’s the process of rapidly building up code step by step in an iterative fashion, 
starting from simple beginnings and building up to more complex code—a process we’ll 
use often throughout this book. While prototyping the code, we also delve deep into your 
data to understand its structure and shape. We’ll talk more about this in chapter 5.

In the next section, we’ll talk about the data-wrangling process and flesh out a data 
pipeline that will help you understand how to fit together all the pieces of the puzzle.

1.9 Establishing your data pipeline
The remainder of chapter 1 is an overview of the data-wrangling process. By the end 
you’ll cover an example of a data processing pipeline for a project. This is a whirlwind 
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 9Establishing your data pipeline

tour of data wrangling from start to end. Please note that this isn’t intended to be an 
example of a typical data-wrangling project—that would be difficult because they all 
have their own unique aspects. I want to give you a taste of what’s involved and what 
you’ll learn from this book.

You have no code examples yet; there’s plenty of time for that through the rest of the 
book, which is full of working code examples that you can try for yourself. Here we seek 
to understand an example of the data-wrangling process and set the stage for the rest of 
the book. Later I’ll explain each aspect of data wrangling in more depth.

1.9.1 Setting the stage

I’ve been kindly granted permission to use an interesting data set. For various exam-
ples in the book, we’ll use data from “XL Catlin Global Reef Record.” We must thank 
the University of Queensland for allowing access to this data. I have no connection 
with the Global Reef Record project besides an interest in using the data for examples 
in this book.

The reef data was collected by divers in survey teams on reefs around the world. As the 
divers move along their survey route (called a transect in the data), their cameras automat-
ically take photos and their sensors take readings (see figure 1.2). The reef and its health 
are being mapped out through this data. In the future, the data collection process will 
begin again and allow scientists to compare the health of reefs between then and now.

The reef data set makes for a compelling sample project. It contains time-related 
data, geo-located data, data acquired by underwater sensors, photographs, and then 
data generated from images by machine learning. This is a large data set, and for this 
project I extract and process the parts of it that I need to create a dashboard with visual-
izations of the data. For more information on the reef survey project, please watch the 
video at https://www.youtube.com/watch?v=LBmrBOVMm5Q.

I needed to build a dashboard with tables, maps, and graphs to visualize and explore 
the reef data. Together we’ll work through an overview of this process, and I’ll explain 
it from beginning to end, starting with capturing the data from the original MySQL 

 © The Ocean Agency / XL Catlin Seaview Survey / Christophe Bailhache and Jayne Jenkins.  

Figure 1.2  Divers taking measurements on the reef. 
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10 CHAPTER 1 Getting started: establishing your data pipeline

database, processing that data, and culminating in a web dashboard to display the data. 
In this chapter, we take a bird’s-eye view and don’t dive into detail; however, in later 
chapters we’ll expand on various aspects of the process presented here.

Initially I was given a sample of the reef data in CSV (comma-separated value) files. 
I explored the CSV for an initial understanding of the data set. Later I was given access 
to the full MySQL database. The aim was to bring this data into a production system. I 
needed to organize and process the data for use in a real web application with an opera-
tional REST API that feeds data to the dashboard.

1.9.2 The data-wrangling process

Let’s examine the data-wrangling process: it’s composed of a series of phases as shown 
in figure 1.3. Through this process you acquire your data, explore it, understand it, 
and visualize it. We finish with the data in a production-ready format, such as a web 
visualization or a report.

Figure 1.3 gives us the notion that this is a straightforward and linear process, but 
if you have previous experience in software development, you’ll probably smell a rat 
here. Software development is rarely this straightforward, and the phases aren’t usually 
cleanly separated, so don’t be too concerned about the order of the phases presented 
here. I have to present them in an order that makes sense, and a linear order is a useful 
structure for the book. In chapter 5 you’ll move beyond the linear model of software 
development and look at an iterative exploratory model.

Acquire, store,
retrieve

Explore Clean

Data wrangling

Analyze Visualize

Figure 1.3  The data-wrangling process

As you work through the process in this chapter, please consider that this isn’t the pro-
cess; rather this is an example of what the data-wrangling process looks like for a par-
ticular project. How the process manifests itself will be different depending on your 
data and requirements. When you embark on other projects, your own process will 
undoubtably look different than what I describe in this chapter.

