
M A N N I N G

Tjeerd in ‘t Veen

IN DEPTH

S A M P L E C H A P T E R

www.itbook.store/books/9781617295188

https://itbook.store/books/9781617295188

Swift in Depth

by Tjeerd in ’t Veen

 Chapter 11

 Copyright 2019 Manning Publications

www.itbook.store/books/9781617295188

https://itbook.store/books/9781617295188

www.itbook.
brief contents
1 ■ Introducing Swift in depth 1

2 ■ Modeling data with enums 10

3 ■ Writing cleaner properties 35

4 ■ Making optionals second nature 52

5 ■ Demystifying initializers 78

6 ■ Effortless error handling 100

7 ■ Generics 122

8 ■ Putting the pro in protocol-oriented programming 145

9 ■ Iterators, sequences, and collections 168

10 ■ Understanding map, flatMap, and compactMap 198

11 ■ Asynchronous error handling with Result 229

12 ■ Protocol extensions 258

13 ■ Swift patterns 283

14 ■ Delivering quality Swift code 311

15 ■ Where to Swift from here 330
v

store/books/9781617295188

https://itbook.store/books/9781617295188

www.itbook.sto
Asynchronous error
handling with Result
You’ve covered a lot of Swift’s error handling mechanics, and you may have noticed
in chapter 6 that you were throwing errors synchronously. This chapter focuses on
handling errors from asynchronous processes, which is, unfortunately, an entirely
different idiom in Swift.

This chapter covers
 Learning about the problems with Cocoa style

error handling

 Getting an introduction to Apple’s Result type

 Seeing how Result provides compile-time safety

 Preventing bugs involving forgotten callbacks

 Transforming data robustly with map, mapError,
and flatMap

 Focusing on the happy path when handling errors

 Mixing throwing functions with Result

 Learning how AnyError makes Result less
restrictive

 How to show intent with the Never type
229

re/books/9781617295188

https://itbook.store/books/9781617295188

230 CHAPTER 11 Asynchronous error handling with Result

www.itboo
 Asynchronous actions could be some code running in the background while a cur-
rent method is running. For instance, you could perform an asynchronous API call to
fetch JSON data from a server. When the call finishes, it triggers a callback giving you
the data or an error.

 Swift doesn’t yet offer an official solution to asynchronous error handling. Accord-
ing to rumor, Swift won’t offer one until the async/await pattern gets introduced
somewhere around Swift version 7 or 8. Luckily, the community seems to favor asyn-
chronous error handling with the Result type (which is reinforced by Apple’s inclu-
sion of an unofficial Result type in the Swift Package Manager). You may already have
worked with the Result type and even implemented it in projects. In this chapter,
you’ll use one offered by Apple, which may be a bit more advanced than most exam-
ples found online. To get the most out of Result, you’ll go deep into the rabbit hole
and look at propagation, so-called monadic error handling, and its related AnyError
type. The Result type is an enum like Optional, with some differences, so if you’re
comfortable with Optional, then Result should not be too big of a jump.

 You’ll start off by exploring the Result type’s benefits and how you can add it to
your projects. You’ll create a networking API, and then keep improving it in the fol-
lowing sections. Then you’ll start rewriting the API, but you’ll use the Result type to
reap its benefits.

 Next, you’ll see how to propagate asynchronous errors and how you can keep your
code clean while focusing on the happy path. You do this via the use of map, mapError,
and flatMap.

 Sooner or later you’ll use regular throwing functions again to transform your asyn-
chronous data. You’ll see how to mix the two error handling idioms by working with
throwing functions in combination with Result.

 After building a solid API, you’ll look at a unique AnyError type that Apple also
offers in combination with Result. This type gives you the option to store multiple
types of errors inside a Result. The benefit is that you can loosen up the error han-
dling strictness without needing to look back to Objective-C by using NSError. You’ll
try out plenty of convenience functions to keep the code concise.

 You’ll then take a look at the Never type to indicate that your code can never fail or
succeed. It’s a little theoretical but a nice finisher. Consider it a bonus section.

 By the end of the chapter, you’ll feel comfortable applying powerful transforma-
tions to your asynchronous code while dealing with all the errors that can come with
it. You’ll also be able to avoid the dreaded pyramid of doom and focus on the happy
path. But the significant benefit is that your code will be safe and succinct while ele-
gantly handling errors—so let’s begin!

11.1 Why use the Result type?

JOIN ME! It’s more educational and fun if you can check out the code and fol-
low along with the chapter. You can download the source code at http://mng
.bz/5YP1.
k.store/books/9781617295188

http://mng.bz/5YP1
http://mng.bz/5YP1
http://mng.bz/5YP1
https://itbook.store/books/9781617295188

231Why use the Result type?

www.itbook.
Swift’s error handling mechanism doesn’t translate well to asynchronous error han-
dling. At the time of writing, Swift’s asynchronous error handling is still not fleshed
out. Generally speaking, developers tend to use Cocoa’s style of error handling—com-
ing from the good ol’ Objective-C days—where a network call returns multiple values.
For instance, you could fetch some JSON data from an API, and the callback gives you
both a value and an error where you’d have to check for nil on both of them.

 Unfortunately, the Cocoa Touch way has some problems—which you’ll uncover in
a moment—and the Result type solves them. The Result type, inspired by Rust’s
Result type and the Either type in Haskell and Scala, is a functional programming
idiom that has been taken on by the Swift community, making it a non-official stan-
dard of error handling.

 At the time of writing, developers repeatedly reimagine the Result type because
no official standard exists yet. Even though Swift doesn’t officially offer the Result
type, the Swift Package Manager offers it unofficially. So Apple (indirectly) offers a
Result type, which justifies implementing it in your codebases. You’ll power up
Result with useful custom functionality as well.

11.1.1 Getting your hands on Result

You can find the Result type inside this chapter’s playgrounds file. But you can also
directly pluck it from the Swift Package Manager—also known as SwiftPM—on GitHub
found at http://mng.bz/6GPD.

 You can also retrieve Result via dependencies of the SwiftPM. This chapter doesn’t
provide a full guide on how to create a Swift command-line tool via the SwiftPM, but
these following commands should get you started.

