
M A N N I N G

Marc Garreau
Will Faurot
Foreword by Mark Erikson

IN ACTION

S A M P L E C H A P T E R

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

Redux in Action

by Marc Garreau
Will Faurot

Foreword by Mark Erikson

 Chapter 3

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

vii

brief contents
1 ■ Introducing Redux 1

2 ■ Your first Redux application 16

3 ■ Debugging Redux applications 47

4 ■ Consuming an API 60

5 ■ Middleware 86

6 ■ Handling complex side effects 111

7 ■ Preparing data for components 136

8 ■ Structuring a Redux store 158

9 ■ Testing Redux applications 192

10 ■ Performance 224

11 ■ Structuring Redux code 251

12 ■ Redux beyond React 263

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

47

Debugging Redux
applications

Debugging isn’t only a thing you do when you’re given a bug report. The same
tools and developer experience are essential to developing new features, too. In
chapter 1, you learned that Redux was born out of a desire for a better client-side
development experience. In this chapter, we’ll talk about a few areas where the
Redux developer tools can provide better insight into an application, save valuable
developer hours, and make for a more enjoyable day on the job.

 Historically, time spent tracking down unexpected behavior could be one of the
most egregious time sinks in a developer’s day. Chasing state changes in a complex
application using two-way databinding has sunk many developer days—we should
know. However, the Flux architecture pattern successfully reduces part of the men-
tal overhead required to keep up with state changes, thanks to its unidirectional
dataflow. Standardizing on actions as the vehicles of state change introduced a cer-
tain clarity: regardless of what initiated it, a change in state can be traced back to
an action.

This chapter covers
 Working with the Redux developer tools

 Understanding the role of monitors

 Using hot module replacement

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

48 CHAPTER 3 Debugging Redux applications

 As you’ve learned in the first two chapters, the list of actions dispatched in an
application forms what can be thought of as a transaction log. When viewed sequen-
tially, they can tell the story of a user’s interaction with the application fairly compre-
hensively. Wouldn’t it be nice to visualize those actions in real time? To see them as
they’re dispatched and the data they contain?

3.1 Introducing the Redux DevTools
The Redux developer tools, or DevTools for short, augment your development envi-
ronment for real-time visualization of actions. Let’s look at what the developer tools
might look like in the context of Parsnip (figure 3.1), the task management applica-
tion you started in chapter 2.

In the right panel (figure 3.1), you can see a highlighted list of items—the actions that
have been dispatched to produce the state displayed. Given this list of actions, you can
tell exactly what you’ve been up to within Parsnip without having to observe you do it:
the app was initialized, a third task was created, and then the second task was edited.
You can see why it might be handy to have immediate feedback on each new action as
it’s dispatched. For every action, you can be sure that the payload looks the way you
intended. Still, there’s much more that you can do with the DevTools.

 You’ll notice that beneath each action in the right page is a snapshot of the Redux
store. Not only can you view the action produced, you can see the application state

Every dispatched action is
listed in the DevTools.

The contents of each
action are displayed.

Figure 3.1 The Redux DevTools can be used to display actions in real time.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

49Time-travel debugging

that resulted from that action. Better still, you can dig into the Redux store and see,
highlighted, the exact values that changed as a result of the action. Figure 3.2 points
out these details within the DevTools.

3.2 Time-travel debugging
But wait, there’s more! Clicking the title of an action in the DevTools toggles that
action off. The application state is recalculated as if that action was never dispatched,
even if the action is in the middle of a long list of actions. Click it again, and the appli-
cation returns to its original state. See figure 3.3 for an example of this toggled state.

Changes in the store
are highlighted.

A snapshot of the store
follows the action details.

Figure 3.2 The DevTools highlight attributes of the Redux store that have changed
as a result of the action.

Subsequent actions
are unaffected.

Clicking an action
toggles it off.