1.9.3 Planning

Before getting into data wrangling, or any project for that matter, you should under-
stand what you’re doing. What are your requirements? What and how are you going 
to build your software? What problems are likely to come up, and how will you deal 
with them? What does your data look like? What questions should you ask of the data? 
These are the kinds of questions you should ask yourself when planning a new project.

When you’re doing any sort of software development, it’s important to start with 
planning. The biggest problem I see in many programmers is their failure to think and 
plan out their work before coding. In my experience, one of the best ways to improve as 
a coder is to become better at planning.
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 11Establishing your data pipeline

Why? Because planning leads to better outcomes through better implementation 
and fewer mistakes. But you must be careful not to over plan! Planning for a future that’s 
unlikely to happen leads to overengineering.

You might need to do exploratory coding before you can plan! This is an example of the 
phases not being cleanly separated. If you don’t have enough information to plan, then 
move forward with exploratory coding and return to planning when you have a better 
understanding of the problem you’re trying to solve.

Planning is an important part of an effective feedback loop (see figure 1.4). Plan-
ning involves working through the mistakes that will likely happen and figuring out 
how to avoid those mistakes. Avoiding mistakes saves you much time and anguish. Each 
trip around the feedback loop is a valuable experience, improving your understanding 
of the project and your ability to plan and execute.

To plan this project, let’s note several requirements for the end product:

¡	Create a web dashboard to provide easy browsing of the reef data.
¡	Summarize reefs and surveys completed through tables, charts, and maps.

Requirements usually change over time as you develop your understanding of the proj-
ect. Don’t be concerned if this happens. Changing requirements is natural, but be 
careful: it can also be symptomatic of poor planning or scope creep.

At this stage, I plan the structure of the website, as shown in the figure 1.5.

Plan

Inspect/
review

Code

Figure 1.4  The 
feedback loop

Home

Reef 1
Page per reef

Page per survey

Home page - lists all reefs

Survey 1 Survey 2 Survey 3

Reef 2 Reef 3

Figure 1.5 
Dashboard 
website 
structure
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12 CHAPTER 1 Getting started: establishing your data pipeline

Simple wireframe mockups can help us solidify the plan. Figure 1.6 is an example. 
During planning, you need to think of the problems that might arise. This will help you 
to preemptively plan solutions to those problems, but please make sure your approach 
is balanced. If you believe a problem has little chance of arising, you should spend little 
effort mitigating against it. For example, here are several of the problems that I might 
encounter while working with the reef data set and building the dashboard:

¡	Due to its size, several of the tables contain more than a million records. It might 
take a long time to copy the MySQL database, although it can run for as many 
hours as we need it to. I have little need to optimize this process because it hap-
pens only once, so it isn’t time critical.

¡	There will likely be problems with the data that need to be cleaned up, but I won’t 
know about those until I explore the data set (see chapter 6 for data cleanup and 
preparation).

¡	If the visualizations in the dashboard are slow to load or sluggish in performance, 
you can prebake the data into an optimized format (see chapters 6 and 7 for 
more on this).

Of primary importance in the planning phase is to have an idea of what you want from 
the data. Ask yourself the following questions: What do you need to know from the 
data? What questions are you asking of the data?

Map Table

Tabs to switch between
map and table

Charts

Map or table, depending 
on which tab is selected

Figure 1.6  Dashboard page mockup

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846


 13Establishing your data pipeline

For your example, here are several of the questions to ask of the reef data:

¡	What’s the average temperature per reef in Australia reefs that were surveyed?
¡	What’s the total coverage (distance traversed) for each reef?
¡	What’s the average dive depth per reef?

Often, despite planning, you may find that things don’t go according to plan. When 
this happens, take a break and take time to reassess the situation. When necessary, 
come back to planning and work through it again. Return to planning at any time 
when things go wrong or if you need confirmation that you’re on the right track.

1.9.4 Acquisition, storage, and retrieval

In this phase, you capture the data and store it in an appropriate format. You need the 
data stored in a format where you can conveniently and effectively query and retrieve it.

