
David Clinton

SAMPLE CHAPTER

M A N N I N G

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

Linux in Action

by David Clinton

Chapter 2

Copyright 2018 Manning Publications

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

brief contents

1 ■ Welcome to Linux 1

2 ■ Linux virtualization: Building a Linux working

3 ■ Remote connectivity: Safely accessing networked

4 ■ Archive management: Backing up or copying entire file

5 ■ Automated administration: Configuring automated offsite

8 ■ Networked file sharing: Building a Nextcloud file-sharing

10 ■ Securing network connections: Creating a VPN or

environment 22

machines 49

systems 68

backups 90

6 ■ Emergency tools: Building a system recovery device 109

7 ■ Web servers: Building a MediaWiki server 130

server 155

9 ■ Securing your web server 174

DMZ 203

11 ■ System monitoring: Working with log files 229

12 ■ Sharing data over a private network 251

13 ■ Troubleshooting system performance issues 268

iii

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

iv BRIEF CONTENTS

14 ■ Troubleshooting network issues 289

15 ■ Troubleshooting peripheral devices 308

16 ■ DevOps tools: Deploying a scripted server environment

using Ansible 322

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

Linux virtualization:
 Building a Linux

 working environment

This chapter covers
 Finding the right virtualization technology

 Using Linux repository managers

 Building effective environments using VirtualBox

 Building containers with LXC

 How and when to closely manage VMs

Virtualization is the single most important technology behind almost all recent
improvements in the way services and products are delivered. It’s made entire
industries from cloud computing to self-driving cars not only possible, but
compelling. Curious? Here are two virtualization facts you’ll need to know from
the start:

 Linux absolutely dominates the virtual space.
 Virtualization makes it easier to learn any technology.

22

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

23 What is virtualization?

This chapter gives a good taste of the dominant enterprise virtualization technologies
currently in use. But more to the point, it also enables you to use a virtualized environ­
ment where you can safely learn Linux administration skills. Why does this rather
sophisticated technology show up so early in the book? Because it’ll make it much eas­
ier for you to work through the rest of the chapters.

 Need a fresh, clean operating system (OS) to try something new? Create one in a
few seconds. Made a configuration error that’s locked you out of your machine? No
problem. Kill it and launch a new one. Along the way, you’ll learn how to use Linux
package managers to download, install, and manage all the software (like VirtualBox
and LXC) that you’ll need.

2.1 What is virtualization?
Once upon a time when you wanted a new server to provide some web server or docu­
ment share for your company or its customers, you’d need to research, request budget
approval, negotiate, order, safely house, provision, and then launch a brand-new
machine. The process from start to finish could take months (trust me on that one—
I’ve been there). And when increasing demand on that service threatened to over­
whelm the server’s capacity, you’d start the whole thing over again, hoping to eventu­
ally get the capacity/demand balance right.

 A common scenario would see a company providing multiple but codependent
services, each run on its own hardware. Picture a frontend web server deployed along
with a database in the backend. When the dust settled, however, you’d often end up
with one server deeply underused and one (usually right next to it on the rack)
unable to keep up. But imagine you could securely share the compute, memory, stor­
age, and networking resources of a single high-capacity server among multiple ser­
vices. Imagine being able to carve virtual server instances out of that physical server by
assigning them only the level of resources they need, and then instantly adjusting
capacity to meet changing demands.

 Now imagine being able to efficiently pack dozens of those virtual computers run­
ning multiple operating systems onto a single bare-metal server so that absolutely noth­
ing is ever wasted. Imagine then being able to have those virtual machines (VMs)
automatically spill over onto other physical servers as the first ones fill up. Imagine too
the convenience of being able to kill a VM that’s failed or in need of an update, and
replace it so quickly that users might never realize anything has changed. Got that image
in your head (hopefully, it’s something like figure 2.1)? You’re imagining virtualization.

Network connectivity

Host operating system

Hardware layer
(compute, storage, networking)

VM
(web server)

VM
(web server)

VM
(database)

Router

VM
(firewall)

Figure 2.1 VM clients of a
hardware host with connectivity to
each other and to a larger network
through an external router

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

EC2 AMI

image

24 CHAPTER 2 Linux virtualization: Building a Linux working environment

That image is so attractive that it now dominates the enterprise computing world. At
this point, I doubt there are many local or cloud-based server loads left that aren’t
running on some kind of virtualization technology. And the OS running the vast
majority of those virtual workloads is Linux.

 Amazon Web Services (AWS), by the way, lets customers rent capacity on (Linux)
servers hosting millions of VMs that, in turn, run countless workloads, including many
of the most popular online services. Figure 2.2 shows how an AWS Elastic Compute
Cloud (EC2) VM instance serves as a hub for a full range of storage, database, and net­
working tools.

Amazon machine

S3
bucket

RDS
database
instance

EBS
volume

EC2
Instance
(Linux)

EC2
Security
group

Internet

MySQL

M

Figure 2.2 A typical cloud computing workload
centered around AWS’s Elastic Cloud Compute
(EC2) VM instances on Amazon Web Services

Don’t worry if some of those AWS details are a bit obscure—they’re not the subject of
this book in any case. But if you do find yourself wanting to learn more about Amazon
Web Services, you could always read my book Learn Amazon Web Services in a Month of
Lunches (Manning, 2017). And virtualization? There’s my Teach Yourself Linux Virtual­
ization and High Availability (LULU Press, 2017).

 This next short section might feel a bit heavy, but it’ll help provide some context
for those of you interested in understanding how things are working under the hood.
Successful virtualization uses some kind of isolated space on a physical computer
where a guest OS can be installed and then fooled into thinking that it’s all alone on
its own computer. Guest operating systems can share network connections so that
their administrators can log in remotely (something I’ll discuss in chapter 3) and do
their work exactly as they would on traditional machines. Those same shared network
connections allow you to use the VMs to provide public services like websites. Broadly
speaking, there are currently two approaches to virtualization:

 Hypervisors—Controls host system hardware to one degree or another, provid­
ing each guest OS the resources it needs (figure 2.3). Guest machines are run
as system processes, but with virtualized access to hardware resources. AWS serv­
ers, for instance, have long been built on the open source Xen hypervisor tech­
nology (although they’ve recently begun switching some of their servers to the

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

25

Guest1 Guest2 Guest3 Guest4

GuestOS GuestOS GuestOS

Hypervisor

Linux kernel

Hardware layer
(compute, storage, networking)

What is virtualization?

equally open source KVM platform). Other important hypervisor platforms
include VMware ESXi, KVM, and Microsoft’s Hyper-V.