 First, run the following to set up a folder and a Swift executable project. Open the
command line and enter the following:

mkdir ResultFun
cd ResultFun
swift package init --type executable

Next, open Package.swift and change it to the following:

// swift-tools-version:4.2
// The swift-tools-

version declares the minimum version of Swift the required to build this
package.

import PackageDescription

let package = Package(
name: "ResultFun",
dependencies: [

.package(url: "https://github.com/apple/swift-package-manager",
from: "0.2.1")
],

You link to the SwiftPM project
from the SwiftPM itself.
store/books/9781617295188

http://mng.bz/6GPD
https://itbook.store/books/9781617295188

232 CHAPTER 11 Asynchronous error handling with Result

pe

s.

s

www.itboo
targets: [
.target(

name: "ResultFun",
dependencies: ["Utility"]),

]
)

Inside your project folder, open Sources/ResultFun/main.swift and change it to the
following:

import Basic

let result = Result<String, AnyError>("It's working, hooray!")
print(result)

Type swift run, and you’ll see Result(It’s working, hooray!). Ready? Let’s continue.

11.1.2 Result is like Optional, with a twist

Result is a lot like Optional, which is great because if you’re comfortable with option-
als (see chapter 4), you’ll feel right at home with the Result type.

 Swift’s Result type is an enum with two cases: namely, a success case and a failure
case. But don’t let that fool you. Optional is also “just” an enum with two cases, but it’s
powerful, and so is Result.

 In its simplest form, the Result type looks as follows.

public enum Result<Value, ErrorType: Swift.Error> {
/// Indicates success with value in the associated object.
case success(Value)

/// Indicates failure with error inside the associated object.
case failure(ErrorType)

// ... The rest is left out for later
}

The difference with Optional is that instead of a value being present (some case) or
nil (none case), Result states that it either has a value (success case) or it has an
error (failure case). In essence, the Result type indicates possible failure instead of
nil. In other words, with Result you can give context for why an operation failed,
instead of missing a value.

 Result contains a value for each case, whereas with Optional, only the some case
has a value. Also the ErrorType generic is constrained to Swift’s Error protocol, which
means that only Error types can fit inside the failure case of Result. The constraint
comes in handy for some convenience functions, which you’ll discover in a later sec-
tion. Note that the success case can fit any type because it isn’t constrained.

Listing 11.1 The Result type

You need to depend on the
Utility package to get
required source files.

The Basic package is
offered by the SwiftPM.

Create a Result type to make sure
the import worked correctly.AnyError is covered

later in this chapter.

The Result ty
requires two
generic value

In the success
case, a Value i
bound.The ErrorType

generic is bound in
the failure case.
k.store/books/9781617295188

https://itbook.store/books/9781617295188

233Why use the Result type?

As
the

any
unw

da

the

www.itbook.
 You haven’t seen the full Result type, which has plenty of methods, but this code is
enough to get you started. Soon enough you’ll get to see more methods, such as
bridging to and from throwing functions and transforming values and errors inside
Result in an immutable way.

 Let’s quickly move on to the raison d’être of Result: error handling.

11.1.3 Understanding the benefits of Result

To better understand the benefits of the Result type in asynchronous calls, let’s first
look at the downsides of Cocoa Touch–style asynchronous APIs before you see how
Result is an improvement. Throughout the chapter, you’ll keep updating this API
with improvements.

 Let’s look at URLSession inside the Foundation framework. You’ll use URLSession to
perform a network call, as shown in listing 11.2, and you’re interested in the data and
error of the response. The iTunes app isn’t known for its “popular” desktop applica-
tion, so you’ll create an API for searching the iTunes Store without a desktop app.

 To start, you’ll use a hardcoded string to search for “iron man”—which you per-
cent encode manually at first—and make use of a function callURL to perform a
network call.

func callURL(with url: URL, completionHandler: @escaping (Data?, Error?)
➥ -> Void) {

let task = URLSession.shared.dataTask(with: url, completionHandler:
➥ { (data, response, error) -> Void in

completionHandler(data, error)
})

task.resume()
}

let url = URL(string: "https://itunes.apple.com/search?term=iron%20man")!

callURL(with: url) { (data, error) in
if let error = error {

print(error)
} else if let data = data {

let value = String(data: data, encoding: .utf8)
print(value)

} else {
// What goes here?

}
}

Listing 11.2 Performing a network call

The @escaping keyword is required in this situation; it
indicates that the completionHandler closure can
potentially be stored and retain memory.

The callURL function has a
completionHandler handler that is called

when the URLSession.dataTask finishes.

You get the data from a
URL, and you pass the data
and error back to the caller.

You call the callURL function to get the
data and error, which are returned at
some point in time (asynchronously).

 soon as
 callback
is called,
 error is
rapped.

If there is
ta, you can
work with
 response.

You turn the data to
String to read the
raw value.

Here’s the problem: If
both error and data are
nil, what do you do then?
store/books/9781617295188

https://itbook.store/books/9781617295188

234 CHAPTER 11 Asynchronous error handling with Result

t
ia

www.itboo
But the problem is that you have to check whether an error and/or the data is nil.
Also, what happens if both values are nil? The URLSession documentation (http://
mng.bz/oVxr) states that either data or error has a value; yet in code this isn’t
reflected, and you still have to check against all values.

 When returning multiple values from an asynchronous call from URLSession, a
success and failure value are not mutually exclusive. In theory, you could have received
both response data and a failure error or neither. Or you can have one or the other,
but falsely assume that if there is no error, the call must have succeeded. Either way,
you don’t have a compile-time guarantee to enforce safe handling of the returned
data. But you’re going to change that and see how Result will give you these compile-
time guarantees.

11.1.4 Creating an API using Result

Let’s get back to the API call. With a Result type, you can enforce at compile time
that a response is either a success (with a value) or a failure (with an error). As an
example, let’s update the asynchronous call so that it passes a Result.

