
www.itbook.store/books/9781617294983

https://itbook.store/books/9781617294983

Agile Development for Serverless Platforms
Selected by Danilo Poccia

Manning Author Picks

 Copyright 2017 Manning Publications
To pre-order or learn more about these books go to www.manning.com

www.itbook.store/books/9781617294983

http://www.manning.com/
https://itbook.store/books/9781617294983

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN 9781617294983
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 21 20 19 18 17 16

www.itbook.store/books/9781617294983

http://www.manning.com
https://itbook.store/books/9781617294983

iii

contents
Introduction iv

ARE YOU READY FOR AGILE? 1
Are you ready for agile?
Chapter 3 from Becoming Agile by Greg Smith and Ahmed Sidky 2

WORKING WITH WEB APIS 19
Working with web APIs
Chapter 2 from Irresistible APIs by Kirsten Hunter 20

ARCHITECTURES AND PATTERNS 43
Architectures and patterns
Chapter 2 from Serverless Architectures on AWS by Peter Sbarski 44

DESIGNING AN AUTHENTICATION SERVICE 67
Designing an authentication service
Chapter 8 from AWS Lambda in Action by Danilo Poccia. 68

AUTOMATING DEPLOYMENT: CLOUDFORMATION, 
ELASTIC BEANSTALK, AND OPSWORKS 82
Automating deployment: CloudFormation, Elastic Beanstalk, 

and OpsWorks
Chapter 5 from Amazon Web Services in Action by Michael Wittig 

and Andreas Wittig 83

 index 112

www.itbook.store/books/9781617294983

https://itbook.store/books/9781617294983

iv

introduction
Releasing great software requires more than great dev tools; it also demands an effi-
cient operations pipeline that takes advantage of modern Agile practices. Serverless
platforms like AWS Lambda implement the basic building blocks you need to run
code, store data, or process streaming information so developers can focus on the fea-
tures they want to provide, not on the underlying infrastructure. Combined with an
agile process, serverless architectures facilitate a quick feedback loop between devel-
opers, end users, and business stakeholders, allowing the rapid prototyping and easy
production rollout required for innovation.

 Because serverless architectures start with hosted, self-managed services instead of
custom-built servers, they provide a lot of ops advantages when it comes to reliability,
scalability, and availability. Web APIs are also key to the serverless mindset, because
they enable simple, consistent integrations within and between applications.

 This collection of chapters from several Manning books will introduce you to
serverless application design using AWS Lambda. You’ll also learn about how adopting
an agile mindset will give you a leg up when you build and deploy serverless systems.

 We hope you’ll enjoy it!

 Danilo Poccia
 Author of AWS Lambda in Action

www.itbook.store/books/9781617294983

https://itbook.store/books/9781617294983

www.itbook.store
This selection introduces the core ideas of the Agile mindset and helps you
assess whether you and your team are ready to go Agile. You’ll enjoy Greg and
Ahmed’s practicality-over-purity approach, which encourages you to adopt the
parts of the Agile process that you’re ready for and grow into the rest over time.

Are You
Ready for Agile?
/books/9781617294983

https://itbook.store/books/9781617294983

www.itbook.
Chapter 3 from Becoming Agile by Greg Smith
and Ahmed Sidky

Are you ready for agile?
Yes, you’re ready for agile. The real questions are as follows:

 How much agility are you ready for today?
 How much agility can you add tomorrow?
 How can you continuously adapt to your ever-changing business climate?

We’re confident you can improve your current development process and obtain a
level of agility. If your environment is conducive to it, you may be able to reach the
level of agility that Archway Software reached in our discussion in chapter 2.

 We’ll start this chapter by providing information that helps you understand the
goals of an agile process and how these goals relate to packaged agile methods such
as Extreme Programming (XP) and Scrum. The chapter will conclude by discussing
our approach for bringing agile into your workplace. We’ll start your migration by
2

store/books/9781617294983

https://www.manning.com/books/becoming-agile
https://itbook.store/books/9781617294983

3What areas will you become more agile in?

www.itboo
providing a tool that will let you assess your potential for bringing in agile practices and
cultural changes.

3.1 What areas will you become more agile in?
When people think of becoming agile, they often envision the practices and not the
goals of an agile process. We often hear people say that they can’t become agile
because their developers don’t want to do pair programming, or they have limitations
with co-locating their project team members. Although these types of practices may
help you become agile, they aren’t the only practices that support the goals of an agile
process. Let’s take a moment to look at some of the key agile goals you’ll be able to
accomplish on some level.

3.1.1 Increasing customer involvement

A traditional process has the customer involved mainly at the beginning and the end
of the project. In agile, you seek customer feedback and input throughout the project.
The customer or product owner is involved in planning, tradeoff decisions, prioritiza-
tion, and demonstrations. Increased customer involvement leads to several benefits
such as quicker feedback, accurate delivery, increased customer satisfaction, and rapid
decisions. A great indirect benefit of customer involvement is the customer’s new-
found appreciation for the work needed to deliver on requests.

3.1.2 Improving prioritization of features

Agile processes improve prioritization and deliver higher-value features first. This is
accomplished by creating feature cards or user stories and evaluating features before
requirements are detailed. You’ll evaluate features for their customer value, level of
risk, frequency of use, and dependencies. This allows you to do the following:

 Estimate work and evaluate risks early in the process.
 Prioritize features in terms of customer value early in the process.
 Deliver features in usable subsets.

In effect, the agile prioritization process lets your team run leaner and create deep
requirements only for work that passes the prioritization test.

3.1.3 Increasing team buy-in and involvement

The majority of people on an agile project team are involved in planning, estimating,
and sequencing. The team is also involved in adapting to discoveries between itera-
tions. Over time, the team begins suggesting features for the product or platform.
Increasing team involvement ensures that everyone understands the value of the proj-
ect before work begins and also increases team satisfaction.

3.1.4 Clarifying priorities and reminding everyone 
of the consequences of changing them

An agile team works with the customer and/or sponsor to determine the most criti-
cal category for the project. Is schedule the number-one priority, or is staying within
k.store/books/9781617294983

https://itbook.store/books/9781617294983

4 CHAPTER 3 Are you ready for agile?

www.itbook.
budget? Additional categories may include quality, feature richness, and compli-
ance. The project team learns the priorities and uses this knowledge to make trad-
eoff decisions along the way.

 Many projects wait for a fire before identifying their priorities. An agile team
knows the project priorities in advance of an emergency and can react quickly to keep
the focus on the main objective.

3.1.5 Adapting to change during development

A more agile and iterative methodology provides an opportunity to reassess and redi-
rect the project while it’s in motion. You perform development in iterations and
offer demonstrations at the end of each. The customer has an opportunity to
request changes based on the demonstrations, even though this may affect other fea-
tures or potentially the project timeline. Team members learn to expect and
embrace change.

3.1.6 Better understanding the project’s status

Agile development is time-boxed. You evaluate status by demonstrating functioning
code. Supporting tasks are also measured in binary terms (done or not done) to
eliminate possible confusion related to expressing status as “percent complete.” An
agile process also involves team members reporting their status themselves versus
through a manager or other intermediary. This improves tracking accuracy and per-
sonal accountability.

3.1.7 More efficient planning and estimating

Many companies try to plan all of a project’s details at the start. The planning may be
at a detailed level even though the amount of uncertainty at this point is extremely
high. An agile team performs a level of planning that correlates to the current level of
uncertainty in the project.

 As you learn more about desired features you’ll do more detailed planning, but
you won’t waste time trying to guess intricate details early in the project. Figure 3.1
illustrates this point.

Figure 3.1 The accuracy of 
initial feature estimates improves
dramatically during the first few
hours of estimation but levels out
over time. In this example, the effort
and time spent after five hours of
estimating doesn’t improve accuracy
and is wasted project time.
store/books/9781617294983

https://itbook.store/books/9781617294983

5What areas will you become more agile in?

www.itbook.
3.1.8 Continuous risk management

A secondary definition of agile could be continuous risk management. The processes are
all intended to make the team alert and responsive to new information and changes as
the project progresses. The following are a few examples of how agile manages risk:

 Features are evaluated for requirements uncertainty and technical uncertainty.
These attributes help determine whether a feature goes into an iteration and
what iteration it should go into, to mitigate risk. For example, a feature with
high business value and high technical risk, such as an interface, would go into
an early iteration to allow more time for uncertainty. On the other hand, a fea-
ture with low business value and high technical uncertainty might be moved to
the last iteration or removed from the project all together.

 Risk is managed via demonstrations throughout the project. The customer gets
a feel for how requirements are translated into an application before the project
is complete. This provides a window for adapting and hitting the final target.

 Risk is managed on a daily basis by building and integrating the latest code.
This process allows the team and the customer to validate the status of the latest
build.

 Deployment risk is also managed by gathering maintenance and deployment
concerns as early as possible. This starts early in the planning phase and contin-
ues throughout development.

 Risk is managed via team review of potential features. During the feature-card
exercise, representatives from all areas can raise risks and concerns with pro-
posed features. These concerns are noted with the feature information and
sometimes can lead to a feature not being pursued.

3.1.9 Delivering the project needed at the end

Jim Highsmith, one of the founding members of the Agile Alliance, taught Adaptive
Software Development a few years before the Agile Manifesto was created. One of
Jim’s adaptive principles is, “Deliver the project needed at the end, not the one
requested at the beginning.”

 This idea is a foundational piece of agile software development. Jim knew the
world wasn’t static during the project lifecycle; therefore the lifecycle should
support changes that happen during the project. This includes identifying new
requirements, discovering technical risks, and identifying potential changes in the
business environment.

3.1.10 Achieving the right level of project structure

Many companies have created a formal Project Management or Software Develop-
ment Lifecycle (PMLC/SDLC) to support their projects. These lifecycles are collections
of processes that every project must follow. By establishing required processes, compa-
nies eliminate variation between projects and provided a safety net for inexperienced
store/books/9781617294983

https://itbook.store/books/9781617294983

6 CHAPTER 3 Are you ready for agile?

www.itboo
project teams and project managers. If you don’t know what to do next, you just look
at the lifecycle documentation to determine your next step.

 This approach is beneficial when you have inexperienced employees. A standardized
process defines roles, provides common tools, and offers gateways to evaluate status.

 If your employees are more experienced, this formal methodology has drawbacks.
The team will notice that every step or process isn’t needed for their specific project.
They will frequently find themselves doing compliance work that adds no value,
except to be in compliance.

 The agile process described in this book approaches the issue differently. We
suggest a standardized methodology, but the required processes are minimal and are
of value to every project. Your team chooses the majority of the processes to use at
the start of the project. The team also revisits their process and documentation
options as the project proceeds, to see if they need to add or remove a process
or document.

 To illustrate this idea, let’s look at an example from Acme Media after the company
has outlined a new, more agile process (see table 3.1).

 Acme Media has projects that last from 1 week to 6 months. The company doesn’t
require the teams for one-week projects to create iteration plans or to do a cost-bene-
fit analysis every time.

Table 3.1 Required and optional processes and documentation

Required for all projects Optional processes and documents

Project worksheet Elevator statement

Operational worksheet Documented answers to feasibility discussion guide questions

Feature-card exercise (cards optional) Feature-card document (possibly created using only index cards)

Retrospective discussion User scenarios

Prototypes and/or mockups

Iteration plan

Maintenance plan

Evolutionary requirements

Additional documentation as required by the team/project

Test plan

Detailed schedule

Launch plan

Action items from project retrospective

Test Driven Development (TDD)

Agile estimating

Daily stand-up meeting

Demonstrations
k.store/books/9781617294983

https://itbook.store/books/9781617294983

7The different flavors of agile

www.itbook.
These one-week projects are frequently driven by a need to increase readership or to
provide support in the aftermath of a major news event such as an election. Executive
approval is almost immediate, and the projects use team members already assigned to
the website. These teams only need the processes and documents outlined in the first
column of table 3.1.

 Conversely, Acme Media pursues some major projects that require funding, syn-
chronization with third parties, and identification of milestones. In these instances,
the project teams review the items in the second column of table 3.1 and decide which
ones to use in addition to the required ones in the first column.

 In this way, agile provides the correct amount of structure for the project. Time
isn’t wasted on processes that don’t add value, and teams can scale their processes
mid-project if needed.

 Now that you understand the goals of an agile process, you need to know the best
way to obtain them. You can do this by selecting a prepackaged agile process, creating
a process from scratch, or a combination of the two. Let’s evaluate each option.

3.2 The different flavors of agile
Many packaged methods are available for agile. For our purposes, packaged will mean
a framework with a common set of practices. In this section, we’ll discuss two of the
most popular packages in use today: Scrum and XP. According to VersionOne’s 2008
“State of Agile Development” survey, 77 percent of the respondents said they use
Scrum, XP, or a Scrum/XP hybrid. Each of these packages has its own unique charac-
teristics, strengths, and weaknesses. Let’s examine each package.

3.2.1 Scrum

The Scrum process begins by reviewing a product backlog with the product owner. You
identify the highest-priority features and then estimate how many will fit into a sprint.
These features then compose the sprint backlog. A sprint is a predefined period of time,
usually 2 to 4 weeks, during which the team analyzes, designs, constructs, tests, and doc-
uments the selected features. Figure 3.2 shows an overview of the process.

Figure 3.2 A high-level overview
of the Scrum process (graphic
provided courtesy of Ken Schwaber
and Control Chaos)
store/books/9781617294983

https://itbook.store/books/9781617294983

8 CHAPTER 3 Are you ready for agile?

www.itboo
The team holds a daily status meeting, referred to as the daily Scrum, to review feature
status. Individual team members answer these three questions:

 What have you accomplished since our last meeting?
 What will you work on today?
 Are you encountering any impediments or roadblocks in completing your

work?

When a sprint is completed, the features are demonstrated to the customer, and the
team and the customer decide whether additional work is needed or if the sprint work
is approved to be released to a beta or production environment. Each sprint is fol-
lowed by a retrospective during which the team lists items that went well or poorly;
action plans are documented to keep the successes going and to improve the areas
that performed poorly.

 Some of the characteristics of Scrum are as follows:

 Discipline —Scrum is strict about time-boxing activities, compiling code daily,
and team members being punctual and responsible.

 Three major roles —Scrum teams have a ScrumMaster, a product owner, and team
members.

 Quality —Features are expected to be totally complete and deployable at the
end of a sprint.

Scrum has a number of strengths:

 Prioritized delivery —Features are delivered in a sequence that ties to business value.
 Non-prescriptive on practices performed during a sprint —This is demonstrated by

the fact that a Scrum/XP hybrid is the second most popular agile methodol-
ogy in use. Many teams pull their detailed practices from XP while using the
Scrum framework.

 Demonstrated success across the software industry —Scrum has been successful in
multiple environments.

 Status transparency —The daily meetings expose the project status.
 Team accountability —Everyone signs off on the work that will be pursued during

the sprint.
 Continuous delivery —Scrum delivers product features (commercial software or

web portals) continuously.

Scrum also has some weaknesses:

 Scrum doesn’t want specialists. It may be difficult to quickly convert an existing
team from a group of specialists to a group where anyone can perform any task.

 A Scrum team can’t be successful without a strong ScrumMaster, which makes
the process highly dependent on one individual.

 Because Scrum is mainly a framework, the team still needs to identify the prac-
tices and methods to use within the framework.
k.store/books/9781617294983

https://itbook.store/books/9781617294983

9The different flavors of agile

www.itbook.
Scrum is incredibly popular today—it’s almost become synonymous with the term agile
development. Scrum provides a great, repeatable process that is well suited for product
development and steady-state release management. In addition, a plethora of books,
consultants, and other resources are available for those who pursue Scrum.

 Scrum may be more difficult to use with teams that do one-off projects versus
steady-state releases, or if a team has highly specialized resources and skill sets. In
addition, the Scrum framework still needs agile practices inserted to support a com-
plete development lifecycle.

3.2.2 Extreme Programming

Similar to Scrum, XP starts the process by creating a backlog of work to perform dur-
ing a sprint/iteration. XP creates the backlog by working with customers and creating
user stories. In parallel with this work, the team performs an architectural spike, dur-
ing which they experiment with the features to envision the initial architecture. XP
classifies this work as the exploration phase.

 The planning phase follows exploration. This phase focuses on identifying the most
critical user stories and estimating when they can be implemented. Tasks are defined
for each feature, to aid with estimating complexity. The team outlines an overall
release schedule, with an understanding that a high level of uncertainty exists until
the work begins. A release will have one to many iterations, which are typically 2- to 4-
week construction windows.

 When an iteration begins, the specific plan for the iteration is revisited. The team
adds any new user stories and tasks that have been discovered since the overall release
was outlined.

 XP integrates customer testing into the development iteration. The customer is
asked to identify the acceptance tests, and the team works to automate these tests so
they can be run throughout the iteration.

 The planning phase is followed by the productionizing phase, during which the code
is certified for release. Certified means the code passes all customer tests plus nonfunc-
tional requirements such as load testing, service-level requirements, and response-
time requirements. You can see an overview of XP in figure 3.3.

Figure 3.3 The
Extreme Programming
(XP) lifecycle (graphic
provided with permis-
sion from Scott Ambler,
based on the writings of
Don Wells and the first
edition of Kent Beck’s
XP Explained)
store/books/9781617294983

https://itbook.store/books/9781617294983

10 CHAPTER 3 Are you ready for agile?

www.itboo
Some of the characteristics of XP are as follows:

 Specific practice —Unlike Scrum, XP is specific about the practices that should be
used during a software project. These practices include pair programming,
TDD, continuous integration, refactoring, and collective code ownership.

 Modeling —XP teams frequently use modeling to better understand the tasks
and architecture needed to support a user story.

 Simplicity —Teams perform the minimum work needed to meet requirements.
 Automation —Unit and functional tests are automated.
 Quality through testing —Features are tested constantly, and developers check

each other’s code via pair programming.

These are some of XP’s strengths :

 Customer-focused (it’s all about user stories)
 Quality via frequent testing
 Constant focus on identifying and delivering the critical user stories
 High visibility on project status
 Great support for volatile requirements

It also has weaknesses:

 Need for team maturity —Practices such as pair programming and TDD require
responsible developers, and they aren’t always easy to obtain.

 Dependency on testing —If developers know that significant testing will take place
downstream, they may be less than diligent when they’re creating designs.

 Scalability —XP may not work well for large projects.
 Dependency on team member co-location —The team usually has a team room.

XP supports many of the critical goals of an agile process, such as dealing with volatile
requirements and delivering prioritized, working software as soon as possible. XP also
supports the principle of just enough, keeping with the lean philosophy of minimiz-
ing waste.

 XP has sometimes been criticized for its lack of formality in system documentation
and system design. In recent years this has changed, and XP teams now create the doc-
umentation needed to support a project’s customers.

3.3 Create your own flavor to become agile 
within your constraints
As we discussed in chapter 1, VersionOne’s 2007 “State of Agile Development” survey
validated the benefits of using agile. If the survey is accurate, then should every com-
pany migrate to agile methods tomorrow?

 We’re huge proponents of agile, but we need to tell you a few things that the sur-
veys don’t reveal. Here are some questions that would bring additional perspective to
VersionOne’s findings.
k.store/books/9781617294983

https://itbook.store/books/9781617294983

11Create your own flavor to become agile within your constraints

www.itbook.
 How difficult was it to convert to an agile development process?
 How was your conversion initiated? Did the idea originate with executive man-

agement or from within the development team?
 Have your employees bought into the process, or was it forced on them?
 What are you doing to ensure that your development process is viable for the

future?
 What did you do to make agile work within the realities of your environment?

We believe 100 percent of the survey respondents would say that moving to agile was a
lot of work. We think they would tell you that to be successful, you need your project
team to buy into the process; and that management requires time to learn how to pro-
vide value in an agile environment.

 This discussion reminds us of a popular commercial from our childhood. When we
were kids, we ate Jiffy Pop popcorn. Jiffy Pop ran a commercial for many years that stated,
“Jiffy Pop: it’s as much fun to make as it is to eat!”

 After you establish an agile culture and life-
cycle, it’s “fun to eat” (as illustrated in fig-
ure 3.4), and you’ll do a better job of delivering
projects. But creating an agile environment is
work. Many companies implement an agile
methodology and then fade back into their pre-
vious process because they didn’t cover all the
delicate areas needed to ensure long-term sup-
port for agile.

 We’ve spent a lot of time with companies that
have made it to the other side and stayed there.
As this book continues, we’ll show you how com-
panies got to be agile with the least amount of
pain and sustainable benefits.

 Now let’s take a moment to look at the impor-
tance of creating an agile process that supports
the unique characteristics of your environment.

3.3.1 Your goal: reach the right level of agility for your organization

Many companies try to “shotgun” agile into their organization. They think, “Let’s get
through the migration pain quickly and start obtaining the benefits as soon as possi-
ble.” We’ve seen a few cases where this approach makes sense: for example, a project
team that has become so dysfunctional that they’re delivering practically no function-
ality or business value. This approach also works well for a start-up company that
hasn’t yet established its development process. But for most companies, you should
allow time for the process to “bake.”

 This is why we suggest an iterative approach for bringing agile into an organiza-
tion. An iterative approach allows you to see how well your employees are adapting to

Figure 3.4 Is agile development like Jiffy
Pop popcorn—as much fun to make as it is
to eat? Not during the migration phase.
Managers need to learn when to manage
(or not), and team members need to
experiment with their new freedoms. These
cultural changes take work and time.
store/books/9781617294983

https://itbook.store/books/9781617294983

12 CHAPTER 3 Are you ready for agile?

www.itbook.
the change. It also lets you learn what works and what doesn’t in your environment. In
effect, it allows you to reach the right level of agility for your organization.

 Part of your iterative approach will include a process for maintaining the method-
ology. We suggest establishing a core team to support this maintenance. A core team is
composed of employees from all aspects of the development process. They play a
huge part in establishing your custom methodology and then settle into a mainte-
nance mode with the goal of constantly adapting to your environment. The core team
is covered in detail in chapter 6.

 Next, you need to choose the best way to iteratively create a methodology at your
company. Should you select a packaged method, such as Scrum or XP? Or should you
create a custom or hybrid process?
CUSTOM PROCESS OR PACKAGED METHOD?
In order to be successful, you should customize your agile process. For many years,
consultants and others have said that you must embrace agile completely or not at all.

 In 2006, we witnessed a shift in this attitude. Highly respected folks such as Kent
Beck (the founder of XP) and Steve McConnell (the writer of Code Complete) now
endorse customization. Kent Beck noted the following in an interview with InfoQ
(InfoQ.com is an independent online community focused on change and innovation
in enterprise software development) in 2006:

Failure at an organizational level seems to come from the inability to customize processes
and make them their own. Trying to apply someone else’s template to your organization
directly doesn’t work well. It leaves out too many important details of the previous successes
and ignores your company’s specific situation. Rubber-stamping agile processes isn’t agile.
The value of having a principle-based process is that you can apply the principles for an
individualized process for your situation and, as an extra bonus, one that has been
designed to adapt from your learning as you adopt changes into your organization. It’s
always “custom.”

Kent’s quote is comforting to us because it supports our personal experiences. Custom
means picking and choosing the agile practices that best support your environment.
Custom means you shouldn’t use a pure packaged methodology off the shelf, such as
Scrum or XP. You can start with one of these methods as a basis for your process, but
you should modify it to obtain the best results for your company.

 If we revisit VersionOne’s 2008 survey, we see that 14 percent of the people who
responded are using a hybrid process based on Scrum and XP. The hybrid model is
closer to what we’ll suggest for you. To be specific, here are the steps we’ll walk you
through as the book continues:

1 Assess your organization to determine where you should begin adding agility.
2 Obtain executive support for the move to a more agile process. You can use the

readiness assessment in chapter 4 to quantify the value of bringing in agile and
identify the risks you must manage during migration.

3 Get the development team involved in the migration process to ensure buy-in.
You do this by establishing a core team.
store/books/9781617294983

https://itbook.store/books/9781617294983

13Create your own flavor to become agile within your constraints

www.itbook.
4 Identify a coach or consultant to help you with your migration. They will train
the core team on agile and help you with other adoption aspects.

5 Develop a clear understanding of your current processes by documenting
them.

6 Review your current process, and look for areas that can be shifted to more
agile methods. Focus on areas with the most potential for improvement and the
most value to the customer and your organization. The readiness assessment
will also help with this task.

7 Outline a custom process based on the findings in step 6.
8 Try the new process on a pilot project.
9 Review the findings after the pilot, make changes, and continue to scale out

your new methodology.

As this book continues, our case study, Acme Media, will represent your company.
We’ll take Acme through these nine steps and show you how the company iteratively
creates and tests a custom process. We’ll also show you how Acme Media takes its own
constraints into account with the new methodology.

 Before we jump into the case study, let’s spend a moment looking at the character-
istics that make it easier to adopt agile and the characteristics that make agile adop-
tion more challenging.

3.3.2 Characteristics that make agile easier to adopt

As we stated earlier in this chapter, agile principles can be applied in any environ-
ment, but some environmental characteristics influence how easy the principles are to
adopt. Let’s look at these characteristics.

