
M A N N I N G

FIFTH EDITION

Craig Walls

Covers Spring 5.0

S A M P L E C H A P T E R

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

Spring in Action
Fifth Edition

by Craig Walls

 Chapter 2

 Copyright 2019 Manning Publications

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

iii

brief contents
PART 1 FOUNDATIONAL SPRING ..1

1 ■ Getting started with Spring 3

2 ■ Developing web applications 29

3 ■ Working with data 56

4 ■ Securing Spring 84

5 ■ Working with configuration properties 114

PART 2 INTEGRATED SPRING ...135

6 ■ Creating REST services 137

7 ■ Consuming REST services 169

8 ■ Sending messages asynchronously 178

9 ■ Integrating Spring 209

PART 3 REACTIVE SPRING ...239

10 ■ Introducing Reactor 241

11 ■ Developing reactive APIs 269

12 ■ Persisting data reactively 296

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

BRIEF CONTENTSiv

PART 4 CLOUD-NATIVE SPRING..321

13 ■ Discovering services 323

14 ■ Managing configuration 343

15 ■ Handling failure and latency 376

PART 5 DEPLOYED SPRING ..393

16 ■ Working with Spring Boot Actuator 395

17 ■ Administering Spring 429

18 ■ Monitoring Spring with JMX 446

19 ■ Deploying Spring 454

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

29

Developing web
applications

First impressions are important. Curb appeal can sell a house long before the
home buyer enters the door. A car’s cherry paint job will turn more heads than
what’s under the hood. And literature is replete with stories of love at first sight.
What’s inside is very important, but what’s outside—what’s seen first—is important.

 The applications you’ll build with Spring will do all kinds of things, including
crunching data, reading information from a database, and interacting with other
applications. But the first impression your application users will get comes from the
user interface. And in many applications, that UI is a web application presented in
a browser.

 In chapter 1, you created your first Spring MVC controller to display your applica-
tion homepage. But Spring MVC can do far more than simply display static content.
In this chapter, you’ll develop the first major bit of functionality in your Taco Cloud
application—the ability to design custom tacos. In doing so, you’ll dig deeper into
Spring MVC, and you’ll see how to display model data and process form input.

This chapter covers
 Presenting model data in the browser

 Processing and validating form input

 Choosing a view template library

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

30 CHAPTER 2 Developing web applications

2.1 Displaying information
Fundamentally, Taco Cloud is a place where you can order tacos online. But more
than that, Taco Cloud wants to enable its customers to express their creative side and
to design custom tacos from a rich palette of ingredients.

 Therefore, the Taco Cloud web application needs a page that displays the selection
of ingredients for taco artists to choose from. The ingredient choices may change at
any time, so they shouldn’t be hardcoded into an HTML page. Rather, the list of avail-
able ingredients should be fetched from a database and handed over to the page to be
displayed to the customer.

 In a Spring web application, it’s a controller’s job to fetch and process data. And
it’s a view’s job to render that data into HTML that will be displayed in the browser.
You’re going to create the following components in support of the taco creation page:

 A domain class that defines the properties of a taco ingredient
 A Spring MVC controller class that fetches ingredient information and passes it

along to the view
 A view template that renders a list of ingredients in the user’s browser

The relationship between these components is illustrated in figure 2.1.

Because this chapter focuses on Spring’s web framework, we’ll defer any of the data-
base stuff to chapter 3. For now, the controller will be solely responsible for providing
the ingredients to the view. In chapter 3, you’ll rework the controller to collaborate
with a repository that fetches ingredients data from a database.

Request

Request

Design

view

Ingredients

Web browser

HTML

Taco

design

controller

Figure 2.1 A typical Spring MVC request flow

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

31Displaying information

 Before you write the controller and view, let’s hammer out the domain type that
represents an ingredient. This will establish a foundation on which you can develop
your web components.

2.1.1 Establishing the domain

An application’s domain is the subject area that it addresses—the ideas and concepts
that influence the understanding of the application.1 In the Taco Cloud application,
the domain includes such objects as taco designs, the ingredients that those designs
are composed of, customers, and taco orders placed by the customers. To get started,
we’ll focus on taco ingredients.

 In your domain, taco ingredients are fairly simple objects. Each has a name as well
as a type so that it can be visually categorized (proteins, cheeses, sauces, and so on).
Each also has an ID by which it can easily and unambiguously be referenced. The fol-
lowing Ingredient class defines the domain object you need.

package tacos;

import lombok.Data;
import lombok.RequiredArgsConstructor;

@Data
@RequiredArgsConstructor
public class Ingredient {

 private final String id;
 private final String name;
 private final Type type;

 public static enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

As you can see, this is a run-of-the-mill Java domain class, defining the three proper-
ties needed to describe an ingredient. Perhaps the most unusual thing about the
Ingredient class as defined in listing 2.1 is that it seems to be missing the usual set of
getter and setter methods, not to mention useful methods like equals(), hashCode(),
toString(), and others.

 You don’t see them in the listing partly to save space, but also because you’re using
an amazing library called Lombok to automatically generate those methods at run-
time. In fact, the @Data annotation at the class level is provided by Lombok and tells

1 For a much more in-depth discussion of application domains, I suggest Eric Evans’ Domain-Driven Design
(Addison-Wesley Professional, 2003).

Listing 2.1 Defining taco ingredients

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

32 CHAPTER 2 Developing web applications

Lombok to generate all of those missing methods as well as a constructor that accepts
all final properties as arguments. By using Lombok, you can keep the code for
Ingredient slim and trim.

 Lombok isn’t a Spring library, but it’s so incredibly useful that I find it hard to
develop without it. And it’s a lifesaver when I need to keep code examples in a book
short and sweet.