 You’re going to introduce a NetworkError and make the callURL function use the
Result type.

enum NetworkError: Error {
case fetchFailed(Error)

}

func callURL(with url: URL, completionHandler: @escaping (Result<Data,
➥ NetworkError>) -> Void) {

let task = URLSession.shared.dataTask(with: url, completionHandler: {
➥ (data, response, error) -> Void in

// ... details will be filled in shortly
})

task.resume()
}

let url = URL(string: "https://itunes.apple.com/search?term=iron%20man")!

callURL(with: url) { (result: Result<Data, NetworkError>) in
switch result {
case .success(let data):

let value = String(data: data, encoding: .utf8)
print(value)

case .failure(let error):
print(error)

}
}

Listing 11.3 A response with Result

Define a custom error to pass around inside
Result. You can store a lower-level error
from URLSession inside the fetchFailed
case to help with troubleshooting.

This time, callURL passes a
Result type containing either

a Data or NetworkError.

Call callURL to ge
the Result back v
a closure.

Pattern match on the
success case to get the
value out of a Result.

Pattern match on
the failure case to
catch any error.
k.store/books/9781617295188

http://mng.bz/oVxr
http://mng.bz/oVxr
http://mng.bz/oVxr
https://itbook.store/books/9781617295188

235Why use the Result type?

www.itbook.
As you can see, you receive a Result<Data, NetworkError> type when you call
callURL(). But this time, instead of matching on both error and data, the values are
now mutually exclusive. If you want the value out of Result, you must handle both cases,
giving you compile-time safety in return and removing any awkward situations where
both data and error can be nil or filled at the same time. Also, a big benefit is that
you know beforehand that the error inside the failure case is of type NetworkError,
as opposed to throwing functions where you only know the error type at runtime.

 You may also use an error handling system where a data type contains an onSuccess
or onFailure closure. But I want to emphasize that with Result, if you want the value
out, you must do something with the error.

AVOIDING ERROR HANDLING

Granted, you can’t fully enforce handling an error inside of Result if you match on a
single case of an enum with the if case let statement. Alternatively, you can ignore
the error with the infamous // TODO handle error comment, but then you’d be con-
sciously going out of your way to avoid handling an error. Generally speaking, if you
want to get the value out of Result, the compiler tells you to handle the error, too.

 As another option, if you’re not interested in the reason for failure, yet still want a
value out of Result, you can get the value out by using the dematerialize method.
This function either returns the value or throws the error inside Result. If you use the
try? keyword, as shown in the following listing, you can instantly convert the Result
to an Optional.

let value: Data? = try? result.dematerialize()

11.1.5 Bridging from Cocoa Touch to Result

Moving on, the response from URLSession’s dataTask returns three values: data,
response, and error.

URLSession.shared.dataTask(with: url, completionHandler: { (data, response,
error) -> Void in ... }

But if you want to work with Result, you’ll have to convert the values from URLSession’s
completion handler to a Result yourself. Let’s take this opportunity to flesh out the
callURL function so that you can bridge Cocoa Touch–style error handling to a Result-
style error handling.

 One way to convert a value and error to Result is to add a custom initializer to
Result that performs the conversion for you, as shown in the next listing. You can
pass this initializer the data and error, and then use that to make a new Result. In
your callURL function, you can then return a Result via the closure.

Listing 11.4 Dematerializing Result

Listing 11.5 The URLSession's response
store/books/9781617295188

https://itbook.store/books/9781617295188

236 CHAPTER 11 Asynchronous error handling with Result

Cre
Result

the
and

v

www.itboo
public enum Result<Value, ErrorType> {
// ... snip

init(value: Value?, error: ErrorType?) {
if let error = error {

self = .failure(error)
} else if let value = value {

self = .success(value)
} else {

fatalError("Could not create Result")
}

}
}

func callURL(with url: URL, completionHandler: @escaping (Result<Data,
➥ NetworkError>) -> Void) {

let task = URLSession.shared.dataTask(with: url, completionHandler:
➥ { (data, response, error) -> Void in

let dataTaskError = error.map { NetworkError.fetchFailed($0)}
let result = Result<Data, NetworkError>(value: data, error:

➥ dataTaskError)
completionHandler(result)

})

task.resume()
}

IF AN API DOESN’T RETURN A VALUE Not all APIs return a value, but you can
still use Result with a so-called unit type represented by Void or (). You can
use Void or () as the value for a Result, such as Result<(), MyError>.

11.2 Propagating Result
Let’s make your API a bit higher-level so that instead of manually creating URLs, you
can search for items in the iTunes Store by passing strings. Also, instead of dealing
with lower-level errors, let’s work with a higher-level SearchResultError, which better
matches the new search abstraction you’re creating. This section is a good opportu-
nity to see how you can propagate and transform any Result types.

 The API that you’ll create allows you to enter a search term, and you’ll get JSON
results back in the shape of [String: Any].

enum SearchResultError: Error {
case invalidTerm(String)
case underlyingError(NetworkError)
case invalidData

}

Listing 11.6 Converting a response and error into a Result

Listing 11.7 Calling the search API

Create an initializer that
accepts an optional value
and optional error.

If both a value and error are
nil, you end up in a bad state
and crash, because you can
be confident that URLSession
returns either a value or error.

Turn the current error into
a higher-level NetworkError

and pass the lower-level
error from URLSession to

its fetchFailed case to help
with troubleshooting.

ate a
 from
 data

 error
alues.

Pass the Result
back to the

completionHandler
closure.

The invalidTerm case is used
when an URL can’t be created.

The underlyingError case carries the lower-
level NetworkError for troubleshooting or
to help recover from an error.

The invalidData case is for when
the raw data could not be
parsed to JSON.
k.store/books/9781617295188

https://itbook.store/books/9781617295188

237Propagating Result

u
.

www.itbook.
search(term: "Iron man") { result: Result<[String: Any], SearchResultError> in
print(result)

}

11.2.1 Typealiasing for convenience

Before creating the search implementation, you create a few typealiases for conve-
nience, which come in handy when repeatedly working with the same Result over
and over again.

 For instance, if you work with many functions that return a Result<Value,
SearchResultError>, you can define a typealias for the Result containing a
SearchResultError. This typealias is to make sure that Result requires only a single
generic instead of two by pinning the error generic.

typealias SearchResult<Value> = Result<Value, SearchResultError>

let searchResult = SearchResult("Tony Stark")
print(searchResult) // success("Tony Stark")

PARTIAL TYPEALIAS The typealias still has a Value generic for Result, which
means that the defined SearchResult is pinned to SearchResultError, but
its value could be anything, such as a [String: Any], Int, and so on.

