
M A N N I N G

Marc Garreau
Will Faurot
Foreword by Mark Erikson

IN ACTION

S A M P L E C H A P T E R

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

Redux in Action

by Marc Garreau
Will Faurot

Foreword by Mark Erikson

 Chapter 1

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

vii

brief contents
1 ■ Introducing Redux 1

2 ■ Your first Redux application 16

3 ■ Debugging Redux applications 47

4 ■ Consuming an API 60

5 ■ Middleware 86

6 ■ Handling complex side effects 111

7 ■ Preparing data for components 136

8 ■ Structuring a Redux store 158

9 ■ Testing Redux applications 192

10 ■ Performance 224

11 ■ Structuring Redux code 251

12 ■ Redux beyond React 263

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

1

Introducing Redux

If you hop into any React web application in 2018, there’s a good chance you’ll find
Redux there to manage its state. It’s remarkable that we reached this place so
quickly, though. A few years ago, Redux had yet to be created and React enjoyed an
excited and blossoming user base. Early adopters of React believed that they’d
found the best solution yet to the view layer—the “V” of the MVC (Model-View-
Controller) front-end framework puzzle. What they couldn’t agree on was how to
manage the state of those applications once they became the size and complexity
that the real world demands. Eventually, Redux settled the debate.

 Throughout the course of this book, we’ll explore Redux and its ecosystem
through the lens of a React application. As you’ll learn, Redux can be plugged into
JavaScript applications of all flavors, but React is an ideal playground for a few rea-

This chapter covers
 Defining Redux

 Understanding the differences between Flux
and Redux

 Using Redux with React

 Introducing actions, reducers, and the store

 Learning when to use Redux

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

2 CHAPTER 1 Introducing Redux

sons. Chief among those reasons: Redux was created in the context of React. You’re
most likely to encounter Redux within a React application, and React is agnostic
about how you manage the data layer of your application. Without further ado, let’s
jump in.

1.1 What is state?
React components have the concept of local, or component, state. Within any given
component, you can keep track of the value of an input field or whether a button has
been toggled, for example. Local state makes easy work of managing a single compo-
nent’s behavior. However, today’s single-page applications often require synchroniz-
ing a complex web of state. Nested levels of components may render a different user
experience based on the pages a user has already visited, the status of an AJAX
request, or whether a user is logged in.

 Let’s consider a use case involving the authentication status of a user. Your prod-
uct manager tells you that when a user is logged into an ecommerce store, the navi-
gation bar should display the user’s avatar image, the store should display items
nearest to the user’s zip code first, and the newsletter signup form should be hid-
den. Within a vanilla React architecture, your options are limited for syncing state
across each of the components. In the end, you’ll likely end up passing the authenti-
cation status and additional user data from one top-level component down to each
of these nested components.

 This architecture has several disadvantages. Along the way, data may filter through
components that have no use for it other than to pass the data on to their children. In
a large application, this can result in tons of data moving through unrelated compo-
nents, passed down via props or passed up using callbacks. It’s likely that a small num-
ber of components at the top of the application end up with an awareness of most of
the state used throughout the entire application. At a certain scale, maintaining and
testing this code becomes untenable. Because React wasn’t intended to solve the same
breadth of problems that other MVC frameworks attempted to address, an opportu-
nity existed to bridge those gaps.

 With React in mind, Facebook eventually introduced Flux, an architecture pattern
for web applications. Flux became tremendously influential in the world of front-end
development and began a shift in how we thought about state management in client-
side applications. Facebook offered its own implementation of this pattern, but soon
more than a dozen Flux-inspired state management libraries emerged and competed
for React developers’ attention.

 This was a tumultuous time for React developers looking to scale an application.
We saw the light with Flux but continued to experiment to find more elegant ways to
manage complex state in applications. For a time, newcomers encountered a paradox
of choice; a divided community effort had produced so many options, it was anxiety-
inducing. To our surprise and delight, though, the dust is already settling and Redux
has emerged as a clear winner.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

3What is Flux?

