

SECOND EDITION

Michael Wittig
Andreas Wittig
Foreword by Ben Whaley

SAMPLE CHAPTER

M A N N I N G

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

Amazon Web Services in Action,

Second Edition

by Michael Wittig
and Andreas Wittig

Chapter 12

Copyright 2018 Manning Publications

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

brief contents

PART 1 GETTING STARTED ..1

1 ■ What is Amazon Web Services? 3

2 ■ A simple example: WordPress in five minutes 36

PART 2 BUILDING VIRTUAL INFRASTRUCTURE CONSISTING OF COMPUTERS

AND NETWORKING ..57

3 ■ Using virtual machines: EC2 59

4 ■ Programming your infrastructure: The command-line,

5 ■ Automating deployment: CloudFormation,

6 ■ Securing your system: IAM, security groups,

SDKs, and CloudFormation 102

Elastic Beanstalk, and OpsWorks 135

and VPC 165

7 ■ Automating operational tasks with Lambda 199

PART 3 STORING DATA IN THE CLOUD ...233

8 ■ Storing your objects: S3 and Glacier 235

9 ■ Storing data on hard drives: EBS and instance store 258

v

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

vi BRIEF CONTENTS

10 ■ Sharing data volumes between machines: EFS 274

11 ■ Using a relational database service: RDS 294

12 ■ Caching data in memory: Amazon ElastiCache 321

13 ■ Programming for the NoSQL database service:

DynamoDB 349

PART 4 ARCHITECTING ON AWS..381

14 ■	 Achieving high availability: availability zones, auto-scaling,

and CloudWatch 383

15 ■	 Decoupling your infrastructure: Elastic Load Balancing

and Simple Queue Service 413

16 ■	 Designing for fault tolerance 431

17 ■	 Scaling up and down: auto-scaling and CloudWatch 463

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

321

Caching data in memory:
Amazon ElastiCache

Imagine a relational database being used for a popular mobile game where players’
scores and ranks are updated and read frequently. The read and write pressure to
the database will be extremely high, especially when ranking scores across millions
of players. Mitigating that pressure by scaling the database may help with load, but
not necessarily the latency or cost. Also, relational databases tend to be more
expensive than caching data stores.

 A proven solution used by many gaming companies is leveraging an in-memory
data store such as Redis for both caching and ranking player and game metadata.

This chapter covers
 Benefits of a caching layer between your application

and data store

 Terminology like cache cluster, node, shard,
replication group, and node group

 Using/Operating an in-memory key-value store

 Performance tweaking and monitoring ElastiCache
clusters

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

322 CHAPTER 12 Caching data in memory: Amazon ElastiCache

Instead of reading and sorting the leaderboard directly from the relational database,
they store an in-memory game leaderboard in Redis, commonly using a Redis Sorted
Set, which will sort the data automatically when it’s inserted based on the score param-
eter. The score value may consist of the actual player ranking or player score in the game.

 Because the data resides in memory and does not require heavy computation to
sort, retrieving the information is incredibly fast, leaving little reason to query from a
relational database. In addition, any other game and player metadata such as player
profile, game level information, and so on that requires heavy reads can also be
cached within this in-memory layer, freeing the database from heavy read traffic.

 In this solution, both the relational database and in-memory
layer will store updates to the leaderboard: one will serve as the
primary database and the other as the working and fast
processing layer. For caching data, they may employ a variety of
caching techniques to keep the data that’s cached fresh, which
we’ll review later. Figure 12.1 shows where the cache sits
between your application and the database.

 A cache comes with multiple benefits:

 The read traffic can be served from the caching layer,
which frees resources on your data store, for example
for write requests.

 It speeds up your application because the caching layer
responds more quickly than your data store.

 You can downsize your data store, which can be more
expensive than the caching layer.

Most caching layers reside in-memory and that’s why they are
so fast. The downside is that you can lose the cached data at
any time because of a hardware defect or a restart. Always keep a copy of your data in
a primary data store with disk durability, like the relational database in the mobile
game example. Alternatively, Redis has optional failover support. In the event of a
node failure, a replica node will be elected to be the new primary and will already
have a copy of the data.

 Depending on your caching strategy, you can either populate the cache in real-
time or on-demand. In the mobile game example, on-demand means that if the lead-
erboard is not in the cache, the application asks the relational database and puts the
result into the cache. Any subsequent request to the cache will result in a cache hit,
meaning the data is found. This will be true until the duration of the TTL (time to
live) value on the cached value expires. This strategy is called lazy-loading the data
from the primary data store. Additionally, we could have a cron job running in the
background that queries the leaderboard from the relational database every minute
and puts the result in the cache to populate the cache in advance.

Data store

Cache

Application

Figure 12.1 Cache sits
between the application
and the database

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

323

 The lazy-loading strategy (getting data on demand) is implemented like this:

1 The application writes data to the data store.
2 If the application wants to read the data, at a later time it makes a request to the

caching layer.
3 The caching layer does not contain the data. The application reads from the

data store directly and puts the read value into the cache, and also returns the
value to the client.

4 Later, if the application wants to read the data again, it makes a request to the
caching layer and finds the value.

This strategy comes with a problem. What if the data is changed while it is in the
cache? The cache will still contain the old value. That’s why setting an appropriate
TTL value is critical to ensure cache validity. Let’s say you apply a TTL of 5 minutes to
your cached data: this means you accept that the data could be up to 5 minutes out of
sync with your primary database. Understanding the frequency of change for the
underlying data and the effects out-of-sync data will have on the user experience is the
first step of identifying the appropriate TTL value to apply. A common mistake some
developers make is assuming that a few seconds of a cache TTL means that having a
cache is not worthwhile. Remember that within those few seconds, millions of
requests can be eliminated from your back end, speeding up your application and
reducing the back-end database pressure. Performance testing your application with
and without your cache, along with various caching approaches, will help fine-tune
your implementation. In summary, the shorter the TTL, the more load you have on
your underlying data store. The higher the TTL, the more out of sync the data gets.

 The write-through strategy (caching data up front) is implemented differently to
tackle the synchronization issue:

1 The application writes data to the data store and the cache (or the cache is
filled asynchronously, for example in a cron job, AWS Lambda function, or the
application).

2 If the application wants to read the data at a later time, it makes a request to the
caching layer, which contains the data.

3 The value is returned to the client.

This strategy also comes with a problem. What if the cache is not big enough to con-
tain all your data? Caches are in-memory and your data store’s disk capacity is usually
larger than your cache’s memory capacity. When your cache reaches the available
memory, it will evict data, or stop accepting new data. In both situations, the applica-
tion stops working. In the gaming app, the global leaderboard will always fit into the
cache. Imagine that a leaderboard is 4 KB in size and the cache has a capacity of 1 GB
(1,048,576 KB). But what about team leaderboards? You can only store 262,144
(1,048,576 / 4) leaderboards, so if you have more teams than that, you will run into an
capacity issue.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

324 CHAPTER 12 Caching data in memory: Amazon ElastiCache

 Figure 12.2 compares the two caching strategies. When evicting data, the cache
needs to decide which data it should delete. One popular strategy is to evict the least
recently used (LRU) data. This means that cached data must contain meta informa-
tion about the time when it was last accessed. In case of an LRU eviction, the data with
the oldest timestamp is chosen for eviction.

