
M A N N I N G

Ashley Davis

Sample Chapter

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

Data Wrangling
with JavaScript

by Ashley Davis

Chapter 12

Copyright 2019 Manning Publications

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

v

brief contents
1 ■	 Getting started: establishing your data pipeline 1
2 ■	 Getting started with Node.js 25
3 ■	 Acquisition, storage, and retrieval 59
4 ■	 Working with unusual data 99
5 ■	 Exploratory coding 115
6 ■	 Clean and prepare 143
7 ■	 Dealing with huge data files 168
8 ■	 Working with a mountain of data 191
9 ■	 Practical data analysis 217

10 ■	 Browser-based visualization 247
11 ■	 Server-side visualization 274
12 ■	 Live data 299
13 ■	 Advanced visualization with D3 329
14 ■	 Getting to production 358

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

299

12Live data

This chapter covers
¡	Working with a real-time data feed

¡	Receiving data through HTTP POST and sockets

¡	Decoupling modules in your server with an
event-based architecture

¡	Triggering SMS alerts and generating
automated reports

¡	Sending new data to a live chart through
socket.io

In this chapter we bring together multiple aspects of data wrangling that we’ve
already learned and combine them into a real-time data pipeline. We’re going to
build something that’s almost a real production system. It’s a data pipeline that will
do all the usual things: acquire and store data (chapter 3), clean and transform the
data (chapter 6), and, in addition, perform on-the-fly data analysis (chapter 9).

Output from the system will take several forms. The most exciting will be a
browser-based visualization, based on our work from chapter 10, but with live data
feeding in and updating as we watch. It will automatically generate a daily report

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

300 CHAPTER 12 Live data

(using techniques from chapter 11) that’s emailed to interested parties. It will also
issue SMS text message alerts about unusual data points arriving in the system. To be
sure, the system we’ll build now will be something of a toy project, but besides that, it
will demonstrate many of the features you’d want to see in a real system of this nature,
and on a small scale, it could work in a real production environment.

This will be one of the most complex chapters yet, but please stick with it! I can promise
you that getting to the live visualization will be worth it.

12.1 We need an early warning system
For many cities, monitoring the air quality is important, and in certain countries, it’s
even regulated by the government. Air pollution can be a real problem, regardless of
how it’s caused. In Melbourne, Australia, in 2016, an incident occurred that the media
were calling thunderstorm asthma.

A major storm hit the city, and the combination of wind and moisture caused pollen
to break up and disperse into particles that were too small to be filtered out by the nose.
People with asthma and allergies were at high risk. In the following hours, emergency
services were overwhelmed with the large volume of calls. Thousands of people became
ill. In the week that followed, nine people died. Some kind of early warning system might
have helped prepare the public and the emergency services for the impending crisis, so
let’s try building something like that.

In this chapter, we’ll build an air quality monitoring system. It will be somewhat
simplified but would at least be a good starting point for a full production system.
We’re building an early warning system, and it must raise the alarm as soon as poor air
quality is detected.

What are we aiming for here? Our live data pipeline will accept a continuous data
feed from a hypothetical air quality sensor. Our system will have three main features:

¡	To allow air quality to be continuously monitored through a live chart
¡	To automatically generate a daily report and email it to interested parties
¡	To continuously check the level of air quality and to raise an SMS text message

alert when poor air quality is detected

This chapter is all about dealing with live and dynamic data, and we’ll try to do this in
a real context. We’ll see more software architecture in this chapter than we’ve yet seen
in the book because the work we’re doing is getting more complex and we need more
powerful ways to organize our code. We’ll work toward building our application on
an event-based architecture. To emulate how I’d really do the development, we’ll start
simple and then restructure our code partway through to incorporate an event hub
that will decouple the components of our app and help us to manage the rising level
of complexity.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 301Dealing with live data

12.2 Getting the code and data
The code and data for this chapter are available in the Data Wrangling with JavaScript
Chapter 12-repository in GitHub: https://github.com/data-wrangling-with-javascript
/chapter-12. Data for this chapter was acquired from the Queensland Government open
data website at https://data.qld.gov.au/.

Each subdirectory in the code repo is a complete working example, and each corre-
sponds to code listings throughout this chapter. Before attempting to run the code in each
subdirectory, please be sure to install the npm and Bower dependencies as necessary. Refer
to “Getting the code and data” in chapter 2 for help on getting the code and data.

12.3 Dealing with live data
Creating a live data pipeline isn’t much different from anything else we’ve seen so
far in the book, except now we’ll have a continuous stream of data pushed to us by a
communication channel. Figure 12.1 gives the simplified overall picture. We’ll have an
air pollution sensor (our data collection device) that submits the current metric of air
quality to our Node.js server on an hourly basis, although we’ll speed this up dramati-
cally for development and testing.

For a more in-depth understanding of how the data feed fits into our pipeline, see
figure 12.2. Incoming data arrives in our system on the left of the diagram at the data
collection point. The data then feeds through the processing pipeline. You should rec-
ognize the various pipeline stages here and already have an idea what they do. Output is
then delivered to our user through alerts, visualizations, and a daily report.

Air pollution sensor
(the data collection device)

Our Node.js server
(the live data pipeline)

Communication
channel

Figure 12.1 An air pollution sensor pushes data to our Node.js server.

Live data pipeline
Alert

Visualize

Report

AnalyzeClean &
Transform

Acquire
& store

Data flows through our
pipeline in real-time.

Output is delivered
through various

means

Data
collection

point

Data arrives in
our system at the
data collection point.

Incoming
data

Figure 12.2 We’ll now have a continuous stream of data flowing into our data pipeline.

www.itbook.store/books/9781617294846

https://github.com/data-wrangling-with-javascript/chapter-12
https://github.com/data-wrangling-with-javascript/chapter-12
https://data.qld.gov.au/
https://itbook.store/books/9781617294846

302 CHAPTER 12 Live data

12.4 Building a system for monitoring air quality
Before we dive into building our air quality monitoring system, let’s look at the data we
have. The CSV data file brisbanecbd-aq-2014.csv is available under the data subdirectory
of the Chapter-12 GitHub repository. As usual, we should take a good look at our data
before we start coding. You can see an extract from the data file in figure 12.3. This
data was downloaded from the Queensland Government open data website.1 Thanks
to the Queensland Government for supporting open data.

The data file contains an hourly reading of atmospheric conditions. The metric of
interest is the PM10 column. This is the count of particles in the air that are less than
10 micrometers in diameter. Pollen and dust are two examples of such particles. To
understand how small this is, you need to know that a human hair is around 100 microm-
eters wide, so 10 of these particles can be placed on the width of a human hair. That’s tiny.

Particulate matter this small can be drawn into the lungs, whereas bigger particles
are often trapped in the nose, mouth, and throat. The PM10 value specifies mass per
volume, in this case micrograms per cubic meter (µg/m3).

1 For more information, see https://data.qld.gov.au/dataset/air-quality-monitoring-2014.

PM10 is the column
we are interested in.

These large values
(greater than 80)
indicate poor air
quality at this time.

…

Figure 12.3 The data for this chapter. We’re interested in the PM10 column for monitoring air quality.

www.itbook.store/books/9781617294846

https://data.qld.gov.au/dataset/air-quality-monitoring-2014
https://itbook.store/books/9781617294846

 303Building a system for monitoring air quality

Notice the larger values for PM10 that are highlighted in figure 12.3. At these times,
we’ve got potentially problematic levels of atmospheric particulate matter. On the
chart in figure 12.4, we can easily see this spike between 12 p.m. and 3 p.m.—this is
when air quality is worse than normal. Figure 12.4 also shows the chart that we’ll make
in this chapter.

For the purposes of our air quality monitoring system, we’ll regard any PM10 value
over 80 as a poor quality of air and worthy of raising an alarm. I’ve taken this number
from the table of air quality categories from the Environmental Protection Authority
(EPA) Victoria.

What will our system look like? You can see a schematic of the complete system in fig-
ure 12.5. I’m showing you this system diagram now as a heads-up on where we’re head-
ing. I don’t expect you to understand all the parts of this system right at the moment,
but you can think of this as a map of what we’re creating, and please refer back to it
from time to time during this chapter to orient yourself.

I told you this would be the most complicated project in the book! Still, this system will
be simple compared to most real production systems. But it will have all the parts shown in
the schematic even though we’ll only be examining parts of this whole. At the end of the
chapter, I’ll present the code for the completed system for you to study in your own time.