Figure 3.3 Toggling an action recalculates the application state as if the action was never dispatched.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

50 CHAPTER 3 Debugging Redux applications

The rewinding and replaying of actions like this is what inspired the name time-travel
debugging. To determine what Parsnip would look like if you hadn’t created a third
task, there’s no need to refresh and re-create the state—you can hop back in time by
disabling that action.

 One extension for the DevTools even provides a slider UI to scroll back and for-
ward through actions, seeing their immediate effect on the application. Note that no
extra configuration or dependency is required to use time-travel debugging; it’s a fea-
ture of the DevTools. More specifically, it’s a feature of many DevTools monitors.

3.3 Visualizing changes with DevTools monitors
The Redux DevTools provide an interface to the actions and Redux store, but don’t
provide a way to visualize that data. That work is left for monitors. This is a conscious
decision to separate the two concerns, enabling the community to plug and play their
own visualizations of the data to best fit their needs. Figure 3.4 illustrates this idea con-
ceptually; one or more monitors can be configured to display the data provided by the
DevTools.

Several of these monitors, including those listed in figure 3.4, are open source
libraries and ready for use. In the screenshots from the previous sections, you
viewed a simple monitor, the Log Monitor. Other monitors worth mentioning are
the Slider Monitor, described in the previous section, and the Inspector Monitor,
the default monitor of the Redux DevTools Chrome extension. Inspector provides a
user interface similar to the Log Monitor but allows for easier filtering of actions
and storing of data.

Redux

DevTools

Log

Monitor

Slider

Monitor

Inspector

Monitor

Monitors can be plugged
into the DevTools to

visualize its data.

The DevTools enhance the
store, capturing action and

state data to aid in debugging.

Figure 3.4 Various monitors can be combined with the Redux DevTools to visualize actions
and store data.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

51Implementing the Redux DevTools

NOTE Several more monitors can be found in the README of the Redux
DevTools repository on GitHub (https://github.com/gaearon/redux-devtools).
Again, the DevTools will feed the data to any monitor, so if you can’t find a
monitor feature you’re looking for, that may be your cue to build your own.
The open source community will thank you for your contribution!

3.4 Implementing the Redux DevTools
Let’s say that you’re tasked with implementing the DevTools in your budding new
application, Parsnip. The first choice you have to make is how you’d like to view the
monitors. Here are a few popular options:

 In a component within the application
 In a separate popup window
 Inside your browser’s developer tools

For a few reasons, our personal preference is the last option—to use the Redux
DevTools using the Chrome browser developer tools. First, the installation is easier
than any other option. Second, the integration with our existing development work-
flow is seamless. Finally, the extension includes a robust set of monitors that continues
to meet your needs out of the box.

 As JavaScript developers, many of us already spend much time within the Chrome
DevTools—inspecting elements, using breakpoints, flipping between panels to check
the performance of requests, and so on. Installing the Redux DevTools Chrome
plugin adds one more panel, and clicking it reveals the Inspector and other monitors.
You don’t miss a beat.

NOTE Redux and Chrome both refer to their developer tools by the abbrevi-
ation “DevTools.” References to the Redux DevTools within the Chrome
DevTools can get confusing, so pay extra attention to the difference. Going
forward, we’ll specify which we’re referring to.

This process has two steps: installing the Chrome browser extension and hooking
the Redux DevTools into the store. Installing the Chrome extension is the simpler
of the two. Visit the Chrome Web Store, search for Redux DevTools, and install the
first package by the author remotedev.io.

