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introduction
Some people believe that data comes in simple, organized tables---numbers and text 
stacked in neat little rows, each value separated from its neighbor by a comma. And 
other people believe that all data values are 100% correct, because they originated 
from an autonomous data collection machine that never makes mistakes. Some peo-
ple believe that every database, straight out of the box, can store anything and every-
thing and make it easily retrievable in a fraction of a second. In a perfect world, these 
beliefs may align with the truth, but---in this world---far from it.

 Data in the wild is unkempt and unruly. It’s not always where you want it to be. It 
may exist in an odd format. It may have missing or incorrect values. It may be skewed 
or not representative of the population you wish to study. There may be way too much 
of it to manage. It may not exist. A good data scientist is no stranger to problems like 
these; they come with the territory. In order to avoid or solve these problems and oth-
ers like them, it is helpful to be familiar with data in its many locations, formats, and 
qualities.

 The three chapters in this collection each give a perspective of what you might find 
when you go looking for data. The first chapter---from my own book Think Like a Data 
Scientist---describes the world of data as a wilderness worthy of exploration and meticu-
lous investigation. Here, the roles of data in the modern world have grown to the 
point that they can no longer be ignored; thus we need to prepare for the many ways 
and forms in which we might find the data we want. The second chapter---from Practi-
cal Data Science with R by Nina Zumel and John Mount---gives a thorough introduction 
to the many ways you can inspect data you have. The directives and suggestions of this 
R-specific viewpoint can be generalized to understand your data comprehensively 
using any statistical software, not just R. The third chapter---from Real-World Machine 
Learning by Henrik Brink, Joseph W. Richards, and Mark Fetherolf---gives a thoughtful 
blueprint for what to do as you prepare real-world data for machine learning. Data 
from the wild isn’t usually ready to be fed to a highly intelligent, but coldly determinis-
tic, algorithm without a little cleaning, organizing, and dressing-up.
iv
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 Data isn’t always approachable. It can be messy, wrong, or hard to access. But 
despite all of that, it can still answer real business questions and solve meaningful 
problems. This collection of chapters shows you how to approach data in the wild for 
maximum insight and benefit. 
store/books/9781617295065
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The underlying basis for any discussion about data is the nature of data 
itself. What forms might data take? Where is it? How can I access it? What might 
it contain? Why do I need it? For some data science project goals, the answers to 
these questions are obvious. But for others, data scientists benefit from expand-
ing their ideas to seek other possible answers to these questions. You are never 
stuck using only the data in the database that you have. There is a whole world of 
data possibilities out there if you do a little exploration and can make the con-
nections between what you find and what your project can use.

 This chapter from my book, Think Like a Data Scientist, first attempts to 
describe world of data and its vastness in order to motivate you to use it to your 
advantage. Second, it helps remove some technical barriers to making use of the 
things that you find. Last, the chapter presents some strategies for navigating the 
world of data, seeking and capturing exactly those specimens that will help you 
achieve success in your project.

Data All Around Us: 
The Virtual Wilderness
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Chapter 3 from Think Like a Data Scientist by 
Brian Godsey

Data all around us: 
the virtual wilderness
This chapter discusses the principal species of study of the data scientist: data. Hav-
ing possession of data—namely, useful data—is often taken as a foregone conclu-
sion, but it’s not usually a good idea to assume anything of the sort. As with any 
topic worthy of scientific examination, data can be hard to find and capture and is 
rarely completely understood. Any mistaken notion about a data set that you pos-
sess or would like to possess can lead to costly problems, so in this chapter, I discuss 
the treatment of data as an object of scientific study.

3.1 Data as the object of study
In recent years, there has been a seemingly never-ending discussion about whether
the field of data science is merely a reincarnation or an offshoot—in the Big 
Data Age—of any of a number of older fields that combine software engineering 

This chapter covers
 Discovering data you may need

 Interacting with data in various environments

 Combining disparate data sets
2
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and data analysis: operations research, decision sciences, analytics, data mining, 
mathematical modeling, or applied statistics, for example. As with any trendy term 
or topic, the discussion over its definition and concept will cease only when the 
popularity of the term dies down. I don’t think I can define data science any better 
than many of those who have done so before me, so let a definition from Wikipedia 
(https://en.wikipedia.org/wiki/Data_science), paraphrased, suffice:

Data science is the extraction of knowledge from data.

Simple enough, but that description doesn’t distinguish data science from the many 
other similar terms, except perhaps to claim that data science is an umbrella term for 
the whole lot. On the other hand, this era of data science has a property that no previ-
ous era had, and it is, to me, a fairly compelling reason to apply a new term to the types 
of things that data scientists do that previous applied statisticians and data-oriented soft-
ware engineers did not. This reason helps me underscore an often-overlooked but 
very important aspect of data science, as shown in figure 3.1.
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Figure 3.1 The second step of the preparation phase of the data science process: exploring available data

3.1.1 The users of computers and the internet became data generators

Throughout recent history, computers have made incredible advances in computa-
tional power, storage, and general capacity to accomplish previously unheard-of tasks. 
Every generation since the invention of the modern computer nearly a century ago 
has seen ever-shrinking machines that are orders of magnitude more powerful than 
the most powerful supercomputers of the previous generation.

 The time period including the second half of the twentieth century through the 
beginning of the twenty-first, and including the present day, is often referred to as 
the Information Age. The Information Age, characterized by the rise to ubiquity of 
store/books/9781617295065
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computers and then the internet, can be divided into several smaller shifts that relate 
to analysis of data.

 First, early computers were used mainly to make calculations that previously took 
an unreasonable amount of time. Cracking military codes, navigating ships, and per-
forming simulations in applied physics were among the computationally intensive 
tasks that were performed by early computers.

 Second, people began using computers to communicate, and the internet devel-
oped in size and capacity. It became possible for data and results to be sent easily 
across a large distance. This enabled a data analyst to amass larger and more varied 
data sets in one place for study. Internet access for the average person in a developed 
country increased dramatically in the 1990s, giving hundreds of millions of people 
access to published information and data.

 Third, whereas early use of the internet by the populace consisted mainly of con-
suming published content and communication with other people, soon the owners of 
many websites and applications realized that the aggregation of actions of their users 
provided valuable insight into the success of their own product and sometimes human 
behavior in general. These sites began to collect user data in the form of clicks, typed 
text, site visits, and any other actions a user might take. Users began to produce more 
data than they consumed.

 Fourth, the advent of mobile devices and smartphones that are connected to the 
internet made possible an enormous advance in the amount and specificity of user 
data being collected. At any given moment, your mobile device is capable of record-
ing and transmitting every bit of information that its sensors can collect (location, 
movement, camera image and video, sound, and so on) as well as every action that you 
take deliberately while using the device. This can potentially be a huge amount of 
information, if you enable or allow its collection.

 Fifth—though this isn’t necessarily subsequent to the advent of personal mobile 
devices—is the inclusion of data collection and internet connectivity in almost every-
thing electronic. Often referred to as the Internet of Things (IoT), these can include 
everything from your car to your wristwatch to the weather sensor on top of your 
office building. Certainly, collecting and transmitting information from devices began 
well before the twenty-first century, but its ubiquity is relatively new, as is the availabil-
ity of the resultant data on the internet in various forms, processed or raw, for free or 
for sale.

 Through these stages of growth of computing devices and the internet, the online 
world became not merely a place for consuming information but a data-collection 
tool in and of itself. A friend of mine in high school in the late 1990s set up a website 
offering electronic greeting cards as a front for collecting email addresses. He sold the 
resulting list of millions of email addresses for a few hundred thousand dollars. This is 
a primitive example of the value of user data for purposes completely unrelated to the 
website itself and a perfect example of something I’m sorry to have missed out on in 
my youth. By the early 2000s, similar-sized collections of email addresses were no longer
k.store/books/9781617295065
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worth nearly this much money, but other sorts of user data became highly desirable 
and could likewise fetch high prices.

3.1.2 Data for its own sake

As people and businesses realized that user data could be sold for considerable sums 
of money, they began to collect it indiscriminately. Very large quantities of data began 
to pile up in data stores everywhere. Online retailers began to store not only every-
thing you bought but also every item you viewed and every link you clicked. Video 
games stored every step your avatar ever took and which opponents it vanquished. 
Various social networks stored everything you and your friends ever did.

 The purpose of collecting all of this data wasn’t always to sell it, though that hap-
pens frequently. Because virtually every major website and application uses its own 
data to optimize the experience and effectiveness of users, site and app publishers 
are typically torn between the value of the data as something that can be sold and the 
value of the data when held and used internally. Many publishers are afraid to sell 
their data because that opens up the possibility that someone else will figure out 
something lucrative to do with it. Many of them keep their data to themselves, hoard-
ing it for the future, when they supposedly will have enough time to wring all value 
out of it.

 Internet juggernauts Facebook and Amazon collect vast amounts of data every 
minute of every day, but in my estimation, the data they possess is largely unex-
ploited. Facebook is focused on marketing and advertising revenue, when they have 
one of the largest data sets comprising human behavior all around the world. Prod-
uct designers, marketers, social engineers, and sociologists alike could probably 
make great advances in their fields, both academic and industrial, if they had access 
to Facebook’s data. Amazon, in turn, has data that could probably upend many 
beloved economic principles and create several new ones if it were turned over to aca-
demic institutions. Or it might be able to change the way retail, manufacturing, and 
logistics work throughout the entire industry.

 These internet behemoths know that their data is valuable, and they’re confi-
dent that no one else possesses similar data sets of anywhere near the same size or 
quality. Innumerable companies would gladly pay top dollar for access to the data, 
but Facebook and Amazon have—I surmise—aspirations of their own to use their 
data to its fullest extent and therefore don’t want anyone else to grab the resulting 
profits. If these companies had unlimited resources, surely they would try to wring 
every dollar out of every byte of data. But no matter how large and powerful they 
are, they’re still limited in resources, and they’re forced to focus on the uses of the 
data that affect their bottom lines most directly, to the exclusion of some otherwise 
valuable efforts.

 On the other hand, some companies have elected to provide access to their data. 
Twitter is a notable example. For a fee, you can access the full stream of data on the 
Twitter platform and use it in your own project. An entire industry has developed 
store/books/9781617295065
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around brokering the sale of data, for profit. A prominent example of this is the 
market of data from various major stock exchanges, which has long been available 
for purchase.

 Academic and nonprofit organizations often make data sets available publicly 
and for free, but there may be limitations on how you can use them. Because of the 
disparity of data sets even within a single scientific field, there has been a trend toward 
consolidation of both location and format of data sets. Several major fields have cre-
ated organizations whose sole purpose is to maintain databases containing as many 
data sets as possible from that field. It’s often a requirement that authors of scientific 
articles submit their data to one of these canonical data repositories prior to publica-
tion of their work.

 In whichever form, data is now ubiquitous, and rather than being merely a tool 
that analysts might use to draw conclusions, it has become a purpose of its own. Com-
panies now seem to collect data as an end, not a means, though many of them claim to 
be planning to use the data in the future. Independent of other defining characteris-
tics of the Information Age, data has gained its own role, its own organizations, and its 
own value.

3.1.3 Data scientist as explorer

In the twenty-first century, data is being collected at unprecedented rates, and in 
many cases it’s not being collected for a specific purpose. Whether private, public, for 
free, for sale, structured, unstructured, big, normal size, social, scientific, passive, 
active, or any other type, data sets are accumulating everywhere. Whereas for centu-
ries data analysts collected their own data or were given a data set to work on, for the 
first time in history many people across many industries are collecting data first and 
then asking, “What can I do with this?” Still others are asking, “Does the data already 
exist that can solve my problem?”

 In this way data—all data everywhere, as a hypothetical aggregation—has become 
an entity worthy of study and exploration. In years past, data sets were usually col-
lected deliberately, so that they represented some intentional measurement of the 
real world. But more recently the internet, ubiquitous electronic devices, and a latent 
fear of missing out on hidden value in data have led us to collect as much data as pos-
sible, often on the loose premise that we might use it later.

 Figure 3.2 shows an interpretation of four major innovation types in computing 
history: computing power itself, networking and communication between computers, 
collection and use of big data, and rigorous statistical analysis of that big data. By big 
data, I mean merely the recent movement to capture, organize, and use any and all 
data possible. Each of these computing innovations begins with a problem that begs to 
be addressed and then goes through four phases of development, in a process that’s 
similar to the technological surge cycle of Carlota Perez (Technological Revolutions and 
Financial Capital, Edward Elgar Publishing, 2002) but with a focus on computing inno-
vation and its effect on computer users and the general public.
k.store/books/9781617295065

https://itbook.store/books/9781617295065


7Data as the object of study

www.itbook.
For each innovation included in the figure, there are five stages:

1 Problem —There is a problem that computers can address in some way.
2 Invention —The computing technology that can address that problem is created.
3 Proof/recognition —Someone uses the computing technology in a meaningful 

way, and its value is proven or at least recognized by some experts.
4 Adoption —The newly proven technology is widely put to use in industry.
5 Refinement —People develop new versions, more capabilities, higher efficiency, 

integrations with other tools, and so on.

Because we’re currently in the refinement phase of big data collection and the wide-
spread adoption phase of statistical analysis of that data, we’ve created an entire data 
ecosystem wherein the knowledge that has been extracted is only a very small portion 
of the total knowledge contained. Not only has much of the knowledge not been 
extracted yet, but in many cases the full extent and properties of the data set are not 
understood by anyone except maybe a few software engineers who set up the system; 
the only people who might understand what’s contained in the data are people who 

The stages of computing innovation

Problem

Innovation

type

Computing Cracking codes

High-powered

physics

Ship navigation

Innovation
Proof/

recognition
Adoption Refinement

Pre-1950s
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computing
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~2000
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Figure 3.2 We’re currently in the refinement phase of big data collection and use and in the 
widespread adoption phase of statistical analysis of big data.
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are probably too busy or specialized to make use of it. The aggregation of all of this 
underutilized or poorly understood data to me is like an entirely new continent with 
many undiscovered species of plants and animals, some entirely unfamiliar organisms, 
and possibly a few legacy structures left by civilizations long departed.

 There are exceptions to this characterization. Google, Amazon, Facebook, and 
Twitter are good examples of companies that are ahead of the curve. They are, in 
some cases, engaging in behavior that matches a later stage of innovation. For exam-
ple, by allowing access to its entire data set (often for a fee), Twitter seems to be oper-
ating within the refinement stage of big data collection and use. People everywhere are 
trying to squeeze every last bit of knowledge out of users’ tweets. Likewise, Google 
seems to be doing a good job of analyzing its data in a rigorous statistical manner. Its 
work on search-by-image, Google Analytics, and even its basic text search are good 
examples of solid statistics on a large scale. One can easily argue that Google has a 
long way to go, however. If today’s ecosystem of data is like a largely unexplored conti-
nent, then the data scientist is its explorer. Much like famous early European explor-
ers of the Americas or Pacific islands, a good explorer is good at several things:

 Accessing interesting areas
 Recognizing new and interesting things
 Recognizing the signs that something interesting might be close
 Handling things that are new, unfamiliar, or sensitive
 Evaluating new and unfamiliar things
 Drawing connections between familiar things and unfamiliar things
 Avoiding pitfalls

An explorer of a jungle in South America may have used a machete to chop through 
the jungle brush, stumbled across a few loose-cut stones, deduced that a millennium-old 
temple was nearby, found the temple, and then learned from the ruins about the reli-
gious rituals of the ancient tribe. A data scientist might hack together a script that pulls 
some social networking data from a public API, realize that a few people compose major 
hubs of social activity, discover that those people often mention a new photo-sharing 
app in their posts on the social network, pull more data from the photo-sharing app’s 
public API, and in combining the two data sets with some statistical analysis learn about 
the behavior of network influencers in online communities. Both cases derive previously 
unknown information about how a society operates. Like an explorer, a modern data 
scientist typically must survey the landscape, take careful note of surroundings, wander 
around a bit, and dive into some unfamiliar territory to see what happens. When they 
find something interesting, they must examine it, figure out what it can do, learn from 
it, and be able to apply that knowledge in the future. Although analyzing data isn’t a 
new field, the existence of data everywhere—often regardless of whether anyone is mak-
ing use of it—enables us to apply the scientific method to discovery and analysis of a pre-
existing world of data. This, to me, is the differentiator between data science and all of 
its predecessors. There’s so much data that no one can possibly understand it all, so we 
treat it as a world unto itself, worthy of exploration.
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 This idea of data as a wilderness is one of the most compelling reasons for using 
the term data science instead of any of its counterparts. To get real truth and useful 
answers from data, we must use the scientific method, or in our case, the data scien-
tific method:

1 Ask a question.
2 State a hypothesis about the answer to the question.
3 Make a testable prediction that would provide evidence in favor of the hypothe-

sis if correct.
4 Test the prediction via an experiment involving data.
5 Draw the appropriate conclusions through analyses of experimental results.

In this way, data scientists are merely doing what scientists have been doing for cen-
turies, albeit in a digital world. Today, some of our greatest explorers spend their 
time in virtual worlds, and we can gain powerful knowledge without ever leaving
our computers.

3.2 Where data might live, and how to interact with it
Before we dive in to the unexplored wilderness that is the state of data today, I’d like 
to discuss the forms that data might take, what those forms mean, and how we might 
treat them initially. Flat files, XML, and JSON are a few data formats, and each has 
its own properties and idiosyncrasies. Some are simpler than others or more suited 
to certain purposes. In this section, I discuss several types of formats and storage 
methods, some of their strengths and weaknesses, and how you might take advan-
tage of them.

 Although plenty of people will object to this, I decided to include in this section 
a discussion of databases and APIs as well. Commingling a discussion of file formats 
with software tools for data storage makes sense to me because at the beginning of a 
data science project, any of these formats or data sources is a valid answer to the 
question “Where is the data now?” File, database, or API, what the data scientist 
needs to know is “How do I access and extract the data I need?” and so that’s my 
purpose here.

 Figure 3.3 shows three basic ways a data scientist might access data. It could be a 
file on a file system, and the data scientist could read the file into their favorite analy-
sis tool. Or the data could be in a database, which is also on a file system, but in order 
to access the data, the data scientist has to use the database’s interface, which is a soft-
ware layer that helps store and extract data. Finally, the data could be behind an appli-
cation programming interface (API), which is a software layer between the data 
scientist and some system that might be completely unknown or foreign. In all three 
cases, the data can be stored and/or delivered to the data scientist in any format I dis-
cuss in this section or any other. Storage and delivery of data are so closely intertwined 
in some systems that I choose to treat them as a single concept: getting data into your 
analysis tools.
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In no way do I purport to cover all possible data formats or systems, nor will I list all 
technical details. My goal here is principally to give descriptions that would make a 
reader feel comfortable talking about and approaching each one. I can still remem-
ber when extracting data from a conventional database was daunting for me, and with 
this section I’d like to put even beginners at ease. Only if you’re fairly comfortable 
with these basic forms of data storage and access can you move along to the most 
important part of data science: what the data can tell you.

3.2.1 Flat files

Flat files are plain-vanilla data sets, the default data format in most cases if no one has 
gone through the effort to implement something else. Flat files are self-contained, 
and you don’t need any special programs to view the data contained inside. You can 
open a flat file for viewing in a program typically called a text editor, and many text 
editors are available for every major operating system. Flat files contain ASCII (or 
UTF-8) text, each character of text using (most likely) 8 bits (1 byte) of memory/storage. 
A file containing only the word DATA will be of size 32 bits. If there is an end-of-line 
(EOL) character after the word DATA, the file will be 40 bits, because an EOL charac-
ter is needed to signify that a line has ended. My explanation of this might seem sim-
plistic to many people, but even some of these basic concepts will become important 
later on as we discuss other formats, so I feel it’s best to outline some basic properties 
of the flat file so that we might compare other data formats later.

 There are two main subtypes of the flat file: plain text and delimited. Plain text is 
words, as you might type them on your keyboard. It could look like this:

This is what a plain text flat file looks like. It's just plain ASCII text. 
Lines don't really end unless there is an end-of-line character, but some 
text editors will wrap text around anyway, for convenience.

Data scientist

Reads file using favorite

programming language

Database

Uses software interface

to query the database

Makes API call to get data

from an unknown system

Data file

on a

file system

?

Interface

API

Figure 3.3 Three ways a data scientist might access data: from a file system, 
database, or API
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Usually, every character is a byte, and so there are only 256 possible 
characters, but there are a lot of caveats to that statement, so if you're 
really interested, consult a reference about ASCII and UTF-8.