 To use Lombok, you’ll need to add it as a dependency in your project. If you’re
using Spring Tool Suite, it’s an easy matter of right-clicking on the pom.xml file and
selecting Edit Starters from the Spring context menu option. The same selection of
dependencies you were given in chapter 1 (in figure 1.4) will appear, giving you a
chance to add or change your selected dependencies. Find the Lombok choice, make
sure it’s checked, and click OK; Spring Tool Suite will automatically add it to your
build specification.

 Alternatively, you can manually add it with the following entry in pom.xml:

<dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <optional>true</optional>
</dependency>

This dependency will provide you with Lombok annotations (such as @Data) at devel-
opment time and with automatic method generation at runtime. But you’ll also need
to add Lombok as an extension in your IDE, or your IDE will complain with errors
about missing methods and final properties that aren’t being set. Visit https://pro-
jectlombok.org/ to find out how to install Lombok in your IDE of choice.

 I think you’ll find Lombok to be very useful, but know that it’s optional. You don’t
need it to develop Spring applications, so if you’d rather not use it, feel free to write
those missing methods by hand. Go ahead ... I’ll wait. When you finish, you’ll add
some controllers to handle web requests in your application.

2.1.2 Creating a controller class

Controllers are the major players in Spring’s MVC framework. Their primary job is to
handle HTTP requests and either hand a request off to a view to render HTML
(browser-displayed) or write data directly to the body of a response (RESTful). In this
chapter, we’re focusing on the kinds of controllers that use views to produce content
for web browsers. When we get to chapter 6, we’ll look at writing controllers that han-
dle requests in a REST API.

 For the Taco Cloud application, you need a simple controller that will do the fol-
lowing:

 Handle HTTP GET requests where the request path is /design
 Build a list of ingredients
 Hand the request and the ingredient data off to a view template to be rendered

as HTML and sent to the requesting web browser

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

33Displaying information

The following DesignTacoController class addresses those requirements.

package tacos.web;

import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;

import javax.validation.Valid;

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.Errors;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;

import lombok.extern.slf4j.Slf4j;
import tacos.Taco;
import tacos.Ingredient;
import tacos.Ingredient.Type;

@Slf4j
@Controller
@RequestMapping("/design")
public class DesignTacoController {

 @GetMapping
 public String showDesignForm(Model model) {
 List<Ingredient> ingredients = Arrays.asList(
 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP),
 new Ingredient("COTO", "Corn Tortilla", Type.WRAP),
 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN),
 new Ingredient("CARN", "Carnitas", Type.PROTEIN),
 new Ingredient("TMTO", "Diced Tomatoes", Type.VEGGIES),
 new Ingredient("LETC", "Lettuce", Type.VEGGIES),
 new Ingredient("CHED", "Cheddar", Type.CHEESE),
 new Ingredient("JACK", "Monterrey Jack", Type.CHEESE),
 new Ingredient("SLSA", "Salsa", Type.SAUCE),
 new Ingredient("SRCR", "Sour Cream", Type.SAUCE)
);

 Type[] types = Ingredient.Type.values();
 for (Type type : types) {
 model.addAttribute(type.toString().toLowerCase(),
 filterByType(ingredients, type));
 }

 model.addAttribute("design", new Taco());

 return "design";
 }

}

Listing 2.2 The beginnings of a Spring controller class

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

34 CHAPTER 2 Developing web applications

The first thing to note about DesignTacoController is the set of annotations applied
at the class level. The first, @Slf4j, is a Lombok-provided annotation that, at runtime,
will automatically generate an SLF4J (Simple Logging Facade for Java, https://www
.slf4j.org/) Logger in the class. This modest annotation has the same effect as if you
were to explicitly add the following lines within the class:

private static final org.slf4j.Logger log =
 org.slf4j.LoggerFactory.getLogger(DesignTacoController.class);

You’ll make use of this Logger a little later.
 The next annotation applied to DesignTacoController is @Controller. This

annotation serves to identify this class as a controller and to mark it as a candidate for
component scanning, so that Spring will discover it and automatically create an
instance of DesignTacoController as a bean in the Spring application context.

 DesignTacoController is also annotated with @RequestMapping. The @Request-
Mapping annotation, when applied at the class level, specifies the kind of requests that
this controller handles. In this case, it specifies that DesignTacoController will han-
dle requests whose path begins with /design.

HANDLING A GET REQUEST

The class-level @RequestMapping specification is refined with the @GetMapping annota-
tion that adorns the showDesignForm() method. @GetMapping, paired with the class-
level @RequestMapping, specifies that when an HTTP GET request is received for
/design, showDesignForm() will be called to handle the request.

 @GetMapping is a relatively new annotation, having been introduced in Spring 4.3.
Prior to Spring 4.3, you might have used a method-level @RequestMapping annota-
tion instead:

@RequestMapping(method=RequestMethod.GET)

Clearly, @GetMapping is more succinct and specific to the HTTP method that it targets.
@GetMapping is just one member of a family of request-mapping annotations. Table 2.1
lists all of the request-mapping annotations available in Spring MVC.

Table 2.1 Spring MVC request-mapping annotations

Annotation Description

@RequestMapping General-purpose request handling

@GetMapping Handles HTTP GET requests

@PostMapping Handles HTTP POST requests

@PutMapping Handles HTTP PUT requests

@DeleteMapping Handles HTTP DELETE requests

@PatchMapping Handles HTTP PATCH requests

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

35Displaying information

Now that you know that the showDesignForm() method will handle the request, let’s
look at the method body to see how it ticks. The bulk of the method constructs a list of
Ingredient objects. The list is hardcoded for now. When we get to chapter 3, you’ll
pull the list of available taco ingredients from a database.