You can create this SearchResult by only passing it a value. But its true type is
Result<Value, SearchResultError>.

 Another typealias you can introduce is for the JSON type, namely a dictionary of
type [String: Any]. This second typealias helps you to make your code more
readable, so that you work with SearchResult<JSON> in place of the verbose
SearchResult<[String: Any]> type.

typealias JSON = [String: Any]

With these two typealiases in place, you’ll be working with the SearchResult<JSON>
type.

11.2.2 The search function

The new search function makes use of the callURL function, but it performs two
extra tasks: it parses the data to JSON, and it translates the lower-level NetworkError
to a SearchResultError, which makes the function a bit more high-level to use, as
shown in the following listing.

Listing 11.8 Creating a typealias

Listing 11.9 The JSON typealias

Search for a term, and yo
retrieve a Result via a closure

A generic typealias is defined that pins the
Error generic to SearchResultError.

Result offers a convenience
initializer to create a Result from
a value, if it can deduce the error.
store/books/9781617295188

https://itbook.store/books/9781617295188

238 CHAPTER 11 Asynchronous error handling with Result

enc
to
AP

u
th
u

nto
ap.

rms

On

f

t

[
N,
to

www.itboo
func search(term: String, completionHandler: @escaping (SearchResult<JSON>)
-> Void) {
let encodedString = term.addingPercentEncoding(withAllowedCharacters:
.urlHostAllowed)
let path = encodedString.map { "https://itunes.apple.com/search?term="
+ $0 }

guard let url = path.flatMap(URL.init) else {
completionHandler(SearchResult(.invalidTerm(term)))
return

}

callURL(with: url) { result in
switch result {
case .success(let data):

if
let json = try? JSONSerialization.jsonObject(with: data,

options: []),
let jsonDictionary = json as? JSON {
let result = SearchResult<JSON>(jsonDictionary)
completionHandler(result)

} else {
let result = SearchResult<JSON>(.invalidData)
completionHandler(result)

}
case .failure(let error):

let result = SearchResult<JSON>(.underlyingError(error))
completionHandler(result)

}
}

}

Thanks to the search function, you end up with a higher-level function to search
the iTunes API. But, it’s still a little bit clunky because you’re manually creating
multiple result types and calling the completionHandler in multiple places. It’s
quite the boilerplate, and you could possibly forget to call the completionHandler
in larger functions. Let’s clean that up with map, mapError, and flatMap so that
you’ll transform and propagate a single Result type and you’ll only need to call
completionHandler once.

Listing 11.10 The search function implementation

The function makes use of the JSON
and SearchResult typealiases.

The function transforms the search term into a URL-
encoded format. Note that encodedString is an optional.

Append the
oded string
 the iTunes
I path. You
se map for
is to delay

nwrapping.

Transform the
complete path i
a URL via a flatM
The guard perfo
the unwrapping
action.

You make sure that an URL is created;
on failure, you short-circuit the function

by calling the closure early.

The original callURL is
called to get raw data.

 the success
case, the

unction tries
to convert

he data to a
JSON format
String: Any].

If the data
successfully
converts to JSO
you can pass it
the completion
handler.

If conversion to JSON format fails, you pass a
SearchResultError, wrapped in a Result. You can
omit SearchResultError because Swift can infer
the error type for you.

On failure of callURL, you translate
the lower-level NetworkError to a

higher-level SearchResultError,
passing the original NetworkError

to a SearchResultError for
troubleshooting.
k.store/books/9781617295188

https://itbook.store/books/9781617295188

239Transforming values inside Result

www.itbook.
11.3 Transforming values inside Result
Similar to how you can weave optionals through an application and map over them
(which delays the unwrapping), you can also weave a Result through your functions
and methods while programming the happy path of your application. In essence, after
you obtained a Result, you can pass it around, transform it, and only switch on it
when you’d like to extract its value or handle its error.

 One way to transform a Result is via map, similar to mapping over Optional.
Remember how you could map over an optional and transform its inner value if present?
Same with Result: you transform its success value if present. Via mapping, in this case,
you’d turn Result<Data, NetworkError> into Result<JSON, NetworkError>.

 Related to how map ignores nil values on optionals, map also ignores errors on
Result (see figure 11.1).

As a special addition, you can also map over an error instead of a value inside Result.
Having mapError is convenient because you translate a NetworkError inside Result to
a SearchResultError.

 With mapError, you’d therefore turn Result<JSON, NetworkError> into Result
<JSON, SearchResultError>, which matches the type you pass to the completion-
Handler (see figure 11.2).

 With the power of both map and mapError combined, you can turn a Result<Data,
NetworkError> into a Result<JSON, SearchResultError>, aka SearchResult<JSON>,
without having to switch on a result once (see figure 11.3). The listing 11.11 gives an
example of mapping over an error and value.

 Applying mapError and map help you remove some boilerplate from earlier in the
search function.

1. You have two results:

one with a value and

one with an error.

2. With map, you apply a function to the value

inside a result.

Map does nothing with a failing result.

3. Map rewraps the

transformed value

in a result.

The failing result

is still the same

old failing result.

Data
JSON

JSON
Data

serialize
JSON

Network

error

Network

error

Network

error

serialize
JSON

Figure 11.1 Mapping over a Result
store/books/9781617295188

https://itbook.store/books/9781617295188

240 CHAPTER 11 Asynchronous error handling with Result

www.itboo
func search(term: String, completionHandler: @escaping (SearchResult<JSON>)
➥ -> Void) {

// ... snip

callURL(with: url) { result in

let convertedResult: SearchResult<JSON> =
result

// Transform Data to JSON
.map { (data: Data) -> JSON in

guard
let json = try? JSONSerialization.jsonObject(with:

➥ data, options: []),
let jsonDictionary = json as? JSON else {

return [:]
}

return jsonDictionary
}
// Transform NetworkError to SearchResultError
.mapError { (networkError: NetworkError) ->

➥ SearchResultError in

Listing 11.11 Mapping over an error and value

1. You have two results:

one with a value and

one with an error.

2. mapError does nothing with a successful result.

With mapError, you apply a function to the error

inside a result.