This file would contain seven lines, or technically eight if there’s an end-of-line char-
acter at the end of the final line of text. A plain text flat file is a bunch of characters 
stored in one of two (or so) possible very common formats. This is not the same as a 
text document stored in a word processor format, such as Microsoft Word or Open-
Office Writer. (See the subsection “Common bad formats.”) Word processor file for-
mats potentially contain much more information, including overhead such as style 
formats and metadata about the file format itself, as well as objects like images and 
tables that may have been inserted into a document. Plain text is the minimal file for-
mat for containing words and only words—no style, no fancy images. Numbers and 
some special characters are OK too.

 But if your data contains numerous entries, a delimited file might be a better idea. 
A delimited file is plain text but with the stipulation that every so often in the file a 
delimiter will appear, and if you line up the delimiters properly, you can make some-
thing that looks like a table, with rows, columns, and headers. A delimited file might 
look like this:

NAME      ID   COLOR     DONE
Alison    1    'blue'    FALSE
Brian     2    'red'     TRUE
Clara     3    'brown'   TRUE

Let’s call this table JOBS_2015, because it represents a fictional set of house-painting jobs 
that started in 2015, with the customer name, ID, paint color, and completion status.

 This table happens to be tab-delimited—or tab-separated value (TSV)—meaning 
that columns are separated by the tab character. If opened in a text editor, such a file 
would usually appear as it does here, but it might optionally display the text \t where 
a tab would otherwise appear. This is because a tab, like an end-of-line character, can 
be represented with a single ASCII character, and that character is typically repre-
sented with \t, if not rendered as variable-length whitespace that aligns characters 
into a tabular format.

 If JOBS_2015 were stored as a comma-separated value (CSV) format, it would 
appear like this in a standard text editor:

NAME,ID,COLOR,DONE
Alison,1,'blue',FALSE
Brian,2,'red',TRUE
Clara,3,'brown',TRUE

The commas have taken the place of the tab characters, but the data is still the same. 
In either case, you can see that the data in the file can be interpreted as a set of rows 
and columns. The rows represent one job each for Alison, Brian, and Clara, and the 
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column names on the header (first) line are NAME, ID, COLOR, and DONE, giving the 
types of details of the job contained within the table.

 Most programs, including spreadsheets and some programming languages, require
the same number of delimiters on each line (except possibly the header line) so that 
when they try to read the file, the number of columns is consistent, and each line con-
tributes exactly one entry to each column. Some software tools don’t require this, and 
they each have specific ways of dealing with varying numbers of entries on each line.

 I should note here that delimited files are typically interpreted as tables, like 
spreadsheets. Furthermore, as plain text files can be read and stored using a word pro-
cessing program, delimited files can typically be loaded into a spreadsheet program 
like Microsoft Excel or OpenOffice Calc.

 Any common program for manipulating text or tables can read flat files. Popular 
programming languages all include functions and methods that can read such files. 
My two most familiar languages, Python (the csv package) and R (the read.table
function and its variants), contain methods that can easily load a CSV or TSV file into 
the most relevant data types in those languages. For plain text also, Python (read-
lines) and R (readLines) have methods that read a file line by line and allow for the 
parsing of the text via whatever methods you see fit. Packages in both languages—and 
many others—provide even more functionality for loading files of related types, and I 
suggest looking at recent language and package documentation to find out whether 
another file-loading method better suits your needs.

 Without compressing files, flat files are more or less the smallest and simplest com-
mon file formats for text or tables. Other file formats contain other information about 
the specifics of the file format or the data structure, as appropriate. Because they’re 
the simplest file formats, they’re usually the easiest to read. But because they’re so 
lean, they provide no additional functionality other than showing the data, so for 
larger data sets, flat files become inefficient. It can take minutes or hours for a lan-
guage like Python to scan a flat file containing millions of lines of text. In cases where 
reading flat files is too slow, there are alternative data storage systems designed to 
parse through large amounts of data quickly. These are called databases and are cov-
ered in a later section.

3.2.2 HTML

A markup language is plain text marked up with tags or specially denoted instructions 
for how the text should be interpreted. The very popular Hypertext Markup Lan-
guage (HTML) is used widely on the internet, and a snippet might look like this:

<html>
    <body>
        <div class="column">
            <h1>Column One</h1>
            <p>This is a paragraph</p>
        </div>
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        <div class="column">
            <h1>Column Two</h1>
            <p>This is another paragraph</p>
        </div>
    </body>
</html>

An HTML interpreter knows that everything between the <html> and </html> tags 
should be considered and read like HTML. Similarly, everything between the <body>
and </body> tags will be considered the body of the document, which has special 
meaning in HTML rendering. Most HTML tags are of the format <TAGNAME> to begin 
the annotation and </TAGNAME> to end it, for an arbitrary TAGNAME. Everything 
between the two tags is now treated as being annotated by TAGNAME, which an inter-
preter can use to render the document. The two <div> tags in the example show how 
two blocks of text and other content can be denoted, and a class called column is 
applied to the div, allowing the interpreter to treat a column instance in a special way.

 HTML is used primarily to create web pages, and so it usually looks more like a 
document than a data set, with a header, body, and some style and formatting infor-
mation. HTML is not typically used to store raw data, but it’s certainly capable of 
doing so. In fact, the concept of web scraping usually entails writing code that can fetch 
and read web pages, interpreting the HTML, and scraping out the specific pieces of 
the HTML page that are of interest to the scraper.

 For instance, suppose we’re interested in collecting as many blog posts as possible 
and that a particular blogging platform uses the <div class="column"> tag to denote 
columns in blog posts. We could write a script that systematically visits a blog, inter-
prets the HTML, looks for the <div class="column"> tag, captures all text between it 
and the corresponding </div> tag, and discards everything else, before proceeding to 
another blog to do the same. This is web scraping, and it might come in handy if the 
data you need isn’t contained in one of the other more friendly formats. Web scraping 
is sometimes prohibited by website owners, so it’s best to be careful and check the 
copyright and terms of service of the site before scraping.

3.2.3 XML

Extensible Markup Language (XML) can look a lot like HTML but is generally more 
suitable for storing and transmitting documents and data other than web pages. The 
previous snippet of HTML can be valid XML, though most XML documents begin 
with a tag that declares a particular XML version, such as the following:

<?xml version="1.0" encoding="UTF-8"?>

This declaration helps ensure that an XML interpreter reads tags in the appropriate 
way. Otherwise, XML works similarly to HTML but without most of the overhead asso-
ciated with web pages. XML is now used as a standard format for offline documents 
such as the OpenOffice and Microsoft Office formats. Because the XML specification 
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is designed to be machine-readable, it also can be used for data transmission, such as 
through APIs. For example, many official financial documents are available publicly 
in the Extensible Business Reporting Language (XBRL), which is XML-based.

 This is a representation of the first two rows of the table JOBS_2015 in XML:

<JOB>
     <NAME>Alison</NAME>
     <ID>1</ID>
     <COLOR>'blue'</COLOR>
     <DONE>FALSE</DONE>
</JOB>
<JOB>
     <NAME>Brian</NAME>
     <ID>2</ID>
     <COLOR>'red'</COLOR>
     <DONE>TRUE</DONE>
</JOB>

You can see that each row of the table is denoted by a <JOB> tag, and within each JOB, 
the table’s column names have been used as tags to denote the various fields of infor-
mation. Clearly, storing data in this format takes up more disk space than a standard 
table because XML tags take up disk space, but XML is much more flexible, because 
it’s not limited to a row-and-column format. For this reason, it has become popular in 
applications and documents using non-tabular data and other formats requiring 
such flexibility.

3.2.4 JSON

Though not a markup language, JavaScript Object Notation (JSON) is functionally 
similar, at least when storing or transmitting data. Instead of describing a document, 
JSON typically describes something more like a data structure, such as a list, map, or 
dictionary in many popular programming languages. Here’s the data from the first 
two rows of the table JOBS_2015 in JSON:

[
     {
          NAME: "Alison",
          ID: 1,
          COLOR: "blue",
          DONE: False
     },
     {
          NAME: "Brian",
          ID: 2,
          COLOR: "red",
          DONE: True
     }
]

In terms of structure, this JSON representation looks a lot like the XML representation
you’ve already seen. But the JSON representation is leaner in terms of the number of 
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characters needed to express the data, because JSON was designed to represent data 
objects and not as a document markup language. Therefore, for transmitting data, 
JSON has become very popular. One huge benefit of JSON is that it can be read 
directly as JavaScript code, and many popular programming languages including 
Python and Java have natural representations of JSON as native data objects. For 
interoperability between programming languages, JSON is almost unparalleled in its 
ease of use.

3.2.5 Relational databases

Databases are data storage systems that have been optimized to store and retrieve data 
as efficiently as possible within various contexts. Theoretically, a relational database 
(the most common type of database) contains little more than a set of tables that 
could likewise be represented by a delimited file, as already discussed: row and col-
umn names and one data point per row-column pair. But databases are designed to 
search—or query, in the common jargon—for specific values or ranges of values within 
the entries of the table.

 For example, let’s revisit the JOBS_2015 table:

NAME      ID     COLOR     DONE
Alison    1     'blue'     FALSE
Brian     2     'red'      TRUE
Clara     3     'brown'    TRUE

But this time assume that this table is one of many stored in a database. A database 
query could be stated in plain English as follows:

From JOBS_2015, show me all NAME in rows where DONE=TRUE

This query should return the following:

Brian
Clara

That’s a basic query, and every database has its own language for expressing queries 
like this, though many databases share the same basis query language, the most com-
mon being Structured Query Language (SQL).

 Now imagine that the table contains millions of rows and you’d like to do a query 
similar to the one just shown. Through some tricks of software engineering, which I 
won’t discuss here, a well-designed database is able to retrieve a set of table rows 
matching certain criteria (a query) much faster than a scan of a flat file would. This 
means that if you’re writing an application that needs to search for specific data very 
often, you may improve retrieval speed by orders of magnitude if you use a database 
instead of a flat file.

 The main reason why databases are good at retrieving specific data quickly is the 
database index. A database index is itself a data structure that helps that database soft-
ware find relevant data quickly. It’s like a structural map of the database content, 
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which has been sorted and stored in a clever way and might need to be updated every 
time data in the database changes. Database indexes are not universal, however, 
meaning that the administrator of the database needs to choose which columns of the 
tables are to be indexed, if the default settings aren’t appropriate. The columns that 
are chosen to be indexed are the ones upon which querying will be most efficient, and 
so the choice of index is an important one for the efficiency of your applications that 
use that database.

 Besides querying, another operation that databases are typically good at is joining 
tables. Querying and joining aren’t the only two things that databases are good at, but 
they’re by far the most commonly utilized reasons to use a database over another data 
storage system. Joining, in database jargon, means taking two tables of data and com-
bining them to make another table that contains some of the information of both of 
the original tables.

 For example, assume you have the following table, named CUST_ZIP_CODES:

CUST_ID  ZIP_CODE
1        21230
2        45069
3        21230
4        98033

You’d like to investigate which paint colors have been used in which ZIP codes in 
2015. Because the colors used on the various jobs are in JOBS_2015 and the custom-
ers’ ZIP codes are in CUST_ZIP_CODES, you need to join the tables in order to match 
colors with ZIP codes. An inner join matching ID from table JOBS_2015 and CUST_ID
from table CUST_ZIP_CODES could be stated in plain English:

JOIN tables JOBS_2015 and CUST_ZIP_CODES where ID equals CUST_ID, and
show me ZIP_CODE and COLOR.

You’re telling the database to first match up the customer ID numbers from the two 
tables and then show you only the two columns you care about. Note that there are no 
duplicate column names between the two tables, so there’s no ambiguity in naming. 
But in practice you’d normally have to use a notation like CUST_ZIP_CODES.CUST_ID
to denote the CUST_ID column of CUST_ZIP_CODES. I use the shorter version here 
for brevity.

 The result of the join would look like this:

ZIP_CODE    COLOR
21230       'blue'
45069       'red'
21230       'brown'

Joining can be a very big operation if the original tables are big. If each table had mil-
lions of different IDs, it could take a long time to sort them all and match them up. 
Therefore, if you’re joining tables, you should minimize the size of those tables (pri-
marily by number of rows) because the database software will have to shuffle all rows 
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of both tables based on the join criteria until all appropriate combinations of rows 
have been created in the new table. Joins should be done sparingly and with care.

 It’s a good general rule, if you’re going to query and join, to query the data first
before joining. For example, if you care only about the COLOR in ZIP_CODE 21230, it’s 
usually better to query CUST_ZIP_CODES for ZIP_CODE=21230 first and join the result 
with JOBS_2015 instead of joining first and then querying. This way, there might be far 
less matching to do, and the execution of the operation will be much faster overall. 
For more information and guidance on optimizing database operations, you’ll find 
plenty of practical database books in circulation.

 You can think of databases in general as well-organized libraries, and their indexes 
are good librarians. A librarian can find the book you need in a matter of seconds, 
when it might have taken you quite a long time to find it yourself. If you have a rela-
tively large data set and find that your code or software tool is spending a lot of time 
searching for the data it needs at any given moment, setting up a database is certainly 
worth considering.

3.2.6 Non-relational databases

Even if you don’t have tabular data, you might still be able to make use of the effi-
ciency of database indexing. An entire genre of databases called NoSQL (often inter-
preted as “Not only SQL”) allows for database schemas outside the more traditional 
SQL-style relational databases. Graph databases and document databases are typically 
classified as NoSQL databases.

 Many NoSQL databases return query results in familiar formats. Elasticsearch and 
MongoDB, for instance, return results in JSON format (discussed in section 3.2.4). Elas-
ticsearch in particular is a document-oriented database that’s very good at indexing 
the contents of text. If you’re working with numerous blog posts or books, for exam-
ple, and you’re performing operations such as counting the occurrences of words 
within each blog post or book, then Elasticsearch is typically a good choice, if indexed 
properly.

 Another possible advantage of some NoSQL databases is that, because of the flexibil-
ity of the schema, you can put almost anything into a NoSQL database without much 
hassle. Strings? Maps? Lists? Sure! Why not? MongoDB, for instance, is extremely easy to 
set up and use, but then you do lose some performance that you might have gained by 
setting up a more rigorous index and schema that apply to your data.

 All in all, if you’re working with large amounts of non-tabular data, there’s a good 
chance that someone has developed a database that’s good at indexing, querying, and 
retrieving your type of data. It’s certainly worth a quick look around the internet to 
see what others are using in similar cases.

3.2.7 APIs

An application programming interface (API) in its most common forms is a set of rules for 
communicating with a piece of software. With respect to data, think of an API as a 
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gateway through which you can make requests and then receive the data, using a well-
defined set of terms. Databases have APIs; they define the language that you must use 
in your query, for instance, in order to receive the data you want.

 Many websites also have APIs. Tumblr, for instance, has a public API that allows you 
to ask for and receive information about Tumblr content of certain types, in JSON for-
mat. Tumblr has huge databases containing all the billions of posts hosted on its blog-
ging service. But it has decided what you, as a member of the public, can and can’t 
access within the databases. The methods of access and the limitations are defined by 
the API.

 Tumblr’s API is a REST API accessible via HTTP. I’ve never found the technical 
definition of REST API to be helpful, but it’s a term that people use when discussing 
APIs that are accessible via HTTP—meaning you can usually access them from a web 
browser—and that respond with information in a familiar format. For instance, if you 
register with Tumblr as a developer (it’s free), you can get an API key. This API key is a 
string that’s unique to you, and it tells Tumblr that you’re the one using the API 
whenever you make a request. Then, in your web browser, you can paste the URL 
http://api.tumblr.com/v2/blog/good.tumblr.com/info?api_key=API_KEY, which will 
request information about a particular blog on Tumblr (replacing API_KEY with the 
API key that you were given). After you press Enter, the response should appear in 
your browser window and look something like this (after some reformatting):

{
    meta:
    {
        status: 200,
        msg: "OK"
    },
    response:
    {
        blog:
        {
            title: "",
            name: "good",
            posts: 2435,
            url: "http://good.tumblr.com/",
            updated: 1425428288,
            description: "<font size="6">
                        GOOD is a magazine for the global citizen.
                        </font>”,
            likes: 429
        }
    }
}

This is JSON with some HTML in the description field. It contains some metadata 
about the status of the request and then a response field containing the data that was 
requested. Assuming you know how to parse JSON strings (and likewise HTML), you 
can use this in a programmatic way. If you were curious about the number of likes of 
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Tumblr blogs, you could use this API to request information about any number of 
blogs and compare the numbers of likes that they have received. You wouldn’t want to 
do that, though, from your browser window, because it would take a very long time.

 In order to capture the Tumblr API response programmatically, you need to use an 
HTTP or URL package in your favorite programming language. In Python there is 
urllib, in Java HttpUrlConnection, and R has url, but there are many other packages 
for each of these languages that perform similar tasks. In any case, you’ll have to assem-
ble the request URL (as a string object/variable) and then pass that request to the 
appropriate URL retrieval method, which should return a response similar to the previ-
ous one that can be captured as another object/variable. Here’s an example in Python:

import urllib

requestURL = \
    'http://api.tumblr.com/v2/blog/good.tumblr.com/info?api_key=API_KEY'

response = urllib.urlopen(requestURL)

After running these lines, the variable response should contain a JSON string that 
looks similar to the response shown.

 I remember learning how to use an API like this one from Python, and I was a bit 
confused and overwhelmed at first. Getting the request URL exactly right can be 
tricky if you’re assembling it programmatically from various parts (for example, base 
URL, parameters, API key, and so on). But being adept at using APIs like this one can 
be one of the most powerful tools in data collection, because so much data is available 
through these gateways.

3.2.8 Common bad formats

It’s no secret that I’m not a fan of the typical suites of office software: word processing 
programs, spreadsheets, mail clients. Thankfully, I’m not often required to use them. 
I avoid them whenever possible and never more so than when doing data science. 
That doesn’t mean that I won’t deal with those files; on the contrary, I wouldn’t throw 
away free data. But I make sure to get away from any inconvenient formats as quickly 
as possible. There usually isn’t a good way to interact with them unless I’m using the 
highly specialized programs that were built for them, and these programs typically 
aren’t capable of the analysis that a data scientist usually needs. I can’t remember the 
last time I did (or saw) a solid bit of data science in Microsoft Excel; to me, Excel’s 
methods for analysis are limited, and the interface is unwieldy for anything but look-
ing at tables. But I know I’m biased, so don’t mind me if you’re convinced you can do 
rigorous analysis within a spreadsheet. OpenOffice Calc and Microsoft Excel both 
allow you to export individual sheets from a spreadsheet into CSV formats. If a Micro-
soft Word document contains text I’d like to use, I export it either into plain text or 
maybe HTML or XML.

 A PDF can be a tricky thing as well. I’ve exported lots of text (or copied and 
pasted) from PDFs into plain text files that I then read into a Python program. This is 
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one of my favorite examples of data wrangling, a topic I devote an entire chapter to, 
and so for now it will suffice to say that exporting or scraping text from a PDF (where 
possible) is usually a good idea whenever you want to analyze that text.

3.2.9 Unusual formats

This is the umbrella category for all data formats and storage systems with which I’m 
unfamiliar. All sorts of formats are available, and I’m sure someone had a good reason 
to develop them, but for whatever reason they’re not familiar to me. Sometimes 
they’re archaic; maybe they were superseded by another format, but some legacy data 
sets haven’t yet been updated.

 Sometimes the formats are highly specialized. I once participated in a project 
exploring the chemical structure of a compound and its connection to the way the 
compound smelled (its aroma). The RDKit package (www.rdkit.org) provided a ton of 
helpful functionality for parsing through chemical structures and substructures. But 
much of this functionality was highly specific to chemical structure and its notation. 
Plus the package made heavy use of a fairly sophisticated binary representation of cer-
tain aspects of chemical structure that greatly improved the computational efficiency 
of the algorithms but also made them extremely difficult to understand.

 Here’s what I do when I encounter a data storage system unlike anything I’ve 
seen before:

1 Search and search (and search) online for a few examples of people doing 
something similar to what I want to do. How difficult might it be to adapt these 
examples to my needs?

2 Decide how badly I want the data. Is it worth the trouble? What are the alter-
natives?

3 If it’s worth it, I try to generalize from the similar examples I found. Sometimes 
I can gradually expand from examples by fiddling with parameters and meth-
ods. I try a few things and see what happens.