Our system starts with data produced by an air pollution sensor (shown on the left of
figure 12.5). The sensor detects the air quality and feeds data to the data collection point
at hourly intervals. The first thing we must do is store the data in our database. The worst
thing we can do is lose data, so it’s important to first make sure the data is safe. The data
collection point then raises the incoming-data event. This is where our event-based archi-
tecture comes into play. It allows us to create a separation of concerns and decouple our
data collection from our downstream data operations. To the right of figure 12.5, we see
the outputs of our system, the SMS alert, the daily report, and the live visualization.

This big spike in PM10 indicates poor
air quality between 12 and 3 p.m.

Our live data system will collect data at
hourly intervals (although we’ll speed
this up drastically so we don’t have to
wait an hour to get results).

160

140

120

100

80

60

40

20

0

2014/1/1 33 AM 06 AM 09 AM

PM10 (ug/m∧3)

12 PM 03 PM 06 PM

Figure 12.4 Charting the PM10 value, we can see the big spike between 12 and 3 p.m.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

304 CHAPTER 12 Live data

12.5 Set up for development
To build this system, we must create a kind of artificial scaffold in which to run it. You prob-
ably don’t have an actual particulate matter sensor on hand—although you can actually
buy these at a reasonable price if you’re particularly motivated by this example project.

Instead, we’ll use JavaScript to create a sort of mock sensor to simulate the real sensor.
The code we’ll write might be pretty close to what the real thing would look like. For
example, if we could attach a Raspberry PI to the real sensor and install Node.js, we could
then run code that might be similar to the mock sensor we’re going to build in a moment.

We don’t have a real sensor, so we’ll need precanned data for the mock sensor to “gener-
ate” and feed to our monitoring system. We already have realistic data, as seen in figure 12.3,
although this data is hourly. If we’re to use it in a realistic fashion, then our workflow would
be slow because we’d have to wait an hour for each new data point to come in.

To be productive, we need to speed this up. Instead of having our data come in at
hourly intervals, we’ll make it come in every second. This is like speeding up time and
watching our system run in fast forward. Other than this time manipulation, our system
will run in a realistic fashion.

Each code listing for this chapter has its own subdirectory under the Chapter-12
GitHub repository. Under each listing’s directory, you’ll find a client and a server direc-
tory. You can get an idea of what this looks like in figure 12.6.

For each code listing, the mock sensor, our data collection device, lives in the client
subdirectory, and our evolving air monitoring system lives in the server subdirectory. To
follow along with the code listings, you’ll need to open two command-line windows. In
the first command line, you should run the server as follows:

cd listing-12.1
cd server
node index.js

Each client and server
subdirectory contains a
complete and working
Node.js project.

Each code listing for this
chapter contains both a client
and a server subdirectory

Each client subdirectory contains a
simple mock air quality sensor that
sends data to our server.

Each server subdirectory contains
the air quality monitoring system
that we are evolving throughout
this chapter.

Figure 12.6 The project structure for code listings in chapter 12

Our Node.js server

Data operations

Data
collection

point

Air pollution
sensor

Data stream

Incoming data
is stored in the
database.

Raise event
incoming-data

Check data

Scheduler

SMS alert

Update
visualization

Various
events trigger
downstream
operations.

Aggregate
data

Email
report

Trigger an SMS
text alert when
poor air quality is
detected.

Event hub

Data is fed into
downstream operations.

Triggers time-
based events

Live chart

Generate
and email a
daily report.

This is our data
collection device.

Figure 12.5 Schematic of our air quality monitoring system

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 305Live-streaming data

In the second command line, you should run the client (mock sensor) as follows:

cd listing-12.1
cd client
node index.js

The client and server are now both running, and the client is feeding data to the server.
When moving onto the next code listing, change the listing number depending on
where you are. Make sure you install the npm and Bower dependencies before trying
to run each code listing.

Live reload
Don’t forget that you can also use nodemon in place of node when running scripts to enable
live reload, which allows you to make changes to the code. nodemon will automatically
rerun your code without you having to restart it manually. Please check chapter 5 for a
refresher on this.

12.6 Live-streaming data
The first problem we must solve is how to connect our sensor to our monitoring
system. In the coming sections, we’ll cover two network-based mechanisms: HTTP
POST and sockets. Both protocols build on the TCP network protocol and are
directly supported by Node.js. Which protocol you choose depends on the frequency
at which you expect data to be submitted.

12.6.1 HTTP POST for infrequent data submission

Let’s start by looking at data submission via HTTP POST. We can use this when data
submission is infrequent or ad hoc. It’s also simplest and so is a good place to start. Fig-
ure 12.7 shows how our air pollution sensor is going to send single packets of data to our
Node.js server. In this case, our data collection point, the entry point for data arriving at
our server, will be an HTTP POST request handler. From there, the data is fed into our
live data pipeline.

12.5 Set up for development
To build this system, we must create a kind of artificial scaffold in which to run it. You prob-
ably don’t have an actual particulate matter sensor on hand—although you can actually
buy these at a reasonable price if you’re particularly motivated by this example project.

Instead, we’ll use JavaScript to create a sort of mock sensor to simulate the real sensor.
The code we’ll write might be pretty close to what the real thing would look like. For
example, if we could attach a Raspberry PI to the real sensor and install Node.js, we could
then run code that might be similar to the mock sensor we’re going to build in a moment.

We don’t have a real sensor, so we’ll need precanned data for the mock sensor to “gener-
ate” and feed to our monitoring system. We already have realistic data, as seen in figure 12.3,
although this data is hourly. If we’re to use it in a realistic fashion, then our workflow would
be slow because we’d have to wait an hour for each new data point to come in.

To be productive, we need to speed this up. Instead of having our data come in at
hourly intervals, we’ll make it come in every second. This is like speeding up time and
watching our system run in fast forward. Other than this time manipulation, our system
will run in a realistic fashion.

Each code listing for this chapter has its own subdirectory under the Chapter-12
GitHub repository. Under each listing’s directory, you’ll find a client and a server direc-
tory. You can get an idea of what this looks like in figure 12.6.

For each code listing, the mock sensor, our data collection device, lives in the client
subdirectory, and our evolving air monitoring system lives in the server subdirectory. To
follow along with the code listings, you’ll need to open two command-line windows. In
the first command line, you should run the server as follows:

cd listing-12.1
cd server
node index.js

Each client and server
subdirectory contains a
complete and working
Node.js project.

Each code listing for this
chapter contains both a client
and a server subdirectory

Each client subdirectory contains a
simple mock air quality sensor that
sends data to our server.

Each server subdirectory contains
the air quality monitoring system
that we are evolving throughout
this chapter.

Figure 12.6 The project structure for code listings in chapter 12

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

306 CHAPTER 12 Live data

Our code at this point will be incredibly simple. Starting off, we want to get the data
feed moving from the mock sensor into our Node.js server. You can run this code, but you
must start it in the right order—first the server and then the client (mock sensor). Our
Node.js server receives data and then prints it to the console (as shown in figure 12.8).
We’re starting simple, and that’s all it does at this point. We do this to check that our data
is coming across to our server correctly.

Node.js directly supports HTTP POST, but in this case, we’ll use request-promise,
a higher-level library, to make this a bit easier and also to wrap our HTTP request
in promises.

If you installed dependencies already, then you have request-promise installed in
your project; otherwise, you can install it in a fresh Node.js project like this:

npm install --save request-promise

Figure 12.8 Output displayed as our
Node.js server receives data using
HTTP POST.

Our Node.js server

HTTP POST handlerAir pollution sensor

The device sends infrequent
packets of data.

Live data pipeline

Our data collection
point is an HTTP POST
request handler.

The data is then
fed into our live
data pipeline.

Figure 12.7 HTTP POST is used to send single packets of data to our server.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 307Live-streaming data

The following listing shows the code for our first mock air pollution sensor. It reads
our example CSV data file. Once per second it takes the next row of data and submits it
to the server using HTTP POST.