 Now on to the second step, adding the Redux DevTools to the store. Although this
configuration can be done without another dependency, the redux-devtools-
extension package is a friendly abstraction that reads like English. You’ll download
and instrument the package now. Install and save the package to your development
dependencies with the following command:

npm install -D redux-devtools-extension

Once installed, you’ll import and pass a function called devToolsEnhancer to the
store. As a refresher, Redux’s createStore function takes up to three arguments: a
reducer, an initial state, and an enhancer. In the case that only two arguments are

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

52 CHAPTER 3 Debugging Redux applications

passed, Redux presumes the second argument is an enhancer and there’s no initial
state. The following listing is an example of this case. Enhancers are a way to augment
the Redux store and the devToolsEnhancer function is doing that: connecting the
store with the Chrome extension to provide additional debugging features.

import { devToolsEnhancer } from 'redux-devtools-extension';
…
const store = createStore(tasks, devToolsEnhancer());
…

After you’ve completed adding the Redux DevTools enhancer to the createStore
method, you can begin to use the tools. Flip back to the app in the browser and open
the Chrome developer tools. If you’re unfamiliar, from the Chrome navigation bar,
select View, then Developer, and finally Developer Tools. The Chrome DevTools will
open in a separate pane in your browser, typically with the Elements panel displayed
by default. From the navigation bar within the Chrome developer tools, you can find
the Redux DevTools by selecting the new Redux panel, made available by the Redux
DevTools Chrome extension (figure 3.5).

Once you’ve navigated to the Redux DevTools, you should see the Inspector Monitor
by default, which you can confirm by verifying that the upper-left menu of the tools
reads Inspector. If you’ve followed along and implemented the Redux DevTools in

Listing 3.1 src/index.js

The Redux DevTools
Chrome extension

adds the Redux panel.

Figure 3.5 Navigate to the Redux DevTools via the Redux panel in the Chrome developer tools.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

53Implementing the Redux DevTools

Parsnip, test them by adding a couple of new tasks. You should see a new action listed
in the Inspector Monitor for each task added. Click the Skip button for one of the
actions in the monitor to toggle that action off, and notice the removal of that task in
the user interface. Click the action’s Skip button once more to toggle it back on.

 When an action is selected, the other half of the Inspector Monitor will display
data about the action or the Redux store, depending on the filter you’ve selected. The
Diff filter is particularly helpful for visualizing the impact that an action had on the
store. The menu in the upper left will change the display between the Inspector, Log,
and Chart monitors. A button near the bottom on the panel with a stopwatch icon
opens a fourth monitor: the Slider Monitor. Pause here to take time to explore these
tools pointed out in figure 3.6, because they make for a delightful developer experi-
ence and will save your backside more times than you’ll be able to count.

Hover over an action
to reveal the ability
to skip an action.

Filters for action data

Additional DevTools options,
including the Slider Monitor
under the stopwatch icon

The current monitor

Data related to a
selected action

Figure 3.6 The skip, Diff filter, and monitor menu options offer unique ways to visualize and debug
state effects.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

54 CHAPTER 3 Debugging Redux applications

If you think you’d prefer to use the Redux DevTools in a component within your app,
the setup process is slightly more long-winded. You’ll likely make use of the Dock
Monitor—a component that can be shown or hidden in your application and that dis-
plays the Log Monitor, or another monitor, within it. Full instructions can be found in
the README of the Redux DevTools repository on GitHub at https://github.com/
gaearon/redux-devtools.

3.5 The role of Webpack
Are you already bored with your new debugging superpowers and looking for some-
thing else to optimize? As a JavaScript developer, you may be all too familiar with this
workflow:

1 Place a debugger statement in an uncertain area of the code.
2 Click through the application until the debugger is triggered.
3 In the console, figure out what code should be written to make incremental

progress.
4 Add the new code to your application and delete the debugger.
5 Return to step 1 and repeat until the bug fix or feature is complete.

Though debugger can be wildly more efficient than using console logs or alerts, this
developer experience leaves much to be desired. We commonly burn a ton of time in
the second step: after refreshing, we click through multiple extraneous screens before
finally getting to the part of the application we’re concerned about. We may make
incremental progress each pass, but it may be repeated an inestimable number of
times before we can call the bug fixed or the feature complete.

 Let’s start chipping away at these development-cycle times. Wouldn’t it be nice if
you no longer had to manually refresh the page after a change is made to your code?
If you know you need to refresh the browser to view and test each code change, your
build tools might as well take care of that for you.