Data store

Cache

Application

Lazy loading strategy

4. Application stores
 data read from data
 store in cache

2. Application reads
 from cache: data is
 not in the cache

3. Application reads
 from the data store:
 data is found

1. Application writes
 to the database

Data store

Cache

Application

Write through strategy

1. Application writes
 to the database and
 the cache

2. Application reads
 from the cache:
 data is found

If data is not in the
cache, read from the
data store (e.g. cache
was full or restarted).

Figure 12.2 Comparing the lazy-loading and write-through caching strategies

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

325

Caches are usually implemented using key-value stores. Key-value stores don’t support
sophisticated query languages such as SQL. They support retrieving data based on a key,
usually a string, or specialized commands, for example to extract sorted data efficiently.

 Imagine that in your relational database you have a player table for your mobile
game. One of the most common queries is SELECT id, nickname FROM player

ORDER BY score DESC LIMIT 10 to retrieve the top ten players. Luckily, the game is
very popular. But this comes with a technical challenge. If many players look at the
leaderboard, the database becomes very busy, which causes high latency or even time-
outs. You have to come up with a plan to reduce the load on the database. As you
already learned, caching can help. What technique should you employ for caching?
You have a few options.

 One approach you can take with Redis is to store the result of your SQL query as a
String value and the SQL statement as your key name. Instead of using the whole SQL
query as the key, you can hash the string with a hash function like md5 or sha256 to
optimize storage and bandwidth B as shown in figure 12.3. Before the application
sends the query to the database, it takes the SQL query as the key to ask the caching
layer for data C. If the cache does not contain data for the key D, the SQL query is
sent to the relational database E. The result F is then stored in the cache using the
SQL query as the key G. The next time the application wants to perform the query, it
asks the caching layer H, which now contains the cached table I.

 To implement caching, you only need to know the key of the cached item. This can
be an SQL query, a filename, a URL, or a user ID. You take the key and ask the cache
for a result. If no result is found, you make a second call to the underlying data store,
which knows the truth.

Figure 12.3 SQL caching layer implementation

Get key
666...336

Data store

Cache

Application md5(SELECT id, nick FROM player ORDER BY score DESC LIMIT 10)
=> 666...336

Query: SELECT id, nick
 FROM player
 ORDER BY score DESC
 LIMIT 10

Nothing
found

Get key
666...336

Return value
(table)

Return table

Add key
666...336
with table
as value

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

326 CHAPTER 12 Caching data in memory: Amazon ElastiCache

With Redis, you also have the option of storing the data in other data structures such
as a Redis SortedSet. If the data is stored in a Redis SortedSet, retrieving the ranked
data will be very efficient. You could simply store players and their scores and sort by
the score. An equivalent SQL command would be:

ZREVRANGE "player-scores" 0 9

This would return the ten players in a SortedSet named “player-scores” ordered from
highest to lowest.

The two most popular implementations of in-memory key-value stores are Mem-
cached and Redis. Amazon ElastiCache offers both options. Table 12.1 compares their
features.

Amazon ElastiCache offers Memcached and Redis clusters as a service. Therefore,
AWS covers the following aspects for you:

 Installation—AWS installs the software for you and has enhanced the underlying
engines.

 Administration—AWS administers Memcached/Redis for you and provides ways
to configure your cluster through parameter groups. AWS also detects and auto-
mates failovers (Redis only).

 Monitoring—AWS publishes metrics to CloudWatch for you.
 Patching—AWS performs security upgrades in a customizable time window.

Table 12.1 Comparing Memcached and Redis features

Memcached Redis

Data types simple complex

Data manipulation commands 12 125

Server-side scripting no yes (Lua)

Transactions no yes

Multi-threaded yes no

Examples are 100% covered by the Free Tier
The examples in this chapter are completely covered by the Free Tier. As long as you
don’t run the examples longer than a few days, you won’t pay anything. Keep in mind
that this only applies if you created a fresh AWS account for this book and nothing
else is going on in your AWS account. Try to complete the chapter within a few days;
you’ll clean up your account at the end.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

327Creating a cache cluster

 Backups—AWS optionally backs up your data in a customizable time window
(Redis only).

 Replication—AWS optionally sets up replication (Redis only).

Next, you will learn how to create an in-memory cluster with ElastiCache that you will
later use as an in-memory cache for an application.

12.1 Creating a cache cluster
In this chapter, we focus on the Redis engine because it’s more flexible. You can
choose which engine to use based on the features that we compared in the previous
section. If there are significant differences to Memcached, we will highlight them.

12.1.1 Minimal CloudFormation template

You can create an ElastiCache cluster using the Management Console, the CLI, or
CloudFormation. You will use CloudFormation in this chapter to manage your cluster.
The resource type of an ElastiCache cluster is AWS::ElastiCache::CacheCluster.
The required properties are:

 Engine—Either redis or memcached
 CacheNodeType—Similar to the EC2 instance type, for example cache.t2

.micro

 NumCacheNodes—1 for a single-node cluster
 CacheSubnetGroupName—You reference subnets of a VPC using a dedicated

resource called a subnet group
 VpcSecurityGroupIds—The security groups you want to attach to the cluster

A minimal CloudFormation template is shown in listing 12.1.

AWSTemplateFormatVersion: '2010-09-09'
Description: 'AWS in Action: chapter 12 (minimal)'
Parameters:

VPC:
Type: 'AWS::EC2::VPC::Id'

SubnetA:
Type: 'AWS::EC2::Subnet::Id'

SubnetB:
Type: 'AWS::EC2::Subnet::Id'

KeyName:
Type: 'AWS::EC2::KeyPair::KeyName'
Default: mykey

Resources:
CacheSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: cache

Listing 12.1 Minimal CloudFormation template of an ElastiCache Redis single-node cluster

Defines VPC and subnets
as parameters

The security group to manage
which traffic is allowed to
enter/leave the cluster

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

328 CHAPTER 12 Caching data in memory: Amazon ElastiCache

VpcId: !Ref VPC
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: 6379
ToPort: 6379
CidrIp: '0.0.0.0/0'

CacheSubnetGroup:
Type: 'AWS::ElastiCache::SubnetGroup'
Properties:

Description: cache
SubnetIds:
- Ref: SubnetA
- Ref: SubnetB

Cache:
Type: 'AWS::ElastiCache::CacheCluster'
Properties:

CacheNodeType: 'cache.t2.micro'
CacheSubnetGroupName: !Ref CacheSubnetGroup
Engine: redis
NumCacheNodes: 1
VpcSecurityGroupIds:

 - !Ref CacheSecurityGroup

As already mentioned, ElastiCache nodes in a cluster only have private IP addresses.
Therefore, you can’t connect to a node directly over the internet. The same is true for
other resources as EC2 instances or RDS instances. To test the Redis cluster, you can
create an EC2 instance in the same VPC as the cluster. From the EC2 instance, you can
then connect to the private IP address of the cluster.