Data acquisition started with a sample CSV file that was emailed from the University 
of Queensland. I did a mini exploration of the sample data to get a feel for it. The sample 
data was small enough that I could load it in Excel.

I needed to get an idea of what I was dealing with before writing any code. When 
looking at the full data set, I used a SQL database viewer called HeidiSQL (figure 1.7) 
to connect to the remote database, explore the data, and develop understanding of it.

Due to slow internet speeds, remote data access wasn’t going to work well for explor-
atory coding. I needed to download the data to a local database for efficient access. I 
also wanted the data locally so that I could make changes to it as needed, and I couldn’t 
make changes to a database that I didn’t own. I planned to copy the data down to a local 
MongoDB database (figure 1.8).

Figure 1.7  Inspecting an SQL table in HeidiSQL
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You might wonder why I chose MongoDB? Well, the choice is somewhat arbitrary. You 
need to choose a database that works well for you and your project. I like MongoDB for 
several reasons:

¡	It’s simple to install.
¡	It works well with JavaScript and JSON.
¡	It’s easy to store and retrieve data.
¡	The query language is built into the programming language.
¡	Ad hoc or irregular data can be stored.
¡	It has good performance.

If you’re concerned that moving the data from SQL to MongoDB will cause the data to 
lose structure, please don’t be: MongoDB can store structured and relational data just 
as well as SQL. They’re different, and MongoDB doesn’t have the convenience of SQL 
joins and it doesn’t enforce structure or relationships—but these are features that you 
can easily emulate in your own code.

Something else that’s important with MongoDB is that there’s no need to predefine 
a schema. You don’t have to commit to the final shape of your data! That’s great because 
I don’t yet know the final shape of my data. Not using a schema reduces the burden of 
designing your data, and it allows you to more easily evolve your data as you come to 
understand your project better.

You’ll learn more about SQL, MongoDB, and other data sources in chapter 3.
At this point it’s time to start coding. I must write a script to copy from the SQL database 

to MongoDB. I start by using nodejs-mysql to load a MySQL table into memory from the 
remote database. With large databases, this isn’t realistic, but it did work on this occasion. In 
chapters 8 and 9, we’ll talk about working with data sets that are too large to fit into memory.

With the SQL table loaded into memory, you now use the MongoDB API to insert the 
data into our local MongoDB database instance (figure 1.9).

Now I can assemble the code I have so far, and I have a Node.js script that can repli-
cate a MySQL table to MongoDB. I can now easily scale this up and have a script that can 
replicate the entire MySQL database to our local MongoDB instance.

How much data am I pulling down and how long will it take? Note here that I’m not 
yet processing the data or transforming it in any way. That comes later when I have a 
local database and a better understanding of the data.

It took many hours to replicate this database, and that’s with a lousy internet connec-
tion. Long-running processes like this that depend on fragile external resources should 
be designed to be fault-tolerant and restartable. We’ll touch on these points again in 
chapter 14. The important thing, though, is that most of the time the script was doing 
its work without intervention, and it didn’t cost much of my own time. I’m happy to wait 

MongoDB
database

Remote PC Local PC

SQL database
Figure 1.8  Pulling the data 
from SQL to MongoDB
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 15Establishing your data pipeline

for this process to complete because having a local copy of the data makes all future 
interactions with it more efficient.

Now that I have a local copy of the database, we are almost ready to begin a more 
complete exploration of the data. First, though, I must retrieve the data.

I use the MongoDB API to query the local database. Unlike SQL, the MongoDB 
query language is integrated into JavaScript (or other languages, depending on your 
language of choice).

In this case, you can get away with a basic query, but you can do so much more with a 
MongoDB query, including

¡	Filtering records
¡	Filtering data returned for each record
¡	Sorting records
¡	Skipping and limiting records to view a reduced window of the data

This is one way to acquire data, but many other ways exist. Many different data formats 
and data storage solutions can be used. You’ll dive into details on MongoDB in chapter 8.

