
David Clinton

SAMPLE CHAPTER

M A N N I N G

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

Linux in Action

by David Clinton

Chapter 9

Copyright 2018 Manning Publications

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

brief contents

1 ■ Welcome to Linux 1

2 ■ Linux virtualization: Building a Linux working

3 ■ Remote connectivity: Safely accessing networked

4 ■ Archive management: Backing up or copying entire file

5 ■ Automated administration: Configuring automated offsite

8 ■ Networked file sharing: Building a Nextcloud file-sharing

10 ■ Securing network connections: Creating a VPN or

environment 22

machines 49

systems 68

backups 90

6 ■ Emergency tools: Building a system recovery device 109

7 ■ Web servers: Building a MediaWiki server 130

server 155

9 ■ Securing your web server 174

DMZ 203

11 ■ System monitoring: Working with log files 229

12 ■ Sharing data over a private network 251

13 ■ Troubleshooting system performance issues 268

iii

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

iv BRIEF CONTENTS

14 ■ Troubleshooting network issues 289

15 ■ Troubleshooting peripheral devices 308

16 ■ DevOps tools: Deploying a scripted server environment

using Ansible 322

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

Securing your web server

This chapter covers
 Securing your infrastructure

 Controlling access to your server using firewalls

 Using encryption to protect your data

 Tightening the authentication process

 Controlling software and processes

The web part of web server is a bit misleading. After all, most of the security tools I’m
going to discuss in this chapter are important no matter what kind of server you’re
running. In fact, server is also kind of redundant, as all computers need securing.
Still, because by definition they’re exposed to significant external traffic, the secu
rity of your web servers should be a particularly high priority. So the best way to test
the things you’re going to learn about in this chapter is to have an Apache web
server running. Consider putting one together right now: apt install apache2.

 In an IT context, security is the protection of hardware, software, data, and digi
tal services from unauthorized access and corruption. Given that networked com
puter resources are designed to be exposed to client users of one sort or another,
ensuring that only the right clients are able to perform only the right operations is
a challenge.

174

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

175 The obvious stuff

 You can think of security as the fine art of balancing value against risk. When you
consider how many kinds of security threats already exist, and how frequently new
ones appear, you’ll probably understand that the balance will never be perfect. It will
most certainly need to be reassessed often.

 There’s no single tool or practice that can cover every aspect of security. Although it’s
not a bad idea to build yourself a checklist of key security to-dos, that’s not enough. The
most successful administrators I’ve known were all deeply skilled and knowledgeable, and
they also seemed to share a particular attitude: no software, vendor, government agency,
co-worker, or even close friend can ever be completely trusted. They may mean you no
harm, but it’s too easy to make a mistake and leave an important window open to attack.
Everything and everyone can use a second pair of eyes and some double checking.

 What can you do to secure your servers? It’s really about the small things. Lots and
lots of small things. So many, in fact, that a couple of them are going to spill over into
the next chapter. In this chapter, however, we’ll begin with some basics before diving
into using firewalls to control network access, protecting website data transfers with
SSL/TLS encryption, and limiting what can be done with server resources through
the strategic use of tools like Security-Enhanced Linux (SELinux) and system groups.

9.1 The obvious stuff
Let’s start by picking some low-hanging fruit. A lot of security is common sense, con
sidering the many security best practices you’ve seen so far in this book. But, simple as
it may be, you can’t afford to ignore these basics:

 Back up your data. Today.
No matter what the bad guys do to your server, if you can rebuild it from a

reliable backup, then you’re still in the game. Take another look at chapters 4
and 5 and then script yourself a regular, automated, comprehensive, and verifi
able backup regimen that covers everything of any value that you’ve got. Make
sure that there’s more than one archival version available at all times and that at
least one archive is stored off site.

 Apply all software updates to your system. No excuse.
Oh, there are always excuses: you’re afraid that updates might break some

thing your application depends on or it might require a reboot that could end
up being disruptive. But do it anyway. Don’t get me wrong. I understand that
those are real concerns. It’s that the alternatives are worse. Here’s your friendly
reminder for updating your system:

yum update

Or (on Ubuntu):

apt update

apt upgrade

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

176 CHAPTER 9 Securing your web server

NOTE Don’t forget that package managers only update packages that were

installed through managed repositories. Any applications you added manu
ally will remain unpatched (and potentially unsafe) until you either manually

apply patches or disable them.

You could avoid most of the risk of disruption by building test (or staging) environ
ments (figure 9.1) that run mirror images of your applications that are safely pro
tected from public networks. Applying updates and patches to your staging
infrastructure should give you an excellent idea of how it’ll work in the real world.

 Even better, you could use the infrastructure as the code configuration manage
ment software you’ll see in chapter 16 to automate your whole deployment process.
That way, once you confirm that the staging environment you patched is running
properly, it can become your production infrastructure. But that’s a discussion we’ll
leave until later.

Internet

File system
resources

Application

PHP

Database
(MariaDB)

Apache

Production
environment

Local network

File system
resources

Application

PHP

Database
(MariaDB)

Apache

Staging
 environment

Figure 9.1 You can replicate server infrastructure in a protected staging environment to safely
perform maintenance.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

177 Controlling network access

9.2 Controlling network access
Think of your server’s connection to the network and the big, bad internet beyond as
your first line of defense. Networking protocols are designed to be flexible to help you
closely control what traffic makes it through. The trick is understanding how the pro
tocols work, and then properly using that knowledge to set things up right.

9.2.1 Configuring a firewall

A firewall is a set of rules. When a data packet moves into or out of a protected network
space, its contents (in particular, information about its origin, its target, and the pro
tocol it plans to use) are tested against the firewall rules to see if it should be allowed
through. Here’s a simple example as illustrated in figure 9.2.

 Let’s say that your company’s web server has to be open to incoming web traffic
from anywhere on earth using either the insecure HTTP or secure HTTPS protocol.
Because your developers and admins will need to get into the backend from time to
time to do their work, you’ll also want to allow SSH traffic, but only for those people
who’ll need it. Requests for any other services should be automatically refused. Let’s
see how that’s done.

 A Linux machine can be configured to apply firewall rules at the kernel level through
a program called iptables. Creating iptables rules isn’t all that difficult; the syntax can be
learned without too much fuss. But, in the interest of simplifying your life, many Linux dis
tributions have added their own higher-level tools for abstracting the job. In this section,
you’re going to see CentOS’s firewalld and Ubuntu’s UncomplicatedFirewall (ufw).

 Firewall functionality is also available through hardware appliances manufactured
by companies like Juniper and Cisco. Those proprietary devices run on their own
operating systems with unique syntax and design. For larger enterprise deployments
involving hundreds of servers spread across multiple networks, such tools will often

Only authenticated admins will
be allowed SSH access.

All HTTP users are allowed
web site access.

Firewall

HTTP

Other requests

All other traffic is blocked.

SSH

Internet

File system
resources

Application

PHP

Database
(MariaDB)

Apache

Figure 9.2 A firewall can filter requests based on protocol or target-based rules.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

178 CHAPTER 9 Securing your web server

make a lot of sense, but there’s a remarkable amount that you can accomplish with
any old Linux box for a tiny fraction of the cost. Having said that, this section will
introduce you to only a small subset of the full functionality of Linux firewalls. Natu
rally, if you want to learn more, stick around for a bit more depth in chapter 10 and
consult the usual sources of Linux wisdom, like man files and online guides.