Network connectivity

Router

Figure 2.3 A type 2 hypervisor architecture showing full operating systems installed
on each guest with some special administration duties delegated to Guest1

 Containers—Extremely lightweight virtual servers that, rather than running as full
operating systems, share the underlying kernel of their host OS (see figure 2.4).
Containers can be built from plain-text scripts, created and launched in seconds,
and easily and reliably shared across networks. The best-known container tech­
nology right now is probably Docker. The Linux Container (LXC) project that
we’ll be working with in this chapter was Docker’s original inspiration.

Network connectivity

LXC host software

Linux kernel

Hardware layer
(compute, storage, networking)

Container Container Container Container

Router

Figure 2.4 LXC architecture showing access between the LXC environment
and both the Linux kernel and the hardware layer beneath it

No one technology is right for every project. But if you decide to hang around for the
rest of this chapter, you’re going to learn how and why to use two virtualization tech­
nologies: VirtualBox (a type 2 hypervisor) and, as I mentioned earlier, LXC (a con­
tainer manager).

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

26 CHAPTER 2 Linux virtualization: Building a Linux working environment

Design considerations
I wouldn’t want you to walk away from this book without at least some basic guide­
lines for choosing virtualization technologies, so here are some thoughts:

 Full-sized hypervisors like Xen and KVM (through a management frontend like
Libvirt) are normally used for enterprise-sized deployments involving large
fleets of Linux VMs.

 VirtualBox (and VMware’s Player) are perfect for testing and experimenting
with live operating systems, one or two at a time, without the need to install
them to actual PCs. Their relatively high overhead makes them unsuitable for
most production environments.

 Container technologies like LXC and Docker are lightweight and can be provi­
sioned and launched in mere seconds. LXC containers are particularly well
suited to playing with new technologies and safely building OS software
stacks. Docker is currently the technology running countless dynamic, inte­
grated fleets of containers as part of vast microservices architectures. (I’ll
talk a bit more about microservices in chapter 9.)

2.2 Working with VirtualBox
There’s a lot you can do with Oracle’s open source VirtualBox. You can install it on
any OS (including Windows) running on any desktop or laptop computer, or use it to
host VM instances of almost any major OS.

Installing VirtualBox on a Windows PC
Want to try all this out from a Windows PC? Head over to the VirtualBox website
(https://www.virtualbox.org/wiki/Downloads) and download the executable archive.
Click the file you’ve downloaded, and then work through a few setup steps (the default
values should all work). Finally, you’ll be asked whether you’re OK with a possible reset
of your network interfaces and then whether you want to install VirtualBox. You do.

VirtualBox provides an environment within which you can launch as many virtual
computers as your physical system resources can handle. And it’s a particularly useful
tool for safely testing and learning new administration skills, which is our primary goal
right now. But before that’ll happen, you need to know how downloading and install­
ing software on Linux works.

2.2.1 Working with Linux package managers

Getting VirtualBox happily installed on an Ubuntu machine is simple. It takes two
commands:

apt update

apt install virtualbox

www.itbook.store/books/9781617294938

https://www.virtualbox.org/wiki/Downloads
https://itbook.store/books/9781617294938

27 Working with VirtualBox

NOTE Remember that the # prompt means this command requires admin
privileges, which are normally accessed by prefacing the command with sudo.

But what happened in our example? It all revolves around the software package man­
ager called Advanced Package Tool (APT, more commonly known as apt). In the
Linux world, package managers connect computers to vast online repositories of
thousands of software applications, most of them free and open source. The manager,
which comes installed with Linux by default, has a number of jobs:

 Maintains a local index to track repositories and their contents
 Tracks the status of all the software that’s installed on your local machine
 Ensures that all available updates are applied to installed software
 Ensures that software dependencies (other software packages or configuration

parameters required by the package you’re installing) are met for new applica­
tions before they’re installed

 Handles installing and removing software packages

Figure 2.5 illustrates some elements of the ongoing relationship between an online
software repository and the package manager running on a Linux computer.

 The system works incredibly well and, for historical and economic reasons, there’s
nothing quite like it outside of the Linux world. The thing is, though, that the man­
ager you use will depend on your particular Linux distribution. By and large, if your
distribution falls within the Debian/Ubuntu family, then you’ll use APT. Members of
the Red Hat family will use the RPM manager and Yum (or its new DNF replacement).
Table 2.1 shows a partial list of distributions.

Online (master)
software
repository

Provide mirrors
with updated

packages

Maintain software index on PC

Transfer and install software packages

Update (patch) installed packages

Linux PCRepository mirror

servers

(for faster, more

efficient downloads)

Figure 2.5 The relationships among master software repositories, mirror download
servers, and Linux running on an end user machine

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

28 CHAPTER 2 Linux virtualization: Building a Linux working environment

Table 2.1 Package managers and distros

Package manager Distribution

APT Debian

Ubuntu

Mint

Kali Linux

RPM Red Hat Enterprise Linux

CentOS

Fedora

YaST SUSE Linux

OpenSUSE

Besides using a package manager to install software from remote repositories, you
may need to download software from a website. Often, you’ll find packages that were
formatted by their developers to work with APT or Yum once installed from the com­
mand line using a backend tool. Say, for instance, you want to use Skype. Heading
over to its download page (figure 2.6) will let you download either a DEB or RPM file
of the Skype for Linux package. You’d choose DEB if you’re using a Debian-based dis­
tribution and APT, or RPM if you’re in the Yum-loving Red Hat family.

WORKING WITH THE DEBIAN PACKAGE MANAGER

Once you download the file, you can install it from the command line using dpkg. Use
the -i flag (for install). You’ll need to make sure that you’re running the dpkg com­
mand from the directory where the skypeforlinux-64 file is located. This example
assumes that you saved the package to the Downloads directory in your user account:

$ cd /home/<username>/Downloads

dpkg -i skypeforlinux-64.deb

The dpkg command should take care of dependencies for you. But if it doesn’t, its out­
put will usually give you enough information to know what’s going on.

What’s with that “-64”?
Linux, like other x86-based operating systems, comes in both 64-bit and 32-bit ver­
sions. The vast majority of computers manufactured and sold over the past decade
use the faster 64-bit architecture. Because there’s still older or development-oriented
hardware out there, you’ll sometimes need to run 32-bit, and you’ll want the software
you install to work with it.