 Once the list of ingredients is ready, the next few lines of showDesignForm() filters
the list by ingredient type. A list of ingredient types is then added as an attribute to the
Model object that’s passed into showDesignForm(). Model is an object that ferries data
between a controller and whatever view is charged with rendering that data. Ulti-
mately, data that’s placed in Model attributes is copied into the servlet response attri-
butes, where the view can find them. The showDesignForm() method concludes by
returning "design", which is the logical name of the view that will be used to render
the model to the browser.

 Your DesignTacoController is really starting to take shape. If you were to run
the application now and point your browser at the /design path, the DesignTaco-
Controller’s showDesignForm() would be engaged, fetching data from the reposi-
tory and placing it in the model before passing the request on to the view. But
because you haven’t defined the view yet, the request would take a horrible turn,
resulting in an HTTP 404 (Not Found) error. To fix that, let’s switch our attention
to the view where the data will be decorated with HTML to be presented in the
user’s web browser.

2.1.3 Designing the view

After the controller is finished with its work, it’s time for the view to get going. Spring
offers several great options for defining views, including JavaServer Pages (JSP),
Thymeleaf, FreeMarker, Mustache, and Groovy-based templates. For now, we’ll use
Thymeleaf, the choice we made in chapter 1 when starting the project. We’ll consider
a few of the other options in section 2.5.

Making the right thing the easy thing
It’s always a good idea to be as specific as possible when declaring request map-
pings on your controller methods. At the very least, this means declaring both a path
(or inheriting a path from the class-level @RequestMapping) and which HTTP method
it will handle.

The lengthier @RequestMapping(method=RequestMethod.GET) made it tempting to
take the lazy way out and leave off the method attribute. Thanks to Spring 4.3’s new
mapping annotations, the right thing to do is also the easy thing to do—with less typing.

The new request-mapping annotations have all of the same attributes as @Request-
Mapping, so you can use them anywhere you’d otherwise use @RequestMapping.

Generally, I prefer to only use @RequestMapping at the class level to specify the base
path. I use the more specific @GetMapping, @PostMapping, and so on, on each of
the handler methods.

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

36 CHAPTER 2 Developing web applications

 In order to use Thymeleaf, you need to add another dependency to your project
build. The following <dependency> entry uses Spring Boot’s Thymeleaf starter to
make Thymeleaf available for rendering the view you’re about to create:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

At runtime, Spring Boot autoconfiguration will see that Thymeleaf is in the classpath
and will automatically create the beans that support Thymeleaf views for Spring MVC.

 View libraries such as Thymeleaf are designed to be decoupled from any particular
web framework. As such, they’re unaware of Spring’s model abstraction and are
unable to work with the data that the controller places in Model. But they can work
with servlet request attributes. Therefore, before Spring hands the request over to a
view, it copies the model data into request attributes that Thymeleaf and other view-
templating options have ready access to.

 Thymeleaf templates are just HTML with some additional element attributes that
guide a template in rendering request data. For example, if there were a request attri-
bute whose key is "message", and you wanted it to be rendered into an HTML <p> tag
by Thymeleaf, you’d write the following in your Thymeleaf template:

<p th:text="${message}">placeholder message</p>

When the template is rendered into HTML, the body of the <p> element will be
replaced with the value of the servlet request attribute whose key is "message". The
th:text attribute is a Thymeleaf-namespaced attribute that performs the replace-
ment. The ${} operator tells it to use the value of a request attribute ("message", in
this case).

 Thymeleaf also offers another attribute, th:each, that iterates over a collection of
elements, rendering the HTML once for each item in the collection. This will come in
handy as you design your view to list taco ingredients from the model. For example, to
render just the list of "wrap" ingredients, you can use the following snippet of HTML:

<h3>Designate your wrap:</h3>
<div th:each="ingredient : ${wrap}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}" />
 INGREDIENT

</div>

Here, you use the th:each attribute on the <div> tag to repeat rendering of the <div>
once for each item in the collection found in the wrap request attribute. On each iter-
ation, the ingredient item is bound to a Thymeleaf variable named ingredient.

 Inside the <div> element, there’s a check box <input> element and a ele-
ment to provide a label for the check box. The check box uses Thymeleaf’s th:value
to set the rendered <input> element’s value attribute to the value found in the

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

37Displaying information

ingredient’s id property. The element uses th:text to replace the "INGREDIENT"
placeholder text with the value of the ingredient’s name property.

 When rendered with actual model data, one iteration of that <div> loop might
look like this:

<div>
 <input name="ingredients" type="checkbox" value="FLTO" />
 Flour Tortilla

</div>

Ultimately, the preceding Thymeleaf snippet is just part of a larger HTML form
through which your taco artist users will submit their tasty creations. The complete
Thymeleaf template, including all ingredient types and the form, is shown in the fol-
lowing listing.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 <link rel="stylesheet" th:href="@{/styles.css}" />
 </head>

 <body>
 <h1>Design your taco!</h1>

 <form method="POST" th:object="${design}">
 <div class="grid">
 <div class="ingredient-group" id="wraps">
 <h3>Designate your wrap:</h3>
 <div th:each="ingredient : ${wrap}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="proteins">
 <h3>Pick your protein:</h3>
 <div th:each="ingredient : ${protein}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="cheeses">
 <h3>Choose your cheese:</h3>
 <div th:each="ingredient : ${cheese}">

Listing 2.3 The complete design-a-taco page

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

38 CHAPTER 2 Developing web applications

 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"
/>

 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="veggies">
 <h3>Determine your veggies:</h3>
 <div th:each="ingredient : ${veggies}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="sauces">
 <h3>Select your sauce:</h3>
 <div th:each="ingredient : ${sauce}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>
 </div>

 <div>

 <h3>Name your taco creation:</h3>
 <input type="text" th:field="*{name}"/>

 <button>Submit your taco</button>
 </div>
 </form>
 </body>
</html>

As you can see, you repeat the <div> snippet for each of the types of ingredients. And
you include a Submit button and field where the user can name their creation.