12.1.2 Test the Redis cluster

To test Redis, add the following resources to the minimal CloudFormation template:

Resources:
[...]
VMSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'instance'
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: 22
ToPort: 22
CidrIp: '0.0.0.0/0'

VpcId: !Ref VPC
VMInstance:

Type: 'AWS::EC2::Instance'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
KeyName: !Ref KeyName
NetworkInterfaces:
- AssociatePublicIpAddress: true

Redis listens on port 6379. This allows access from
all IP addresses, but since the cluster only has
private IP addresses, access is only possible from
inside the VPC. You will improve this in section 12.3.

Subnets are defined within
a subnet group (same
approach is used in RDS).

List of subnets that can
be used by the cluster

The
resource
to define
the Redis

cluster.
cache.t2.micro comes with
0.555 GiB memory and is
part of the Free Tier.

redis or memcached

1 for a single-node cluster

Security group to
allow SSH access

Virtual machine used to
connect to your Redis cluster

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

329Creating a cache cluster

DeleteOnTermination: true
DeviceIndex: 0
GroupSet:
- !Ref VMSecurityGroup
SubnetId: !Ref SubnetA

Outputs:
VMInstanceIPAddress:

Value: !GetAtt 'VMInstance.PublicIp'
Description: 'EC2 Instance public IP address

➥ (connect via SSH as user ec2-user)'
CacheAddress:

Value: !GetAtt 'Cache.RedisEndpoint.Address'
Description: 'Redis DNS name (resolves to a private IP address)'

The minimal CloudFormation template is now complete. Create a stack based on the
template to create all the resources in your AWS account using the Management Con-
sole: http://mng.bz/Cp44. You have to fill in four parameters when creating the
stack:

 KeyName—If you’ve been following along with our book in order, you should
have created a key pair with the name mykey, which is selected by default.

 SubnetA—You should have at least two options here; select the first one.
 SubnetB—You should have at least two options here; select the second one.
 VPC—You should only have one possible VPC here—your default VPC. Select it.

You can find the full code for the template at /chapter12/minimal.yaml in the book’s
code folder.

Once the stack status changes to CREATE_COMPLETE in the CloudWatch Manage-
ment Console, select the stack and click on the Outputs tab. You can now start to test
the Redis cluster. Open an SSH connection to the EC2 instance, and then you can use
the Redis CLI to interact with the Redis cluster node.

$ ssh -i mykey.pem ec2-user@$VMInstanceIPAddress
$ sudo yum -y install --enablerepo=epel redis
$ redis-cli -h $CacheAddress
> SET key1 value1
OK

Public IP address
of virtual machine

DNS name of Redis cluster
node (resolves to a private
IP address)

Where is the template located?
You can find the template on GitHub. You can download a snapshot of the repository
at https://github.com/AWSinAction/code2/archive/master.zip. The file we’re talking
about is located at chapter12/minimal.yaml. On S3, the same file is located at
http://mng.bz/qJ8g.

Connect to the EC2 instance, replace
$VMInstanceIPAddress with the output

from the CloudFormation stack.
Install the
Redis CLI.

Connect to the Redis cluster node,
replace $CacheAddress with the output
from the CloudFormation stack.

Store the string
value under the

key key1.

www.itbook.store/books/9781617295119

http://mng.bz/Cp44
http://mng.bz/qJ8g
https://github.com/AWSinAction/code2/archive/master.zip
https://itbook.store/books/9781617295119

330 CHAPTER 12 Caching data in memory: Amazon ElastiCache

> GET key1
"value1"
> GET key2
(nil)
> SET key3 value3 EX 5
OK
> GET key3
"value3"
> GET key3
(nil)
> quit

You’ve successfully connected to a Redis cluster node, stored some keys, retrieved
some keys, and used Redis’s time-to-live functionality. With this knowledge, you could
start to implement a caching layer in your own application. But as always, there are
more options to discover. Delete the CloudFormation stack you created to avoid
unwanted costs. Then, continue with the next section to learn more about advanced
deployment options with more than one node to achieve high availability or sharding.

12.2 Cache deployment options
Which deployment option you should choose is influenced by four factors:

1 Engine—Memcached or Redis
2 Backup/Restore—Is it possible to back up or restore the data from the cache?
3 Replication—If a single node fails, is the data still available?
4 Sharding—If the data does not fit on a single node, can you add nodes to

increase capacity?

Table 12.2 compares the deployment options for the two available engines.

Let’s look at deployment options in more detail.

12.2.1 Memcached: cluster

An Amazon ElastiCache for a Memcached cluster consists of 1-20 nodes. Sharding is
implemented by the Memcached client, typically utilizing a consistent hashing algo-
rithm which arranges keys into partitions in a ring distributed across the nodes. The
client essentially decides which keys belong to which nodes and directs the requests to
those partitions. Each node stores a unique portion of the key-space in-memory. If a

Table 12.2 Comparing ElastiCache deployment options

Memcached Redis: single node
Redis: cluster
mode disabled

Redis: cluster
mode enabled

Backup/Restore no yes yes yes

Replication no no yes yes

Sharding yes no no yes

Retrieve the value for key key1.

If a key does not exist, you
get an empty response.

Store the string ttl under the key key3
and expire the key after 5 seconds.

Within 5
seconds, get

the key key3.

After 5 seconds, key3
no longer exists.

Quit the
Redis CLI.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

331Cache deployment options

node fails, the node is replaced but the data is lost. You can not back up the data in
Memcached. Figure 12.4 shows a Memcached cluster deployment.

 You can use a Memcached cluster if your application requires a simple in-memory
store and can tolerate the loss of a node and its data. The SQL cache example in the
beginning of this chapter could be implemented using Memcached. Since the data is
always available in the relational database, you can tolerate a node loss, and you only
need simple commands (GET, SET) to implement the query cache.

12.2.2 Redis: Single-node cluster

An ElastiCache for a Redis single-node cluster always consists of one node. Sharding
and high availability are not possible with a single node. But Redis supports the cre-
ation of backups, and also allows you to restore those backups. Figure 12.5 shows a
Redis single-node cluster. Remember that a VPC is a way to define a private network
on AWS. A subnet is a way to separate concerns inside the VPC. Cluster nodes always
run in a single subnet. The client communicates with the Redis cluster node to get
data and write data to the cache.