You can check for yourself by running arch from the command line. Unless you know
you’re running on older hardware (something Linux does particularly well, by the way),
you’re safe assuming that you’re a 64-bit kind of person.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

29 Working with VirtualBox

Figure 2.6 The download page for Skype for Linux.
Note the separate links for the Debian (APT) and RPM
(Yum) package managers.

INSTALLING VIRTUALBOX FOR THE RPM PACKAGE MANAGER

Earlier, I introduced apt update and apt install virtualbox. What did those brief
commands do? To explain, I’ll install the same VirtualBox software on a machine run­
ning the Fedora Linux distribution. Because I’ll use Red Hat’s DNF package manager,
it’ll require a few extra steps—which is a good thing, because running them will illus­
trate how the process works. The process is a bit involved, so table 2.2 lists the steps.

Table 2.2 Steps to install VirtualBox on Fedora

Task Command

Add repo wget http://download.virtualbox.org/virtualbox/rpm/fedora/

➥ virtualbox.repo

Update index dnf update

Install dependencies dnf install patch kernel-devel dkms

Install package dnf install VirtualBox-5.1

www.itbook.store/books/9781617294938

http://download.virtualbox.org/virtualbox/rpm/fedora/virtualbox.repo
https://itbook.store/books/9781617294938

30 CHAPTER 2 Linux virtualization: Building a Linux working environment

NOTE These steps were designed for and tested on Fedora version 25 and do
a great job illustrating the package management process. It all might work
more smoothly on more recent Fedora releases, though.

Back on Ubuntu, APT knew what I meant by virtualbox when I added it to the install
command. That’s because a VirtualBox package is part of an online repository with
which APT is already familiar. It turns out, however, that Red Hat and its children (like
CentOS and Fedora) aren’t quite as sociable, at least not out of the box, so I’ll need to
add the virtualbox repository to Yum.

 From the previous chapter, you’ll remember that third-party software configura­
tion files are often kept within the /etc/ directory hierarchy, and, in that respect,
yum/DNF is no different. Repository information is kept in /etc/yum.repos.d/, so
you should change to that directory. From there, you’ll use the wget program (usually
installed by default) to download the .repo file. Here’s how to do all that:

$ cd /etc/yum.repos.d/

wget http://download.virtualbox.org/virtualbox/rpm/fedora/

➥ virtualbox.repo

Installing software on Linux
Specific directions for installing Linux software, including details like the precise URL
I used earlier, are almost always available online. You can find those either on the
software developers’ own websites or through freely available guides. The internet is
your friend.

Make sure you specify the Linux distribution, release version, and architecture in your
search engine phrases wherever necessary. I found details about the specific pack­
ages required for this project through my favorite search engine—so should you.

Having the .repo file in the right directory won’t do much until you tell RPM what’s
changed. You do that by running update. The update command also checks the local
repository index against its online counterparts to see whether there’s anything new
you’ll want to know about. No matter what manager you’re using, it’s always a good
idea to update the repo information before installing new software:

All transactions with the repositories # dnf update

are encrypted using GPG keys. Importing GPG key 0x98AB5139:

Userid : "Oracle Corporation (VirtualBox archive signing key)

➥	 <info@virtualbox.org>"
Fingerprint: 7B0F AB3A 13B9 0743 5925 D9C9 5442 2A4B 98AB 5139
From : https://www.virtualbox.org/download/

➥ oracle_vbox.asc
Is this ok [y/N]: y
Fedora 25 - x86_64 - VirtualBox 120 kB/s | 33 kB 00:00
Dependencies resolved.
Nothing to do. The VirtualBox references refer to the fact that I’m
Complete! running this Fedora host as a VM in VirtualBox.

www.itbook.store/books/9781617294938

https://www.virtualbox.org/download
mailto:info@virtualbox.org
http://download.virtualbox.org/virtualbox/rpm/fedora
https://itbook.store/books/9781617294938

31 Working with VirtualBox

The next step involves installing all the software dependencies that VirtualBox will
need to run properly. A dependency is software that must already be installed on your
computer for a new package to work. Back on Ubuntu, APT took care of these import­
ant details invisibly; Yum will also often take care of a lot of the backend details. But
when it doesn’t, forcing you to do it manually, the details are readily available from
the same online sources discussed previously. Here’s a truncated version of what that
will look like:

dnf install patch kernel-devel dkms

Last metadata expiration check: 0:43:23 ago on Tue Jun 13 12:56:16 2017.

[...]

Dependencies resolved.

==

Package Arch Version Repository Size

==

Installing:

dkms noarch 2.3-5.20170523git8c3065c.fc25 updates 81 k

kernel-devel x86_64 4.11.3-202.fc25 updates 11 M

patch x86_64 2.7.5-3.fc24 fedora 125 k

Transaction Summary

==

Install 3 Packages

Total download size: 12 M

Approve the operation by Installed size: 43 M

typing y before it will run. Is this ok [y/N]: y

Downloading Packages:

(1/3): dkms-2.3-5.20170523git8c3065c.fc25.noarc 382 kB/s | 81 kB 00:00

(2/3): patch-2.7.5-3.fc24.x86_64.rpm 341 kB/s | 125 kB 00:00

(3/3): kernel-devel-4.11.3-202.fc25.x86_64.rpm 2.4 MB/s | 11 MB 00:04

Total 1.8 MB/s | 12 MB 00:06

[...]

Running transaction

Installing : kernel-devel-4.11.3-202.fc25.x86_64 1/3

Installing : dkms-2.3-5.20170523git8c3065c.fc25.noarch 2/3

Installing : patch-2.7.5-3.fc24.x86_64 3/3

Verifying : patch-2.7.5-3.fc24.x86_64 1/3

Verifying : kernel-devel-4.11.3-202.fc25.x86_64 2/3

Verifying : dkms-2.3-5.20170523git8c3065c.fc25.noarch 3/3

Installed:

dkms.noarch 2.3-5.20170523git8c.fc25 kernel-devel.x86_64 4.11.3-202.fc25

patch.x86_64 2.7.5-3.fc24

Complete!