 It’s also worth noting that the complete template includes the Taco Cloud logo
image and a <link> reference to a stylesheet.2 In both cases, Thymeleaf’s @{} operator
is used to produce a context-relative path to the static artifacts that they’re referenc-
ing. As you learned in chapter 1, static content in a Spring Boot application is served
from the /static directory at the root of the classpath.

 Now that your controller and view are complete, you can fire up the application to
see the fruits of your labor. There are many ways to run a Spring Boot application. In
chapter 1, I showed you how to run the application by first building it into an executable

2 The contents of the stylesheet aren’t relevant to our discussion; it only contains styling to present the ingre-
dients in two columns instead of one long list of ingredients.

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

39Displaying information

JAR file and then running the JAR with java -jar. I also showed how you can run the
application directly from the build with mvn spring-boot:run.

 No matter how you fire up the Taco Cloud application, once it starts, point your
browser to http://localhost:8080/design. You should see a page that looks something
like figure 2.2.

It’s looking good! A taco artist visiting your site is presented with a form containing a
palette of taco ingredients from which they can create their masterpiece. But what
happens when they click the Submit Your Taco button?

Figure 2.2 The rendered taco design page

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

40 CHAPTER 2 Developing web applications

 Your DesignTacoController isn’t yet ready to accept taco creations. If the design
form is submitted, the user will be presented with an error. (Specifically, it will be an
HTTP 405 error: Request Method “POST” Not Supported.) Let’s fix that by writing
some more controller code that handles form submission.

2.2 Processing form submission
If you take another look at the <form> tag in your view, you can see that its method
attribute is set to POST. Moreover, the <form> doesn’t declare an action attribute. This
means that when the form is submitted, the browser will gather up all the data in the
form and send it to the server in an HTTP POST request to the same path for which a
GET request displayed the form—the /design path.

 Therefore, you need a controller handler method on the receiving end of that
POST request. You need to write a new handler method in DesignTacoController
that handles a POST request for /design.

 In listing 2.2, you used the @GetMapping annotation to specify that the show-
DesignForm() method should handle HTTP GET requests for /design. Just like @Get-
Mapping handles GET requests, you can use @PostMapping to handle POST requests.
For handling taco design submissions, add the processDesign() method in the fol-
lowing listing to DesignTacoController.

@PostMapping
public String processDesign(Design design) {
 // Save the taco design...
 // We'll do this in chapter 3
 log.info("Processing design: " + design);

 return "redirect:/orders/current";
}

As applied to the processDesign() method, @PostMapping coordinates with the class-
level @RequestMapping to indicate that processDesign() should handle POST
requests for /design. This is precisely what you need to process a taco artist’s submit-
ted creations.

 When the form is submitted, the fields in the form are bound to properties of a
Taco object (whose class is shown in the next listing) that’s passed as a parameter into
processDesign(). From there, the processDesign() method can do whatever it wants
with the Taco object.

package tacos;
import java.util.List;
import lombok.Data;

Listing 2.4 Handling POST requests with @PostMapping

Listing 2.5 A domain object defining a taco design

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

41Processing form submission

@Data
public class Taco {

 private String name;
 private List<String> ingredients;

}

As you can see, Taco is a straightforward Java domain object with a couple of proper-
ties. Like Ingredient, the Taco class is annotated with @Data to automatically generate
essential JavaBean methods for you at runtime.

 If you look back at the form in listing 2.3, you’ll see several checkbox elements, all
with the name ingredients, and a text input element named name. Those fields in the
form correspond directly to the ingredients and name properties of the Taco class.

 The Name field on the form only needs to capture a simple textual value. Thus
the name property of Taco is of type String. The ingredients check boxes also have
textual values, but because zero or many of them may be selected, the ingredients
property that they’re bound to is a List<String> that will capture each of the cho-
sen ingredients.

 For now, the processDesign() method does nothing with the Taco object. In fact,
it doesn’t do much of anything at all. That’s OK. In chapter 3, you’ll add some per-
sistence logic that will save the submitted Taco to a database.

 Just as with the showDesignForm() method, processDesign() finishes by return-
ing a String value. And just like showDesignForm(), the value returned indicates a
view that will be shown to the user. But what’s different is that the value returned from
processDesign() is prefixed with "redirect:", indicating that this is a redirect view.
More specifically, it indicates that after processDesign() completes, the user’s browser
should be redirected to the relative path /order/current.

 The idea is that after creating a taco, the user will be redirected to an order form
from which they can place an order to have their taco creations delivered. But you
don’t yet have a controller that will handle a request for /orders/current.

 Given what you now know about @Controller, @RequestMapping, and @Get-
Mapping, you can easily create such a controller. It might look something like the fol-
lowing listing.

package tacos.web;
import javax.validation.Valid;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.Errors;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import lombok.extern.slf4j.Slf4j;
import tacos.Order;

Listing 2.6 A controller to present a taco order form

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

42 CHAPTER 2 Developing web applications

@Slf4j
@Controller
@RequestMapping("/orders")
public class OrderController {

 @GetMapping("/current")
 public String orderForm(Model model) {
 model.addAttribute("order", new Order());
 return "orderForm";
 }

}

Once again, you use Lombok’s @Slf4j annotation to create a free SLF4J Logger
object at runtime. You’ll use this Logger in a moment to log the details of the order
that’s submitted.

 The class-level @RequestMapping specifies that any request-handling methods in
this controller will handle requests whose path begins with /orders. When combined
with the method-level @GetMapping, it specifies that the orderForm() method will han-
dle HTTP GET requests for /orders/current.

 As for the orderForm() method itself, it’s extremely basic, only returning a logical
view name of orderForm. Once you have a way to persist taco creations to a database in
chapter 3, you’ll revisit this method and modify it to populate the model with a list of
Taco objects to be placed in the order.