1.9.5 Exploratory coding

In this phase, you use code to deeply explore your data and build your understanding 
of it. With a better understanding, you can start to make assumptions about the struc-
ture and consistency of the data. Assumptions must be checked, but you can do that 
easily with code!

We write code to poke, prod, and tease the data. We call this exploratory coding (also 
often called prototyping), and it helps us get to know our data while producing poten-
tially useful code.

It’s important to work with a smaller subset of data at this point. Attempting to work 
with the entire data set can be inefficient and counterproductive, although of course it 
depends on the size of your particular data set.

Exploratory coding is the process of incrementally building your code through an 
iterative and interactive process (figure 1.10). Code a few lines, then run the code and 
inspect the output, repeat. Repeating this process builds up your code and understand-
ing at the same time.

Remote SQL server

SQL database

SQL table

Node.js

MongoDB database

Local development PC

A Node.js script downloads an SQL table
into memory, then inserts the data into a

MongoDB database.

JavaScript script

Figure 1.9  Downloading an SQL database table with a Node.js script
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The simplest way to start looking at the data is to use a database viewer. I already used 
HeidiSQL to look at the SQL database. Now I use Robomongo (recently renamed to 
Robo 3T) to look at the contents of my local MongoDB database (figure 1.11).

Using code, I explore the data, looking at the first and last records and the data types 
they contain. I print the first few records to the console and see the following:

> [ { _id: 10001,
    reef_name: 'North Opal Reef',
    sub_region: 'Cairns-Cooktown',
    local_region: 'Great Barrier Reef',
    country: 'Australia',
    region: 'Australia',
    latitude: -16.194318893060213,
    longitude: 145.89624754492613 },
  { _id: 10002,
    reef_name: 'North Opal Reef',
    sub_region: 'Cairns-Cooktown',
    local_region: 'Great Barrier Reef',
    country: 'Australia',
    region: 'Australia',
    latitude: -16.18198943421998,
    longitude: 145.89718533957503 },
  { _id: 10003,
    reef_name: 'North Opal Reef',
    sub_region: 'Cairns-Cooktown',
    local_region: 'Great Barrier Reef',
    country: 'Australia',
    region: 'Australia',
    latitude: -16.17732916639253,
    longitude: 145.88907464416826 } ]

Code Evaluate Inspect

Figure 1.10  Exploratory coding process

Each column is a field in
the document.

Each row is 
a document in 
the collection.

Figure 1.11  Looking at the transects collection in Robomongo
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From looking at the data, I’m getting a feel for the shape of it and can ask the follow-
ing questions: What columns do I have? How many records am I dealing with? Again, 
using code, I analyze the data and print the answers to the console:

Num columns: 59
Columns:     _id,transectid,exp_id,start_datetime,…
Num records: 812

With the help of my open source data-wrangling toolkit Data-Forge, I can understand 
the types of data and the frequency of the values. I print the results to the console and 
learn even more about my data:

__index__  Type    Frequency            Column
---------  ------  -------------------  --------------------------
0          number  100                  _id
1          number  100                  transectid
2          number  100                  exp_id
3          string  100                  start_datetime
4          string  100                  end_datetime
5          string  100                  campaing
…
__index__  Value                             Frequency            Column
---------  --------------------------------  -------------------  -------
0          Australia                         31.896551724137932   region
1          Atlantic                          28.57142857142857    region
2          Southeast Asia                    16.133004926108374   region
3          Pacific                           15.024630541871922   region
…

You’ll learn more about using Data-Forge and what it can do throughout the book, 
especially in chapter 9.

Now that I have a basic understanding of the data, I can start to lay out our assump-
tions about it. Is each column expected to have only a certain type of data? Is the data 
consistent?

Well, I can’t know this yet. I’m working with a large data set, and I haven’t yet looked 
at every single record. In fact, I can’t manually inspect each record because I have too 
many! However, I can easily use code to test my assumptions.

I write an assumption checking script that will verify my assumptions about the data. 
This is a Node.js script that inspects each record in the database and checks that each 
field contains values with the same types that we expect. You’ll look at code examples 
for assumption checking in chapter 5.