Dealing with completely unfamiliar data formats or storage systems can be its own 
type of exploration, but rest assured that someone somewhere has accessed the data 
before. If no one has ever accessed the data, then someone was completely mistaken 
in creating the data format in the first place. When in doubt, send a few emails and try 
to find someone who can help you.

3.2.10 Deciding which format to use

Sometimes you don’t have a choice. The data comes in a certain format, and you have 
to deal with it. But if you find that format inefficient, unwieldy, or unpopular, you’re 
usually free to set up a secondary data store that might make things easier, but at the 
additional cost of the time and effort it takes you to set up the secondary data store. 
For applications where access efficiency is critical, the cost can be worth it. For smaller 
projects, maybe not. You’ll have to cross that bridge when you get there.
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 I’ll conclude this section with a few general rules about what data formats to use, 
when you have a choice, and in particular when you’re going to be accessing the data 
from a programming language. Table 3.1 gives the most common good format for 
interacting with data of particular types.

And here are a few guidelines for choosing or converting data formats:

 For spreadsheets and other office documents, export!
 More common formats are usually better for your data type and application.
 Don’t spend too much time converting from a certain format to your favorite; 

weigh the costs and benefits first.

Now that I’ve covered many of the forms in which data might be presented to you, 
hopefully you’ll feel somewhat comfortable in a high-level conversation about data 
formats, stores, and APIs. As always, never hesitate to ask someone for details about a 
term or system you haven’t heard of before. New systems are being developed con-
stantly, and in my experience, anyone who recently learned about a system is usually 
eager to help others learn about it.

3.3 Scouting for data
The previous section discussed many of the common forms that data takes, from file 
formats to databases to APIs. I intended to make these data forms more approachable, 
as well as to increase awareness about the ways you might look for data. It’s not hard to 
find data, much like it’s not hard to find a tree or a river (in certain climates). But 
finding the data that can help you solve your problem is a different story. Or maybe 
you already have data from an internal system. It may seem like that data can answer 
the major questions of your project, but you shouldn’t take it for granted. Maybe a 
data set out there will perfectly complement the data you already have and greatly 
improve results. There’s so much data on the internet and elsewhere; some part of it 
should be able to help you. Even if not, a quick search is certainly worth it, even for a 
long-shot possibility.

Table 3.1 Some common types of data and formats that are good for storing them

Type of data Good, common format

Tabular data, small amount Delimited flat file

Tabular data, large amount with lots of 
searching/querying

Relational database

Plain text, small amount Flat file

Plain text, large amount Non-relational database with text search capabilities

Transmitting data between components JSON

Transmitting documents XML
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 In this section, I discuss the act of looking for data that might help you with your 
project. This is the exploration I talked about at the beginning of this chapter. Now 
that you have some exposure to common forms of data from the previous section, you 
can focus less on the format and more on the content and whether it can help you.

3.3.1 First step: Google search

This may seem obvious, but I still feel like mentioning it: Google searches are not 
perfect. To make them work as well as possible, you have to know what to search for 
and what you’re looking for in the search results. Given the last section’s introduc-
tion to data formats, you now have a little more ammunition for Google searches 
than before.

 A Google search for “Tumblr data” gives different results from a search for “Tumblr
API.” I’m not sure which I prefer, given that I don’t have a specific project involving 
Tumblr at the moment. The former returns results involving the term data as used 
on Tumblr posts as well as third parties selling historical Tumblr data. The latter returns
results that deal almost exclusively with the official Tumblr API, which contains con-
siderable up-to-the-minute information about Tumblr posts. Depending on your proj-
ect, one might be better than the other.

 But it’s definitely worth keeping in mind that terms such as data and API do make 
a difference in web searches. Try the searches “social networking” and “social network-
ing API.” There’s a dramatic difference in results.

 Therefore, when searching for data related to your project, be sure to include 
modifying terms like historical, API, real time, and so on, because they do make a differ-
ence. Likewise, watch out for them in the search results. This may be obvious, but it 
makes a considerable difference in your ability to find what you’re looking for, and so 
it’s worth repeating.

3.3.2 Copyright and licensing

I’ve talked about searching for, accessing, and using data, but there’s another very 
important concern: are you allowed to use it?

 As with software licenses, data may have licensing, copyright, or other restrictions 
that can make it illegal to use the data for certain purposes. If the data comes from 
academic sources, for example (universities, research institutions, and the like), then 
there’s often a restriction that the data can’t be used for profit. Proprietary data, such 
as that of Tumblr or Twitter, often comes with the restriction that you can’t use the 
data to replicate functionality that the platform itself provides. You may not be able to 
make a Tumblr client that does the same things as the standard Tumblr platform, but 
perhaps if you offer other functionality not included in the platform, there would be 
no restriction. Restrictions like these are tricky, and it’s best to read any legal docu-
mentation that the data provider offers. In addition, it’s usually good to search for 
other examples of people and companies using the data in a similar way and see if 
there are any references to legal concerns. Precedent is no guarantee that a particular 
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use of the data is legally sound, but it may provide guidance in your decision to use 
the data or not.

 All in all, you should remain keenly aware that most data sets not owned by you or 
your organization come with restrictions on use. Without confirming that your use 
case is legal, you remain at risk of losing access to the data or, even worse, a lawsuit.

3.3.3 The data you have: is it enough?

Let’s say you’ve found data and confirmed that you’re allowed to use it for your proj-
ect. Should you keep looking for more data, or should you attack the data you have 
immediately? The answer to this question is—like pretty much everything in data sci-
ence—tricky. In this case, the answer is tricky because data sets aren’t always what they 
seem to be or what you want them to be. Take the example of Uber, the taxi service 
app publisher. I recently read that Uber was compelled (upon losing an appeal) to 
turn over trip data to New York City’s Taxi and Limousine Commission (TLC). Sup-
pose you’re an employee of the TLC, and you’d like to compare Uber with traditional 
taxi services in regard to the number of trips taken by riders over many specific routes. 
Given that you have data from both Uber and traditional taxis, it may seem straightfor-
ward to compare the number of trips for similar routes between the two types of car 
services. But once you begin your analysis, you realize that Uber had provided pick-up 
and drop-off locations in terms of ZIP codes, which happen to be the minimum speci-
ficity required by the TLC. ZIP codes can cover large areas, though admittedly less so 
in New York City than anywhere else. Addresses, or at least city blocks, would have 
been considerably better from a data analysis perspective, but requiring such specific-
ity presents legal troubles regarding the privacy of personal data of the users of taxi 
services, so it’s understandable.

 So what should you do? After the first waves of disappointment wear off, you 
should probably check to see whether your data will suffice after all or if you need to 
supplement this data and/or amend your project plans. There’s often a simple way 
to accomplish this: can you run through a few specific examples of your intended 
analyses and see if it makes a significant difference?

 In this taxi-versus-Uber example, you’d like to find out whether the relative non-
specificity of ZIP code can still provide a useful approximation for the many routes 
you’d like to evaluate. Pick a specific route, say Times Square (ZIP code: 10036) to the 
Brooklyn Academy of Music (ZIP code: 11217). If a car travels between 10036 and 
11217, what other specific routes might the rider have taken? In this case, those same 
ZIP codes could also describe a trip from the Intrepid Sea, Air & Space Museum to 
Grand Army Plaza, or likewise a trip from a restaurant in Hell’s Kitchen to an apart-
ment in Park Slope. These probably don’t mean much to people outside the New York 
City area, but for our purposes it suffices to say that these other locations are up to a 
kilometer from the origin and destination of the chosen route, a distance that’s about 
a ten-minute walk and, by NYC standards, not very short. It’s up to you, the data scien-
tist, to make a decision about whether these other locations in the same ZIP codes are 
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close enough or too far from their intended targets. And this decision, in turn, should 
be made based on the project’s goals and the precise questions (from chapter 2) that 
you’re hoping to answer.

3.3.4 Combining data sources

If you find that your data set is insufficient to answer your questions, and you can’t 
find a data set that is sufficient, it might still be possible to combine data sets to find 
answers. This is yet another point that seems obvious at times but is worth mentioning 
because of its importance and because of a few tricky points that might pop up.

 Combining two (or more) data sets can be like fitting puzzle pieces together. If the 
puzzle is, metaphorically, the complete data set you wish you had, then each piece of 
the puzzle—a data set—needs to cover precisely what the other pieces don’t. Sure, 
unlike puzzle pieces, data sets can overlap in some sense, but any gap left after all the 
present pieces have been assembled is an obstacle that needs to be overcome or cir-
cumvented, either by changing the plan or some other reevaluation of how you’re 
going to answer your questions.

 Your multiple data sets might be coming in multiple formats. If you’re adept at 
manipulating each of these formats, this doesn’t usually present a problem, but it can 
be tough to conceptualize how the data sets relate to one another if they’re in vastly 
different forms. A database table and a CSV file are similar to me—they both have 
rows and columns—and so I can typically imagine how they might fit together, as in 
the database example earlier in this chapter, with one data set (one of the tables) pro-
viding the customer’s color choice and another data set (the other table) providing 
the customer’s ZIP code. These two can be combined easily because both data sets are 
based on the same set of customer IDs. If you can imagine how you might match up 
the customer IDs between the two data sets and then combine the accompanying 
information—a join, in database parlance—then you can imagine how to combine 
these two data sets meaningfully.

 On the other hand, combining data sets might not be so simple. During my time as 
the lead data scientist at a Baltimore analytic software firm, I took part in a project in 
which our team was analyzing email data sets as part of a legal investigation. The col-
lection of emails was delivered to us in the form of a few dozen files in PST format, 
which is Microsoft Outlook’s archival format. I’d seen this format before, because I’d 
worked previously with the now-public and commonly studied Enron email data set. 
Each archive file comprised the email from one person’s computer, and because the 
people under investigation often emailed each other, the data sets overlapped. Each 
email, excepting deleted emails, was present in each of the senders’ and recipients’ 
archives. It’s tempting to think that it would be easy to combine all of the email 
archives in to a single file—I chose a simple, large CSV file as the goal format—and 
then analyze this file. But it wasn’t so easy.

 Extracting individual emails from each archive and turning each of them into a 
row of a CSV file was, comparatively, the easy part. The hard part, I quickly realized, 
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was making sure I could keep all of the senders and recipients straight. As it turns out, 
the names listed in the sender and recipient fields of emails are not standardized—
when you send an email, what appears in the SENDER field isn’t always the same as what 
appears in the RECIPIENT field when someone writes an email to you. In fact, even 
within each of these two fields, names are not consistent. If Nikola Tesla sent an email 
to Thomas Edison (names have been changed to protect the innocent), the SENDER
and RECIPIENT fields might be any of the following:

SENDER                             RECIPIENT
Nikola Tesla <nikola@ac.org>       Thomas Edison, CEO <thomas@coned.com>
Nikola <nikola.tesla@ac.org>       thomas.edison@dc.com
ntesla@gmail.com                   tommyed@comcast.com
nikola@tesla.me                    Tom <t@coned.com>
wirelesspower@@tesla.me            litebulbz@hotmail.com

Some of these would be recognizable as Tesla or Edison, even out of context, but oth-
ers would not. To be sure each email is attributed to the right person, you’d also need 
a list of email addresses matched to the correct names. I didn’t have that list, so I did 
the best I could, made some assumptions, and used some fuzzy string matching with 
spot-checking (discussed more in the next chapter on data wrangling) to match as 
many emails as possible with the appropriate names. I thought the multiple email data 
sets would merge nicely together, but I soon found out that this was not the case.

 Data sets can differ in any number of ways; format, nomenclature, and scope (geo-
graphic, temporal, and so on) are a few. As in section 3.3.3 on finding out whether 
your data is enough, before you spend too much time manipulating your multiple 
data sets or diving into analyses, it’s usually extremely helpful and informative to spot-
check a few data points and attempt a quick analysis on a small scale. A quick look into 
a few PST files in the email example made me aware of the disparate naming schemes 
across files and fields and allowed me to plan within the project for the extra time and 
inevitable matching errors that arose.

 Now imagine combining this email data set with internal chat messages in a JSON 
format—potentially containing a different set of user names—with a set of events/ 
appointments in a proprietary calendar format. Assembling them into a single time-
line with unambiguous user names is no simple task, but it might be possible with care 
and awareness of the potential pitfalls.

3.3.5 Web scraping

Sometimes you can find the information you need on the internet, but it’s not what 
you might call a data set in the traditional sense. Social media profiles, like those on 
Facebook or LinkedIn, are great examples of data that’s viewable on the internet but 
not readily available in a standard data format. Therefore, some people choose to 
scrape it from the web.

 I should definitely mention that web scraping is against the terms of service for 
many websites. And some sites have guards in place that will shut down your access if 
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they detect a scraper. Sometimes they detect you because you’re visiting web pages 
much more quickly than a human being can, such as several thousand pages in few 
minutes or even a few hours. Regardless, people have used scraping techniques to 
gather useful data they wouldn’t have otherwise, in some cases circumventing any 
guards by adapting the scraper to act more human.

 Two important things that a web scraper must do well are visit lots of URLs pro-
grammatically and capture the right information from the pages. If you wanted to 
know about your friend network on Facebook, you could theoretically write a script 
that visits the Facebook profiles of all of your friends, saves the profile pages, and then 
parses the pages to get lists of their friends, visits their friends’ profiles, and so on. 
This works only for people who have allowed you to view their profiles and friend lists, 
and would not work for private profiles.

 An example of web scraping that became popular in early 2014 is that of mathema-
tician Chris McKinlay, who used a web scraper to capture data from thousands of pro-
files on the popular dating website OKCupid. He used the information he gathered—
mostly women’s answers to multiple-choice questions on the site—to cluster the 
women into a few types and subsequently optimize a separate profile for himself for 
each of the types he found generally attractive. Because he optimized each profile 
for a certain cluster/type of women, women in that cluster had a high matching score 
(according to OKCupid’s own algorithms) for the respective profile and were there-
fore more likely to engage him in conversation and ultimately to go out on a date with 
him. It seems to have worked out well for him, earning him dozens of dates before he 
met the woman with whom he wanted to start a monogamous relationship.

 For more on the practicalities of building a web scraper, see the documentation for 
the HTTP- and HTML-related utilities of your favorite programming language and 
any number of online guides, as well as section 3.2 on data formats, particularly the 
discussion of HTML.

3.3.6 Measuring or collecting things yourself

Contrary to the principal way I’ve presented data in this chapter—a product of a cul-
ture that wants data for its own sake, existing regardless of whether someone intends 
to use it—you sometimes have the opportunity to collect data the old-fashioned way. 
Methods could be as simple as personally counting the number of people crossing a 
street at a particular crosswalk or perhaps emailing a survey to a group of interest. 
When starting a new project, if you ever ask yourself, “Does the data I need exist?” and 
find that the answer is “No” or “Yes, but I can’t get access to it,” then maybe it would 
be helpful to ask, “Can the data exist?”

 The question “Can the data exist?” is intended to draw attention to the potential 
for simple measures you can take that can create the data set you want. These include 
the following:

 Measuring things in real life —Using tape measures, counting, asking questions 
personally, and so on may seem outmoded, but it’s often underrated.
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 Measuring things online —Clicking around the internet and counting relevant 
web pages, numbers of relevant Google search results, and number of occur-
rences of certain terms on certain Wikipedia pages, among others, can benefit 
your project.

 Scripting and web scraping —Repeated API calls or web scraping of certain pages 
over a period of time can be useful when certain elements in the API or web 
page are constantly changing but you don’t have access to the history.

 Data-collection devices —Today’s concept of the Internet of Things gets consider-
able media buzz partially for its value in creating data from physical devices, 
some of which are capable of recording the physical world—for example, cam-
eras, thermometers, and gyroscopes. Do you have a device (your mobile phone?)
that can help you? Can you buy one?

 Log files or archives —Sometimes jargonized into digital trail or exhaust, log files 
are (or can be) left behind by many software applications. Largely untouched, 
they’re usually called to action only in exceptional circumstances (crashes! 
bugs!). Can you put them to good use in your project?

For that last bullet, much like web scraping, the primary tasks are to identify manually 
whether and where the log files contain data that can help you and to learn how to 
extract this useful data programmatically from a set of log files that contain, in most 
cases, a bunch of other data that you’ll never need. This, perhaps, is the frontier of the 
data wilderness: creating conceptually new data sets using other data that exists for an 
entirely different purpose. I believe data alchemy has been put forth as a possible name 
for this phenomenon, but I’ll leave you to judge whether your own data extractions 
and transformations merit such a mystical title.

3.4 Example: microRNA and gene expression
When I was a PhD student, most of my research was related to quantitative modeling 
of gene expression. I mentioned working in genetics previously, but I haven’t delved 
deeply until now. I find it to be an incredibly interesting field.

 Genetics is the study of the code from which all living things are built. This code is 
present in every organism’s genome, which is composed of DNA or RNA, and copies 
of it are present in every cell. If an organism’s genome has been sequenced, then its 
genome has been parsed into genes and other types of non-gene sequences. Here I 
focus only on the genes and their expression. Biologists’ concept of gene expression
involves the activity of known genes within a biological sample, and we measure gene 
expression using any of several tools that can measure the copy number, or concentra-
tion of specific RNA sequence fragments that are related directly to these genes. If an 
RNA fragment contains a sequence that’s known to match a certain gene but not 
other genes, then that sequence can be used as an indicator of the expression of the 
gene. If that RNA sequence occurs very often (high copy number or concentration) 
in the biological sample, then the expression of the corresponding gene is said to be 
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high, and a sequence that occurs rarely indicates that its associated gene is expressed 
at a low level.

 Two technologies, known as microarrays and sequencing, are common methods for 
measuring gene expression via the concentration or copy number of RNA sequences 
found in biological samples. Sequencing tends to be favored now, but at the time of 
my PhD research, I was analyzing data from microarrays. The data had been given to 
me by a collaborator at the University of Maryland School of Medicine, who had been 
studying the stem cells of Mus musculus—a common mouse—through various stages 
of development. In the earliest stages, stem cells are known to be of a general type 
that can subsequently develop into any of a number of differentiated, or specialized, cell 
types. The progression of cells through these stages of undifferentiated and then spe-
cific differentiated stem cell types isn’t fully understood, but it had been hypothesized 
by my collaborators and others that a special class of RNA sequences called microRNA 
might be involved.

 MicroRNAs (or miRs) are short RNA sequences (about 20 base pairs, vastly shorter 
than most genes) that are known to be present in virtually all organisms. To help 
determine whether miRs help regulate the development of stem cells and differentia-
tion, my collaborators used microarrays to measure the expression of both genes and 
miRs throughout the early stages of development of stem cells.

 The data set consisted of microarray data for both genes and miRs for each of 
the seven stem cell types. A single microarray measures several thousand genes or, 
alternatively, a few hundred miRs. And for each stem cell type, there were two to 
three replicates, meaning that each biological sample was analyzed using two to three 
gene-oriented microarrays and two to three miR-oriented microarrays. Replicates 
are helpful for analyzing variance between samples as well as identifying outliers. 
Given 7 stem cell types and 2 to 3 replicates each for genes and miRs, I had 33 
microarrays in total.

 Because miRs are thought mainly to inhibit expression of genes—they appar-
ently bind to complementary sections of genetic RNA and block that RNA from 
being copied—the main question I asked of the data set was “Can I find any evi-
dence of specific miRs inhibiting the expression of specific genes?” Is the expression 
of any certain gene routinely low whenever the expression of a specific miR is high? 
In addition, I wanted to know whether the expression and inhibiting activity of any 
miRs could be highly correlated with particular stages of stem cell development and 
differentiation.