Client

Writes
Cluster

Subnet 1 Subnet 2

VPC

Reads

Node 1 Node 2 Node 3

Figure 12.4 Memcached deployment option: cluster

Figure 12.5 Redis deployment
option: single-node cluster

Client

Writes Cluster

Subnet 1 Subnet 2

VPC

Reads

Node

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

332 CHAPTER 12 Caching data in memory: Amazon ElastiCache

A single node adds a single point of failure (SPOF) to your system. This is probably
something you want to avoid for business-critical production systems.

12.2.3 Redis: Cluster with cluster mode disabled

Things become more complicated now, because ElastiCache uses two terminologies.
We’ve been using the terms cluster/node/shard so far, and the graphical Manage-
ment Console also uses these terms. But the API, the CLI, and CloudFormation use a
different terminology: replication group/node/node group. We prefer the clus-
ter/node/shard terminology, but in figures 12.6 and 12.7 we’ve added the replication
group/node/node group terminology in parentheses.

 A Redis cluster with cluster mode disabled supports backups and data replication,
but no sharding. This means there is only one shard consisting of one primary and up
to five replica nodes.

You can use a Redis cluster with cluster mode disabled when you need data replication
and all your cached data fits into the memory of a single node. Imagine that your
cached data set is 4 GB in size. If your cache has at least 4 GB of memory, the data fits
into the cache and you don’t need sharding.

12.2.4 Redis: Cluster with cluster mode enabled

A Redis cluster with cluster mode enabled supports backups, data replication, and
sharding. You can have up to 15 shards per cluster. Each shard consists of one primary
and up to five replica nodes. The largest cluster size therefore is 90 nodes (15 prima-
ries + (15 * 5 replicas)).

 You can use a Redis cluster with cluster mode enabled when you need data replica-
tion and your data is too large to fit into the memory of a single node. Imagine that
your cached data is 22 GB in size. Each cache node has a capacity of 4 GB of memory.

Subnet 2

Client

Writes

Cluster (replication group)

Shard (node group)

Replication

Subnet 1

VPC

Reads

Replica
node

Primary
node

Figure 12.6 Redis deployment option: cluster with cluster mode disabled

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

333Cache deployment options

Therefore, you will need six shards to get a total capacity of 24 GB of memory. Elasti-
Cache provides up to 437 GB of memory per node, which totals to a maximum cluster
capacity of 6.5 TB (15 * 437 GB).

Subnet 2

Client

Writes

Cluster (replication group)

Shard 1 (node group 1)

Replication

Subnet 1

VPC

Reads

Replica
node

Primary
node

Writes

Shard 2 (node group 2)

Replication

Replica
node

Primary
node

Figure 12.7 Redis deployment option: cluster with cluster mode enabled

Additional benefits of enabling cluster mode
With cluster mode enabled, failover speed is much faster, as no DNS is involved. Cli-
ents are provided a single configuration endpoint to discover changes to the cluster
topology, including newly elected primaries. With cluster mode disabled, AWS pro-
vides a single primary endpoint and in the event of a failover, AWS does a DNS swap
on that endpoint to one of the available replicas. It may take ~1–1.5min before the
application is able to reach the cluster after a failure, whereas with cluster mode
enabled, the election takes less than 30s.

More shards enable more read/write performance. If you start with one shard and
add a second shard, each shard now only has to deal with 50% of the requests
(assuming an even distribution).

As you add nodes, your blast radius decreases. For example, if you have five shards
and experience a failover, only 20% of your data is affected. This means you can’t
write to this portion of the key space until the failover process completes (~15–30s),
but you can still read from the cluster, given you have a replica available. With cluster
mode disabled, 100% of your data is affected, as a single node consists of your
entire key space. You can read from the cluster but can’t write until the DNS swap
has completed.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

334 CHAPTER 12 Caching data in memory: Amazon ElastiCache

You are now equipped to select the right engine and the deployment option for your
use case. In the next section, you will take a closer look at the security aspects of Elasti-
Cache to control access to your cache cluster.

12.3 Controlling cache access
Access control is very similar to the way it works with RDS (see section 11.4). The only
difference is, that cache engines come with very limited features to control access to
the data itself. The following paragraph summarizes the most important aspects of
access control.

 ElastiCache is protected by four layers:

 Identity and Access Management (IAM): Controls which IAM user/group/role is
allowed administer an ElastiCache cluster.

 Security Groups: Restricts incoming and outgoing traffic to ElastiCache nodes.
 Cache Engine: Redis has the AUTH command, Memcached does not handle

authentication. Neither engine supports authorization.
 Encryption: At rest and in transit.

SECURITY WARNING It’s important to understand that you don’t control
access to the cache nodes using IAM. Once the nodes are created, Security
Groups control the access.

12.3.1 Controlling access to the configuration

Access to the ElastiCache service is controlled with the help of the IAM service. The
IAM service is responsible for controlling access to actions like creating, updating,
and deleting a cache cluster. IAM doesn’t manage access inside the cache; that’s the
job of the cache engine. An IAM policy defines the configuration and management
actions a user, group, or role is allowed to execute on the ElastiCache service. Attach-
ing the IAM policy to IAM users, groups, or roles controls which entity can use the
policy to configure an ElastiCache cluster.

 You can get a complete list of IAM actions and resource-level permissions supported
at http://mng.bz/anNF.

12.3.2 Controlling network access

Network access is controlled with security groups. Remember the security group from
the minimal CloudFormation template in section 12.1 where access to port 6379
(Redis) was allowed for all IP addresses. But since cluster nodes only have private IP
addresses this restricts access to the VPC:

Resources:
[...]
CacheSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: cache

www.itbook.store/books/9781617295119

http://mng.bz/anNF
https://itbook.store/books/9781617295119

335Controlling cache access

VpcId: !Ref VPC
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: 6379
ToPort: 6379
CidrIp: '0.0.0.0/0'

You should improve this setup by working with two security groups. To control traffic
as tight as possible, you will not white list IP addresses. Instead, you create two security
groups. The client security group will be attached to all EC2 instances communicating
with the cache cluster (your web servers). The cache cluster security group allows
inbound traffic on port 6379 only for traffic that comes from the client security group.
This way you can have a dynamic fleet of clients who is allowed to send traffic to the
cache cluster. You used the same approach for the SSH bastion host in section 6.4.

Resources:
[...]
ClientSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'cache-client'
VpcId: !Ref VPC

CacheSecurityGroup:
Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: cache
VpcId: !Ref VPC
SecurityGroupIngress:
- IpProtocol: tcp

FromPort: 6379
ToPort: 6379
SourceSecurityGroupId: !Ref ClientSecurityGroup

Attach the ClientSecurityGroup to all EC2 instances that need access to the cache
cluster. This way, you only allow access to the EC2 instances that really need access.