A quick review of the successful operation

It’s been a bit of a journey, but you’re finally ready to install VirtualBox itself on your
Red Hat, CentOS, or Fedora machine. The version number I used in this example
came from the online guide used earlier. Naturally, by the time you get to try this out,
it may no longer be 5.1.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

32 CHAPTER 2 Linux virtualization: Building a Linux working environment

DNF is obviously satisfied with the
dependencies installed earlier.

dnf install VirtualBox-5.1

Last metadata expiration check: 0:00:31 ago on Tue Jun 13 13:43:31 2017.

Dependencies resolved.

==

Package Arch Version Repository Size

==

Installing:

SDL x86_64 1.2.15-21.fc24 fedora 213 k

VirtualBox-5.1 x86_64 5.1.22_115126_fedora25-1 virtualbox 68 M

python-libs x86_64 2.7.13-2.fc25 updates 6.2 M

qt5-qtx11extras x86_64 5.7.1-2.fc25 updates 30 k

Transaction Summary

==

Install 4 Packages

[...] Returns a list of all the packages that
Is this ok [y/N]: y will be installed in this operation
[...]
Creating group 'vboxusers'. VM users must be member

➥ of that group! Note that the process created a
[...]
 new system group. I’ll talk about
Installed:
 groups in chapter 9.

SDL.x86_64 1.2.15-21.fc24

VirtualBox-5.1.x86_64 5.1.22_115126_fedora25-1

python-libs.x86_64 2.7.13-2.fc25

qt5-qtx11extras.x86_64 5.7.1-2.fc25

Complete!

VirtualBox add-ons
You should be aware that Oracle provides an Extension Pack for VirtualBox that adds
features like USB support, disk encryption, and some alternatives to the existing boot
options. Take those tools into account should you ever hit a dead end running the
standard package.

You can also add extra file system and device integration between VirtualBox VMs and
their host through the VBox Guest Additions CD-ROM image. This provides you with fea­
tures like a shared clipboard and drag and drop. If the Vbox additions aren’t already
available through your host, install the Extension Pack on Ubuntu using this command:

sudo apt install virtualbox-guest-additions-iso

And then add it as a virtual optical drive to your running VM. Search online documen­
tation concerning any extra packages that might be necessary for this to work on your
host OS.

Before moving on to actually using virtualization tools like VirtualBox, I should leave
you with at least a hint or two for tracking down other repository packages you might
need. APT systems let you directly search for available packages using apt search.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

33 Working with VirtualBox

This example searches for packages that might help you monitor your system health
and then uses apt show to display full package information:

$ apt search sensors

$ apt show lm-sensors

The aptitude program, when installed, is a semi-graphic shell environment where you
can explore and manage both available and already installed packages. If you can’t
live without your mouse, Synaptic is a full GUI package manager for desktop environ­
ments. And the Yum world is also fully searchable:

$ yum search sensors

$ yum info lm_sensors

2.2.2 Defining a virtual machine (VM)

I’m not sure whether you’ve ever put together a physical computer from components,
but it can get involved. Defining a new VM within VirtualBox works pretty much the
same way. The only significant difference is that, rather than having to get down on
your hands and knees with a flashlight clenched between your teeth to manually add
RAM and a storage drive to your box, VirtualBox lets you define your VM’s “hardware”
specs by clicking your mouse.

 After clicking New in the VirtualBox interface, you’ll give the VM you’re about to
build a descriptive name. As you can see in figure 2.7, the software should be able to
correctly populate the Type and Version fields automatically. The Type and Version
you select here won’t install an actual OS, but are used to apply appropriate hardware
emulation settings.

The New
VM button

VirtualBox
 will try to
guess the
OS you’re
building.

Figure 2.7 The Create Virtual Machine dialog: VirtualBox will try to approximate your OS and OS
version to offer intelligent default choices later.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

34 CHAPTER 2 Linux virtualization: Building a Linux working environment

On the next screen, you’ll allocate RAM to your VM. Unless you’re planning some­
thing particularly demanding, like hosting a container swarm or running a busy web
server, the default amount (768 MB) should be fine. You can certainly give it more
RAM if necessary, but don’t forget to leave enough for your host machine and any
other VMs that might already live on it. If your host only has 4 GB of physical RAM,
you probably won’t want to give half of that to your VM.

 Keep these limits in mind if you eventually decide to run multiple VMs at a time,
something that will be useful for some of the projects you’ll attempt later in the book.
Even if each VM is only using the default amount of memory, two or three of them can
start to eat away at the RAM needed for normal host operations.

 The VirtualBox setup process now asks if you’d like to create a new virtual disk for
your VM or use one that already exists (figure 2.8). What’s a computer without a hard
disk? There may be times when you want to share a single disk between two VMs, but
for this exercise I’m guessing that you’ll want to start from scratch. Select Create a Vir­
tual Hard Disk Now.

Figure 2.8 The Hard Disk screen. Note how, in this case, the non-default
Use an Existing Virtual Hard Disk File radio button is selected.

The next screen (figure 2.9) lets you choose a hard disk file-type format for the disk
you’re about to create. Unless you’re planning to eventually export the disk to use
with some other virtualization environment, the default VirtualBox Disk Image (VDI)
format will work fine.

 I’ve also never regretted going with the default Dynamically Allocated option (fig­
ure 2.10) to determine how the virtual drive will consume space on the host. Here
dynamic means space on the host storage disk will be allocated to the VM only as
needed. Should the VM disk usage remain low, less host space will be allocated.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

35 Working with VirtualBox

Figure 2.9 Virtual hard disks can be created using a number of formats.
VDI is fine for VMs that will be used only within VirtualBox.

Figure 2.10 Dynamically allocated virtual disks will only consume
as much space on their host’s devices as they need.

A fixed-sized disk, on the other hand, will be given its maximum amount of space
right away, regardless of how much it’s actually using. The only advantage of Fixed
Size is application performance. Because I generally only use VirtualBox VMs for test­
ing and experiments, I’m fine avoiding the trade-off.

 Because it knows it’s Linux you’re after, and because Linux makes such efficient
use of storage space, VirtualBox will probably offer you only 8 GB of total disk size on
the next screen (figure 2.11). Unless you’ve got unusually big plans for the VM (like,
say, you’re going to be working with some serious database operations), that will

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

36 CHAPTER 2 Linux virtualization: Building a Linux working environment

Figure 2.11 If necessary, your virtual disk can be as large as 2 TB

or the maximum free space on the host device.

probably be fine. On the other hand, if you had chosen Windows as your OS, the
default choice would have been 25 GB—and for good reason: Windows isn’t shy
about demanding lots of resources. That’s a great illustration of one way Linux is so
well suited to virtual environments.