 Though no one had previously studied this specific topic—the effect of miRs in 
mouse stem cell development—a fair amount of work had been done on related top-
ics. Of particular note was the class of statistical algorithms that attempted to charac-
terize whether a particular miR would target (inhibit) a specific section of genetic 
RNA, based solely on the sequence information alone. If a miR’s base sequence looks 
like this

ACATGTAACCTGTAGATAGAT
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(again, I use T in place of U for convenience), then a perfectly complementary genetic
RNA sequence would be

TGTACATTGGACATCTATCTA

because, within an RNA sequence, the nucleotide A is complementary to T, and C is 
complementary to G. Because these miRs are floating around in a cell’s cytoplasm, as 
are genetic RNA sequences, there’s no guarantee that even a perfect match will bind 
and inhibit gene expression. Under perfect conditions, such complementary sequences 
will bind, but nothing in biology is perfect. It’s also likely that a miR and its perfect 
match will float past each other like two ships passing in the night, as they say. Also, it’s 
a funny quirk of all RNA sequences that sometimes they bend a little too much and 
get stuck to themselves—for miRs the result is known as a hairpin because of the shape 
that’s easy to imagine. In any case, it’s not a foregone conclusion that perfectly com-
plementary sequences will bind; nor is it true that imperfect matches won’t bind. 
Many researchers have explored this and developed algorithms that assign miR-gene 
pairs matching scores based on complementarity and other features of the sequences. 
These are generally referred to as target prediction algorithms, and I made use of two 
such algorithms in my work: one called TargetScan (www.targetscan.org) and another 
called miRanda (www.microrna.org).

 Both TargetScan and miRanda are widely viewed as the products of solid scientific 
research, and both of these algorithms and their predictions are freely available on 
the internet. For any miR-gene pair in my microarray data sets, I had at least two tar-
get prediction scores indicating whether the miR is likely to inhibit expression of the 
gene. The files I obtained from TargetScan look like this (with some columns removed
for clarity):

Gene ID    miRNA         context+ score    percentile
71667      xtr-miR-9b    -0.259            89
71667      xtr-miR-9     -0.248            88
71667      xtr-miR-9a    -0.248            88

As you can see, for each gene and miR/miRNA, TargetScan has given a score repre-
senting the likelihood that the miR will target the genetic RNA. miRanda provides 
similar files. These scores are known to be imperfect, but they are informative, so I 
decided to include them as evidence but not certainty of inhibition of the gene’s 
expression by the miR.

 My main data set was still the set of microarrays I had from my collaborators’ lab, 
and from these I would be able to analyze all expression values of genes and miRs and 
determine positive and negative correlations between them. Also, I could use the tar-
get predictions as further evidence in favor of certain miR-gene target pairs. In the 
framework of Bayesian statistics—discussed more in chapter 8—the target predictions 
can be considered a priori knowledge, and I could adjust that knowledge based on the 
new data I collected—the new microarray data I received from my collaborators. In 
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this way, neither the prediction nor the noisy data set was taken as truth, but both 
informed the final estimates of which miR-gene pairs are most likely true targeting 
interactions.

 So far in this section, I’ve talked about combining gene expression data with 
microRNA data to search for targeting interactions between them and to analyze the 
effects of miRs on stem cell development. In addition, I included two target predic-
tion data sets as further evidence that certain miRs target certain genes. As I com-
pleted analysis based on these data sets, I needed to be able to show that the miRs and 
genes that my models indicated as being related to stem cell development made sense 
in some way. There were two ways I might typically do this: ask my biologist collabora-
tors to test some of my results in the lab to confirm that they were correct, or find 
more data sets online somewhere that were already validated and that supported my 
results in some way.

 If I’d had no experience working with this sort of data, I might have Googled 
“validated microRNA targeting” or “stem cell development gene annotations,” but 
because I knew from past projects that a large public set of annotations of genes 
known as Gene Ontology (GO) terms was available, as well as a database of validated 
miR-gene targeting interactions already reported in scientific publications, I didn’t 
have to search much. GO term annotation can be accessed via a few web-based tools 
(geneontology.org) as well as a package for the R language, among others. I had pre-
viously used these annotations for analyzing groups of genes to see whether they have 
some things in common. In the case of this project, it would help to confirm my 
results if any group of genes found significant within my model with respect to stem 
cell development also had a significant number of GO annotations related to stem 
cells and stem cell development.

 Also, I obviously preferred that any miR-gene target pairs that my model found sig-
nificant would have already been validated in some other reliable way. This is where the 
data set of validated targeting interactions on www.microrna.org comes in. It’s certainly a 
useful data set, but one important aspect of it is that, although some miR-gene target 
pairs have been confirmed, just because a pair hasn’t been confirmed doesn’t mean that 
it isn’t a true target pair. If my model found a particular target pair significant, but it 
hadn’t been validated yet, that didn’t indicate at all that the model was wrong. On the 
other hand, if a validated target pair did not appear significant according to my model, 
then there was some reason for concern. Overall, in the validation step of my project, I 
hoped that all or most of the validated target pairs appeared significant according to the 
model, but I didn’t necessarily need to see validations for my most significant results.

 Lastly, my collaborators had some interest in which families of microRNAs (groups 
of miRs with partially matching sequences) contributed to which stages of stem cell 
development. It turned out that TargetScan provided a nicely formatted file matching 
miRs with their families. In addition to the gene expression microarrays, the microRNA 
expression microarrays, two target prediction algorithm results, a set of gene annota-
tions, and some validated miR-gene target pairs, I added a miR family data set.
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 Needless to say, there were many moving parts in this project. Also, as happens 
quite often in academia, the resulting scientific papers couldn’t include every piece of 
analysis. There’s one paper describing the model and application to a public data set 
(“Inferring MicroRNA Regulation of mRNA with Partially Ordered Samples of Paired 
Expression Data and Exogenous Prediction Algorithms,” PloS ONE, 2012) and another 
paper describing the application to the mouse data set (“Correlated miR-mRNA Expres-
sion Signatures of Mouse Hematopoietic Stem and Progenitor Cell Subsets Predict 
‘Stemness’ and ‘Myeloid’ Interaction Networks,” PLoS ONE, 2014).

 I won’t describe all results here in detail, but I was quite satisfied with the project. 
After matching miRs and genes from their respective expression data sets with their 
predicted target pairs from TargetScan and miRanda, I analyzed them via a Bayesian 
model incorporating all of this data and validated it using GO annotations and known 
target pair validations, with some miR family analysis tacked on. The results weren’t 
perfect; bioinformatics is notoriously complex, not to mention imperfect in its data 
quality. But most validated target pairs were significant, and some relevant GO annota-
tions were overrepresented in significant groups of genes. In later chapters, I’ll delve 
more deeply into statistical models, their significance, and drawing conclusions from 
results, but for now I’d like to leave this example as one in which various data sets have 
been combined in ways that make new analyses possible.

Exercises
Continuing with the Filthy Money Forecasting personal finance app scenario from the 
last chapter’s exercises, try these exercises:

1 List three potential data sources that you expect would be good to examine for 
this project. For each, also list how you would expect to access the data (for 
example, database, API, and so on).

2 Consider the three project goals you listed in exercise 3 in the last chapter. 
What data would you need in order to achieve them?

Summary
 Data science treats data as something that might exist independently of any spe-

cific purpose. Much like nature itself, and all of the organisms and species that 
exist within it, discovered or undiscovered, the realm of data is worth explora-
tion and study.

 Data can be found in many places with varying accessibility, complexity, and 
reliability.

 It’s best to become familiar with some of the forms that data might take, as well 
as how to view and manipulate these forms.

 Before assuming that a data set contains what you want, it’s best to evaluate data 
extent and quality.

 Finding and recognizing data sets that are useful for your project aren’t always 
straightforward, but some preliminary investigation can help.
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Data collected from customers, scientific measure-
ments, IoT sensors, and so on is valuable only if you 
understand it. Data scientists revel in the interesting 
and rewarding challenge of observing, exploring, ana-
lyzing, and interpreting this data. Getting started with 
data science means more than mastering analytic tools 
and techniques, however; the real magic happens when 
you begin to think like a data scientist. This book will 
get you there.

 Think Like a Data Scientist teaches you a step-by-step 
approach to solving real-world data-centric problems. 
By breaking down carefully crafted examples, you'll 

learn to combine analytic, programming, and business perspectives into a repeatable 
process for extracting real knowledge from data. As you read, you'll discover (or 
remember) valuable statistical techniques and explore powerful data science software. 
More importantly, you'll put this knowledge together using a structured process for 
data science. When you've finished, you'll have a strong foundation for a lifetime of 
data science learning and practice.

What's inside

 The data science process, step-by-step
 How to anticipate problems
 Dealing with uncertainty
 Best practices in software and scientific thinking

Readers need beginner programming skills and knowledge of basic statistics.
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You can’t be very effective with data if you don’t know what you have. To get 
to know your data, it’s best to run it through some diagnostics that summarize 
the data and expose any oddities or outliers. Often, we call these descriptive statis-
tics. The goal is to be aware of when the data conforms to the general expecta-
tions that you and your colleagues have of it and, alternatively, when the data 
deviates and might cause problems down the line. The best descriptive statistics 
are the ones that check your most important assumptions and/or have the 
potential to expose significant bias or deviation. 

 This chapter, from Practical Data Science with R describes in detail how you 
might get to know your data using summary statistics, plots, and other descrip-
tive statistics. The examples, complete with excellent figures and code (in R), 
show you exactly how to do them and---more importantly---why. It is the why that 
is most crucial to data science, making this chapter generalizable beyond the R 
language. Data scientists working in any language can benefit from the sugges-
tions and insights of this chapter.

Exploring Data
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Chapter 3 from Practical Data Science with R by 
Nina Zumel and John Mount.

Exploring data
In the last two chapters, you learned how to set the scope and goal of a data science 
project, and how to load your data into R. In this chapter, we’ll start to get our 
hands into the data.

 Suppose your goal is to build a model to predict which of your customers don’t 
have health insurance; perhaps you want to market inexpensive health insurance 
packages to them. You’ve collected a dataset of customers whose health insurance sta-
tus you know. You’ve also identified some customer properties that you believe help 
predict the probability of insurance coverage: age, employment status, income, infor-
mation about residence and vehicles, and so on. You’ve put all your data into a single 
data frame called custdata that you’ve input into R.1 Now you’re ready to start build-
ing the model to identify the customers you’re interested in.

This chapter covers
 Using summary statistics to explore data

 Exploring data using visualization

 Finding problems and issues during data 
exploration

1 We have a copy of this synthetic dataset available for download from https://github.com/WinVector/ 
zmPDSwR/tree/master/Custdata, and once saved, you can load it into R with the command custdata 
<- read.table('custdata.tsv',header=T,sep='\t').
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 It’s tempting to dive right into the modeling step without looking very hard at the 
dataset first, especially when you have a lot of data. Resist the temptation. No dataset is 
perfect: you’ll be missing information about some of your customers, and you’ll have 
incorrect data about others. Some data fields will be dirty and inconsistent. If you 
don’t take the time to examine the data before you start to model, you may find your-
self redoing your work repeatedly as you discover bad data fields or variables that need 
to be transformed before modeling. In the worst case, you’ll build a model that 
returns incorrect predictions—and you won’t be sure why. By addressing data issues 
early, you can save yourself some unnecessary work, and a lot of headaches!

 You’d also like to get a sense of who your customers are: Are they young, middle-
aged, or seniors? How affluent are they? Where do they live? Knowing the answers to 
these questions can help you build a better model, because you’ll have a more spe-
cific idea of what information predicts the probability of insurance coverage more 
accurately.

 In this chapter, we’ll demonstrate some ways to get to know your data, and discuss 
some of the potential issues that you’re looking for as you explore. Data exploration 
uses a combination of summary statistics—means and medians, variances, and counts—
and visualization, or graphs of the data. You can spot some problems just by using sum-
mary statistics; other problems are easier to find visually.

3.1 Using summary statistics to spot problems
In R, you’ll typically use the summary command to take your first look at the data.

> summary(custdata)
custid        sex
Min.   :   2068   F:440
1st Qu.: 345667   M:560
Median : 693403
Mean   : 698500
3rd Qu.:1044606
Max.   :1414286

Listing 3.1 The summary() command

Organizing data for analysis
For most of this book, we’ll assume that the data you’re analyzing is in a single data 
frame. This is not how that data is usually stored. In a database, for example, data 
is usually stored in normalized form to reduce redundancy: information about a single 
customer is spread across many small tables. In log data, data about a single cus-
tomer can be spread across many log entries, or sessions. These formats make it 
easy to add (or in the case of a database, modify) data, but are not optimal for anal-
ysis. You can often join all the data you need into a single table in the database using 
SQL, but in appendix A we’ll discuss commands like join that you can use within R 
to further consolidate data.
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is.employed         income The variable is.employed 
is missing for about a 
third of the data. The 
variable income has 
negative values, which 
are potentially invalid.

Mode :logical   Min.   : -8700
FALSE:73        1st Qu.: 14600
TRUE :599       Median : 35000
NA's :328       Mean   : 53505
                3rd Qu.: 67000
                Max.   :615000

marital.stat
Divorced/Separated:155
Married           :516
Never Married     :233
Widowed           : 96

health.ins About 84% of the 
customers have health 
insurance.

Mode :logical
FALSE:159
TRUE :841
NA's :0

housing.type The variables housing.type, 
recent.move, and num.vehicles 
are each missing 56 values.

Homeowner free and clear    :157
Homeowner with mortgage/loan:412
Occupied with no rent       : 11
Rented                      :364
NA's                        : 56

recent.move      num.vehicles
Mode :logical   Min.   :0.000
FALSE:820       1st Qu.:1.000
TRUE :124       Median :2.000
NA's :56        Mean   :1.916
                3rd Qu.:2.000
                Max.   :6.000
                NA's   :56

age              state.of.res

The average value of the variable 
age seems plausible, but the 
minimum and maximum values 
seem unlikely. The variable 
state.of.res is a categorical 
variable; summary() reports how 
many customers are in each state 
(for the first few states).

Min.   :  0.0   California  :100
1st Qu.: 38.0   New York    : 71
Median : 50.0   Pennsylvania: 70
Mean   : 51.7   Texas       : 56
3rd Qu.: 64.0   Michigan    : 52
Max.   :146.7   Ohio        : 51
                (Other)     :600

The summary command on a data frame reports a variety of summary statistics on the 
numerical columns of the data frame, and count statistics on any categorical columns 
(if the categorical columns have already been read in as factors2). You can also ask for 
summary statistics on specific numerical columns by using the commands mean, 
variance, median, min, max, and quantile (which will return the quartiles of the data 
by default).

2 Categorical variables are of class factor in R. They can be represented as strings (class character), and 
some analytical functions will automatically convert string variables to factor variables. To get a summary of a 
variable, it needs to be a factor.
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 As you see from listing 3.1, the summary of the data helps you quickly spot poten-
tial problems, like missing data or unlikely values. You also get a rough idea of how 
categorical data is distributed. Let’s go into more detail about the typical problems 
that you can spot using the summary. 

3.1.1 Typical problems revealed by data summaries

At this stage, you’re looking for several common issues: missing values, invalid values 
and outliers, and data ranges that are too wide or too narrow. Let’s address each of 
these issues in detail. 

MISSING VALUES

A few missing values may not really be a problem, but if a particular data field is 
largely unpopulated, it shouldn’t be used as an input without some repair (as we’ll dis-
cuss in chapter 4, section 4.1.1). In R, for example, many modeling algorithms will, by 
default, quietly drop rows with missing values. As you see in listing 3.2, all the missing 
values in the is.employed variable could cause R to quietly ignore nearly a third of 
the data.

is.employed The variable is.employed is missing for about a third of 
the data. Why? Is employment status unknown? Did 
the company start collecting employment data only 
recently? Does NA mean “not in the active workforce” 
(for example, students or stay-at-home parents)?

  Mode :logical
 FALSE:73
 TRUE :599
 NA's :328

                       housing.type The variables housing.type, 
recent.move, and num.vehicles 
are only missing a few values. It’s 
probably safe to just drop the 
rows that are missing values—
especially if the missing values 
are all the same 56 rows.

  Homeowner free and clear    :157
 Homeowner with mortgage/loan:412
 Occupied with no rent       : 11
 Rented                      :364
 NA's                        : 56

 recent.move      num.vehicles
 Mode :logical   Min.   :0.000
 FALSE:820       1st Qu.:1.000
 TRUE :124       Median :2.000
 NA's :56        Mean   :1.916
                 3rd Qu.:2.000
                 Max.   :6.000
                 NA's   :56

If a particular data field is largely unpopulated, it’s worth trying to determine why; 
sometimes the fact that a value is missing is informative in and of itself. For example, 
why is the is.employed variable missing so many values? There are many possible rea-
sons, as we noted in listing 3.2.

 Whatever the reason for missing data, you must decide on the most appropriate 
action. Do you include a variable with missing values in your model, or not? If you 

Listing 3.2 Will the variable is.employed be useful for modeling?
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decide to include it, do you drop all the rows where this field is missing, or do you con-
vert the missing values to 0 or to an additional category? We’ll discuss ways to treat 
missing data in chapter 4. In this example, you might decide to drop the data rows 
where you’re missing data about housing or vehicles, since there aren’t many of them. 
You probably don’t want to throw out the data where you’re missing employment 
information, but instead treat the NAs as a third employment category. You will likely 
encounter missing values when model scoring, so you should deal with them during 
model training. 

INVALID VALUES AND OUTLIERS

Even when a column or variable isn’t missing any values, you still want to check that 
the values that you do have make sense. Do you have any invalid values or outliers? 
Examples of invalid values include negative values in what should be a non-negative 
numeric data field (like age or income), or text where you expect numbers. Outliers 
are data points that fall well out of the range of where you expect the data to be. Can 
you spot the outliers and invalid values in listing 3.3?

> summary(custdata$income)
   Min. 1st Qu.  Median    Mean 3rd Qu.
  -8700   14600   35000   53500   67000

Negative values for income could indicate 
bad data. They might also have a special 
meaning, like “amount of debt.” 
Either way, you should check how prevalent 
the issue is, and decide what to do: Do you 
drop the data with negative income? Do 
you convert negative values to zero?

    Max.
 615000

> summary(custdata$age)
   Min. 1st Qu.  Median    Mean 3rd Qu.
    0.0    38.0    50.0    51.7    64.0

Customers of age zero, or customers of an age 
greater than about 110 are outliers. They fall 
out of the range of expected customer values. 
Outliers could be data input errors. They 
could be special sentinel values: zero might 
mean “age unknown” or “refuse to state.” 
And some of your customers might be 
especially long-lived.

    Max.
  146.7

Often, invalid values are simply bad data input. Negative numbers in a field like age, 
however, could be a sentinel value to designate “unknown.” Outliers might also be data 
errors or sentinel values. Or they might be valid but unusual data points—people do 
occasionally live past 100.

 As with missing values, you must decide the most appropriate action: drop the data 
field, drop the data points where this field is bad, or convert the bad data to a useful 
value. Even if you feel certain outliers are valid data, you might still want to omit them 
from model construction (and also collar allowed prediction range), since the usual 
achievable goal of modeling is to predict the typical case correctly. 

DATA RANGE

You also want to pay attention to how much the values in the data vary. If you believe 
that age or income helps to predict the probability of health insurance coverage, then 

Listing 3.3 Examples of invalid values and outliers
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you should make sure there is enough variation in the age and income of your cus-
tomers for you to see the relationships. Let’s look at income again, in listing 3.4. Is the 
data range wide? Is it narrow?

> summary(custdata$income)
   Min. 1st Qu.  Median    Mean 3rd Qu.
  -8700   14600   35000   53500   67000

Income ranges from zero to 
over half a million dollars; a 
very wide range.

   Max.
 615000

Even ignoring negative income, the income variable in listing 3.4 ranges from zero to 
over half a million dollars. That’s pretty wide (though typical for income). Data that 
ranges over several orders of magnitude like this can be a problem for some modeling 
methods. We’ll talk about mitigating data range issues when we talk about logarithmic 
transformations in chapter 4.

 Data can be too narrow, too. Suppose all your customers are between the ages of 
50 and 55. It’s a good bet that age range wouldn’t be a very good predictor of the 
probability of health insurance coverage for that population, since it doesn’t vary 
much at all.

We’ll revisit data range in section 3.2, when we talk about examining data graphically.
 One factor that determines apparent data range is the unit of measurement. To 

take a nontechnical example, we measure the ages of babies and toddlers in weeks or 
in months, because developmental changes happen at that time scale for very young 
children. Suppose we measured babies’ ages in years. It might appear numerically that 
there isn’t much difference between a one-year-old and a two-year-old. In reality, 
there’s a dramatic difference, as any parent can tell you! Units can present potential 
issues in a dataset for another reason, as well. 

UNITS

Does the income data in listing 3.5 represent hourly wages, or yearly wages in units of 
$1000? As a matter of fact, it’s the latter, but what if you thought it was the former? You 
might not notice the error during the modeling stage, but down the line someone will 
start inputting hourly wage data into the model and get back bad predictions in return.