 Keep in mind that ElastiCache nodes always have private IP addresses. This means
that you can’t accidentally expose a Redis or Memcached cluster to the internet. You
still want to use Security Groups to implement the principle of least privilege.

12.3.3 Controlling cluster and data access

Both Redis and Memcached support very basic authentication features. Amazon Elas-
tiCache does support Redis AUTH for customers who also want to enable token-based
authentication in additional to the security features Amazon ElastiCache provides.
Redis AUTH is the security mechanism that open source Redis utilizes. Since the com-
munication between the clients and the cluster is unencrypted, such an authentica-
tion would not improve security using open source engines. But, Amazon ElastiCache
does offer encryption in transit with Redis 3.2.6.

Only allow
access from the
ClientSecurityGroup.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

336 CHAPTER 12 Caching data in memory: Amazon ElastiCache

 Neither engine implements data access management. When connected to a key-
value store, you get access to all data. This limitation relies on the underlying key-
value stores, not in ElastiCache itself. In the next section, you’ll learn how to use
ElastiCache for Redis in a real-world application called Discourse.

12.4 Installing the sample application Discourse with
CloudFormation
Small communities, like football clubs, reading circles, or dog schools benefit from
having a place where members can communicate with each other. Discourse is open-
source software for providing modern forums for your community. You can use it as
a mailing list, discussion forum, long-form chat room, and more. It is written in
Ruby using the Rails framework. Figure 12.8 gives you an impression of Discourse.
Wouldn’t that be a perfect place for your community to meet? In this section, you
will learn how to set up Discourse with CloudFormation. Discourse is also perfectly
suited for learning about ElastiCache because it requires a Redis cache. Discourse
requires PostgreSQL as main data store and uses Redis to cache data and process
transient data.

Figure 12.8 Discourse: a platform for community discussion

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

337Installing the sample application Discourse with CloudFormation

In this section, you’ll create a CloudFormation template with all the components nec-
essary to run Discourse. Finally, you’ll create a CloudFormation stack based on the
template to test your work. The necessary components are:

 VPC—Network configuration
 Cache—Security group, subnet group, cache cluster
 Database—Security group, subnet group, database instance
 Virtual machine—Security group, EC2 instance

Let’s get started. You’ll start with the first component and extend the template in the
rest of this section.

12.4.1 VPC: Network configuration

In section 6.5 you learned all about private networks on AWS. If you can’t follow listing
12.2, you could go back to section 6.5 or continue with the next step—understanding the
network is not key to get Discourse running.

AWSTemplateFormatVersion: '2010-09-09'
Description: 'AWS in Action: chapter 12'
Parameters:

KeyName:
 Description: 'Key Pair name'
 Type: 'AWS::EC2::KeyPair::KeyName'
 Default: mykey

AdminEmailAddress:
Description: 'Email address of admin user'
Type: 'String'

Resources:
VPC:

Type: 'AWS::EC2::VPC'
Properties:

CidrBlock: '172.31.0.0/16'
EnableDnsHostnames: true

InternetGateway:
Type: 'AWS::EC2::InternetGateway'
Properties: {}

VPCGatewayAttachment:
Type: 'AWS::EC2::VPCGatewayAttachment'
Properties:

VpcId: !Ref VPC
InternetGatewayId: !Ref InternetGateway

SubnetA:
Type: 'AWS::EC2::Subnet'
Properties:

AvailabilityZone: !Select [0, !GetAZs '']
CidrBlock: '172.31.38.0/24'
VpcId: !Ref VPC

SubnetB: # [...]

Listing 12.2 CloudFormation template for Discourse: VPC

The key pair name for SSH access and
also the email address of the Discourse
admin (must be valid!) are variable.

Creates a VPC in the address
range 172.31.0.0/16

We want to access Discourse from the
internet, so we need an internet gateway.

Attach the internet
gateway to the VPC.

Create a subnet in the address range
172.31.38.0/24 in the first availability
zone (array index 0).

Create a second subnet in the address
range 172.31.37.0/24 in the second
availability zone (properties omitted).

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

338 CHAPTER 12 Caching data in memory: Amazon ElastiCache

RouteTable:
Type: 'AWS::EC2::RouteTable'
Properties:

VpcId: !Ref VPC
SubnetRouteTableAssociationA:

Type: 'AWS::EC2::SubnetRouteTableAssociation'
Properties:

SubnetId: !Ref SubnetA
RouteTableId: !Ref RouteTable

RouteToInternet:
Type: 'AWS::EC2::Route'
Properties:

RouteTableId: !Ref RouteTable
DestinationCidrBlock: '0.0.0.0/0'
GatewayId: !Ref InternetGateway

DependsOn: VPCGatewayAttachment
SubnetRouteTableAssociationB: # [...]
NetworkAcl:

Type: AWS::EC2::NetworkAcl
Properties:

VpcId: !Ref VPC
SubnetNetworkAclAssociationA:

Type: 'AWS::EC2::SubnetNetworkAclAssociation'
Properties:

SubnetId: !Ref SubnetA
NetworkAclId: !Ref NetworkAcl

SubnetNetworkAclAssociationB: # [...]
NetworkAclEntryIngress:

Type: 'AWS::EC2::NetworkAclEntry'
Properties:

NetworkAclId: !Ref NetworkAcl
RuleNumber: 100
Protocol: -1
RuleAction: allow
Egress: false
CidrBlock: '0.0.0.0/0'

NetworkAclEntryEgress:
Type: 'AWS::EC2::NetworkAclEntry'
Properties:

NetworkAclId: !Ref NetworkAcl
RuleNumber: 100
Protocol: -1
RuleAction: allow
Egress: true
CidrBlock: '0.0.0.0/0'

The network is now properly configured using two public subnets. Let’s configure the
cache next.

12.4.2 Cache: Security group, subnet group, cache cluster

You will add the ElastiCache for Redis cluster now. You learned how to describe a min-
imal cache cluster earlier in this chapter. This time, you’ll add a few extra properties

Create a route table that contains
the default route, which routes all
subnets in a VPC.

Associate the first subnet
with the route table.

Add a route to the
internet via the
internet gateway.

Create an empty
network ACL.

Associate the first subnet
with the network ACL.

Allow all incoming traffic on the
Network ACL (you will use security
groups later as a firewall).

Allow all outgoing traffic
on the Network ACL.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

339Installing the sample application Discourse with CloudFormation

to enhance the setup. This listing contains the CloudFormation resources related to
the cache.