Listing 12.1a Air pollution sensor that submits data to the server via HTTP POST
(listing-12.1/client/index.js)

const fs = require('fs');
const request = require('request-promise');
const importCsvFile = require('./toolkit/importCsvFile.js');

const dataFilePath = "../../data/brisbanecbd-aq-2014.csv";
const dataSubmitUrl = "http://localhost:3000/data-collection-point";

importCsvFile(dataFilePath)
 .then(data => {
 let curIndex = 0;

 setInterval(() => {

 const outgoingData = Object.assign({}, data[curIndex]);
 curIndex += 1;

 request.post({
 uri: dataSubmitUrl,
 body: outgoingData,
 json: true
 });

 }, 1000);
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err);
 });

On the server side, we use the express library to accept incoming data using HTTP POST.
As we did with request-promise, we use the express library to make our lives a little easier.
Node.js already has everything we need to build an HTTP server, but it’s common practice
to use a higher-level library like express to simplify and streamline our code.

Again, if you installed dependencies, then you already have the express library
installed; otherwise, you install it and the body-parser middleware as follows:

npm install --save express body-parser

We’re using the body-parser middleware to parse the HTTP request body from JSON
when it’s received. This way we don’t have to do the parsing ourselves. It will happen
automatically.

Listing 12.1b shows the code for a simple Node.js server that accepts data using the
URL data-collection-point. We print incoming data to the console to check that it’s
coming through correctly.

This is the path
to the CSV file

containing
example data.

This is the URL for submitting
data to our Node.js server.

Loads the
example
data from
the CSV file

Once per second, it sends a
chunk of data to the server.

Clones the data so
we can modify it
without overwriting
the original

Iterates through
the example data
one row at a time

Uses HTTP POST to submit a
packet of data to the server

Specifies the URL to submit data to

This is the data being submitted.

Uses JSON encoding. The
data is sent over the wire
using the JSON data format.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

308 CHAPTER 12 Live data

Listing 12.1b Node.js server that can accept data via HTTP POST (listing-12.1/
server/index.js)

const express = require('express');
const app = express();
const bodyParser = require('body-parser');

app.use(bodyParser.json());

app.post("/data-collection-point", (req, res) => {
 console.log(req.body);
 res.sendStatus(200);
});

app.listen(3000, () => { // Start the server.
 console.log("Data collection point listening on port 3000!");
});

We now have a mechanism that allows us to accept an infrequent or ad hoc data feed.
This would be good enough if we were only receiving incoming data on an hourly
basis—as we would be if this were a real-life system. But given that we’re sending our
data through every second, and because it’s an excuse to do more network coding, let’s
look at using sockets to accept a high-frequency real-time data feed into our server.

12.6.2 Sockets for high-frequency data submission

We’ll now convert our code over to using a socket connection, which is a better alter-
native when we have a high frequency of data submission. We’re going to create a
long-lived communication channel between the sensor and the server. The communi-
cation channel is also bidirectional, but that’s not something we’ll use in this example,
although you could later use it for sending commands and status back to your sensor if
that’s what your system design needed.

Figure 12.9 shows how we’ll integrate the socket connection into our system. This
looks similar to what we did with HTTP POST, although it shows that we’ll have a stream

Requires the body-parser middleware so
that the HTTP request body is automatically
parsed from JSON data

Defines a REST API endpoint that
receives packets of data that were
submitted to the server

We’re not doing anything with the
data yet, only printing to check that
it’s coming through.

Responds
to the client
with HTTP
status 200
(status okay)

Our Node.js server

Socket handlerAir pollution sensor

The device is sending a
continuous stream of data
over a socket connection.

Live data pipeline

Our data collection point
receives a continuous feed
of data from the socket
connection.

The data is then
fed into our
live data pipeline.

Figure 12.9 A long-lived socket connection is used to receive continuous and high-frequency
streaming data into our server.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 309Live-streaming data

of data coming through and arriving at the socket handler, which replaces the HTTP
post handler and is our new data collection point.

In the following listing, we adapt our mock sensor from listing 12.1a so that it writes
the outgoing data to the socket connection. Besides the connection setup and the call
to socket.write, this listing is similar to listing 12.1a.

Listing 12.2a Air pollution sensor that submits data to the server via a socket
connection (listing-12.2/client/index.js)

// ... initial setup as per listing 12.1a ...

const serverHostName = "localhost";
const serverPortNo = 3030;

const client = new net.Socket();
client.connect(serverPortNo, serverHostName, () => {
 console.log("Connected to server!");
});

client.on("close", () => {
 console.log("Server closed the connection.");
});

importCsvFile(dataFilePath)
 .then(data => {
 let curIndex = 0;

 setInterval(() => {

 const outgoingData = Object.assign({}, data[curIndex]);
 curIndex += 1;

 const outgoingJsonData = JSON.stringify(outgoingData);

 client.write(outgoingJsonData);

 }, 1000);
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err);
 });

In listing 12.2b, we have a new Node.js server that listens on a network port and
accepts incoming socket connections. When our mock sensor (the client) connects,
we set a handler for the socket’s data event. This is how we intercept incoming data;
we’re also starting to see that event-based architecture that I mentioned earlier. In
this example, as before, we print the data to the console to check that it has come
through correctly.

Sets up the server connection details

Connects the socket
to our Node.js server

This callback is invoked when the
server has closed the connection.

Loads the example data from the CSV file

Once per second, it sends a
chunk of data to the server.

Serializes
outgoing data
to JSON format

Sends JSON data over the wire

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

310 CHAPTER 12 Live data

Listing 12.2b Acquiring real-time data through a socket connection (listing-12.2
/server/index.js)

const net = require('net');

const serverHostName = "localhost";
const serverPortNo = 3030;

const server = net.createServer(socket => {
 console.log("Client connected!");

 socket.on("data", incomingJsonData => {

 const incomingData = JSON.parse(incomingJsonData);

 console.log("Received: ");
 console.log(incomingData);
 });

 socket.on("close", () => {
 console.log("Client closed the connection");
 });

 socket.on("error", err => {
 console.error("Caught socket error from client.");
 console.error(err);
 });
});

server.listen(serverPortNo, serverHostName, () => {
 console.log("Waiting for clients to connect.");
});

Note how we’re sending the data over the wire in the JSON data format. We did this in
the HTTP example as well, but in that case request-promise (on the client) and express
(on the server) did the heavy lifting for us. In this case, we’re manually serializing the
data to JSON (on the client) before pushing it onto the network and then manually
deserializing when it comes out at the other end (on the server).

12.7 Refactor for configuration
To this point, our server code has been simple, but in a moment the complexity will
start to rise sharply. Let’s take a moment and do a refactor that will cleanly separate our
configuration from our code. We won’t go too far with this; it’s a simple restructure
and will help us keep the app tidy as it grows.

The only configuration we have at the moment is the socket server setup details from
listing 12.2b. We’re going to move these to a separate configuration file, as shown in
figure 12.10. This will be a central place to consolidate the configuration of the app and
where we’ll need to go to later change its configuration.

Listing 12.3a shows our simple starting configuration for the project. You might well
ask, “Why bother?” We’ll, it’s because we have a bunch of configuration details yet to

Sets up the server connection details

Creates the socket server
for data collection

Handles incoming-data packets
Deserializes
incoming
JSON data

Logs data received so that we can
check that it’s coming through okay

This callback is
invoked when
the client has
closed the
connection.

Adds an error handler, mainly for ECONNRESET
when the client abruptly disconnects

Starts listening for
incoming socket
connections

Our Node.js project for
the server now contains
a configuration file.

Figure 12.10 The new configuration
file in our Node.js project

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 311Refactor for configuration

come. The database, SMS alerts, and report generation all require their own configura-
tion, and it’s nice to gather them in this one place.

Listing 12.3a Adding a simple configuration file to the Node.js project (listing-12.3
/server/config.js)

module.exports = {
 server: {
 hostName: "localhost",
 portNo: 3030
 }
};

Listing 12.3b shows how we load and use the configuration file. Nothing is complex
here; our configuration is a regular Node.js code module with exported variables. This
is a simple and convenient way to get started adding configuration to your app. It costs
us little time to get this in place, and it’s useful in the long run.

Listing 12.3b The Node.js server is modified to load and use the configuration file
(listing-12.3/server/index.js)

const net = require('net');
const config = require('./config.js');

const server = net.createServer(socket => {
 // ... code omitted, same as listing 12.1b ...
});

server.listen(config.server.portNo, config.server.hostName, () => {
 console.log("Waiting for clients to connect.");
});

You may wonder why I chose to use a Node.js code module as a configuration file. Well,
my first thought was for simplicity. Normally, in production, I’ve used a JSON file for
this kind of thing, and that’s just as easy to drop into this example. Believe it or not, you
can require a JSON file in Node.js the same way that you require a JavaScript file. For
example, you could have also done this:

const config = require('./config.json');

It’s cool that you can do that: it’s a simple and effective way to load data and configu-
ration into your Node.js app. But it also occurred to me that using JavaScript as your
configuration file means you can include comments! This is a great way to document
and explain configuration files and isn’t something you can ordinarily do with JSON
files. (How many times do you wish you could have added comments to JSON files?!)