Listing 3.4 Looking at the data range of a variable

How narrow is “too narrow” a data range?
Of course, the term narrow is relative. If we were predicting the ability to read for chil-
dren between the ages of 5 and 10, then age probably is a useful variable as-is. For 
data including adult ages, you may want to transform or bin ages in some way, as you 
don’t expect a significant change in reading ability between ages 40 and 50. You 
should rely on information about the problem domain to judge if the data range is nar-
row, but a rough rule of thumb is the ratio of the standard deviation to the mean. If 
that ratio is very small, then the data isn’t varying much.
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> summary(Income)

The variable Income is defined 
as Income = 
custdata$income/1000. But 
suppose you didn’t know that. 
Looking only at the summary, 
the values could plausibly be 
interpreted to mean either 
“hourly wage” or “yearly 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
   -8.7    14.6    35.0    53.5    67.0   615.0

Are time intervals measured in days, hours, minutes, or milliseconds? Are speeds in 
kilometers per second, miles per hour, or knots? Are monetary amounts in dollars, 
thousands of dollars, or 1/100 of a penny (a customary practice in finance, where cal-
culations are often done in fixed-point arithmetic)? This is actually something that 
you’ll catch by checking data definitions in data dictionaries or documentation, 
rather than in the summary statistics; the difference between hourly wage data and 
annual salary in units of $1000 may not look that obvious at a casual glance. But it’s 
still something to keep in mind while looking over the value ranges of your variables, 
because often you can spot when measurements are in unexpected units. Automobile 
speeds in knots look a lot different than they do in miles per hour. 

3.2 Spotting problems using graphics and visualization
As you’ve seen, you can spot plenty of problems just by looking over the data summa-
ries. For other properties of the data, pictures are better than text. 

We cannot expect a small number of numerical values [summary statistics] to 
consistently convey the wealth of information that exists in data. Numerical reduction 
methods do not retain the information in the data.

—William Cleveland 
 The Elements of Graphing Data

Figure 3.1 shows a plot of how customer ages are distributed. We’ll talk about what the 
y-axis of the graph means later; for right now, just know that the height of the graph 
corresponds to how many customers in the population are of that age. As you can see, 
information like the peak age of the distribution, the existence of subpopulations, and 
the presence of outliers is easier to absorb visually than it is to determine textually.

 The use of graphics to examine data is called visualization. We try to follow William 
Cleveland’s principles for scientific visualization. Details of specific plots aside, the key 
points of Cleveland’s philosophy are these:

 A graphic should display as much information as it can, with the lowest possible 
cognitive strain to the viewer.

 Strive for clarity. Make the data stand out. Specific tips for increasing clarity 
include 
–Avoid too many superimposed elements, such as too many curves in the same 

graphing space.

Listing 3.5 Checking units can prevent inaccurate results later
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> summary(custdata$age)

0.0 38.0 50.0 51.7 64.0 146.7

Customer
“subpopulation”: more

customers over 75 than
you would expect. 

It’s easier to read the mean, median
and central 50% of the customer

population off the summary.

It’s easier to get a sense of the
customer age range from the graph.

The peak of the customer
population is just under
50. That’s not obvious

from the summary. 

Outliers

Figure 3.1 Some information is easier to read from a graph, and some from a summary.

–Find the right aspect ratio and scaling to properly bring out the details of the 
data.

–Avoid having the data all skewed to one side or the other of your graph.

 Visualization is an iterative process. Its purpose is to answer questions about the 
data.

During the visualization stage, you graph the data, learn what you can, and then 
regraph the data to answer the questions that arise from your previous graphic. Differ-
ent graphics are best suited for answering different questions. We’ll look at some of 
them in this section.

 In this book, we use ggplot2 to demonstrate the visualizations and graphics; of 
course, other R visualization packages can produce similar graphics.

A note on ggplot2
The theme of this section is how to use visualization to explore your data, not how to 
use ggplot2. We chose ggplot2 because it excels at combining multiple graphical 
elements together, but its syntax can take some getting used to. The key points to 
understand when looking at our code snippets are these:

 Graphs in ggplot2 can only be defined on data frames. The variables in a 
graph—the x variable, the y variable, the variables that define the color or the
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size of the points—are called aesthetics, and are declared by using the aes
function.

 The ggplot() function declares the graph object. The arguments to ggplot()
can include the data frame of interest and the aesthetics. The ggplot()
function doesn’t of itself produce a visualization; visualizations are produced 
by layers.

 Layers produce the plots and plot transformations and are added to a given 
graph object using the + operator. Each layer can also take a data frame and 
aesthetics as arguments, in addition to plot-specific parameters. Examples of 
layers are geom_point (for a scatter plot) or geom_line (for a line plot).

This syntax will become clearer in the examples that follow. For more information, we 
recommend Hadley Wickham’s reference site http://ggplot2.org, which has pointers 
to online documentation, as well as to Dr. Wickham’s ggplot2: Elegant Graphics for 
Data Analysis (Use R!) (Springer, 2009). 

In the next two sections, we’ll show how to use pictures and graphs to identify data 
characteristics and issues. In section 3.2.2, we’ll look at visualizations for two variables. 
But let’s start by looking at visualizations for single variables. 

3.2.1 Visually checking distributions for a single variable

The visualizations in this section help you answer questions like these:

 What is the peak value of the distribution?
 How many peaks are there in the distribution (unimodality versus bimodality)?
 How normal (or lognormal) is the data? We’ll discuss normal and lognormal 

distributions in appendix B.
 How much does the data vary? Is it concentrated in a certain interval or in a cer-

tain category?

One of the things that’s easier to grasp visually is the shape of the data distribution. 
Except for the blip to the right, the graph in figure 3.1 (which we’ve reproduced as 
the gray curve in figure 3.2) is almost shaped like the normal distribution (see appen-
dix B). As that appendix explains, many summary statistics assume that the data is 
approximately normal in distribution (at least for continuous variables), so you want 
to verify whether this is the case.

 You can also see that the gray curve in figure 3.2 has only one peak, or that it’s uni-
modal. This is another property that you want to check in your data.

 Why? Because (roughly speaking), a unimodal distribution corresponds to one 
population of subjects. For the gray curve in figure 3.2, the mean customer age is 
about 52, and 50% of the customers are between 38 and 64 (the first and third quar-
tiles). So you can say that a “typical” customer is middle-aged and probably possesses 
many of the demographic qualities of a middle-aged person—though of course you 
have to verify that with your actual customer information.
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The black curve in figure 3.2 shows what can happen when you have two peaks, or a 
bimodal distribution. (A distribution with more than two peaks is multimodal.) This set of 
customers has about the same mean age as the customers represented by the gray 
curve—but a 50-year-old is hardly a “typical” customer! This (admittedly exaggerated) 
example corresponds to two populations of customers: a fairly young population 
mostly in their 20s and 30s, and an older population mostly in their 70s. These two 
populations probably have very different behavior patterns, and if you want to model 
whether a customer probably has health insurance or not, it wouldn’t be a bad idea to 
model the two populations separately—especially if you’re using linear or logistic 
regression.

 The histogram and the density plot are two visualizations that help you quickly 
examine the distribution of a numerical variable. Figures 3.1 and 3.2 are density plots. 
Whether you use histograms or density plots is largely a matter of taste. We tend to 
prefer density plots, but histograms are easier to explain to less quantitatively-minded 
audiences. 

HISTOGRAMS

A basic histogram bins a variable into fixed-width buckets and returns the number of 
data points that falls into each bucket. For example, you could group your customers 
by age range, in intervals of five years: 20–25, 25–30, 30–35, and so on. Customers at a 
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> summary(custdata$age)

0.0 38.0 50.0 51.7 64.0 146.7

Min. 1st Qu. Median Mean 3rd Qu. Max.
> summary(Age)

–3.983 25.270 61.400 50.690 75.930 82.230

“Average”
customer–but
not “typical”
customer!

Figure 3.2 A unimodal distribution (gray) can usually be modeled as coming from a single 
population of users. With a bimodal distribution (black), your data often comes from two populations 
of users.
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boundary age would go into the higher bucket: 25-year-olds go into the 25–30 bucket. 
For each bucket, you then count how many customers are in that bucket. The result-
ing histogram is shown in figure 3.3.
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Figure 3.3 A histogram tells you where your data is concentrated. It also visually highlights 
outliers and anomalies.

 You create the histogram in figure 3.3 in ggplot2 with the geom_histogram layer.

library(ggplot2) Load the ggplot2 
library, if you haven’t 
already done so.ggplot(custdata) +

   geom_histogram(aes(x=age),

   binwidth=5, fill="gray")

The binwidth parameter tells 
the geom_histogram call how to 
make bins of five-year intervals 
(default is datarange/30). The fill 
parameter specifies the color of 
the histogram bars (default: 
black).

The primary disadvantage of histograms is that you must decide ahead of time how 
wide the buckets are. If the buckets are too wide, you can lose information about the 
shape of the distribution. If the buckets are too narrow, the histogram can look too 
noisy to read easily. An alternative visualization is the density plot. 

DENSITY PLOTS

You can think of a density plot as a “continuous histogram” of a variable, except the 
area under the density plot is equal to 1. A point on a density plot corresponds to the 

Listing 3.6 Plotting a histogram
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fraction of data (or the percentage of data, divided by 100) that takes on a particular 
value. This fraction is usually very small. When you look at a density plot, you’re more 
interested in the overall shape of the curve than in the actual values on the y-axis. 
You’ve seen the density plot of age; figure 3.4 shows the density plot of income.
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Figure 3.4 Density plots show where data is concentrated. This plot also highlights a population 
of higher-income customers.

 You 
produce figure 3.4 with the geom_density layer, as shown in the following listing.

library(scales)

ggplot(custdata) + geom_density(aes(x=income)) +
   scale_x_continuous(labels=dollar) Set the x-axis labels to dollars.

When the data range is very wide and the mass of the distribution is heavily concen-
trated to one side, like the distribution in figure 3.4, it’s difficult to see the details of its 
shape. For instance, it’s hard to tell the exact value where the income distribution has 
its peak. If the data is non-negative, then one way to bring out more detail is to plot 
the distribution on a logarithmic scale, as shown in figure 3.5. This is equivalent to 
plotting the density plot of log10(income).

Listing 3.7 Producing a density plot

The scales package brings in 
the dollar scale notation.
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Figure 3.5 The density plot of income on a log10 scale highlights details of the income distribution 
that are harder to see in a regular density plot.

In ggplot2, you can plot figure 3.5 with the geom_density and scale_x_log10 layers, 
such as in the next listing.

Set the x-axis to be in log10 scale, with manually 
set tick points and labels as dollars.

ggplot(custdata) + geom_density(aes(x=income)) +
   scale_x_log10(breaks=c(100,1000,10000,100000), labels=dollar) +
   annotation_logticks(sides="bt")

Add log-scaled tick marks to the 
top and bottom of the graph.

When you issued the preceding command, you also got back a warning message:

Warning messages:
1: In scale$trans$trans(x) : NaNs produced
2: Removed 79 rows containing non-finite values (stat_density).

This tells you that ggplot2 ignored the zero- and negative-valued rows (since log(0) 
= Infinity), and that there were 79 such rows. Keep that in mind when evaluating 
the graph.

 In log space, income is distributed as something that looks like a “normalish” distri-
bution, as will be discussed in appendix B. It’s not exactly a normal distribution (in 
fact, it appears to be at least two normal distributions mixed together). 

Listing 3.8 Creating a log-scaled density plot
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When should you use a logarithmic scale?
You should use a logarithmic scale when percent change, or change in orders of mag-
nitude, is more important than changes in absolute units. You should also use a log 
scale to better visualize data that is heavily skewed.

For example, in income data, a difference in income of five thousand dollars means 
something very different in a population where the incomes tend to fall in the tens of 
thousands of dollars than it does in populations where income falls in the hundreds 
of thousands or millions of dollars. In other words, what constitutes a “significant dif-
ference” depends on the order of magnitude of the incomes you’re looking at. Simi-
larly, in a population like that in figure 3.5, a few people with very high income will 
cause the majority of the data to be compressed into a relatively small area of the 
graph. For both those reasons, plotting the income distribution on a logarithmic scale 
is a good idea.

BAR CHARTS

A bar chart is a histogram for discrete data: it records the frequency of every value of a 
categorical variable. Figure 3.6 shows the distribution of marital status in your cus-
tomer dataset. If you believe that marital status helps predict the probability of health 
insurance coverage, then you want to check that you have enough customers with dif-
ferent marital statuses to help you discover the relationship between being married 
(or not) and having health insurance.
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Figure 3.6 Bar charts show the distribution of categorical variables.
store/books/9781617295065

https://itbook.store/books/9781617295065


48 CHAPTER 3 Exploring data

sta
is
th

www.itboo
The ggplot2 command to produce figure 3.6 uses geom_bar:

ggplot(custdata) + geom_bar(aes(x=marital.stat), fill="gray")

This graph doesn’t really show any more information than summary(custdata$marital 
.stat) would show, although some people find the graph easier to absorb than the 
text. Bar charts are most useful when the number of possible values is fairly large, like 
state of residence. In this situation, we often find that a horizontal graph is more legible 
than a vertical graph.
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Figure 3.7 A horizontal bar chart can be easier to read when there are several categories with long names.

 The ggplot2 command to produce figure 3.7 is shown in the next listing.

ggplot(custdata) +
   geom_bar(aes(x=state.of.res), fill="gray") +

Plot bar chart as before: 
state.of.res is on x axis, 
count is on y-axis.

   coord_flip() +

Flip the 
x and y 

axes: 
te.of.res 
 now on 
e y-axis.

   theme(axis.text.y=element_text(size=rel(0.8))) Reduce the size of the y-axis 
tick labels to 80% of default 
size for legibility.

Listing 3.9 Producing a horizontal bar chart
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Cleveland3 recommends that the data in a bar chart (or in a dot plot, Cleveland’s pre-
ferred visualization in this instance) be sorted, to more efficiently extract insight from 
the data. This is shown in figure 3.8.
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Figure 3.8 Sorting the bar chart by count makes it even easier to read.

 This visualization requires a bit more manipulation, at least in ggplot2, because by 
default, ggplot2 will plot the categories of a factor variable in alphabetical order. To 
change this, we have to manually specify the order of the categories—in the factor 
variable, not in ggplot2.

> statesums <- table(custdata$state.of.res) The table() 
command 
aggregates the 
data by state of 
residence—
exactly the 
information the 
bar chart plots.

> statef <- as.data.frame(statesums) Convert the table 
object to a data 
frame using 
as.data.frame(). 
The default 
column names are 
Var1 and Freq.

> colnames(statef)<-c("state.of.res", "count")

e the 
ns for 

ability.

> summary(statef)

Notice that the default ordering for the 
state.of.res variable is alphabetical.

3 See William S. Cleveland, The Elements of Graphing Data, Hobart Press, 1994.

Listing 3.10 Producing a bar chart with sorted categories
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state.of.res     count

Alabama   : 1    Min.   :  1.00

Alaska    : 1    1st Qu.:  5.00

Arizona   : 1    Median : 12.00

Arkansas  : 1    Mean   : 20.00

California: 1    3rd Qu.: 26.25

Colorado  : 1    Max.   :100.00

(Other)   :44

> statef <- transform(statef,

 state.of.res=reorder(state.of.res, count))

Use the reorder() function 
to set the state.of.res 
variable to be count 
ordered. Use the 
transform() function to 
apply the transformation to 
the state.of.res data frame.

> summary(statef) The state.of.res 
variable is now 
count ordered.

 state.of.res     count

Delaware    : 1    Min.   :  1.00

North Dakota: 1    1st Qu.:  5.00

Wyoming     : 1    Median : 12.00

Rhode Island: 1    Mean   : 20.00

Alaska      : 1    3rd Qu.: 26.25

Montana     : 1    Max.   :100.00

(Other)     :44

> ggplot(statef)+ geom_bar(aes(x=state.of.res,y=count),

 stat="identity",

Since the data is being 
passed to geom_bar pre-
aggregated, specify both 
the x and y variables, 
and use stat="identity" 
to plot the data exactly 
as given.

 fill="gray") +

 coord_flip() +
Flip the axes and reduce the 
size of the label text as before.

 theme(axis.text.y=element_text(size=rel(0.8)))

Before we move on to visualizations for two variables, in table 3.1 we’ll summarize the 
visualizations that we’ve discussed in this section.

3.2.2 Visually checking relationships between two variables

In addition to examining variables in isolation, you’ll often want to look at the relation-
ship between two variables. For example, you might want to answer questions like these:

Table 3.1 Visualizations for one variable

Graph type Uses

Histogram or 
density plot

Examines data range
Checks number of modes
Checks if distribution is normal/lognormal
Checks for anomalies and outliers

Bar chart Compares relative or absolute frequencies of the values of a categorical variable 
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 Is there a relationship between the two inputs age and income in my data?
 What kind of relationship, and how strong?
 Is there a relationship between the input marital status and the output health 

insurance? How strong?

You’ll precisely quantify these relationships during the modeling phase, but exploring 
them now gives you a feel for the data and helps you determine which variables are 
the best candidates to include in a model.

 First, let’s consider the relationship between two continuous variables. The most 
obvious way (though not always the best) is the line plot.

LINE PLOTS

Line plots work best when the relationship between two variables is relatively clean: each 
x value has a unique (or nearly unique) y value, as in figure 3.9. You plot figure 3.9 with 
geom_line.

 

x <- runif(100)

First, generate the data for this example. The x variable 
is uniformly randomly distributed between 0 and 1.

y <- x^2 + 0.2*x The y variable is a 
quadratic function of x.ggplo
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Figure 3.9 Example of a line plot

t(data.frame(x=x,y=y), aes(x=x,y=y)) + geom_line()

Plot 
the 
line 

plot.

Listing 3.11 Producing a line plot
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When the data is not so cleanly related, line plots aren’t as useful; you’ll want to use 
the scatter plot instead, as you’ll see in the next section. 

SCATTER PLOTS AND SMOOTHING CURVES

You’d expect there to be a relationship between age and health insurance, and also a 
relationship between income and health insurance. But what is the relationship 
between age and income? If they track each other perfectly, then you might not want 
to use both variables in a model for health insurance. The appropriate summary statis-
tic is the correlation, which we compute on a safe subset of our data.

custdata2 <- subset(custdata,
   (custdata$age > 0 & custdata$age < 100
   & custdata$income > 0))

Only consider a subset of 
data with reasonable age 
and income values.

cor(custdata2$age, custdata2$income) Get correlation of age and income.

[1] -0.02240845 Resulting correlation.

The negative correlation is surprising, since you’d expect that income should increase 
as people get older. A visualization gives you more insight into what’s going on than a 
single number can. Let’s try a scatter plot first; you plot figure 3.10 with geom_point:

ggplot(custdata2, aes(x=age, y=income)) +
   geom_point() + ylim(0, 200000)

0

50000

100000

150000

200000

20 40 60 80
age

in
co

m
e

And it tends to decrease in this range.

But the relationship is hard to see.

Income tends to increase in this range.

Figure 3.10 A scatter plot of income versus age

Listing 3.12 Examining the correlation between age and income
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The relationship between age and income isn’t easy to see. You can try to make the rela-
tionship clearer by also plotting a linear fit through the data, as shown in figure 3.11.

0

50000

100000

150000

200000

20 40 60 80
age

in
co

m
e

Figure 3.11 A scatter plot of income versus age, with a linear fit

 You plot figure 3.11 using the stat_smooth layer:4

ggplot(custdata2, aes(x=age, y=income)) + geom_point() +
  stat_smooth(method="lm") +
  ylim(0, 200000)

In this case, the linear fit doesn’t really capture the shape of the data. You can better 
capture the shape by instead plotting a smoothing curve through the data, as shown 
in figure 3.12.

 In R, smoothing curves are fit using the loess (or lowess) functions, which calcu-
late smoothed local linear fits of the data. In ggplot2, you can plot a smoothing curve 
to the data by using geom_smooth:

ggplot(custdata2, aes(x=age, y=income)) +
   geom_point() + geom_smooth() +
   ylim(0, 200000)

A scatter plot with a smoothing curve also makes a good visualization of the relationship 
between a continuous variable and a Boolean. Suppose you’re considering using age as 
an input to your health insurance model. You might want to plot health insurance 

4 The stat layers in ggplot2 are the layers that perform transformations on the data. They’re usually called 
under the covers by the geom layers. Sometimes you have to call them directly, to access parameters that aren’t 
accessible from the geom layers. In this case, the default smoothing curve used geom_smooth, which is a loess 
curve, as you’ll see shortly. To plot a linear fit we must call stat_smooth directly.
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The ribbon shows the standard
error around the smoothed estimate.