URGENCY TO DELIVER

Agile works best in an urgent environment. It provides tools to prioritize features
quickly and determine how much scope to pursue within the constraints of a critical
timeline. If you have urgency due to a competitive market, compliance deadlines, or a
large backlog of project requests, agile provides methods for quicker delivery.
EVOLVING OR VOLATILE REQUIREMENTS

One descriptor of agile could be just enough. “Give me just enough requirements to
start a design.” “Give me just enough design to start my code.” “Give me just enough
code to demonstrate some level of value to the customer.” If you don’t have all the
requirements, you can still get started with an agile project. If you complete an itera-
tion and the customer wants to change the requirements, you can adapt and still meet
the objectives. Managing changing requirements still takes effort in an agile environ-
ment, but you don’t have to fight the project framework. The framework is designed
to support uncertainty.
CUSTOMER AVAILABILITY

One Agile Manifesto principle states, “Business people and developers must work
together daily throughout the project.” In our experience, these groups don’t have to
store/books/9781617294983

https://itbook.store/books/9781617294983

14 CHAPTER 3 Are you ready for agile?

www.itboo
work together every day throughout a project cycle, but there are definite times when
the customer must be available. In theory, a project must not be urgent if the cus-
tomer can’t make time to clarify requirements or review functionality. The customer
can have a proxy, such as a product manager; but someone needs to be available every
day to represent the customer’s vision.
CONSISTENT RESOURCES

Part of the power of agile is a level of familiarity within the team and a consistent
understanding of the processes they use. Agile teams and processes get better over
time. If project team members are new to each other, they must learn processes
together while at the same time trying to complete the project. Agile works best with a
core group of people who work together on continuous projects. Agile isn’t a good
methodology to use with a team that has never worked together before, unless you
have long-term plans to keep them together.
CO-LOCATED RESOURCES

Agile promotes face-to-face communication and common understanding. One of the
best ways to support this principle is to put your team members face to face. Co-location
is an amazing tool. Your team can get out of email hell, and their mutual understanding
of the project will increase.

 One of the best setups we have seen is at a Fortune 500 company we visited. All 10
of the project team members are in an area approximately 25 feet by 25 feet. The
cubicles have half-walls that provided a level of privacy when people are sitting but let
them easily see the rest of the team and communicate when they stand up. This setup
provides the privacy the developers enjoy when they’re deep into a coding session but
also lets team members stand up to converse with each other at any time without hav-
ing to go to each others’ cubicles. Team members can also walk a few feet and reach
common areas where they can whiteboard a design or have a quick caucus.
THE TEAM IS A TEAM

In larger companies, a project team may be constructed of team members from a
shared resource pool. For example, the QA (Quality Assurance) lead for a project may
be from the QA shared resources pool. If such team members view themselves as
resources on loan, and not as team members dedicated to the project, the result can
be functional silos.

 When silos exist, team members are more concerned about the welfare of their
team or area than they are with the livelihood of the project. This mentality doesn’t
bode well for agile development and leads to customer neglect. The team needs to
bond as a unified group toward the goals of the project. Roles are assigned, but one of
the objectives of agile is for the team to working collectively.

 Working collectively can also be applied to team member roles. A tester can point
out a possible code improvement. A developer can suggest a feature enhancement. In
general, team members speak out—they don’t limit their roles to their titles.

 Management should ensure that individual goals include how well employees sup-
port the common good of the project.
k.store/books/9781617294983

https://itbook.store/books/9781617294983

15Create your own flavor to become agile within your constraints

www.itbook.
3.3.3 Roadblocks that others have overcome

Now that you know the characteristics that make agile easier to implement, let’s look
at a few that make agile more difficult to move to.
LACK OF AGILE KNOWLEDGE

Your first challenge will be finding expertise to help you with your migration. If
you’re fortunate, you’ll have some level of agile experience within your company;
but this probably won’t be true to the point that you can coach yourself through an
agile migration.

 We’ll help you with this issue by showing you how often Acme Media requested
assistance, from initial training to issues encountered along the way.
LARGE PROJECT TEAMS

Agile is compromised as team size increases. Major principles such as face-to-face com-
munication and common understanding require additional effort to maintain their
effectiveness as a team grows.

 Larger teams require additional overhead to ensure that information is shared
consistently across all groups. Scrum teams frequently use the term scrum of scrums,
meaning a representative from each team Scrum attends a master Scrum meeting to
share information with other groups.

 Jeff Bezos of Amazon.com believes that the most productive and innovative teams
can be “fed with two pizzas.” Jeff shared this thought with his senior managers at an
offsite retreat. He envisioned a company culture of small teams that could work inde-
pendently, which would lead to more innovative products. Since that time, the Ama-
zon “pizza teams” have created some of the most popular features on the site (Fast
Company, 2004).

 If your team has an average appetite, you can convert Jeff’s concept into a team of
five to seven people. This is a nice-size group for communication and agility. If five to
seven is perfect, then what is the maximum size for a team to remain agile? On the
high side, we believe you can have a team of 15 people without major impact on your
agility. When you have more than 15, communication needs to become more formal,
which slows the team.

 There are ways to make agile work with larger or distributed teams, but you’ll sacri-
fice some level of agility.
DISTRIBUTED DEVELOPMENT

Related to large teams, many companies use distributed development. Frequently, the
distributed development is performed by offshore resources.

 Distributed development implies that the team is large in size and that communi-
cation methods must be scaled to get information to all involved. In addition, you may
have issues with time zone differences, language, and code integration into a common
environment. Some offshore companies support and advertise the use of agile meth-
odologies, but their location may make it challenging to support the core principles.

 We’ve seen agile teams successfully use offshore resources for commodity or
repeatable-type work, such as regression testing, smoke testing, and cookie-cutter
store/books/9781617294983

https://itbook.store/books/9781617294983

16 CHAPTER 3 Are you ready for agile?

www.itboo
development (for example, providing an offshore group with standardized tools to
create automated workflows).
FIXED-BID CONTRACT WORK

Fixed-bid contract work goes against most of the agile principles. The customer isn’t a
partner, evolving requirements are a no-no, and adapting is usually called scope creep.
We used to believe that fixed-bid work couldn’t be performed using an agile process,
but recently we’ve met several managers who have customized their process to allow
the inner workings to be agile while customer interaction remained contract oriented.
AN IMMATURE OR ONE-TIME TEAM

If you have a team that will work together for only one project, they’re usually better
served by using a plan-driven methodology unless they have previous exposure to agile.
If the team will work through multiple projects or releases, you can introduce agile tech-
niques, and the team can migrate to a full agile methodology as their knowledge matures.
GOING TOO FAST

“Hey, it’s agile. We don’t need to do any planning to convert to it, just start thinking
agile!” A lot of folks take this approach when migrating to agile. But if you go too fast,
you don’t give your company enough time to digest the concepts. When this happens,
you may experience issues with common understanding and terminology.

 Don’t let this happen to you. You need to plan before migrating to agile, and this
book will show you how to do it with an awareness, buy-in, ownership approach. If you
take your time, the methodology will stick, and you’ll minimize the risk of failure.
You’ll learn more about ownership in chapter 5.

TEAM WITH SPECIALIZED SKILL SETS

An organization’s structure can create artificial barriers between teams, and so can
skill sets. If your team has specialized skill sets, it’s hard to be agile when the work mix
doesn’t correlate well to the available resource types. Some tasks always have to be
done by certain individuals, which doesn’t help the team bond or unite when pursu-
ing the completion of a feature.

 Specialized skill sets also place an additional constraint on team capacity. Imagine
that your team has only one person who can perform user-interface design, and the
work assigned to an iteration is 80 percent user-interface work. Other team members
can look for work to do outside of the iteration, but delivery will be slow due to the
one-person constraint.

 Teams that are just becoming agile usually have members with specialized roles.
You can overcome this constraint by cross training over time and rewarding employees
for obtaining and using additional skills.
AVOIDING CUSTOMIZATION

Many people get hung up on the questions, “Are we doing it right? Are we doing it in
an agile fashion? Are we following a pure agile process?”

 When teams ask us these questions, we tell them the answers aren’t important. All
we want to know is this: Have you created a development process that provides the
most benefit to your company?
k.store/books/9781617294983

https://itbook.store/books/9781617294983

17Looking ahead

www.itbook.
 This same mentality has managers trying to find a perfect agile methodology and
insert it directly into their company. As we discussed earlier, you can start with a pack-
aged agile process, but you need to look at the realities of your company and adjust
accordingly. Acme Media will look at a generic agile process and see how it applies to
their realities; then, they’ll modify the process to fit their environment.

3.4 Key points to remember
The key points to remember from this chapter are as follows:

 Moving to agile isn’t a one-time event. You can and will add agility over time.
 The goals of an agile process tie directly to company success.
 You can start with a prepackaged agile process such as Scrum and then modify

and enrich the process to support the realities of your environment.
 Some of your existing company characteristics will make it easier to move to

agile. This is especially true if you have volatile requirements or urgency to
deliver frequently.

 Every migration to agile encounters roadblocks. We’ll identify the most com-
mon roadblocks and show you how others have addressed them.

 Every migration to agile is unique, but we believe our nine-step framework will
work for most companies and provide the best chance of moving to and sustain-
ing an agile process.

3.5 Looking ahead
In this chapter, you’ve learned that the question isn’t whether you’re ready to become
agile, but rather what level of agility you’re ready for today. In chapter 4, we’ll help you
answer this question by discussing the use of assessment tools to determine which agile
practices you can initially adopt with minimum risk. Assessing your current potential is
also important for gaining executive support, which we’ll cover in chapter 5.

store/books/9781617294983

https://itbook.store/books/9781617294983

18 CHAPTER 3 Are you ready for agile?

Many books discuss Agile from a theoretical or academic
perspective. Becoming Agile takes a different approach
and focuses on explaining Agile from a ground-level
point-of-view. Author Greg Smith, a certified ScrumMas-
ter with dozens of Agile projects under his belt, presents
Agile principles in the context of a case study that flows
throughout the book.

 Becoming Agile focuses on the importance of adapt-
ing Agile principles to the realities of your environ-
ment. While Agile purists have often discouraged a
"partial-Agile" approach, the reality is that in many
shops a "purist" approach simply isn't a viable option.

Over the last few years, Agile authorities have begun to discover that the best deploy-
ments of Agile are often customized to the specific situation of a given company.

 As well, Becoming Agile addresses the cultural realities of deploying Agile and how to
deal with the needs of executives, managers, and the development team during migra-
tion. The author discusses employee motivation and establishing incentives that
reward support of Agile techniques.

 Becoming Agile will show you how to create a custom Agile process that supports the
realities of your environment. The process will minimize risk as you transition to Agile
iteratively, allowing time for your culture and processes to acclimate to Agile princi-
ples.

What's inside

 How to migrate to Agile
 How to get your team to buy into the change
 How to scale and sustain your new Agile process
 How to create an Agile process that works for your company
 How to use Agile in special situations
 How to iteratively build up your Agile process and culture

www.itbook.store/books/9781617294983

https://www.manning.com/books/becoming-agile
https://www.manning.com/books/becoming-agile
https://www.manning.com/books/becoming-agile
https://www.manning.com/books/becoming-agile
https://www.manning.com/books/becoming-agile
https://www.manning.com/books/becoming-agile
https://www.manning.com/books/becoming-agile
https://itbook.store/books/9781617294983

www.itbook.store
In this chapter, you’ll get an overview of how Web APIs work, along with some
guidance on how to design APIs that your developers and external API consum-
ers will find refreshingly clear and easy to use.

Working with
Web APIs
/books/9781617294983

https://itbook.store/books/9781617294983

www.itbook.
Chapter 2 from Irresistible APIs by Kirsten
Hunter

Working with web APIs
The next few chapters cover the server-client interaction in detail, but this chapter
helps you understand the concepts with a simple example of an API and sample
application. Most basic API examples use a to-do list, but that’s kind of overused. I
decided to go a different way: I’ve selected a list application with pizza toppings.
Note that this particular application is simple by design; the goal is to show you how
to interact with the API, and how an application interacts with an API. If this were a
production application it would have a full pizza, or pizzas, and the database
wouldn’t be shared, but for the goals here I’ve taken out as much complexity as
possible to make the basic principles clear.

This chapter covers
 Structure of a simple API

 Ways to inspect calls to an API

 Interaction between an API and a client
application

 Deployment of the sample API and application on
your system
20

store/books/9781617294983

https://www.manning.com/books/irresistible-apis
https://itbook.store/books/9781617294983

21HTTP basics

www.itbook.
 Looking at an API is interesting, but it doesn’t necessarily help you to understand
how it can drive an application. Additionally, performing actions such as create and
delete in a browser is challenging, so in addition to the API I’ve included a simple
application using this API with JavaScript. This application exercises all the functional-
ity in the API so you can see how an application interacts with a web API.

 To get an idea of how this works in practice, I’ve created a basic API using Node.js,
a JavaScript-based web server framework. (You can learn more about this framework
at www.nodejs.org.) The API supports all the needed actions to represent a complete
system: create, read, update, and delete. The first task will be to explore the API in a
browser using the read functionality.

 This application runs on a web host at www.irresistibleapis.com/demo. You can check
out the application there and follow along with the concepts in this chapter. If you’re a
developer and want to explore the code more intimately, use the exercises at the end of
the chapter to get the example running on your own system, including both the Node.js
application and the HTML/JavaScript web application. Section 2.6 also describes the var-
ious moving parts to this API and application so you can play with it as you like.

2.1 HTTP basics
To understand the transactions between the client and the server in API interactions,
you’ll need a basic grasp of how HTTP works. Chapter 4 covers this topic in more
detail, but for now I’ll give you some high-level information about the protocol.

 You’re probably most familiar with HTTP as the way web browsers get information
from web servers. An HTTP transaction is composed of a request from the client to the
server (like a browser asking for a web page), and a response from the server back to
the client (the web page from the server, for a browser). First, I’ll describe the ele-
ments in an HTTP request. You’re familiar with the URL, the address that you type into
the address box on a browser, but that address is only one portion of the information
sent from your browser to the server in order to process a web request.

2.1.1 HTTP request

Figure 2.1 illustrates the elements that make up an HTTP request, along with exam-
ples of how these sections are used. The HTTP request is usually sent with headers, set-
ting the context for the transaction. An HTTP request always has a method; methods
are the verbs of the HTTP protocol. To understand what your browser does, imagine
that you’re visiting my main website. Here are the pieces of the request that are sent
by your browser:

 Headers: Accept: text/html —This tells the server that the browser wants to get an
HTML-formatted page back. It’s the most readable format for humans, so it
makes sense that your browser would request it.

 Method: GET —This is the read method in HTTP and is generally the method
used by browsers when reading web pages.

 URL: http://irresistibleapis.com —This is the only piece you indicated for the browser.
 Body: none —A GET request doesn’t need a body, because you’re not changing

anything on the server—you’re reading what’s there.
store/books/9781617294983

http://irresistibleapis.com
https://itbook.store/books/9781617294983

22 CHAPTER 2 Working with web APIs

www.itboo
All the actions of CRUD (create, read, update, and delete) are represented by meth-
ods within HTTP:

 Create: POST
 Read: GET
 Update: PUT
 Delete: DELETE

The URL is the unique identifier for the resource. It’s like any other URL on the inter-
net, except in this case it’s used to describe the resource in an application system. If
parameters are needed for the request, such as a keyword for search, they’re included
in the parameters of the request. To see how parameters would look, here’s an exam-
ple search request:

http://www.example.com/api/v1.0/search?keyword=flintstone&sort=alphabetical

In this example, the resource being called is http://www.example.com/api/v1.0/
search. The question mark and everything following it are parameters giving more
information about what the client wants in the response. A body section is only sent
for create (POST) and update (PUT) transactions.

 Next, I’ll describe the sections of an HTTP response.

2.1.2 HTTP response

Figure 2.2 shows the elements of a typical HTTP server response. The server is likely to
send back several headers giving information about the system and the response. All
requests have a method, and all responses have a status code. These status codes are
described in more detail in chapter 4, but for now it’s sufficient to know that 2XX
means that the request was successful, 3XX is a redirect to another location, 4XX is an

Headers • Accept (content type)
• Authentication

• PUT
• POST
• DELETE
• GET

Method

• For PUT and POST operationsBody

• Address for the resource
• Optional ParametersURL

Figure 2.1 An HTTP request will
always have a method and will be sent
to a specific URL, or resource.
Depending on the specific call,
headers may be sent to specify
information about the request. If the
call is designed to write new
information to the system, a body will
be sent to convey that information.
k.store/books/9781617294983

http://www.example.com/api/v1.0/search?keyword=flintstone&sort=alphabetical
http://www.example.com/api/v1.0/search
http://www.example.com/api/v1.0/search
https://itbook.store/books/9781617294983

23The Toppings API

www.itbook.
error in the request from the client, and 5XX means the server had a problem. In the
earlier example, calling my website, the server would’ve responded with the following:

 Status code: 200 —Everything worked correctly.
 Headers:

– Content-Type: text/html —as requested by the client
– Date: <date of response>
– Content-Length: <size of response>

 Body —The content of the page. This is what you see if you “view source” within
the browser—the HTML page that tells the browser how to render the page and
what content to display.

2.1.3 HTTP interactions

Every HTTP transaction between a client and server is composed of a request, sent
from the client to the server, and a response, sent from the server back to the client.
There’s no higher level interaction; each request/response is stateless and starts again
from scratch. To help you understand this better, I’ll move on to a discussion of a spe-
cific API.

2.2 The Toppings API
Many different styles of API are available, but the one I’m going to be using and talk-
ing most about here is a Representational State Transfer (REST)-style API, the most
common type of web API.

 As discussed in chapter 1, REST APIs are designed to work with each resource as a
noun. A specific resource within a system has a unique identifier, which is a URL, like
the ones you visit in the browser. This URL identifies the resource in the system and is
designed to be understandable when viewed. For example, with a REST API you could
view the list of existing toppings with the following request:

http://irresistibleapis.com/api/v1.0/toppings

Status
Code

• 2XX (OK)
• 3XX (Redirect)
• 4XX (Client Error)
• 5XX (Server Error)

• Content-Type
• Date
• Content-Length

• Content of result for GET operations

Headers

Body

Figure 2.2 A response will always
have a status code, and a well-
designed platform will send headers
to provide information about the
response (such as size or the content
type). For most requests, a body will
be sent back from the server to
provide information about the current
status of the resource.
store/books/9781617294983

http://irresistibleapis.com/api/v1.0/toppings
https://itbook.store/books/9781617294983

24 CHAPTER 2 Working with web APIs

www.itboo
These are the actual URLs, retrieved with a GET (read) operation. If you put the pre-
ceding URL in a browser, you’ll see the results displayed in figure 2.3.

Figure 2.3 Example result of a web call in a browser. The response is JSON, a common markup
language for web APIs. As you can see, the formatting makes it easy to understand the content of the
response.

 You can visit this URL in your browser right now and get the information about a
single topping or a list of toppings. Figure 2.3 shows what this call will look like in a
web browser. Go ahead and try both of these calls in your own web browser to see how
easy it is to retrieve information from this kind of service. Again, this is like any other
web request, only formatted for a computer to work with.

 Now, to view a single topping, you’d take the id field from the list you retrieved
and append it to the URL. Basically, you’re saying, “Give me the toppings list” and
then, “but just the one with the ID of 1.” Almost all APIs work this way. The parent level
is a list of items, and adding an ID will retrieve a single member of the list.

 http://irresistibleapis.com/api/v1.0/toppings/1

The same resource is accessed to update, view, or delete a particular item, using differ-
ent HTTP methods (as described in section 2.1) to tell the server what you want to do.
You can add new items by sending a POST to the list itself (so in the earlier case, the
/toppings endpoint would be used to add a new topping). This type of API encour-
ages engagement and innovation by the developers, and consistency across multiple
API providers makes it easier to get up and going writing clients.
k.store/books/9781617294983

http://irresistibleapis.com/api/v1.0/toppings/1
https://itbook.store/books/9781617294983

25Designing the API

www.itbook.
2.3 Designing the API
To go through the steps, imagine an online website for a pizza parlor. Users are having
trouble interfacing with the pizza ordering system and want to be able to customize
their pizzas. The company wants to increase customer satisfaction. This represents the
business value for this platform. Figure 2.4 illustrates each call to the system and how
it would be formatted.

Client

Ask for
toppings list

Create new
topping
Pineapple

Update existing
topping

Delete existing
topping

Get existing
topping

GET/toppings
(read)

POST/toppings
(create)
Pineapple

PUT/toppings/:id
(update)

GET/toppings/:id
(read)

Pepperoni

DELETE/toppings/:id
(delete)

Returns list
of toppings

Creates new
topping

Pineapple
ID:3

Updates topping

Deletes topping

Returns topping

Pepperoni
Ham

Toppings List

Individual toppings

Platform

Figure 2.4 This diagram represents the complete set of interactions with the API system. The
GET request reads the current value of the resource, whether it’s a list or an individual item.
POST is only allowed at the list level, and creates a new resource in the system. PUT updates
and DELETE deletes an existing resource. All four of the needed methods, Create, Read,
Update, and Delete, are represented in this diagram.

To provide this, they need to create a system that consistently allows users to pick dif-
ferent pizza toppings and keep them in a list (use case). The company decides to mea-
sure success by determining the increase in people finishing up started orders
(measurements). Fortunately for this example, it’s relatively easy to figure out how an
API can meet these needs.

 Because I’m creating a resource-based API, each request will be a unique URL
describing one piece of the back-end structure with a method describing what the cli-
ent wants to do with that resource. In this case, I have only two different types of
resources: individual toppings and lists of toppings. Individual topping resources such
as /api/v1.0/toppings/1 are used for viewing, editing, and deleting a single topping.
The list resource /api/v1.0/toppings is used for viewing all toppings or for adding a
new topping to the list. Table 2.1 shows each call to the API and a description of what
it does.
store/books/9781617294983

https://itbook.store/books/9781617294983

26 CHAPTER 2 Working with web APIs

www.itboo

And that’s it. The platform features create, read, update, and delete operations avail-
able to you by combining the HTTP methods with the URLs for your resources. But
what do you get when you make these calls? When you GET the resource for a single
topping, you get information about that topping. Try this now in your browser:
http://irresistibleapis.com/api/v1.0/toppings/1.

GET /api/v1.0/toppings/1
{ Curly braces indicate an object.
 "topping": {
 "id": 1,
 "title": "Pepperoni"
 }
}

This response is represented in JavaScript Object Notation (JSON), a formatting syn-
tax first described in chapter 1. JSON is covered in more detail in chapter 4, but for
now you can see how the data is structured. (If you want more information about
JSON, you can find it at http://json.org.) The curly braces indicate an object, which is
a group of pairings of names and values. What’s represented here is a JSON structure
describing a single object—a “topping,” which has an ID of 1 and a title of Pepperoni.
This is the same resource address a client can access to view, delete, or update an exist-
ing topping. This means that the URL for the single topping is the toppings list of
http://irresistibleapis.com/api/v1.0/toppings followed by the ID of the topping from
within this structure—so it’s http://irresistibleapis.com/api/v1.0/toppings/1.

 If you GET the resource for the list of toppings directly, the returned information
includes a list instead of a single object. Call this URL in your browser to see the list:
http://irresistibleapis.com/api/v1.0/toppings.

GET /api/v1.0/toppings
{ Curly braces indicate dictionaries.
 "toppings": [Square braces indicate lists.
 {

Table 2.1 API calls

API call Description

GET /api/v1.0/toppings List current toppings

GET /api/v1.0/toppings/1 View a single topping

POST /api/v1.0/toppings Create a new topping

PUT /api/v1.0/toppings/1 Update an existing topping

DELETE /api/v1.0/toppings/1 Delete an existing topping

Listing 2.1 Retrieving a single topping

Listing 2.2 Retrieving a list of all toppings
k.store/books/9781617294983

http://irresistibleapis.com/api/v1.0/toppings/1
http://json.org
http://irresistibleapis.com/api/v1.0/toppings
http://irresistibleapis.com/api/v1.0/toppings/1
http://irresistibleapis.com/api/v1.0/toppings
https://itbook.store/books/9781617294983

27Using a web API

www.itbook.
 "id": 1,
 "title": "Pepperoni"
 },
 {
 "id": 2,
 "title": "Pineapple"
 }
]
}

In this case, because the request was for a list of objects, square brackets demonstrate
that the returned object contains a list of toppings. Each individual topping looks the
same as listing 2.1. Again, this is how information is represented in JSON. To under-
stand these calls and responses, remember that an object (with keys and values) is rep-
resented by curly braces, and a list (an unnamed collection of items) is represented
with square brackets. In some programming languages these are referred to as hashes
and arrays.

 Both of these calls can be made from a standard web browser. If other people have
added items to the list, you’ll see those included in the list view as well; this is a live call
into the API system and returns the appropriate information. In this case, the API is
generated by node. If you’re a developer who’s interested in learning more about the
back end of the system, Exercise 3 at the end of the chapter will give you information
about how to run this system on your own, as well as the application running on top of
the API.