 Redux took the React world by storm with a simple premise, a big payoff, and a
memorable introduction. The premise is to store your entire application state in a sin-
gle object using pure functions. The payoff is a totally predictable application state.
The introduction, for most early users, came in Dan Abramov’s 2015 React Europe
conference talk, titled “Live React: Hot Reloading with Time Travel.” Dan wowed
attendees by demonstrating a Redux developer experience that blew established work-
flows out of the water. A technique called hot loading makes live application updates
while maintaining existing state, and his nascent Redux developer tools enable you to
time travel through application state—rewinding and replaying user actions with a sin-
gle click. The combined effect offers developers debugging super powers, which we’ll
explain in detail in chapter 3.

 To understand Redux, we’d first like to properly introduce you to Flux, the archi-
tecture pattern developed at Facebook and credited to Jing Chen. Redux and many of
its alternatives are variations of this Flux architecture.

1.2 What is Flux?
Flux is foremost an architecture pattern. It was developed as an alternative to the pre-
vailing MVC JavaScript patterns popularized by incumbent frameworks, such as Back-
bone, Angular, or Ember. Although each framework puts its own spin on the MVC
pattern, many share similar frustrations: generally, the flow of data between models,
views, and controllers can be difficult to follow.

 Many of these frameworks use two-way data binding, in which changes to the views
update corresponding models, and changes in the models update corresponding
views. When any given view can update one or more models, which in turn can update
more views, you can’t be blamed for losing track of the expected outcome at a certain
scale. Chen contested that although MVC frameworks work well for smaller applica-
tions, the two-way data-binding models that many of them employ don’t scale well
enough for the size of Facebook’s application. Developers at the company became
apprehensive of making changes, for fear of the tangled web of dependencies produc-
ing unintended consequences.

 Flux sought to address the unpredictability of state and the fragility of a tightly
coupled model and view architecture. Chen scrapped the two-way data-binding
model in favor of a unidirectional data flow. Instead of permitting each view to
interact with its corresponding models, Flux requires all changes to state to follow a
single path. When a user clicks a Submit button on a form, for example, an action is
sent to the application’s one and only dispatcher. The dispatcher will then send the
data through to the appropriate data stores for updating. Once updated, the views
will become aware of the new data to render. Figure 1.1 illustrates this unidirec-
tional data flow.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

4 CHAPTER 1 Introducing Redux

1.2.1 Actions

Every change to state starts with an action (figure 1.1). An action is a JavaScript object
describing an event in your application. They’re typically generated by either a user
interaction or by a server event, such as an HTTP response.

1.2.2 Dispatcher

All data flow in a Flux application is funneled through a single dispatcher. The dis-
patcher itself has little functionality, because its purpose is to receive all actions and send
them to each store that has been registered. Every action will be sent to every store.

1.2.3 Stores

Each store manages the state of one domain within an application. In an ecommerce
site, you may expect to find a shopping cart store and a product store, for example.
Once a store is registered with the dispatcher, it begins to receive actions. When it
receives an action type that it cares about, the store updates accordingly. Once a
change to the store is made, an event is broadcast to let the views know to update
using the new state.

1.2.4 Views

Flux may have been designed with React in mind, but the views aren’t required to be
React components. For their part, the views need only subscribe to the stores from
which they want to display data. The Flux documentation encourages the use of the
controller-view pattern, whereby a top-level component handles communication with
the stores and passes data to child components. Having both a parent and a nested
child component communicating with stores can lead to extra renders and unin-
tended side-effects.

 Again, Flux is an architecture pattern first. The Facebook team maintains one sim-
ple implementation of this pattern, aptly (or confusingly, depending on your perspec-
tive) named Flux. Many alternative implementations have emerged since 2014,
including Alt, Reflux, and Redux. A more comprehensive list of these alternative
implementations can be found in section 1.6.

View Action

DispatcherStore Figure 1.1 Flux specifies that data
must flow in a single direction.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

5What is Redux?

1.3 What is Redux?
We can’t put it much better than the official docs: “Redux is a predictable state con-
tainer for JavaScript applications” (https://redux.js.org/). It’s a standalone library, but
it’s used most often as a state management layer with React. Like Flux, its major goal is
to bring consistency and predictability to the data in applications. Redux divides the
responsibilities of state management into a few separate units:

 The store holds all your application state in a single object. (We’ll commonly
refer to this object as the state tree.)