It tends to be wider where data is
sparse, narrower where data is dense. 

The smoothing curve makes it easier to see that
income increases up to about age 40, then tends to

decrease after about age 55 or 60.

Figure 3.12 A scatter plot of income versus age, with a smoothing curve

coverage as a function of age, as shown in figure 3.13. This will show you that the prob-
ability of having health insurance increases as customer age increases.
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Here, the y-variable is Boolean (0/1);
we’ve jittered it for legibility. 

The smoothing curve shows the fraction
of customers with health insurance, as a

function of age.

Figure 3.13 Distribution of customers with health insurance, as a function of age
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You plot figure 3.13 with the command shown in the next listing.

The Boolean variable health.ins must be 
converted to a 0/1 variable using as.numeric.

ggplot(custdata2, aes(x=age, y=as.numeric(health.ins))) +
    geom_point(position=position_jitter(w=0.05, h=0.05)) +  
    geom_smooth() Since y values can only be 0 or 1, add a small 

jitter to get a sense of data density.

Add 
thing 
urve.

In our health insurance examples, the dataset is small enough that the scatter plots 
that you’ve created are still legible. If the dataset were a hundred times bigger, there 
would be so many points that they would begin to plot on top of each other; the scat-
ter plot would turn into an illegible smear. In high-volume situations like this, try an 
aggregated plot, like a hexbin plot. 

HEXBIN PLOTS

A hexbin plot is like a two-dimensional histogram. The data is divided into bins, and the 
number of data points in each bin is represented by color or shading. Let’s go back to 
the income versus age example. Figure 3.14 shows a hexbin plot of the data. Note how 
the smoothing curve traces out the shape formed by the densest region of data.
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Figure 3.14 Hexbin plot of income versus age, with a smoothing curve superimposed in white

Listing 3.13 Plotting the distribution of health.ins as a function of age
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To make a hexbin plot in R, you must have the hexbin package installed. We’ll discuss 
how to install R packages in appendix A. Once hexbin is installed and the library 
loaded, you create the plots using the geom_hex layer.

library(hexbin) Load hexbin library.

ggplot(custdata2, aes(x=age, y=income)) +
   geom_hex(binwidth=c(5, 10000)) + 

Create hexbin with age 
binned into 5-year 
increments, income in 
increments of $10,000.

   geom_smooth(color="white", se=F) + 
Add smoothing 
curve in white; 
suppress 
standard error 
ribbon (se=F).

   ylim(0,200000)

In this section and the previous section, we’ve looked at plots where at least one of the 
variables is numerical. But in our health insurance example, the output is categorical, 
and so are many of the input variables. Next we’ll look at ways to visualize the relation-
ship between two categorical variables. 

BAR CHARTS FOR TWO CATEGORICAL VARIABLES

Let’s examine the relationship between marital status and the probability of health 
insurance coverage. The most straightforward way to visualize this is with a stacked bar 
chart, as shown in figure 3.15.

0

100

200

300

400

500

Divorced/Separated Married Never Married Widowed
marital.stat

co
un

t

health.ins

FALSE

TRUE

Most customers are married.

Never-married
customers are

most likely to be
uninsured.

Widowed
customers are
rare, but very
unlikely to be
uninsured. 

The height of
each bar

represents
total customer

count.

The dark section
represents
uninsured
customers.

Figure 3.15 Health insurance versus marital status: stacked bar chart

Listing 3.14 Producing a hexbin plot
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Some people prefer the side-by-side bar chart, shown in figure 3.16, which makes it 
easier to compare the number of both insured and uninsured across categories.
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Figure 3.16 Health insurance versus marital status: side-by-side bar chart

 The main shortcoming of both the stacked and side-by-side bar charts is that you 
can’t easily compare the ratios of insured to uninsured across categories, especially for 
rare categories like Widowed. You can use what ggplot2 calls a filled bar chart to plot a 
visualization of the ratios directly, as in figure 3.17.

 The filled bar chart makes it obvious that divorced customers are slightly more 
likely to be uninsured than married ones. But you’ve lost the information that being 
widowed, though highly predictive of insurance coverage, is a rare category.

 Which bar chart you use depends on what information is most important for you to 
convey. The ggplot2 commands for each of these plots are given next. Note the use of 
the fill aesthetic; this tells ggplot2 to color (fill) the bars according to the value of the 
variable health.ins. The position argument to geom_bar specifies the bar chart style.

ggplot(custdata) + geom_bar(aes(x=marital.stat,
   fill=health.ins)) Stacked bar chart, the default

ggplot(custdata) + geom_bar(aes(x=marital.stat,
   fill=health.ins),
   position="dodge") Side-by-side bar chart

ggplot(custdata) + geom_bar(aes(x=marital.stat,
   fill=health.ins),
   position="fill") Filled bar chart

Listing 3.15 Specifying different styles of bar chart
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To get a simultaneous sense of both the population in each category and the ratio of 
insured to uninsured, you can add what’s called a rug to the filled bar chart. A rug is a 
series of ticks or points on the x-axis, one tick per datum. The rug is dense where you 
have a lot of data, and sparse where you have little data. This is shown in figure 3.18.
You generate this graph by adding a geom_point layer to the graph.

ggplot(custdata, aes(x=marital.stat)) +

   geom_bar(aes(fill=health.ins), position="fill") +

   geom_point(aes(y=-0.05), size=0.75, alpha=0.3,

Set the points just under 
the y-axis, three-quarters of 
default size, and make them 
slightly transparent with 
the alpha parameter.

   position=position_jitter(h=0.01)) Jitter the points slightly for legibility.

In the preceding examples, one of the variables was binary; the same plots can be 
applied to two variables that each have several categories, but the results are harder to 
read. Suppose you’re interested in the distribution of marriage status across housing 
types. Some find the side-by-side bar chart easiest to read in this situation, but it’s not 
perfect, as you see in figure 3.19.

 A graph like figure 3.19 gets cluttered if either of the variables has a large number 
of categories. A better alternative is to break the distributions into different graphs, 
one for each housing type. In ggplot2 this is called faceting the graph, and you use the 
facet_wrap layer. The result is in figure 3.20.

Listing 3.16 Plotting data with a rug
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Figure 3.17 Health insurance versus marital status: filled bar chart
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Figure 3.18 Health insurance versus marital status: filled bar chart with rug
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Figure 3.19 Distribution of marital status by housing type: side-by-side bar chart
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The code for figures 3.19 and 3.20 looks like the next listing.

ggplot(custdata2) +Side-
y-side 

bar 
chart.

   geom_bar(aes(x=housing.type, fill=marital.stat ),

      position="dodge") +

Tilt the x-axis labels so they 
don’t overlap. You can also 

use coord_flip() to rotate the 
graph, as we saw previously. 

Some prefer coord_flip() 
because the theme() layer is 

complicated to use.
   theme(axis.text.x = element_text(angle = 45, hjust = 1))

 

ggplot(custdata2) +The 
ceted 

bar 
chart.

 

   geom_bar(aes(x=marital.stat), position="dodge",

      fill="darkgray") +

   facet_wrap(~housing.type, scales="free_y") +

Facet the graph by housing.type. The
scales="free_y" argument specifies 
that each facet has an independently
scaled y-axis (the default is that all 
facets have the same scales on both 
axes). The argument free_x would 
free the x-axis scaling, and the 
argument free frees both axes.

   theme(axis.text.x = element_text(angle = 45, hjust = 1))

As of this writing, facet_wrap is incompatible with 
coord_flip, so we have to tilt the x-axis labels.

Listing 3.17 Plotting a bar chart with and without facets

Homeowner free and clear Homeowner with mortgage/loan
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Note that every facet has a
different scale on the y-axis.

Figure 3.20 Distribution of marital status by housing type: faceted side-by-side bar chart
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Table 3.2 summarizes the visualizations for two variables that we’ve covered.

There are many other variations and visualizations you could use to explore the data; 
the preceding set covers some of the most useful and basic graphs. You should try dif-
ferent kinds of graphs to get different insights from the data. It’s an interactive pro-
cess. One graph will raise questions that you can try to answer by replotting the data 
again, with a different visualization.

 Eventually, you’ll explore your data enough to get a sense of it and to spot most 
major problems and issues. In the next chapter, we’ll discuss some ways to address 
common problems that you may discover in the data. 

3.3 Summary
At this point, you’ve gotten a feel for your data. You’ve explored it through summaries 
and visualizations; you now have a sense of the quality of your data, and of the rela-
tionships among your variables. You’ve caught and are ready to correct several kinds 
of data issues—although you’ll likely run into more issues as you progress.

 Maybe some of the things you’ve discovered have led you to reevaluate the ques-
tion you’re trying to answer, or to modify your goals. Maybe you’ve decided that you 

Table 3.2 Visualizations for two variables

Graph type Uses

Line plot Shows the relationship between two continuous variables. Best when that 
relationship is functional, or nearly so.

Scatter plot Shows the relationship between two continuous variables. Best when the 
relationship is too loose or cloud-like to be easily seen on a line plot.

Smoothing curve Shows underlying “average” relationship, or trend, between two continuous 
variables. Can also be used to show the relationship between a continuous 
and a binary or Boolean variable: the fraction of true values of the discrete 
variable as a function of the continuous variable.

Hexbin plot Shows the relationship between two continuous variables when the data is 
very dense.

Stacked bar chart Shows the relationship between two categorical variables (var1 and 
var2). Highlights the frequencies of each value of var1.

Side-by-side bar chart Shows the relationship between two categorical variables (var1 and 
var2). Good for comparing the frequencies of each value of var2 across 
the values of var1. Works best when var2 is binary.

Filled bar chart Shows the relationship between two categorical variables (var1 and 
var2). Good for comparing the relative frequencies of each value of var2 
within each value of var1. Works best when var2 is binary.

Bar chart with faceting Shows the relationship between two categorical variables (var1 and 
var2). Best for comparing the relative frequencies of each value of var2 
within each value of var1 when var2 takes on more than two values. 
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need more or different types of data to achieve your goals. This is all good. As we men-
tioned in the previous chapter, the data science process is made of loops within loops.
The data exploration and data cleaning stages (we’ll discuss cleaning in the next
chapter) are two of the more time-consuming—and also the most important—stages
of the process. Without good data, you can’t build good models. Time you spend here
is time you don’t waste elsewhere.

 In the next chapter, we’ll talk about fixing the issues that you’ve discovered in the
data.

 

Key takeaways
 Take the time to examine your data before diving into the modeling.

 The summary command helps you spot issues with data range, units, data type,
and missing or invalid values.

 Visualization additionally gives you a sense of data distribution and relation-
ships among variables.

 Visualization is an iterative process and helps answer questions about the
data. Time spent here is time not wasted during the modeling process.
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Business analysts and developers are increasingly col-
lecting, curating, analyzing, and reporting on crucial 
business data. The R language and its associated tools 
provide a straightforward way to tackle day-to-day data 
science tasks without a lot of academic theory or 
advanced mathematics.

 Practical Data Science with R shows you how to apply 
the R programming language and useful statistical 
techniques to everyday business situations. Using 
examples from marketing, business intelligence, and 
decision support, it shows you how to design experi-
ments (such as A/B tests), build predictive models, 

and present results to audiences of all levels.

What's inside

 Data science for the business professional
 Statistical analysis using the R language
 Project lifecycle, from planning to delivery
 Numerous instantly familiar use cases
 Keys to effective data presentations

This book is accessible to readers without a background in data science. Some familiar-
ity with basic statistics, R, or another scripting language is assumed.
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Just like real life can sometimes be surprising and crazy and chaotic, real-life 
     data can do all sorts of unexpected things. We, with our years of experience 
living in the real world, have conditioned ourselves to handle it all. That’s a vir-
tue of being human: we are fundamentally malleable and adaptive. Machine 
learning tools aren’t quite as lucky. They do only what their code says to do, and-
--adaptive as machine learning tools are---if that code doesn’t account for real-
world outliers and other oddities, the machine learning tool will either grind to 
a halt or continue as normal while producing very abnormal and very problem-
atic results in the face of adversity. Both of these outcomes are bad.

 This chapter from Real-World Machine Learning tells you what might happen 
when you try to stuff data from real life into a sophisticated but decidedly 
unworldly learning algorithm. In addition to trying to scare you with the com-
plexity of the task, the chapter demonstrates important and indispensable meth-
ods for avoiding the most serious pitfalls of machine learning. Following the 
guidelines and advice given here, your next machine-learning project might just 
be able to handle what the world throws at it.

Real-world Data
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Chapter 2 from Real-World Machine Learning by 
Henrik Brink, Joseph W. Richards, and 
Mark Fetherolf

Real-world data
In supervised machine learning, you use data to teach automated systems how to 
make accurate decisions. ML algorithms are designed to discover patterns and asso-
ciations in historical training data; they learn from that data and encode that learn-
ing into a model to accurately predict a data attribute of importance for new data. 
Training data, therefore, is fundamental in the pursuit of machine learning. With 
high-quality data, subtle nuances and correlations can be accurately captured and 
high-fidelity predictive systems can be built. But if training data is of poor quality, 
the efforts of even the best ML algorithms may be rendered useless.

 This chapter serves as your guide to collecting and compiling training data for 
use in the supervised machine-learning workflow (figure 2.1). We give general 
guidelines for preparing training data for ML modeling and warn of some of the 
common pitfalls. Much of the art of machine learning is in exploring and visualiz-
ing training data to assess data quality and guide the learning process. To that end,

This chapter covers
 Getting started with machine learning

 Collecting training data

 Using data-visualization techniques

 Preparing your data for ML
65
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we provide an overview of some of the most useful data-visualization techniques. 
Finally, we discuss how to prepare a training dataset for ML model building, which is 
the subject of chapter 3.

 This chapter uses a real-world machine-learning example: churn prediction. In 
business, churn refers to the act of a customer canceling or unsubscribing from a 
paid service. An important, high-value problem is to predict which customers are 
likely to churn in the near future. If a company has an accurate idea of which cus-
tomers may unsubscribe from their service, then they may intervene by sending a 
message or offering a discount. This intervention can save companies millions of 
dollars, as the typical cost of new customer acquisition largely outpaces the cost of 
intervention on churners. Therefore, a machine-learning solution to churn predic-
tion—whereby those users who are likely to churn are predicted weeks in advance—
can be extremely valuable.

 This chapter also uses datasets that are available online and widely used in machine-
learning books and documentation: Titanic Passengers and Auto MPG datasets.

2.1 Getting started: data collection
To get started with machine learning, the first step is to ask a question that’s suited for 
an ML approach. Although ML has many flavors, most real-world problems in machine
learning deal with predicting a target variable (or variables) of interest. In this book, we 
cover primarily these supervised ML problems. Questions that are well suited for a 
supervised ML approach include the following:

 Which of my customers will churn this month?
 Will this user click my advertisement?
 Is this user account fraudulent?

AnswersNew data

Prediction

Modeling

Model optimization

Model building

Historical data

Model evaluation

Figure 2.1 The basic ML workflow. 
Because this chapter covers data, 
we’ve highlighted the boxes indicating 
historical data and new data.
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 Is the sentiment of this tweet negative, positive, or neutral?
 What will demand for my product be next month?

You’ll notice a few commonalities in these questions. First, they all require making 
assessments on one or several instances of interest. These instances can be people 
(such as in the churn question), events (such as the tweet sentiment question), or 
even periods of time (such as in the product demand question). 

 Second, each of these problems has a well-defined target of interest, which in some 
cases is binary (churn versus not churn, fraud versus not fraud), in some cases takes 
on multiple classes (negative versus positive versus neutral), or even hundreds or thou-
sands of classes (picking a song out of a large library) and in others takes on numeri-
cal values (product demand). Note that in statistics and computer science, the target is 
also commonly referred to as the response or dependent variable. These terms may be 
used interchangeably.

 Third, each of these problems can have sets of historical data in which the target is 
known. For instance, over weeks or months of data collection, you can determine 
which of your subscribers churned and which people clicked your ads. With some 
manual effort, you can assess the sentiment of different tweets. In addition to known 
target values, your historical data files will contain information about each instance 
that’s knowable at the time of prediction. These are input features (also commonly 
referred to as the explanatory or independent variables). For example, the product usage 
history of each customer, along with the customer’s demographics and account infor-
mation, would be appropriate input features for churn prediction. The input features, 
together with the known values of the target variable, compose the training set. 

 Finally, each of these questions comes with an implied action if the target were 
knowable. For example, if you knew that a user would click your ad, you would bid on 
that user and serve the user an ad. Likewise, if you knew precisely your product 
demand for the upcoming month, you would position your supply chain to match 
that demand. The role of the ML algorithm is to use the training set to determine how 
the set of input features can most accurately predict the target variable. The result of 
this “learning” is encoded in a machine-learning model. When new instances (with an 
unknown target) are observed, their features are fed into the ML model, which gener-
ates predictions on those instances. Ultimately, those predictions enable the end user 
to taker smarter (and faster) actions. In addition to producing predictions, the ML 
model allows the user to draw inferences about the relationships between the input 
features and the target variable.

 Let’s put all this in the context of the churn prediction problem. Imagine that you 
work for a telecom company and that the question of interest is, “Which of my current 
cell-phone subscribers will unsubscribe in the next month?” Here, each instance is a 
current subscriber. Likewise, the target variable is the binary outcome of whether each 
subscriber cancelled service during that month. The input features can consist of any 
information about each customer that’s knowable at the beginning of the month, 
such as the current duration of the account, details on the subscription plan, and 
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usage information such as total number of calls made and minutes used in the previ-
ous month. Figure 2.2 shows the first four rows of an example training set for telecom 
churn prediction.

The aim of this section is to give a basic guide for properly collecting training data for 
machine learning. Data collection can differ tremendously from industry to industry, 
but several common questions and pain points arise when assembling training data. 
The following subsections provide a practical guide to addressing four of the most 
common data-collection questions: 

 Which input features should I include? 
 How do I obtain known values of my target variable? 
 How much training data do I need? 
 How do I know if my training data is good enough?

2.1.1 Which features should be included?

In machine-learning problems, you’ll typically have dozens of features that you could 
use to predict the target variable. In the telecom churn problem, input attributes 
about each customer’s demographics (age, gender, location), subscription plan (sta-
tus, time remaining, time since last renewal, preferred status), and usage (calling his-
tory, text-messaging data and data usage, payment history) may all be available to use 
as input features. Only two practical restrictions exist on whether something may be 
used as an input feature:

 The value of the feature must be known at the time predictions are needed (for 
example, at the beginning of the month for the telecom churn example).

 The feature must be numerical or categorical in nature (chapter 5 shows how 
non-numerical data can be transformed into features via feature engineering).

Data such as Calling History data streams can be processed into a set of numerical 
and/or categorical features by computing summary statistics on the data, such as total 
minutes used, ratio of day/night minutes used, ratio of week/weekend minutes used, 
and proportion of minutes used in network.

Cust. ID

502

1007

State

FL

OR

WI

KY

Acct
length

124

48

63

58

Area
code

561

Int’l
plan

No

No

No

No

Voicemail
plan

Yes

No

Yes

No

Total
messages

Total
mins.

Total
calls

503

608

606

104

92

119

116

251.4

190.4

152.2

247.2

28

0

34

0

Churned?

False

False

False

True

1789

2568

Features Target

Figure 2.2 Training data with four instances for the telecom churn problem
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 Given such a broad array of possible features, which should you use? As a simple 
rule of thumb, features should be included only if they’re suspected to be related to 
the target variable. Insofar as the goal of supervised ML is to predict the target, fea-
tures that obviously have nothing to do with the target should be excluded. For exam-
ple, if a distinguishing identification number was available for each customer, it 
shouldn’t be used as an input feature to predict whether the customer will unsub-
scribe. Such useless features make it more difficult to detect the true relationships 
(signals) from the random perturbations in the data (noise). The more uninformative 
features are present, the lower the signal-to-noise ratio and thus the less accurate (on 
average) the ML model will be.