NOTE You can, if you like, also edit the name and location VirtualBox will use
for your disk on the File Location and Size screen.

When you’re done, click Create, and the new VM will appear in the list of VMs on the
left side of the VirtualBox manager. But you’re not done: that was the machine. Now
you’ll need an OS to bring it to life.

2.2.3 Installing an operating system (OS)

Now that you’ve defined your new VM’s virtual hardware profile, here’s what you’ll
still need to do:

1 Download a file (in ISO format) containing the image of the Linux distribution
you want to use.

2 Boot the new VM using a virtual DVD drive containing the ISO you downloaded.
3 Work through the standard OS installation process.
4 Boot the VM and launch the OS you installed previously.

Once you’ve settled on a distribution, you’ll need to download an .ISO file containing
the OS files and installation program. Finding the right file is usually a matter of
searching the internet for the distribution name and the word download. In the case of
Ubuntu, you could alternatively go to the https://ubuntu.com page and click the
Downloads tab as you see in figure 2.12. Notice the various flavors of Ubuntu that are

www.itbook.store/books/9781617294938

https://ubuntu.com
https://itbook.store/books/9781617294938

37 Working with VirtualBox

Figure 2.12 The Downloads drop-down on the home page of Ubuntu.com. Note the range of versions
Ubuntu offers.

available. If you’re going to be using this VM for administration tasks, then the small
and fast Server version is probably a better choice than Desktop.

 Large files can sometimes become corrupted during the download process. If even
a single byte within your .ISO has been changed, there’s a chance the installation
won’t work. Because you don’t want to invest time and energy only to discover that
there was a problem with the download, it’s always a good idea to immediately calcu­
late the checksum (or hash) for the .ISO you’ve downloaded to confirm that every­
thing is as it was. To do that, you’ll need to get the appropriate SHA or MD5
checksum, which is a long string looking something like this:

4375b73e3a1aa305a36320ffd7484682922262b3

You should be able to get this string from the same place you got your .ISO. In the case
of Ubuntu, that would mean going to the web page at http://releases.ubuntu.com/,
clicking the directory matching the version you’ve downloaded, and then clicking one
of the links to a checksum (like, for instance, SHA1SUMS). You should compare the
appropriate string from that page with the results of a command run from the same
directory as your downloaded .ISO, which might look like this:

$ shasum ubuntu-16.04.2-server-amd64.iso

If they match, you’re in business. If they don’t (and you’ve double-checked to make
sure you’re looking at the right version), then you might have to download the .ISO a
second time.

www.itbook.store/books/9781617294938

http://releases.ubuntu.com/
http:Ubuntu.com
https://itbook.store/books/9781617294938

38 CHAPTER 2 Linux virtualization: Building a Linux working environment

NOTE You should be aware that there’s more than one kind of hash. For

many years, the MD5SUM algorithm was dominant, but SHA256 (with its lon­
ger 256-bit hashes) has been gaining in popularity. Practically, for large OS

image files, one approach is probably no worse than the other.

Once your .ISO file is in place, head back to VirtualBox. With the VM you just created
highlighted in the left panel, click the green Start button at the top of the app. You’ll
be prompted to select a .ISO file from your file system to use as a virtual DVD drive.
Naturally, you’ll choose the one you downloaded. The new VM will read this DVD and
launch an OS installation.

 Most of the time the installation process will go fine; however, including solutions
to each of the many small things that could go wrong would require a couple of full
chapters. If you do have trouble, you can consult the documentation and guides that
are available for each Linux distro, or post your question on the Linux in Action forum
on the Manning website and let the rest of us help.

 When everything is nicely installed, there still might be a few more things to take
care of before you can successfully boot into your VM. With your VM highlighted,
click the yellow Settings icon. Here’s where you can play with your VM’s environ­
ment and hardware settings. Clicking Network, for example, allows you to define
network connectivity. If you want your VM to have full internet access through the
host machine’s network interface, then, as shown in figure 2.13, you can select
Bridged Adapter from the Attached To drop-down and then select the name of your
host’s adapter.

NOTE Using a bridged adapter might not always be your first choice, and it
might sometimes present a security risk. In fact, choosing NAT Network is a
more common way to provide a VM with internet access. Because many of the
exercises in this book require network connectivity between multiple VMs
(something that’s complicated using NAT), I’ll go with a bridge for now.

Figure 2.13 The Network tab of the Settings dialog where you can
determine what type of network interface (or interfaces) to use for your VM

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

39 Working with VirtualBox

Figure 2.14 Remove a virtual disk by right-clicking its link and selecting Remove.

You may need to do this to ensure that the VM boots to the right drive.

You may never need this next piece of information, but you’ll appreciate knowing
about it if you do. In some cases, to get the VM to boot properly, you’ll also need to
remove the DVD from the drive, like you would for a “real” physical installation. You
do that by clicking Storage. Click the first disk listed and then the Remove Disk icon at
the bottom (figure 2.14). Make sure you don’t accidentally remove your hard disk!

 It’s also possible that you might sometimes need to mount a DVD (or .ISO file) to
get VirtualBox to recognize it. Clicking the + icon with the Controller:IDE line high­
lighted lets you select a file to serve as a virtual optical drive.

2.2.4 Cloning and sharing a VirtualBox VM

This section is a bit bonus-y, but who doesn’t like free stuff? I’m going to tell you about
two related tricks: how to organize your VirtualBox VMs to make spinning up new
ones as quick as possible and how to use the command line to share VMs across a
network.

CLONING VMS FOR QUICK STARTS

One of the most obvious advantages of working with VMs is the ability to quickly
access a fresh, clean OS environment. But if accessing that environment requires
going through the full install process, than I don’t see a whole lot of quickly, until you
throw cloning into the mix. Why not keep your original VM in its clean post-install
state and create an identical clone whenever you want to do some real work?

 That’s easy. Take another look at the VirtualBox app. Select the (stopped) VM you
want to use as a master copy, click the Machine menu link, and then click Clone.
You’ll confirm the name you’d like to give your clone and then, after clicking Next,
whether you want to create a Full Clone (meaning entirely new file copies will be cre­
ated for the new VM) or Linked Clone (meaning the new VM will share all the base
files with its master while maintaining your new work separately).