FIREWALLD

As you might have guessed from its name, firewalld is part of the systemd family. fire
walld can be installed on Debian/Ubuntu machines, but it’s there by default on Red
Hat and CentOS. If you’re just too excited by firewalld to even consider trying any
thing else, here’s how to install it and get it running on Ubuntu:

apt update

apt install firewalld

To confirm that the firewall is working, try browsing to your server’s web root. If the
site is unreachable, then firewalld is doing its job.

 You’ll use the firewall-cmd tool to manage firewalld settings from the command
line. Adding the --state argument returns the current firewall status:

firewall-cmd --state

running

A few important terms
To be sure no one’s left out, let’s define a few important terms. The Hypertext Trans
fer Protocol (HTTP) coordinates the exchange of resources between web clients and
web servers over a network. A browser might, for instance, request a web page writ
ten in the Hypertext Markup Language (HTML), to which the server can respond by
transferring the page contents. Metadata (contextual information attached to a
packet) containing information about session status is generated by each data trans
fer event and consumed later by admins trying to figure out what went wrong. The
HTTPS variation of the protocol ensures that data transfers are securely encrypted
using the Transport Layer Security (TLS) protocol.

A packet is a small unit of data that might have been carved out of a larger data file
or archive. After transmission, packets can be reassembled into their original form.
When the Transmission Control Protocol (TCP) is used for a network data transfer,
packets being transferred across a network are checked for errors when received
and, if necessary, resent. Transfers using the User Datagram Protocol (UDP) will com
plete more quickly than TCP but, because they don’t include error correction, they’re
only appropriate for operations that are highly tolerant of error.

By default, firewalld will be active and will reject all incoming traffic with a couple of
exceptions, like SSH. That means your website won’t be getting too many visitors,
which will certainly save you a lot on data transfer costs. As that’s probably not what
you had in mind for your web server, you’ll want to open the HTTP and HTTPS ports

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

179 Controlling network access

that, by convention, are designated as 80 and 443, respectively. firewalld offers two
ways to do that. One is through the --add-port argument that references the port
number directly along with the network protocol it’ll use (TCP in this case). The
--permanent argument tells firewalld to load this rule each time the server boots:

firewall-cmd --permanent --add-port=80/tcp

firewall-cmd --permanent --add-port=443/tcp

The --reload argument will apply those rules to the current session:

firewall-cmd --reload

That approach will work for any complicated or customized configuration you can
come up with. But if you’ve got simpler needs, you can use one of firewalld’s pre
defined values for many of the more commonly used services. Those values are drawn
from the data kept in the /etc/services file.

 The --add-service argument, when it refers to your HTTP and HTTPS services,
would open ports 80 and 443. This may not seem like a big deal in this case, but when
push comes to shove and time is short, are you sure you’ll remember that the default
MySQL port happens to be 3306? Wouldn’t it be easier to just type mysql?

firewall-cmd --permanent --add-service=http

firewall-cmd --permanent --add-service=https

Curious as to the current settings on your firewall? Run --list-services:

firewall-cmd --list-services

dhcpv6-client http https ssh

Assuming you’ve added browser access as described earlier, the HTTP, HTTPS, and
SSH ports are all open, along with dhcpv6-client, which allows Linux to request an
IPv6 IP address from a local DHCP server. You’ll learn more about that in chapter 14.

 You certainly don’t want just anyone getting SSH access to your server, so let’s put
firewalld to work securing it. You’ll restrict SSH access so that only sessions originating
from a particular IP address will be allowed. To do that, I’m going to show you how to
cut off all SSH access and then open it for only a single IP.

NOTE I should warn you that playing around with firewalls while logged in to
an SSH session is a bit dangerous. You could end up locked out of your own
server. If this happens, there are some tricks (coming later in this chapter) for
getting back in. In any case, if you’re using a disposable LXC container or
VM, you shouldn’t have all that much to worry about one way or the other: if
something breaks, destroy it and fire up a clean one.

To shut down the existing SSH access, use --remove-service and then reload fire
walld (--remove-port will work the same way if you’re referring to the port number):

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

180 CHAPTER 9 Securing your web server

firewall-cmd --permanent --remove-service=ssh

success

firewall-cmd --reload

Test your new configuration to make sure it worked. Open a new terminal on any
other machine with network access, and try to log in to your server using SSH. Your
attempt should fail:

Allowing root login via SSH is not a good idea
and can be forbidden in the /etc/ssh/sshd.conf
file through the PermitRootLogin setting with
a value of no.

$ ssh root@192.168.1.22

ssh: connect to host 192.168.1.22 port 22: No route to host

Now, back on your firewalld machine, add a new rule that will accept TCP traffic on
port 22 (the default SSH port), but only from clients using the IP address 192.168.1.5
(or whatever the IP address of your client machine is). The --add-rich-rule argu
ment tells firewall-cmd that this command uses the Rich Language set, a high-level
syntax designed to simplify the creation of complex firewall rules (see http://
mng.bz/872B for more details):

firewall-cmd --add-rich-rule='rule family="ipv4" \

source address="192.168.1.5" port protocol="tcp" port="22" accept'

success

Now try logging in once again from a terminal originating in the specified IP address.
It should work. Because you didn’t make this rule permanent, everything should go
back to normal the next time you boot.

UNCOMPLICATEDFIREWALL (UFW)
Let’s see how you can similarly control SSH access on an Ubuntu machine using ufw.
The ufw program might not come installed on new Ubuntu installations and, in any
case, will be disabled by default, so you’ll want to get it running:

apt install ufw

Because ufw starts with all ports closed, enabling it prevents you from opening a new
SSH session. Any existing sessions shouldn’t be affected but, still, it’s probably a good
idea to add a rule allowing SSH even before enabling ufw:

Use the ufw deny ssh

command to disable SSH.

Starts the firewall. When

ufw allow ssh
 necessary, use the ufw disable
Rules updated
 command to shut down ufw.
ufw enable

Command may disrupt existing ssh connections.

A warning that existing or new Proceed with operation (y|n)?

remote connections might be
affected by this action

www.itbook.store/books/9781617294938

http://mng.bz/872B
http://mng.bz/872B
http://mng.bz/872B
http:192.168.1.22
mailto:root@192.168.1.22
https://itbook.store/books/9781617294938

181 Controlling network access

If you’re running ufw on an LXC container, those commands probably didn’t work.
Instead, this rather frightening error message was probably displayed:

ERROR: initcaps

[Errno 2] modprobe: ERROR: ../libkmod/libkmod.c:586 kmod_search_moddep()

could not open moddep file '/lib/modules/4.4.0-87-generic/modules.dep.bin'

modprobe: FATAL: Module ip6_tables not found in directory

/lib/modules/4.4.0-87-generic

ip6tables v1.6.0: can't initialize ip6tables table `filter':

Table does not exist (do you need to insmod?)

Perhaps ip6tables or your kernel needs to be upgraded.

With IPv6 support disabled on the host system,
you may encounter this error message.