 The orderForm view is provided by a Thymeleaf template named orderForm.html,
which is shown next.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 <link rel="stylesheet" th:href="@{/styles.css}" />
 </head>

 <body>

 <form method="POST" th:action="@{/orders}" th:object="${order}">
 <h1>Order your taco creations!</h1>

 <a th:href="@{/design}" id="another">Design another taco

 <div th:if="${#fields.hasErrors()}">

 Please correct the problems below and resubmit.

 </div>

Listing 2.7 A taco order form view

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

43Processing form submission

 <h3>Deliver my taco masterpieces to...</h3>
 <label for="name">Name: </label>
 <input type="text" th:field="*{name}"/>

 <label for="street">Street address: </label>
 <input type="text" th:field="*{street}"/>

 <label for="city">City: </label>
 <input type="text" th:field="*{city}"/>

 <label for="state">State: </label>
 <input type="text" th:field="*{state}"/>

 <label for="zip">Zip code: </label>
 <input type="text" th:field="*{zip}"/>

 <h3>Here's how I'll pay...</h3>
 <label for="ccNumber">Credit Card #: </label>
 <input type="text" th:field="*{ccNumber}"/>

 <label for="ccExpiration">Expiration: </label>
 <input type="text" th:field="*{ccExpiration}"/>

 <label for="ccCVV">CVV: </label>
 <input type="text" th:field="*{ccCVV}"/>

 <input type="submit" value="Submit order"/>
 </form>

 </body>
</html>

For the most part, the orderForm.html view is typical HTML/Thymeleaf content, with
very little of note. But notice that the <form> tag here is different from the <form> tag
used in listing 2.3 in that it also specifies a form action. Without an action specified,
the form would submit an HTTP POST request back to the same URL that presented
the form. But here, you specify that the form should be POSTed to /orders (using
Thymeleaf’s @{…} operator for a context-relative path).

 Therefore, you’re going to need to add another method to your OrderController
class that handles POST requests for /orders. You won’t have a way to persist orders
until the next chapter, so you’ll keep it simple here—something like what you see in
the next listing.

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

44 CHAPTER 2 Developing web applications

@PostMapping
public String processOrder(Order order) {
 log.info("Order submitted: " + order);
 return "redirect:/";
}

When the processOrder() method is called to handle a submitted order, it’s given an
Order object whose properties are bound to the submitted form fields. Order, much
like Taco, is a fairly straightforward class that carries order information.

package tacos;
import javax.validation.constraints.Digits;
import javax.validation.constraints.Pattern;
import org.hibernate.validator.constraints.CreditCardNumber;
import org.hibernate.validator.constraints.NotBlank;
import lombok.Data;

@Data
public class Order {

 private String name;
 private String street;
 private String city;
 private String state;
 private String zip;
 private String ccNumber;
 private String ccExpiration;
 private String ccCVV;

}

Now that you’ve developed an OrderController and the order form view, you’re
ready to try it out. Open your browser to http://localhost:8080/design, select some
ingredients for your taco, and click the Submit Your Taco button. You should see a
form similar to what’s shown in figure 2.3.

 Fill in some fields in the form, and press the Submit Order button. As you do, keep
an eye on the application logs to see your order information. When I tried it, the log
entry looked something like this (reformatted to fit the width of this page):

Order submitted: Order(name=Craig Walls,street1=1234 7th Street,
city=Somewhere, state=Who knows?, zip=zipzap, ccNumber=Who can guess?,

ccExpiration=Some day, ccCVV=See-vee-vee)

If you look carefully at the log entry from my test order, you can see that although the
processOrder() method did its job and handled the form submission, it let a little bit
of bad information get in. Most of the fields in the form contained data that couldn’t

Listing 2.8 Handling a taco order submission

Listing 2.9 A domain object for taco orders

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

45Validating form input

possibly be correct. Let’s add some validation to ensure that the data provided at least
resembles the kind of information required.

2.3 Validating form input
When designing a new taco creation, what if the user selects no ingredients or fails to
specify a name for their creation? When submitting the order, what if they fail to fill in
the required address fields? Or what if they enter a value into the credit card field that
isn’t even a valid credit card number?

 As things stand now, nothing will stop the user from creating a taco without any
ingredients or with an empty delivery address, or even submitting the lyrics to their

Figure 2.3 The taco order form

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

46 CHAPTER 2 Developing web applications

favorite song as the credit card number. That’s because you haven’t yet specified how
those fields should be validated.

 One way to perform form validation is to litter the processDesign() and process-
Order() methods with a bunch of if/then blocks, checking each and every field to
ensure that it meets the appropriate validation rules. But that would be cumbersome
and difficult to read and debug.

 Fortunately, Spring supports Java’s Bean Validation API (also known as JSR-303;
https://jcp.org/en/jsr/detail?id=303). This makes it easy to declare validation rules
as opposed to explicitly writing declaration logic in your application code. And with
Spring Boot, you don’t need to do anything special to add validation libraries to your
project, because the Validation API and the Hibernate implementation of the Valida-
tion API are automatically added to the project as transient dependencies of Spring
Boot’s web starter.

 To apply validation in Spring MVC, you need to

 Declare validation rules on the class that is to be validated: specifically, the
Taco class.

 Specify that validation should be performed in the controller methods that
require validation: specifically, the DesignTacoController’s processDesign()
method and OrderController’s processOrder() method.

 Modify the form views to display validation errors.

The Validation API offers several annotations that can be placed on properties of
domain objects to declare validation rules. Hibernate’s implementation of the Valida-
tion API adds even more validation annotations. Let’s see how you can apply a few of
these annotations to validate a submitted Taco or Order.