 This simple API interaction gives you the opportunity to start understanding some
of the topics covered in chapter 4.

2.4 Using a web API
You can interact with this API in various ways, as you’ll learn in this section. Feel free to
try any or all of these approaches to see how the interaction works.

2.4.1 Browser

A browser can make GET calls to specific resources easily. Note that this is easy in the
case of my demo API because there’s no authentication to worry about. The challenge
is that the browser doesn’t have any way to easily update, delete, or create new items.
Using the developer tools or web inspector in your browser can give you more infor-
mation about the call as well.

 For instance, the Chrome web browser has developer tools that allow you to
inspect the traffic it’s processing. Figure 2.5 shows what these tools look like in the
browser. I’ll break down what you’re seeing here in terms of what I described earlier.
Note that the Chrome tools are showing the request and response combined together
in the tab.

store/books/9781617294983

https://itbook.store/books/9781617294983

28 CHAPTER 2 Working with web APIs

www.itboo
For the request:

 Headers —Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/

webp;*/*;q=0.8—This is the list of accepted formats for this browser request, in
order of preference. Because it includes */* (meaning “any content type”) late
in the list, the browser will accept any type of response and do the best it can
with it. Many other headers are shown in figure 2.5. Take a look at them and
run the same request on your system to see how they change and what stays the
same in each request/response transaction.

 Method —GET
 URL —http://irresistibleapis.com/api/v1.0/toppings
 Request body —none
 Status code —200 OK

Figure 2.5 The Chrome browser makes it possible to see information about the request and response headers,
the body of the request or response, and other useful information about the transaction. Although browsers aren’t
designed to send PUT or DELETE responses, the information provided here can go a long way in helping you to
understand the interactions with the platform.
k.store/books/9781617294983

http://irresistibleapis.com/api/v1.0/toppings
https://itbook.store/books/9781617294983

29Using a web API

www.itbook.
2.4.2 Command line (curl)

If you’re comfortable with the command line, you can use the curl command to make
calls to the API as well. This tool is fairly straightforward and makes it possible to inter-
act with the API more completely, using all the available methods rather than limiting
transactions to read operations as the browser does. curl is native on UNIX-based sys-
tems such as Linux and Macintosh, and you can install it easily for Windows from
http://curl.haxx.se/download.html.

 Let’s take a quick tour through the API using curl. By default, curl uses GET
(read), but you can specify other methods on the command line, as shown in the fol-
lowing examples. Remember that your responses may be different if other people
have been changing things; go ahead and work with what you get. Don’t be shy—this
API is for this book, and you can’t break anything important. The best way to under-
stand this type of system is to work with it yourself.

 First, let’s use curl to look at a single topping. Lines beginning with a dollar sign
indicate a command-line call. The other information is the information returned by
the server itself.

$ curl http://irresistibleapis.com/api/v1.0/toppings/1
{
 "topping": {
 "id": 1,
 "title": "Pepperoni"
 }
}

That seems pretty reasonable. I’d eat a pizza with pepperoni on it. Let’s list all the top-
pings and see what else is on the pizza. Remember that the list for the toppings is at
the parent level, or /api/v1.0/toppings.

$ curl http://irresistibleapis.com/api/v1.0/toppings
{
 "toppings": [
 {
 "id": 1,
 "title": "Pepperoni"
 },
 {
 "id": 2,
 "title": "Pineapple"
 },
 {
 "id": 3,
 "title": "Pickles"
 }
]
}

Listing 2.3 GET /api/v1.0/toppings/1

Listing 2.4 GET /api/v1.0/toppings
store/books/9781617294983

http://irresistibleapis.com/api/v1.0/toppings/1
http://irresistibleapis.com/api/v1.0/toppings
http://curl.haxx.se/download.html
https://itbook.store/books/9781617294983

30 CHAPTER 2 Working with web APIs

www.itboo
Wait, what? Pickles? That’s kind of gross. Let’s delete that one. The id for it is 3, so the
correct path to operate on is /api/v1.0/toppings/3.

curl -i -X DELETE http://irresistibleapis.com/api/v1.0/toppings/3
{
 "result": true
}

The response here says we succeeded. To be sure, let’s pull a list of toppings again.

$ curl http://irresistibleapis.com/api/v1.0/toppings

{
 "toppings": [
 {
 "id": 1,
 "title": "Pepperoni"
 },
 {
 "id": 2,
 "title": "Pineapple"
 }
]
}

Okay, that’s much better. But our pizza has pepperoni and pineapple, and I’d much
prefer ham with my pineapple. Let’s go ahead and change that first one to make the
pizza how I want it. To update an existing item, the command needs to send a PUT to
the resource with the new information required.

$ curl -i -H "Content-Type: application/json" -X PUT -d '{"title":"Ham"}'
http://irresistibleapis.com/api/v1.0/toppings/1

{
 "topping": {
 "id": 1,
 "title": "Ham"
 }
}

Nice, now the pizza is looking pretty good. But as far as I’m concerned the pizza is
merely a vehicle to get cheese in my mouth, so I’ll add some extra cheese to go with
the Hawaiian pizza I’ve built.

Listing 2.5 DELETE /api/v1.0/toppings/3

Listing 2.6 GET /api/v1.0/toppings

Listing 2.7 PUT /api/v1.0/toppings/1
k.store/books/9781617294983

http://irresistibleapis.com/api/v1.0/toppings/3
http://irresistibleapis.com/api/v1.0/toppings
http://irresistibleapis.com/api/v1.0/toppings
http://irresistibleapis.com/api/v1.0/toppings/1
https://itbook.store/books/9781617294983

31Using a web API

www.itbook.

$ curl -H "Content-Type: application/json" -X POST -d '{"title":"Extra extra
 cheese"}' http://irresistibleapis.com/api/v1.0/toppings
{
 "topping": {
 "id": 3,
 "title": "Extra extra cheese"
 }
}

Let’s do one final check to make sure that the pizza looks good.

$ curl http://irresistibleapis.com/api/v1.0/toppings

{
 "toppings": [
 {
 "id": 1,
 "title": "Ham"
 },
 {
 "id": 2,
 "title": "Pineapple"
 },
 {
 "id": 3,
 "title": "Extra extra cheese"
 }
]
}

Awesome! Now the pizza is just right.
 Note that with curl you can also pass -i for slightly more chatty information, or –v

for a much larger dose of verbose output. If you’re having fun and you’d like to try
those now, feel free. The extra details you’ll see are HTTP transaction details, which
are described in chapter 4.

2.4.3 HTTP sniffers

Browsers have become good at showing information about the calls they’re making,
but this is of limited use for a couple of reasons. As I mentioned earlier, a browser is
only capable of sending a read request, which restricts the actions you’re able to
explore. When you submit a form, it creates a create (POST) request, but you can’t
arbitrarily call these operations in your browser.

 HTTP sniffers are tools that allow you to explore all the HTTP traffic your system
processes. HTTP sniffers watch and report on the network traffic your system is gener-
ating, whether it comes from a browser, an application, or a raw command-line call.

Listing 2.8 POST /api/v1.0/toppings/1

Listing 2.9 GET /api/v1.0/toppings
store/books/9781617294983

http://irresistibleapis.com/api/v1.0/toppings
http://irresistibleapis.com/api/v1.0/toppings
https://itbook.store/books/9781617294983

32 CHAPTER 2 Working with web APIs

www.itboo
With these tools, you can see the entirety of the HTTP request and response, and this
allows you to debug what’s happening if you’re running into issues.

 If you’re using a Mac, HTTPScoop (www.tuffcode.com) is a friendly choice. It’s easy
to set up and use, and the output is clear and complete. The downside to this tool is
that it can’t monitor secure transactions (HTTPS calls), and so it’s not going to work
with any API requiring secure calls. For the purposes of this book, though, you’ll only
be accessing a nonsecure API (the demo API), so HTTPScoop is a fine choice—it
would be my first choice for any Mac users wanting a reasonably intuitive experience.
The license cost is $15, but you can try it for two weeks for free.

 Figure 2.6 shows an example of the windows in HTTPScoop. For this chapter, I’ll
focus on the main screen listing all calls and the Request/Response tab. Later in the
book you’ll learn about headers, status codes, and other HTTP details so you can
understand how they all interact together. For now, though, consider the request to
be a simple request and response, and don’t worry about particular details if you’re
not already familiar with HTTP.

 For Windows users, the best choice out there is Fiddler, which you can find at
www.telerik.com/fiddler. For Windows, Mac, and Linux, there’s a slightly more com-
plicated choice in Charles (www.charlesproxy.com). If you’re quite advanced in your
network administration skills, you can try out Wireshark from www.wireshark.org.
Wireshark is available and free for every major platform and sniffs all kinds of traffic,
not only web/HTTP traffic, but the interface is complex, and it can be difficult to
understand what you’re seeing.

Figure 2.6 This is an example of a call being inspected by HTTPScoop. On this basic landing page, you
can see the Request URL, representing the resource. The content type of the response, status code, and
response size are also provided.
k.store/books/9781617294983

www.charlesproxy.com
https://itbook.store/books/9781617294983

33Interaction between the API and client

www.itbook.
EXERCISE 1 Watch the traffic in an HTTP sniffer as you go through the exer-
cises from this chapter. Use the curl calls to access the API directly and see
what the calls look like. For more verbosity with curl, you can use –v in your
command and see more information about the call from the client side. Com-
pare the information in the sniffer to what curl sends and see if you can find
patterns. Which debugging method gives the best information? Which one is
easier for you to use?

EXERCISE 2 Make a deliberately incorrect call. Call /api/v1.0/toppings
/100—there’s not likely 100 toppings on the pizza, so this is a bad call. What
kind of output did you get from curl –v? What did the HTTP sniffer show?
The status code tells you how the system responded, which should give you
the information you need to figure out what the issue is.

2.5 Interaction between the API and client
Seeing these GET calls to the API is somewhat interesting, but unfortunately you can’t
see the POST, PUT, or DELETE calls using a browser. curl isn’t intuitive for exploring a
system. Without some kind of application using the API, it’s difficult to explore and
visualize the elegance and simplicity of this kind of interface.

 Keeping in line with the simple API, I’ve created a simple application to exercise
the API, creating a list of toppings for your virtual pizza. Again, for a real application
there would be a full pizza and a method to place the order, but this application is
deliberately as simple as possible so it’s easy to understand how it works.

 I’ll go through the same sequence I did in the last section. Here’s our starting
pizza, with pepperoni, pineapple, and pickles. Loading the initial page causes an API
call to be generated, and we get the current list of toppings from the system.

 First, take a look at the JSON representation returned when the API is called
directly at /api/v1.0/toppings, shown in figure 2.7. Figure 2.8 shows how the appli-
cation looks when this API call is made on the back end.

Figure 2.7 Here you see a representation of the API
toppings list in JSON, the markup language used by the
platform. As described, the curly braces indicate an
object, or dictionary, and the square brackets represent
an array, or list of objects.
store/books/9781617294983

https://itbook.store/books/9781617294983

34 CHAPTER 2 Working with web APIs

www.itboo
Figure 2.8 The application view for the
toppings list shows the same information, as
shown in figure 2.4. This screen is created by
calling the toppings list and creating the HTML
based on the returned information. If the list
changes on the server, both figure 2.4 and
figure 2.5 would change, with both showing the
same information in different ways.

Now take a look at the main application at http://irresistibleapis.com/demo. With
the JSON data, the simple application can build the front page. Some of the items are
static—they don’t change. The top half of the page, for instance, is always the same,
with the title of the display and a button to add new toppings. The bottom half,
though, is created based on the information retrieved from the API. Each topping is
listed, and the ID of the topping is used to create an appropriate button to act on that
specific item. The user has no need to understand the relationship between the ID
and the name of the topping, but the IDs are used programmatically to set up the
page to be functionally correct. Note how the information in the API in figure 2.4
directly maps to what’s shown in the application in figure 2.5. The buttons on this
page map directly to the other API calls, as shown in table 2.2.

As we walk through the API actions, use the HTTP sniffer of your choice to watch the
traffic as the interactions happen. Note that because this system is live, other people
may have added, deleted, or edited the toppings, and they may not match. Feel free to
use the buttons to adjust the toppings to match or follow along with your own favorite
toppings (Jalapeños? Sun dried tomatoes? Legos?).

 The first action in the previous example was removing the pickles from the pizza,
and clicking Delete on this page for the Pickles entry will do that. This button knows
which ID to operate on because it was embedded in the page when the listing was
rendered.

Table 2.2 The mapping between the API calls and application functions

API call Application function

GET /api/v1.0/toppings Main application page

GET /api/v1.0/toppings/1 View button on main page

POST /api/v1.0/toppings “Add new topping”

DELETE /api/v1.0/toppings/1 Delete button on either page
k.store/books/9781617294983

http://irresistibleapis.com/demo
https://itbook.store/books/9781617294983

35Interaction between the API and client

www.itbook.
Clicking the Delete button will make the DELETE call and then make a call to the API
to re-render the list of toppings with the deleted topping gone. If you’re using an
HTTP sniffer or have configured your browser to show you web traffic, you can see this
call happening from your system. Figure 2.9 shows what it looks like in HTTPScoop.

Figure 2.9 This HTTPScoop screen shows a list of all the calls made by the system. In this case,
you can see the DELETE method is called to remove the /toppings/2 resource from the system,
and it was successful, as indicated by the 2XX response in the code column.

 As you can see, the application pulled a few different framework files and then got
the full listing for the main page. When I clicked Delete, the application sent a DELETE
request to the API server and then requested a new list of toppings. All the requests
were successful, so the main page refreshed to show the new list. Figure 2.10 shows the
list after I deleted the offending pickles from the toppings list.

 To edit an existing topping, in this case to change Pepperoni to Ham, click the View
button. Doing so makes the read call for the specific item and allows you to edit the
title. Using this technique to edit the Pepperoni to Ham and then clicking Save causes
a PUT to happen exactly as in the original example. Watch your HTTP sniffer or browser
traffic to see how this progression works. Figure 2.11 shows what the Edit page looks
like for a particular topping—in this case I changed the title from Pepperoni to Ham.

Figure 2.10 Once the topping has been
deleted from the system, the HTML
representation of the toppings list no longer
shows the deleted topping. If the platform call
is made (to /toppings) you’ll see that the
change is reflected in the JSON representation
as well.
store/books/9781617294983

https://itbook.store/books/9781617294983

36 CHAPTER 2 Working with web APIs

www.itboo
When this change is PUT to the API, it will change the item’s title from Pepperoni to
Ham, updating the database to reflect the change permanently.

 The PUT request, viewed in HTTPScoop, shows the request and response (see fig-
ure 2.12).

As with the associated curl request earlier, the debugging demonstrates that the cli-
ent sends a request including the new information for the requested item. A PUT
request replaces information for an existing item in the system. In the response, the
server returns a response showing the new values for the resource. This returned
object matches the object that was PUT to the system. Without HTTPScoop, this seems
a little magical, but you should be seeing a pattern by this point; these common oper-
ations are direct mappings to system calls on the back end of the application.

Figure 2.11 The Edit a Topping screen allows you to change the title of an
existing resource.

Figure 2.12 When you change the title of an existing resource, the information is sent to the server,
and it sends back the new representation of that item. In this case, the object is quite simple; the
title is the only field that can be changed. This is a simple demonstration of how an update works
on an API platform.
k.store/books/9781617294983

https://itbook.store/books/9781617294983

37Interaction between the API and client

www.itbook.
Again, once the topping is edited, the application redisplays the main page, now with
Ham and Pineapple (figure 2.13).

Figure 2.13 The list of toppings now includes
Ham and Pineapple; the Pickles have been
deleted (thank heavens), and the Pepperoni has
been changed to Ham using an update. Again, if
you made a call to the /toppings resource
you’d see the changes shown in the JSON
representation as well.

Figure 2.15 HTTPScoop POST request/response. The only field needed to create a new topping
is the title, and it’s set to Extra extra cheese (yum!). The response shows the ID and title—
the entire representation—of the newly added item.

 What’s left then? Now I need to add my extra cheese to the pizza, because it’s my
favorite sort of thing. Clicking the Add New Topping button on the main page gives
me a page for adding a new topping, as shown in figure 2.14. Remember, adding a
new item to the list is a POST action, and that’s what will happen on the back end. Fig-
ure 2.15 shows what the API transaction looks like when this POST is sent.

Figure 2.14 The Add a Topping screen is designed to add new toppings to the
system. As mentioned earlier, a create action is generally represented by a POST
operation, and that’s what the system will do in this case.
store/books/9781617294983

https://itbook.store/books/9781617294983

38 CHAPTER 2 Working with web APIs

www.itboo
This example demonstrates again the difference between PUT, which updates a spe-
cific existing item, and POST, which creates a new item by adding it to the specified list.
After adding this new topping to the system, the application again requests the list of
toppings, which brings the web page back once again to the main page. This com-
pletes the circuit using an application to exercise the back-end API. The single page
running this application is quite straightforward, because all the logic and actions are
happening on the back end using the API.

 Now that you’ve had the opportunity to view some specific traffic, take time to play
with the example application with the various HTTP inspection methods. Because this
sample application runs in your browser, you have the option of using developer tools
in your browser to watch the traffic or an HTTP sniffer for this exploration. For the
exercises in this book, you’ll want to use an HTTP sniffer, so pick the one you’re most
comfortable with and start familiarizing yourself with its use.

2.6 Install your own API and front end
This optional section is designed specifically for developers who want to understand
more completely the back-end functionality of the API and sample application. You
can use a Docker container to run the system quickly on your own system or download
the code from my GitHub repository. I’ll walk through the steps to install and use the
Docker container first and then give more general instructions for grabbing the code
from GitHub to run on your own system.

2.6.1 Installing the system via Docker

Docker is extremely simple to install on Linux systems and quite easy on Mac OS X
and Windows systems as well. Installing the Docker container is simple once you’ve
got the Docker system set up. Using this container allows you to separate the code and
processes from the main processes on your system while avoiding the memory and
space-management issues of more heavyweight virtual machine systems. The Docker
installers for installation on Windows and Macintosh are at www.docker.com/toolbox.

 If you’re an advanced user running Windows and already have virtualization work-
ing via VBox or another virtualization system, you need to be aware that Docker relies
on VirtualBox, which may conflict with your existing setup. Additionally, boot2docker
requires that virtualization be available on your system, which infrequently requires
changes to the BIOS. Also, virtualization is only available on 64-bit systems. If your sys-
tem is a 32-bit system, you’ll need to install the code directly from GitHub.

Advanced Example Note
If you’re a developer and want to install your own copy of this system, follow the
instructions in section 2.6 to do so. Otherwise, skip to section 2.7 for a summary of
this chapter.
k.store/books/9781617294983

https://itbook.store/books/9781617294983

39Install your own API and front end

www.itbook.
 Once you’ve installed Docker using the instructions at the Docker website, you’re
ready to pull and run the container.

 On Linux, issue this command (on one line):

% sudo docker run -p 80:3000 synedra/irresistible

That binds your system’s port 80 to the Docker container on port 3000.
 On systems using boot2docker (Windows or Mac OS X), the command is as follows

(root access isn’t needed because of the nature of docker-machine):

% docker run -p 80:3000 synedra/irresistible

The application automatically runs in the Docker container. When using
boot2docker, the Docker engine assigns a separate IP address for Docker containers.
In order to determine the IP address of your Docker container, issue the command
docker-machine ip default. Once you’ve done that, you can access the system at
http://<docker-ip/. Because the server is running on port 80, the default web port,
the browser will find the web server on that port.

 If you’d like to start the container and explore the code, you can do so with the fol-
lowing command, which won’t start the node server:

% docker run -i -t synedra/irresistible /bin/bash

You’ll now be root in a shell within the container. Accessing the system in this way
allows you to look at the code and figure out how all the pieces are working together.
The application itself is composed of the toppings.js file, and the front-end web server
is run from the static/index.html file. The previous command will allow you to access
the application directly without cross-domain issues. You can read more about Docker
port forwarding at https://docs.docker.com/userguide/dockerlinks/.

 If you’re running Docker directly on Linux, you can access the system directly at
http://localhost. If you already have a web service running on the default port, you
can assign a different port in the docker run command.

2.6.2 Installing the system via Git

If you prefer to run the applications on your own system rather than using the Docker
container, you need to have Git and Node.js installed on your system. The commands
needed to pull the repository to your system and install and run node are as follows:

% git clone https://github.com/synedra/irresistible
% cd irresistible/
% curl -sL https://deb.nodesource.com/setup | bash - && apt-get
 install -yq nodejs build-essential
% npm install -g npm
% npm config set registry http://registry.npmjs.org/
% npm install -g express@2.5.1
% npm install express
% npm install
% node toppings.js
store/books/9781617294983

http://localhos
https://github.com/synedra/irresistible
https://deb.nodesource.com/setup
https://docs.docker.com/userguide/dockerlinks/
http://registry.npmjs.org/
https://itbook.store/books/9781617294983

40 CHAPTER 2 Working with web APIs

www.itboo
From there you can access the system at http://localhost:3000 (or port 3000 on
whichever server you’re using). Node.js runs on port 3000 by default, so if you want to
expose the system on the standard port (80), you’ll want to run a separate server on
the front end—something like Nginx or Apache—and then create a reverse proxy
back to the node server. For security reasons it’s best not to use root to run a bare web
service, and you can’t access the standard ports as a regular user. This is one of the
advantages to using the Docker system—because it’s isolated from the rest of your sys-
tem at its own IP address, it’s safe to run the front-end server on port 80.

2.6.3 Exploring the code

As you’re running the system and exploring it, you’ll see the logs for the system show
up in the terminal window where you started up the web server. Using an HTTP sniffer,
you can watch the API traffic your system is generating as described in section 2.3.
Once you’ve started a web browser at http://docker_ip_address/, not only will you be
able to see the traffic in an HTTP sniffer, but you’ll start seeing server entries in the ter-
minal window that you started.

 The logs show you all the traffic—both front-end calls to / and the back-end
requests to the API. This combined log data makes it easy to see how the systems are
interacting.

 If you used the Docker setup, you were placed directly into the /opt/webapp
directory. The Git instructions will put you in the same directory: the webapp subdi-
rectory of the repository. Table 2.3 shows a listing of the files in the program directory
along with a description of what each one does.

The toppings.js file is used to run the node web server. When you type node toppings.js,
the application looks for the index.html file in the static directory and serves it up.

 The application uses Bootstrap, a single-page application framework that makes
your simple applications look pretty. The formatting pieces are mostly contained
within the Bootstrap framework, and overrides are made within the index.html file.
This is all to explain what the id and style attributes are for each <div> on the page.
In this case, it’s using the main-single-template for the outside wrapper, and the
inside is a main-single container. This function will present the table of items for the
page to render.

 The $.get function makes the call to /api/v1.0/toppings, at which point the
back end returns a list of toppings, and this function is called to render the page.

Table 2.3 Files included in the program directory

Filename Description

Procfile Used if you want to deploy this to Heroku

Toppings.js The main program for the system

static/index.html A simple single-page application that exercises the API
k.store/books/9781617294983

http://localhost:3000
https://itbook.store/books/9781617294983

41Summary

www.itbook.
EXERCISE 3 Play around with the page, see how each piece works, and try to
see if you can make the application go directly to the Edit page from the top-
pings list instead of the View page.

2.7 Summary
At this point you’ve either played directly with my hosted service or set up your own.
This chapter covered the following concepts:

 The structure of a simple web API system includes the required actions for a
complete platform: create, read, update, and delete.

 A basic HTTP transaction includes a clearly defined request and response, creat-
ing a foundation for web APIs.

 From HTTP sniffers to Chrome Developer Tools, the ability to monitor the traf-
fic makes it much easier to understand what’s happening between the systems.

 RESTful API ideals define the endpoints as nouns, and not verbs. Between these
ideas and the HTTP transactions they work with, the web API system is complete.

Now that you have an understanding of the various moving pieces in a simple API, you
can begin thinking about your own API at a higher level: how to architect the entire
system to use the simple pieces I discussed here to build a fantastic API system. This
chapter was about the bottom up, and how the cogs and wheels work together to
make things work. The next chapter will help you to learn how to think top down:
what are the goals for your API system and how can you meet them most efficiently?
store/books/9781617294983

https://itbook.store/books/9781617294983

42 CHAPTER 2 Working with web APIs

It takes a village to deliver an irresistible web API. Busi-
ness stakeholders look for an API that works side-by-side
with the main product to enhance the experience for
customers. Project managers require easy integration
with other products or ways for customers to interact
with your system. And, developers need APIs to consis-
tently interoperate with external systems. The trick is
getting the whole village together. This book shows you
how.

 Irresistible APIs presents a process to create APIs that
succeed for all members of the team. In it, you’ll learn
how to capture an application’s core business value and

extend it with an API that will delight the developers who use it. Thinking about APIs
from the business point of view, while also considering the end-user experience,
encourages you to explore both sides of the design process and learn some successful
biz-to-dev communication patterns. Along the way, you’ll start to view your APIs as part
of your product’s core value instead of just an add-on.