 Likewise, excluding an input feature because it wasn’t previously known to be 
related to the target can also hurt the accuracy of your ML model. Indeed, it’s the role 
of ML to discover new patterns and relationships in data! Suppose, for instance, that a 
feature counting the number of current unopened voicemail messages was excluded 
from the feature set. Yet, some small subset of the population has ceased to check 
their voicemail because they decided to change carriers in the following month. This 
signal would express itself in the data as a slightly increased conditional probability of 
churn for customers with a large number of unopened voicemails. Exclusion of that 
input feature would deprive the ML algorithm of important information and there-
fore would result in an ML system of lower predictive accuracy. Because ML algo-
rithms are able to discover subtle, nonlinear relationships, features beyond the known,
first-order effects can have a substantial impact on the accuracy of the model.

 In selecting a set of input features to use, you face a trade-off. On one hand, throw-
ing every possible feature that comes to mind (“the kitchen sink”) into the model can 
drown out the handful of features that contain any signal with an overwhelming 
amount of noise. The accuracy of the ML model then suffers because it can’t distin-
guish true patterns from random noise. On the other extreme, hand-selecting a small 
subset of features that you already know are related to the target variable can cause 
you to omit other highly predictive features. As a result, the accuracy of the ML model 
suffers because the model doesn’t know about the neglected features, which are pre-
dictive of the target.

 Faced with this trade-off, the most practical approach is the following:

1 Include all the features that you suspect to be predictive of the target variable. 
Fit an ML model. If the accuracy of the model is sufficient, stop.

2 Otherwise, expand the feature set by including other features that are less obvi-
ously related to the target. Fit another model and assess the accuracy. If perfor-
mance is sufficient, stop.

3 Otherwise, starting from the expanded feature set, run an ML feature selection algo-
rithm to choose the best, most predictive subset of your expanded feature set.

We further discuss feature selection algorithms in chapter 5. These approaches seek 
the most accurate model built on a subset of the feature set; they retain the signal in 
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the feature set while discarding the noise. Though computationally expensive, they 
can yield a tremendous boost in model performance.

 To finish this subsection, it’s important to note that in order to use an input fea-
ture, that feature doesn’t have to be present for each instance. For example, if the 
ages of your customers are known for only 75% of your client base, you could still use 
age as an input feature. We discuss ways to handle missing data later in the chapter.

2.1.2 How can we obtain ground truth for the target variable?

One of the most difficult hurdles in getting started with supervised machine learning 
is the aggregation of training instances with a known target variable. This process 
often requires running an existing, suboptimal system for a period of time, until 
enough training data is collected. For example, in building out an ML solution for 
telecom churn, you first need to sit on your hands and watch over several weeks or 
months as some customers unsubscribe and others renew. After you have enough 
training instances to build an accurate ML model, you can flip the switch and start 
using ML in production.

 Each use case will have a different process by which ground truth—the actual or 
observed value of the target variable—can be collected or estimated. For example, con-
sider the following training-data collection processes for a few selected ML use cases:

 Ad targeting —You can run a campaign for a few days to determine which users 
did/didn’t click your ad and which users converted.

 Fraud detection —You can pore over your past data to figure out which users were 
fraudulent and which were legitimate.

 Demand forecasting —You can go into your historical supply-chain management 
data logs to determine the demand over the past months or years.

 Twitter sentiment —Getting information on the true intended sentiment is con-
siderably harder. You can perform manual analysis on a set of tweets by having 
people read and opine on tweets (or use crowdsourcing).

Although the collection of instances of known target variables can be painful, both in 
terms of time and money, the benefits of migrating to an ML solution are likely to 
more than make up for those losses. Other ways of obtaining ground-truth values of 
the target variable include the following:

 Dedicating analysts to manually look through past or current data to determine 
or estimate the ground-truth values of the target

 Using crowdsourcing to use the “wisdom of crowds” in order to attain estimates 
of the target

 Conducting follow-up interviews or other hands-on experiments with customers
 Running controlled experiments (for example, A/B tests) and monitoring the 

responses

Each of these strategies is labor-intensive, but you can accelerate the learning process 
and shorten the time required to collect training data by collecting only target variables 
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for the instances that have the most influence on the machine-learning model. One 
example of this is a method called active learning. Given an existing (small) training set
and a (large) set of data with unknown response variable, active learning identifies the 
subset of instances from the latter set whose inclusion in the training set would yield 
the most accurate ML model. In this sense, active learning can accelerate the produc-
tion of an accurate ML model by focusing manual resources. For more information 
on active learning and related methods, see the 2009 presentation by Dasgupta and 
Langford from ICML.1

2.1.3 How much training data is required?
Given the difficulty of observing and collecting the response variable for data instances, 
you might wonder how much training data is required to get an ML model up and 
running. Unfortunately, this question is so problem-specific that it’s impossible to give 
a universal response or even a rule of thumb.

 These factors determine the amount of training data needed:

 The complexity of the problem. Does the relationship between the input features
and target variable follow a simple pattern, or is it complex and nonlinear?

 The requirements for accuracy. If you require only a 60% success rate for your 
problem, less training data is required than if you need to achieve a 95% suc-
cess rate.

 The dimensionality of the feature space. If only two input features are available, 
less training data will be required than if there were 2,000 features.

One guiding principle to remember is that, as the training set grows, the models will 
(on average) get more accurate. (This assumes that the data remains representative of 
the ongoing data-generating process, which you’ll learn more about in the next sec-
tion.) More training data results in higher accuracy because of the data-driven nature 
of ML models. Because the relationship between the features and target is learned 
entirely from the training data, the more you have, the higher the model’s ability to 
recognize and capture more-subtle patterns and relationships.

 Using the telecom data from earlier in the chapter, we can demonstrate how the 
ML model improves with more training data and also offer a strategy to assess whether 
more training data is required. The telecom training dataset consists of 3,333 instances, 
each containing 19 features plus the binary outcome of unsubscribed versus renewed. 
Using this data, it’s straightforward to assess whether you need to collect more data. 
Do the following:

1 Using the current training set, choose a grid of subsample sizes to try. For exam-
ple, with this telecom training set of 3,333 instances of training data, your grid 
could be 500; 1,000; 1,500; 2,000; 2,500; 3,000.

2 For each sample size, randomly draw that many instances (without replacement)
from the training set.

1 See http://videolectures.net/icml09_dasgupta_langford_actl/.
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3 With each subsample of training data, build an ML model and assess the accu-
racy of that model (we talk about ML evaluation metrics in chapter 4).

4 Assess how the accuracy changes as a function of sample size. If it seems to level 
off at the higher sample sizes, the existing training set is probably sufficient. But 
if the accuracy continues to rise for the larger samples, the inclusion of more 
training instances would likely boost accuracy.

Alternatively, if you have a clear accuracy target, you can use this strategy to assess 
whether that target has been fulfilled by your current ML model built on the existing 
training data (in which case it isn’t necessary to amass more training data).

 Figure 2.3 demonstrates how the accuracy of the fitted ML model changes as a 
function of the number of training instances used with the telecom dataset. In this 
case, it’s clear that the ML model improves as you add training data: moving from 250 
to 500 to 750 training examples produces significant improvements in the accuracy 
level. Yet, as you increase the number of training instances beyond 2,000, the accuracy 
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Figure 2.3 Testing whether the existing sample of 3,333 training instances is enough data to 
build an accurate telecom churn ML model. The black line represents the average accuracy over 
10 repetitions of the assessment routine, and the shaded bands represent the error bands.
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levels off. This is evidence that the ML model won’t improve substantially if you add 
more training instances. (This doesn’t mean that significant improvements couldn’t 
be made by using more features.)

2.1.4 Is the training set representative enough?

Besides the size of the training set, another important factor for generating accurate 
predictive ML models is the representativeness of the training set. How similar are the 
instances in the training set to the instances that will be collected in the future? 
Because the goal of supervised machine learning is to generate accurate predictions 
on new data, it’s fundamental that the training set be representative of the sorts of 
instances that you ultimately want to generate predictions for. A training set that con-
sists of a nonrepresentative sample of what future data will look like is called sample-
selection bias or covariate shift.

 A training sample could be nonrepresentative for several reasons:

 It was possible to obtain ground truth for the target variable for only a certain, 
biased subsample of data. For example, if instances of fraud in your historical 
data were detected only if they cost the company more than $1,000, then a 
model trained on that data will have difficulty identifying cases of fraud that 
result in losses less than $1,000.

 The properties of the instances have changed over time. For example, if your 
training example consists of historical data on medical insurance fraud, but 
new laws have substantially changed the ways in which medical insurers must 
conduct their business, then your predictions on the new data may not be 
appropriate.

 The input feature set has changed over time. For example, say the set of loca-
tion attributes that you collect on each customer has changed; you used to col-
lect ZIP code and state, but now collect IP address. This change may require 
you to modify the feature set used for the model and potentially discard old 
data from the training set.

In each of these cases, an ML model fit to the training data may not extrapolate well 
to new data. To borrow an adage: you wouldn’t necessarily want to use your model 
trained on apples to try to predict on oranges! The predictive accuracy of the model 
on oranges would likely not be good.

 To avoid these problems, it’s important to attempt to make the training set as rep-
resentative of future data as possible. This entails structuring your training-data collec-
tion process in such a way that biases are removed. As we mention in the following 
section, visualization can also help ensure that the training data is representative.

 Now that you have an idea of how to collect training data, your next task is to struc-
ture and assemble that data to get ready for ML model building. The next section 
shows how to preprocess your training data so you can start building models (the 
topic of chapter 3).
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2.2 Preprocessing the data for modeling
Collecting data is the first step toward preparing the data for modeling, but some-
times you must run the data through a few preprocessing steps, depending on the 
composition of the dataset. Many machine-learning algorithms work only on numeri-
cal data—integers and real-valued numbers. The simplest ML datasets come in this 
format, but many include other types of features, such as categorical variables, and 
some have missing values. Sometimes you need to construct or compute features 
through feature engineering. Some numeric features may need to be rescaled to 
make them comparable or to bring them into line with a frequency distribution (for 
example, grading on the normal curve). In this section, you’ll look at these common 
data preprocessing steps needed for real-world machine learning.

2.2.1 Categorical features

The most common type of non-numerical feature is the categorical feature. A feature 
is categorical if values can be placed in buckets and the order of values isn’t important. 
In some cases, this type of feature is easy to identify (for example, when it takes on 
only a few string values, such as spam and ham). In other cases, whether a feature is a 
numerical (integer) feature or categorical isn’t so obvious. Sometimes either may be 
a valid representation, and the choice can affect the performance of the model. An 
example is a feature representing the day of the week, which could validly be encoded 
as either numerical (number of days since Sunday) or as categorical (the names Mon-
day, Tuesday, and so forth). You aren’t going to look at model building and perfor-
mance until chapters 3 and 4, but this section introduces a technique for dealing with 
categorical features. Figure 2.4 points out categorical features in a few datasets.
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Figure 2.4 Identifying categorical features. At the top is the simple Person dataset, which has a Marital 
Status categorical feature. At the bottom is a dataset with information about Titanic passengers. The 
features identified as categorical here are Survived (whether the passenger survived or not), Pclass (what 
class the passenger was traveling on), Gender (male or female), and Embarked (from which city the 
passenger embarked).
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Some machine-learning algorithms use categorical features natively, but generally 
they need data in numerical form. You can encode categorical features as numbers 
(one number per category), but you can’t use this encoded data as a true categorical 
feature because you’ve then introduced an (arbitrary) order of categories. Recall that 
one of the properties of categorical features is that they aren’t ordered. Instead, you 
can convert each of the categories into a separate binary feature that has value 1 for 
instances for which the category appeared, and value 0 when it didn’t. Hence, each 
categorical feature is converted to a set of binary features, one per category. Features 
constructed in this way are sometimes called dummy variables. Figure 2.5 illustrates this 
concept further.

Male
Female
Male
Male
Female
Male
Female
Female

Categorical feature
with two categories:
“Male” and “Female” 

Categorical feature
converted to two binary
features: one per category

1
0
1
1
0
1
0
0

MaleGender

0
1
0
0
1
0
1
1

Female

Figure 2.5 Converting 
categorical columns to 
numerical columns

The pseudocode for converting the categorical features in figure 2.5 to binary fea-
tures looks like the following listing. Note that categories is a special NumPy type 
(www.numpy.org) such that (data == cat) yields a list of Boolean values.

def cat_to_num(data):
     categories = unique(data)
     features = []
     for cat in categories:
            binary = (data == cat)
            features.append(binary.astype("int"))
     return features

NOTE Readers familiar with the Python programming language may have 
noticed that the preceding example isn’t just pseudocode, but also valid 
Python. You’ll see this a lot throughout the book: we introduce a code snippet 
as pseudocode, but unless otherwise noted, it’s working code. To make the 
code simpler, we implicitly import a few helper libraries, such as numpy and 
scipy. Our examples will generally work if you include from numpy import *, 

Listing 2.1 Convert categorical features to numerical binary features 
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and from scipy import *. Note that although this approach is convenient for 
trying out examples interactively, you should never use it in real applications, 
because the import * construct may cause name conflicts and unexpected 
results. All code samples are available for inspection and direct execution in 
the accompanying GitHub repository: https://github.com/brinkar/real-world-
machine-learning.

The categorical-to-numerical conversion technique works for most ML algorithms. 
But a few algorithms (such as certain types of decision-tree algorithms and related 
algorithms such as random forests) can use categorical features natively. This will 
often yield better results for highly categorical datasets, and we discuss this further in 
the next chapter. Our simple Person dataset, after conversion of the categorical fea-
ture to binary features, is shown in figure 2.6.

Person

1

2

Name

Jane Doe

John Smith

Age

24

41

Income

81,200

121,000

Marital status: Single

1

0

Marital status: Married

0

1

Figure 2.6 The simple Person dataset after conversion of the categorical Marital Status feature to 
binary numerical features. (The original dataset is shown in figure 2.4.)

2.2.2 Dealing with missing data

You’ve already seen a few examples of datasets with missing data. In tabular datasets, 
missing data often appears as empty cells, or cells with NaN (Not a Number), N/A, or 
None. Missing data is usually an artifact of the data-collection process; for some rea-
son, a particular value couldn’t be measured for a data instance. Figure 2.7 shows an 
example of missing data in the Titanic Passengers dataset.
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Figure 2.7 The Titanic Passengers dataset has missing values in the Age and Cabin columns. The passenger 
information has been extracted from various historical sources, so in this case the missing values stem from 
information that couldn’t be found in the sources.

 There are two main types of missing data, which you need to handle in different 
ways. First, for some data, the fact that it’s missing can carry meaningful information that 
could be useful for the ML algorithm. The other possibility is that the data is missing 
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only because its measurement was impossible, and the unavailability of the informa-
tion isn’t otherwise meaningful. In the Titanic Passengers dataset, for example, miss-
ing values in the Cabin column may indicate that those passengers were in a lower 
social or economic class, whereas missing values in the Age column carry no useful 
information (the age of a particular passenger at the time simply couldn’t be found).

 Let’s first consider the case of informative missing data. When you believe that 
information is missing from the data, you usually want the ML algorithm to be able to 
use this information to potentially improve the prediction accuracy. To achieve this, 
you want to convert the missing values into the same format as the column in general. 
For numerical columns, this can be done by setting missing values to –1 or –999, 
depending on typical values of non-null values. Pick a number at one end of the 
numerical spectrum that will denote missing values, and remember that order is 
important for numerical columns. You don’t want to pick a value in the middle of the 
distribution of values. 

 For a categorical column with potentially informative missing data, you can create 
a new category called Missing, None, or similar, and then handle the categorical fea-
ture in the usual way (for example, using the technique described in the previous sec-
tion). Figure 2.8 shows a simple diagram of what to do with meaningful missing data.

When the absence of a value for a data item has no informative value in itself, you pro-
ceed in a different way. In this case, you can’t introduce a special number or category 
because you might introduce data that’s flat-out wrong. For example, if you were to 
change any missing values in the Age column of the Titanic Passengers dataset to –1, 
you’d probably hurt the model by messing with the age distribution for no good rea-
son. Some ML algorithms will be able to deal with these truly missing values by ignor-
ing them. If not, you need to preprocess the data to either eliminate missing values or 
replace them by guessing the true value. This concept of replacing missing data is 
called imputation. 

 If you have a large dataset and only a handful of missing values, dropping the 
observations with missing data is the easiest approach. But when a larger portion of 

Yes

Categorical:
Create a new category

for missing values

Yes

Numerical:
Convert missing values
to meaningful number,
such as –1 and –999

No

Type of data

Does missing data
have meaning?

Figure 2.8 What to do with meaningful missing data
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your observations contain missing values, the loss of perfectly good data in the dropped 
observations will reduce the predictive power of your model. Furthermore, if the obser-
vations with missing values aren’t randomly distributed throughout your dataset, this 
approach may introduce unexpected bias.

 Another simple approach is to assume some temporal order to the data instances 
and replace missing values with the column value of the preceding row. With no other 
information, you’re making a guess that a measurement hasn’t changed from one 
instance to the next. Needless to say, this assumption will often be wrong, but less 
wrong than, for example, filling in zeros for the missing values, especially if the data is 
a series of sequential observations (yesterday’s temperature isn’t an unreasonable esti-
mate of today’s). And for extremely big data, you won’t always be able to apply more-
sophisticated methods, and these simple methods can be useful. 

 When possible, it’s usually better to use a larger portion of the existing data to 
guess the missing values. You can replace missing column values by the mean or 
median value of the column. With no other information, you assume that the average 
will be closest to the truth. Depending on the distribution of column values, you 
might want to use the median instead; the mean is sensitive to outliers. These are 
widely used in machine learning today and work well in many cases. But when you set 
all missing values to a single new value, you diminish the visibility of potential correla-
tion with other variables that may be important in order for the algorithm to detect 
certain patterns in the data.

 What you want to do, if you can, is use all the data at your disposal to predict the 
value of the missing variable. Does this sound familiar? This is exactly what machine 
learning is about, so you’re basically thinking about building ML models in order to 
be able to build ML models. In practice, you’ll typically use a simple algorithm (such 
as linear or logistic regression, described in chapter 3) to impute the missing data. 
This isn’t necessarily the same as the main ML algorithm used. In any case, you’re cre-
ating a pipeline of ML algorithms that introduces more knobs to turn in order to opti-
mize the model in the end.

 Again, it’s important to realize that there’s no single best way to deal with truly 
missing data. We’ve discussed a few ways in this section, and figure 2.9 summarizes the 
possibilities.

2.2.3 Simple feature engineering

Chapter 5 covers domain-specific and advanced feature-engineering techniques, but 
it’s worth mentioning the basic idea of simple data preprocessing in order to make the 
model better.

 You’ll use the Titanic example again in this section. Figure 2.10 presents another 
look at part of the data, and in particular the Cabin feature. Without processing, the 
Cabin feature isn’t necessarily useful. Some values seem to include multiple cabins, 
and even a single cabin wouldn’t seem like a good categorical feature because all cab-
ins would be separate “buckets.” If you want to predict, for example, whether a certain 
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Figure 2.10 In the Titanic Passengers dataset, some Cabin values include multiple cabins, whereas others 
are missing. And cabin identifiers themselves may not be good categorical features.
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Figure 2.9 Full decision diagram for handling missing values when preparing data for ML modeling
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passenger survived, living in a particular cabin instead of the neighboring cabin may 
not have any predictive power. 

 Living in a particular section of the ship, though, could be important for survival. 
For single cabin IDs, you could extract the letter as a categorical feature and the num-
ber as a numerical feature, assuming they denote different parts of the ship. You could 
even find a layout map of the Titanic and map each cabin to the level and side of the 
ship, ocean-facing versus interior, and so forth. These approaches don’t handle multi-
ple cabin IDs, but because it looks like all multiple cabins are close to each other, 
extracting only the first cabin ID should be fine. You could also include the number of 
cabins in a new feature, which could also be relevant. 

 All in all, you’ll create three new features from the Cabin feature. The following 
listing shows the code for this simple extraction.

def cabin_features(data):
    features = []
    for cabin in data:
        cabins = cabin.split(" ")
        n_cabins = len(cabins)
        # First char is the cabin_char
        try:
            cabin_char = cabins[0][0]
        except IndexError:
            cabin_char = "X"
            n_cabins = 0
        # The rest is the cabin number
        try:
            cabin_num = int(cabins[0][1:]) 
        except:
            cabin_num = -1
        # Add 3 features for each passanger
        features.append( [cabin_char, cabin_num, n_cabins] )
    return features

By now it should be no surprise what we mean by feature engineering : using the existing 
features to create new features that increase the value of the original data by applying 
our knowledge of the data or domain in question. As mentioned earlier, you’ll look at 
advanced feature-engineering concepts and common types of data that need to be 
processed to be used by most algorithms. These include free-form text features for 
things such as web pages or tweets. Other important features can be extracted from 
images, video, and time-series data as well.