The first details in our configuration file;
specifies the server configuration

Loads the configuration file just
like any other Node.js code module

Starts the socket server with details
loaded from the configuration file

Listing 12.2b Acquiring real-time data through a socket connection (listing-12.2
/server/index.js)

const net = require('net');

const serverHostName = "localhost";
const serverPortNo = 3030;

const server = net.createServer(socket => {
 console.log("Client connected!");

 socket.on("data", incomingJsonData => {

 const incomingData = JSON.parse(incomingJsonData);

 console.log("Received: ");
 console.log(incomingData);
 });

 socket.on("close", () => {
 console.log("Client closed the connection");
 });

 socket.on("error", err => {
 console.error("Caught socket error from client.");
 console.error(err);
 });
});

server.listen(serverPortNo, serverHostName, () => {
 console.log("Waiting for clients to connect.");
});

Note how we’re sending the data over the wire in the JSON data format. We did this in
the HTTP example as well, but in that case request-promise (on the client) and express
(on the server) did the heavy lifting for us. In this case, we’re manually serializing the
data to JSON (on the client) before pushing it onto the network and then manually
deserializing when it comes out at the other end (on the server).

12.7 Refactor for configuration
To this point, our server code has been simple, but in a moment the complexity will
start to rise sharply. Let’s take a moment and do a refactor that will cleanly separate our
configuration from our code. We won’t go too far with this; it’s a simple restructure
and will help us keep the app tidy as it grows.

The only configuration we have at the moment is the socket server setup details from
listing 12.2b. We’re going to move these to a separate configuration file, as shown in
figure 12.10. This will be a central place to consolidate the configuration of the app and
where we’ll need to go to later change its configuration.

Listing 12.3a shows our simple starting configuration for the project. You might well
ask, “Why bother?” We’ll, it’s because we have a bunch of configuration details yet to

Sets up the server connection details

Creates the socket server
for data collection

Handles incoming-data packets
Deserializes
incoming
JSON data

Logs data received so that we can
check that it’s coming through okay

This callback is
invoked when
the client has
closed the
connection.

Adds an error handler, mainly for ECONNRESET
when the client abruptly disconnects

Starts listening for
incoming socket
connections

Our Node.js project for
the server now contains
a configuration file.

Figure 12.10 The new configuration
file in our Node.js project

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

312 CHAPTER 12 Live data

You have more scalable and secure ways to store configuration, but simplicity serves
our needs here, and this is something we’ll touch on again in chapter 14.

12.8 Data capture
Now we’re more than ready to do something with our data, and the first thing we
should do is to make sure that it’s safe and secure. We should immediately capture it to
our database so that we’re at no risk of losing it.

Figure 12.11 shows what our system looks like at this point. We have data incoming
from the sensor, the data arrives at the data collection point, and then it’s stored in our
database for safe-keeping. This time, after we run our code, we use a database viewer such
as Robomongo to check that our data has arrived safely in our database (see figure 12.12).

To connect to the database, we need to get our database connection details from
somewhere. In the following listing, we’ve added these to our configuration file.

Listing 12.4a Adding the database connection details to the configuration file
(listing-12.4/server/config.js)

module.exports = {
 server: {
 hostName: "localhost",
 portNo: 3030
 },

 database: {
 host: "mongodb://localhost:27017",
 name: "air_quality"
 }
};

Note that we’re using the default port 27017 when connecting to MongoDB in listing
12.4a. This assumes that you have a default installation of MongoDB on your develop-
ment PC. If you want to try running this code, you’ll need to install MongoDB; other-
wise, you could boot up the Vagrant VM that’s in the vm-with-empty-db subdirectory

Our Node.js server

Data collection pointAir pollution sensor

Immediately store our data
in the database; we don’t
want to lose any of it!

Figure 12.11 Immediately store received data into our database before taking any
further action.

Our PM10 values
are stored safely in
the database.

Figure 12.12 Using Robomongo to check that our incoming data has been captured to the database
These are the connection
details for our database.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 313Data capture

of the Chapter-8 Github repository. Booting that VM will give you an empty MongoDB
database on port 6000 to use for code listings in this chapter. Make sure you modify the
code to refer to the correct port number. For example, in listing 12.4a you’d change the
connection string from mongodb://localhost:27017 to mongodb://localhost:6000.
For help on Vagrant, please see appendix C.

The following listing shows the code that connects to MongoDB and stores the data
that arrives at our data collection point immediately after it’s received.

Listing 12.4b Storing incoming data into the MongoDB database (listing-12.4
/server/index.js)

const mongodb = require('mongodb');
const net = require('net');
const config = require('./config.js');

mongodb.MongoClient.connect(config.database.host)
 .then(client => {
 const db = client.db(config.database.name);
 const collection = db.collection("incoming");

 console.log("Connected to db");

 const server = net.createServer(socket => {
 console.log("Client connected!");

Opens a connection to the
database server before we

start accepting incoming data

Retrieves the database
we’re using

Retrieves the
MongoDB
collection
where we’ll
store
incoming data

You have more scalable and secure ways to store configuration, but simplicity serves
our needs here, and this is something we’ll touch on again in chapter 14.

12.8 Data capture
Now we’re more than ready to do something with our data, and the first thing we
should do is to make sure that it’s safe and secure. We should immediately capture it to
our database so that we’re at no risk of losing it.

Figure 12.11 shows what our system looks like at this point. We have data incoming
from the sensor, the data arrives at the data collection point, and then it’s stored in our
database for safe-keeping. This time, after we run our code, we use a database viewer such
as Robomongo to check that our data has arrived safely in our database (see figure 12.12).

To connect to the database, we need to get our database connection details from
somewhere. In the following listing, we’ve added these to our configuration file.

Listing 12.4a Adding the database connection details to the configuration file
(listing-12.4/server/config.js)

module.exports = {
 server: {
 hostName: "localhost",
 portNo: 3030
 },

 database: {
 host: "mongodb://localhost:27017",
 name: "air_quality"
 }
};

Note that we’re using the default port 27017 when connecting to MongoDB in listing
12.4a. This assumes that you have a default installation of MongoDB on your develop-
ment PC. If you want to try running this code, you’ll need to install MongoDB; other-
wise, you could boot up the Vagrant VM that’s in the vm-with-empty-db subdirectory

Our Node.js server

Data collection pointAir pollution sensor

Immediately store our data
in the database; we don’t
want to lose any of it!

Figure 12.11 Immediately store received data into our database before taking any
further action.

Our PM10 values
are stored safely in
the database.

Figure 12.12 Using Robomongo to check that our incoming data has been captured to the database
These are the connection
details for our database.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

314 CHAPTER 12 Live data

 socket.on("data", incomingJsonData => {
 console.log("Storing data to database.");

 const incomingData = JSON.parse(incomingJsonData);

 collection.insertOne(incomingData)
 .then(doc => {
 console.log("Data was inserted.");
 })
 .catch(err => {
 console.error("Error inserting data.");
 console.error(err);
 });
 });

 socket.on("close", () => {
 console.log('Client closed the connection');
 });

 socket.on("error", err => {
 console.error("Caught socket error from client.");
 console.error(err);
 });
 });

 server.listen(config.server.portNo, config.server.hostName, () => {
 console.log("Waiting for clients to connect.");
 });
 });

The fact that we’re storing this data in the database immediately after receiving it is a
design decision. I believe that this data is important and that we shouldn’t risk doing any
initial processing on it before we’ve safely stored it. We’ll touch on this idea again soon.

12.9 An event-based architecture
Let’s now look at how we can better evolve our application over time. I wanted an
opportunity to show how we can deploy a design pattern to structure our app and help
manage its complexity.

You might argue that I’m overengineering this simple toy application, but what I
want to show you is how separation of concerns and decoupling of components can
give us the foundation for a solid, reliable, and extensible application. This should
become obvious as we ramp up complexity culminating in the complete system at the
end of the chapter.

Figure 12.13 shows how we’ll use an event hub to decouple our data collection from
any downstream data processing operation; for example, update visualization, which is
responsible for forwarding incoming data to a live chart in the web browser.