What's inside

 Design-driven development
 Developing meaningful use cases
 API guiding principles
 How to recognize successful APIs

Written for all members of an API design team, regardless of technical level.

www.itbook.store/books/9781617294983

https://www.manning.com/books/irresistible-apis
https://www.manning.com/books/irresistible-apis
https://itbook.store/books/9781617294983

www.itbook.store
Like most ideas in software development, serverless applications can take
many forms based on the required use cases. This chapter will give you an over-
view of how serverless applications work along with a glimpse into several archi-
tectures and patterns that you can apply while building them.

Architectures
and Patterns
/books/9781617294983

https://itbook.store/books/9781617294983

www.itbook.
Chapter 2 from Serverless Architectures on AWS
by Peter Sbarski

Architectures and patterns
What are the use cases for serverless architectures, and what kinds of architectures
and patterns are useful? We’re often asked about use cases as people learn about a
serverless approach to the design of systems. We find that it’s helpful to look at how
others have applied technology and what kinds of use cases, designs, and architec-
tures they’ve produced. Our discussion will center on these use cases and sample
architectures. This chapter will give you a solid understanding of where serverless
architectures are a good fit and how to think about design of serverless systems.

2.1 Use cases
Serverless technologies and architectures can be used to build entire systems, cre-
ate isolated components, or implement specific, granular tasks. The scope for use
of serverless design is large, and one of its advantages is that it’s possible to use it
for small and large tasks alike. We’ve designed serverless systems that power web

This chapter covers
 Use cases for serverless architectures

 Examples of patterns and architectures
44

store/books/9781617294983

https://www.manning.com/books/serverless-architectures-on-aws
https://itbook.store/books/9781617294983

45Use cases

www.itbook.
and mobile applications for tens of thousands of users, and we’ve built simple systems
to solve specific, minute problems. It’s worth remembering that serverless is not just
about running code in a compute service such as Lambda. It’s also about using third-
party services and APIs to cut down on the amount of work you must do.

2.1.1 Application back end

In this book you’re going to build a back end for a media-sharing, YouTube-like appli-
cation. It will allow users to upload video files, transcode these files to different play-
able formats, and then allow other users to view them. You’ll construct an entirely
serverless back end for a fully featured web application with a database and a RESTful
API. And we’re going to show that serverless technologies are appropriate for build-
ing scalable back ends for all kinds of web, mobile, and desktop applications.

 Technologies such as AWS Lambda are relatively new, but we’ve already seen large
serverless back ends that power entire businesses. Our serverless platform, called A
Cloud Guru (http://acloud.guru), supports many thousands of users collaborating in
real time and streaming hundreds of gigabytes of video. Another example is Instant
(http://instant.cm), which is a serverless content management system for static web-
sites. And yet another example is a hybrid-serverless system built by EPX Labs. We’ll
discuss all of these systems later in the chapter.

 Apart from web and mobile applications, serverless is a great fit for IoT applica-
tions. Amazon Web Services (AWS) has an IoT platform (https://aws.amazon.com/
iot-platform/how-it-works/) that combines the following:

 Authentication and authorization
 Communications gateway
 Registry (a way to assign a unique identity to each device)
 Device shadowing (persistent device state)
 A rules engine (a service to transform and route device messages to AWS ser-

vices)

The rules engine, for example, can save files to Amazon’s Simple Storage Service (S3),
push data to an Amazon Simple Queue Service (SQS) queue, and invoke AWS
Lambda functions. Amazon’s IoT platform makes it easy to build scalable IoT back
ends for devices without having to run a server.

 A serverless application back end is appealing because it removes a lot of infrastruc-
ture management, has granular and predictable billing (especially when a serverless
compute service such as Lambda is used), and can scale well to meet uneven demand.

2.1.2 Data processing and manipulation

A common use for serverless technologies is data processing, conversion, manipula-
tion, and transcoding. We’ve seen Lambda functions built by other developers for pro-
cessing of CSV, JSON, and XML files; collation and aggregation of data; image
resizing; and format conversion. Lambda and AWS services are well suited for build-
ing event-driven pipelines for data-processing tasks.
store/books/9781617294983

https://aws.amazon.com/iot-platform/how-it-works/
https://aws.amazon.com/iot-platform/how-it-works/
http://acloud.guru
http://instant.cm
https://itbook.store/books/9781617294983

46 CHAPTER 2 Architectures and patterns

www.itboo
 In chapter 3, you’ll build the first part of your application, which is a powerful pipe-
line for converting videos from one format to another. This pipeline will set file permis-
sions and generate metadata files. It will run only when a new video file is added to a
designated S3 bucket, meaning that you’ll pay only for execution of Lambda when
there’s something to do and not while the system is idling. More broadly, however, we
find data processing to be an excellent use case for serverless technologies, especially
when we use a Lambda function in concert with other services.

2.1.3 Real-time analytics

Ingestion of data—such as logs, system events, transactions, or user clicks—can be
accomplished using services such as Amazon Kinesis Streams (see appendix A for
more information on Kinesis). Lambda functions can react to new records in a
stream, and can process, save, or discard data quickly. A Lambda function can be con-
figured to run when a specific number (batch size) of records is available for process-
ing, so that it doesn’t have to execute for every individual record added to the stream.

 Kinesis streams and Lambda functions are a good fit for applications that generate
a lot of data that need to be analyzed, aggregated, and stored. When it comes to Kine-
sis, the number of functions spawned to process messages off a stream is the same as
the number of shards (therefore, there’s one Lambda function per shard). Further-
more, if a Lambda function fails to process a batch, it will retry. This can keep going
for up to 24 hours (which is how long Kinesis will keep data around before it expires)
if processing fails each time. But even with these little gotchas (which you now know),
the combination of Kinesis streams and Lambda is really powerful if you want to do
real-time processing and analytics.

2.1.4 Legacy API proxy

One innovative use case of the Amazon API Gateway and Lambda (which we’ve seen a
few times) is what we refer to as the legacy API proxy. Here, developers use API Gate-
way and Lambda to create a new API layer over legacy APIs and services to make them
easier to use. The API Gateway is used to create a RESTful interface, and Lambda
functions are used to transpose request/response and marshal data to formats that
legacy services understand. This approach makes legacy services easier to consume for
modern clients that may not support older protocols and data formats.

2.1.5 Scheduled services

Lambda functions can run on a schedule, which makes them effective for repetitive
tasks like data backups, imports and exports, reminders, and alerts. We’ve seen devel-
opers use Lambda functions on a schedule to periodically ping their websites to see if
they’re online and send an email or a text message if they’re not. There are Lambda
blueprints available for this (a blueprint is a template with sample code that can be
selected when creating a new Lambda function). And we’ve seen developers write
Lambda functions to perform nightly downloads of files off their servers and send
k.store/books/9781617294983

https://itbook.store/books/9781617294983

47Architectures

www.itbook.
daily account statements to users. Repetitive tasks such as file backup and file valida-
tion can also be done easily with Lambda thanks to the scheduling capability that you
can set and forget.

2.1.6 Bots and skills

Another popular use of Lambda functions and serverless technologies is to build bots
(a bot is an app or a script that runs automated tasks) for services such as Slack (a pop-
ular chat system—https://slack.com). A bot made for Slack can respond to com-
mands, carry out small tasks, and send reports and notifications. We, for example,
built a Slack bot in Lambda to report on the number of online sales made each day via
our education platform. And we’ve seen developers build bots for Telegram, Skype,
and Facebook’s messenger platform.

 Similarly, developers write Lambda functions to power Amazon Echo skills. Amazon
Echo is a hands-free speaker that responds to voice commands. Developers can imple-
ment skills to extend Echo’s capabilities even further (a skill is essentially an app that
can respond to a person’s voice; for more information, see http://amzn.to/2b5NMFj).
You can write a skill to order a pizza or quiz yourself on geography. Amazon Echo is
driven entirely by voice, and skills are powered by Lambda.

2.2 Architectures
The two overarching architectures that we’ll discuss in this book are compute as back
end (that is, back ends for web and mobile applications) and compute as glue (pipelines
built to carry out workflows). These two architectures are complementary. It’s highly
likely that you’ll build and combine these architectures if you end up working on any
kind of real-world serverless system. Most of the architectures and patterns described
in this chapter are specializations and variations of these two to some extent.

2.2.1 Compute as back end

The compute-as-back-end architecture describes an approach where a serverless com-
pute service such as Lambda and third-party services are used to build a back end for
web, mobile, and desktop applications. You may note in figure 2.1 that the front end
links directly to the database and an authentication service. This is because there’s no
need to put every service behind an API Gateway if the front end can communicate
with them in a secure manner (for example, using delegation tokens; chapters 5 and 9

A note on writing a bot for Slack
There are two Lambda blueprints (you’ll see these when you create a Lambda func-
tion in AWS) that can help you build a Slack bot quickly (look for “slack-echo-com-
mand” and “cloudwatch-alarm-to-slack”). Slack bots need to respond within 3,000
milliseconds; otherwise, you may get a timeout error message. If you hit timeouts,
think about creating two bots: one to receive a command and another to post a noti-
fication to your Slack channel when the result is available.
store/books/9781617294983

http://amzn.to/2b5NMFj
https://slack.com
https://itbook.store/books/9781617294983

48 CHAPTER 2 Architectures and patterns

www.itboo
discuss this in more detail). One of the aims of this architecture is to allow the front
end to communicate with services, encompass custom logic in Lambda functions, and
provide uniform access to functions via a RESTful interface.

Figure 2.1 This is a rather simple back end architecture for storing, calculating, and retrieving data.
The front end can read directly from the database and securely communicate with different services.
It can also invoke Lambda functions through the API Gateway.

The client can, in a lot of cases,
communicate with services
directly rather than relaying
through the API Gateway.

The API Gateway creates a RESTful interface and hides
Lambda functions and other services behind it.
Lambda functions can carry out custom tasks and
communicate with other services.

Compute as back end

API
Gateway

Lambda
(save profile)

Lambda
(calculate

cost)

Lambda
(submit job)

Lambda
(process job)

File
storage

Database

Message
pipeline

Database

Authentication
service

Database

Search
service

 In chapter 1, we described our principles of serverless architectures. Among them
we mentioned thicker front ends (principle 4) and encouraged the use of third-party
services (principle 5). These two principles are particularly relevant if you’re building
a serverless back end rather than event-driven pipelines. We find that good serverless
systems try to minimize the scope and the footprint of Lambda functions so that these
functions do only the bare minimum (call them nano functions, if you will) and primar-
ily focus on the tasks that must not be done in the front end because of privacy or
security concerns. Nevertheless, finding the right level of granularity for a function
can be a challenging task. Make functions too granular and you’ll end up with a
sprawling back end, which can be painful to debug and maintain after a long time.
Ignore granularity and you’ll risk building mini-monoliths that nobody wants (one
helpful lesson we’ve learned is to try to minimize the number of data transformations
in a Lambda function to keep complexity under control).

A CLOUD GURU

A Cloud Guru (https://acloud.guru) is an online education platform for solution
architects, system administrators, and developers wanting to learn Amazon Web Ser-
vices. The core features of the platform include (streaming) video courses, practice
k.store/books/9781617294983

https://acloud.guru
https://itbook.store/books/9781617294983

49Architectures

www.itbook.
exams and quizzes, and real-time discussion forums. A Cloud Guru is also an e-com-
merce platform that allows students to buy courses and watch them at their leisure.
Instructors who create courses for A Cloud Guru can upload videos directly to an S3
bucket, which are immediately transcoded to a number of different formats (1080p,
720p, HLS, WebM, and so on) and are made available for students to view. The Cloud
Guru platform uses Firebase as its primary client-facing database, which allows clients
to receive updates in near real time without refreshing or polling (Firebase uses web
sockets to push updates to all connected devices at the same time). Figure 2.2 shows a
cut down version of the architecture used by A Cloud Guru.

Forum questions and
answers are added to a
database and indexed
for search.

Students are given
permission to read files
from S3 via CloudFront.

Lecturers are given
permission to upload
to S3.

API
Gateway

Auth0
Netlify
(SPA)

Firebase CloudSearch S3
(file storage)

Lambda
(transcode

start)

S3
(file storage)

Lambda
(transcode

finish)
Firebase

CloudSearch

Media Transcoding Pipeline

Firebase

S3
(file storage)

CloudFront

Lambda
(forum

answer)

Lambda
(answer
submit)

Lambda
(read file)

Lambda
(upload file)

Figure 2.2 This is a simplified version of the Cloud Guru architecture. Current production architecture has
additional Lambda functions and services for performing payments, managing administration, gamification,
reporting, and analytics.

Note the following about the Cloud Guru architecture given in figure 2.2:

 The front end is built using AngularJS and is hosted by Netlify (https://netl-
ify.com). You could use S3 and CloudFront (CloudFront is a global content
delivery network provided by AWS) instead of Netlify if you wanted to.

 Auth0 is used to provide registration and authentication facilities. It creates del-
egation tokens that allow the front end to directly and securely communicate
with other services such as Firebase.

 Firebase is the real-time database used by A Cloud Guru. Every client creates a
connection to Firebase using web sockets and receives updates from it in near
real time. This means that clients receive updates as they happen without hav-
ing to poll.
store/books/9781617294983

https://netlify.com
https://netlify.com
https://itbook.store/books/9781617294983

50 CHAPTER 2 Architectures and patterns

www.itboo
 Lecturers who create content for the platform can upload files (usually videos,
but they could be other types) straight to S3 buckets via their browser. For this
to work, the web application invokes a Lambda function (via the API Gateway)
to request the necessary upload credentials first. As soon as credentials are
retrieved, the client web application begins a file upload to S3 via HTTP. All of
this happens behind the scenes and is opaque to the user.

 Once a file is uploaded to S3, it automatically kicks off a chain of events (our
event-driven pipeline) that transcodes the video, saves new files in another
bucket, updates the database, and immediately makes transcoded videos avail-
able to other users. Throughout this book you’ll write a similar system and see
how it works in detail.

 To view videos, users are given permission by another Lambda function. Permis-
sions are valid for 24 hours, after which they must be renewed. Files are
accessed via CloudFront.

 Users can submit questions and answers to the forums. Questions, answers, and
comments are recorded in the database. This data is then sent to for indexing
to AWS CloudSearch, which is a managed searching and indexing service from
AWS. This allows users to search and view questions, answers, and comments
that other people have written.

INSTANT

Instant (http://instant.cm) is a startup that helps website owners add content man-
agement facilities—including inline text editing and localization—to their static web-
sites. The founders, Marcel Panse and Sander Nagtegaal, describe it as instant content
management system. Instant works by adding a small JavaScript library to a website
and making a minor change to HTML. This allows developers and administrators to
edit text elements directly via the website’s user interface. Draft edits made to the text
are stored in DynamoDB (see appendix A on DynamoDB). The final, production ver-
sion of the text (that the end user sees) is served as a JSON file from an S3 bucket via
Amazon CloudFront (figure 2.3).

 A simplified version of the Instant architecture is shown in figure 2.4.
 Note the following about the Instant architecture in figure 2.4:

 (This is not shown in the diagram.) A JavaScript library must be added to a web-
site that wants to use Instant. Authentication is done via Google (with the user’s
own Google account) by clicking a widget that appears in the website at a spe-
cial URL (for example, yourwebsite.com/#edit). After successful authentica-
tion with Google, the Instant JavaScript widget authenticates with AWS Cognito,
which provisions temporary AWS IAM credentials (see appendix A for informa-
tion on AWS Cognito).

 Route 53, Amazon’s Domain Name System (DNS) web service, is used to route
requests either to CloudFront or to the API Gateway. (See appendix A for more
information on Route 53.)
k.store/books/9781617294983

http://instant.cm
https://itbook.store/books/9781617294983

51Architectures

www.itbook.
Figure 2.3 You can use Instant to add support for multiple languages, which makes it a powerful
service if you need to localize your website and don’t have a content management system.

The JavaScript widget provided by Instant
allows you to log in to your account,
discard the current edit, or make it live.

With Instant you can edit the text of your
website and then have it published for
everyone else to see.

Figure 2.4 The Instant system uses AWS Lambda, API Gateway, DynamoDB, S3, CloudFront, and
Amazon Route 53 as its main components. The system scales to support many clients.

When text is
published, it is
pushed as a
JSON file to S3.

instant.cm

data.instant.cm

api.instant.cm

Draft versions are stored in DynamoDB.

Route 53
(DNS)

API
Gateway

CloudFront

CloudFront

S3 (data)

Lambda DynamoDB

S3 (website)
store/books/9781617294983

https://itbook.store/books/9781617294983

52 CHAPTER 2 Architectures and patterns

www.itboo
 As a user edits text on their website, the Instant widget sends changes to the API
Gateway, which invokes a Lambda function. This Lambda function saves drafts
to DynamoDB, along with relevant metadata.

 When the user decides to publish their edit (by selecting an option in the
Instant widget), data from DynamoDB is read and saved in S3 as a static JSON
file. This file is served from S3 via CloudFront. The Instant widget parses the
JSON file received from CloudFront and updates the text on the website for the
end user to see.

Marcel and Sander make a few points about their system:

The use of Lambda functions leads to an architecture of microservices quite naturally.
Every function is completely shielded from the rest of the code. It gets better: the same
Lambda function can fire in parallel in almost infinite numbers—and this is all done
completely automated.

In terms of cost, Marcel and Sander share the following:

With our serverless setup, we primarily pay for data transfer through CloudFront, a tiny
bit for storage and for each millisecond that our Lambda functions run. Since we know
on average what a new customer uses, we can calculate the costs per customer exactly.
That’s something we couldn’t do in the past, when multiple users were shared across the
same infrastructure.

Overall, Marcel and Sander find that adopting an entirely serverless approach has
been a winner for them primarily from the perspectives of operations, performance,
and cost.

2.2.2 Legacy API proxy

The legacy API proxy architecture is an innovative example of how serverless technolo-
gies can solve problems. As we mentioned in section 2.1.4, systems with outdated ser-
vices and APIs can be difficult to use in modern environments. They might not conform
to modern protocols or standards, which might make interoperability with current sys-
tems harder. One way to alleviate this problem is to use the API Gateway and Lambda in
front of those legacy services. The API Gateway and Lambda functions can transform
requests made by clients and invoke legacy services directly, as shown in figure 2.5.

 The API Gateway can transform requests (to an extent) and issue requests against
other HTTP endpoints (see chapter 7). But it works only in a number of fairly basic
(and limited) use cases where only JSON transformation is needed. In more complex
scenarios, however, a Lambda function is needed to convert data, issue requests, and
process responses. Take a Simple Object Access Protocol (SOAP) service as an example.
You’d need to write a Lambda function to connect to a SOAP service and then map
responses to JSON. Thankfully, there are libraries that can take care of much of the
heavy lifting in a Lambda function (for example, there are SOAP clients that can be
downloaded from the npm registry for this purpose; see https://www.npmjs.com/pack-
age/soap).
k.store/books/9781617294983

https://www.npmjs.com/package/soap
https://www.npmjs.com/package/soap
https://itbook.store/books/9781617294983

53Architectures

www.itbook.
Figure 2.5 The API proxy architecture is used to build a modern API interface over old services and APIs.

Most legacy services will
require a Lambda function
to convert data and
correctly invoke them.

API
Gateway

Lambda
(convert/
invoke)

Lambda
(convert/
invoke)

Lambda
(convert/
invoke)

Legacy API

Legacy API

Legacy
service
(SOAP)

Legacy API

Legacy
service
(XML)

2.2.3 Hybrid

As we mentioned in chapter 1, serverless technologies and architectures are not an all-
or-nothing proposition. They can be adopted and used alongside traditional systems.
The hybrid approach may work especially well if a part of the existing infrastructure is
already in AWS. We’ve also seen adoption of serverless technologies and architectures
in organizations with developers initially creating standalone components (often to
do additional data processing, database backups, and basic alerting) and over time
integrating these components into their main systems; see figure 2.6.

Figure 2.6 The hybrid approach is useful if you have a legacy system that uses servers.

Any legacy system can use functions and services. This can allow you to slowly
introduce serverless technologies without disturbing too much of the world order.

API
Gateway

Load
balancer

Database

File
storage

Lambda
(calculate

cost)

Server Server

Lambda
(save

profile)

Lambda
function

store/books/9781617294983

https://itbook.store/books/9781617294983

54 CHAPTER 2 Architectures and patterns

www.itboo
EFFICIENT HYBRID-SERVERLESS JOB-PROCESSING SYSTEM

EPX Labs (http://epxlabs.com) proudly state that the “future of IT Operations and
Application Development is less about servers and more about services.” They specialize
in serverless architectures, with one of their recent solutions being a hybrid serverless
system designed to carry out maintenance and management jobs on a distributed server-
based infrastructure running on Amazon’s Elastic Compute Cloud (EC2) (figure 2.7).

Figure 2.7 The Hybrid-Serverless Job-Processing System designed by EPX Labs

DynamoDB

SNS SNS
report

SNS
topics

Shared SNS

Lambda

Tasks Lambdas

Fanout SQS

VPC

Engine

Lambda

Lambda Lambda

MySQL

MySQL

SQS

SQS

Shared SQS

SQS
EC2

EC2

EC2Lambda
creator

Lambda
scheduler

Lambda
reporter

Front end
and users

Fanout
SNS

 Evan Sinicin and Prachetas Prabhu of EPX Labs describe the system they had to
work with as a “multi-tenant Magento (https://magento.com) application running on
multiple frontend servers. Magento requires certain processes to run on the servers
such as cache clearing and maintenance operations. Additionally, all site management
operations such as build, delete, and modify require a mix of on-server operations
(building out directory structures, modifying configuration files, etc.) as well as data-
base operations (creating new database, modifying data in database, and so on).”
Evan and Prachetas created a scalable serverless system to assist with these tasks.
Here’s how they describe how the system is built and the way it works:

 The system is broken into two parts: the engine, which is responsible for creat-
ing, dispatching, and managing jobs, and the task processors.
k.store/books/9781617294983

http://epxlabs.com
https://magento.com
https://itbook.store/books/9781617294983

55Architectures

www.itbook.
 The engine consists of several Lambda functions fronted by the Simple Notifi-
cation Service (SNS—see appendix A for more information). Task processors
are a mix of Lambda and Python processes.

 A job is created by sending JSON data to the creator (part of the engine) via an
SNS topic. Each job is broken down into a set of discrete tasks. Tasks fall into
three categories:

 Individual server tasks—must be executed on all servers.
 Shared server tasks—must be executed by one server.
 Lambda tasks—executed by a Lambda function.

 Once created in DynamoDB, the job is sent to the scheduler, which identifies
the next task to be run and dispatches it. The scheduler dispatches the task
based on the type of task, either pinging a task Lambda via SNS or placing mes-
sages onto the shared or fan-out Simple Queue Service (SQS) queues (see sec-
tion 2.3 for more information on these patterns).

 Task execution on the servers is handled by custom-written Python services.
Two services run on each server; one polls the shared SQS queue for shared
server tasks and the other polls the individual server queue (specific to an EC2
instance). These services continually poll the SQS queues for incoming task
messages and execute them based on the contained information. To keep this
service stateless, all data required for processing is encapsulated in the
encrypted message.

 Each Lambda task corresponds to a discrete Lambda function fronted by an
SNS topic. Typically, Lambda tasks operate on the MySQL databases backing
Magento; therefore, they run in the virtual private cloud (VPC). To keep these
Lambda functions stateless, all data required for processing is encapsulated in
the encrypted message itself.

 Upon completion or failure, the task processors will report the success or fail-
ure to the engine by invoking the reporter Lambda via SNS. The reporter
Lambda will update the job in DynamoDB and invoke the scheduler to do any
cleanup (in the case of a failure) or dispatch the next task.

2.2.4 GraphQL

GraphQL (http://graphql.org) is a popular data query language developed by Face-
book in 2012 and released publicly in 2015. It was designed as an alternative to REST
(Representational State Transfer) because of REST’s perceived weaknesses (multiple
round-trips, over-fetching, and problems with versioning). GraphQL attempts to solve
these problems by providing a hierarchical, declarative way of performing queries
from a single end point (for example, api/graphql); see figure 2.8.

 GraphQL gives power to the client. Instead of specifying the structure of the
response on the server, it’s defined on the client (http://bit.ly/2aTjlh5). The client
can specify what properties and relationships to return. GraphQL aggregates data
from multiple sources and returns it to the client in a single round trip, which makes
store/books/9781617294983

http://graphql.org
http://bit.ly/2aTjlh5
https://itbook.store/books/9781617294983

56 CHAPTER 2 Architectures and patterns

www.itboo
Figure 2.8 The GraphQL and Lambda architecture has become popular in the serverless community.

Only a single GraphQL Lambda function is needed
to query multiple data sources. It can be a viable
alternative to building a full RESTful interface.

API Gateway
/GraphQL

Lambda
(GraphQL)

Database

Database

Database

Database

Database

it an efficient system for retrieving data. According to Facebook, GraphQL serves mil-
lions of requests per second from nearly 1,000 different versions of its application.