 The store can be updated only with actions, an object describing an event.
 Functions known as reducers specify how to transform application state. Reduc-

ers are functions that take the current state in the store and an action, then
return the next state after applying any updates.

Technically speaking, Redux may not qualify as a Flux implementation. It nontrivially
deviates from several of the components of the prescribed Flux architecture, such as
the removal of the dispatcher altogether. Ultimately though, Redux is Flux-like and
the distinction is a matter of semantics.

 Redux enjoys the benefits of a predictable data flow from the Flux architecture,
but it has also found ways to alleviate the uncertainty of store callback registrations. As
alluded to in the previous section, it can be a pain to reconcile the state of multiple
Flux stores. Redux, instead, prescribes a single store to manage the state of an entire
application. You’ll learn more about how this works and what the implications are in
the coming sections.

1.3.1 React and Redux

Although Redux was designed and developed in the context of React, the two libraries
are completely decoupled. React and Redux are connected using bindings, as shown
in figure 1.2.

It turns out that the Redux paradigm for state management can be implemented
alongside most JavaScript frameworks. Bindings exist for Angular, Backbone, Ember,
and many more technologies.

 Although this book is fundamentally about Redux, our treatment of it is closely
tied to React. Redux is a small, standalone library, but it fits particularly well with

React Bindings Redux

Figure 1.2 Redux isn’t part of any existing framework or library, but
additional tools called bindings connect Redux with React. Over the
course of the book you’ll use the react-redux package for this.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

6 CHAPTER 1 Introducing Redux

React components. Redux will help you define what your application does; React will
handle how your application looks.

 Most of the code we’ll write over the course of the book, not to mention most of
the React/Redux code you’ll write period, will fall into a few categories:

 The application’s state and behavior, handled by Redux
 Bindings, provided by the react-redux package, that connect the data in the

Redux store with the view (React components)
 Stateless components that comprise much of your view layer

You’ll find that React is a natural ecosystem for Redux. While React has mechanisms
to manage state directly in components, the door is wide open for Redux to come in
and manage the greater application state. If you’re interested in an alternative ecosys-
tem, chapter 12 explores the relationship between Redux and several other JavaScript
frameworks.

1.3.2 The three principles

You have covered substantial ground by grokking that state in Redux is represented by a
single source of truth, is read-only, and changes to it must be made with pure functions.

SINGLE SOURCE OF TRUTH

Unlike the various domain stores prescribed by the Flux architecture, Redux manages
an entire application’s state in one object, inside one store. The use of a single store
has important implications. The ability to represent the entire application state in a
single object simplifies the developer experience; it’s dramatically easier to think
through the application flow, predict the outcome of new actions, and debug issues
produced by any given action. The potential for time-travel debugging, or the ability
to flip back and forth through snapshots of application state, is what inspired the cre-
ation of Redux in the first place.

STATE IS READ-ONLY

Like Flux, actions are the only way to initiate changes in application state. No stray AJAX
call can produce a change in state without being communicated via an action. Redux
differs from many Flux implementations, though, in that these actions don’t result in a
mutation of the data in the store. Instead, each action results in a shiny, new instance of
the state to replace the current one. More on that subject in the next section.

CHANGES ARE MADE WITH PURE FUNCTIONS

Actions are received by reducers. It’s important that these reducers be pure functions.
Pure functions are deterministic; they always produce the same output given the same
inputs, and they don’t mutate any data in the process. If a reducer mutates the exist-
ing state while producing the new one, you may end up with an erroneous new state,
but you also lose the predictable transaction log that each new action should provide.
The Redux developer tools and other features, such as undo and redo functionality,
rely on application state being computed by pure functions.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

7What is Redux?

1.3.3 The workflow

We’ve touched briefly upon topics such as actions, reducers, and the store, but in this
section, we cover each in more depth. What’s important to take away here is the role
that each element plays and how they work together to produce a desired result. For
now, don’t worry about finer implementation details, because you’ll have plenty of
time in later chapters to apply the concepts you’re about to explore.