2.2.4 Data normalization

Some ML algorithms require data to be normalized, meaning that each individual fea-
ture has been manipulated to reside on the same numeric scale. The value range of a 
feature can influence the importance of the feature compared to other features. If 

Listing 2.2 Simple feature extraction on Titanic cabins
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one feature has values between 0 and 10, and another has values between 0 and 1, the 
weight of the first feature is 10, compared to the second. Sometimes you’ll want to 
force a particular feature weight, but typically it’s better to let the ML algorithm figure 
out the relative weights of the features. To make sure all features are considered 
equally, you need to normalize the data. Often data is normalized to be in the range 
from 0 to 1, or from –1 to 1.

 Let’s consider how this normalization is performed. The following code listing 
implements this function. For each feature, you want the data to be distributed 
between a minimum value (typically –1) and a maximum value (typically +1). To 
achieve this, you divide the data by the total range of the data in order to get the data 
into the 0–1 range. From here, you can re-extend to the required range (2, in the case 
of –1 to +1) by multiplying with this transformed value. At last, you move the starting 
point from 0 to the minimum required value (for example, –1).

def normalize_feature(data, f_min=-1.0, f_max=1.0):
    d_min, d_max = min(data), max(data)
    factor = (f_max - f_min) / (d_max - d_min)
    normalized = f_min + (data - d_min)*factor
    return normalized, factor

Note that you return both the normalized data and the factor with which the data was 
normalized. You do this because any new data (for example, for prediction) will have 
to be normalized in the same way in order to yield meaningful results. This also means 
that the ML modeler will have to remember how a particular feature was normalized, 
and save the relevant values (factor and minimum value).

 We leave it up to you to implement a function that takes new data, the normaliza-
tion factor, and the normalized minimum value and reapplies the normalization.

 As you expand your data-wrangling toolkit and explore a variety of data, you’ll 
begin to see that each dataset has qualities that make it uniquely interesting, and 
often challenging. But large collections of data with many variables are hard to fully 
understand by looking at tabular representations. Graphical data-visualization tools 
are indispensable for understanding the data from which you hope to extract hidden
information.

2.3 Using data visualization
Between data collection/preprocessing and ML model building lies the important 
step of data visualization. Data visualization serves as a sanity check of the training fea-
tures and target variable before diving into the mechanics of machine learning and 
prediction. With simple visualization techniques, you can begin to explore the rela-
tionship between the input features and the output target variable, which will guide you 
in model building and assist in your understanding of the ML model and predictions. 

Listing 2.3 Feature normalization
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Further, visualization techniques can tell you how representative the training set is 
and inform you of the types of instances that may be lacking.

 This section focuses on methods for visualizing the association between the target 
variable and the input features. We recommend four visualization techniques: mosaic 
plots, box plots, density plots, and scatter plots. Each technique is appropriate for a 
different type (numeric or categorical) of input feature and target variable, as shown 
in figure 2.11. 

2.3.1 Mosaic plots

Mosaic plots allow you to visualize the relationship between two or more categorical 
variables. Plotting software for mosaic plots is available in R, SAS, Python, and other 
scientific or statistical programming languages.

 To demonstrate the utility of mosaic plots, you’ll use one to display the relation-
ship between passenger gender and survival in the Titanic Passengers dataset. The 
mosaic plot begins with a square whose sides each have length 1. The square is then 

Further reading 
A plethora of books are dedicated to statistical visualization and plotting data. If 
you’d like to dive deeper into this topic, check out the following:

 The classic textbook The Visual Display of Quantitative Information by Edward 
Tufte (Graphics Press, 2001) presents a detailed look into visualizing data for 
analysis and presentation.

 For R users, R Graphics Cookbook by Winston Chang (O’Reilly, 2013) covers 
data visualization in R, from the basics to advanced topics, with code samples 
to follow along.

 For Python users, Python Data Visualization Cookbook by Igor Milovanović, Dimi-
try Foures, and Giuseppe Vettigli (Packt Publishing, 2015) covers the basics to 
get you up and running with Matplotlib.
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divided, by vertical lines, into a set of rectangles whose widths correspond to the pro-
portion of the data belonging to each of the categories of the input feature. For exam-
ple, in the Titanic data, 24% of passengers were female, so you split the unit square 
along the x-axis into two rectangles corresponding to a width 24% / 76% of the area.

 Next, each vertical rectangle is split by horizontal lines into subrectangles whose 
relative areas are proportional to the percent of instances belonging to each category 
of the response variable. For example, of Titanic passengers who were female, 74% 
survived (this is the conditional probability of survival, given that the passenger was 
female). Therefore, the Female rectangle is split by a horizontal line into two subrect-
angles that contain 74% / 26% of the area of the rectangle. The same is repeated for 
the Male rectangle (for males, the breakdown is 19% / 81%).

 What results is a quick visualization of the relationship between gender and sur-
vival. If there is no relationship, the horizontal splits would occur at similar locations 
on the y-axis. If a strong relationship exists, the horizontal splits will be far apart. To 
enhance the visualization, the rectangles are shade-coded to assess the statistical sig-
nificance of the relationship, compared to independence of the input feature and 
response variable, with large negative residuals (“lower count than expected”) shaded 
dark gray, and large positive residuals (“higher count than expected”) shaded light 
gray; see figure 2.12.
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Figure 2.12 Mosaic plot showing the relationship between gender and survival on the Titanic. The 
visualization shows that a much higher proportion of females (and much smaller proportion of males) survived 
than would have been expected if survival were independent of gender. “Women and children first.”
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This tells you that when building a machine-learning model to predict survival on the 
Titanic, gender is an important factor to include. It also allows you to perform a sanity 
check on the relationship between gender and survival: indeed, it’s common knowl-
edge that a higher proportion of women survived the disaster. This gives you an extra 
layer of assurance that your data is legitimate. Such data visualizations can also help 
you interpret and validate your machine-learning models, after they’ve been built.

 Figure 2.13 shows another mosaic plot for survival versus passenger class (first, sec-
ond, and third). As expected, a higher proportion of first-class passengers (and a 
lower proportion of third-class passengers) survived the sinking. Obviously, passenger 
class is also an important factor in an ML model to predict survival, and the relation-
ship is exactly as you should expect: higher-class passengers had a higher probability 
of survival.

2.3.2 Box plots

Box plots are a standard statistical plotting technique for visualizing the distribution of 
a numerical variable. For a single variable, a box plot depicts the quartiles of its distri-
bution: the minimum, 25th percentile, median, 75th percentile, and maximum of the 
values. Box-plot visualization of a single variable is useful to get insight into the center, 
spread, and skew of its distribution of values plus the existence of any outliers.

 You can also use box plots to compare distributions when plotted in parallel. In 
particular, they can be used to visualize the difference in the distribution of a numeri-
cal feature as a function of the various categories of a categorical response variable. 

1 2 Standardized residuals:
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Figure 2.13 Mosaic plot showing the relationship between passenger class and survival on 
the Titanic
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Returning to the Titanic example, you can visualize the difference in ages between 
survivors and fatalities by using parallel box plots, as in figure 2.14. In this case, it’s not 
clear that any differences exist in the distribution of passenger ages of survivors versus 
fatalities, as the two box plots look fairly similar in shape and location.

It’s important to recognize the limitations of visualization techniques. Visualizations 
aren’t a substitute for ML modeling! Machine-learning models can find and exploit 
subtle relationships hidden deep inside the data that aren’t amenable to being 
exposed via simple visualizations. You shouldn’t automatically exclude features whose 
visualizations don’t show clear associations with the target variable. These features 
could still carry a strong association with the target when used in association with 
other input features. For example, although age doesn’t show a clear relationship with 
survival, it could be that for third-class passengers, age is an important predictor (per-
haps for third-class passengers, the younger and stronger passengers could make their 
way to the deck of the ship more readily than older passengers). A good ML model 
will discover and expose such a relationship, and thus the visualization alone isn’t 
meant to exclude age as a feature.
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Figure 2.14 Box plot showing the relationship between passenger age and 
survival on the Titanic. No noticeable differences exist between the age 
distributions for survivors versus fatalities. (This alone shouldn’t be a reason to 
exclude age from the ML model, as it may still be a predictive factor.)
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 Figure 2.15 displays box plots exploring the relationship between passenger fare 
paid and survival outcome. In the left panel, it’s clear that the distributions of fare paid 
are highly skewed (many small values and a few large outliers), making the differences 
difficult to visualize. This is remedied by a simple transformation of the fare (square 
root, in the right panel), making the differences easy to spot. Fare paid has an obvious 
relationship with survival status: those paying higher fares were more likely to survive, 
as is expected. Thus, fare amount should be included in the model, as you expect the 
ML model to find and exploit this positive association.

2.3.3 Density plots

Now, we move to numerical, instead of categorical, response variables. When the input 
variable is categorical, you can use box plots to visualize the relationship between two 
variables, just as you did in the preceding section. You can also use density plots.

 Density plots display the distribution of a single variable in more detail than a box 
plot. First, a smoothed estimate of the probability distribution of the variable is esti-
mated (typically using a technique called kernel smoothing). Next, that distribution is 
plotted as a curve depicting the values that the variable is likely to have. By creating a 
single density plot of the response variable for each category that the input feature 
takes, you can easily visualize any discrepancies in the values of the response variable 
for differences in the categorical input feature. Note that density plots are similar to 
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Box plots for Titanic data: Passenger fare versus survival

Figure 2.15 Box plots showing the relationship between passenger fare paid and survival on the Titanic. The 
square-root transformation makes it obvious that passengers who survived paid higher fares, on average.
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histograms, but their smooth nature makes it much simpler to visualize multiple distri-
butions in a single figure.

 In the next example, you’ll use the Auto MPG dataset.1 This dataset contains the 
miles per gallon (MPG) attained by each of a large collection of automobiles from 
1970–82, plus attributes about each auto, including horsepower, weight, location of 
origin, and model year. Figure 2.16 presents a density plot for MPG versus location 
of origin (United States, Europe, or Asia). It’s clear from the plot that Asian cars tend 
to have higher MPG, followed by European and then American cars. Therefore, loca-
tion should be an important predictor in our model. Further, a few secondary 
“bumps” in the density occur for each curve, which may be related to different types 
of automobile (for example, truck versus sedan versus hybrid). Thus, extra explora-
tion of these secondary bumps is warranted to understand their nature and to use as a 
guide for further feature engineering.

1 The Auto MPG dataset is available at https://archive.ics.uci.edu/ml/datasets/Auto+MPG and is standard in 
the R programming language, by entering data(mtcars).
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Figure 2.16 Density plot for the Auto MPG dataset, showing the distribution of vehicle MPG for each 
manufacturer region. It’s obvious from the plot that Asian cars tend to have the highest MPG and that 
cars made in the United States have the lowest. Region is clearly a strong indicator of MPG.
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2.3.4 Scatter plots

A scatter plot is a simple visualization of the relationship between two numerical vari-
ables and is one of the most popular plotting tools in existence. In a scatter plot, the 
value of the feature is plotted versus the value of the response variable, with each 
instance represented as a dot. Though simple, scatter plots can reveal both linear and 
nonlinear relationships between the input and response variables.

 Figure 2.17 shows two scatter plots: one of car weight versus MPG, and one of car 
model year versus MPG. In both cases, clear relationships exist between the input fea-
tures and the MPG of the car, and hence both should be used in modeling. In the left 
panel is a clear banana shape in the data, showing a nonlinear decrease in MPG for 
increasing vehicle weight. Likewise, the right panel shows an increasing, linear rela-
tionship between MPG and the model year. Both plots clearly indicate that the input 
features are useful in predicting MPG, and both have the expected relationship.

2.4 Summary
In this chapter, you’ve looked at important aspects of data in the context of real-world 
machine learning: 

 Steps in compiling your training data include the following: 
– Deciding which input features to include
– Figuring out how to obtain ground-truth values for the target variable
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Figure 2.17 Scatter plots for the relationship of vehicle miles per gallon versus vehicle weight (left) and 
vehicle model year (right)
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– Determining when you’ve collected enough training data
– Keeping an eye out for biased or nonrepresentative training data

 Preprocessing steps for training data include the following:
– Recoding categorical features
– Dealing with missing data
– Feature normalization (for some ML approaches)
– Feature engineering

 Four useful data visualizations are mosaic plots, density plots, box plots, and 
scatter plots:

With our data ready for modeling, let’s now start building machine-learning models!

2.5 Terms from this chapter

Word Definition

dummy variable A binary feature that indicates that an observation is (or isn’t) a member of a category

ground truth The value of a known target variable or label for a training or test set

missing data
imputation

Those features with unknown values for a subset of instances
Replacement of the unknown values of missing data with numerical or categorical 
values

Categorical  Numerical  

Categorical  Mosaic plots Box plots  

Numerical  Density plots Scatter plots  

Response
Variable

Input Feature
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Machine learning systems help you find valuable 
insights and patterns in data, which you’d never recog-
nize with traditional methods. In the real world, ML 
techniques give you a way to identify trends, forecast 
behavior, and make fact-based recommendations. It’s a 
hot and growing field, and up-to-speed ML developers 
are in demand.

 Real-World Machine Learning will teach you the con-
cepts and techniques you need to be a successful 
machine learning practitioner without overdosing you 
on abstract theory and complex mathematics. By work-
ing through immediately relevant examples in Python, 

you’ll build skills in data acquisition and modeling, classification, and regression. 
You’ll also explore the most important tasks like model validation, optimization, scal-
ability, and real-time streaming. When you’re done, you’ll be ready to successfully 
build, deploy, and maintain your own powerful ML systems.

What's inside

 Predicting future behavior
 Performance evaluation and optimization
 Analyzing sentiment and making recommendations

No prior machine learning experience assumed. Readers should know Python.

www.itbook.store/books/9781617295065
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Symbols

+ operator 42

A

active learning method 71
ad targeting 70
aesthetics 41–42
API keys 18
APIs (application programming interface) 

17–19
ASCII text 10
Auto MPG dataset 87

B

bar charts
checking distributions for single variable 

47–50
checking relationships between two 

variables 56–61
big data 6–9
bimodal distribution 43
binwidth parameter 44
box plots 84

C

categorical variables 74, 82
categories type 75
churn prediction 66–67
combining data sources 24–25
comma-separated value. See CSV
computers users, as data generators 3–5

conditional probability 69, 83
coord_flip command 60
copyright 22–23
covariate shift 73
CSV (comma-separated value) 11–12

D

data
indiscriminate collection of 5–6
scouting for 21–27

combining data sources 24–25
copyright and licensing 22–23
measuring or collecting things yourself 

26–27
using Google search 22
web scraping 25–26

data collection
amount of training data required 71
deciding which features to include 68
obtaining ground truth for target variable 70
whether training set is representative 

enough 73
data generators, computers and internet users 

as 3–5
data normalization 80
data science

defined 3
data scientists

as explorer 6–9
data visualization

box plots 84
density plots 86
mosaic plots 82
scatter plots 88
91
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data wrangling
PDFs and 20

database indexes 15–16
databases

non-relational 17
relational 15–17

delimited files 11–12
demand forecasting 70
density plots 44–47, 86
dependent variable 67
distribution shape 42
dot plot 49
dummy variables 75, 89

E

Elasticsearch 17
encoding categorical features 75
EOL (end-of-line) character 10
error-checking data

checking distributions for single variable
bar charts 47
density plots 44
histograms 43

checking relationships between two variables
bar charts 56
hexbin plots 55
line plots 51
scatter plots 52

summary command
data ranges 38
invalid values 38
missing values 37
outliers 38
overview 35
units 39

using visualizations 40
Excel. See Microsoft Excel
explanatory variables 67
exploring data

checking distributions for single variable
bar charts 47–50
density plots 44–47
histograms 43–44

checking relationships between two variables
bar charts 56–61
hexbin plots 55–56
line plots 51–52
scatter plots 52–55

summary command
data ranges 38–39
invalid values 38
missing values 37–38

outliers 38
overview 35–37
units 39–40

using visualizations 40–42
Extensible Business Reporting Language. See 

XBRL

F

faceting graph 58
factor

summary command 36
file formats

bad 19–20
deciding which to use 20–21
flat files 10–12
HTML 12–13
JSON 14–15
unusual 20
XML 13–14

filled bar chart 57
flat files 10–12
fraud detection 70

G

generators of data. See data generators
geom layers 53
ggplot2 41–42
Google, big data use by 8
ground truth 73, 89
guessing missing values 78

H

hexbin plots 55–56
histogram

checking distributions for single variable 43–44
defined 44

HTML (hypertext markup language) 12–13
HttpUrlConnection package 19

I

imputation 77, 89
independent variables 67
indexing in databases 15–16
informative missing data 77
input features 67–69, 71, 81–82, 85, 88
input variables 88
integer features 74
internet users, as data generators 3–5
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invalid values 38
IoT (Internet of Things) 4, 27

J

joining tables 16–17
JSON (JavaScript object notation) 14–15, 18

K

kernel smoothing 86

L

legality of data usage 22–23
licensing 22–23
line plots 51–52
loess function 53
log files 27
logarithmic scale

density plot 46
when to use 47

lowess function 53

M

max command 36
McKinlay, Chris 26
mean command 36
median command 36
microRNA example 27–31
Microsoft Excel 19
Microsoft Word 19
min command 36
miRanda algorithm 29–31
missing data 70, 76–77, 89
missing values 74, 76–79

checking data using summary command 37–38
MongoDB 17
mosaic plots 82
multimodal distribution 43

N

NaN (Not a Number) 76
narrow data ranges 39
non-relational databases 17
normalization

organizing data for analysis 35
normalized data 80
NoSQL 17

Not a Number. See NaN
numerical features 74

O

OpenOffice Calc 19
organizing data for analysis 35
outliers 38

P

PDFs
overview 19–20

plain text 10–11
plots

box plots 84
density plots 86
mosaic plots 82–84
scatter plots 88–89

preprocessing data 74–81
categorical features 74–76
data normalization 80–81
dealing with missing data 76–78
simple feature engineering 78–80

Python programming language
reading of flat files by 12

Q

quantile() function 36
quartiles 84
querying, using databases 15–17

R

R programming language
reading of flat files by 12

RDKit package 20
relational databases 15–17
relationships

visually checking
bar charts 56–61
hexbin plots 55–56
line plots 51–52
scatter plots 52–55

representative data 71
representativeness training sets 73
response variables 67, 88
REST API 18–19
rug, defined 58
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S

sample-selection bias 73
scatter plot 52–55
scatter plots 88–89
scouting for data 21–27

combining data sources 24–25
copyright and licensing 22–23
measuring or collecting things yourself 26–27
using Google search 22
web scraping 25–26

scraping web 13, 25–27
scripts

overview 27
shape of distribution 42
smoothing curves 53
SQL (Structured Query Language) 15
stacked bar chart 56
stat layers 53
Structured Query Language. See SQL
summary() function

checking data for errors
data ranges 38–39
invalid values 38
missing values 37–38
outliers 38
overview 35–37
units 39–40

T

tables
joining 16–17

tab-separated value. See TSV
TargetScan algorithm 29–31
telecom churn 68, 70, 72
temporal data order 78
training set 67–68, 71–73, 82
TSV (tab-separated value) 11
Tumblr, API of 18–19
Twitter, big data use by 8

U

Uber example 23–24

unimodal distribution 42
units

checking data using summary command 39–40
url package 19
urllib package 19
UTF-8 text 10

V

variables
checking distributions for visually

bar charts 47–50
density plots 44–47
histograms 43–44
overview 42–43

factor class and summary command 36
visualizations for one 50–51
visualizations for two 61

variables of interest 66
variance command 36
visualizations

checking distributions for single variable
bar charts 47–50
density plots 44–47
histograms 43–44
overview 42–43

checking relationships between two variables
bar charts 56–61
hexbin plots 55–56
line plots 51–52
scatter plots 52–55

overview 40–42

W

web scraping 13, 25–27
Word. See Microsoft Word

X

XBRL (Extensible Business Reporting 
Language) 14

XML (extensible markup language ) 13–14
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