 In serverless architectures, GraphQL is usually hosted and run from a single
Lambda function, which can be connected to an API Gateway (there are also hosted
solutions of GraphQL like scaphold.io). GraphQL can query and write to multiple
data sources, such as DynamoDB tables, and assemble a response that matches the
request. A serverless GraphQL is a rather interesting approach you might want to look
at next time you need to design an interface for your API and query data. Check out
the following articles if you want to implement GraphQL in a serverless architecture:

 “A Serverless Blog leveraging GraphQL to offer a REST API with only 1 end-
point” (https://github.com/serverless/serverless-graphql-blog)

 “Serverless GraphQL” (http://bit.ly/2aN7Pc2)
 “Pokémon Go and GraphQL with AWS Lambda” (http://bit.ly/2aIhCud)

2.2.5 Compute as glue

The compute-as-glue architecture shown in figure 2.9 describes the idea that we can
use Lambda functions to create powerful execution pipelines and workflows. This
often involves using Lambda as glue between different services, coordinating and
invoking them. With this style of architecture, the focus of the developer is on the
design of their pipeline, coordination, and flow of data. The parallelism of serverless
compute services like Lambda helps to make these architectures appealing. The
example you’re going to build in this book uses this pattern to create an event-driven
pipeline that transcodes videos (chapter 3, in particular, focuses on creating pipelines
and applying this pattern to solve a complex task rather easily).
k.store/books/9781617294983

https://github.com/serverless/serverless-graphql-blog
http://bit.ly/2aN7Pc2
http://bit.ly/2aIhCud
https://itbook.store/books/9781617294983

57Architectures

www.itbook.
Figure 2.9 The compute-as-glue architecture uses Lambda functions to connect different services
and APIs to achieve a task.

In this pipeline, a simple image transformation
results in a new file, an update to a database,
an update to a search service, and a new entry
to a log service. All of these steps are isolated
and run only when needed.

Lambda can act as glue between different
services to create powerful pipelines.

Lambda
(create

thumbnail)

Notification
service
(SNS)

File
storage

Lambda
(update)

Database

File
storage (S3)

Lambda
(write log)

Log service
(cloudWatch)

Search
service

Notification
service
(SNS)

LISTHUB PROCESSING ENGINE

EPX Labs has built a system to process large real estate XML feeds (figure 2.10). Evan
Sinicin and Prachetas Prabhu say that the goal of their system is “to pull the feed,
separate the large file into single XML documents, and process them in parallel. Pro-
cessing includes parsing, validation, hydration, and storing.”

Figure 2.10 EPX Labs has built a system to effortlessly process large (10 GB+) XML documents.

External data sources
(ListHub)

Lambda
(polling)

S3
(XML NoSQL

data store)

S3
(XML NoSQL
data store)

EC2 container
service (ECS)

S3
(RETS file

storage)

Simple queuing
service (SQS)

Lambda
(processing,

validation, CRUD)

External
media storage

Lambda
(copy media

to S3)

S3
(media)
store/books/9781617294983

https://itbook.store/books/9781617294983

58 CHAPTER 2 Architectures and patterns

www.itboo
 They go on to describe how the system works in more detail:

 The system was designed to process a real estate listing XML feed. The feed is
provided by ListHub as a massive (10 GB+) XML document with millions of
nested listings. This file is provided via S3 for direct download and processing.
The listings conform to the Real Estate Standards Organization (RETS) standard.

 ListHub does not have any sort of push capabilities, so the polling Lambda
checks the last-modified metadata of the S3 object to see if a new feed has been
posted. This usually occurs every 12 hours or so.

 Once a new feed has been published, the polling Lambda spins up an EC2 Con-
tainer Service (ECS) container to carry out the parsing of the massive file. ECS
is used because this process can take a long time (Lambda can run for a maxi-
mum of 5 minutes). The ECS container has a Clojure program that asynchro-
nously processes the feed file and places the parsed information into S3.

 EPX Labs uses S3 as a NoSQL store. Using an S3 PutObject event trigger, each
new XML listing placed into S3 triggers a Lambda that carries out the validation
and hydration processes. Another S3 bucket stores processed listing IDs (as
object keys). The validation Lambda can quickly verify that the listing hasn’t been
processed on a previous run by checking whether the ID/key already exists.

 The validation Lambda also triggers the hydration Lambda (“Copy Media to S3
Lambda”). This Lambda copies assets such as pictures and videos to an S3
bucket so they can be displayed on the front end.

 The final step is to save the relevant, normalized listing data into the final data
store that serves the front end and other systems. To avoid overwhelming the
data store with writes, the listing data is put onto an SQS queue so it can be pro-
cessed at a rate the final data store can handle.

Evan and Prachetas say that their approach yields a number of benefits, including that
they can use S3 as a cheap, high-performance, and scalable NoSQL data store and
that they can use Lambda to undertake massively concurrent processing.

2.2.6 Real-time processing

As discussed in section 2.1.3, Amazon Kinesis Streams is a technology that can help
process and analyze large amounts of streaming data. This data can include logs,
events, transactions, social media feeds—virtually anything you can think of—as
shown in figure 2.11. It’s a good way to continuously collect data that may change over
time. Lambda is a perfect tool for Kinesis Streams because it scales automatically in
response to how much data there is to process.
With Kinesis Streams you can accomplish the following:

 Control how much data is passed into a Kinesis stream before a Lambda func-
tion is invoked and how data gets to Kinesis in the first place

 Put a Kinesis stream behind an API Gateway
 Push data to the stream directly from a client or have a Lambda function add

records to it
k.store/books/9781617294983

https://itbook.store/books/9781617294983

59Patterns

www.itbook.
Figure 2.11 Lambda is a perfect tool to process data in near real time.

Kinesis Streams can ingest a lot of messages that can be processed with
Lambda functions. Data-intensive applications that perform real-time
reporting and analytics can benefit from this architecture.

Kinesis
Streams

File
storage (S3)

Lambda
(retrieve

batch of 100)

Kinesis
Streams

Events/Messages

Database

Lambda
(retrieve

batch of 50)

2.3 Patterns
Patterns are architectural solutions to problems in software design. They’re designed
to address common problems found in software development. They’re also an excel-
lent communications tool for developers working together on a solution. It’s far easier
to find an answer to a problem if everyone in the room understands which patterns
are applicable, how they work, their advantages, and their disadvantages. The patterns
presented in this section are useful for solving design problems in serverless architec-
tures. But these patterns aren’t exclusive to serverless. They were used in distributed
systems long before serverless technologies became viable. Apart from the patterns
presented in this chapter, we recommend that you become familiar with patterns
relating to authentication (see chapter 4 for a discussion of the federated identity pat-
tern), data management (CQRS, event sourcing, materialized views, sharding), and
error handling (retry pattern). Learning and applying these patterns will make you a
better software engineer, regardless of the platform you choose to use.

2.3.1 Command pattern

With the GraphQL architecture (section 2.2.4), we discussed the fact that a single end
point can be used to cater to different requests with different data (a single GraphQL
endpoint can accept any combination of fields from a client and create a response
that matches the request). The same idea can be applied more generally. You can
design a system in which a specific Lambda function controls and invokes other func-
tions. You can connect it to an API Gateway or invoke it manually and pass messages to
it to invoke other Lambda functions.
store/books/9781617294983

https://itbook.store/books/9781617294983

60 CHAPTER 2 Architectures and patterns

www.itboo
 In software engineering, the command pattern (figure 2.12) is used to “encapsu-
late a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undoable operations” because of the
“need to issue requests to objects without knowing anything about the operation
being requested or the receiver of the request” (http://bit.ly/29ZaoWt). The com-
mand pattern allows you to decouple the caller of the operation from the entity that
carries out the required processing.

 In practice, this pattern can simplify the API Gateway implementation, because
you may not want or need to create a RESTful URI for every type of request. It can
also make versioning simpler. The command Lambda function could work with diffe-
rent versions of your clients and invoke the right Lambda function that’s needed by
the client.

WHEN TO USE THIS

This pattern is useful if you want to decouple the caller and the receiver. Having a way
to pass arguments as an object, and allowing clients to be parametrized with different
requests, can reduce coupling between components and help make the system more
extensible. Be aware of using this approach if you need to return a response to the
API Gateway. Adding another function will increase latency.

2.3.2 Messaging pattern

Messaging patterns, shown in figure 2.13, are popular in distributed systems because
they allow developers to build scalable and robust systems by decoupling functions
and services from direct dependence on one another and allowing storage of
events/records/requests in a queue. The reliability comes from the fact that if the
consuming service goes offline, messages are retained in the queue and can still be
processed at a later time.

Figure 2.12 The command pattern is used to invoke and control functions and services from a single
function.

A command function is used to
invoke other functions and services.
It knows which functions to invoke
in response to data/events and how
to call those functions.

Lambda
function

Lambda
function

File
storage

Database

Lambda
function

Lambda
function

Lambda
function

(command)
API Gateway
k.store/books/9781617294983

http://bit.ly/29ZaoWt
https://itbook.store/books/9781617294983

61Patterns

www.itbook.
Figure 2.13 The messaging pattern, and its many variations, are popular in distributed environments.

Similar to the command pattern, there
is one function that reads messages off
a queue. It invokes appropriate Lambda
functions based on the message.

Lambda
function

Lambda
function

Lambda
function

Lambda
function

(dispatch)

Queue (SQS) /
stream (Kinesis)

Data source

Data source

Data source

 This pattern features a message queue with a sender that can post to the queue and
a receiver that can retrieve messages from the queue. In terms of implementation in
AWS, you can build this pattern on top of the Simple Queue Service. Unfortunately, at
the moment Lambda doesn’t integrate directly with SQS, so one approach to addressing
this problem is to run a Lambda function on a schedule and let it check the queue every
so often.

 Depending on how the system is designed, a message queue can have a single sen-
der/receiver or multiple senders/receivers. SQS queues typically have one receiver per
queue. If you needed to have multiple consumers, a straightforward way to do it is to intro-
duce multiple queues into the system (figure 2.14). A strategy you could apply is to com-
bine SQS with Amazon SNS. SQS queues could subscribe to an SNS topic; pushing a
message to the topic would automatically push the message to all of the subscribed queues.

Figure 2.14 Your system may have multiple queues/streams and Lambda functions to process all
incoming data.

Use multiple queues/streams to decouple
multiple components in your system.

Lambda
function

Lambda
function

Lambda
function

Lambda
function

(dispatch)

Queue (SQS) /
stream (Kinesis)

Lambda
function

Lambda
function

Lambda
function

(dispatch)

Queue #2 (SQS) /
stream #2 (Kinesis)

Data source

Data source

Data source
store/books/9781617294983

https://itbook.store/books/9781617294983

62 CHAPTER 2 Architectures and patterns

www.itboo
 Kinesis Streams is an alternative to SQS, although it doesn’t have some features,
such as dead lettering of messages (http://amzn.to/2a3HJzH). Kinesis Streams inte-
grates with Lambda, provides an ordered sequence of records, and supports multiple
consumers.

WHEN TO USE THIS

This is a popular pattern used to handle workloads and data processing. The queue
serves as a buffer, so if the consuming service crashes, data isn’t lost. It remains in the
queue until the service can restart and begin processing it again. A message queue can
make future changes easier, too, because there’s less coupling between functions. In
an environment that has a lot of data processing, messages, and requests, try to mini-
mize the number of functions that are directly dependent on other functions and use
the messaging pattern instead.

2.3.3 Priority queue pattern

A great benefit of using a platform such as AWS and serverless architectures is that
capacity planning and scalability are more of a concern for Amazon’s engineers than
for you. But in some cases, you may want to control how and when messages get dealt
with by your system. This is where you might need to have different queues, topics, or
streams to feed messages to your functions. Your system might go one step further and
have entirely different workflows for messages of different priority. Messages that need
immediate attention might go through a flow that expedites the process by using
more expensive services and APIs with more capacity. Messages that don’t need to be
processed quickly can go through a different workflow, as shown in figure 2.15.

Figure 2.15 The priority queue pattern is an evolution of the messaging pattern.

Messages with different priority can
be dealt with by different workflows
and different Lambda functions.

Lambda
function

Lambda
function

Lambda
function

Priority 1

Priority 2

Priority 3

Lambda
function

Lambda
function

Lambda
function

Lambda
function

Lambda
function Notification service (SNS) / Queue (SQS)

Notification service (SNS) / Queue (SQS)

Notification service (SNS) / Queue (SQS)

Notification service (SNS) / Queue (SQS)
k.store/books/9781617294983

http://amzn.to/2a3HJzH
https://itbook.store/books/9781617294983

63Patterns

www.itbook.
 This pattern might involve the creation and use of entirely different SNS topics,
Kinesis Streams, SQS queues, Lambda functions, and even third-party services. Try to
use this pattern sparingly, because additional components, dependencies, and work-
flows will result in more complexity.

WHEN TO USE THIS

This pattern works when you need to have a different priority on processing of mes-
sages. Your system can implement workflows and use different services and APIs to
cater to many types of needs and users (for example, paying versus nonpaying users).

2.3.4 Fan-out pattern

Fan-out is a type of messaging pattern that’s familiar to many users of AWS. Generally,
the fan-out pattern is used to push a message out to all listening/subscribed clients of
a particular queue or a message pipeline. In AWS, this pattern is usually implemented
using SNS topics that allow multiple subscribers to be invoked when a new message is
added to a topic. Take S3 as an example. When a new file is added to a bucket, S3 can
invoke a single Lambda function with information about the file. But what if you need
to invoke two, three, or more Lambda functions at the same time? The original func-
tion could be modified to invoke other functions (like the command pattern), but
that’s a lot of work if all you need is to run functions in parallel. The answer is to use
the fan-out pattern using SNS; see figure 2.16.

Figure 2.16 The fan-out pattern is useful because many AWS services (such as S3) can’t invoke
more than one Lambda function when an event takes place.

A message added to an SNS topic can force invocation
of multiple Lambda functions in parallel.

Lambda
function Database

Lambda
function

Lambda
function

Lambda
function

Lambda
function

Notification
service (SNS)

Lambda
function

Lambda
function

Lambda
function

Notification
service (SNS)
store/books/9781617294983

https://itbook.store/books/9781617294983

64 CHAPTER 2 Architectures and patterns

www.itboo
 SNS topics are communications/messaging channels that can have multiple pub-
lishers and subscribers (including Lambda functions). When a new message is added
to a topic, it forces invocation of all subscribers in parallel, thus causing the event to
fan out. Going back to the S3 example discussed earlier, instead of invoking a single-
message Lambda function, you can configure S3 to push a message onto an SNS topic
to invoke all subscribed functions at the same time. It’s an effective way to create
event-driven architectures and perform operations in parallel. You’ll implement this
yourself in chapter 3.

WHEN TO USE THIS

This pattern is useful if you need to invoke multiple Lambda functions at the same
time. An SNS topic will try and retry to invoke your Lambda functions if it fails to
deliver the message or if the function fails to execute. Furthermore, the fan-out pat-
tern can be used for more than just invocation of multiple Lambda functions. SNS
topics support other subscribers such as email and SQS queues. Adding a new mes-
sage to a topic can invoke Lambda functions, send an email, or push a message on to
an SQS queue, all at the same time.

2.3.5 Pipes and filters pattern

The purpose of the pipes and filters pattern is to decompose a complex processing
task into a series of manageable, discrete services organized in a pipeline (figure
2.17). Components designed to transform data are traditionally referred to as filters,
whereas connectors that pass data from one component to the next component are
referred to as pipes. Serverless architecture lends itself well to this kind of pattern. This
is useful for all kinds of tasks where multiple steps are required to achieve a result.

Figure 2.17 This pattern encourages the construction of pipelines to pass and transform data from
its origin (pump) to its destination (sink).

Functions and services
are reused in pipelines.

Data source Lambda
function (#A)

Lambda
function (#B)

Notification
service (SNS)

Lambda
function (#E)

Database File
storage

Data source Lambda
function (#A)

Search
service

Lambda
function (#D)

Lambda
function (#E)
k.store/books/9781617294983

https://itbook.store/books/9781617294983

65Summary

www.itbook.
 We recommend that every Lambda function be written as a granular service or a
task with the single-responsibility principle in mind. Inputs and outputs should be
clearly defined (that is, there should be a clear interface) and any side effects mini-
mized. Following this advice will allow you to create functions that can be reused in
pipelines and more broadly within your serverless system. You might notice that this
pattern is similar to the compute-as-glue architecture we described previously. The
compute-as-glue architecture is closely inspired by this pattern.

WHEN TO USE THIS

Whenever you have a complex task, try to break it down into a series of functions (a
pipeline) and apply the following rules:

 Make sure your function follows the single-responsibility principle.
 Make the function idempotent; that is, your function should always produce the

same output for given input.
 Clearly define an interface for the function. Make sure inputs and outputs are

clearly stated.
 Create a black box. The consumer of the function shouldn’t have to know how it

works, but it must know to use it and what kind of output to expect every time.

2.4 Summary
This chapter focused on use cases, architectures, and patterns. These are critical to
understand and consider before embarking on a journey to build your system. The
architectures we discussing include the following:

 Compute as back end
 Compute as glue
 Legacy API wrapper
 Hybrid
 GraphQL
 Real-time processing

In terms of patterns, we covered these:

 Command pattern
 Messaging pattern
 Priority queue pattern
 Fan-out pattern
 Pipes and filters pattern

Throughout the rest of this book, we’re going to apply elements we explored in this
chapter, with a particular focus on creating compute-as-back-end and compute-as-glue
architectures. In the next chapter, you’ll begin building your serverless applications by
implementing the compute-as-glue architecture and trying the fan-out pattern.

store/books/9781617294983

https://itbook.store/books/9781617294983

66 CHAPTER 2 Architectures and patterns

www.itboo
There's a shift underway toward serverless cloud archi-
tectures. With the release of serverless compute techno-
logies, such as AWS Lambda, developers are now
building entirely serverless platforms at scale. In these
new architectures, traditional back-end servers are
replaced with cloud functions acting as discrete single-
purpose services. By composing and combining these
serverless cloud functions together in a loose orchestra-
tion, and adopting useful third-party services, you can
build powerful yet easy to understand applications.
Serverless architecture is about building rich, scalable,
high-performing, and cost-effective systems without hav-

ing to worry about traditional compute infrastructure, having more time to focus on
code, and moving quickly.

 Serverless Architectures on AWS teaches you how to build, secure and manage serverless
architectures that can power the most demanding web and mobile apps. You'll get going
quickly with this book's ready-made and real-world examples, code snippets, diagrams,
and descriptions of architectures that can be readily applied. This book describes a tra-
ditional application and its back end concerns and then shows how to solve these same
problems with a serverless approach. You'll begin with a high-level overview of what
serverless is all about, start creating your own media transcoding system, and learn more
about AWS. Next, you'll go in depth and learn about Lambda, API Gateway and other
important serverless technologies. This section will teach you how to compose Lambda
functions and discuss important considerations when it comes to building serverless sys-
tems. The third part of the book focuses on more advanced topics as your architecture
grows. By the end, you'll be able to reason about serverless systems and be able to com-
pose your own systems by applying these ideas and examples.

What's inside

 Creating a serverless back end
 Using Lambda and the API Gateway
 Connecting multiple services
 Authorization and authentication in a serverless environment
 Securely communicating with third-party services
 Interacting with a database from the front end
 Setting up continuous integration and deployment
 Building high-performance systems using messaging and eventing
 Using AWS to your advantage

This book is for all software developers interested in back end technologies. Experi-
ence with JavaScript (node.js) and AWS is useful but not required.
k.store/books/9781617294983

https://www.manning.com/books/serverless-architectures-on-aws
https://www.manning.com/books/serverless-architectures-on-aws
https://itbook.store/books/9781617294983

There’s no better way to understand serverless than seeing it in action. In
this chapter, you’ll learn to add an authentication service to a serverless applica-
tion, illustrating both the flexibility of the serverless approach and the advan-
tages of using existing hosted services to extend it.

Designing an
Authentication Service

www.itbook.store/books/9781617294983

https://itbook.store/books/9781617294983

www.itbook.sto
Chapter 8 from AWS Lambda in Action by
Danilo Poccia.

Designing an
authentication service
In the previous chapter you learned how to use standalone Lambda functions from
different client applications:

 A web page, using JavaScript
 A native Mobile App, with the help of the AWS Mobile Hub to generate your

starting code
 An Amazon API Gateway to generate server-side dynamic content for web

browsers

Now it’s time to build your first event-driven serverless application, using multiple
functions together to achieve your purpose. Your goal is to implement a sample

This chapter covers
 Designing a sample event-driven application

 Interacting with your users via JavaScript

 Sending emails from Lambda functions

 Storing data in Amazon DynamoDB

 Managing encrypted data
68

re/books/9781617294983

https://www.manning.com/books/aws-lambda-in-action
https://itbook.store/books/9781617294983

69The interaction model

www.itbook.
authentication service that can be used by itself or together with Amazon Cognito with
developer-authenticated identities.

NOTE The authentication service you’re going to build is an example of an
event-driven serverless application and hasn’t been validated by a security
audit. If you need such a service, my advice is to use an already built and pro-
duction-ready implementation, such as Amazon Cognito User Pools.

You’ll define the architecture of your serverless back end built with AWS Lambda. In
the chapter after this one, you’ll implement all the required components. The first
step is to define how your users interact with the application.

8.1 The interaction model
To make your application easy to use for a broad range of use cases, the main inter-
face for your users is the web browser. Via a web browser, users can access static HTML
pages that include JavaScript code, which can call one or more Lambda functions to
execute code in the back end. At the end of the chapter, you’ll see how it is easy to reuse
the same flow and architecture with a mobile app.

The HTML pages, JavaScript code, and any other file required to render the page cor-
rectly on the web browser (such as CSS style sheets) can be stored on Amazon S3 as
publicly readable objects. To store structured data, such as user profiles and passwords,

Using the Amazon API Gateway
Another option, instead of calling Lambda functions directly from the client applica-
tion, is to model a RESTful API with the Amazon API Gateway, using features similar
to what you learned in chapter 3. The advantage of this approach is the decoupling
of the client application from the actual back-end implementation:

 You call a Web API from the client application and not a Lambda function.
 You can easily change the back end implementation to (or from) AWS Lambda

at any time, without affecting the development of the client application (for
example, a web or mobile app).

 You can potentially open your back end to other services, publishing a public API
that can further extend the reach of your application.

The Amazon API Gateway provides other interesting features, such as

 SDK generation
 Caching of function results
 Throttling to withstand traffic spikes

However, for the purpose of this book, I decided to use AWS Lambda directly in the
authentication service. This makes the overall implementation simpler to build and
more understandable for a first-time learner.

If you’re building a new application, I advise you to evaluate the pros and cons of
using the Amazon API Gateway as I did and make an informed decision.
store/books/9781617294983

https://itbook.store/books/9781617294983

70 CHAPTER 8 Designing an authentication service

www.itboo
Lambda functions can use DynamoDB tables. A summary of this interaction model is
shown in figure 8.1.

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

Static
HTML Page +

JavaScript Code

function1

Figure 8.1 The first step in implementing the interaction model for your application: using
a web browser to execute back end logic via Lambda functions that can store data on
DynamoDB tables

TIP Because the client side of the application is built using HTML pages and
JavaScript code, it’s relatively easy to repackage it as a hybrid mobile app,
using frameworks such as Apache Cordova (formerly PhoneGap). Hybrid apps
are popular because you can develop a mobile client once and use it in multi-
ple environments, such as iOS, Android, and Windows Mobile. For more infor-
mation on using Apache Cordova to implement mobile apps, please look at:
https://cordova.apache.org.

It’s important for an authentication service to verify contact data provided by users. A
common use case is to verify that the email address given by a user is valid. To do that,
the Lambda functions in the back end need to send emails to the users. To avoid the
complexity of configuring and managing an email server, you can use Amazon Simple
Email Services (SES) to send emails. This allows you to extend your interaction model
adding this capability (figure 8.2).

NOTE Amazon SES is a fully managed email service that you can use to
send any volume of email, and receive emails that can be automatically
stored on Amazon S3 or processed by AWS Lambda. When you receive an
email with Amazon SES, you can also send a notification using Amazon Sim-
ple Notification Service (SNS). For more information on Amazon SES, see
https://aws.amazon.com/ses/.
k.store/books/9781617294983

https://aws.amazon.com/ses/
https://cordova.apache.org
https://aws.amazon.com/ses/
https://cordova.apache.org
https://itbook.store/books/9781617294983

71The event-driven architecture

www.itbook.
SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

Static
HTML page +

JavaScript code

function1

Figure 8.2 Adding the capability for Lambda functions to send emails to the
users, via Amazon SES. In this way you can verify the validity of email addresses
provided by users.

When a user receives an email sent by Amazon SES, you need a way of interacting with
your back end to complete the verification process. To do that, you can include in the
body of the email a link to the URL of another static HTML page on Amazon S3.
When the user clicks the link, the web browser will open that page and execute the
JavaScript code that’s embedded in the page. The execution includes the invocation
of another Lambda function that can interact with the data stored in Amazon
DynamoDB (figure 8.3).