Resources:
[...]
CacheSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: cache
VpcId: !Ref VPC

CacheSecurityGroupIngress:
Type: 'AWS::EC2::SecurityGroupIngress'
Properties:

GroupId: !Ref CacheSecurityGroup
IpProtocol: tcp
FromPort: 6379
ToPort: 6379
SourceSecurityGroupId: !Ref VMSecurityGroup

CacheSubnetGroup:
Type: 'AWS::ElastiCache::SubnetGroup'
Properties:

Description: cache
SubnetIds:
- Ref: SubnetA
- Ref: SubnetB

Cache:
Type: 'AWS::ElastiCache::CacheCluster'
Properties:

CacheNodeType: 'cache.t2.micro'
CacheSubnetGroupName: !Ref CacheSubnetGroup
Engine: redis
EngineVersion: '3.2.4'
NumCacheNodes: 1
VpcSecurityGroupIds:
- !Ref CacheSecurityGroup

The single-node Redis cache cluster is now defined. Discourse also requires a Postgre-
SQL database, which you’ll define next.

12.4.3 Database: Security group, subnet group, database instance

PostgreSQL is a powerful, open source, and relational database. If you are not familiar
with PostgreSQL, that’s not a problem at all. Luckily, the RDS service will provide a man-
aged PostgreSQL database for you. You learned about RDS in chapter 11. Listing 12.4
shows the section of the template that defines the RDS instance.

Listing 12.3 CloudFormation template for Discourse: Cache

The security group to control
incoming and outgoing traffic
to/from the cache

To avoid a cyclic dependency, the
ingress rule is split into a separate
CloudFormation resource.

Redis runs
on port

6379.
The VMSecurityGroup resource is
not yet specified; you will ad this
later when you define the EC2
instance that runs the web server.

The cache subnet group
references the VPC subnets.

Create a single-node
Redis cluster.

You can specify the exact version of Redis
that you want to run. Otherwise the latest
version is used, which may cause
incompatibility issues in the future. We
recommend always specifying the version.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

340 CHAPTER 12 Caching data in memory: Amazon ElastiCache

Resources:
[...]
DatabaseSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: database
VpcId: !Ref VPC

DatabaseSecurityGroupIngress:
Type: 'AWS::EC2::SecurityGroupIngress'
Properties:

GroupId: !Ref DatabaseSecurityGroup
IpProtocol: tcp
FromPort: 5432
ToPort: 5432
SourceSecurityGroupId: !Ref VMSecurityGroup

DatabaseSubnetGroup:
Type: 'AWS::RDS::DBSubnetGroup'
Properties:

DBSubnetGroupDescription: database
SubnetIds:
- Ref: SubnetA
- Ref: SubnetB

Database:
Type: 'AWS::RDS::DBInstance'
Properties:

AllocatedStorage: 5
BackupRetentionPeriod: 0
DBInstanceClass: 'db.t2.micro'
DBName: discourse
Engine: postgres
EngineVersion: '9.5.6'
MasterUsername: discourse
MasterUserPassword: discourse
VPCSecurityGroups:
- !Sub ${DatabaseSecurityGroup.GroupId}
DBSubnetGroupName: !Ref DatabaseSubnetGroup

DependsOn: VPCGatewayAttachment

Have you noticed the similarity between RDS and ElastiCache? The concepts are simi-
lar, which makes it easier for you to work with both services. Only one component is
missing: the EC2 instance that runs the web server.

12.4.4 Virtual machine—security group, EC2 instance

Discourse is a Ruby on Rails application so you need an EC2 instance to host the appli-
cation. Listing 12.5 defines the virtual machine and the startup script to install and
configure Discourse.

Listing 12.4 CloudFormation template for Discourse: Database

Traffic to/from the RDS instance
is protected by a security group.

PostgreSQL
runs on port

5432 by default.

The VMSecurityGroup
resource is not yet specified;

you’ll add this later when
you define the EC2 instance

that runs the web server.

RDS also uses a subnet
group to reference the
VPC subnets.

The database
resource

Disable backups; you want
to turn this on (value > 0)
in production.RDS created a

database for you
in PostgreSQL. Discourse requires

PostgreSQL.

We recommend to
always specify the

version of the engine
to avoid future

incompatibility issues.

PostgreSQL
admin user name

PostgreSQL admin
password; you want to

change this in production.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

341Installing the sample application Discourse with CloudFormation

Resources:
[...]
VMSecurityGroup:

Type: 'AWS::EC2::SecurityGroup'
Properties:

GroupDescription: 'vm'
SecurityGroupIngress:
- CidrIp: '0.0.0.0/0'

FromPort: 22
IpProtocol: tcp
ToPort: 22

- CidrIp: '0.0.0.0/0'
FromPort: 80
IpProtocol: tcp
ToPort: 80

VpcId: !Ref VPC
VMInstance:

Type: 'AWS::EC2::Instance'
Properties:

ImageId: 'ami-6057e21a'
InstanceType: 't2.micro'
KeyName: !Ref KeyName
NetworkInterfaces:
- AssociatePublicIpAddress: true

DeleteOnTermination: true
DeviceIndex: 0
GroupSet:
- !Ref VMSecurityGroup
SubnetId: !Ref SubnetA

UserData:
'Fn::Base64': !Sub |
#!/bin/bash -x
bash -ex << "TRY"

[...]

download Discourse
useradd discourse
mkdir /opt/discourse
git clone https://github.com/AWSinAction/discourse.git \

➥ /opt/discourse

configure Discourse
echo "db_host = \"${Database.Endpoint.Address}\"" >> \

➥ /opt/discourse/config/discourse.conf
echo "redis_host = \"${Cache.RedisEndpoint.Address}\"" >> \

➥ /opt/discourse/config/discourse.conf
[...]

TRY
/opt/aws/bin/cfn-signal -e $? --stack ${AWS::StackName} \

➥ --resource VMInstance --region ${AWS::Region}
CreationPolicy:

ResourceSignal:

Listing 12.5 CloudFormation template for Discourse: Virtual machine

Allow SSH traffic from
the public internet.

Allow HTTP traffic from
the public internet.

The virtual machine
that runs Discourse

Only contains an excerpt of the full script
necessary to install Discourse. You can find
the full code at /chapter12/template.yaml in
the book’s code folder.

Download
Discourse.

Configure the PostgreSQL database endpoint.

Configure the Redis cluster
node endpoint.

Signal the end of the installation
script back to CloudFormation.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

342 CHAPTER 12 Caching data in memory: Amazon ElastiCache

Timeout: PT15M
DependsOn:
- VPCGatewayAttachment

Outputs:
VMInstanceIPAddress:

Value: !GetAtt 'VMInstance.PublicIp'
Description: 'EC2 Instance public IP address

➥ (connect via SSH as user ec2-user)'

You’ve reached the end of the template. All components are defined now. It’s time to
create a CloudFormation stack based on your template to see if it works.