This is related to the fact that LXC containers might not have IPv6 support enabled by
default. Fixing that might be complicated, given that containers lack full access to
their host’s kernel. If you’re not planning to include IPv6 in your network configura
tion (which, in any case, fits the vast majority of use cases), then it’ll be simplest to dis
able IPv6 support in your /etc/default/ufw configuration file by editing the IPV6=yes
line to read IPV6=no.

Listing 9.1 Part of the /etc/default/ufw configuration file

Change the value of IPV6 from yes to no to
disable IPv6 support and avoid the ufw error.

/etc/default/ufw

#

Set to yes to apply rules to support IPv6 (no means only IPv6 on loopback

accepted). You will need to 'disable' and then 'enable' the firewall for

the changes to take affect.

IPV6=no

Set the default input policy to ACCEPT, DROP, or REJECT. Please note that

if you change this you'll most likely want to adjust your rules.

DEFAULT_INPUT_POLICY="DROP"

Set the default output policy to ACCEPT, DROP, or REJECT. Please note that

if you change this you'll most likely want to adjust your rules.

DEFAULT_OUTPUT_POLICY="ACCEPT"

[...]

Enabling ufw, adding a rule for SSH, and running ufw enable should now work:

ufw enable

Command may disrupt existing ssh connections.

Proceed with operation (y|n)? y

Firewall is active and enabled on system startup

ufw allow ssh

Rules updated

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

-- ------ ----

182 CHAPTER 9 Securing your web server

Like firewalld, ufw lets you create rules using either port numbers or service names
(like the ufw allow ssh you just used). The following two commands will open HTTP
and HTTPS access for your web server:

ufw allow 80

ufw allow 443

The ufw status command shows you that the service is running and that the three
rules you need are now active. Go ahead and test this against your web server:

ufw status

Status: active

To Action From

80 ALLOW Anywhere

22 ALLOW Anywhere

443 ALLOW Anywhere

NOTE To properly test web server access through a firewall, don’t forget that
your browser caches page data. This means that the browser might be able to
load a page it’s previously visited even though there’s now a firewall rule that’s
supposed to make that impossible. To make sure you’re testing the current
state of your website, flush the browser cache or refresh your browser page.

One more piece of fine-tuning will limit SSH access to your team members sitting
behind a specific IP address. If it’s safe (meaning your web server isn’t exposed to inter
net traffic right now), it’s a good idea to disable ufw before making these changes. Then
remove your allow-SSH rule using delete 2 (which refers to the rule as the second in
the ufw list) and reopen it only for traffic coming from 10.0.3.1. (In my case, because I
was logging in to the LXC container from my LXC host, that happens to be the IP I’ll
use; your mileage may vary.) Finally, restart ufw and check its new state:

ufw disable

Firewall stopped and disabled on system startup

#

ufw delete 2
 Deletes the second firewall
Rules updated
 rule displayed by ufw status
#

ufw allow from 10.0.3.1 to any port 22
 Permits SSH traffic
Rules updated
 from only the specified
#
 IP and nowhere else
ufw enable

Command may disrupt existing ssh connections.

Proceed with operation (y|n)? y

Firewall is active and enabled on system startup

#

ufw status

Status: active

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

183 Controlling network access

To Action From
- ----- ---
80
443
22

ALLOW
ALLOW
ALLOW

Anywhere
Anywhere
10.0.3.1

A new rule permitting SSH traffic
only from the specified IP

You can test your configuration by logging in from both the machine using the per
mitted IP and from any other machine. The first one should work, but the second one
had better not!

 With that, you’ve now seen how to use both firewalld and ufw to securely configure
access to a simple web server. Even though firewalls can control traffic using any pro
tocol or port, we’ve only covered HTTP, HTTPS, and SSH. It’s worth also mentioning
that, as you’ll see a bit later in this chapter, you can use nonstandard network ports for
your applications.

RECOVERING A LOCKED VM
If you do manage to lock yourself out of an LXC container, you can use chroot (as you
did back in chapter 6) to disable or even reconfigure your firewall. First of all, stop the
container and then run chroot against the rootfs directory that’s within the directory
hierarchy used by your LXC container (/var/lib/lxc/your-container-name/). The
command prompt you’ll get lets you execute commands as if the container was actu
ally running. Now disable ufw or, if you prefer, run the necessary commands to fix the
problem and then exit the chroot shell. When you start the container up again, you
should have SSH access:

Stops a running
LXC container

lxc-stop -n your-container-name

chroot /var/lib/lxc/your-container-name/rootfs/
 Mounts your container’s
ufw disable
 file system as chroot
exit

lxc-start -d -n your-container-name

Closes the chroot shell session

What if it’s a VirtualBox VM that’s locked you out? That’s an easy one: log in through
the original terminal that opened when you launched the VM in the first place. That’s
the equivalent of sitting at a keyboard that’s plugged into a physical server and won’t
require any network connectivity for access.

9.2.2 Using nonstandard ports

One advantage of being able to set network ports by number is that it lets you config
ure applications to use nonstandard ports. You could, for instance, set port 53987 for
SSH rather than 22. The advantage of nonstandard ports it that they let you imple
ment security through obscurity.

 Let me explain. In and of itself, port 53987 isn’t any more secure than port 22:
exploiting it is simply a matter of updating the SSH client with the new setting. But it
can, nevertheless, add a layer of protection.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

184 CHAPTER 9 Securing your web server

 Imagine there’s a hacker poking away at your infrastructure, trying to find a way in.
Perhaps that person has discovered that one of your admins has a bad habit of reusing
the same password for multiple accounts—and one of those accounts has already
been compromised. The hacker has quite a lot of valuable information from that
breach: your server’s IP address (it’s often the same as the one used by your website)
and your admin’s user name and password. Assuming you permit password login to
your SSH accounts (which, as you know from chapter 3, is not a good idea), there’s
nothing stopping the hacker from logging in and injecting some mayhem into your
life. Except no one told the hacker that port 22 is shut tight and SSH access is only
available through some obscure high-range port (like 53987). Because you reset the
default port, you’ve made it a little bit harder to break through your defenses, and
that little bit might one day make a big difference.

 How does it work? First, you’ll need to edit the /etc/ssh/sshd_conf configuration
file on your server (the computer that will host your SSH sessions). The file will con
tain a line that, by default, reads Port 22. You’ll want to edit that to use whichever
port you plan to use.

Listing 9.2 Port setting line from the ssh_d.conf file on an SSH host

What ports, IPs, and protocols we listen for

Port 22

Change this value to the port
number you want to use.

When you’re done, and you’re sure you’ll be able to get back into your server should
your current SSH session go down, restart the SSH service. If you’ve got a firewall
going, you’ll need to tell it to allow access on your new port…that’s coming soon:

systemctl restart ssh

Now, when you want to log in from a remote machine, add -p followed by the new
port number. Your SSH client will then be able to request a session over the new port:

$ ssh -p53987 username@remote_IP_or_domain

If you’re logging in using a different SSH client (like PuTTY), you’ll need to similarly
tell the client about the nonstandard port number. Let’s look at that next.