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

40 CHAPTER 2 Linux virtualization: Building a Linux working environment

NOTE Selecting the Linked option will go much faster and take up much less
room on your hard disk. The only downside is that you’ll be unable to move
this particular clone to a different computer later. It’s your choice.

Now click Clone, and a new VM appears in the VM panel. Start it the way you normally
would, and then log in using the same credentials you set on the master.

MANAGING VMS FROM THE COMMAND LINE

VirtualBox comes with its own command-line shell that’s invoked using vboxmanage.
Why bother with the command line? Because, among other benefits, it allows you to
work on remote servers, which can greatly increase the scope of possible projects. To
see how vboxmanage works, use list vms to list all the VMs currently available on your
system:

$ vboxmanage list vms

"Ubuntu-16.04-template" {c00d3b2b-6c77–4919–85e2–6f6f28c63d56}

"centos-7-template" {e2613f6d-1d0d-489c-8d9f-21a36b2ed6e7}

"Kali-Linux-template" {b7a3aea2–0cfb-4763–9ca9–096f587b2b20}

"website-project" {2387a5ab-a65e-4a1d-8e2c-25ee81bc7203}

"Ubuntu-16-lxd" {62bb89f8–7b45–4df6-a8ea-3d4265dfcc2f}

vboxmanage clonevm will pull off the same kind of clone action I described previously
using the GUI. Here, I’m making a clone of the Kali Linux template VM, naming the
copy newkali:

$ vboxmanage clonevm --register Kali-Linux-template --name newkali

You can verify that worked by running vboxmanage list vms once again.
 That will work nicely as long as I only need to use the new VM here on my local

computer. But suppose I wanted other members of my team to be able to run an exact
copy of that VM, perhaps so they could test something I’ve been working on. For that,
I’ll need to convert the VM to some standardized file format. Here’s how I might
export a local VM to a file using the Open Virtualization Format:

$ vboxmanage export website-project -o website.ova
 The -o flag specifies
0%…10%…20%…30%…40%…50%…60%…70%…80%…90%…100%
 the output filename:
Successfully exported 1 machine(s).
 website.ova, in this case.

Next, you’ll need to copy the .OVA file to your colleague’s computer. Bear in mind
that the file won’t, by any standard, be considered small and dainty. If you haven’t got
network bandwidth to spare for a multiple-GB transfer, then consider moving it via a
USB device. But if you do take the network route, the best tool for the job is Secure
Copy (scp). Here’s how that might work:

$ scp website.ova username@192.168.0.34:/home/username

www.itbook.store/books/9781617294938

mailto:username@192.168.0.34:/home/username
https://itbook.store/books/9781617294938

41 Working with Linux containers (LXC)

If that whole scp thing seems a bit out-of-the-blue, don’t worry: help is on the way. The
scp command will be fully covered in chapter 3 as part of the OpenSSH content. In
the meantime, that scp command will only work if OpenSSH is installed on both com­
puters, you’ve authorized access to the username account on the remote computer,
and it’s reachable from your local machine.

 Once the transfer is complete, all that’s left is, from the remote computer, to
import the VM into that machine’s VirtualBox. The command is simple:

$ vboxmanage import website.ova

Confirm that the import operation worked using list vms, and try launching the VM
from the desktop:

$ vboxmanage list vms

"website" {30ec7f7d-912b-40a9–8cc1-f9283f4edc61}

If you don’t need fancy remote access, you can also share a VM from the GUI. With
the machine you want to share highlighted, click the File menu in VirtualBox and
then Export Appliance.

2.3 Working with Linux containers (LXC)
VirtualBox is great for running operations requiring Linux kernel access (the way you
would if you were using security features like SELinux, as you’ll see in chapter 9), for
when you need GUI desktop sessions, or for testing operating systems like Windows.
But if you need fast access to a clean Linux environment and you’re not looking for
any special release version, then you’d be hard pressed to beat LXC.

NOTE Like any complex system, LXC might not work well with all hardware
architectures. If you have trouble launching a container, consider the possi­
bility that there might be a compatibility issue. The internet, as always should
be a helpful source of deeper information.

How fast are LXC containers? You’ll see for yourself soon enough. But because they
skillfully share many system resources with both the host and other containers, they
work like full-bore, standalone servers, using only minimal storage space and memory.

2.3.1 Getting started with LXC

Install LXC on your Ubuntu workstation? Piece of cake:

apt update

apt install lxc

Now how about on CentOS? Well, the cake is still there, but eating it will take a bit
more work. That’s partly because Ubuntu was built for and on Ubuntu and Debian. By
all means, give it a shot on CentOS, but I won’t guarantee success. You’ll first need to

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

42 CHAPTER 2 Linux virtualization: Building a Linux working environment

add a new repository, Extra Packages for Enterprise Linux (EPEL), and then install
LXC along with some dependencies:

yum install epel-release

yum install lxc lxc-templates libcap-devel \

libcgroup busybox wget bridge-utils lxc-extra libvirt

The backslash character (\) can
be used to conveniently break a
long command into multiple
lines on the command line.

That’s it. You’re ready to get down to business. The basic LXC skill set is actually quite
simple. I’m going to show you the three or four commands you’ll need to make it all
work, and then an insider tip that, once you understand how LXC organizes itself, will
blow you away.

2.3.2 Creating your first container

Why not dive right in and create your first container? The value given to -n sets the
name you’ll use for the container, and -t tells LXC to build the container with the
Ubuntu template:

The create process can take a few minutes
to complete, but you’ll see verbose output

lxc-create -n myContainer -t ubuntu
 and, eventually, a success notification
displayed to the terminal.

NOTE You’ll probably start seeing references to an alternate set of lxc com­
mands associated with the relatively new LXD container manager. LXD still
uses LXC tools under the hood but through a slightly different interface. As
an example, using LXD the previous command would look like this: lxc
launch ubuntu:16.04 myContainer. Both command sets will continue to be
widely available.

There are actually quite a few templates available, as you can see from this listing of
the /usr/share/lxc/templates/ directory:

$ ls /usr/share/lxc/templates/

lxc-alpine lxc-centos lxc-fedora lxc-oracle lxc-sshd
lxc-altlinux lxc-cirros lxc-gentoo lxc-plamo lxc-ubuntu
lxc-archlinux lxc-debian lxc-openmandriva lxc-slackware lxc-ubuntu-cloud
lxc-busybox lxc-download lxc-opensuse lxc-sparclinux

WARNING Not all of these templates are guaranteed to work right out of the

box. Some are provided as experiments or works in progress. Sticking with the

Ubuntu template on an Ubuntu host is probably a safe choice. As I noted, his­
torically, LXC has always worked best on Ubuntu hosts. Your mileage may

vary when it comes to other distros.