The event hub is like a conduit for our events: the incoming-data event is raised by the
data collection point, and the update visualization event handler responds to it. With this
kind of infrastructure in place, we can now easily slot in new downstream data operations
to extend the system.

Inserts incoming data
into the database

The data was
inserted

successfully.

Shows that
something went

wrong while
inserting the data

Our Node.js server

Update visualizationData collection point

Raises the
incoming-data event

Handles the
incoming-data event

Code is decoupled.

Event hub

Figure 12.13 An event-handling architecture allows us to decouple our code modules.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 315An event-based architecture

Figure 12.14, for example, shows how we’ll plug in an SMS alert module so that our
system can raise the alarm when it has detected poor-quality air.

Using an event-based architecture like this gives us a framework on which to hang
new code modules. We’ve added a natural extension point where we can plug in new
event sources and event handlers. This means we’ve designed our application to be
upgraded. We’re now better able to modify and extend our app without turning it into a
big mess of spaghetti code—at least that’s the aim. I won’t claim that it’s easy to keep an
evolving application under control, but design patterns like this can help.

The important thing for us in this project is that we can add new code modules such
as update visualization and SMS alert without having to modify our data collection point.
Why is this important here and now? Well, I wanted to make the point that the safety
of our data is critical, and we must ensure that it’s safe and sound before anything else

Our Node.js server

Update visualization

Data collection point

SMS alert

Additional downstream systems can
be added without modifying the data
collection point. The system is now
easier to upgrade over time.

Event hub

Raises the incoming-data event

Multiple handlers for the
incoming-data event

Figure 12.14 We can now expand our system, adding new downstream operations
without refactoring or restructuring the data collection point.

 socket.on("data", incomingJsonData => {
 console.log("Storing data to database.");

 const incomingData = JSON.parse(incomingJsonData);

 collection.insertOne(incomingData)
 .then(doc => {
 console.log("Data was inserted.");
 })
 .catch(err => {
 console.error("Error inserting data.");
 console.error(err);
 });
 });

 socket.on("close", () => {
 console.log('Client closed the connection');
 });

 socket.on("error", err => {
 console.error("Caught socket error from client.");
 console.error(err);
 });
 });

 server.listen(config.server.portNo, config.server.hostName, () => {
 console.log("Waiting for clients to connect.");
 });
 });

The fact that we’re storing this data in the database immediately after receiving it is a
design decision. I believe that this data is important and that we shouldn’t risk doing any
initial processing on it before we’ve safely stored it. We’ll touch on this idea again soon.

12.9 An event-based architecture
Let’s now look at how we can better evolve our application over time. I wanted an
opportunity to show how we can deploy a design pattern to structure our app and help
manage its complexity.

You might argue that I’m overengineering this simple toy application, but what I
want to show you is how separation of concerns and decoupling of components can
give us the foundation for a solid, reliable, and extensible application. This should
become obvious as we ramp up complexity culminating in the complete system at the
end of the chapter.

Figure 12.13 shows how we’ll use an event hub to decouple our data collection from
any downstream data processing operation; for example, update visualization, which is
responsible for forwarding incoming data to a live chart in the web browser.

The event hub is like a conduit for our events: the incoming-data event is raised by the
data collection point, and the update visualization event handler responds to it. With this
kind of infrastructure in place, we can now easily slot in new downstream data operations
to extend the system.

Inserts incoming data
into the database

The data was
inserted

successfully.

Shows that
something went

wrong while
inserting the data

Our Node.js server

Update visualizationData collection point

Raises the
incoming-data event

Handles the
incoming-data event

Code is decoupled.

Event hub

Figure 12.13 An event-handling architecture allows us to decouple our code modules.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

316 CHAPTER 12 Live data

happens. Any time we make code changes to the data collection point, we run the risk
of breaking this code. It’s imperative that we minimize the changes that we make to this
code in the future, and the event-based architecture means we can add new code mod-
ules without having to change the code at the data collection point.

As well as helping structure our app and make it more extensible, the event-based
architecture also makes it easy to partition our system so that, if necessary for scaling
up, we can distribute the application across multiple servers or virtual machines with
the events being transmitted across the wire. This kind of architecture can help enable
horizontal scaling that we’ll discuss further in chapter 14.

12.10 Code restructure for event handling
Let’s restructure our code so that it’s based around the notion of an event hub that
coordinates the raising and handling of events. We’ll use the Node.js EventEmitter
class because it’s designed for this sort of thing.

In listing 12.5a you can see the code for our new event hub. This is super simple: the
entire module instantiates an EventEmitter and exports it for use in other modules.
No one said this needed to be complex, although you can surely build a more sophisti-
cated event hub than this!

Listing 12.5a Creating an event hub for the server (listing-12.5/server/event-hub.js)

const events = require('events');
const eventHub = new events.EventEmitter();

module.exports = eventHub;

Now that we have our event hub, we can wire it up to the existing code. The first thing
we have to do is raise the incoming-data event when data is received by the server. We
do this by calling the emit function on the event hub.

As you can see from the code extract in the following listing, the event is raised imme-
diately after the data has been successfully stored in the database. For safety, we store
the data first and everything else happens later.

Listing 12.5b Raising the incoming-data event (extract from listing-12.5/server/
data-collection-point.js)

incomingDataCollection.insertOne(incomingData)
 .then(doc => {
 eventHub.emit('incoming-data', incomingData);
 })
 .catch(err => {
 console.error("Error inserting data.");
 console.error(err);
 });

With the incoming-data event in place and being raised whenever we have data arriving
at the server, we’re in a position to start building downstream data processing modules.

Instantiates a Node.js
EventEmitter as our event hub

Exports the event hub for
other modules to rely on

Inserts data
into the
database Raises the incoming-data

event and passes through
the data

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 317Code restructure for event handling

12.10.1 Triggering SMS alerts

The next thing we care about is knowing in real time when the quality of the air is dete-
riorating. We can now add an event handler to monitor incoming PM10 values and
raise an alarm when poor air quality is detected.

To handle the event, we first import the event hub into our code. Then we call
the on function to register an event handler function for a named event such as the
incoming-data event we added a moment ago. This is shown in the following listing:
checking the incoming data for PM10 values greater than or equal to the max safe
level, which is set to 80 in the configuration file. When such values are detected, we
sound the alarm and send an SMS text message to our users.

Listing 12.5c Handle event and trigger alert when PM10 exceeds safe value
(listing-12.5/server/trigger-sms-alert.js)

const eventHub = require('./event-hub.js');
const raiseSmsAlert = require('./sms-alert-system.js');
const config = require('./config.js');

eventHub.on("incoming-data", incomingData => {
 const pm10Value = incomingData["PM10 (ug/m^3)"];
 const pm10SafeLimit = config.alertLimits.maxSafePM10;
 if (pm10Value > pm10SafeLimit) {
 raiseSmsAlert("PM10 concentration has exceeded safe levels.");
 }
});

The code in listing 12.5c is an example of adding a downstream data operation that
does data analysis and sequences an appropriate response. This code is simple, but we
could imagine doing something more complex here, such as checking whether the roll-
ing average (see chapter 9) is on an upward trend or whether the incoming value is more
than two standard deviations above the normal average (again, see chapter 9). If you’d
prototyped data analysis code using exploratory coding (such as we did in chapter 5 or
9), you can probably imagine slotting that code into the system at this point.

Now if you run this code (listing 12.5) and wait for a bit, you’ll see an “SMS alert”
triggered. You only have to wait a few moments for this to happen (when those large
PM10 values between 12 p.m. and 3 p.m. come through). The code that would send
the SMS message is commented out for the moment, though, so all you’ll see is con-
sole logging that shows you what would have happened.

To get the SMS code working, you’ll need to uncomment the code in the file
listing-12.5/server/sms-alert-system.js. You’ll need to sign up for Twilio (or similar
service) and add your configuration details to the config file. Also make sure you add
your own mobile number so that the SMS message will be sent to you. Do all this, run
the code again, and you’ll receive the alert on your phone.

Requires the
event hub so
we can handle
events

Requires the SMS alert system so
we can send SMS text messages

Handles the incoming-data event
Extracts the
value from the
data that we’re
interested in

The max safe
limit is read from
the configuration
file.

Has the incoming data
exceeded the safe limit?