 Modern web applications are ultimately about handling events. They could be ini-
tiated by a user, such as navigating to a new page or submitting a form. Or they could
be initiated by another external source, such as a server response. Responding to
events usually involves updating state and re-rendering with that updated state. The
more your application does, the more state you need to track and update. Combine
this with the fact that most of these events occur asynchronously, and you suddenly
have real obstacles to maintaining an application at scale.

 Redux exists to create structure around how you handle events and manage state
in your application, hopefully making you a more productive and happy human in
the process.

 Let’s look at how to handle a single event in an application using Redux and React.
Say you were tasked with implementing one of the core features of a social network—
adding a post to your activity feed. Figure 1.3 shows a quick mockup of a user profile
page, which may or may not take its inspiration from Twitter.

The following distinct steps are involved in handling an event such as a new post:

 From the view, indicate that an event has occurred (a post submission) and pass
along the necessary data (the content of the post to be created).

 Update state based on the type of event—add an item to the user’s activity feed
and increment the post count.

 Re-render the view to reflect the updated state.

+ New ostp

56 ostsp

Figure 1.3 A simple mockup of a
profile page. This page is backed by
two main pieces of data: the total post
count and the list of post objects in
the user’s activity feed.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

8 CHAPTER 1 Introducing Redux

Sounds reasonable, right? If you’ve used React before, you’ve likely implemented fea-
tures similar to this directly in components. Redux takes a different approach. Code
to satisfy the three tasks is moved out of React components into a few separate entities.
You’re already familiar with the View in figure 1.4, but we’re excited to introduce a
new cast of characters you’ll hopefully learn to love.

ACTIONS

You want to do two things in response to a user submitting a new post: add the post to
the user’s activity feed and increment their total post count. After the user submits,
you’ll kick off the process by dispatching an action. Actions are plain old JavaScript
objects that represent an event in your application, as follows:

{
 type: 'CREATE_POST',
 payload: {
 body: 'All that is gold does not glitter'
 }
}

Let’s break that down. You have an object with two properties:

 type—A string that represents the category of action being performed. By con-
vention, this property is capitalized and uses underscores as delimiters.

 payload—An object that provides the data necessary to perform the action. In
your case, you only need one field: the contents of the message we want to post.
The name “payload” is only a popular convention.

Actions have the advantage of serving as audits, which keep a historical record of every-
thing happening in your application, including any data needed to complete a transac-
tion. It’s hard to understate how valuable this is in maintaining a grasp on a complex
application. Once you get used to having a highly readable stream describing the
behavior of your application in real time, you’ll find it hard to live without.

 Throughout the book, we’ll frequently come back to this idea of what versus how.
You can think of Redux as decoupling what happens in an application from how we
respond to an event. Actions handle the what in this equation. They describe an
event; they don’t know and don’t care what happens downstream. Somewhere down
the road you’ll eventually have to specify how to handle an action. Sounds like a job fit
for a reducer!

View Action Reducer Store

Figure 1.4 A look at how data flows through a React/Redux application. We’ve omitted a few common
pieces such as middleware and selectors, which we’ll cover in depth in later chapters.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

9What is Redux?

REDUCERS

Reducers are functions responsible for updating your state in response to actions.
They’re simple functions that take your current state and an action as arguments, and
return the next state. See figure 1.5.

Reducers are typically easy to work with. Similar to all pure functions, they produce no
side effects. They don’t affect the outside world in any way, and they’re referentially
transparent. The same inputs will always yield the same return value. This makes them
particularly easy to test. Given certain inputs, you can verify that you receive the
expected result. Figure 1.6 shows how our reducer might update the list of posts and
the total post count.

You’re focusing on a single event in this example, which means you need only one
reducer. However, you certainly aren’t limited to only one. In fact, more sizable
applications frequently implement several reducer functions, each concerned with a

Action

Current tates

Reducer Current tates

Figure 1.5 An abstract representation of a reducer’s function signature. If this
diagram looks simple, that’s because it is! Reducers are meant to be simple
functions that compute a result, making them easy to work with and test.