 Multiple tools are capable of this file-watching and updating on change, but we’ll
reference Webpack specifically throughout the rest of this chapter. Webpack isn’t
required to use Redux, but it’s a favorite among React developers and it comes already
configured within apps generated by Create React App.

 Webpack is a type of build tool—a module bundler—capable of all kinds of tasks,
thanks to rich plugin options. In this chapter, however, you’re interested in only those
features that improve your Redux development workflow. Don’t panic, no Webpack
expertise is required to understand the concepts in this chapter.

 Webpack can save you a second here and there with automatic refreshing. Not
bad, but we’re not that excited yet either. The next opportunity for optimization is
to more quickly bundle changes into the application and perform that refresh.
Turns out that’s a specialty of Webpack. By omitting the resources not required by a
component, Webpack allows you to send less over the wire for each page load. These

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

55Hot module replacement

optimizations come enabled out of the box with Create React App and require no
further configuration.

 The combination of automatic refreshes and faster load times are nice wins that
may add up over time, but they’re still incremental improvements in a development
workflow. You may be tempted to believe the Webpack bang isn’t worth the buck, but
you’ll quickly discover that another feature, hot module replacement, is the founda-
tion of an exceptional Redux development experience.

3.6 Hot module replacement
Hot module replacement enables an application to update without having to refresh.
Let that sink in. If you’ve navigated deeply into an application to test a specific compo-
nent, with hot module replacement, each code change updates in real time, leaving
you to continue debugging uninterrupted. This feature all but eliminates that second,
costly step in our example debugger workflow: “Click through the application until
triggering the debugger.” There’s Webpack giving you your money’s worth.

 Note that hot module replacement doesn’t outright replace debugger. The two
debugging strategies can be used harmoniously together. Use debugger no differently
than you already do, and let hot module replacement reduce the time you might
spend navigating to reach the same breakpoint in the following development cycle.

 It’s worth clarifying at this point that hot module replacement is a feature of Web-
pack and isn’t at all coupled or unique to React or Redux applications. Create React
App enables the hot module replacement feature in Webpack by default, but it’s still up
to you to specify how to handle updates. You’ll want to configure two specific updates
for a React and Redux application. The first is how to handle updates to components.

3.6.1 Hot-loading components

Your next objective is to take Parsnip and augment it with hot module replacement.
The first goal is to have Webpack update any components you touch without refresh-
ing the page. Fortunately, the implementation logic is roughly that simple. See if you
can make sense of the code in listing 3.2.

 To summarize, Webpack will expose the module.hot object in development mode.
One of the methods on that object is accept. The accept command takes two argu-
ments: one or more dependencies and a callback. You’ll want an update to any of your
components to trigger the hot replacement, and fortunately, you don’t have to list
every React component in your application as a dependency. Whenever a child of the
top-most component updates, the change will be picked up by the parent. You can
pass the string location of App to the accept function.

 The second argument passed to accept is a callback that gets executed after the
modules have successfully been replaced. In your case, you want to render App and
the rest of the updated components back to the DOM. In summary, each update to a
component causes that module to be replaced, and then those changes are rendered
to the DOM without reloading the page.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

56 CHAPTER 3 Debugging Redux applications

…
if (module.hot) {
 module.hot.accept('./App', () => {
 const NextApp = require('./App').default;
 ReactDOM.render(
 <Provider store={store}><NextApp /></Provider>,
 document.getElementById('root')
);
 });
}

Webpack won’t expose module.hot in a production environment for good reason: you
have no business making live changes to components in production. Remember that
hot module replacement is a tool used only in development to accelerate develop-
ment cycles.

3.6.2 Hot-loading reducers

It makes sense to add hot module replacement in one more location in the app:
reducers. Manipulating data in reducers is another of those points in the develop-
ment workflow that can really eat up the clock if you need to reload the page after
each iteration. Consider instead the ability to make changes to a reducer and see data
in its respective components update in real time.