Yes, it has, so send the SMS alert.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

318 CHAPTER 12 Live data

12.10.2 Automatically generating a daily report

Let’s look at another example of raising and handling events. For the next feature,
we’ll add automatically generated daily reports. The report won’t be anything fancy;
we’ll render a chart of PM10 to a PDF file and then have that emailed to our users. But
you can imagine going much further with this, say, rendering other statistics or attach-
ing a spreadsheet with a summary of recent data.

Because we want to generate our reports daily, we now need a way to generate time-
based events. For this, we’ll add a scheduler to our system, and we’ll program it to raise
a generate-daily-report event once per day. A separate daily report generator module will
handle the event and do the work. You can see how this fits together in figure 12.15.

To implement the scheduler, we’ll need a timer to know when to raise the event. We
could build this from scratch using the JavaScript functions setTimeout or setInterval.
Although these functions are useful, they’re also low-level, and I’d like us to use some-
thing more expressive and more convenient.

RAISING THE GENERATE DAILy REPORT EvENT

To schedule our time-based events, we’ll rely on the cron library from npm to be our
timer. With this library we can express scheduled jobs using the well-known UNIX cron
format. As with any such library, you have many alternatives available on npm; this is
the one that I use, but it’s always good to shop around to make sure you’re working
with a library that best suits your own needs.

In listing 12.6a we create an instance of CronJob with a schedule retrieved from our
config file and then start the job. This invokes generateReport once per day, and this is
where we raise the generate-daily-report event.

Listing 12.6a Using the cron library to emit the time-based generate-daily-report
event (listing-12.6/server/scheduler.js)

const eventHub = require('./event-hub.js');
const cron = require('cron');
const config = require('./config.js');

function generateReport () {
 eventHub.emit("generate-daily-report");
};

const cronJob = new cron.CronJob({
 cronTime: config.dailyReport.schedule,
 onTick: generateReport
});

cronJob.start();

Our Node.js server

Daily report generatorScheduler

Raises time-based events,
like the daily event
generate-daily-report

Handles the generate-daily-report
event and then generates and
emails a report

Event hub

Figure 12.15 Our scheduler feeds an event into the system once per day to generate
a daily report.

Requires the event hub so we can raise events

Requires the cron library for
scheduled time-based tasks

This callback
is invoked
on a daily
schedule.

Raises the event generate-daily-report and
lets the rest of the system deal with it

Creates the cron job
Configures the regular schedule
at which to tick the job

Specifies the callback to
invoke for each scheduled tick

Starts the
cron job

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 319Code restructure for event handling

The cron format we’ll use for our daily cron job is specified in the configuration file
and looks like this:

00 00 06 * * 1-5

This looks cryptic, but we can read it from right to left as Monday to Friday (days 1–5),
every month (the asterisk), every day of the month (the next asterisk), 6 a.m. at the
zero minute, and the zero second. This specifies the time at which to invoke the job. To
put it more succinctly: we generate our report each weekday at 6 a.m.

The problem with this schedule is that it takes far too long to test. We can’t wait
a whole day to test the next iteration of our report generation code! As we did with
the incoming-data stream, we need to speed things up, so we’ll comment out the daily
schedule (we’ll need it again to put this app into production) and replace it with one
that runs more frequently:

00 * * * * *

This specifies a schedule that runs every minute (you can read it right to left as every
day, every month, every day of month, every hour, every minute, and at the zero second
of that minute).

We’ll generate a new report every minute. This is a fast pace to be sure, but it means
we have frequent opportunities to test and debug our code.

HANDLING THE GENERATE REPORT EvENT

Now we’re ready to handle the generate-daily-report event and generate and email the
report. The following listing shows how the event is handled and then calls down to a
helper function to do the work.

Listing 12.6b Handling the generate-daily-report event and generating the report
(listing-12.6/server/trigger-daily-report.js)

const eventHub = require('./event-hub.js');
const generateDailyReport = require('./generate-daily-report.js');

function initGenerateDailyReport (db) {

Requires the
event hub so
we can handle
events

This function initializes our
report generation event handler
(the database is passed in).

12.10.2 Automatically generating a daily report

Let’s look at another example of raising and handling events. For the next feature,
we’ll add automatically generated daily reports. The report won’t be anything fancy;
we’ll render a chart of PM10 to a PDF file and then have that emailed to our users. But
you can imagine going much further with this, say, rendering other statistics or attach-
ing a spreadsheet with a summary of recent data.

Because we want to generate our reports daily, we now need a way to generate time-
based events. For this, we’ll add a scheduler to our system, and we’ll program it to raise
a generate-daily-report event once per day. A separate daily report generator module will
handle the event and do the work. You can see how this fits together in figure 12.15.

To implement the scheduler, we’ll need a timer to know when to raise the event. We
could build this from scratch using the JavaScript functions setTimeout or setInterval.
Although these functions are useful, they’re also low-level, and I’d like us to use some-
thing more expressive and more convenient.

RAISING THE GENERATE DAILy REPORT EvENT

To schedule our time-based events, we’ll rely on the cron library from npm to be our
timer. With this library we can express scheduled jobs using the well-known UNIX cron
format. As with any such library, you have many alternatives available on npm; this is
the one that I use, but it’s always good to shop around to make sure you’re working
with a library that best suits your own needs.

In listing 12.6a we create an instance of CronJob with a schedule retrieved from our
config file and then start the job. This invokes generateReport once per day, and this is
where we raise the generate-daily-report event.

Listing 12.6a Using the cron library to emit the time-based generate-daily-report
event (listing-12.6/server/scheduler.js)

const eventHub = require('./event-hub.js');
const cron = require('cron');
const config = require('./config.js');

function generateReport () {
 eventHub.emit("generate-daily-report");
};

const cronJob = new cron.CronJob({
 cronTime: config.dailyReport.schedule,
 onTick: generateReport
});

cronJob.start();

Our Node.js server

Daily report generatorScheduler

Raises time-based events,
like the daily event
generate-daily-report

Handles the generate-daily-report
event and then generates and
emails a report

Event hub

Figure 12.15 Our scheduler feeds an event into the system once per day to generate
a daily report.

Requires the event hub so we can raise events

Requires the cron library for
scheduled time-based tasks

This callback
is invoked
on a daily
schedule.

Raises the event generate-daily-report and
lets the rest of the system deal with it

Creates the cron job
Configures the regular schedule
at which to tick the job

Specifies the callback to
invoke for each scheduled tick

Starts the
cron job

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

320 CHAPTER 12 Live data

 eventHub.on("generate-daily-report", () => {
 generateDailyReport(db)
 .then(() => {
 console.log("Report was generated.");
 })
 .catch(err => {
 console.error("Failed to generate report.");
 console.error(err);
 });
 });
};

module.exports = initGenerateDailyReport;

GENERATING THE REPORT

Generating the report is similar to what we learned in chapter 11; in fact, listing 12.6c
was derived from listing 11.7 in chapter 11.

Before generating the report, we query the database and retrieve the data that’s to be
included in it. We then use the generateReport toolkit function, which, the way we did
in chapter 11, starts an embedded web server with a template report and captures the
report to a PDF file using Nightmare. Ultimately, we call our helper function sendEmail
to email the report to our users.

Listing 12.6c Generating the daily report and emailing it to interested parties
(listing-12.6/server/generate-daily-report.js)

const generateReport = require('./toolkit/generate-report.js');
const sendEmail = require('./send-email.js');
const config = require('./config.js');

function generateDailyReport (db) {

 const incomingDataCollection = db.collection("incoming");

 const reportFilePath = "./output/daily-report.pdf";

 return incomingDataCollection.find()
 .sort({ _id: -1 })
 .limit(24)
 .toArray()
 .then(data => {
 const chartData = {
 xFormat: "%d/%m/%Y %H:%M",
 json: data.reverse(),
 keys: {
 x: "Date",
 value: [
 "PM10 (ug/m^3)"
]
 }
 };
 return generateReport(chartData, reportFilePath);
 })

Handles the generate-
daily-report event

Generates the
report

Requires
the toolkit
function to
generate
the report

Requires the helper function
to send the email

This is a helper function to generate the daily
report and email it to interested parties.

This is the file path for the
report we’re generating
and writing to a file.