3. The successful result

is still the same.

mapError rewraps

the transformed error

in a result.

JSONJSON
JSON

Search

result

error

transform
Error

Network

error

Search

result error

Network

error

transform
Error

Figure 11.2 Mapping over an error inside Result

Result<Data, NetworkError>

Result<JSON, SearchResultError>

map mapError

Figure 11.3 Mapping over
both the value and error

This result is of type
Result<Data, NetworkError>.

On success, you map
the data to a JSON.

On failure, you now end up with
an empty JSON instead of an
error, which you’ll solve with
flatMap in a moment.

You map the error so that the error
type matches SearchResultError.
k.store/books/9781617295188

https://itbook.store/books/9781617295188

241Transforming values inside Result

www.itbook.
return SearchResultError.underlyingError(networkError)
➥ // Handle error from lower layer

}

completionHandler(convertedResult)
}

}

Now, instead of manually unwrapping result types and passing them to the
completionHandler in multiple flows, you transform the Result to a SearchResult,
and pass it to the completionHandler only once. Just like with optionals, you delay any
error handling until you want to get the value out.

 Unfortunately, mapError is not part of the Result type offered by Apple. You have
to define the method yourself (see the upcoming exercise), but you can also look
inside the relevant playgrounds file.

 As the next step for improvement, let’s improve failure, because currently you’re
returning an empty dictionary instead of throwing an error. You’ll improve this with
flatMap.

11.3.1 Exercise

1 By looking at the map function on Result, see if you can create mapError.

11.3.2 flatMapping over Result

One missing piece from your search function is that when the data can’t be converted
to JSON format, you’d need to obtain an error. You could throw, but throwing is some-
what awkward because you would be mixing Swift’s throwing idiom with the Result
idiom. You’ll take a look at that in the next section.

 To stay in the Result way of thinking, let’s return another Result from inside map.
But you may have guessed that returning a Result from a mapping operation leaves you
with a nested Result, such as SearchResult<SearchResult<JSON>>. You can make use
of flatMap—that is defined on Result—to get rid of one extra layer of nesting.

 Exactly like how you can use flatMap to turn Optional<Optional<JSON>>
into Optional<JSON>, you can also turn SearchResult<SearchResult<JSON>> into
SearchResult<JSON> (see figure 11.4).

 By replacing map with flatMap when parsing Data to JSON, you can return an error
Result from inside the flatMap operation when parsing fails, as shown in listing 11.12.

You pass the SearchResult<JSON>
type to the completionHandler after
all is done.
store/books/9781617295188

https://itbook.store/books/9781617295188

242 CHAPTER 11 Asynchronous error handling with Result

www.itboo
func search(term: String, completionHandler: @escaping (SearchResult<JSON>)
➥ -> Void) {

// ... snip

callURL(with: url) { result in

let convertedResult: SearchResult<JSON> =
result

// Transform error type to SearchResultError
.mapError { (networkError: NetworkError) ->

➥ SearchResultError in
return SearchResultError.underlyingError(networkError)

}
// Parse Data to JSON, or return SearchResultError
.flatMap { (data: Data) -> SearchResult<JSON> in

guard
let json = try? JSONSerialization.jsonObject(with:

➥ data, options: []),
let jsonDictionary = json as? JSON else {

return SearchResult(.invalidData)
}

return SearchResult(jsonDictionary)
}

Listing 11.12 flatMaping over Result

1. You start with a

sucessful result

containing Data

(x2) and with one

result containing

an error.

2. With flatMap, you apply a function to the value inside

the result. This function will itself return a new result.

This new result could be successful and carry a value,

or be a failure result containing an error.

But if you start with a result containing an error,

any flatMap action is ignored.

3. You end up with

a nested result.

If you start with

an error, then

nothing is

transformed

or nested.

4. The nested result

is flattened to a

regular result.

If you start with

an error, nothing

happened and

the result

remains the

same.

Data JSON JSONJSON
Data

serialize
JSON

Data Error ErrorError
Data

serialize
JSON

Error Error
Error

serialize
JSON

Figure 11.4 How flatMap works on Result

mapError is moved higher up the
chain, so that the error type is
SearchResultError before you

flatMap over the value. This helps the
flatMap so that it can also return

SearchResultError instead of
NetworkError.

The map operation is
replaced by flatMap.

Now you can return a
Result from inside a

flatMap operation.
k.store/books/9781617295188

https://itbook.store/books/9781617295188

243Mixing Result with throwing functions

www.itbook.
completionHandler(convertedResult)
}

}

FLATMAP DOESN’T CHANGE THE ERROR TYPE A flatMap operation on Result
doesn’t change an error type from one to another. For instance, you can’t
turn Result<Value, SearchResultError> to a Result<Value, NetworkError>
via a flatMap operation. This is something to keep in mind and why mapError
is moved up the chain.

11.3.3 Exercises

2 Using the techniques you’ve learned, try to connect to a real API. See if you can
implement the FourSquare API (http://mng.bz/nxVg) and obtain the venues
JSON. You can register to receive free developer credentials.

Be sure to use Result to return any venues that you can get from the API.
To allow for asynchronous calls inside playgrounds, add the following:

import PlaygroundSupport
PlaygroundPage.current.needsIndefiniteExecution = true

3 See if you can use map, mapError, and even flatMap to transform the result so
that you call the completion handler only once.

4 The server can return an error, even if the call succeeds. For example, if you
pass a latitude and longitude of 0, you get an errorType and errorDetail value
in the meta key in the JSON, like so:

{"meta":{"code":400,"errorType":"param_error","errorDetail":"Must
➥ provide parameters (ll and radius) or (sw and ne) or (near and
➥ radius)","requestId":"5a9c09ba9fb6b70cfe3f2e12"},"response":{}}

Try to make sure that this error is reflected in the Result type.

11.4 Mixing Result with throwing functions
Earlier, you avoided throwing an error inside a Result’s mapping or flatmapping
operation so that you could focus on one idiom at a time.

 Let’s up the ante. Once you start working with returned data, you’ll most likely be
using synchronous “regular” functions for processing data, such as parsing or storing
data or validating values. In other words, you’ll be applying throwing functions to a
value inside Result. In essence, you’re mixing two idioms of error handling.