12.4.5 Testing the CloudFormation template for Discourse

Let’s create a stack based on your template to create all the resources in your AWS
account. To find the full code for the template, go to /chapter12/template.yaml in
the book’s code folder. Use the AWS CLI to create the stack:

$ aws cloudformation create-stack --stack-name discourse \

➥ --template-url https://s3.amazonaws.com/awsinaction-code2/\

➥ chapter12/template.yaml \

➥ --parameters ParameterKey=KeyName,ParameterValue=mykey \

➥ "ParameterKey=AdminEmailAddress,ParameterValue=your@mail.com"

The creation of the stack can take up to 15 minutes. To check the status of the stack,
use the following command:

$ aws cloudformation describe-stacks --stack-name discourse \

➥ --query "Stacks[0].StackStatus"

If the stack status is CREATE_COMPLETE, the next step is to get the public IP
address of the EC2 instance from the stack’s outputs with the following command:

$ aws cloudformation describe-stacks --stack-name discourse \

➥ --query "Stacks[0].Outputs[0].OutputValue"

Open a web browser and insert the IP address in the address bar to open your Dis-
course website. Figure 12.9 shows the website. Click Register to create an admin
account.

 You will receive an email to activate your account. This email will likely be in your
spam folder! After activation, the 13-step setup wizard is started, which you have to

Wait up to 15 minutes for the signal
from the install script in UserData.

Output the public IP
address of the virtual
machine.

Where is the template located?
You can find the template on GitHub. You can download a snapshot of the repository
at https://github.com/AWSinAction/code2/archive/master.zip. The file we’re talking
about is located at chapter12/template.yaml. On S3, the same file is located at
http://mng.bz/jP32.

www.itbook.store/books/9781617295119

https://github.com/AWSinAction/code2/archive/master.zip
http://mng.bz/jP32
https://itbook.store/books/9781617295119

343Installing the sample application Discourse with CloudFormation

complete. After you complete the wizard and have successfully installed Discourse, the
screen shown in figure 12.10 should appear.

Figure 12.9
Discourse: first
screen after a
fresh install

Figure 12.10 Discourse: a platform for community discussion

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

344 CHAPTER 12 Caching data in memory: Amazon ElastiCache

Don’t delete the CloudFormation stack because you’ll use the setup in the next section.
 You learned how Discourse uses Redis to cache some data while using ElastiCache

to run Redis for you. If you use ElastiCache in production, you also have to set up
monitoring to ensure that the cache works as expected, and you have to know how to
improve performance. Those are the topics of the next two chapters.

12.5 Monitoring a cache
CloudWatch is the service on AWS that stores all kinds of metrics. ElastiCache nodes
send useful metrics. The most important metrics to watch are:

 CPUUtilization—The percentage of CPU utilization.
 SwapUsage—The amount of swap used on the host, in bytes. Swap is space on

disk that is used if the system runs out of physical memory.
 Evictions—The number of non-expired items the cache evicted due to the

memory limit.
 ReplicationLag—This metric is only applicable for a Redis node running as a

read replica. It represents how far behind, in seconds, the replica is in applying
changes from the primary node. Usually this number is very low.

In this section we’ll examine those metrics in more detail, and give you some hints
about useful thresholds for defining alarms on those metrics to set up production-
ready monitoring for your cache.

12.5.1 Monitoring host-level metrics

The virtual machines report CPU utilization and swap usage. CPU utilization usually
gets problematic when crossing 80–90%, because the wait time explodes. But things
are more tricky here. Redis is single-threaded. If you have many cores, the overall CPU
utilization can be low but one core can be at 100% utilization. Swap usage is a differ-
ent topic. You run an in-memory cache, so if the virtual machine starts to swap (move
memory to disk) the performance will suffer. By default, ElastiCache for Memcached
and Redis is configured to limit memory consumption to a value smaller than what’s
physical available (you can tune this) to have room for other resources (for example,
the kernel needs memory for each open socket). But other processes (such as kernel
processes) are also running, and they may start to consume more memory than what’s
available. You can solve this issue by increasing the memory of the cache, either by
increasing the node type or by adding more shards.

Queuing theory: why 80–90%?
Imagine you are the manager of a supermarket. What should be the goal for daily uti-
lization of your cashier? It’s tempting to go for a high number. Maybe 90%. But it turns
out that the wait time for your customers is very high when your cashiers are utilized
for 90% of the day, because customers don’t arrive at the same time at the queue.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

345Monitoring a cache

You might set up an alarm to trigger if the 10-minute average of the CPUUtilization
metric is higher than 80% for 1 out of 1 data points, and if the 10-minute average of
the SwapUsage metric is higher than 67108864 (64 MB) for 1 out of 1 datapoints.
These numbers are just a rule of thumb. You should load-test your system to verify that
the thresholds are high/low enough to trigger the alarm before application perfor-
mance suffers.

12.5.2 Is my memory sufficient?

The Evictions metric is reported by Memcached and Redis. If the cache is full and
you put a new key-value pair into the cache, an old key-value pair needs to be deleted
first. This is called an eviction. Redis only evicts keys with a TTL by default (volatile-
lru). These additional eviction strategies are available: allkeys-lru (remove the least
recently used key among all keys), volatile-random (remove a random key among keys
with TTL), allkeys-random (remove a random key among all keys), volatile-ttl (remove
the key with the shortest TTL), and noeviction (do not evict any key). Usually, high
eviction rates are a sign that you either aren’t using a TTL to expire keys after some
time, or that your cache is too small. You can solve this issue by increasing the memory
of the cache, either by increasing the node type or by adding more shards.

 You might set an alarm to trigger if the 10-minute average of the Evictions metric
is higher than 1000 for 1 out of 1 data points.

12.5.3 Is my Redis replication up-to-date?

The ReplicationLag metric is only applicable for a node running as a read replica. It
represents how far behind, in seconds, the replica is in applying changes from the pri-
mary node. The higher this value, the more out-of-date the replica is. This can be a
problem because some users of your application will see very old data. In the gaming
application, imagine you have one primary node and one replica node. All reads are
performed by either the primary or the replica node. The ReplicationLag is 600,

The theory behind this is called queuing theory, and it turns out that wait time is expo-
nential to the utilization of a resource. This not only applies to cashiers, but also to
network cards, CPU, hard disks, and so on. Keep in mind that this sidebar simplifies
the theory and assumes an M/D/1 queuing system: Markovian arrivals (exponentially
distributed arrival times), deterministic service times (fixed), one service center. To
you want to learn more about queuing theory applied to computer systems, we rec-
ommend Systems Performance: Enterprise and the Cloud by Brendan Gregg (Prentice
Hall, 2013) to get started.

When you go from 0% utilization to 60%, wait time doubles. When you go to 80%, wait
time has tripled. When you to 90%, wait time is six times higher. And so on.

So if your wait time is 100 ms during 0% utilization, you already have 300 ms wait
time during 80% utilization, which is already slow for a e-commerce web site.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

346 CHAPTER 12 Caching data in memory: Amazon ElastiCache

which means that the replication node looks like the primary node looked 10 minutes
before. Depending on which node the user hits when accessing the application, they
could see 10-minute old data.

 What are reasons for a high ReplicationLag? There could be a problem with the
sizing of your cluster; for example, your cache cluster might be at capacity. Typically
this will be a sign to increase the capacity by adding shards or replicas.