Queries the database for records

Gets the most recent records first,
a convenient method of sorting
based on MongoDB ObjectIds

Limits to entries
for the most
recent 24 hours

Prepares the
data to display
in the chart

Specifies the format of the Date
column used by C3 to parse the
data series for the X axis

Reverses the data so it’s in chronological
order for display in the chart

Renders a report to a PDF file

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 321Live data processing

 .then(() => {
 const subject = "Daily report";
 const text = "Your daily report is attached.";
 const html = text;
 const attachments = [
 {
 path: reportFilePath,
 }
];
 return sendEmail(
 config.dailyReport.recipients,
 subject, text, html, attachments
);
 });
};

module.exports = generateDailyReport;

To run the code for listing 12.6, you’ll need to have an SMTP email server that you
can use to send the emails. Typically, I’d use Mailgun for this (which has a free/trial
version), but you have plenty of other alternatives, such as Gmail. You need access to
a standard SMTP account and then can put your SMTP username and password and
report-related details in the config file. You can now run listing 12.6 and have it email
you a daily report once every minute (please don’t leave it running for too long—you’ll
get a lot of emails!).

You might now be interested to peruse the code in listing-12.6/server/send-email.js to
understand how the email is sent using the Nodemailer library (the preeminent Node.js
email sending library).

12.11 Live data processing
We’ll get to the live visualization in a moment and finish up this chapter, but before
that, I want to have a quick word about adding more data processing steps to your live
pipeline.

Say that you need to add more code to do data cleanup, transformation, or maybe
data analysis. Where’s the best place to put this?

Specifies the subject and
the body of the email

This could also include a fancy HTML-formatted
version of the email here.

Specifies attachments
to send with the email

We only need a single attachment
here, but you could easily add more.Attaches our

generated
report to
the email Emails the report to

specified recipients

Our Node.js server

Data collection point Data transformationAir pollution sensor

Store in the database
after transformation.

If something goes wrong
here, we’ll lose data!

Figure 12.16 Data transformation during acquisition (if it goes wrong, you lose your data)

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

322 CHAPTER 12 Live data

We could put code like this directly in our data collection point before we store the
data, as shown in figure 12.16. Obviously, I don’t recommend this because it puts us at
risk of data loss should anything go wrong with the data transformation (and I’ve been
around long enough to know that something always goes wrong).

To properly mitigate this risk using what I believe is the safest way to structure this
code, we can make our downstream data operations always happen on the other side of
the event hub. We store the data quickly and safely before triggering any downstream
work. As shown in figure 12.17, subsequent operations independently decide how they
want to retrieve the data they need, and they have their own responsibility to safely store
any data that has been modified.

The data required by the downstream data operation might be passed through the
event itself (as we’ve done with the incoming-data event), or the operation can be made
completely independent and must query the database itself to find its own data.

If you now have modified data that needs to be stored, you could overwrite the original
data. I wouldn’t recommend this approach, however, because if any latent bugs should
manifest, you might find that your source data has been overwritten with corrupted data.
A better solution is to have the transformed data stored to a different database collection;
at least this provides you with a buffer against data-destroying bugs.

12.12 Live visualization
We’re finally here at the most exciting part of the chapter, the part that you have been
waiting for: let’s get live data feeding into a dynamically updating chart.

Figure 12.18 shows what our live data chart looks like. When this is running, you can
sit back and watch new data points being fed into the chart each second (based on our
accelerated notion of time).

To make our live updating visualization, we must do two things:

1 Put the initial data into the chart.

2 Feed new data points into the chart as they arrive.

Figure 12.18 The
chart we'll be
producing from the
live data stream

Our Node.js server

Data collection pointAir pollution sensor Data transformationEvent hub

Transformation is
downstream of the
event hub.

Store the data straight away, before
any transformation. This makes it
more difficult to lose the data.

Figure 12.17 Data transformation is downstream from storage (a safer way to manage your data
acquisition).

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 323Live visualization

The first one should be familiar to us by now, because we’ve already seen how to create
charts in chapters 10 and 11. Now we’ll add the second step into the mix and create a
dynamic chart that automatically updates as new data becomes available.

We already have part of the infrastructure we need to make this happen. Let’s add a
new code module, update visualization, to handle the incoming-data event and forward
new data points to the browser. See how this fits together in figure 12.19.

I would be remiss if I wrote this chapter and didn’t mention socket.io. It’s an
extremely popular library for real-time events, messaging, and data streaming in
JavaScript.

Socket.io allows us to open a bidirectional communication channel between our
server and our web app. We can’t use regular sockets to communicate with a sandboxed
web app, but socket.io uses web sockets, a technology that’s built on top of regular
HTTP and gives us the data streaming conduit that we need to send a stream of data to
the browser. Socket.io also has a fallback mode, so if web sockets aren’t available, it will
gracefully degrade to sending our data using regular HTTP post. This means our code
will work on older browsers.

Our Node.js server

Data collection
point

Air pollution
sensor

Continuous
stream of data

Raise event
incoming-data.

Handle the incoming-data
event and update the
visualization in the
web browser.

Event hub

Visualization is
viewed in the
web browser.

Update
visualization

Figure 12.19 Data flowing through to a live visualization

We could put code like this directly in our data collection point before we store the
data, as shown in figure 12.16. Obviously, I don’t recommend this because it puts us at
risk of data loss should anything go wrong with the data transformation (and I’ve been
around long enough to know that something always goes wrong).

To properly mitigate this risk using what I believe is the safest way to structure this
code, we can make our downstream data operations always happen on the other side of
the event hub. We store the data quickly and safely before triggering any downstream
work. As shown in figure 12.17, subsequent operations independently decide how they
want to retrieve the data they need, and they have their own responsibility to safely store
any data that has been modified.

The data required by the downstream data operation might be passed through the
event itself (as we’ve done with the incoming-data event), or the operation can be made
completely independent and must query the database itself to find its own data.

If you now have modified data that needs to be stored, you could overwrite the original
data. I wouldn’t recommend this approach, however, because if any latent bugs should
manifest, you might find that your source data has been overwritten with corrupted data.
A better solution is to have the transformed data stored to a different database collection;
at least this provides you with a buffer against data-destroying bugs.

12.12 Live visualization
We’re finally here at the most exciting part of the chapter, the part that you have been
waiting for: let’s get live data feeding into a dynamically updating chart.

Figure 12.18 shows what our live data chart looks like. When this is running, you can
sit back and watch new data points being fed into the chart each second (based on our
accelerated notion of time).

To make our live updating visualization, we must do two things:

1 Put the initial data into the chart.

2 Feed new data points into the chart as they arrive.

Figure 12.18 The
chart we'll be
producing from the
live data stream

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

324 CHAPTER 12 Live data

Listing 12.7a shows the code for the web server that hosts our new live visualization.
This does three main tasks:

¡	Serves the assets for the web app itself
¡	Provides the initial data for the chart
¡	Registers Socket.io connections with our new code module update-visualization

You can see about halfway through the code listing where the web server starts accept-
ing incoming Socket.io connections and registers each with our new update-visualization
module.

Listing 12.7a Web server for a web app with a live chart for PM10 (listing-12.7
/server/web-server.js)

const path = require('path');
const http = require('http');
const socket.io = require('socket.io');
const updateVisualization = require('./update-visualization.js');

function startWebServer (db) {

 const incomingDataCollection = db.collection("incoming");

 const app = express();

 const httpServer = http.Server(app);
 const socket.ioServer = socket.io(httpServer);

 const staticFilesPath = path.join(__dirname, "public");
 const staticFilesMiddleWare = express.static(staticFilesPath);
 app.use("/", staticFilesMiddleWare);

 app.get("rest/data", (req, res) => {
 return incomingDataCollection.find()
 .sort({ _id: -1 })
 .limit(24)
 .toArray()
 .then(data => {
 data = data.reverse(),
 res.json(data);
 })
 .catch(err => {
 console.error("An error occurred.");
 console.error(err);

 res.sendStatus(500);
 });
 });

 socket.ioServer.on("connection", socket => {
 updateVisualization.onConnectionOpened(socket);

 socket.on("disconnect", () => {
 updateVisualization.onConnectionClosed(socket);
 });

This is a helper
function to start a
web server that hosts
our web app and live
data visualization.
The database is
passed in.

Creates a Socket.io server so
that we have a streaming data

connection with the web app

Defines a REST API to deliver data
to the web app and its visualization

Queries the database for records

Sends the data
to the web app

Keeps track of connections and
disconnections. We want to be
able to forward incoming data
to the web app.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 325Live visualization

 });

 httpServer.listen(3000, () => { // Start the server.
 console.log("Web server listening on port 3000!");
 });
};

module.exports = startWebServer;

Listing 12.7b shows the code for our new update-visualization module, which tracks
all open connections, because there could be multiple instances of our web app con-
nected at any one time. Notice where it handles the incoming-data event; here we call
socket.emit to forward each packet of data to the web app. This is how new data
points are sent to the web app to be added to the chart.