11.4.1 From throwing to a Result type

Previously, you were parsing data to JSON from inside the flatMap operation. To
mimic a real-world scenario, let’s rewrite the flatMap operation so that this time you’ll
be converting Data to JSON using a throwing function called parseData. To make it
more realistic, parseData comes with an error called ParsingError, which deviates
from the SearchResultError you’ve been using.
store/books/9781617295188

http://mng.bz/nxVg
https://itbook.store/books/9781617295188

244 CHAPTER 11 Asynchronous error handling with Result

www.itboo
enum ParsingError: Error {
case couldNotParseJSON

}

func parseData(_ data: Data) throws -> JSON {
guard

let json = try? JSONSerialization.jsonObject(with: data, options: []),
let jsonDictionary = json as? JSON else {

throw ParsingError.couldNotParseJSON
}
return jsonDictionary

}

You can turn this throwing function into a Result via an initializer on Result. The ini-
tializer accepts a closure that may throw; then the Result initializer catches any errors
thrown from the closure and creates a Result out of it. This Result can be successful
or failing (if an error has been thrown).

 It works as follows: you pass a throwing function to Result and, in this case, have it
convert to Result<JSON, SearchResultError>.

let searchResult: Result<JSON, SearchResultError> = Result(try parseData(data))

You’re almost there, but one thing is missing. You try to convert parseData to a
Result with a SearchResultError via an initializer. Yet, parseData doesn’t throw a
SearchResultError. You can look in the body of parseData to confirm. But Swift only
knows at runtime what error parseData throws.

 If during conversion any error slips out that is not SearchResultError, the initial-
izer on Result throws the error from parseData, which means that you need to catch
that error, too. Moreover, this is why the initializer on Result is throwing, because it
throws any errors that it can’t convert. This awkwardness is a bit of the pain you have
when turning a runtime-known error into a compile-time-known error.

 To complete the conversion, you need to add a do catch statement; you remain in
the do block on success or when Result receives a SearchResultError. But as soon as
parseData throws a ParsingError, as shown in the following example, you end up in
the catch block, which is an opportunity to fall back to a default error.

do {
let searchResult: Result<JSON, SearchResultError> = Result(try

parseData(data))
} catch {
print(error) // ParsingError.couldNotParseData

Listing 11.13 The parseData function

Listing 11.14 Converting a throwing function to Result

Listing 11.15 Passing a throwing function to Result

A specific error used
for parsing data

The parseData function
turns Data into JSON and
can throw a ParsingError.

You call parseData();
if it succeeds you have
a searchResult.
k.store/books/9781617295188

https://itbook.store/books/9781617295188

245Mixing Result with throwing functions

www.itbook.
let searchResult: Result<JSON, SearchResultError> =
Result(.invalidData(data))

}

11.4.2 Converting a throwing function inside flatMap

Now that you know how to convert a throwing function to Result, you can start mix-
ing these in with your pipeline via flatMap.

 Inside the flatMap method from earlier, create a Result from the throwing
parseData function.

func search(term: String, completionHandler: @escaping (SearchResult<JSON>)
➥ -> Void) {

// ... snip

callURL(with: url) { result in
let convertedResult: SearchResult<JSON> =

result
.mapError { SearchResultError.underlyingError($0) }
.flatMap { (data: Data) -> SearchResult<JSON> in

do {
// Catch if the parseData method throws a ParsingError.
let searchResult: SearchResultError<JSON> =

➥ Result(try parseData(data))
return searchResult

} catch {
// You ignore any errors that parseData throws and

➥ revert to SearchResultError.
return SearchResult(.invalidData(data))

}
}

completionHandler(convertedResult)
}

}

11.4.3 Weaving errors through a pipeline

By composing Result with functions via mapping and flatmapping, you’re perform-
ing so-called monadic error handling. Don’t let the term scare you—flatMap is based
on monad laws from functional programming. The beauty is that you can focus on the
happy path of transforming your data.

 As with optionals, flatMap isn’t called if Result doesn’t contain a value. You can
work with the real value (whether Result is erroneous or not) while carrying an error
context and propagate the Result higher—all the way to where some code can pat-
tern match on it, such as the caller of a function.

 As an example, if you were to continue the data transformations, you could end up
with multiple chained operations. In this pipeline, map would always keep you on the

Listing 11.16 Creating a Result from parseData

If conversion fails, you end up in the catch
statement, where you default back to returning
a SearchResult with default error.

You’re entering a
flatMap operation.

The parseData function is
passed to the initializer.

If the parseData conversion fails,
you end up in the catch statement

and default back to
SearchResultError.invalidData.
store/books/9781617295188

https://itbook.store/books/9781617295188

246 CHAPTER 11 Asynchronous error handling with Result

www.itboo
happy path, and with flatMap you could short-circuit and move to either the happy
path or error path.

 For instance, let’s say you want to add more steps, such as validating data, filtering
it, and storing it inside a database (perhaps a cache). You would have multiple steps
where flatMap could take you to an error path. In contrast, map always keeps you on
the happy path (see figure 11.5).

For the sake of brevity, you aren’t going to implement all these methods, but the point
is that you can build a sophisticated pipeline, as shown in the following listing, weave
the error through it, and only call the completion handler once.

func search(term: String, completionHandler: @escaping (SearchResult<JSON>)
-> Void) {
// ... snip

callURL(with: url) { result in

let convertedResult: SearchResult<JSON> =
result

// Transform error type to SearchResultError
.mapError { (networkError: NetworkError) ->

SearchResultError in
// code omitted

}
// Parse Data to JSON, or return SearchResultError
.flatMap { (data: Data) -> SearchResult<JSON> in
// code omitted

}

Listing 11.17 A longer pipeline

Happy path

Result with data

Parse JSON

(flatMap)
Failure

Result with value

Error path

Result with error

Validate data

(flatMap)
Failure

Filter values

(map)

Save to database

(flatMap)
Failure

Figure 11.5 Happy path programming
k.store/books/9781617295188

https://itbook.store/books/9781617295188

247Mixing Result with throwing functions

www.itbook.
// validate Data
.flatMap { (json: JSON) -> SearchResult<JSON> in
// code omitted

}
// filter values
.map { (json: JSON) -> [JSON] in
// code omitted

}
// Save to database
.flatMap { (mediaItems: [JSON]) -> SearchResult<JSON> in
// code omitted
database.store(mediaItems)

}

completionHandler(convertedResult)
}

}

SHORT-CIRCUITING A CHAINING OPERATION Note that map and flatMap are
ignored if Result contains an error. If any flatMap operation returns a
Result containing an error, any subsequent flatMap and map operations are
ignored as well.