Data can sometimes be frustratingly inconsistent. Problems can easily hide for a long 
time in large data sets. My assumption checking script gives me peace of mind and 
reduces the likelihood that I’ll later be taken by surprise by nasty issues in the data.

Running the assumption checking script shows that my assumptions about the data 
don’t bear out. I find that I have unexpected values in the dive_temperature field that I 
can now find on closer inspection in Robomongo (figure 1.12).

Why is the data broken? That’s hard to say. Maybe several of the sensors were faulty or 
working intermittently. It can be difficult to understand why faulty data comes into your 
system the way it does.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846


18 CHAPTER 1 Getting started: establishing your data pipeline

What if the data doesn’t meet expectations? Then we have to rectify the data or adapt 
our workflow to fit, so next we move on to data cleanup and preparation.

You’ve finished this section, but you haven’t yet finished your exploratory coding. 
You can continue exploratory coding throughout all phases of data wrangling. When-
ever you need to try something new with the data, test an idea, or test code, you can 
return to exploratory coding to iterate and experiment. You’ll spend a whole chapter 
on exploratory coding in chapter 5.

1.9.6 Clean and prepare

Did your data come in the format you expected? Is your data fit for production usage? 
In the clean and prepare phase, you rectify issues with the data and make it easier to deal 
with downstream. You can also normalize it and restructure it for more efficient use in 
production.

The data you receive might come in any format! It might contain any number of 
problems. It doesn’t matter; you still have to deal with it. The assumption checking 
script has already found that the data isn’t willing to conform to my expectations! I have 
work to do now to clean up the data to make it match my desired format.

I know that my data contains invalid temperature values. I could remove records with 
invalid temperatures from my database, but then I’d lose other useful data. Instead, I’ll 
work around this problem later, filtering out records with invalid temperatures as needed.

For the sake of an example, let’s look at a different problem: the date/time fields 
in the surveys collection. You can see that this field is stored as a string rather than a 
JavaScript date/time object (figure 1.13).

With date/time fields stored as strings, this opens the possibility that they might be 
stored with inconsistent formats. In reality, my sample data is well structured in this 
regard, but let’s imagine for this example that several of the dates are stored with time 
zone information that assume an Australian time zone. This sort of thing can be an insid-
ious and well-hidden problem; working with dates/times often has difficulties like this.

Figure 1.12  Inspecting bad 
temperature values in Robomongo

Figure 1.13  Date/time fields in the 
surveys collection are string values.
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To fix this data, I write another Node.js script. For each record, it examines the fields 
and if necessary fixes the data. It must then save the repaired data back to the database. 
This kind of issue isn’t difficult to fix; it’s spotting the problem in the first place that’s 
the difficult part. But you might also stumble on other issues that aren’t so easy to fix, 
and fixing them could be time consuming. In many cases, it will be more efficient to 
deal with the bad data at runtime rather than trying to fix it offline.

At this stage, you might also consider normalizing or standardizing your data to 
ensure that it’s in a suitable format for analysis, to simplify your downstream code, or for 
better performance. We’ll see more examples of data problems and fixes in chapter 6.

1.9.7 Analysis

In this phase, you analyze the data. You ask and answer specific questions about the data. 
It’s a further step in understanding the data and extrapolating meaningful insights 
from it.

Now that I have data that’s cleaned and prepared for use, it’s time to do analysis. I 
want to do much with the data. I want to understand the total distance traversed in each 
survey. I want to compute the average water temperature for each reef. I want to under-
stand the average depth for each reef.

I start by looking at the total distance traveled by divers for each reef. I need to aggre-
gate and summarize the data. The aggregation takes the form of grouping by reef. 
The summarization comes in the form of summing the distance traveled for each reef. 
Here’s the result of this analysis:

__index__      reef_name      distance
-------------  -------------  ------------------
Opal Reef      Opal Reef      15.526000000000002
Holmes Reef    Holmes Reef    13.031
Flinders Reef  Flinders Reef  16.344
Myrmidon Reef  Myrmidon Reef  7.263999999999999
Davies Reef    Davies Reef    3.297
…

What if the data doesn’t meet expectations? Then we have to rectify the data or adapt 
our workflow to fit, so next we move on to data cleanup and preparation.