CONFIGURING A UFW FIREWALL TO ALLOW TRAFFIC THROUGH A NONSTANDARD PORT

Opening up a port by number is fairly straightforward, but you’ll need to explicitly
specify the protocol you’ll be using (TCP or UDP). This example uses the TCP protocol:

ufw allow 53987/tcp

You can also open a range of ports with a single command using the colon (:) charac
ter. This can be useful for infrastructure planning when, say, you know your develop
ers will be pushing out new applications and will need access to multiple ports. Giving

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

185 Encrypting data in transit

them a range to play with now can save time and frustration later. This particular
example opens all the ports between 52900 and 53000:

ufw allow 52900:53000/tcp

Network ports
The 65,535 available network ports are divided into three categories:

 Ports between 1 and 1023 are designated as well-known and have been set
aside for recognized services like SSH (22) and HTTP (80). You should never
use a well-known port number for your own applications, as you’re likely to
cause a conflict.

 Ports between 1024 and 49151 are registered, meaning companies and orga
nizations have requested that specific ports in this range be set aside for their
applications even if they haven’t become universally adopted. Examples of this
are port 1812, which is used for the RADIUS authentication protocol, and 3306,
MySQL’s dedicated port.

 Ports between 49152 and 65535 are unregistered and are considered dynamic
(or private). These ports are available for any temporary or ad hoc use, partic
ularly on private networks. You can be confident that they won’t clash with
known applications or services.

CHOOSING A NONSTANDARD PORT NUMBER

What port number should you choose? Well let’s first of all get one thing clear: you
should never let outsiders (like me) influence such decisions! But, to avoid possible
conflicts with active network applications, you’ll want to stick to values in the unregis
tered range between 49152 and 65535. That should give you enough to work with.

 Working with nonstandard ports is, of course, not only for SSH. You should con
sider using this trick for any application that you’ve either written yourself or can con
trol through configuration files. And remember: like most of the tools in this chapter,
this won’t be all that effective on its own, but it’s a powerful element when used as part
of a larger set of security protocols.

9.3 Encrypting data in transit
For two reasons, website encryption is a really big deal:

 Unencrypted sites dangerously expose their data and place their users at signif
icant risk.

 Unencrypted sites generate significantly less business.

The first problem stems from the fact that unencrypted sites display and handle every
thing in plain text. That means all transfers involving passwords and personal and
financial information (like credit cards) are visible to any curious observer with access
to the network. This is obviously a horrible idea.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

186 CHAPTER 9 Securing your web server

 The second problem is the product of a decision made by Google back in January,
2017. Google decided to penalize unencrypted websites by ranking them lower in inter
net search results. This made it much harder for users to find content that’s not secure.

 Why should Google (along with other powerful internet companies) care? And
why should you care? Because the stability of the internet and everything we all do
with it can’t survive if we can’t trust its content and the way sites handle our private
information. Even if your site doesn’t process credit card purchases, the fact that it’s
unencrypted means that it’s much more likely to be compromised, with its resources
hijacked for use as part of zombie attacks against other sites. Any single weak site
makes the whole internet weaker.

 If you want to secure your website (which is what this chapter is about, after all), then
encryption is a significant part of the process. Mind you, don’t think that encryption
guarantees that your data is safe. It just makes it a great deal more difficult for the wrong
people to get at it. To make this work, you’ll need a certificate, which is a file containing
information identifying the domain, owner, key, and a reliable digital signature.

 Once you have a certificate, browsers can authenticate the security of your site and
exchange only encrypted data throughout a session. All widely used modern browsers
come with public root certificates preinstalled, so they can authenticate connections
with any site using a private Certificate Authority (CA) certificate. Here’s how it works:

1 A client browser requests the server identity so the two can perform a handshake.
2 The server responds by sending a copy of the certificate it received from a CA.
3 The browser compares the certificate against its list of root certificates and con

firms that your certificate hasn’t expired or been revoked.
4 If satisfied, the browser encrypts a symmetric session key using the public key

your server sent, and transmits the key to the server.
5 All transmissions will be encrypted using the session key.

The process is illustrated in figure 9.3.
 Until 2016, generating and then installing encryption certificates from trusted CAs

using the SSL/TLS standard took time and cost money. On Linux, you would use the
OpenSSL command-line interface tool to generate a key pair and then put together a
specially formatted Certificate Signing Request (CSR) package containing the public
half of the pair along with site profile information.

 The CSR would then be sent to a CA. If the request was approved, the CA would
send a certificate for you to install in your file system. You would also need to update

Handshake request

Certificate

Session key
Figure 9.3 The exchange of
identifying data, certificates,

Client Web and session keys for a TLS
server encrypted browser session

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

187 Encrypting data in transit

web server configuration files (/etc/apache2/sites-available/default-ssl.conf, in the
case of Apache on Ubuntu) so the software would know where in your file system the
certificate was kept. That was then.

 Since 2016, Let’s Encrypt has been issuing certificates as a CA for free. Let’s
Encrypt (https://letsencrypt.org) is sponsored by the Electronic Frontier Foundation
along with a large number of corporate partners including Cisco, Chrome, Shopify,
and Digital Ocean. Its mandate is to promote website encryption by making it cheaper
and, just as important, simpler.

Forget about configuring files and using OpenSSL to generate CSRs: Let’s
Encrypt’s Certbot ACME client will do pretty much the whole thing for you. Let’s
Encrypt certificates are valid for 90 days and can be set to automatically renew.

9.3.1 Preparing your website domain

Before you can install a certificate to encrypt your website domain, you’ll need to have
a domain. That will involve purchasing a name from a domain registrar like GoDaddy
or Amazon’s Route 53. For more on how that works, you can read chapter 5 in my
book Learn Amazon Web Services in a Month of Lunches (Manning, 2017).

 As you’ll want Apache to handle domain-specific requests from external clients,
you’ll also need to add a section to the /etc/apache2/sites-available/000-default.conf
file (on a CentOS machine, it’s the settings in the /etc/httpd/conf/httpd.conf file
that you’ll edit). Here’s how it might look on my bootstrap-it.com server. Note how, at
this point, it’s only configured to accept traffic on the insecure HTTP port 80.

Listing 9.3 Possible domain section from an Apache configuration file

This
configuration

only listens
for traffic on

port 80.

Your domain name is used as <VirtualHost *:80>

the value for ServerName.ServerName bootstrap-it.com

DocumentRoot /var/www/html

ServerAlias www.bootstrap-it.com
 This ServerAlias line adds www

</VirtualHost>
 as a valid domain prefix.

9.3.2 Generating certificates using Let’s Encrypt

From this point, it’s quite simple. Browse to the Getting Started page of the Electronic
Frontier Foundation Certbot website (https://certbot.eff.org) and, as you can see in
figure 9.4, specify the web server software and OS you’re using.

From the Certbot home page, you’ll be redirected to a page with some brief
instructions. For Apache on Ubuntu 16.04, which includes commands to install the
software-properties-common repository management tool, add the Certbot repository
to your APT list, and then install the Python-based Certbot software for Apache:

apt update

apt install software-properties-common

add-apt-repository ppa:certbot/certbot

apt update

apt install python-certbot-apache

www.itbook.store/books/9781617294938

https://letsencrypt.org
https://certbot.eff.org/
http:www.bootstrap-it.com
http:bootstrap-it.com
http:bootstrap-it.com
https://itbook.store/books/9781617294938

188 CHAPTER 9 Securing your web server

Figure 9.4 Once you select your web server software and OS on the Certbot home page, you’ll be
shown installation instructions.