Listing 12.7b Forwarding incoming data to the web app (listing-12.7/server
/update-visualization.js)

const eventHub = require('./event-hub.js');

const openSockets = [];

function onConnectionOpened (openedSocket) {
 openSockets.push(openedSocket);
};

function onConnectionClosed (closedSocket) {
 const socketIndex = openSockets.indexOf(closedSocket);
 if (socketIndex >= 0) {
 openSockets.splice(socketIndex, 1);
 }
};

eventHub.on("incoming-data", (id, incomingData) => {
 for (let i = 0; i < openSockets.length; ++i) {
 const socket = openSockets[i];
 socket.emit("incoming-data", incomingData);
 }
});

module.exports = {
 onConnectionOpened: onConnectionOpened,
 onConnectionClosed: onConnectionClosed
}

We also need to look at what is happening in the code for the web app. You can see in
listing 12.7c that it’s mostly the same as what you’d expect to see in a C3 chart (for a
refresher, see chapter 10). This time, in addition, we’re creating a socket.io instance and
receiving incoming-data events from our web server. It’s then a simple job to add the
incoming-data point to our existing array of data and load the revised data using the C3
load function. C3 conveniently provides an animation for the new data, which gives the
chart a nice flowing effect.

This is an array that tracks currently
open Socket.io connections.

This callback function is
invoked when a Socket.io
connection has been opened.

This callback function
is invoked when a
Socket.io connection
has been closed.

For each web app that
has connected . . .

...forwards the incoming
data to the web app

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

326 CHAPTER 12 Live data

Listing 12.7c Adding new data to the chart as it arrives (listing-12.7/server/public
/app.js)

function renderChart (bindto, chartData) {
 var chart = c3.generate({
 bindto: bindto,
 data: chartData,
 axis: {
 x: {
 type: 'timeseries',
 }
 }
 });
 return chart;
};

$(function () {

 var socket = io();

 $.get("/rest/data")
 .then(function (data) {
 var chartData = {
 xFormat: "%d/%m/%Y %H:%M",
 json: data,
 keys: {
 x: "Date",
 value: [
 "PM10 (ug/m^3)"
]
 }
 };

 var chart = renderChart("#chart", chartData);

 socket.on("incoming-data", function (incomingDataRecord) {
 chartData.json.push(incomingDataRecord);
 while (chartData.json.length > 24) {
 chartData.json.shift();
 }

 chart.load(chartData);
 });
 })
 .catch(function (err) {
 console.error(err);
 });
});

One last thing to take note of is how we make Socket.io available to our web app. You
can see in listing 12.7d that we’re including the socket.io client’s JavaScript file into the
HTML file for our web app. Where did this file come from?

Makes the socket.io
connection to the server

Hits the REST API and pulls down
the initial data from the server

Sets up chart data that we can update
as new data comes down the wire

Does the initial render of the chart

Handles data that’s incoming
over the socket.io connection

Adds the incoming data
to our existing chart data

Keeps only the
most recent
24 hours of

records

Removes the oldest data records

Reloads the chart’s data

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

 327Live visualization

Well, this file is automatically made available and served over HTTP by the Socket.io
library that we included in our server application. It’s kind of neat that it’s made available
like magic, and we don’t have to install this file using Bower or otherwise manually install it.

Listing 12.7d Socket.io is automatically available to the client by the server
(listing-12.7/server/public/index.html)

<!doctype html>
<html lang="en">
 <head>
 <title>Live data visualization</title>

 <link href="bower_components/c3/c3.css" rel="stylesheet">
 <link href="app.css" rel="stylesheet">

 <script src="bower_components/jquery/dist/jquery.js"></script>
 <script src="bower_components/d3/d3.js"></script>
 <script src="bower_components/c3/c3.js"></script>
 <script src="/socket.io/socket.io.js"></script>
 <script src="app.js"></script>
 </head>
 <body>
 <div>
 No need to refresh this web page,
 the chart automatically updates as the data
 flows through.
 </div>
 <div id='chart'></div>
 </body>
</html>

When you run the code for listing 12.7, keep in mind one caveat: each time you run it
fresh (the mock sensor and the server), please reset your incoming MongoDB collec-
tion each time (you can remove all documents from a collection using Robomongo).
Otherwise, your live chart will come out wonky due to the chronological nature of the
data and the fact that we’re replaying our fake data. This is an artifact of the way we’ve
set up our development framework with a mock sensor and fake data. This won’t be an
issue in production. This is a pain during development, so for continued development,
you might want to have an automatic way to reset your database to starting conditions.

Well, there you have it. We’ve built a complete system for processing a continuous
feed of live data. Using this system, we can monitor air quality, and hopefully we can
be better prepared for emergencies and can respond in real time. You can find the
full code under the complete subdirectory of the GitHub repo for chapter 12. It brings
together all the parts we’ve discussed in this chapter and combines them into a cohesive
functioning system.

The work we’ve done in this chapter has been a major step toward a full production
system, but we’re not quite there yet. We still have many issues to address so that we can
rely on this system, but we’ll come back and discuss those in chapter 14. Let’s take a break
from the serious stuff, and in chapter 13 we’ll upgrade our visualization skills with D3.

Includes Socket.io
into the HTML file
for our web app

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

328 CHAPTER 12 Live data

Summary

¡	You learned how to manage a live data pipeline.
¡	You worked through examples of sending and receiving data through HTTP post

and sockets.
¡	We refactored our code to extract a simple configuration file.
¡	We brought in an event-based architecture to our app using Node.js’ EventEmit-

ter to add a simple event hub for our server.
¡	We used the cron library to create time-based scheduled jobs.
¡	We explored using Socket.io for sending data to a live updating C3 chart.

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

Ashley Davis

W
hy not handle your data analysis in JavaScript? Mod-
ern libraries and data handling techniques mean you
can collect, clean, process, store, visualize, and present

web application data while enjoying the effi ciency of a single-
language pipeline and data-centric web applications that stay
in JavaScript end to end.

Data Wrangling with JavaScript promotes JavaScript to the cen-
ter of the data analysis stage! With this hands-on guide, you’ll
create a JavaScript-based data processing pipeline, handle
common and exotic data, and master practical troubleshooting
strategies. You’ll also build interactive visualizations and deploy
your apps to production. Each valuable chapter provides a
new component for your reusable data wrangling toolkit.

What’s Inside
● Establishing a data pipeline
● Acquisition, storage, and retrieval
● Handling unusual data sets
● Cleaning and preparing raw data
● Interactive visualizations with D3

Written for intermediate JavaScript developers. No data analy-
sis experience required.

Ashley Davis is a software developer, entrepreneur, author,
and the creator of Data-Forge and Data-Forge Notebook,
software for data transformation, analysis, and visualization
in JavaScript.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/data-wrangling-with-javascript

$49.99 / Can $65.99 [INCLUDING eBOOK]

Data Wrangling with JavaScript

JAVASCRIPT/DATA SCIENCE

M A N N I N G

“A thorough and
comprehensive step-by-step

guide to managing data
 with JavaScript.”

—Ethan Rivett, Powerley

“Do you still think that
you need R and Python skills

to do data analysis? This
mind-shifting book explains
that JavaScript is enough!”
—Ubaldo Pescatore, Datalogic

“Does a fantastic job
detailing the wrangling

process, the tools involved,
and the issues and concerns

to expect without ever leaving
the JavaScript domain.”—Alex Basile, Bloomberg

“Excellent real-world
examples for full-stack

JavaScript developers.”
—Sai Kota, LendingClub

See first page

www.itbook.store/books/9781617294846

https://itbook.store/books/9781617294846

	Data Wrangling with JavaScript Sample Chapter 12
	brief contents
	12 Live data
	12.1	We need an early warning system
	12.2	Getting the code and data
	12.3	Dealing with live data
	12.4	Building a system for monitoring air quality
	12.5	Set up for development
	12.6	Live-streaming data
	12.6.1	HTTP POST for infrequent data submission
	12.6.2	Sockets for high-frequency data submission

	12.7	Refactor for configuration
	12.8	Data capture
	12.9	An event-based architecture
	12.10	Code restructure for event handling
	12.10.1	Triggering SMS alerts
	12.10.2	Automatically generating a daily report

	12.11	Live data processing
	12.12	Live visualization