You’ve finished this section, but you haven’t yet finished your exploratory coding. 
You can continue exploratory coding throughout all phases of data wrangling. When-
ever you need to try something new with the data, test an idea, or test code, you can 
return to exploratory coding to iterate and experiment. You’ll spend a whole chapter 
on exploratory coding in chapter 5.

1.9.6 Clean and prepare

Did your data come in the format you expected? Is your data fit for production usage? 
In the clean and prepare phase, you rectify issues with the data and make it easier to deal 
with downstream. You can also normalize it and restructure it for more efficient use in 
production.

The data you receive might come in any format! It might contain any number of 
problems. It doesn’t matter; you still have to deal with it. The assumption checking 
script has already found that the data isn’t willing to conform to my expectations! I have 
work to do now to clean up the data to make it match my desired format.

I know that my data contains invalid temperature values. I could remove records with 
invalid temperatures from my database, but then I’d lose other useful data. Instead, I’ll 
work around this problem later, filtering out records with invalid temperatures as needed.

For the sake of an example, let’s look at a different problem: the date/time fields 
in the surveys collection. You can see that this field is stored as a string rather than a 
JavaScript date/time object (figure 1.13).

With date/time fields stored as strings, this opens the possibility that they might be 
stored with inconsistent formats. In reality, my sample data is well structured in this 
regard, but let’s imagine for this example that several of the dates are stored with time 
zone information that assume an Australian time zone. This sort of thing can be an insid-
ious and well-hidden problem; working with dates/times often has difficulties like this.

Figure 1.12  Inspecting bad 
temperature values in Robomongo

Figure 1.13  Date/time fields in the 
surveys collection are string values.
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20 CHAPTER 1 Getting started: establishing your data pipeline

The code for this can easily be extended. For example, I already have the data grouped 
by reef, so I’ll add average temperature per reef, and now I have both total distance 
and average temperature:

__index__      reef_name      distance            temperature
-------------  -------------  ------------------  ------------------
Opal Reef      Opal Reef      15.526000000000002  22.625
Holmes Reef    Holmes Reef    13.031              16.487499999999997
Flinders Reef  Flinders Reef  16.344              16.60909090909091
Myrmidon Reef  Myrmidon Reef  7.263999999999999   0
…

With slight changes to the code I can ask similar questions, such as what’s the average 
temperature by country. This time, instead of grouping by reef, I group by country, 
which is a different way of looking at the data:

__index__  country    distance
---------  ---------  -----------------
Australia  Australia  350.4500000000004
Curacao    Curacao    38.48100000000001
Bonaire    Bonaire    32.39100000000001
Aruba      Aruba      8.491
Belize     Belize     38.45900000000001

This gives you a taste for data analysis, but stay tuned; you’ll spend more time on this 
and look at code examples in chapter 9.

1.9.8 Visualization

Now you come to what’s arguably the most exciting phase. Here you visualize the data 
and bring it to life. This is the final phase in understanding your data. Rendering the 
data in a visual way can bring forth insights that were otherwise difficult to see.

After you explore and analyze the data, it’s time to visualize it and understand it in 
a different light. Visualization completes your understanding of the data and allows 
you to easily see what might have otherwise remained hidden. You seek to expose any 
remaining problems in the data through visualization.

For this section, I need a more complex infrastructure (see figure 1.14). I need

¡	A server
¡	A REST API to expose your data
¡	A simple web application to render the visualization

I build a simple web server using Express.js. The web server hosts a REST API that 
exposes the reef data using HTTP GET. The REST API is the interface between the 
server and your web application (figure 1.14).

Database REST API Web app Chart

Figure 1.14  Infrastructure for a web app with a chart
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Next, I create a simple web application that uses the REST API to retrieve the data in 
JSON format. My simple web app retrieves data from the database using the REST API, and 
I can put that data to work. I’m using C3 here to render a chart. I add the chart to the web 
page and use JavaScript to inject the data. We’ll learn more about C3 later in the book.