Finally, you’ll launch the Certbot program as admin (using --apache as an argument,
in my case). Certbot will read your web server config files to get a feel for the domains
you’re likely to want to register:

certbot --apache

After answering a few questions about contact information and Let’s Encrypt’s terms
of services, you’ll be presented with a list of possible domain names that might look
like this:

Which names would you like to activate HTTPS for?

1: bootstrap-it.com

2: www.bootstrap-it.com

Select the appropriate numbers separated by commas and/or spaces,

or leave input blank to select all options shown (Enter 'c' to cancel):

Once you respond, the bot will try to confirm that your selected domains exist and are
registered with a publicly accessible DNS server. The certificate server will finally try to
connect to your site. If that’s successful, a Let’s Encrypt certificate will be automati
cally installed and any necessary additional sections will be added to your configura
tion files.

 If something goes wrong with the process, Certbot will display useful error mes
sages that you can use to seed your research for a solution. Plus Let’s Encrypt hosts an

www.itbook.store/books/9781617294938

http:www.bootstrap-it.com
http:bootstrap-it.com
https://itbook.store/books/9781617294938

189 Hardening the authentication process

active community help forum where users of all skill levels can safely plead for help:
https://community.letsencrypt.org.

 Up to now in this busy chapter you’ve learned how to enhance website security by
keeping your applications patched and updated, use firewall rules to control access to
your network, add security through obscurity to your mix, and encrypt data as it
moves between your website and its visitors. We’re not done with security.

 Still to come: toughening up your login protocols, using the SELinux kernel mod
ule and groups to more closely control the trouble your users can get themselves into,
and keeping track of your running processes to make sure there’s nothing inappropri
ate going on in the background when no one’s looking.

9.4 Hardening the authentication process
Using secure connectivity solutions, especially SSH, is great. But it’s also a good idea
to give some attention to the way your team members use SSH. Here are a couple of
suggestions for improving your remote-access security. It may not be practical to
enforce them in every environment (particularly while you’re in the process of setting
things up), but they should at least be familiar to you.

 Avoid logging in to servers as the root user. It’s always better to use sudo whenever
admin privileges are necessary. In fact, you can prevent incoming root logins using
SSH altogether by editing the PermitRootLogin line in the /etc/ssh/sshd_conf file:

PermitRootLogin no
 The root-login-control
line in /etc/ssh/sshd_conf

You can also encourage your admins to use only passwordless SSH access through key
pairs (the way you saw back in chapter 3). This, too, can be enforced from the sshd_conf
file, this time on the PasswordAuthentication line. With no password authentication,
users will be forced to use key pairs:

PasswordAuthentication no
 The password-authentication
control line in /etc/ssh/sshd_conf

After each of those edits, make sure you reload SSH; otherwise, the new settings won’t
take effect until the next boot:

systemctl restart sshd

Those are important steps in any environment. But if your deployment needs some
industrial-strength isolation, consider enabling SELinux.

9.4.1 Controlling file system objects with SELinux

Remember when we discussed object permissions back in chapter 4? The context was
the need to make sure users can access and edit their own files. But the flip side of that
coin is ensuring that the wrong users can’t get their dirty fingers into other people’s files.

www.itbook.store/books/9781617294938

https://community.letsencrypt.org/
https://itbook.store/books/9781617294938

190 CHAPTER 9 Securing your web server

 You’ll recall that a common permissions profile for an object might give the owner
full read-write-execute powers, but gives the object’s group and others only the per
mission to read. That would translate as 744 in our numeric notation, or rwx r-- r-

otherwise.
 Giving your users full power over their own resources is sometimes described as a

discretionary access control (DAC) system. A DAC will make a lot of sense if you want your
users to be productive, but it comes with a price: having full control carries the risk
that they’ll apply it without being fully aware of the consequences.

Here’s a practical example of what I mean. Suppose a couple of the developers dil
igently slaving away for your company run into a problem: testing their software
locally always fails when trying to write to a data file. Debugging reveals that it’s a per
missions issue caused by the fact that the application is being run by one user, but the
data file belongs to another.

 Because this has happened more than once, and to more than one data file (or SSH
key file for that matter), the developers take the quick and lazy route: they open up per
missions on the data files and on all the files in those directories to 777—fully accessible
to the entire world. Now that’s a significant security problem. There’s also an excellent
chance that the application they’re working on will eventually be moved out to produc
tion with the same system settings. This is the kind of mistake that lies at the root of a
lot of the major data breaches you hear about from time to time.

 SELinux is another one of those complex topics that, although critically important
for many Linux workloads, doesn’t have to play a major role in this book’s projects.
Once again, feel free to skip right past it to our discussion of system groups if you like.

 When installed and activated, the SELinux kernel module applies mandatory access
control (MAC) to file system objects, regardless of a particular object’s owner. In effect,
as illustrated in figure 9.5, it imposes carefully defined, system-wide limits on what a
user can do, making it impossible to set inherently dangerous configurations.

Server running
SELinux

Request for access
to a resource Yes

SELinux
policies

No

SELinux
logs

Process Resource
Valid

request?

Figure 9.5 The process flow following a request for resource access through the filter
of SELinux policies

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

191 Hardening the authentication process

Had SELinux been active, those two developers could have applied 777 permissions to
their data files over and over again until their poor little fingers fell off, but it wouldn’t
have helped. Instead, they’d have been forced to look for a more appropriate and
effective solution. They might, for instance, have considered creating a system group
with authority over the data and then adding appropriate user accounts to the group.
You’ll learn more about that a bit later in this chapter. Sounds great. What’s not to
love about security?

 Well, there’s a problem. SELinux has a dark and scary relationship with applica
tion compatibility. So dark and so scary that many admins disable it rather than trying
to make it work. The problem is that many applications, both off-the-shelf and custom
apps you’re building locally, need to access and edit system resources. As a result, run
ning such applications within an unmodified SELinux environment will often fail.

 I have it on good authority that there are solutions to all those conflicts and that
they’re not impossible to apply. But just as often, the conflicts can be avoided altogether
through a better understanding of file system design and security principles. In partic
ular, you should remember the principle of least privilege, which seeks to permit all users
and processes only the access they need and nothing more. In any case, you’ll need to
know your way around SELinux, so the following sections introduce the basics.

9.4.2 Installing and activating SELinux

Perhaps because SELinux was developed by and for Red Hat Linux (and CentOS), it
comes installed and active by default on those systems. Running it on other distros,
including Ubuntu, is definitely possible (although AppArmor is a more common
choice for Ubuntu), but I can’t guarantee that it will always go smoothly. (Don’t even
think about trying it on an LXC container; go with VirtualBox for testing, instead.)
On Ubuntu, you’ll need three packages: selinux, setools, and policycoreutils. Here’s
how that would look:

apt install setools policycoreutils selinux

Once they’re nicely tucked in, reboot Ubuntu, and run sestatus for a snapshot of the
current SELinux status, including important file system locations and policy. With
luck, you should see something like this:

The current SELinux # sestatus

status is enabled. SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: targeted
 The default policy being
Current mode: permissive
 used is targeted.
Mode from config file: permissive

Policy MLS status: enabled

Policy deny_unknown status: allowed

Max kernel policy version: 30

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

192 CHAPTER 9 Securing your web server

You might sometimes have to run the selinux-activate command to incorporate
SELinux settings into the boot process:

True to its name, selinux
activate sets SELinux as active # selinux-activate

following the next boot.Activating SE Linux

Generating grub configuration file ...