2.3.1 Declaring validation rules

For the Taco class, you want to ensure that the name property isn’t empty or null and
that the list of selected ingredients has at least one item. The following listing shows
an updated Taco class that uses @NotNull and @Size to declare those validation rules.

package tacos;
import java.util.List;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import lombok.Data;

@Data
public class Taco {

 @NotNull
 @Size(min=5, message="Name must be at least 5 characters long")
 private String name;

Listing 2.10 Adding validation to the Taco domain class

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

47Validating form input

 @Size(min=1, message="You must choose at least 1 ingredient")
 private List<String> ingredients;

}

You’ll notice that in addition to requiring that the name property isn’t null, you
declare that it should have a value that’s at least 5 characters in length.

 When it comes to declaring validation on submitted taco orders, you must apply
annotations to the Order class. For the address properties, you only want to be sure
that the user doesn’t leave any of the fields blank. For that, you’ll use Hibernate Vali-
dator’s @NotBlank annotation.

 Validation of the payment fields, however, is a bit more exotic. You need to not
only ensure that the ccNumber property isn’t empty, but that it contains a value that
could be a valid credit card number. The ccExpiration property must conform to
a format of MM/YY (two-digit month and year). And the ccCVV property needs to be a
three-digit number. To achieve this kind of validation, you need to use a few other Java
Bean Validation API annotations and borrow a validation annotation from the Hiber-
nate Validator collection of annotations. The following listing shows the changes
needed to validate the Order class.

package tacos;
import javax.validation.constraints.Digits;
import javax.validation.constraints.Pattern;
import org.hibernate.validator.constraints.CreditCardNumber;
import javax.validation.constraints.NotBlank;
import lombok.Data;

@Data
public class Order {

 @NotBlank(message="Name is required")
 private String name;

 @NotBlank(message="Street is required")
 private String street;

 @NotBlank(message="City is required")
 private String city;

 @NotBlank(message="State is required")
 private String state;

 @NotBlank(message="Zip code is required")
 private String zip;

 @CreditCardNumber(message="Not a valid credit card number")
 private String ccNumber;

Listing 2.11 Validating order fields

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

48 CHAPTER 2 Developing web applications

 @Pattern(regexp="^(0[1-9]|1[0-2])([\\/])([1-9][0-9])$",
 message="Must be formatted MM/YY")
 private String ccExpiration;

 @Digits(integer=3, fraction=0, message="Invalid CVV")
 private String ccCVV;

}

As you can see, the ccNumber property is annotated with @CreditCardNumber. This
annotation declares that the property’s value must be a valid credit card number that
passes the Luhn algorithm check (https://en.wikipedia.org/wiki/Luhn_algorithm).
This prevents user mistakes and deliberately bad data but doesn’t guarantee that the
credit card number is actually assigned to an account or that the account can be used
for charging.

 Unfortunately, there’s no ready-made annotation for validating the MM/YY format
of the ccExpiration property. I’ve applied the @Pattern annotation, providing it with
a regular expression that ensures that the property value adheres to the desired for-
mat. If you’re wondering how to decipher the regular expression, I encourage you to
check out the many online regular expression guides, including http://www.regular-
expressions.info/. Regular expression syntax is a dark art and certainly outside the
scope of this book.

 Finally, the ccCVV property is annotated with @Digits to ensure that the value con-
tains exactly three numeric digits.

 All of the validation annotations include a message attribute that defines the mes-
sage you’ll display to the user if the information they enter doesn’t meet the require-
ments of the declared validation rules.

2.3.2 Performing validation at form binding

Now that you’ve declared how a Taco and Order should be validated, we need to
revisit each of the controllers, specifying that validation should be performed when
the forms are POSTed to their respective handler methods.

 To validate a submitted Taco, you need to add the Java Bean Validation API’s @Valid
annotation to the Taco argument of DesignTacoController’s processDesign() method.

@PostMapping
public String processDesign(@Valid Taco design, Errors errors) {
 if (errors.hasErrors()) {
 return "design";
 }

 // Save the taco design...
 // We'll do this in chapter 3
 log.info("Processing design: " + design);

Listing 2.12 Validating a POSTed Taco

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

49Validating form input

 return "redirect:/orders/current";
}

The @Valid annotation tells Spring MVC to perform validation on the submitted Taco
object after it’s bound to the submitted form data and before the processDesign()
method is called. If there are any validation errors, the details of those errors will be
captured in an Errors object that’s passed into processDesign(). The first few lines
of processDesign() consult the Errors object, asking its hasErrors() method if
there are any validation errors. If there are, the method concludes without processing
the Taco and returns the "design" view name so that the form is redisplayed.

 To perform validation on submitted Order objects, similar changes are also required
in the processOrder() method of OrderController.

@PostMapping
public String processOrder(@Valid Order order, Errors errors) {
 if (errors.hasErrors()) {
 return "orderForm";
 }

 log.info("Order submitted: " + order);
 return "redirect:/";
}

In both cases, the method will be allowed to process the submitted data if there are no
validation errors. If there are validation errors, the request will be forwarded to the
form view to give the user a chance to correct their mistakes.

 But how will the user know what mistakes require correction? Unless you call out
the errors on the form, the user will be left guessing about how to successfully sub-
mit the form.

2.3.3 Displaying validation errors

Thymeleaf offers convenient access to the Errors object via the fields property and
with its th:errors attribute. For example, to display validation errors on the credit
card number field, you can add a element that uses these error references to
the order form template, as follows.

<label for="ccNumber">Credit Card #: </label>
<input type="text" th:field="*{ccNumber}"/>
<span class="validationError"
 th:if="${#fields.hasErrors('ccNumber')}"
 th:errors="*{ccNumber}">CC Num Error

Aside from a class attribute that can be used to style the error so that it catches the
user’s attention, the element uses a th:if attribute to decide whether or not

Listing 2.13 Validating a POSTed Order

Listing 2.14 Displaying validation errors

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

50 CHAPTER 2 Developing web applications

to display the . The fields property’s hasErrors() method checks if there are
any errors in the ccNumber field. If so, the will be rendered.