 Now that you know how to interact with your users using a web browser or by send-
ing emails, you can design the overall architecture of the authentication service.

8.2 The event-driven architecture
Every static HTML page you put on Amazon S3 can potentially be used as an interactive
step to engage the user. If you compare this with a native mobile app, each of those
pages can behave similarly to an activity in Android or a scene in iOS.

 As the first step, you’ll implement a menu of all possible actions users can perform
(such as sign-up, login, or change password) and put that in an index.html page (fig-
ure 8.4). For now, this page doesn’t require any client logic, so you have no JavaScript
code to execute; it’s a list of actions linking to other HTML pages.
store/books/9781617294983

https://itbook.store/books/9781617294983

72 CHAPTER 8 Designing an authentication service

www.itboo
Static
HTML page +

JavaScript code
function2

SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

Static
HTML page +

JavaScript code

function1

Figure 8.3 Emails received by users can include links to other HTML pages that
can execute JavaScript code and invoke other Lambda function to interact with
back-end data repositories such as DynamoDB tables.

SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

signUp.html
signUp.js

verify.html
verify.js

index.html

createUser

verifyUser

Figure 8.4 The first HTML pages, JavaScript files, and Lambda functions
required to sign up new users and verify their email addresses
k.store/books/9781617294983

https://itbook.store/books/9781617294983

73The event-driven architecture

www.itbook.
Next, you’ll want users to sign up and create a new account using a signUp.html page.
This page needs JavaScript code to invoke the createUser Lambda function (see fig-
ure 8.4).

TIP To simplify separate management of the user interface (in the HTML
page) and the client-side login (in the JavaScript code), put the JavaScript
code in a separate file, with the same name as the HMTL page, but with the .js
extension (for example, signUp.js in this case).

The createUser Lambda function takes as input all the information provided by a
new user (such as the email and the password) and stores it in the Users DynamoDB
table. A new user is flagged as unverified on the table because you don’t know if the
provided email address is correct. To verify that the email address given by the user is
valid and that the user can receive emails at that address, the createUser function
sends an email to the user (via Amazon SES).

 The email sent to the user has a link to the verify.html page that includes a query
parameter with a unique identifier (for example, a token) that’s randomly generated
for that specific user and stored in the Users DynamoDB table. For example, the link
in the HTML page would be similar to the following:

http://some.domain/verify.html?token=<some unique identifier>

The JavaScript code in the verify.html page can read the unique identifier (token)
from the URL and send it as input (as part of the event) to the verifyUser Lambda
function. The function can check the validity of the token and change the status of
the user to “verified” on the DynamoDB table.

 A verified user can log in using the provided credentials (email, password). You
can use a login.html page and a login Lambda function to check in the User table
that the user is verified and the credentials are correct (figure 8.5). At first, this func-
tion can return the login status as a Boolean value (true or false). You’ll learn later
in this chapter how to federate the authentication service you’re building with Ama-
zon Cognito as a developer-authenticated identity.

 Another important capability is for your users to change their passwords. Chang-
ing passwords periodically (for example, every few months) is a good practice to
reduce the risk associated with compromised credentials.

 You can add a changePassword.html page that can use a changePassword Lambda
function to update credentials in the Users DynamoDB table (figure 8.6). But this page
is different from others: only an authenticated user can change their own password.

 There are two possible implementations that you can use for secure access to the
changePassword function:

1 Add the current password to the input event of the function, to check the
authentication of the user before changing the password.

2 Use Amazon Cognito, via the login function, to provide an authenticated status
to the user.
store/books/9781617294983

https://itbook.store/books/9781617294983

74 CHAPTER 8 Designing an authentication service

www.itboo
SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

signUp.html
signUp.js

verify.html
verify.js

login.html
login.js

index.html

createUser

verifyUser

login

Figure 8.5 Adding a login page to test the provided credentials and the validity
of the user in the Users repository

SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

signUp.html
signUp.js

verify.html
verify.js

changePassword.html
changePassword.js

login.html
login.js

index.html

createUser

verifyUser

changePassword

login

Figure 8.6 The page to allow users to change their passwords is calling a
function that must be protected so that only authenticated users can use it.
k.store/books/9781617294983

https://itbook.store/books/9781617294983

75The event-driven architecture

www.itbook.
The first solution is easy to implement (for example, reusing code from the login
function), but because we’re going to federate this authentication service with Ama-
zon Cognito, let’s make this example more interesting and go for the second option.

 As you may recall, HTML pages need to get AWS credentials from Amazon Cog-
nito to invoke Lambda functions. In all examples so far, we used only unauthenticated
users; to allow those users to invoke a Lambda function, we added those functions to
the unauthenticated IAM role associated with the Cognito identity pool.

 To protect access to the changePassword function, you’ll add this function to the
authenticated IAM role (and not to the unauthenticated role). The same approach
will work for any function that needs to be executed by only authenticated users.

 Sometimes users need to change passwords because they forgot their current one.
In those cases, you can use their email address to validate their request in a way similar
to what you did for the initial sign-up: send an email with an embedded link and a
unique identifier.

 The lostPassword.html page is calling a lostPassword Lambda function to gen-
erate a unique identifier (resetToken) that’s stored in the Users DynamoDB table.
The resetToken is then sent to the user as a query parameter in a link embedded in a
verification email (figure 8.7).

SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

signUp.html
signUp.js

verify.html
verify.js

changePassword.html
changePassword.js

resetPassword.html
resetPassword.js

login.html
login.js

lostPassword.html
lostPassword.js

index.html

createUser

verifyUser

changePassword

lostPassword

resetPassword

login

Figure 8.7 In case of a lost password, a lost password page is used to send an
email with an embedded link to reset the password. A unique identifier, stored in
the DynamoDB table and part of the reset password link, is used to verify that
the user making the request to reset the password is the same user who receives
the email.
store/books/9781617294983

https://itbook.store/books/9781617294983

76 CHAPTER 8 Designing an authentication service

www.itboo
For example, the link can be something similar to the following:

http://some.domain/resetPassword?resetToken=<some unique identifier>

The user can then open the email and click the link to the resetPassword.html page,
which will ask for a new password and then call a resetPassword Lambda function to
check the unique identifier (resetToken) in the Users DynamoDB table. If the identi-
fier is correct, the function will change the password to the new value.

 You’ve now designed the overall flow and the necessary components to cover the
basic functionalities for implementing the authentication service. But before you move
into the implementation phase in the next chapter, you’ll learn how to federate the
authentication with Amazon Cognito, and define how to implement other details. By
identity federation I mean having an authorization service (Amazon Cognito in this
case) trusting the authentication of an external service (the sample authentication ser-
vice you are building).

NOTE Instead of creating multiple Lambda functions, one for each HTML
page, you could create a single Lambda function and pass the kind of action
(for example signUp or resetPassword) as part of the input event. You’d
have fewer functions to manage (potentially, only one) but the codebase of
that function would be larger and more difficult to evolve and extend with
further functionalities. Following a microservices approach, my advice is to
have multiple smaller functions, each one with a well-defined input/output
interface that you can update and deploy separately. However, the right bal-
ance between function size and the number of functions to implement
depends on your actual use case and programming style. If you need to aggre-
gate multiple functions into a single service call, the Amazon API Gateway is
the place to do that instead of the functions themselves.

8.3 Working with Amazon Cognito
To use the authentication service with Amazon Cognito, you need to add to the
login Lambda function a call to Amazon Cognito to get a token for a developer
identity. The login function can then return the authentication token for a correct
authentication.

 The JavaScript code in the page can use that token to authenticate with Amazon
Cognito and get AWS temporary credentials for the authenticated role (figure 8.8).

WARNING The AWS credentials returned by Amazon Cognito are temporary
and expire after a period of time. You need to manage credential rotation—
for example, using the JavaScript setInterval() method to periodically call
Amazon Cognito to refresh the credentials.
k.store/books/9781617294983

https://itbook.store/books/9781617294983

77Adding more data to user profiles

www.itbook.
8.4 Storing user profiles
To store user profiles, you’re using the Users DynamoDB table in this sample applica-
tion. Generally speaking, in a Lambda function you can use any repository reachable
via the internet, or that’s deployed on AWS in an Amazon Virtual Private Cloud (VPC),
or deployed on-premises and connected to an Amazon VPC with a VPN connection.
I’m using Amazon DynamoDB because it’s a fully-managed NoSQL database service
that embraces the serverless approach of this book.

 In Amazon DynamoDB, when you create a new table, only the primary key must be
declared and must be used in all items in the table. The rest of the table schema is flexi-
ble and other attributes can be used (or not) to add more information to any item.

NOTE A DynamoDB item is a collection of attributes, and each attribute has
a name and a value. For more details on how to work with items, see
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
WorkingWithItems.html.

The primary key must be unique for an item and can be composed of a single hash key
(for example, a user ID), or of a hash key together with a range key (such as a user ID
and a validity date).

 For this authentication service, the email of the user is a unique identifier that you
can use as hash key, without a range key. If you want to have multiple items for the
same users—for example, to keep track of changes and updates in the user profile—
you could use a composed primary key with the email as hash key and a validity date in
the sort key.

8.5 Adding more data to user profiles
Because Amazon DynamoDB doesn’t enforce a schema outside of the primary key,
you can freely add more attributes to any item in a table. Different items can have

User

Web
browser

login Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

2. Get temporary AWS
credentials for the authenticated

role using the Developer Identity Token.

Amazon
Cognito

1. Get Token for
Developer Identity.

login.html
login.js

Figure 8.8 Integrating the login function with Cognito Developer Authenticated Identities. The
login function gets the token from Amazon Cognito, and then the JavaScript code running in the
browser can get AWS Credentials for the authenticated role by passing the token as a login.
store/books/9781617294983

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
https://itbook.store/books/9781617294983

78 CHAPTER 8 Designing an authentication service

www.itboo
different attributes. For example, to flag newly created users as unverified, you can
add an unverified attribute equal to true.

 When a user email is verified, instead of keeping the unverified attribute with a
false value, you can remove it from the item using the assumption that if the unver-
ified attribute isn’t present, the user is verified. This approach (that can be easily
used with Boolean values) provides a compact and efficient usage of the database stor-
age, especially if you create an index on the unverified attribute, because only items
with that attribute are part of the index.

 Amazon DynamoDB also supports a JSON Document Model, so that the value of
an attribute can be a JSON document. In this way, you can further extend the possibil-
ity of storing data in a hierarchical and structured way. For example, in the AWS JavaS-
cript SDK, you can use the document client to have native JavaScript data types
mapped to and from DynamoDB attributes.

 For more information on the document client in the AWS JavaScript SDK, see
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/Document-
Client.html.

8.6 Encrypting passwords
When managing passwords, certain interactions are critical and must be secured. For
example, the following are not secure:

 Storing passwords in plain text in a database table, because any user who has
read access to the database table can intercept user credentials

 Sending passwords on an insecure channel, where malicious eavesdropping
users can intercept user credentials

For this authentication service, you’ll store the password as encrypted using a salt. In
cryptography, a salt is random data that’s generated for each password and used as an
additional input to a one-way function that computes a hash of the password that’s
stored in the user profile, together with the salt:

hashingFunction(password, salt) = hash

To test the password in a login, the salt is read from the user profile and the same
hashing function is used to compare the result with the stored hash. For example,

if hashingFunction(inputPassword, salt) == hash then // Logged in...

If user profiles are compromised and a malicious user has access to the database con-
tent, the use of a salt can protect against dictionary attacks, which use a list of com-
mon passwords versus a list of password hashes.

TIP Common hashing functions, used in the past for salting passwords, were
MD5 and SHA1, but they’ve been demonstrated to not be robust enough to
protect against specific attacks. You have to check the robustness of a hashing
function at the time you use it.
k.store/books/9781617294983

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html
https://itbook.store/books/9781617294983

79Summary

www.itbook.
In the login phase, you send the password over a secure channel, because the AWS
API, used by the login.html page to invoke the login Lambda function, is using
HTTPS as transport.

TIP This approach is secure enough for a sample implementation, but for a
more robust solution you should never send the password as plain text. Use a
challenge-response authentication, such as that implemented by the Secure
Remote Password (SRP) protocol, used by Amazon Cognito User Pools. For
more information on the SRP protocol, see http://srp.stanford.edu.

For a more in-depth analysis of password security in case of remote access, I suggest
you to have a look at “Password Security: A Case History” by Robert Morris and Ken
Thompson (1978), https://www.bell-labs.com/usr/dmr/www/passwd.ps.

Summary
In this chapter you designed the overall architecture of your first event-driven appli-
cation, a sample authentication service using AWS lambda to implement the back-
end logic.

 In particular, you learned how to do the following:

 Interact with a client application via a static HTML page using JavaScript
 Differentiate between authenticated and unauthenticated access
 Send emails and interact using custom links in the email body
 Map application functionality to different components in the architecture
 Federate the custom authentication service with Amazon Cognito
 Use Amazon DynamoDB to store user profiles
 Use encryption to protect passwords from being intercepted and compromised

In the next chapter, you’ll implement this sample authentication service.

EXERCISE

1 To send an email from a web page, you can

a Use JavaScript in the browser to use SMTP
b Use JavaScript in the browser to use IMAP
c Use a Lambda function to call Amazon SES
d Use a Lambda function to call Amazon SQS

2 To give access to a Lambda function only to authenticated users coming from a
web or mobile app, you can

a Use AWS IAM users and groups to give access to the function to authenti-
cated users only

b Use Amazon Cognito and give access to the function to the authenticated
role only
store/books/9781617294983

http://srp.stanford.edu
https://www.bell-labs.com/usr/dmr/www/passwd.ps
https://itbook.store/books/9781617294983

80 CHAPTER 8 Designing an authentication service

www.itboo
c Use AWS IAM users and groups to give access to the function to unauthenti-
cated users only

d Use Amazon Cognito and give access to the function to the unauthenticated
role only

3 The most secure way to validate a user password with a login service is to

a Use a challenge-response interface such as CAPTCHA
b Send the password over HTTP
c Use a challenge-response protocol such as SRP
d Send the password via email

Solution

1 c
2 b
3 c
k.store/books/9781617294983

https://itbook.store/books/9781617294983

81Summary

With AWS Lambda, you write your code and upload it
to the AWS cloud. AWS Lambda responds to the events
triggered by your application or your users, and auto-
matically manages the underlying computer resources
for you. Back-end tasks like analyzing a new document
or processing requests from a mobile app are easy to
implement. Your application is divided into small func-
tions, leading naturally to a reactive architecture and
the adoption of microservices.

 AWS Lambda in Action is an example-driven tutorial
that teaches you how to build applications that use an
event-driven approach on the back-end. Starting with

an overview of AWS Lambda, the book moves on to show you common examples and
patterns that you can use to call Lambda functions from a web page or a mobile app.
The second part of the book puts these smaller examples together to build larger
applications. By the end, you'll be ready to create applications that take advantage of
the high availability, security, performance, and scalability of AWS.

What's inside

 Create a simple API
 Create an event-driven media-sharing application
 Secure access to your application in the cloud
 Use functions from different clients like web pages or mobile apps
 Connect your application with external services

Requires basic knowledge of JavaScript. Some examples are also provided in Python.
No AWS experience is assumed.

www.itbook.store/books/9781617294983

https://www.manning.com/books/aws-lambda-in-action
https://www.manning.com/books/aws-lambda-in-action
https://itbook.store/books/9781617294983

This chapter shows you where the serverless + agile approach really pays off.
You’ll look at an automated deployment pipeline built using AWS services and
CloudFormation templates. The process shown here is instantly useful to AWS
devs and ops engineers, and it illustrates an agile approach that you can apply in
any cloud-based system (e.g. Azure or Google Cloud Platform).

Automating Deployment:
CloudFormation, Elastic

Beanstalk, and OpsWorks

www.itbook.store/books/9781617294983

https://itbook.store/books/9781617294983

www.itbook.
5

Chapter 5 from Amazon Web Services in Action by
Michael Wittig and Andreas Wittig

Automating deployment:
CloudFormation, Elastic

Beanstalk, and OpsWorks
Whether you want to use software from in-house development, open source pro-
jects, or commercial vendors, you need to install, update, and configure the appli-
cation and its dependencies. This process is called deployment. In this chapter, you’ll
learn about three tools for deploying applications to virtual servers on AWS:

This chapter covers
 Running a script on server startup to deploy applications

 Deploying common web applications with the help of AWS
Elastic Beanstalk

 Deploying multilayer applications with the help of AWS
OpsWorks

 Comparing the different deployment services available 
on AWS
83

store/books/9781617294983

https://www.manning.com/books/amazon-web-services-in-action
https://itbook.store/books/9781617294983

84 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itboo
 Deploying a VPN solution with the help of AWS CloudFormation and a script
started at the end of the boot process.

 Deploying a collaborative text editor with AWS Elastic Beanstalk. The text editor
Etherpad is a simple web application and a perfect fit for AWS Elastic Beanstalk,
because the Node.js platform is supported by default.

 Deploying an IRC web client and IRC server with AWS OpsWorks. The setup con-
sists of two parts: a Node.js server that delivers the IRC web client and the IRC
server itself. The example consists of multiple layers and is perfect for AWS
OpsWorks.

We’ve chosen examples that don’t need a storage solution for this chapter, but all
three deployment solutions would support delivering an application together with a
storage solution. You’ll find examples using storage in the next part of the book.

Examples are 100% covered by the Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples for longer than a few days, you won’t pay anything. Keep in
mind that this only applies if you created a fresh AWS account for this book and noth-
ing else is going on in your AWS account. Try to complete the examples of the chapter
within a few days; you'll clean up your account at the end of each example.

Which steps are required to deploy a typical web application like WordPress—a widely
used blogging platform—to a server?

1 Install an Apache HTTP server, a MySQL database, a PHP runtime environment,
a MySQL library for PHP, and an SMTP mail server.

2 Download the WordPress application and unpack the archive on your server.
3 Configure the Apache web server to serve the PHP application.
4 Configure the PHP runtime environment to tweak performance and increase

security.
5 Edit the wp-config.php file to configure the WordPress application.
6 Edit the configuration of the SMTP server, and make sure mail can only be sent

from the virtual server to avoid misuse from spammers.
7 Start the MySQL, SMTP, and HTTP services.

Steps 1–2 handle installing and updating the executables. These executables are con-
figured in steps 3–6. Step 7 starts the services.

 System administrators often perform these steps manually by following how-tos.
Deploying applications manually is no longer recommended in a flexible cloud envi-
ronment. Instead your goal will be to automate these steps with the help of the tools
you’ll discover next.
k.store/books/9781617294983

https://itbook.store/books/9781617294983

85Running a script on server startup using CloudFormation

www.itbook.
5.1 Deploying applications in a flexible cloud environment
If you want to use cloud advantages like scaling the number of servers depending on
the current load or building a highly available infrastructure, you’ll need to start new
virtual servers several times a day. On top of that, the number of virtual servers you’ll
have to supply with updates will grow. The steps required to deploy an application
don’t change, but as figure 5.1 shows, you need to perform them on multiple servers.
Deploying software manually to a growing number of servers becomes impossible over
time and has a high risk of human failure. This is why we recommend that you auto-
mate the deployment of applications.

SSH/RDP Automated
deployment

Doesn’t scale Does scale

Virtual servers starting dynamically several times a day

Executable

Library and runtime

Configuration

#!/bin/bash

Figure 5.1 Deployment must be automated in a flexible and scalable cloud environment.

The investment in an automated deployment process will pay off in the future by
increasing efficiency and decreasing human failures.

5.2 Running a script on server startup using CloudFormation
A simple but powerful and flexible way of automating application deployment is to
run a script on server startup. To go from a plain OS to a fully installed and configured
server, you need to follow these three steps:

1 Start a plain virtual server containing just an OS.
2 Execute a script at the end of the boot process.
3 Install and configure your applications with the help of a script.

First you need to choose an AMI from which to start your virtual server. An AMI bun-
dles the OS and preinstalled software for your virtual server. When you’re starting your
server from an AMI containing a plain OS without any additional software installed,
you need to provision the virtual server at the end of the boot process. Translating the
store/books/9781617294983

https://itbook.store/books/9781617294983

86 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itboo
necessary steps to install and configure your application into a script allows you to
automate this task. But how do you execute this script automatically after booting your
virtual server?

5.2.1 Using user data to run a script on server startup

You can inject a small amount—not more than 16 KB—of data called user data into
every virtual server. You specify the user data during the creation of a new virtual
server. A typical way of using the user data feature is built into most AMIs, such as the
Amazon Linux Image and the Ubuntu AMI. Whenever you boot a virtual server based
on these AMIs, user data is executed as a shell script at the end of the boot process.
The script is executed as user root.

 The user data is always accessible from the virtual server with a HTTP GET request
to http://169.254.169.254/latest/user-data. The user data behind this URL is only
accessible from the virtual server itself. As you’ll see in the following example, you can
deploy applications of any kind with the help of user data executed as a script.

5.2.2 Deploying OpenSwan as a VPN server to a virtual server

If you’re working with a laptop from a coffee house over Wi-Fi, you may want to tunnel
your traffic to the internet through a VPN. You’ll learn how to deploy a VPN server to a
virtual server with the help of user data and a shell script. The VPN solution, called
OpenSwan, offers an IPSec-based tunnel that’s easy to use with Windows, OS X, and
Linux. Figure 5.2 shows the example setup.

VPN

Virtual server
with OpenSwan

Insecure network
(e.g. coffee house)

Internet

Figure 5.2 Using OpenSwan on a virtual server to tunnel traffic from a personal computer

Open your command line and execute the commands shown in the next listing step
by step to start a virtual server and deploy a VPN server on it. We’ve prepared a Cloud-
Formation template that starts the virtual server and its dependencies.

$ VpcId=$(aws ec2 describe-vpcs --query Vpcs[0].VpcId --output text)

Gets the default VPC

$ SubnetId=$(aws ec2 describe-subnets --filters Name=vpc-id,Values=$VpcId \

Gets the default subnet

--query Subnets[0].SubnetId --output text)

Listing 5.1 Deploying a VPN server to a virtual server: CloudFormation and a shell script
k.store/books/9781617294983

https://itbook.store/books/9781617294983

87Running a script on server startup using CloudFormation

www.itbook.
$ SharedSecret=$(openssl rand -base64 30)

Creates a random shared secret (if openssl
doesn’t work, create your own random sequence).

$ Password=$(openssl rand -base64 30)

Creates a random password (if
openssl doesn’t work, create
your own random sequence).

$ aws cloudformation create-stack --stack-name vpn --template-url \

Creates a CloudFormation stack

https://s3.amazonaws.com/awsinaction/chapter5/vpn-cloudformation.json \
--parameters ParameterKey=KeyName,ParameterValue=mykey \
ParameterKey=VPC,ParameterValue=$VpcId \
ParameterKey=Subnet,ParameterValue=$SubnetId \
ParameterKey=IPSecSharedSecret,ParameterValue=$SharedSecret \
ParameterKey=VPNUser,ParameterValue=vpn \
ParameterKey=VPNPassword,ParameterValue=$Password

$ aws cloudformation describe-stacks --stack-name vpn \
--query Stacks[0].Outputs

If the status is not
COMPLETE, retry
in a minute.

Shortcut for OS X and Linux
You can avoid typing these commands manually at your command line by using the
following command to download a bash script and execute it directly on your local
machine. The bash script contains the same steps as shown in listing 5.1:

$ curl -s https://raw.githubusercontent.com/AWSinAction/\
code/master/chapter5/\
vpn-create-cloudformation-stack.sh | bash -ex

The output of the last command should print out the public IP address of the VPN
server, a shared secret, the VPN username, and the VPN password. You can use this
information to establish a VPN connection from your computer, if you like:

[...]
[
 {
 "Description": "Public IP address of the vpn server",
 "OutputKey": "ServerIP",
 "OutputValue": "52.4.68.225"
 },
 {
 "Description": "The shared key for the VPN connection (IPSec)",
 "OutputKey": "IPSecSharedSecret",
 "OutputValue": "sqmvJll/13bD6YqpmsKkPSMs9RrPL8itpr7m5V8g"
 },
 {
 "Description": "The username for the vpn connection",
store/books/9781617294983

https://s3.amazonaws.com/awsinaction/chapter5/vpn-cloudformation.json
https://itbook.store/books/9781617294983

88 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itboo
 "OutputKey": "VPNUser",
 "OutputValue": "vpn"
 },
 {
 "Description": "The password for the vpn connection",
 "OutputKey": "VPNPassword",
 "OutputValue": "aZQVFufFlUjJkesUfDmMj6DcHrWjuKShyFB/d0lE"
 }
]

Let’s take a deeper look at the deployment process of the VPN server. You’ll dive into
the following tasks, which you’ve used unnoticed so far:

 Starting a virtual server with custom user data and configuring a firewall for the
virtual server with AWS CloudFormation

 Executing a shell script at the end of the boot process to install an application
and its dependencies with the help of a package manager, and to edit configu-
ration files

USING CLOUDFORMATION TO START A VIRTUAL SERVER WITH USER DATA

You can use CloudFormation to start a virtual server and configure a firewall. The
template for the VPN server includes a shell script packed into user data, as shown in
listing 5.2.