If you decided to create, say, a CentOS container, then you should make a note of the
final few lines of the output, as it contains information about the password you’d use
to log in:

www.itbook.store/books/9781617294938

http:ubuntu:16.04
https://itbook.store/books/9781617294938

43 Working with Linux containers (LXC)

In this example, I called the
container centos_lxc and

used the centos template.
lxc-create -n centos_lxc -t centos

[...]

The temporary root password is stored in:

'/var/lib/lxc/centos_lxc/tmp_root_pass'

The root password is
located in a directory
named after the
container.

You’ll log in using the user name root and the password contained in the tmp_root_pass
file. If, on the other hand, your container uses the Ubuntu template, then you’ll use
ubuntu for both your user name and password. Naturally, if you plan to use this container
for anything serious, you’ll want to change that password right away:

$ passwd

Changing password for ubuntu.

(current) UNIX password:

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

By the way, that command is, in fact, passwd and not password. My guess is that the
creator of the passwd program didn’t like typing. Now use lxc-ls --fancy to check
the status of your container:

lxc-ls --fancy

NAME STATE AUTOSTART GROUPS IPV4 IPV6

myContainer STOPPED 0 - - ­

Well, it exists, but apparently it needs starting. As before, the -n specifies by name the
container you want to start. The -d stands for detach, meaning you don’t want to be
automatically dropped into an interactive session as the container starts. There’s noth­
ing wrong with interactive sessions: some of my best friends are interactive sessions, in
fact. But in this case, running the lxc-start command without -d would mean that
the only way to get out would involve shutting down the container, which might not be
what you’re after:

lxc-start -d -n myContainer

Listing your containers should now display something like this:

lxc-ls --fancy

The container state NAME STATE AUTOSTART GROUPS IPV4 IPV6

is now RUNNING. myContainer RUNNING 0 - 10.0.3.142 ­

This time, the container is running and has been given an IP address (10.0.3.142). You
could use this address to log in using a secure shell session, but not before reading

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

44 CHAPTER 2 Linux virtualization: Building a Linux working environment

chapter 3. For now, you can launch a root shell session within a running container using
lxc-attach:

Note the information in the # lxc-attach -n myContainer

new command prompt. root@myContainer:/#

You might want to spend a couple of minutes checking out the neighborhood. For
instance, ip addr will list the container’s network interfaces. In this case, the eth0
interface has been given an IP address of 10.0.3.142, which matches the IPV4 value
received from lxc-ls --fancy earlier:

root@myContainer:/# ip addr

eth0 is, in this case, 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue

the designation for

➥ state UNKNOWN group default qlen 1
the container’s link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

primary network
inet 127.0.0.1/8 scope host lo
 interface.

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

10: eth0@if11: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue

➥	 state UP group default qlen 1000
link/ether 00:16:3e:ab:11:a5 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.0.3.142/24 brd 10.0.3.255 scope global eth0

valid_lft forever preferred_lft forever
 The container’s IP
inet6 fe80::216:3eff:feab:11a5/64 scope link
 address (10.0.3.142)

valid_lft forever preferred_lft forever
 and CIDR netmask (/24)

When you’re done looking around your new container, you can either run exit to log
out leaving the container running

root@myContainer:/# exit

exit

or shut down the container using shutdown -h now. But before you do that, let’s find
out how blazing fast LXC containers are. The -h flag I added to shutdown before
stands for halt. If I used r instead, rather than shutting down for good, the container
would reboot. Let’s run reboot and then try to log in again right away to see how long
it takes for the container to get back up on its feet:

root@myContainer:/# shutdown -r now

lxc-attach -n myContainer

How did that go? I’ll bet that by the time you managed to retype the lxc-attach com­
mand, myContainer was awake and ready for action. Did you know that pressing the
up arrow key in Bash will populate the command line with the previous command?
Using that would make it even faster to request a log in. In my case, there was no
noticeable delay. The container shut down and fully rebooted in less than 2 seconds!

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

45 Working with Linux containers (LXC)

NOTE LXC containers are also easy on system resources. Unlike my experi­
ence with VirtualBox VMs, where running three concurrently already starts to

seriously impact my 8 GB host workstation performance, I can launch all

kinds of LXC containers without suffering a slowdown.

What’s that you say? How about that insider tip I promised you? Excellent. I can see
you’re paying attention. Well, back in a terminal on the host machine (as opposed to
the container), you’ll need to open an administrator shell using sudo su. From here
on, until you type exit, you’ll be sudo full time:

$ sudo su

[sudo] password for username:

#

Now change directory to /var/lib/lxc/, and list the contents. You should see a direc­
tory with the name of your container. If you’ve got other containers on the system,
they’ll have their own directories as well:

cd /var/lib/lxc

ls

myContainer

Move to your container directory, and list its contents. There’ll be a file called config
and a directory called rootfs (the fs stands for file system):

cd myContainer

ls

config rootfs

Feel free to take a look through config: that’s where the basic environment values for
the container are set. Once you’re a bit more comfortable with the way LXC works,
you’ll probably want to use this file to tweak the way your containers behave. But it’s
the rootfs directory that I really wanted to show you:

cd rootfs

ls

bin dev home lib64 mnt proc run srv tmp var

boot etc lib media opt root sbin sys usr

All those subdirectories that fill rootfs, do they look familiar to you? They’re all part of
the Linux Filesystem Hierarchy Standard (FHS). This is the container’s root (/) direc­
tory but within the host’s file system. As long as you have admin permissions on the
host, you’ll be able to browse through those directories and edit any files you want—
even when the container isn’t running.

 You’ll be able to do all kinds of things with this access, but here’s one that can
quite possibly save your (professional) life one day. Suppose you lock yourself out on a
container. Now there’s nothing stopping you from navigating through the file system,

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

46 CHAPTER 2 Linux virtualization: Building a Linux working environment

fixing the configuration file that you messed up, and getting back to work. Go ahead,
tell me that’s not cool. But it gets better.