 The th:errors attribute references the ccNumber field and, assuming there are
errors for that field, it will replace the placeholder content of the element with
the validation message.

 If you were to sprinkle similar tags around the order form for the other
fields, you might see a form that looks like figure 2.4 when you submit invalid informa-
tion. The errors indicate that the name, city, and ZIP code fields have been left blank,
and that all of the payment fields fail to meet the validation criteria.

Figure 2.4 Validation errors displayed on the order form

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

51Working with view controllers

Now your Taco Cloud controllers not only display and capture input, but they
also validate that the information meets some basic validation rules. Let’s step back
and reconsider the HomeController from chapter 1, looking at an alternative
implementation.

2.4 Working with view controllers
Thus far, you’ve written three controllers for the Taco Cloud application. Although
each controller serves a distinct purpose in the functionality of the application, they
all pretty much follow the same programming model:

 They’re all annotated with @Controller to indicate that they’re controller
classes that should be automatically discovered by Spring component scanning
and instantiated as beans in the Spring application context.

 All but HomeController are annotated with @RequestMapping at the class level
to define a baseline request pattern that the controller will handle.

 They all have one or more methods that are annotated with @GetMapping or
@PostMapping to provide specifics on which methods should handle which
kinds of requests.

Most of the controllers you’ll write will follow that pattern. But when a controller is
simple enough that it doesn’t populate a model or process input—as is the case with
your HomeController—there’s another way that you can define the controller. Have a
look at the next listing to see how you can declare a view controller—a controller that
does nothing but forward the request to a view.

package tacos.web;

import org.springframework.context.annotation.Configuration;
import

org.springframework.web.servlet.config.annotation.ViewControllerRegistry
;

import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
public class WebConfig implements WebMvcConfigurer {

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("home");
 }

}

The most significant thing to notice about @WebConfig is that it implements the Web-
MvcConfigurer interface. WebMvcConfigurer defines several methods for configuring
Spring MVC. Even though it’s an interface, it provides default implementations of all

Listing 2.15 Declaring a view controller

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

52 CHAPTER 2 Developing web applications

the methods, so you only need to override the methods you need. In this case, you
override addViewControllers().

 The addViewControllers() method is given a ViewControllerRegistry that you
can use to register one or more view controllers. Here, you call addViewController()
on the registry, passing in "/", which is the path for which your view controller will
handle GET requests. That method returns a ViewControllerRegistration object,
on which you immediately call setViewName() to specify home as the view that a
request for "/" should be forwarded to.

 And just like that, you’ve been able to replace HomeController with a few lines in a
configuration class. You can now delete HomeController, and the application should
still behave as it did before. The only other change required is to revisit Home-
ControllerTest from chapter 1, removing the reference to HomeController from the
@WebMvcTest annotation, so that the test class will compile without errors.

 Here, you’ve created a new WebConfig configuration class to house the view con-
troller declaration. But any configuration class can implement WebMvcConfigurer
and override the addViewController method. For instance, you could have added
the same view controller declaration to the bootstrap TacoCloudApplication class
like this:

@SpringBootApplication
public class TacoCloudApplication implements WebMvcConfigurer {

 public static void main(String[] args) {
 SpringApplication.run(TacoCloudApplication.class, args);
 }

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("home");
 }

}

By extending an existing configuration class, you can avoid creating a new configura-
tion class, keeping your project artifact count down. But I tend to prefer creating a
new configuration class for each kind of configuration (web, data, security, and so
on), keeping the application bootstrap configuration clean and simple.

 Speaking of view controllers, and more generically the views that controllers for-
ward requests to, so far you’ve been using Thymeleaf for all of your views. I like
Thymeleaf a lot, but maybe you prefer a different template model for your application
views. Let’s have a look at Spring’s many supported view options.

2.5 Choosing a view template library
For the most part, your choice of a view template library is a matter of personal taste.
Spring is very flexible and supports many common templating options. With only a

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

53Choosing a view template library

few small exceptions, the template library you choose will itself have no idea that it’s
even working with Spring.3

 Table 2.2 catalogs the template options supported by Spring Boot autoconfiguration.

Generally speaking, you select the view template library you want, add it as a depen-
dency in your build, and start writing templates in the /templates directory (under
the src/main/resources directory in a Maven- or Gradle-built project). Spring Boot
will detect your chosen template library and automatically configure the components
required for it to serve views for your Spring MVC controllers.

 You’ve already done this with Thymeleaf for the Taco Cloud application. In chap-
ter 1, you selected the Thymeleaf check box when initializing the project. This resulted
in Spring Boot’s Thymeleaf starter being included in the pom.xml file. When the appli-
cation starts up, Spring Boot autoconfiguration detects the presence of Thymeleaf and
automatically configures the Thymeleaf beans for you. All you had to do was start writ-
ing templates in /templates.

 If you’d rather use a different template library, you simply select it at project initial-
ization or edit your existing project build to include the newly chosen template
library.