Warning: Setting GRUB_TIMEOUT to a non-zero value when GRUB_HIDDEN_TIMEOUT

is set is no longer supported.

Found linux image: /boot/vmlinuz-4.4.0-89-generic

SELinux-friendly flags are
Found initrd image: /boot/initrd.img-4.4.0-89-generic
 added to the launch
Found linux image: /boot/vmlinuz-4.4.0-87-generic
 command for each image
Found initrd image: /boot/initrd.img-4.4.0-87-generic
 controlled by GRUB.
Found linux image: /boot/vmlinuz-4.4.0-83-generic

Found initrd image: /boot/initrd.img-4.4.0-83-generic

Found memtest86+ image: /boot/memtest86+.elf

Found memtest86+ image: /boot/memtest86+.bin
 Because SELinux relies on

kernel-level settings, changes done

often require a reboot. SE Linux is activated. You may need to reboot now.

Like the man says, you may need to reboot for the changes to take effect.
 You can control SELinux behavior through the configuration file in /etc/selinux/.

The file contains two settings, SELinux state and SELinux type. Table 9.1 gives a brief
overview of the possible values.

Table 9.1 The configuration settings for SELinux in /etc/selinux/config

Category Value Description Use

State

Policy type

disabled

enforcing

permissive

targeted

minimum

mls

SELinux is off.

Security policy is enforced.

Policy breaches trigger only logged
warnings.

Enables a domain whose pro
cesses are “unconfined” by
SELinux restrictions.

Only minimal processes are
restricted by SELinux.

Policies are applied based on sen
sitivity level and capability.

Useful for testing configurations

Useful for mixed-use systems
where not all processes require
restrictions

Can allow finer tuning for
experimental systems

Besides the config file, you can also set the SELinux state from the command line
using setenforce, where setenforce 1 enables the enforcing state, and setenforce 0
sets SELinux to the permissive state. When in a permissive state, rule violations are
permitted but logged. This is a good way to troubleshoot or test a configuration with
out turning everything upside down in the process:

setenforce 1

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

193 Hardening the authentication process

How about an SELinux example to illustrate how you can control access to an individ
ual file? Consider it done. You should definitely try the example in the next section
(or something like it) yourself.

9.4.3 Applying SELinux policies

Say that you’re the sysadmin responsible for those two developers with the lazy streak
you met earlier. Based on past experience, you suspect that they might be tempted to
open access to a data file a bit too widely. Here’s how you might protect your data no
matter what the developers try.

You can use SELinux to control the way any file or process is consumed, but to
keep this example simple, let’s work with a machine with Apache (or httpd) installed
and an index.html file in the document root at /var/www/html/. The file will, by
default, be accessible at least to local requests (via wget localhost from the command
line of the server). Here’s how that will normally look:

$ wget locahost

--2017-08-02 10:24:25-- http://localhost/

Resolving localhost (localhost)... ::1, 127.0.0.1

Connecting to localhost (localhost)|::1|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 11 [text/html]

Saving to: 'index.html'

100%[======================================>] 11 --.-K/s in 0s

wget successfully saved the index.html file to the local directory.

Now, check out the permissions status of the index.html file using ls -Z (-Z will dis
play the file’s security context):

ls -Z /var/www/html/

-rw-r--r--. root root unconfined_u:object_r:httpd_sys_content_t:s0 index.html

First, note the regular permissions (-rw-r--r--) that make the file readable (r) by any
one. This is standard for website resources. The SELinux status of the file is displayed
as unconfined_u:object_r:httpd_sys_content_t:s0. You can use chcon -t to change
the context type of a file. This command replaces the Apache httpd_sys_content_t
type with the Samba-related samba_share_t type. I’m not sure you’d ever want to do this
in real life, but it should nicely demonstrate one way you can balance the authority you
give your users against their potential to mess things up:

chcon -t samba_share_t /var/www/html/index.html

A second shot of ls -Z shows that the file is now associated with the samba_share_t type:

ls -Z /var/www/html/

-rw-r--r--. root root unconfined_u:object_r:samba_share_t:s0

➥ /var/www/html/index.html

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

194 CHAPTER 9 Securing your web server

How will another round of wget localhost handle the new SELinux context?

$ wget localhost

--2017-08-02 10:27:30-- http://localhost/

Resolving localhost (localhost)... ::1, 127.0.0.1

Connecting to localhost (localhost)|::1|:80... connected.
 Apache responds to the

request with a 403: HTTP request sent, awaiting response... 403 Forbidden

Forbidden fail message. 2017-08-02 10:27:30 ERROR 403: Forbidden.

It’s no go. Apache is forced to disappoint you (or, rather, the developers), as Apache
itself has no power over the file in its current context. This is true despite the fact that
the file attributes include read permissions for all users. No matter how desperately
your developers might want to open access to a protected file, they’ll be spinning their
wheels and getting nowhere.

9.4.4 System groups and the principle of least privilege

Those two developers finally got the message. They understand that they’ve been
blocked from opening access too widely. But now they’re asking you to help them
solve the original problem: how to make files containing sensitive data accessible to
multiple accounts without opening those up to everyone.

 The short answer is groups. (And the long answer is g—r—o—u—p—s.) A group is
a system object much the same as a user, except that no one will ever log in to the sys
tem as a group. The power of groups is in how they, like users, can be assigned to files
or directories, allowing any group members to share the group powers. This is illus
trated in figure 9.6.

 Try this yourself: use nano to create a new file. Add some Hello World text so you’ll
be able to easily tell when you can successfully access it. Now edit its permissions using

Developers
group

System
directory

Figure 9.6 Developers who are members of
the Developers group can be given access to
a particular directory, as opposed to those
individuals who aren’t part of the group.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

195 Hardening the authentication process

chmod 770 so that the file’s owner and group have full rights over the file, but others
can’t read it:

$ nano datafile.txt

$ chmod 770 datafile.txt

If your system doesn’t already have an extra user besides your account, create one
using either adduser (the Debian/Ubuntu way) or useradd (if you’re on CentOS).
Note that useradd will also work on Ubuntu:

useradd otheruser

passwd otheruser

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

The useradd command (as opposed
to the Debian adduser command)
requires you to generate a user
password separately.

Use su to switch to your new user. Once you enter the user’s password, all the com
mands you execute will be run as that user. You’ll be working with only that user’s
authority: no more and no less. If you try reading the datafile.txt file (using cat), you’ll
have no luck because, as you remember, others were denied read permission. When
you’re done, type exit to leave the new user shell and return to your original shell:

$ su otheruser

Password:

$ cat /home/ubuntu/datafile.txt

cat: /home/ubuntu/datafile.txt: Permission denied

$ exit

All this is expected and easy to understand. And, as you’ve seen, not being able to
read the file belonging to a different reader can sometimes be a problem. Let’s see
what you can do about that by associating the file with a group and then properly con
figuring the file’s permissions.