}

type: 'CREATE_POST',

payload: {

description: ...

}

}

Reducer

}

posts: [{...}, {...}],

postCount: 42

}

}

posts: [{...}, {...}, {...}],

postCount: 43

}

Figure 1.6 Visualizing a reducer hard at work. It accepts as input an action and the current state.
The reducer’s only responsibility is to calculate the next state based on these arguments. No
mutations, no side-effects, no funny business. Data in, data out.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

10 CHAPTER 1 Introducing Redux

different slice of the state tree. These reducers are combined, or composed, into a
single “root reducer.”

STORE

Reducers describe how to update state in response to an action, but they can’t modify
state directly. That privilege rests solely with the store.

 In Redux, application state is stored in a single object. The store has a few main
roles, which follow:

 Hold application state.
 Provide a way to access state.
 Provide a way to specify updates to state. The store requires an action be dis-

patched to modify state.
 Allow other entities to subscribe to updates (React components in this case).

View bindings provided by react-redux will allow you to receive updates from
the store and respond to them in your components.

The reducer processed the action and computed the next state. Now it’s time for the
store to update itself and broadcast the new state to all registered listeners (you care
specifically about the components that make up your profile page). See figure 1.7.

Now that you’re familiar with several of the most important building blocks, let’s look
at a more comprehensive diagram of the Redux architecture. Several pieces will be
unfamiliar now, but we’ll revisit this diagram (figure 1.8) repeatedly throughout this
book, and over time, we’ll fill in each of those gaps.

+ New ostp

56 ostsp
Store

All that is gold

does not glitter,

not all those who

wander are lost.

posts: [{...}, {...}, {...}],

postCount: 56

Figure 1.7 The store now completes the loop by providing the new state to our profile
page. Notice that the post count has incremented, and the new post has been added to the
activity feed. If your user adds another post, you’d follow the same exact flow. The view
dispatches an action, reducers specify how to update state, and the store broadcasts the
new state back to the view.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

11Why should I use Redux?

To review, an interaction with a view may produce an action. That action will filter
through one or more reducers and produce a new state tree within the store. Once
the state updates, the views will be made aware that there’s new data to render. That’s
the whole cycle! Items in figure 1.8 with a dashed border (action creators, middle-
ware, and selectors) are optional, but powerful, tools in a Redux architecture. We
cover each of these topics in future chapters.

 If this feels like a lot, don’t fret. If you’re new to the kind of one-directional
architecture that we’re beginning to explore, it can be initially overwhelming (we
certainly thought so at first). It takes time to let these concepts sink in. Developing a
sense for what role they play and what type of code belongs where is as much art as
it is science, and it’s a skill you’ll develop over time as you continue to get your
hands dirty.

1.4 Why should I use Redux?
By this point, you’ve been exposed to many of the Redux talking points. If you have to
pitch your boss on Redux by the time you finish the first chapter, let’s consolidate
those ideas into a highlight reel. In short, Redux is a small, easy-to-learn state manage-
ment library that results in a highly predictable, testable, and debuggable application.

Store

Event

Action creator

Selector Server

Reducer Middleware

View Action

Figure 1.8 This diagram will anchor your understanding of the elements of Redux as you
move forward. At this point, we’ve talked about actions, reducers, the store, and views.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

12 CHAPTER 1 Introducing Redux

1.4.1 Predictability

The biggest selling point for Redux is the sanity it provides to applications juggling
complex state. The Redux architecture offers a straightforward way to conceptualize
and manage state, one action at a time. Regardless of application size, actions within
the unidirectional data flow result in predictable changes to a single store.

1.4.2 Developer experience

Predictability enables world-class debugging tools. Hot-loading and time-travel debug-
ging provide developers with wildly faster development cycles, whether building new
features or hunting down bugs. Your boss will like that you’re a happier developer, but
she’ll love that you’re a faster one.

1.4.3 Testability

The Redux implementation code you’ll write is primarily functions, many of them
pure. Each piece of the puzzle can be broken out and unit-tested in isolation with
ease. Official documentation uses Jest and Enzyme, but whichever JavaScript testing
libraries your organization prefers will do the trick.