 For example, let’s say you wanted to use Mustache instead of Thymeleaf. No prob-
lem. Just visit the project pom.xml file and replace this,

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

with this:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-mustache</artifactId>
</dependency>

3 One such exception is Thymeleaf’s Spring Security dialect, which we’ll talk about in chapter 4.

Table 2.2 Supported template options

Template Spring Boot starter dependency

FreeMarker spring-boot-starter-freemarker

Groovy Templates spring-boot-starter-groovy-templates

JavaServer Pages (JSP) None (provided by Tomcat or Jetty)

Mustache spring-boot-starter-mustache

Thymeleaf spring-boot-starter-thymeleaf

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

54 CHAPTER 2 Developing web applications

Of course, you’d need to make sure that you write all the templates with Mustache syn-
tax instead of Thymeleaf tags. The specifics of working with Mustache (or any of the
template language choices) is well outside of the scope of this book, but to give you an
idea of what to expect, here’s a snippet from a Mustache template that will render one
of the ingredient groups in the taco design form:

<h3>Designate your wrap:</h3>
{{#wrap}}
<div>
 <input name="ingredients" type="checkbox" value="{{id}}" />
 {{name}}

</div>
{{/wrap}}

This is the Mustache equivalent of the Thymeleaf snippet in section 2.1.3. The
{{#wrap}} block (which concludes with {{/wrap}}) iterates through a collection in
the request attribute whose key is wrap and renders the embedded HTML for each
item. The {{id}} and {{name}} tags reference the id and name properties of the item
(which should be an Ingredient).

 You’ll notice in table 2.2 that JSP doesn’t require any special dependency in the
build. That’s because the servlet container itself (Tomcat by default) implements
the JSP specification, thus requiring no further dependencies.

 But there’s a gotcha if you choose to use JSP. As it turns out, Java servlet contain-
ers—including embedded Tomcat and Jetty containers—usually look for JSPs some-
where under /WEB-INF. But if you’re building your application as an executable JAR
file, there’s no way to satisfy that requirement. Therefore, JSP is only an option if
you’re building your application as a WAR file and deploying it in a traditional servlet
container. If you’re building an executable JAR file, you must choose Thymeleaf,
FreeMarker, or one of the other options in table 2.2.

2.5.1 Caching templates

By default, templates are only parsed once, when they’re first used, and the results
of that parse are cached for subsequent use. This is a great feature for production,
as it prevents redundant template parsing on each request and thus improves
performance.

 That feature is not so awesome at development time, however. Let’s say you fire
up your application and hit the taco design page and decide to make a few changes
to it. When you refresh your web browser, you’ll still be shown the original version.
The only way you can see your changes is to restart the application, which is quite
inconvenient.

 Fortunately, there’s a way to disable caching. All you need to do is set a template-
appropriate caching property to false. Table 2.3 lists the caching properties for each
of the supported template libraries.

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

55Summary

By default, all of these properties are set to true to enable caching. You can disable
caching for your chosen template engine by setting its cache property to false. For
example, to disable Thymeleaf caching, add the following line in application.properties:

spring.thymeleaf.cache=false

The only catch is that you’ll want to be sure to remove this line (or set it to true)
before you deploy your application to production. One option is to set the property in
a profile. (We’ll talk about profiles in chapter 5.)

 A much simpler option is to use Spring Boot’s DevTools, as we opted to do in chap-
ter 1. Among the many helpful bits of development-time help offered by DevTools, it
will disable caching for all template libraries but will disable itself (and thus reenable
template caching) when your application is deployed.

Summary
 Spring offers a powerful web framework called Spring MVC that can be used to

develop the web frontend for a Spring application.
 Spring MVC is annotation-based, enabling the declaration of request-handling

methods with annotations such as @RequestMapping, @GetMapping, and @Post-
Mapping.

 Most request-handling methods conclude by returning the logical name of a
view, such as a Thymeleaf template, to which the request (along with any model
data) is forwarded.

 Spring MVC supports validation through the Java Bean Validation API and
implementations of the Validation API such as Hibernate Validator.

 View controllers can be used to handle HTTP GET requests for which no
model data or processing is required.

 In addition to Thymeleaf, Spring supports a variety of view options, including
FreeMarker, Groovy Templates, and Mustache.

Table 2.3 Properties to enable/disable template caching

Template Cache enable property

FreeMarker spring.freemarker.cache

Groovy Templates spring.groovy.template.cache

Mustache spring.mustache.cache

Thymeleaf spring.thymeleaf.cache

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

Craig Walls

S
pring Framework makes life easier for Java developers.
New features in Spring 5 bring its productivity-focused
approach to microservices, reactive development, and

other modern application designs. With Spring Boot now
fully integrated, you can start even complex projects with
minimal confi guration code. And the upgraded WebFlux
framework supports reactive apps right out of the box!

Spring in Action, Fifth Edition guides you through Spring’s core
features, explained in Craig Walls’ famously clear style. You’ll
roll up your sleeves and build a secure database-backed web
app step by step. Along the way, you’ll explore reactive pro-
gramming, microservices, service discovery, RESTful APIs,
deployment, and expert best practices. Whether you’re just
discovering Spring or leveling up to Spring 5, this Manning
classic is your ticket!

What’s Inside
● Building reactive applications
● Spring MVC for web apps and RESTful web services
● Securing applications with Spring Security
● Covers Spring 5.0

For intermediate Java developers.

Craig Walls is a principal software engineer at Pivotal, a popu-
lar author, an enthusiastic supporter of Spring Framework,
and a frequent conference speaker.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/spring-in-action-fifth-edition

$49.99 / Can $65.99 [INCLUDING eBOOK]

Spring IN ACTION Fifth Edition

JAVA

M A N N I N G

“This new edition is a
comprehensive update that
strikes the balance between

practical instruction and
comprehensive theory.”

—Daniel Vaughan
European Bioinformatics Institute

“The go-to book for learning
the Spring Framework and an
excellent reference guide.”

—Colin Joyce, Cisco

“Everything you need to
know about Spring and

how to build cloud-native
 applications.”—David Witherspoon, Parsons

“This book is the
Spring developer’s

 Swiss Army knife!”
—Riccardo Noviello

Nuvio Software Solutions

See first page

Over 100,000 copies sold!

www.itbook.store/books/9781617294945

https://itbook.store/books/9781617294945