Fn::Join and Fn::Base64
The CloudFormation template includes two new functions: Fn::Join and Fn::Base64.
With Fn::Join, you can join a set of values to make a single value with a specified
delimiter:

{"Fn::Join": ["delimiter", ["value1", "value2", "value3"]]}

The function Fn::Base64 encodes the input with Base64. You’ll need this function
because the user data must be encoded in Base64:

{"Fn::Base64": "value"}

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "Starts an virtual server (EC2) with OpenSwan [...]",
 "Parameters": {

Parameters to make
it possible to reuse
the template

 "KeyName": {
 "Description": "key for SSH access",
 "Type": "AWS::EC2::KeyPair::KeyName"
 },
 "VPC": {

Listing 5.2 Parts of a CloudFormation template to start a virtual server with user data
k.store/books/9781617294983

https://itbook.store/books/9781617294983

89Running a script on server startup using CloudFormation

www.itbook.
 "Description": "Just select the one and only default VPC.",
 "Type": "AWS::EC2::VPC::Id"
 },
 "Subnet": {
 "Description": "Just select one of the available subnets.",
 "Type": "AWS::EC2::Subnet::Id"
 },
 "IPSecSharedSecret": {
 "Description": "The shared secret key for IPSec.",
 "Type": "String"
 },
 "VPNUser": {
 "Description": "The VPN user.",
 "Type": "String"
 },
 "VPNPassword": {
 "Description": "The VPN password.",
 "Type": "String"
 }
 },
 "Resources": {
 "EC2Instance": {

Describes the
virtual server

 "Type": "AWS::EC2::Instance",
 "Properties": {
 "InstanceType": "t2.micro",
 "SecurityGroupIds": [{"Ref": "InstanceSecurityGroup"}],
 "KeyName": {"Ref": "KeyName"},
 "ImageId": "ami-1ecae776",
 "SubnetId": {"Ref": "Subnet"},
 "UserData":

Defines a shell script as user
data for the virtual server

 {"Fn::Base64": {"Fn::Join": ["", [

Concatenates
and encodes a

string value
 "#!/bin/bash -ex\n",
 "export IPSEC_PSK=", {"Ref": "IPSecSharedSecret"}, "\n",
 "export VPN_USER=", {"Ref": "VPNUser"}, "\n", Exports parameters

to environment
variables to make
them available in
an external shell
script called next

 "export VPN_PASSWORD=", {"Ref": "VPNPassword"}, "\n",
 "export STACK_NAME=", {"Ref": "AWS::StackName"}, "\n",
 "export REGION=", {"Ref": "AWS::Region"}, "\n",
 "curl -s https://…/vpn-setup.sh | bash -ex\n"

Fetches the
shell script
via HTTP and
executes it

]]}}
 },
 [...]
 },
 [...]
 },
 "Outputs": {
 [...]
 }
}

Basically, the user data contains a small script to fetch and execute the real script,
vpn-setup.sh, which contains all the commands for installing the executables and
configuring the services. Doing so frees you from inserting scripts in the unreadable
format needed for the JSON CloudFormation template.
store/books/9781617294983

https://itbook.store/books/9781617294983

90 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

ad
v

c

www.itboo
INSTALLING AND CONFIGURING A VPN SERVER WITH A SCRIPT

The vpn-setup.sh script shown in listing 5.3 installs packages with the help of the pack-
age manager yum and writes some configuration files. You don’t have to understand the
details of the configuration of the VPN server; you just need to know that this shell script
is executed during the boot process to install and configure a VPN server.

#!/bin/bash -ex

[...]

PRIVATE_IP=`curl -s http://169.254.169.254/latest/meta-data/local-ipv4`

Fetches the private
IP address of the

virtual server

PUBLIC_IP=`curl -s http://169.254.169.254/latest/meta-data/public-ipv4`

Fetches the
public IP

dress of the
irtual server

yum-config-manager --enable epel && yum clean all Adds extra packages

to the package
manager yum

yum install -y openswan xl2tpd

Installs
software
packages

cat > /etc/ipsec.conf <<EOF Writes a

configuration file for
IPSec (OpenSwan)

[...]
EOF

cat > /etc/ipsec.secrets <<EOF

Writes a file containing the
shared secret for IPSec

$PUBLIC_IP %any : PSK "${IPSEC_PSK}"
EOF

cat > /etc/xl2tpd/xl2tpd.conf <<EOF

Writes a
onfiguration

file for the
L2TP tunnel

[...]
EOF

cat > /etc/ppp/options.xl2tpd <<EOF Writes a
configuration file
for the PPP service

[...]
EOF

service ipsec start && service xl2tpd start

Starts the
services

need for the
VPN server

chkconfig ipsec on && chkconfig xl2tpd on Configures the runlevel

for the VPN services

That’s it. You’ve learned how to deploy a VPN server to a virtual server with the help of
EC2 user data and a shell script. After you terminate your virtual server, you’ll be ready
to learn how to deploy a common web application without writing a custom script.

Cleaning up
You’ve reached the end of the VPN server example. Don’t forget to terminate your
virtual server and clean up your environment. To do so, enter aws cloudformation
delete-stack --stack-name vpn at your terminal.

Listing 5.3 Installing packages and writing configuration files on server startup
k.store/books/9781617294983

https://itbook.store/books/9781617294983

91Deploying a simple web application with Elastic Beanstalk

www.itbook.
5.2.3 Starting from scratch instead of updating

You’ve learned how to deploy an application with the help of user data in this section.
The script from the user data is executed at the end of the boot process. But how do
you update your application with this approach?

 You’ve automated the installation and configuration of software during the boot
process of your virtual server, so you can start a new virtual server without any extra
effort. If you have to update your application or its dependencies, you can do so with
the following steps:

1 Make sure the up-to-date version of your application or software is available
through the package repository of your OS, or edit the user data script.

2 Start a new virtual server based on your CloudFormation template and user
data script.

3 Test the application deployed to the new virtual server. Proceed with the next
step if everything works as it should.

4 Switch your workload to the new virtual server (for example, by updating a DNS
record).

5 Terminate the old virtual server, and throw away its unused dependencies.

5.3 Deploying a simple web application with 
Elastic Beanstalk
It isn’t necessary to reinvent the wheel if you have to deploy a common web applica-
tion. AWS offers a service that can help you to deploy web applications based on PHP,
Java, .NET, Ruby, Node.js, Python, Go, and Docker; it’s called AWS Elastic Beanstalk.
With Elastic Beanstalk, you don’t have to worry about your OS or virtual servers
because it adds another layer of abstraction on top of them.

 Elastic Beanstalk lets you handle the following recurring problems:

 Providing a runtime environment for a web application (PHP, Java, and so on)
 Installing and updating a web application automatically
 Configuring a web application and its environment
 Scaling a web application to balance load
 Monitoring and debugging a web application

5.3.1 Components of Elastic Beanstalk

Getting to know the different components of Elastic Beanstalk will help you to under-
stand its functionality. Figure 5.3 shows these elements:

 An application is a logical container. It contains versions, environments, and con-
figurations. If you start to use Elastic Beanstalk in a region, you have to create
an application first.

 A version contains a specific version of your application. To create a new version,
you have to upload your executables (packed into an archive) to the service
store/books/9781617294983

https://itbook.store/books/9781617294983

92 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itbook.
Amazon S3, which stores static files. A version is basically a pointer to this
archive of executables.

 A configuration template contains your default configuration. You can manage
your application’s configuration (such as the port your application listens on)
as well as the environment’s configuration (such as the size of the virtual server)
with your custom configuration template.

 An environment is where Elastic Beanstalk executes your application. It consists
of a version and the configuration. You can run multiple environments for one
application using the versions and configurations multiple times.

Enough theory for the moment. Let’s proceed with deploying a simple web application.

5.3.2 Using Elastic Beanstalk to deploy Etherpad, a Node.js application

Editing a document collaboratively can be painful with the wrong tools. Etherpad is an
open source online editor that lets you edit a document with many people in real
time. You’ll deploy this Node.js-based application with the help of Elastic Beanstalk in
three steps:

1 Create an application: the logical container.
2 Create a version: a pointer to a specific version of Etherpad.
3 Create an environment: the place where Etherpad will run.

CREATING AN APPLICATION FOR AWS ELASTIC BEANSTALK

Open your command line and execute the following command to create an applica-
tion for the Elastic Beanstalk service:

$ aws elasticbeanstalk create-application --application-name etherpad

Application

Environment:
Version 0.3, config A

Environment:
Version 0.3, config B

Version 0.3

Version 0.2

Configuration:
Template A

Configuration:
Template B

Environment:
Version 0.2, config A

Logical
container

Specific version
of application

Runtime environment
for your application

Configure application
and environment

Figure 5.3 An Elastic Beanstalk application consists of versions, configurations, and environments.
store/books/9781617294983

https://itbook.store/books/9781617294983

93Deploying a simple web application with Elastic Beanstalk

www.itbook.
You’ve created a container for all the other components that are necessary to deploy
Etherpad with the help of AWS Elastic Beanstalk.

CREATING A VERSION FOR AWS ELASTIC BEANSTALK

You can create a new version of your Etherpad application with the following command:

$ aws elasticbeanstalk create-application-version \
--application-name etherpad --version-label 1.5.2 \
--source-bundle S3Bucket=awsinaction,S3Key=chapter5/etherpad.zip

For this example, we uploaded a zip archive containing version 1.5.2 of Etherpad. If
you want to deploy another application, you can upload your own application to the
AWS S3 service for static files.

CREATING AN ENVIRONMENT TO EXECUTE ETHERPAD WITH ELASTIC BEANSTALK

To deploy Etherpad with the help of Elastic Beanstalk, you have to create an environ-
ment for Node.js based on Amazon Linux and the version of Etherpad you just cre-
ated. To get the latest Node.js environment version, called a solution stack name, run
this command:

$ aws elasticbeanstalk list-available-solution-stacks --output text \
--query "SolutionStacks[?contains(@, 'running Node.js')] | [0]"\
64bit Amazon Linux 2015.03 v1.4.6 running Node.js

The option EnvironmentType = SingleInstance launches a single virtual server with-
out the ability to scale and load-balance automatically. Replace $SolutionStackName
with the output from the previous command:

$ aws elasticbeanstalk create-environment --environment-name etherpad \
--application-name etherpad \
--option-settings Namespace=aws:elasticbeanstalk:environment,\
OptionName=EnvironmentType,Value=SingleInstance \
--solution-stack-name "$SolutionStackName" \
--version-label 1.5.2

HAVING FUN WITH ETHERPAD

You’ve created an environment for Etherpad. It will take several minutes before you
can point your browser to your Etherpad installation. The following command helps
you track the state of your Etherpad environment:

$ aws elasticbeanstalk describe-environments --environment-names etherpad

If Status turns to Ready and Health turns to Green, you’re ready to create your first
Etherpad document. The output of the describe command should look similar to
the following example.

store/books/9781617294983

https://itbook.store/books/9781617294983

94 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itbook.
{
 "Environments": [{
 "ApplicationName": "etherpad",
 "EnvironmentName": "etherpad",
 "VersionLabel": "1",
 "Status": "Ready",

Wait until Status
turns to Ready.

 "EnvironmentId": "e-pwbfmgrsjp",
 "EndpointURL": "23.23.223.115",
 "SolutionStackName": "64bit Amazon Linux 2015.03 v1.4.6 running Node.js",
 "CNAME": "etherpad-cxzshvfjzu.elasticbeanstalk.com",

DNS record for the
environment (for
example, to open
with a browser)

 "Health": "Green",

Wait until Health
turns to Green.

 "Tier": {
 "Version": " ",
 "Type": "Standard",
 "Name": "WebServer"
 },
 "DateUpdated": "2015-04-07T08:45:07.658Z",
 "DateCreated": "2015-04-07T08:40:21.698Z"
 }]
}

You’ve deployed a Node.js web application to AWS with three commands. Point your
browser to the URL shown in CNAME and open a new document by typing in a name for
it and clicking the OK button. Figure 5.4 shows an Etherpad document in action.

Figure 5.4 Online text editor Etherpad in action

Listing 5.4 Describing the status of the Elastic Beanstalk environment
store/books/9781617294983

https://itbook.store/books/9781617294983

95Deploying a simple web application with Elastic Beanstalk

www.itbook.
EXPLORING ELASTIC BEANSTALK WITH THE MANAGEMENT CONSOLE

You’ve deployed Etherpad with the help of Elastic Beanstalk and the AWS command-line
interface (CLI) by creating an application, a version, and an environment. You can also
control the Elastic Beanstalk service with the help of the Management Console, a web-
based user interface:

1 Open the AWS Management Console at https://console.aws.amazon.com.
2 Click Services in the navigation bar, and click the Elastic Beanstalk service.
3 Click the etherpad environment, represented by a green box. An overview of

the Etherpad application is shown, as in figure 5.5.

Health state of your
Etherpad application

Events triggered by
Elastic Beanstalk service

Information about
environment configuration

URL pointing to
Etherpad application

Version of Etherpad
running in environment

Figure 5.5 Overview of AWS Elastic Beanstalk environment running Etherpad
store/books/9781617294983

https://console.aws.amazon.com
https://itbook.store/books/9781617294983

96 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itboo
You can also fetch the log messages from your application with the help of Elastic
Beanstalk. Download the latest log messages with the following steps:

1 Choose Logs from the submenu. You’ll see a screen like that shown in figure 5.6.
2 Click Request Logs, and choose Last 100 Lines.
3 After a few seconds, a new entry will appear in the table. Click Download to

download the log file to your computer.

Select Logs from
the submenu.

Download the
latest log messages.

Choose Last
100 Lines.

Figure 5.6 Downloading logs from a Node.js application via AWS Elastic Beanstalk

Cleaning up
Now that you’ve successfully deployed Etherpad with the help of AWS Elastic
Beanstalk and learned about the service’s different components, it’s time to
clean up. Run the following command to terminate the Etherpad environment:

$ aws elasticbeanstalk terminate-environment --environment-name etherpad

You can check the state of the environment by executing the following command:

$ aws elasticbeanstalk describe-environments --environment-names etherpad

Wait until Status has changed to Terminated, and then proceed with the following
command:

$ aws elasticbeanstalk delete-application --application-name etherpad

That’s it. You’ve terminated the virtual server providing the environment for Etherpad
and deleted all components of Elastic Beanstalk.
k.store/books/9781617294983

https://itbook.store/books/9781617294983

97Deploying a multilayer application with OpsWorks

www.itbook.
5.4 Deploying a multilayer application with OpsWorks
Deploying a basic web application with the help of Elastic Beanstalk is convenient. But
if you have to deploy a more complex application consisting of different services—
also called layers—you’ll reach the limits of Elastic Beanstalk. In this section, you’ll
learn about AWS OpsWorks, a free service offered by AWS that can help you to deploy a
multilayer application.

 OpsWorks helps you control AWS resources like virtual servers, load balancers, and
databases and lets you deploy applications. The service offers some standard layers
with the following runtimes:

You can also add a custom layer to deploy anything you want. The deployment is con-
trolled with the help of Chef, a configuration-management tool. Chef uses recipes orga-
nized in cookbooks to deploy applications to any kind of system. You can adopt the
standard recipes or create your own.

About Chef
Chef is a configuration-management tool like Puppet, SaltStack, and Ansible. Chef
transforms templates (recipes) written in a domain-specific language (DSL) into
actions, to configure and deploy applications. A recipe can include packages to
install, services to run, or configuration files to write, for example. Related recipes
can be combined into cookbooks. Chef analyzes the status quo and changes
resources where necessary to reach the described state from the recipe.

You can reuse cookbooks and recipes from others with the help of Chef. The commu-
nity publishes a variety of cookbooks and recipes at https://supermarket.chef.io
under open source licenses.

Chef can be run in solo or client/server mode. It acts as a fleet-management tool in
client/server mode. This can help if you have to manage a distributed system con-
sisting of many virtual servers. In solo mode, you can execute recipes on a single vir-
tual server. AWS OpsWorks uses solo mode integrated in its own fleet management
without needing to configure and operate a setup in client/server mode.

In addition to letting you deploy applications, OpsWorks helps you to scale, monitor
and update your virtual servers running beneath the different layers.

5.4.1 Components of OpsWorks

Getting to know the different components of OpsWorks will help you understand its
functionality. Figure 5.7 shows these elements:

 HAProxy (load balancer)  PHP app server  MySQL (database)

 Rails app server 
(Ruby on Rails)

 Java app server 
(Tomcat server)

 Memcached 
(in-memory cache)

 Static web server  AWS Flow (Ruby)  Ganglia (monitoring)
store/books/9781617294983

https://supermarket.chef.io
https://itbook.store/books/9781617294983

98 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itboo
 A stack is a container for all other components of OpsWorks. You can create one or
more stacks and add one or more layers to each stack. You could use different stacks
to separate the production environment from the testing environment, for exam-
ple. Or you could use different stacks to separate different applications.

 A layer belongs to a stack. A layer represents an application; you can also call it a
service. OpsWorks offers predefined layers for standard web applications like
PHP and Java, but you’re free to use a custom stack for any application you can
think of. A layer is responsible for configuring and deploying software to virtual
servers. You can add one or multiple virtual servers to a layer. The virtual servers
are called instances in this context.

 An instance is the representation for a virtual server. You can launch one or
multiple instances for each layer. You can use different versions of Amazon
Linux and Ubuntu or a custom AMI as a basis for the instances, and you can
specify rules for launching and terminating instances based on load or time-
frames for scaling.

 An app is the software you want to deploy. OpsWorks deploys your app to a suit-
able layer automatically. You can fetch apps from a Git or Subversion repository
or as archives via HTTP. OpsWorks helps you to install and update your apps
onto one or multiple instances.

Let’s look at how to deploy a multilayer application with the help of OpsWorks.

Stack

Web server layer:
PHP web application Instance

App

Instance

App

API server layer:
Java application
with REST API

Instance

App

Instance

App

Database layer:
MySQL database Instance

DB

Virtual server

Logical
container

Represents an
application/service

Software to deploy

Internet

Figure 5.7 Stacks, layers, instances, and apps are the main components of OpsWorks.
k.store/books/9781617294983

https://itbook.store/books/9781617294983

99Deploying a multilayer application with OpsWorks

www.itbook.
5.4.2 Using OpsWorks to deploy an IRC chat application

Internet Relay Chat (IRC) is still a
popular means of communica-
tion. In this section, you’ll deploy
kiwiIRC, a web-based IRC client,
and your own IRC server. Figure
5.8 shows the setup of a distributed
system consisting of a web applica-
tion delivering the IRC client and
an IRC server.

 kiwiIRC is an open source
web application written in JavaScript for Node.js. The following steps are necessary to
deploy a two-layer application with the help of OpsWorks:

1 Create a stack, the container for all other components.
2 Create a Node.js layer for kiwiIRC.
3 Create a custom layer for the IRC server.
4 Create an app to deploy kiwiIRC to the Node.js layer.
5 Add an instance for each layer.

You’ll learn how to handle these steps with the Management Console. You can also
control OpsWorks from the command line, as you did Elastic Beanstalk, or with
CloudFormation.

CREATING A NEW OPSWORKS STACK

Open the Management Console at https://console.aws.amazon.com/opsworks, and
create a new stack. Figure 5.9 illustrates the necessary steps:

1 Click Add Stack under Select Stack or Add Your First Stack.
2 For Name, type in irc.
3 For Region, choose US East (N. Virginia).
4 The default VPC is the only one available. Select it.
5 For Default Subnet, select us-east-1a.
6 For Default Operating System, choose Ubuntu 14.04 LTS.
7 For Default Root Device Type, select EBS Backed.
8 For IAM Role, choose New IAM Role. Doing so automatically creates the neces-

sary dependency.
9 Select your SSH key, mykey, for Default SSH Key.

10 For Default IAM Instance Profile, choose New IAM Instance Profile. Doing so
automatically creates the necessary dependency.

11 For Hostname Theme, choose Layer Dependent. Your virtual servers will be
named depending on their layer.

12 Click Add Stack to create the stack.

HTTP IRC

Virtual server
kiwiIRC application

Virtual server
IRC server

Figure 5.8 Building your own IRC infrastructure
consisting of a web application and an IRC server
store/books/9781617294983

https://console.aws.amazon.com/opsworks
https://itbook.store/books/9781617294983

100 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itboo
You’re redirected to an overview of your irc stack. Everything is ready for you to create
the first layer.

CREATING A NODE.JS LAYER FOR AN OPSWORKS STACK

kiwiIRC is a Node.js application, so you need to create a Node.js layer for the irc stack.
Follow these steps to do so:

1 Select Layers from the submenu.
2 Click the Add Layer button.
3 For Layer Type, select Node.js App Server, as shown in figure 5.10.
4 Select the latest 0.10.x version of Node.js.
5 Click Add Layer.

Debugging your server
over a SSH connection
requires a SSH key.

Name your servers
with the layer name
(such as Node.js App).

IRC server packages
are available on
Ubuntu by default.

Select the default
VPC, the only item
in the list.

Figure 5.9 Creating a new stack with OpsWorks
k.store/books/9781617294983

https://itbook.store/books/9781617294983

101Deploying a multilayer application with OpsWorks

www.itboo
You’ve created a Node.js layer. Now you need to repeat these steps to add another
layer and deploy your own IRC server.

CREATING A CUSTOM LAYER FOR AN OPSWORKS STACK

An IRC server isn’t a typical web application, so the default layer types are out of the
question. You’ll use a custom layer to deploy an IRC server. The Ubuntu package
repository includes various IRC server implementations; you’ll use the ircd-ircu
package. Follow these steps to create a custom stack for the IRC server:

1 Select Layers from the submenu.
2 Click Add Layer.
3 For Layer Type, select Custom, as shown in figure 5.11.
4 For Name and for Short Name, type in irc-server.
5 Click Add Layer.

Runtime for kiwiIRC
running on Node.js

Choose the latest
Node.js 0.10.x version.

Figure 5.10 Creating a layer with Node.js for kiwiIRC

For Layer Type,
select Custom.

Insert a name
and a short name.

Figure 5.11 Creating a custom layer to deploy an IRC server
k.store/books/9781617294983

https://itbook.store/books/9781617294983

102 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itboo
You’ve created a custom layer.
 The IRC server needs to be reachable through port 6667. To allow access to this

port, you need to define a custom firewall. Execute the commands shown in listing 5.5
to create a custom firewall for your IRC server.

$ aws ec2 describe-vpcs --query Vpcs[0].VpcId --output text

Gets the default VPC, remember
as $VpcId

$ aws cloudformation create-stack --stack-name irc \

Creates a
CloudFormation stack

--template-url https://s3.amazonaws.com/awsinaction/\
chapter5/irc-cloudformation.json \
--parameters ParameterKey=VPC,ParameterValue=$VpcId

$ aws cloudformation describe-stacks --stack-name irc \
--query Stacks[0].StackStatus

If the status is not COMPLETE,
retry in 10 seconds.

Next you need to attach this custom firewall configuration to the custom OpsWorks
layer. Follow these steps:

1 Select Layers from the submenu.
2 Open the irc-server layer by clicking it.
3 Change to the Security tab and click Edit.
4 For Custom Security Groups, select the security group that starts with irc, as

shown in figure 5.12.
5 Click Save.

You need to configure one last thing for the IRC server layer: the layer recipes to
deploy an IRC server. Follow these steps to do so:

1 Select Layers from the submenu.
2 Open the irc-server layer by clicking it.
3 Change to the Recipes tab and click Edit.
4 For OS Packages, add the package ircd-ircu, as shown in figure 5.13.
5 Click the + button and then the Save button.

Listing 5.5 Creating a custom firewall with the help of CloudFormation

Shortcut for OS X and Linux
You can avoid typing these commands manually to your command line by using the
following command to download a bash script and execute it directly on your local
machine. The bash script contains the same steps as shown in listing 5.5:

$ curl -s https://raw.githubusercontent.com/AWSinAction/\
code/master/chapter5/irc-create-cloudformation-stack.sh \
| bash -ex
k.store/books/9781617294983

https://raw.githubusercontent.com/AWSinAction/\
https://itbook.store/books/9781617294983

103Deploying a multilayer application with OpsWorks

www.itbook.
You’ve successfully created and configured a custom layer to deploy the IRC server.
Next you’ll add the kiwiIRC web application as an app to OpsWorks.

Change to the
Security tab.

Add security group
starting with “irc” to
Custom Security Groups.

Save your
changes.

Figure 5.12 Adding a custom firewall configuration to the IRC server layer

Type in “ircd-ircu”. Click the + button.