1.4.4 Learning curve

Redux is a natural step up from vanilla React. The library has a remarkably small foot-
print, exposing only a handful of APIs to get the job done. You can become familiar
with all of it in a day. Writing Redux code also requires your team to become familiar
with several functional programming patterns. This will be new territory for certain
developers, but the concepts are straightforward. Once you understand that changes
to state can be produced only by pure functions, you’re most of the way there.

1.4.5 Size

If your boss is doing her job, one of the items on her checklist is dependency size.
Redux is a tiny library—under 7KB when minified. Checkmate.

1.5 When should I use Redux?
We’ve hit you over the head with how great Redux is, but it’s certainly no cure-all.
We’ve argued in favor of why you should use Redux, but as we all know, nothing in life
is free and no software pattern exists without tradeoffs.

 The cost of Redux is a fair amount of boilerplate code and the added complexity
of something more than React’s local component state. It’s important to realize that
Redux, and the usage patterns you establish while using it, is one more thing for a new
developer on your team to learn before they can contribute.

 Redux co-creator Dan Abramov weighed in here, even publishing a blog post enti-
tled “You Might Not Need Redux.” He recommends starting without Redux and intro-
ducing the library only after you’ve reached enough state management pain points to
justify including it. The recommendation is intentionally vague, because that turning

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

13Alternatives to Redux

point will be slightly different for every team. Smaller applications without complex
data requirements are the most common scenario where it might be more appropri-
ate to not use Redux in favor of plain React.

 What might those pain points look like? Teams use a few common scenarios to jus-
tify bringing in Redux. The first is the passing of data through several layers of compo-
nents that don’t have any use for it. The second scenario deals with sharing and
syncing data between unrelated parts of the application. We all have a tolerance for
performing these tasks in React, but eventually you have a breaking point.

 Redux is likely a good fit out of the gate if you know you’ll want to build a specific
feature that it excels at. If you know your application will have complex state and
require undo and redo functionality, cut to the chase and pull in Redux. If server-side
rendering is a requirement, consider Redux upfront.

1.6 Alternatives to Redux
As mentioned already, Redux entered a crowded state-management market and more
options have appeared since. Let’s run through the most popular alternatives for
managing state in React applications.

1.6.1 Flux implementations

While researching, we stopped counting Flux implementation libraries somewhere in
the low 20s. Astoundingly, at least 8 of them have received more than 1,000 stars on
GitHub. This highlights an important era in React’s history—the Flux architecture
was a groundbreaking idea that spurred excitement in the community and, as a result,
a great deal of experimentation and growth. During this period, libraries came and
went at such an exhausting rate that the term JavaScript Fatigue was coined. With
hindsight, it’s clear that each of those experiments was an important stepping stone
along the way. Over time, many of the alternative Flux implementation maintainers
have graciously bowed out of the race in favor of Redux or one of the other popular
options, but there are still several well-maintained options out there.

FLUX

Flux, of course, is the one that started it all. In the maintainers’ own words, “Flux is
more of a pattern than a framework.” You’ll find great documentation about the Flux
architecture pattern in this repository, but a small API is exposed to facilitate building
applications with the architecture. The Dispatcher is at the core of that API, and, in
fact, several other Flux implementations have incorporated that Dispatcher into their
libraries. Measured in GitHub stars, this library is about half as popular as Redux and
continues to be actively maintained by the Facebook team.

REFLUX

Reflux was a fast follow to the original Flux library. The library introduces functional
reactive programming ideas to the Flux architecture by ripping out the single Dis-
patcher in favor of giving each action the ability to dispatch itself. Callbacks can be

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

14 CHAPTER 1 Introducing Redux

registered with actions to update stores. Reflux is still maintained and about one-sixth
as popular as Redux, measured by GitHub stars.

ALT

Unlike Reflux, Alt stays true to the original Flux ideas and uses the Flux Dispatcher.
Alt’s selling points are its adherence to the Flux architecture and a reduction in boil-
erplate code. Although it once enjoyed an enthusiastic community, at the time of writ-
ing, there have been no commits to the project in more than six months.