 Create a new group you can use to manage your application data, and then edit
the properties of your data file using chown. The ubuntu:app-data-group argument
leaves the file ownership in the hands of the ubuntu user, but changes its group to
your new app-data-group:

groupadd app-data-group

chown ubuntu:app-data-group datafile.txt

Run ls with long output (-l) against the file to view its new permissions and status.
Note that, as expected, ubuntu is the file’s owner and app-data-group is its group:

$ ls -l | grep datafile.txt

-rwxrwx--- 1 ubuntu app-data-group 6 Aug 9 22:43 datafile.txt

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

196 CHAPTER 9 Securing your web server

You can use usermod to add your user to app-data-group and then, once again, su to
switch to a shell deploying the other user’s account. This time, even though the file’s
permissions lock others out, and you’re definitely acting as an “other” right now, you
should be able to read it…thanks to your group membership:

usermod -aG app-data-group otheruser

$ su otheruser
 Use the su command to switch
$ cat datafile.txt
 between user accounts.
Hello World

This happened to be the
contents of my datafile.txt file.

This kind of organization is the correct and effective way to deal with many of the
complicated permissions issues that will arise on a multiuser system. In fact, not only is
it used to give individual users the access they need, but many system processes
couldn’t do their jobs without special group memberships. Take a quick look through
the /etc/group file and note how many system processes have their own groups:

Listing 9.4 Partial listing of the contents of the /etc/group file

$ cat /etc/group

root:x:0:

daemon:x:1:

bin:x:2:

sys:x:3:

adm:x:4:syslog

tty:x:5:

disk:x:6:

lp:x:7:

mail:x:8:

news:x:9:

uucp:x:10:

man:x:12:

proxy:x:13:

[...]

I’ll close out the chapter with a few quick but vital protocols you can incorporate into
your security practices.

9.4.5 Isolating processes within containers

Worried that the multiple services you’ve got running on a single server will, should one
service be breached, all be at risk? One way to limit the damage that careless or malicious
users can cause is by isolating system resources and processes. That way, even if someone
might want to expand their reach beyond a set limit, they won’t have physical access.

 The old approach to the problem was provisioning a separate physical machine for
each service. But virtualization can make it a lot easier, and more affordable, to build a
siloed infrastructure. This architecture is often referred to as microservices and would have
you launch multiple containers with one, perhaps, running only a database, another

www.itbook.store/books/9781617294938

news:x:9
https://itbook.store/books/9781617294938

197 Auditing system resources

Apache, and a third containing media files that might be embedded in your web pages.
In addition to the many performance and efficiency benefits associated with microser
vices architectures, this can greatly reduce each individual component’s risk exposure.

NOTE By containers I don’t necessarily mean those of the LXC persuasion.
These days, for this kind of deployment, Docker containers are far more pop
ular. If you’re interested in learning more, check out Manning’s Microservices
in Action (Morgan Bruce and Paulo A. Pereira, 2018), Microservice Patterns
(Chris Richardson, 2018), or Docker in Practice, 2nd ed. (Ian Miell and Aidan
Hobson Sayers, 2018).

9.4.6 Scanning for dangerous user ID values

While any admin user will be able to temporarily assume root authority using sudo,
only root is actually root. As you’ve seen already, it isn’t safe to perform regular func
tions as root. But it can happen, whether by innocent accident or malicious tamper
ing, and a regular user can effectively get admin rights full-time.

The good news is that it’s easy to spot imposters: their user and/or group ID numbers
will, like root, be zero (0). Take a look at the passwd file in /etc/. This file contains a
record for each regular and system user account that currently exists. The first field con
tains the account name (root and ubuntu, in this case), and the second field might con
tain an x in place of a password (which, if it exists, will appear encrypted in the
/etc/shadow file). But the next two fields contain the user and group IDs. In the case
of ubuntu in this example, both IDs are 1000. And, as you can see, root has zeroes:

$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

[...]

ubuntu:x:1000:1000::/home/ubuntu:/bin/bash

If you ever see a regular user with a user or group ID of 0, then you know there’s
something nasty going on, and you should get to work fixing it. The quick and easy
way to spot a problem is to run this awk command against the passwd file, which prints
any line whose third field contains only a 0. In this case, to my great relief, the only
result was root. You can run it a second time substituting $4 for $3 to pick up the
group ID field:

$ awk -F: '($3 == "0") {print}' /etc/passwd
 The awk command is
root:x:0:0:root:/root:/bin/bash
 discussed in greater

detail in chapter 11.
9.5 Auditing system resources

The more things you’ve got running, the greater the odds of something breaking, so it
makes sense that you’ll want to keep track of what’s running. This applies to network
ports (if they’re open, then by definition, there must be a way in), services (if they’re
active, then people can run them), and installed software (if it’s installed, it can be
executed).

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

198 CHAPTER 9 Securing your web server

 For audits to be useful, you’ll have to remember to run them once in a while.
Because you know you’re going to forget, you’ll be much better off incorporating
your auditing tools into a script that not only executes regularly but, ideally, also
parses the results to make them more readable. In this section, I’ll focus on introduc
ing you to three key audit tools to help you scan for open ports, active services, and
unnecessary software packages. Getting it all implemented will be your job.

9.5.1 Scanning for open ports

A port is considered open if there’s some process running on the host that’s listening
on that port for requests. Keeping an eye on your open ports can keep you plugged
into what’s going on with your server.

 You already know that a regular web server is probably going to have HTTP (80)
and SSH (22) ports open, so it shouldn’t come as a surprise to find those. But you’ll
want to focus on other, unexpected results. The netstat command displays open
ports along with a wealth of information about how those ports are being used.

 In this example, run against a fairly typical multipurpose server, -n tells netstat to
include the numeric ports and addresses, -l includes only listening sockets, and -p adds
the process ID of the listening program. Naturally, if you see something, do something:

netstat -npl The MySQL process is
running on port 3306. Active Internet connections (only servers)

Proto Local Address Foreign Address State PID/Program name

tcp 127.0.0.1:3306 0.0.0.0:* LISTEN 403/mysqld

tcp 0.0.0.0:139 0.0.0.0:* LISTEN 270/smbd

tcp 0.0.0.0:22 0.0.0.0:* LISTEN 333/sshd

tcp 0.0.0.0:445 0.0.0.0:* LISTEN 270/smbd

tcp6 :::80 :::* LISTEN 417/apache2

[...]
 The SSH process has a

process ID of 333.

In recent years, ss has begun to replace netstat for many uses. In case you find your
self at a party one day and someone asks you about ss, this example (which lists all
established SSH connections) should give you enough information to save you from
truly deep embarrassment:

$ ss -o state established
 Displays all TCP sockets
'(dport = :ssh or sport = :ssh)'

Netid Recv-Q Send-Q Local Address:Port Peer Address:Port

tcp 0 0 10.0.3.1:39874 10.0.3.96:ssh

timer:(keepalive,18min,0)

9.5.2 Scanning for active services

Getting a quick snapshot of the systemd-managed services currently enabled on your
machine can also help you spot activity that doesn’t belong. systemctl can list all
existing services, which can then be narrowed down to only those results whose
descriptions include enabled. This code returns only active services:

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

199 Auditing system resources

systemctl list-unit-files --type=service --state=enabled

autovt@.service enabled

bind9.service enabled

cron.service enabled

dbus-org.freedesktop.thermald.service enabled

docker.service enabled

getty@.service enabled

haveged.service enabled

mysql.service enabled

networking.service enabled

resolvconf.service enabled

rsyslog.service enabled

sshd is the SSH server; ssh ssh.service enabled

is the client software. sshd.service enabled

syslog.service enabled

systemd-timesyncd.service enabled

thermald.service enabled

unattended-upgrades.service enabled

ureadahead.service enabled

If you do find something that shouldn’t be there, you can use systemctl to both stop
the service and make sure it doesn’t start up again with the next boot:

systemctl stop haveged

systemctl disable haveged

There’s actually nothing dark and sinister about the haveged service I’m stopping in
this example. It’s a small tool I often install to generate random background system
activity when I’m creating encryption keys.