 In listing 3.3, you see a similar pattern to the implementation for components. In
development mode, you listen for changes to your reducers and execute a callback
after the modules have been replaced. The only difference now is that, instead of ren-
dering new components to the DOM, you’re replacing the old reducer with the
updated one and recalculating what the state should be.

if (module.hot) {
 …

 module.hot.accept('./reducers', () => {
 const nextRootReducer = require('./reducers').default;
 store.replaceReducer(nextRootReducer);
 });
}

Imagine that as you’re developing the workflow for the CREATE_TASK action, you mis-
spelled CREATE_TASK in the reducer. You might’ve created several tasks while testing
the code you wrote, and even seen the actions logged in the Redux DevTools, but no
new tasks appeared in the UI. With hot module replacement applied to the reducer,
the correction of that typo results in the missing tasks appearing instantly—no refresh-
ing required.

Listing 3.2 src/index.js

Listing 3.3 src/index.js

The Create React App has hot module
replacement enabled in development mode.

Whenever the App
component (or one of
its children) changes,
re-render the component.

Whenever the reducer
updates, perform the hot
module replacement.

The Redux store has a
replaceReducer method
to facilitate this update.

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

57Preserving local state with React Hot Loader

 How is it that a change to a reducer can update the state of data already in the
Redux store? The stage for this feature is set by the purity of the Redux architecture.
You must rely on the reducer function to be deterministic; the same action will always
produce the same change in state. If the Redux store is mutable, you can’t be certain
that a list of actions results in the same state each time.

 Given a read-only store, this killer feature becomes possible with a clever combina-
tion of the Redux DevTools and hot module replacement. The short version of the
answer is that the Redux DevTools augment the store with the ability to keep a run-
ning list of all the actions. When Webpack accepts an update to hot-load and calls
replaceReducer, each of those actions is replayed through the new reducer. Presto! A
recalculated state is born. This happens instantly and saves a ton of time having to re-
create the same state manually.

 Now you’re cooking with fire! When developing, you can make changes to compo-
nents or reducers and expect to see changes instantly while maintaining the state of
the application. You can imagine this saves development time, but the real aha
moments come with experience. Try implementing hot module replacement for your-
self before moving on to the next section.

3.6.3 Limitations of hot module replacement

Note that hot module replacement currently has a few limitations. Updating non-
component files may require a full-page refresh, for example, and a console warning
may tell you as much. The other limitation to be aware of is the inability to maintain
local state in React components.

 Remember, it’s perfectly reasonable to use local component state in combination
with the Redux store. Hot module replacement has no trouble leaving the Redux
store intact, but maintaining local state after an update is a tougher puzzle to solve.
When App and its children components are updated and re-rendered to the DOM,
React sees these as new and different components, and they lose any existing local
state in the process.

 One tool makes it possible to go that step further and maintain local component
state after a hot module replacement: React Hot Loader.

3.7 Preserving local state with React Hot Loader
React Hot Loader is another of Dan Abramov’s pet projects, and a version was demon-
strated with Redux in his popular 2015 React Europe conference talk, “Hot Reloading
with Time Travel.” That early, experimental library has come a long way since then.
Several iterations later, a stable package is available for use in your projects now.

 As we’ve alluded, React Hot Loader takes the hot module replacement developer
experience a step further. For every code update, not only will the Redux store be pre-
served, so too will each component’s local state. React Hot Loader achieves this with the
nuanced use of component proxies. Fortunately for us end users, those implementation

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

58 CHAPTER 3 Debugging Redux applications

details are hidden under the hood, and a simple configuration is all that’s required to
enjoy the fruits of that labor.

 One downside to React Hot Loader is the unfortunate incompatibility with Create
React App. It requires configuration of either Babel or Webpack, which necessitates
ejecting (npm run eject) from Create React App. We won’t eject from the application
in this book, so implementing React Hot Loader is an exercise for you to do later.
Please see the React Hot Loader GitHub repository at https://github.com/gaearon/
react-hot-loader for instructions.