 It’s true that the Docker ecosystem has gained many layers of features and sophisti­
cation since the technology moved out from under LXC’s shadow some years ago.
Under the hood, however, it’s still built on top of a basic structural paradigm that will
be instantly recognizable to anyone familiar with LXC. This means, should you be
inclined to test the waters with the fastest-growing virtualization technology of the
decade, you’ve already got skin in the game.

Summary
 Hypervisors like VirtualBox provide an environment where virtual operating

systems can safely access hardware resources, whereas lightweight containers
share their host’s software kernel.

 Linux package managers like APT and RPM (Yum) oversee the installation and
administration of software from curated online repositories using a regularly
updated index that mirrors the state of the remote repository.

 Getting a VM going in VirtualBox requires defining its virtual hardware envi­
ronment, downloading an OS image, and installing the OS on your VM.

 You can easily clone, share, and administer VirtualBox VMs from the command
line.

 LXC containers are built on predefined, distribution-based templates.
 LXC data is stored within the host file system, making it easy to administer

containers.

Key terms
 Virtualization is the logical sharing of compute, storage, and networking

resources among multiple processes, allowing each to run as if it was a stand­
alone physical computer.

 A hypervisor is software running on a host machine that exposes system
resources to a guest layer, allowing the launching and administration of full-
stack guest VMs.

 A container is a VM that, instead of full-stack, lives on top of (and shares) the
host machine’s core OS kernel. Containers are extremely easy to launch and
kill, according to short-term need.

 A dynamically allocated virtual drive in VirtualBox takes up only as much space on
your physical drives as the VM actually uses. A fixed-size disk, by contrast, takes
up the maximum space no matter how much data is there.

 A software repository is a location where digital resources can be stored. Reposi­
tories are particularly useful for collaboration and distribution of software
packages.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

47 Test yourself

Security best practices
 Allowing an official package manager to install and maintain the software on

your Linux system is preferred over doing it manually. Online repositories are
much more secure, and downloading is properly encrypted.

 Always scan the checksum hashes of downloaded files against the correct hash
strings, not only because packages can be corrupted during download, but
because they can also sometimes be switched by man-in-the-middle attackers.

Command-line review
 apt install virtualbox uses APT to install a software package from a remote

repository.
 dpkg -i skypeforlinux-64.deb directly installs a downloaded Debian package

on a Ubuntu machine.
 wget https://example.com/document-to-download uses the wget command-

line program to download a file.
 dnf update, yum update, or apt update syncs the local software index with

what’s available from online repositories.
 shasum ubuntu-16.04.2-server-amd64.iso calculates the checksum for a

downloaded file to confirm that it matches the provided value. This means that
the contents haven’t been corrupted in transit.

 vboxmanage clonevm Kali-Linux-template --name newkali uses the vboxman­
age tool to clone an existing VM.

 lxc-start -d -n myContainer starts an existing LXC container.
 ip addr displays information on each of a system’s network interfaces (includ­

ing their IP addresses).
 exit leaves a shell session without shutting down the machine.

Test yourself
1	 Which of the following is a quality shared by both containers and hypervisors?

a They both allow VMs to run independently of the host OS.
b They both rely on the host’s kernel for their basic operations.
c They both permit extremely lightweight VMs.
d They both permit extremely efficient use of hardware resources.

2	 Which of the following is not the responsibility of a Linux package manager?
a Sync the local index with remote repositories.
b Scan installed software for malware.
c Apply updates to installed software.
d Ensure all package dependencies are installed.

www.itbook.store/books/9781617294938

https://example.com/document-to-download
https://itbook.store/books/9781617294938

48 CHAPTER 2 Linux virtualization: Building a Linux working environment

3	 Which of the following commands would you use to directly install a down­
loaded software package on a Ubuntu system?
a dpkg -i

b dnf --install

c
 apt install

d yum -i

4	 When creating a VM on VirtualBox, which of the following steps comes first?
a Select a hard disk file type.
b Choose between Dynamically Allocated and Fixed Size.
c Remove the virtual DVD from the drive.
d Configure the network interface.

5	 Which of the following formats can be used for OS images?

a VDI

b VMI

c ISO

d VMDK

6	 Which of the following commands would you use to save a VM to a .OVA for­
matted file?
a vboxmanage export

b vboxmanage clonevm

c vboxmanage import

d vboxmanage clone-ova

7	 Which of the following LXC command-line flags will start a container without
automatically opening a new shell session?
a lxc-start -t

b lxc-start -a

c lxc-start -d

d lxc-start -n

8	 By default, in which of the following directories will you find a container’s file
system?
a /usr/share/lxc/
b /etc/share/lxc/
c /usr/lib/lxc/

d /var/lib/lxc/

Answer key

1. d, 2. b, 3. a, 4. a, 5. c, 6. a, 7. c, 8. d

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

LINUX

Linux IN ACTION
David Clinton

Y
ou can’t learn anything without getting your hands
dirty—including Linux. Skills like securing fi les, folders,
and servers, safely installing patches and applications, and

managing a network are required for any serious user, includ­
ing developers, administrators, and DevOps professionals.
With this hands-on tutorial, you’ll roll up your sleeves and
learn Linux project by project.

Linux in Action guides you through 12 real-world projects,
including automating a backup-and-restore system, setting
up a private Dropbox-style file cloud, and building your own
MediaWiki server. You’ll try out interesting examples as you
lock in core practices like virtualization, disaster recovery,
security, backup, DevOps, and system troubleshooting.
Each chapter ends with a review of best practices, new terms,
and exercises.

What’s Inside
● Setting up a safe Linux environment
● Managing secure remote connectivity
● Building a system recovery device
● Patching and upgrading your system

No prior Linux admin experience is required.

David Clinton is a certified Linux Server Professional, seasoned
instructor, and author of Manning’s bestselling Learn Amazon
Web Services in a Month of Lunches.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/linux-in-action

See first page

“An essential guide to under­
standing Linux—with plenty

of real-world examples.
—Dario Victor Durán ”

HiQ Stockholm

“Teaches a wide variety

of Linux features that will

make your life that

 much easier. Practical.”
 —Jens Christian B. Madsen

IT Relation

“The go-to book for Linux

system administration.”
 —Gustavo Patino

Oakland University William

Beaumont School of Medicine

“Everything you need to

start maintaining Linux. It’s

not about how to use Linux,

but how to take care of it.”
 —Maciej Jurkowski, Grupa Pracuj

M A N N I N G $39.99 / Can $52.99 [INCLUDING eBOOK]

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