With flatMap you can short-circuit operations, just like with flatMap on
Optional.

11.4.4 Finishing up

It may not look like much, but your API packs quite the punch. It handles network
errors and parsing errors, and it’s easy to read and to extend. And still you avoid hav-
ing an ugly pyramid of doom, and your code focuses on the happy path. On top of
that, calling search means that you only need to switch on the Result.

 Receiving a simple Result enum looks a little underwhelming after all that work.
But clean APIs tend to appear simple from time to time.

11.4.5 Exercise

5 Given the following throwing functions, see if you can use them to transform
Result in your FourSquare API:

func parseData(_ data: Data) throws -> JSON {
guard

let json = try? JSONSerialization.jsonObject(with: data,
options: []),

let jsonDictionary = json as? JSON else {
throw FourSquareError.couldNotParseData

}
return jsonDictionary

}

func validateResponse(json: JSON) throws -> JSON {
if

let meta = json["meta"] as? JSON,
store/books/9781617295188

https://itbook.store/books/9781617295188

248 CHAPTER 11 Asynchronous error handling with Result

www.itboo
let errorType = meta["errorType"] as? String,
let errorDetail = meta["errorDetail"] as? String {
throw FourSquareError.serverError(errorType: errorType,

errorDetail: errorDetail)
}

return json
}

func extractVenues(json: JSON) throws -> [JSON] {
guard

let response = json["response"] as? JSON,
let venues = response["venues"] as? [JSON]
else {

throw FourSquareError.couldNotParseData
}
return venues

}

11.5 Multiple errors inside of Result
Working with Result may feel constricting at times when multiple actions can fail.
Previously, you were translating each failure into a Result holding a single error
type—SearchResultError in the examples. Translating errors to a single error type is
a good practice to follow. But it may get burdensome moving forward if you’re dealing
with many different errors, especially when you’re beginning a new project and you
need to glue together all kinds of throwing methods. Translating every error to the
correct type may slow you down.

 Not to worry; if you want to move fast and keep errors known at runtime, you can
use a generic type called AnyError—also offered by the Swift Package Manager.

11.5.1 Introducing AnyError

AnyError represents any error that could be inside Result, allowing you to mix and
match all types of errors in the same Result type. With AnyError, you avoid having to
figure out each error at compile time.

 AnyError wraps around an Error and stores the error inside; then a Result can
have AnyError as its error type, such as Result<String, AnyError>. You can manu-
ally create an AnyError, but you can also create a Result of type Result<String,
AnyError> in multiple ways.

 Notice how Result has two initializers specialized to AnyError: one converts a reg-
ular error to AnyError, the other accepts a throwing function in which the error con-
verts to AnyError.

enum PaymentError: Error {
case amountTooLow
case insufficientFunds

}

Listing 11.18 Creating a Result with AnyError
k.store/books/9781617295188

https://itbook.store/books/9781617295188

249Multiple errors inside of Result

www.itbook.
let error: AnyError = AnyError(PaymentError.amountTooLow)

let result: Result<String, AnyError> = Result(PaymentError.amountTooLow)

let otherResult: Result<String, AnyError> = Result(anyError: { () throws ->
String in
throw PaymentError.insufficientFunds

})

Functions returning a Result with AnyError are similar to a throwing function where
you only know the error type at runtime.

 Having AnyError makes sense when you’re developing an API and don’t want to
focus too much on the proper errors yet. Imagine that you’re creating a function
to transfer money, called processPayment. You can return different types of errors in
each step, which relieves you of the burden of translating different errors to one spe-
cific type. Notice how you also get a special mapAny method.

func processPayment(fromAccount: Account, toAccount: Account, amountInCents:
➥ Int, completion: @escaping (Result<String, AnyError>) -> Void) {

guard amountInCents > 0 else {
completion(Result(PaymentError.amountTooLow))
return

}

guard isValid(toAccount) && isValid(fromAccount) else {
completion(Result(AccountError.invalidAccount))
return

}

// Process payment

moneyAPI.transfer(amountInCents, from: fromAccount, to: toAccount) {
➥ (result: Result<Data, AnyError>) in

let response = result.mapAny(parseResponse)
completion(response)

}

}

An interesting thing to note is that if Result has AnyError as its type, you gain a spe-
cial mapAny method for free. The mapAny method works similarly to map, except that it
can accept any throwing function. If a function inside mapAny throws, mapAny automat-
ically wraps this error inside an AnyError. This technique allows you to pass throwing
functions to map without requiring you to catch any errors.

Listing 11.19 Returning different errors

You can pass an error to
the AnyError type yourself.

You can also pass an error to Result directly, which
automatically converts an error to AnyError because

the Result is of type Result<String, AnyError>.

You can even pass throwing functions
to Result; because AnyError
represents all possible errors, the
conversion always succeeds.

Return a
PaymentError
here.

But you can return a
different error here,
of type AccountError.

Utilize a special
mapAny method.
store/books/9781617295188

https://itbook.store/books/9781617295188

250 CHAPTER 11 Asynchronous error handling with Result

www.itboo
 Also, a big difference with flatMap is that you could not change the ErrorType
from within the operations. With flatMap, you would have to create and return a new
Result manually. With mapAny, you can pass a regular throwing function and let
mapAny handle the catching and wrapping into AnyError. Applying mapAny allows you
to map over the value and even change the error inside Result.

HOW TO CHOOSE BETWEEN MAP OR MAPANY The difference between map and
mapAny is that map works on all Result types, but it doesn’t catch errors from
throwing functions. In contrast, mapAny works on both throwing and non-
throwing functions, but it’s available only on Result types containing AnyError.
Try to use map when you can; it communicates that a function cannot throw.
Also, if you ever refactor AnyError back to a regular Error inside Result,
then map is still available.