 The value of adding React Hot Loader comes down to how large or how complex
the local state in your application becomes. Many Redux applications rely on only sim-
ple local state to store the contents of a form, before the user submits it, for example.
In these cases, vanilla hot module replacement is generally more than sufficient for an
excellent developer experience.

3.8 Exercise
As a quick exercise to get more familiar with the Redux DevTools, try navigating to the
Chart Monitor to view a graphic visualization of your application’s state.

3.9 Solution
This is a quick one; the solution is only two clicks away. Recall that in the upper-left
corner of the Redux DevTools, you can click the name of the current monitor to
reveal a drop-down list of more available monitors (figure 3.7).

Clicking the Chart option reveals a graphical representation of the state in your
application. It won’t look so impressive now, because there’s not much going on yet.
You can imagine that a fully featured application would contain a much larger web
of data, though. Using this perspective won’t always be the best lens on your data,
but it has its moments. See figure 3.8 for an example state payload displayed by the
Chart Monitor.

From the monitor
drop-down menu,

select “Chart.”

Figure 3.7 The location of the Chart Monitor

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

59Summary

Hovering over nodes in the Chart Monitor reveals their contents. This feature makes
for a convenient way to quickly get to know an application. Navigation within the
Chart Monitor can be controlled by zooming in and out or clicking and dragging to
make lateral movements.

 Your investment in learning the debugging tools and strategies covered in this
chapter will start to pay immediate dividends, getting you unstuck in upcoming exam-
ples or on your own projects. The Redux developer experience is second to none and
that’s thanks in large part to the Redux DevTools.

 The next chapter is a great place to put these new debugging skills to the test,
where we’ll introduce asynchronous actions and interact with an API.

Summary
 The Redux developer tools allow for the visualization and manipulation of

actions in real time.
 Monitors determine how the data is visualized, and the DevTools can mix and

match monitors.
 Hot module replacement takes the development experience to new heights by

performing updates without refreshing the page.

Figure 3.8 The Chart Monitor

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

Garreau ● Faurot

W
ith Redux, you manage the state of a web applica-
tion in a single, simple object, practically eliminating
most state-related bugs. Centralizing state with Redux

makes it possible to quickly start saved user sessions, maintain
a reliable state history, and smoothly transfer state between
UIs. Plus, the Redux state container is fully programmable and
integrates cleanly with React and other popular frameworks.

Redux in Action is an accessible guide to effectively managing
state in web applications. Built around common use cases, this
practical book starts with a simple task-management applica-
tion built in React. You’ll use the app to learn the Redux work-
fl ow, handle asynchronous actions, and get your hands on the
Redux developer tools. With each step, you’ll discover more
about Redux and the benefi ts of centralized state management.
The book progresses to more-complex examples, including
writing middleware for analytics, time travel debugging, and
an overview of how Redux works with other frameworks such
as Angular and Electron.

What’s Inside
● Using Redux in an existing React application
● Handling side effects with the redux-saga library
● Consuming APIs with asynchronous actions
● Unit testing a React and Redux application

For web developers comfortable with JavaScript and React.

Marc Garreau has architected and executed half a dozen unique
client-side applications using Redux. Will Faurot is a mentor
for Redux developers of all skill levels.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/redux-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Redux IN ACTION

WEB DEVELOPMENT/JAVASCRIPT

M A N N I N G

“Comprehensive, practical,
does a great job of teaching
many key topics for real-

 world Redux apps.”
—From the Foreword by

Mark Erikson
Redux co-maintainer

“The authors do a
wonderful job of making

 the material compelling.”—Jeremy Lange, Sertifi

“Take control of your
application state with expert

Redux advice.”
—Ian Lovell

Parmenion Capital Partners

“A perfect example of a book
beating online resources.”
—Jose San Leandro, OSOCO

See first page

www.itbook.store/books/9781617294976

https://itbook.store/books/9781617294976