Figure 5.13 Adding an IRC package to a custom layer
store/books/9781617294983

https://itbook.store/books/9781617294983

104 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itbook.
ADDING AN APP TO THE NODE.JS LAYER

OpsWorks can deploy apps to a default layer. You’ve already created a Node.js layer.
With the following steps, you’ll add an app to this layer:

1 Select Apps from the submenu.
2 Click the Add an App button.
3 For Name, type in kiwiIRC.
4 For Type, select Node.js.
5 For Repository Type, select Git, and type in https://github.com/AWSinAc-

tion/KiwiIRC.git for Repository URL, as shown in figure 5.14.
6 Click the Add App button.

Your first OpsWorks stack is now fully configured. Only one thing is missing: you need
to start some instances.

Choose a name
for the app.

Select Node.js as
the environment.

Access the public
GitHub repository.

Figure 5.14 Adding kiwiIRC, a Node.js app, to OpsWorks
store/books/9781617294983

https://github.com/AWSinAction/KiwiIRC.git
https://github.com/AWSinAction/KiwiIRC.git
https://github.com/AWSinAction/KiwiIRC.git
https://github.com/AWSinAction/KiwiIRC.git
https://itbook.store/books/9781617294983

105Deploying a multilayer application with OpsWorks

www.itboo
ADDING INSTANCES TO RUN THE IRC CLIENT AND SERVER

Adding two instances will bring the kiwiIRC client and the IRC server into being. Add-
ing a new instance to a layer is easy—follow these steps:

1 Select Instances from the submenu.
2 Click the Add an Instance button on the Node.js App Server layer.
3 For Size, select t2.micro, the smallest and cheapest virtual server, as shown in

figure 5.15.
4 Click Add Instance.

You’ve added an instance to the Node.js App Server layer. Repeat these steps for the
irc-server layer as well.

 The overview of instances should be similar to figure 5.16. To start the instances,
click Start for both.

 It will take some time for the virtual servers to boot and the deployment to run. It’s
a good time to get some coffee or tea.

Click to add a new instance
to the Node.js layer.

Select t2.micro, the smallest
virtual server type.

Figure 5.15 Adding a new instance to the Node.js layer
k.store/books/9781617294983

https://itbook.store/books/9781617294983

106 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itbook.
HAVING FUN WITH KIWIIRC
Be patient until the status of both instances changes to Online, as shown in figure 5.17.
You can now open kiwiIRC in your browser by following these steps:

1 Keep in mind the public IP address of the instance irc-server1. You’ll need it to
connect to your IRC server later.

2 Click the public IP address of the nodejs-app1 instance to open the kiwiIRC web
application in a new tab of your browser.

Check for
size t2.micro.

Start the
instance.

The instance
will run 24/7.

Figure 5.16 Starting the instances for the IRC web client and server

Wait for Status to
change to Online.

Click to open kiwiIRC
in a new browser tab.

Keep this IP
address in mind.

Figure 5.17 Waiting for deployment to open kiwiIRC in the browser
store/books/9781617294983

https://itbook.store/books/9781617294983

107Deploying a multilayer application with OpsWorks

www.itbook.
The kiwiIRC application should load in your browser, and you should see a login
screen like the one shown in figure 5.18. Follow these steps to log in to your IRC server
with the kiwiIRC web client:

1 Type in a nickname.
2 For Channel, type in #awsinaction.
3 Open the details of the connection by clicking Server and Network.
4 Type the IP address of irc-server1 into the Server field.
5 For Port, type in 6667.
6 Disable SSL.
7 Click Start, and wait a few seconds.

Congratulations! You’ve deployed a web-based IRC client and an IRC server with the
help of AWS OpsWorks.

Choose your
nickname for
the chat.

Select #awsinaction as
the channel to chat in.

Type in the
IP address of
irc-server1.

Type in
port 6667.

Disable SSL.

Figure 5.18 Using kiwiIRC to log in to your IRC server on channel #awsinaction
store/books/9781617294983

https://itbook.store/books/9781617294983

108 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itbook.
Cleaning up
It’s time to clean up. Follow these steps to avoid unintentional costs:

1 Open the OpsWorks service with the Management Console.
2 Select the irc stack by clicking it.
3 Select Instances from the submenu.
4 Stop both instances and wait until Status is Stopped for both.
5 Delete both instances, and wait until they disappear from the overview.
6 Select Apps from the submenu.
7 Delete the kiwiIRC app.
8 Select Stack from the submenu.
9 Click the Delete Stack button, and confirm the deletion.
10 Execute aws cloudformation delete-stack --stack-name irc from your

terminal.

5.5 Comparing deployment tools
You have deployed applications in three ways in this chapter:

 Using AWS CloudFormation to run a script on server startup
 Using AWS Elastic Beanstalk to deploy a common web application
 Using AWS OpsWorks to deploy a multilayer application

In this section, we’ll discuss the differences between these solutions.

5.5.1 Classifying the deployment tools

Figure 5.19 classifies the three AWS deployment options. The effort required to deploy
an application with the help of AWS Elastic Beanstalk is low. To benefit from this, your
application has to fit into the conventions of Elastic Beanstalk. For example, the appli-
cation must run in one of the standardized runtime environments. If you’re using
OpsWorks, you’ll have more freedom to adapt the service to the needs of your applica-
tion. For example, you can deploy different layers that depend on each other, or you
can use a custom layer to deploy any application with the help of a Chef recipe; this
takes extra effort but gives you additional freedom. On the other end of the spectrum,
you’ll find CloudFormation and deploying applications with the help of a script run-
ning at the end of the boot process. You can deploy any application with the help of
CloudFormation. The disadvantage of this approach is that you have to do more work
because you don’t use standard tooling.

Elastic Beanstalk OpsWorks CloudFormation
with custom scripts

ControlConventions

Figure 5.19 Comparing
different ways to deploy
applications on AWS
store/books/9781617294983

https://itbook.store/books/9781617294983

109Summary

www.itbook.
5.5.2 Comparing the deployment services

The previous classification can help you decide the best fit to deploy an application.
The comparison in table 5.1 highlights other important considerations.

 PHP

 Node.js

 IIS

 Java/Tomcat

 Python

 Ruby

 Docker

 Ruby on Rails

 Node.js

 PHP

 Java/Tomcat

 Custom/any

Many other options are available for deploying applications on AWS, from open
source software to third-party services. Our advice is to use one of the AWS deployment
services because they’re well integrated into many other AWS services. We recommend
that you use CloudFormation with user data to deploy applications because it’s a flexi-
ble approach. It is also possible to manage Elastic Beanstalk and Ops Works with the
help of CloudFormation.

 An automated deployment process will help you to iterate and innovate more
quickly. You’ll deploy new versions of your applications more often. To avoid service
interruptions, you need to think about testing changes to software and infrastructure in
an automated way and being able to roll back to a previous version quickly if necessary.

5.6 Summary
 It isn’t advisable to deploy applications to virtual servers manually because vir-

tual servers pop up more often in a dynamic cloud environment.
 AWS offers different tools that can help you deploy applications onto virtual

servers. Using one of these tools prevents you from reinventing the wheel.

Table 5.1 Differences between using CloudFormation with a script on server startup, 
 Elastic Beanstalk, and OpsWorks

CloudFormation with a
script on server startup

Elastic Beanstalk OpsWorks

Configuration-
management tool

All available tools Proprietary Chef

Supported 
platforms

Any

Supported deploy-
ment artifacts

Any Zip archive on Amazon S3 Git, SVN, archive (such
as Zip)

Common use case Complex and nonstan-
dard environments

Common web application Micro-services 
environment

Update without
downtime

Possible Yes Yes

Vendor lock-in effect Medium High Medium
store/books/9781617294983

https://itbook.store/books/9781617294983

110 CHAPTER 5 Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

www.itboo
 You can throw away a server to update an application if you’ve automated your
deployment process.

 Injecting Bash or PowerShell scripts into a virtual server during startup allows
you to initialize servers individually—for example, for installing software or
configuring services.

 OpsWorks is good for deploying multilayer applications with the help of Chef.
 Elastic Beanstalk is best suited for deploying common web applications.
 CloudFormation gives you the most control when you’re deploying more com-

plex applications.
k.store/books/9781617294983

https://itbook.store/books/9781617294983

111Summary

Physical data centers require lots of equipment and take
time and resources to manage. If you need a data center,
but don’t want to build your own, Amazon Web Services
may be your solution. Whether you’re analyzing real-time
data, building software as a service, or running an e-com-
merce site, AWS offers you a reliable cloud-based plat-
form with services that scale.

 Amazon Web Services in Action introduces you to com-
puting, storing, and networking in the AWS cloud. The
book will teach you about the most important services on
AWS. You will also learn about best practices regarding
security, high availability and scalability. You'll start with a

broad overview of cloud computing and AWS and learn how to spin-up servers manually
and from the command line. You'll learn how to automate your infrastructure by pro-
grammatically calling the AWS API to control every part of AWS. You will be introduced
to the concept of Infrastructure as Code with the help of AWS CloudFormation. You will
learn about different approaches to deploy applications on AWS. You'll also learn how to
secure your infrastructure by isolating networks, controlling traffic and managing access
to AWS resources. Next, you'll learn options and techniques for storing your data. You
will experience how to integrate AWS services into your own applications by the use of
SDKs. Finally, this book teaches you how to design for high availability, fault tolerance,
and scalability.

What's inside

 Overview of AWS cloud concepts and best practices
 Manage servers on EC2 for cost-effectiveness
 Infrastructure automation with Infrastructure as Code (AWS CloudFormation)
 Deploy applications on AWS
 Store data on AWS: SQL, NoSQL, object storage and block storage
 Integrate Amazon's pre-built services
 Architect highly available and fault tolerant systems

Written for developers and DevOps engineers moving distributed applications to the
AWS platform.

www.itbook.store/books/9781617294983

https://www.manning.com/books/amazon-web-services-in-action
https://www.manning.com/books/amazon-web-services-in-action
https://itbook.store/books/9781617294983

 index

www.itbook.
Symbols

? character 22
.js extension 73
[] (square brackets) 27, 33
{ } (curly braces) 26, 33
/ characters 28
$ character 29
$.get function 40

A

A Cloud Guru 45
agile

correct level 11
custom process 12
goals 3–7
good characteristics for adoption 13–14
knowledge, lack of 15
packaged methods 7–10

Amazon CloudFront 50
Amazon Cognito

using authentication service with 76
Amazon Cognito User Pools 79
Amazon Echo 47
Amazon Kinesis Streams 46, 58, 62
AMI (Amazon Machine Image) 85–86
analytics

real-time 46
Apache Cordova 70
API calls, mapping 34
application back end 45
application functions 34
architectures 47–58

compute as back end 47–52

Cloud Guru 48–50
Instant 50–52

compute as glue 56–58
ListHub processing engine 57–58

GraphQL 55–56
hybrids 53–55

EPX Labs systems 54–55
legacy API proxy 52
real-time processing 58

arrays 27
Auth0 49
authentication service

designing 68–80
Amazon Cognito 76
encrypting passwords 78–79
event-driven architecture 71–76
exercise 79–80
interaction model 69–71
user profiles 77–78

AWS (Amazon Web Services) 45
AWS Cognito 50
AWS Elastic Beanstalk

applications in Management Console 95–96
creating application 92–93
creating environment 93
deleting applications 96
deployment options comparison 109
describing status of installation 93–94
overview 91–92
uploading Zip archive 93

AWS OpsWorks
deployment options comparison 109
multilayer applications using

accessing kiwiIRC 106–107
adding app to Node.js layer 104
112

store/books/9781617294983

https://itbook.store/books/9781617294983

113INDEX

www.itbook.
adding client and server instances for IRC
chat 105

components of 97–98
creating custom layers 101–103
creating Node.js layer 100–101
creating stack 99–100
deleting stacks 108

overview 97–98

B

back end
of applications 45

Beck, Kent 12
Bezos, Jeff 15
blueprints 46
body content 21
boot2docker 38
bots 47

C

calculating data 48
change

adapting to 4
changePassword function 73, 75
changePassword.html page 73
Charles proxy application 32
Chef 97, 109
cloud computing

deployment environment 85
Cloud Guru 48–50
CloudFormation

starting virtual server with user data 88–89
CloudFront, Amazon 50
CloudSearch, AWS 50
Code Complete 12
Cognito Developer Authenticated Identities 77
command patterns 59–60

when to use 60
command-line call 29
compute as back end 47–52

Cloud Guru 48–50
Instant 50–52

compute as glue 56–58
ListHub processing engine 57–58

configuration templates 92
constraints

and your process 10
contract, fixed-bid 16
cookbooks, Chef 97
createUser function 73

CRUD (create, read, update, and delete) 
22, 25–26

curl command 29–31, 33, 36
curly braces 26, 33
custom process 12
customer

availability 13
customization, avoiding 16

D

data
manipulating 45–46
processing 45–46

delivery
urgency of 13

deployment
comparison of options 108–109
defined 83
multilayer applications with AWS OpsWorks

accessing kiwiIRC 106–107
adding app to Node.js layer 104
adding client and server instances for IRC

chat 105
components of 97–98
creating custom layers 101–103
creating Node.js layer 100–101
creating stack 99–100
deleting stacks 108

running script on server startup
application update process 91
overview 85–86
using user data 86

in scalable cloud environment 85
VPN server using OpenSwan

installing VPN with script 90
overview 86–88
using CloudFormation to start virtual server

with user data 88–89
web applications with AWS Elastic Beanstalk

components of 91–92
creating application 92–93
creating environment 93
deleting applications 96
describing status of installation 93–94
in Management Console 95–96
uploading Zip archive 93

describe command 93
designing API 25–27
development

adapting to change during 4
distributed 15

<div> tag 40
store/books/9781617294983

https://itbook.store/books/9781617294983

114 INDEX

www.itboo
DNS (Domain Name System) 50
Docker, installing system via 38–39
documentation

required vs. optional 6
dollar sign character 29
DSL (domain-specific language) 97
DynamoDB 50, 52

tables 70, 75

E

EC2 (Elastic Compute Cloud) 54
Echo, Amazon 47
e-commerce platforms 49
ECS container 58
encryption of passwords 78–79
endpoints, GraphQL 59
engines

processing
ListHub 58

EnvironmentType option 93
EPX Labs 54–55, 58
estimating, more efficient 4
Etherpad

creating application 92–93
creating environment 93
describing status of installation 93–94
in Management Console 95–96
uploading Zip archive 93

event-driven architecture 71–76
Extreme Programming (XP) 9–10

characteristics 10
strengths 10
weaknesses 10

F

fan-out patterns 63–64
when to use 64

feature
prioritizing 3

feature card 3
Fiddler 32
Firebase 49
firewalls 102
fixed-bid contract 16
Fn::Base64/Fn::Join functions 88

G

Git, installing system via 39–40
Google 50
GraphQL 55–56

H

hash key 77
hashes 27
hashing functions 78
headers 21
Highsmith, Jim 5
HTTP 21–23

interactions 23
requests 21–22
responses 22–23
sniffers 31, 33

HTTPScoop 32, 35–37
hybrids 53–55

EPX Labs systems 54–55
hydration Lambda 58

I

-i flag 31
id attribute 40
identity federation 76
index.html

file 39–40
page 71

individual server tasks 55
InfoQ 12
instances, defined 98
Instant 45, 50–52
interaction model 69–71
Internet Relay Chat. See IRC
IoT platform, AWS 45
IRC (Internet Relay Chat) 99
ircd-ircu package 101

J

JSON (JavaScript Object Notation) 26

K

Kinesis Streams 62
Kinesis Streams, Amazon 46, 58
kiwiIRC

accessing 106–107
adding app to Node.js layer 104
adding client and server instances for IRC

chat 105
creating custom layers 101–103
creating Node.js layer 100–101
creating stack 99–100
k.store/books/9781617294983

https://itbook.store/books/9781617294983

115INDEX

www.itbook.
L

layers 97–98
See also multilayer applications

legacy API proxy 46, 52
ListHub processing engine 57–58
lists 27
login function 73, 76
login.html page 73, 79
logs

viewing for AWS Elastic Beanstalk
application 96

lostPassword function 75
lostPassword.html page 75

M

Magento 54
Management Console

AWS Elastic Beanstalk applications in 95–96
manipulating

data 45–46
mapping API calls 34
McConnell, Steve 12
messaging patterns 60–62

when to use 62
methods

HTTP 26, 38
overview 21

migration
going too fast 16

multilayer applications
accessing kiwiIRC 106–107
adding app to Node.js layer 104
adding client and server instances for IRC

chat 105
components of 97–98
creating custom layers 101–103
creating Node.js layer 100–101
creating stacks 99–100
deleting stacks 108

MySQL databases 55

N

Nagtegaal, Sander 50
nano functions 48
Netlify 49
Node.js 21, 39–40

multilayer applications using
adding app to Node.js layer 104
creating Node.js layer 100–101

nonsecure APIs 32

O

objects 27
OpenSwan VPN server

installing VPN with script 90
overview 86–88
using CloudFormation to start virtual server

with user data 88–89

P

Panse, Marcel 50
passwords

encrypting 78–79
patterns 59–65

command 59–60
when to use 60

fan-out 63–64
when to use 64

messaging 60–62
when to use 62

pipes and filters 64–65
when to use 65

priority queue 62–63
when to use 63

pipelines 47
pipes and filters patterns 64–65

when to use 65
planning

more efficient 4
Prabhu, Prachetas 54
priorities

changing, consequences of 3
clarifying 3

priority queue patterns 62–63
when to use 63

processes, required vs. optional 6
processing

data 45–46
real-time 58

processing engines
ListHub 58

project
delivering 5
status 4

Project Management Lifecycle (PMLC) 5
project structure, correct level of 5
project team

large 15
protocols

HTTP 21
proxies

legacy API 46
store/books/9781617294983

https://itbook.store/books/9781617294983

116 INDEX

www.itboo
Q

question mark character 22

R

range key 77
read operation 24
real-time processing 58
Request/Response tab 32
requirements

evolving or volatile 13
resetPassword function 76
resetPassword.html page 76
resetToken 75
resources, consistent 14
REST (Representational State Transfer) 55

overview 23
RESTful interface 46, 48
retrieving data 48
RETS (Real Estate Standards Organization) 58
risk management 5
roadblocks, overcoming 15

S

S3 (Simple Storage Service) 45
salt 78
scheduled services 46–47
scope creep 16
Scrum 7–9

characteristics 8
strengths 8
weaknesses 8

Secure Remote Password. See SRP
secure transactions 32
services

scheduled 46–47
SES (Simple Email Service) 70
shared server tasks 55
silo 14
Sinicin, Evan 54
skills 47
Slack 47
SNS (Simple Notification Service) 55, 70
SOAP (Simple Object Access Protocol) 52
Software Development Lifecycle (SDLC) 5
SQS (Simple Queue Service) 45, 55, 61
square brackets 27, 33
SRP (Secure Remote Password) 79
stacks 98
status codes 22, 32
storing data 48
style attribute 40

T

team
buy-in 3
immature 16
large 15
one-time 16
with specialized skill sets 16

teamwork 14
toppings API 23–24

U

unverified attribute 78
urgency to delivery 13
URL (uniform resource locator) 21–23
use cases 44–47

application back end 45
bots 47
data manipulation 45–46
data processing 45–46
legacy API proxy 46
real-time analytics 46
scheduled services 46–47
skills 47

user data 86
user profiles

adding more data to 77–78
storing 77

Users DynamoDB table 76

V

–v flag 31
VBox 38
verify.html page 73
verifyUser function 73
versioning

for applications 91
Virtual Private Network. See VPN
virtual servers

running script on server startup
application update process 91
overview 85–86
using user data 86

VirtualBox 38
VPC (Virtual Private Cloud) 55, 77
VPN (Virtual Private Network)

installing VPN with script 90
overview 86–88
using CloudFormation to start virtual server

with user data 88–89
k.store/books/9781617294983

https://itbook.store/books/9781617294983

117INDEX

www.itbook.
W

web APIs
installling 38–41
interaction between client and 33–38
using 27–32

browser 27–28
curl command 29–31
HTTP sniffers 31–32

web applications
using AWS Elastic Beanstalk

components of 91–92
creating application 92–93
creating environment 93

deleting 96
describing status of installation 93–94
in Management Console 95–96
uploading Zip archive 93

web browser, Chrome 27
webapp subdirectory 40
Wireshark 32
WordPress

traditional installation overview 84

Y

yum package manager 90
store/books/9781617294983

https://itbook.store/books/9781617294983

	Agile Development for Serverless Platforms
	contents
	Introduction
	Are You Ready for Agile?
	Are you ready for agile?
	3.1 What areas will you become more agile in?
	3.1.1 Increasing customer involvement
	3.1.2 Improving prioritization of features
	3.1.3 Increasing team buy-in and involvement
	3.1.4 Clarifying priorities and reminding everyone of the consequences of changing them
	3.1.5 Adapting to change during development
	3.1.6 Better understanding the project’s status
	3.1.7 More efficient planning and estimating
	3.1.8 Continuous risk management
	3.1.9 Delivering the project needed at the end
	3.1.10 Achieving the right level of project structure

	3.2 The different flavors of agile
	3.2.1 Scrum
	3.2.2 Extreme Programming

	3.3 Create your own flavor to become agile within your constraints
	3.3.1 Your goal: reach the right level of agility for your organization
	3.3.2 Characteristics that make agile easier to adopt
	3.3.3 Roadblocks that others have overcome

	3.4 Key points to remember
	3.5 Looking ahead
	What's inside

	Working with Web APIs
	Working with web APIs
	2.1 HTTP basics
	2.1.1 HTTP request
	2.1.2 HTTP response
	2.1.3 HTTP interactions

	2.2 The Toppings API
	2.3 Designing the API
	2.4 Using a web API
	2.4.1 Browser
	2.4.2 Command line (curl)
	2.4.3 HTTP sniffers

	2.5 Interaction between the API and client
	2.6 Install your own API and front end
	2.6.1 Installing the system via Docker
	2.6.2 Installing the system via Git
	2.6.3 Exploring the code

	2.7 Summary
	What's inside

	Architectures and Patterns
	Architectures and patterns
	2.1 Use cases
	2.1.1 Application back end
	2.1.2 Data processing and manipulation
	2.1.3 Real-time analytics
	2.1.4 Legacy API proxy
	2.1.5 Scheduled services
	2.1.6 Bots and skills

	2.2 Architectures
	2.2.1 Compute as back end
	2.2.2 Legacy API proxy
	2.2.3 Hybrid
	2.2.4 GraphQL
	2.2.5 Compute as glue
	2.2.6 Real-time processing

	2.3 Patterns
	2.3.1 Command pattern
	2.3.2 Messaging pattern
	2.3.3 Priority queue pattern
	2.3.4 Fan-out pattern
	2.3.5 Pipes and filters pattern

	2.4 Summary
	What's inside
	What's inside

	Designing an Authentication Service
	Designing an authentication service
	8.1 The interaction model
	8.2 The event-driven architecture
	8.3 Working with Amazon Cognito
	8.4 Storing user profiles
	8.5 Adding more data to user profiles
	8.6 Encrypting passwords
	Summary
	Exercise
	a Use JavaScript in the browser to use SMTP
	b Use JavaScript in the browser to use IMAP
	c Use a Lambda function to call Amazon SES
	d Use a Lambda function to call Amazon SQS
	a Use AWS IAM users and groups to give access to the function to authenticated users only
	b Use Amazon Cognito and give access to the function to the authenticated role only
	c Use AWS IAM users and groups to give access to the function to unauthenticated users only
	d Use Amazon Cognito and give access to the function to the unauthenticated role only
	a Use a challenge-response interface such as CAPTCHA
	b Send the password over HTTP
	c Use a challenge-response protocol such as SRP
	d Send the password via email

	Solution

	Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks
	5.1 Deploying applications in a flexible cloud environment
	5.2 Running a script on server startup using CloudFormation
	5.2.1 Using user data to run a script on server startup
	5.2.2 Deploying OpenSwan as a VPN server to a virtual server
	5.2.3 Starting from scratch instead of updating

	5.3 Deploying a simple web application with Elastic Beanstalk
	5.3.1 Components of Elastic Beanstalk
	5.3.2 Using Elastic Beanstalk to deploy Etherpad, a Node.js application

	5.4 Deploying a multilayer application with OpsWorks
	5.4.1 Components of OpsWorks
	5.4.2 Using OpsWorks to deploy an IRC chat application

	5.5 Comparing deployment tools
	5.5.1 Classifying the deployment tools
	5.5.2 Comparing the deployment services

	5.6 Summary
	What's inside
	1 Open the OpsWorks service with the Management Console.
	2 Select the irc stack by clicking it.
	3 Select Instances from the submenu.
	4 Stop both instances and wait until Status is Stopped for both.
	5 Delete both instances, and wait until they disappear from the overview.
	6 Select Apps from the submenu.
	7 Delete the kiwiIRC app.
	8 Select Stack from the submenu.
	9 Click the Delete Stack button, and confirm the deletion.
	10 Execute aws cloudformation delete-stack --stack-name irc from your terminal.

	Automating Deployment: CloudFormation, Elastic Beanstalk, and OpsWorks
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Promo pages
	Becoming Agile
	AWS Lambda in Action
	Irresistible APIs
	Serverless Architectures on AWS
	Amazon Web Services in Action