HONORABLE MENTIONS

To round out the bunch with greater than 1000 GitHub stars, you also have Fluxible,
Fluxxor, NuclearJS, and Flummox. Fluxible continues to be well-maintained by the
Yahoo team. Fluxxor, NuclearJS, and Flummox may be maintained, but are no longer
active. To underscore the idea that these projects were important stepping stones,
Flummox was created by Andrew Clark, who went on to co-create Redux with Dan
Abramov.

1.6.2 MobX

MobX offers a functional reactive solution to state management. Like Flux, MobX
uses actions to modify state, but components react to that mutated, or observable,
state. Although part of the terminology in functional reactive programming can be
intimidating, the features are approachable in practice. MobX also requires less boil-
erplate code than Redux but does more for you under the hood and is therefore less
explicit. The first commits for MobX predate those of Redux by only a couple of
months, in early 2015.

1.6.3 GraphQL clients

GraphQL is an exciting new technology, also being developed by the Facebook team.
It’s a query language that allows you to specify and receive exactly the data that is
required by a component. This paradigm fits well with the intended modularity of
React components; any data fetching that’s required by the component is encapsu-
lated within it. Queries to the API are optimized for the data needs of parent and chil-
dren components.

 Typically, GraphQL is used with a GraphQL client. The two most popular clients
today are Relay and Apollo Client. Relay is another project developed and maintained
by the Facebook team (and open source community). Apollo was originally imple-
mented with Redux under the hood, but now offers additional configurability.

 While it’s possible to bring in both Redux and a GraphQL client to manage the
same application’s state, you may find the combination to be overly complex and
unnecessary. Although GraphQL clients handle data fetching from a server and Redux
is more general-purpose, there’s overlap in usage between the packages.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

15Summary

Summary
This chapter introduced the Flux architecture pattern and where Redux ran with
those ideas. You learned several practical details about the library.

 Now you’re ready to put the basic building blocks together and see a functioning
Redux application end to end. In the next chapter, you’ll build a task management
application with React and Redux.

 Key points you’ve learned

 Redux state is stored in a single object and is the product of pure functions.
 For the price of boilerplate code, Redux can introduce predictability, testability,

and debuggability to your complex application.
 If you’re experiencing pain points while syncing state across your application or

passing data through multiple component layers, consider introducing Redux.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

Garreau ● Faurot

W
ith Redux, you manage the state of a web applica-
tion in a single, simple object, practically eliminating
most state-related bugs. Centralizing state with Redux

makes it possible to quickly start saved user sessions, maintain
a reliable state history, and smoothly transfer state between
UIs. Plus, the Redux state container is fully programmable and
integrates cleanly with React and other popular frameworks.

Redux in Action is an accessible guide to effectively managing
state in web applications. Built around common use cases, this
practical book starts with a simple task-management applica-
tion built in React. You’ll use the app to learn the Redux work-
fl ow, handle asynchronous actions, and get your hands on the
Redux developer tools. With each step, you’ll discover more
about Redux and the benefi ts of centralized state management.
The book progresses to more-complex examples, including
writing middleware for analytics, time travel debugging, and
an overview of how Redux works with other frameworks such
as Angular and Electron.

What’s Inside
● Using Redux in an existing React application
● Handling side effects with the redux-saga library
● Consuming APIs with asynchronous actions
● Unit testing a React and Redux application

For web developers comfortable with JavaScript and React.

Marc Garreau has architected and executed half a dozen unique
client-side applications using Redux. Will Faurot is a mentor
for Redux developers of all skill levels.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/redux-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Redux IN ACTION

WEB DEVELOPMENT/JAVASCRIPT

M A N N I N G

“Comprehensive, practical,
does a great job of teaching
many key topics for real-

 world Redux apps.”
—From the Foreword by

Mark Erikson
Redux co-maintainer

“The authors do a
wonderful job of making

 the material compelling.”—Jeremy Lange, Sertifi

“Take control of your
application state with expert

Redux advice.”
—Ian Lovell

Parmenion Capital Partners

“A perfect example of a book
beating online resources.”
—Jose San Leandro, OSOCO

See first page

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