9.5.3 Searching for installed software

Could someone or something have installed software on your system without you
knowing? Well, how would you know if you don’t look? To get the whole briefing, use
yum list installed or, on Debian/Ubuntu, dpkg --list. To delete any packages that
don’t belong, use remove <packagename>:

yum list installed

yum remove packageName

Here’s how it goes on Ubuntu: Outputs a long list of packages that you’ll
have to visually scan as quickly as you
can. I’m not aware of any shortcuts. # dpkg --list

apt-get remove packageName

It’s also a good idea to be aware of changes to your system configuration files. That’s
something you’ll learn about in chapter 11.

www.itbook.store/books/9781617294938

mailto:getty@.service
mailto:autovt@.service
https://itbook.store/books/9781617294938

200	 CHAPTER 9 Securing your web server

Summary
 Using firewalls, you control network traffic by protocol, port, and source or

destination.
 Configure applications to listen in on nonstandard network ports to add security

through obscurity to your infrastructure.
 Using certificates received from a CA, client-host browser sessions are

encrypted, greatly reducing the chances of the transferred data being compro
mised.

 Global controls are enforced on a multiuser file system using SELinux.
 Access to resources is closely managed using groups to allow users and pro

cesses exactly the access they need.
 Regular (scripted) audits of running processes, installed software, and open

ports are critical to ongoing server security.

Key terms
 You can administer firewall rules on Linux using iptables or simpler, high-level

tools.
 The Hypertext Transfer Protocol (HTTP) manages browser-based data transfers

over a network.
 The Transport Layer Security (TLS) protocol enforces data encryption for host-

client network data transfers.
 Discretionary access control systems (DACs) allow users control over file system

resources.
 Control over resources on mandatory access control systems (MACs) is ultimately

managed by system-wide policies.
 Microservices are individual computer services run from individual containers as

part of a larger single application infrastructure spanning multiple containers.

Command-line review
 firewall-cmd --permanent --add-port=80/tcp opens port 80 to incoming

HTTP traffic and configures it to reload at boot time.
 firewall-cmd --list-services lists the currently active rules on a firewalld

system.
 ufw allow ssh opens port 22 for SSH traffic using UncomplicatedFirewall (ufw)

on Ubuntu.
 ufw delete 2 removes the second ufw rule as listed by the ufw status command.
 ssh -p53987 username@remote_IP_or_domain logs in to an SSH session using a

non-default port.
 certbot --apache configures an Apache web server to use Let’s Encrypt

encryption certificates.

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

Test yourself	 201

 selinux-activate activates SELinux on an Ubuntu machine.
 setenforce 1 toggles enforcing mode in an SELinux configuration.
 ls -Z /var/www/html/ displays the security context of the files in a specified

directory.
 usermod -aG app-data-group otheruser adds the otheruser user to the app

data-group system group.
 netstat -npl scans for open (listening) network ports on a server.

Test yourself
1	 You’re concerned that hackers might have gained access to your server, and you

want to make sure they aren’t able to escalate their permissions to root powers.
Which of the following commands might help?
a firewall-cmd --list-services

b netstat -npl

c certbot --apache

d awk -F: '($3 == "0") {print}' /etc/passwd

2	 You noticed that there are network ports open on your server that you can’t
explain. Which of the following tools can be used to close them?
a firewalld
b netstat
c certbot --apache
d awk

3	 What security advantage can there be in splitting a single application’s services
among multiple containers?
a A failure in one won’t necessarily affect the performance of the others.
b A vulnerability in one won’t necessarily spread to the others.
c Such a design pushes authentication further away from the servers.
d Such a design increases process visibility.

4	 Which of the following commands will allow SSH access to a server from only a
single IP address?
a firewall-cmd allow from 10.0.3.1 to any port 22

b ufw allow from 10.0.3.1 to port 22

c ufw allow from 10.0.3.1 to any port 22

d firewall-cmd --allow from 10.0.3.1 to any port 22

5	 Requesting a TLS certificate from a CA allows you to
a Prevent unauthorized users from accessing your web server’s backend
b Secure data at rest on a web server
c Secure data in transit between a web server and clients
d Permit passwordless SSH access to your web server’s backend

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

202	 CHAPTER 9 Securing your web server

6	 Which of the following settings in the /etc/ssh/sshd_conf file will force SSH cli
ents to use key pairs?
a PermitRootLogin no
b PermitRootLogin yes
c #PasswordAuthentication no

d PasswordAuthentication no

7	 Which of the following commands will set SELinux to permissive mode?

a setenforce 0

b chcon -t samba_share_t /var/www/html/index.html

c setenforce 1

d selinux-activate

8	 Which of the following commands will make the app-data-group the group of
the datafile.txt file?
a chown app-data-group,ubuntu datafile.txt

b chown app-data-group datafile.txt

c chown app-data-group:ubuntu datafile.txt

d chown ubuntu:app-data-group datafile.txt

Answer key

1. d, 2. a, 3. b, 4. c, 5. c, 6. d, 7. a, 8. d

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

LINUX

Linux IN ACTION
David Clinton

Y
ou can’t learn anything without getting your hands
dirty—including Linux. Skills like securing fi les, folders,
and servers, safely installing patches and applications, and

managing a network are required for any serious user, includ
ing developers, administrators, and DevOps professionals.
With this hands-on tutorial, you’ll roll up your sleeves and
learn Linux project by project.

Linux in Action guides you through 12 real-world projects,
including automating a backup-and-restore system, setting
up a private Dropbox-style file cloud, and building your own
MediaWiki server. You’ll try out interesting examples as you
lock in core practices like virtualization, disaster recovery,
security, backup, DevOps, and system troubleshooting.
Each chapter ends with a review of best practices, new terms,
and exercises.

What’s Inside
● Setting up a safe Linux environment
● Managing secure remote connectivity
● Building a system recovery device
● Patching and upgrading your system

No prior Linux admin experience is required.

David Clinton is a certified Linux Server Professional, seasoned
instructor, and author of Manning’s bestselling Learn Amazon
Web Services in a Month of Lunches.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/linux-in-action

See first page

“An essential guide to under
standing Linux—with plenty

of real-world examples.
—Dario Victor Durán ”

HiQ Stockholm

“Teaches a wide variety

of Linux features that will

make your life that

 much easier. Practical.”
 —Jens Christian B. Madsen

IT Relation

“The go-to book for Linux

system administration.”
 —Gustavo Patino

Oakland University William

Beaumont School of Medicine

“Everything you need to

start maintaining Linux. It’s

not about how to use Linux,

but how to take care of it.”
 —Maciej Jurkowski, Grupa Pracuj

M A N N I N G $39.99 / Can $52.99 [INCLUDING eBOOK]

www.itbook.store/books/9781617294938

https://itbook.store/books/9781617294938