But I have a big problem with the first iteration of the chart. It displays the tempera-
ture for each survey, but there’s too much data to be represented in a bar chart. And 
this isn’t what I wanted anyway. Instead, I want to show average temperature for each 
reef, so I need to take the code that was developed in the analysis phase and move that 
code to the browser. In addition, I filter down the data to reefs in Australia, which helps 
cut down the data somewhat.

Building on the code from the analysis phase, I filter out non-Australian reefs, group 
by reef name, and then compute the average temperature for each reef. We then plug 
this data into the chart. You can see the result in figure 1.15. (To see the color, refer to 
the electronic versions of the book.)
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Figure 1.15  Chart showing temperature of reefs in Australia
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1.9.9 Getting to production

In this final phase of data wrangling, you deliver your data pipeline to your audience. 
We’ll deploy the web app to the production environment. This is arguably the most diffi-
cult part of this process: bringing a production system online. By production, I mean a 
system that’s in operation and being used by someone, typically a client or the general 
public. That’s where it must exist to reach your audience.

There will be times when you do a one-time data analysis and then throw away the 
code. When that’s adequate for the job, you don’t need to move that code to produc-
tion, so you won’t have the concerns and difficulties of such (lucky you), although most 
of the time you need to get your code to the place where it needs to run.

You might move your code to a web service, a front end, a mobile app, or a desktop 
app. After moving your code to production, it will run automatically or on demand. 
Often it will process data in real-time, and it might generate reports and visualizations 
or whatever it needs to do.

In this case I built a dashboard to display and explore the reef data. The final dash-
board looks like figure 1.16.

The code covered so far in this chapter is already in JavaScript, so it isn’t difficult to 
slot it into place in my JavaScript production environment. This is one of the major ben-
efits of doing all our data-related work in JavaScript. As you move through the explor-
atory phase and toward production, you’ll naturally take more care with your coding. 
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Figure 1.16  The reef data dashboard
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With a plan and direction, you might engage in test-driven development or another 
form of automated testing (more on that in chapter 14).

The dashboard also has a table of reefs where you can drill down for a closer look 
(figure 1.17). To make the data display efficiently in the dashboard, I’ve prebaked vari-
ous data analysis into the database.

To get your code into production, you’ll most likely need a form of build or deploy-
ment script, maybe both. The build script will do such things as static error checking, 
concatenation, minification, and packaging your code for deployment. Your deploy-
ment script takes your code and copies it to the environment where it will run. You typi-
cally need a deployment script when you’re deploying a server or microservice. To host 
your server in the cloud, you may also need a provisioning script. This is a script that 
creates the environment in which the code will run. It might create a VM from an image 
and then install dependencies—for example, Node.js and MongoDB.

With your code moved to the production environment, you have a whole new set of 
issues to deal with:

¡	What happens when you get data updates that don’t fit your initial assumptions?
¡	What happens when your code crashes?
¡	How do you know if your code is having problems?
¡	What happens when your system is overloaded?

You’ll explore these issues and how to approach them in chapter 14.
Welcome to the world of data wrangling. You now have an understanding of what a 

data-wrangling project might look like, and you’ll spend the rest of the book exploring 
the various phases of the process, but before that, you might need help getting started 
with Node.js, so that’s what we’ll cover in chapter 2.

Figure 1.17  Table of 
reefs in the dashboard
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Summary

¡	Data wrangling is the entire process of working with data from acquisition 
through processing and analysis, then finally to reporting and visualization.

¡	Data analysis is a part of data wrangling, and it can be done in JavaScript.
¡	JavaScript is already a capable language and is improving with each new iteration 

of the standard.
¡	As with any coding, data wrangling can be approached in a range of ways. It has 

a spectrum from ad hoc throw-away coding to disciplined high-quality coding. 
Where you fit on this spectrum depends on the time you have and the intended 
longevity of the code.

¡	Exploratory coding is important for prototyping code and understanding data.
¡	Data wrangling has a number of phases: acquisition, cleanup, transformation, 

then analysis, reporting, and visualization.
¡	The phases are rarely cleanly separated; they’re often interspersed and tangled 

up with each other.
¡	You should always start with planning.
¡	It’s important to check assumptions about the data.
¡	Moving code to production involves many new issues.
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