 You might set an alarm to trigger if the 10-minute average of the ReplicationLag
metric is higher than 30 for 1 consecutive period.

12.6 Tweaking cache performance
Your cache can become a bottleneck if it can no longer handle the requests with low
latency. In the previous section, you learned how to monitor your cache. In this section
you learn what you can do if your monitoring data shows that your cache is becoming
the bottleneck (for example if you see high CPU or network usage). Figure 12.11 con-
tains a decision tree that you can use to resolve performance issues with ElastiCache.
The strategies are described in more detail in the rest of this section.

Cleaning up
It’s time to delete the running CloudFormation stack:

$ aws cloudformation delete-stack --stack-name discourse

Figure 12.11 ElastiCache decision tree to resolve performance issues

Do
nothing

The
performance is

sufficient?

Yes No

Compression is
implemented?

A
larger node is

available?

More
reads than

writes?

Does
the data fit

into the memory
of a single

node?

Increase
node type

Yes

Read
replicas

Yes

Yes

Implement
compression

Yes No

Sharding

No

No

No

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

347Tweaking cache performance

There are three strategies for tweaking the performance of your ElastiCache cluster:

1 Selecting the right cache node type—A bigger instance type comes with more
resources (CPU, memory, network) so you can scale vertically.

2 Selecting the right deployment option—You can use sharding or read replicas to
scale horizontally.

3 Compressing your data—If you shrink the amount of data being transferred and
stored, you can also tweak performance.

12.6.1 Selecting the right cache node type

So far, you used the cache node type cache.t2.micro, which comes with one vCPU, ~0.6
GB memory, and low-to-moderate network performance. You used this node type
because it’s part of the Free Tier. But you can also use more powerful node types on AWS.
The upper end is the cache.r4.16xlarge with 64 vCPUs, ~488 GB memory, and 25 Gb
network. Keep in mind that Redis is single-threaded and will not use all cores.

 As a rule of thumb: for production traffic, select a cache node type with at least 2
vCPUs for real concurrency, enough memory to hold your data set with some space
to grow (say, 20%; this also avoids memory fragmentation), and at least high net-
work performance. The r4.large is an excellent choice for a small node size:
2 vCPUs, ~16 GB, and up to 10 Gb of network. This may be a good starting point
when considering how many shards you may want in a clustered topology, and if you
need more memory, move up a node type. You can find the available node types at
https:// aws.amazon.com/elasticache/pricing/.

12.6.2 Selecting the right deployment option

By replicating data, you can distribute read traffic to multiple nodes within the same
replica group. Since you have more nodes in your cluster, you can serve more
requests. By sharding data, you split the data into multiple buckets. Each bucket con-
tains a subset of the data. Since you have more nodes in your cluster, you can serve
more requests.

 You can also combine replication and sharding to increase the number of nodes in
your cluster.

 Both Memcached and Redis support the concept of sharding. With sharding, a sin-
gle cache cluster node is no longer responsible for all the keys. Instead the key space is
divided across multiple nodes. Both Redis and Memcached clients implement a hash-
ing algorithm to select the right node for a given key. By sharding, you can increase
the capacity of your cache cluster.

 Redis supports the concept of replication, where one node in a node group is the
primary node accepting read and write traffic, while the replica nodes only accept
read traffic. This allows you the scale the read capacity. The Redis client has to be
aware of the cluster topology to select the right node for a given command. Keep in
mind that the replicas are synchronized asynchronously. This means that the replica-
tion node eventually reaches the state of the primary node.

www.itbook.store/books/9781617295119

https://aws.amazon.com/elasticache/pricing/
https://itbook.store/books/9781617295119

348 CHAPTER 12 Caching data in memory: Amazon ElastiCache

 As a rule of thumb: when a single node can no longer handle the amount of data or
the requests, and if you are using Redis with mostly read traffic, then you should use rep-
lication. Replication also increases the availability at the same time (at no extra costs).

12.6.3 Compressing your data

This solution needs to be implemented in your application. Instead of sending large
values (and also keys) to your cache, you can compress the data before you store it in
the cache. When you retrieve data from the cache, you have to uncompress it on the
application before you can use the data. Depending on your data, compressing data
can have a significant effect. We saw memory reductions to 25% of the original size
and network transfer savings of the same size.

 As a rule of thumb: Compress your data using a compression algorithm that is best
suited for your data, most likely the zlib library. You have to experiment with a subset
of your data to select the best compression algorithm that is also supported by your
programming language.

Summary
 A caching layer can speed up your application significantly, while also lowering

the costs of your primary data store.
 To keep the cache in sync with the database, items usually expire after some

time, or a write-through strategy is used.
 When the cache is full, the least frequently used items are usually evicted.
 ElastiCache can run Memcached or Redis clusters for you. Depending on the

engine, different features are available. Memcached and Redis are open source,
but AWS added engine-level enhancements.

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

CLOUD/AWS

Amazon Web Services IN ACTION Second Edition

Michael Wittig ● Andreas Wittig

T
he largest and most mature of the cloud platforms, AWS
offers over 100 prebuilt services, practically limitless
compute resources, bottomless secure storage, as well as

top-notch automation capabilities. This book shows you how
to develop, host, and manage applications on AWS.

Amazon Web Services in Action, Second Edition is a comprehen­
sive introduction to deploying web applications in the AWS
cloud. You’ll find clear, relevant coverage of all essential AWS
services, with a focus on automation, security, high availabil­
ity, and scalability. This thoroughly revised edition covers the
latest additions to AWS, including serverless infrastructure
with AWS Lambda, sharing data with EFS, and in-memory
storage with ElastiCache.

What’s Inside
● Completely revised bestseller!
● Secure and scale distributed applications
● Deploy applications on AWS
● Design for failure to achieve high availability
● Automate your infrastructure

Written for mid-level developers and DevOps engineers.

Andreas and Michael Wittig are software engineers and DevOps
consultants focused on AWS. Together, they migrated the fi rst
bank in Germany to AWS in 2013.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/amazon-web-services-in-action-second-edition

“Slices through the
complexity of AWS using
examples and visuals to

cement knowledge in the
minds of readers.” —From the Foreword by

Ben Whaley
AWS community hero and author

“The authors’ ability to
explain complex concepts is

the real strength of the book.” —Antonio Pessolano
Consoft Sistemi

“Useful examples, fi gures,
and sources to help you

 learn effi ciently.” —Christof Marte, Daimler-Benz

“Does a great job of
explaining some of the key

services in plain English
so you have the knowledge
necessary to dig deeper.” —Ryan Burrows

Rooster Park Consulting

See first page

M A N N I N G $54.99 / Can $72.99 [INCLUDING eBOOK]

www.itbook.store/books/9781617295119

https://itbook.store/books/9781617295119