MATCHING WITH ANYERROR

To get the error out when dealing with AnyError, you can use the underlyingError
property of AnyError to match on the actual error inside of it.

processPayment(fromAccount: from, toAccount: to, amountInCents: 100) {
➥ (result: Result<String, AnyError>) in

switch result {
case .success(let value): print(value)
case .failure(let error) where error.underlyingError is AccountError:

print("Account error")
case .failure(let error):

print(error)
}

}

AnyError is a useful placeholder to let you handle “proper” error handling at a later
time. When time permits and your code solidifies, you can start replacing the general
errors with stricter error translations for extra compile-time benefits.

 Working with AnyError gives you a lot more flexibility. But you suffer somewhat from
code erosion because you lose a big benefit of Result, which is being able to see which
errors you can expect before even running your code. You may also consider NSError
instead of AnyError because NSError is also flexible. But then you’ll be looking back to
Objective-C, and you also lose the benefits of using Swift errors, such as strong pattern
matching on enum-type errors. Before going the NSError route, you may want to recon-
sider and see if you get to keep using Swift errors in combination with AnyError.

11.6 Impossible failure and Result
Sometimes you may need to conform to a protocol that wants you to use a Result
type. But the type that implements the protocol may never fail. Let’s see how you can
improve your code in this scenario with a unique tidbit. This section is a bit esoteric
and theoretical, but it proves useful when you run into a similar situation.

Listing 11.20 Matching on AnyError
k.store/books/9781617295188

https://itbook.store/books/9781617295188

251Impossible failure and Result

www.itbook.
11.6.1 When a protocol defines a Result

Imagine that you have a Service protocol representing a type that loads some data for
you. This Service protocol determines that data is to be loaded asynchronously, and
it makes use of a Result.

 You have multiple types of errors and data that can be loaded, so Service defines
them as associated types.

protocol Service {
associatedtype Value
associatedtype Err: Error
func load(complete: @escaping (Result<Value, Err>) -> Void)

}

Now you want to implement this Service by a type called SubscriptionsLoader,
which loads a customer’s subscriptions for magazines. This is shown in listing 11.22.
Note that loading subscriptions always succeeds, which you can guarantee because
they are loaded from memory. But the Service type declares that you use Result,
which needs an error, so you do need to declare what error a SubscriptionsLoader
throws. SubscriptionsLoader doesn’t have errors to throw. To remedy this problem,
let’s create an empty enum—conforming to Error—called BogusError so that
SubscriptionsLoader can conform to Service protocol. Notice that BogusError has
no cases, meaning that nothing can actually create this enum.

struct Subscription {
// ... details omitted

}

enum BogusError: Error {}

final class SubscriptionsLoader: Service {
func load(complete: @escaping (Result<[Subscription], BogusError>) ->
Void) {

// ... load data. Always succeeds
let subscriptions = [Subscription(), Subscription()]
complete(Result(subscriptions))

}
}

You made an empty enum that conforms to Error merely to please the compiler. But
because BogusError has no cases, you can’t instantiate it, and Swift knows this. Once
you call load on SubscriptionsLoader and retrieve the Result, you can match only

Listing 11.21 The Service protocol

Listing 11.22 Implementing the Service protocol

The Value
that the
Service loads

This is the Error the Service can
give. Note how your associated type
is called Err, and it’s constrained to
the Error protocol.

The load method returns a Result containing a
Value and Err, passed by a completion closure.

The Subscription is the type of data
retrieved from SubscriptionsLoader.

You create a dummy error type so
that you can define it on the Result
type, in order to please Service.

The load method now returns a Result returning an
array of subscriptions. Notice how you defined the

uninhabitable BogusError type to please the protocol.
store/books/9781617295188

https://itbook.store/books/9781617295188

252 CHAPTER 11 Asynchronous error handling with Result

www.itboo
on the success case, and Swift is smart enough to understand that you can never have
a failure case. To emphasize, a BogusError can never be created, so you don’t need to
match on this, as the following example shows.

let subscriptionsLoader = SubscriptionsLoader()
subscriptionsLoader.load { (result: Result<[Subscription], BogusError>) in

switch result {
case .success(let subscriptions): print(subscriptions)

// You don't need .failure
}

}

This technique gives you compile-time elimination of cases to match on and can clean
up your APIs and show clearer intent. But an official solution—the Never type—lets
you get rid of BogusError.

THE NEVER TYPE

To please the compiler, you made a bogus error type that can’t be instantiated. Actu-
ally, such a type already exists in Swift and is called the Never type.

 The Never type is a so-called bottom type ; it tells the compiler that a certain code
path can’t be reached. You may also find this mechanism in other programming lan-
guages, such as the Nothing type in Scala, or when a function in Rust returns an excla-
mation mark (!).

 Never is a hidden type used by Swift to indicate impossible paths. For example,
when a function calls a fatalError, it can return a Never type, indicating that return-
ing something is an impossible path.

func crashAndBurn() -> Never {
fatalError("Something very, very bad happened")

}

If you look inside the Swift source, you can see that Never is nothing but an empty
enum.

public enum Never {}

In your situation, you can replace your BogusError with Never and get the same
result. You do, however, need to make sure that Never implements Error.

Listing 11.23 Matching only on the success case

Listing 11.24 From the Swift source

Listing 11.25 The Never type

Swift lets you get away
with this. Normally you’d
get a compiler error!

The Never type is returned,
but the code guarantees it
never returns.
k.store/books/9781617295188

https://itbook.store/books/9781617295188

253Summary

r
r
r
.

www.itbook.
extension Never: Error {}

final class SubscriptionsLoader: Service {
func load(complete: @escaping (Result<[Subscription], Never>) -> Void) {

// ... load data. Always succeeds
let subscriptions = [Subscription(), Subscription()]
complete(Result(subscriptions))

}
}

NOTE From Swift 5 on, Never conforms to some protocols, like Error.

Notice that Never can also indicate that a service never succeeds. For instance, you
can put the Never as the success case of a Result.

11.7 Closing thoughts
I hope that you can see the benefits of error handling with Result. You’ve seen how
Result can give you compile-time insights into which error to expect. Along the way you
took your map and flatMap knowledge and wrote code that pretended to be error-free,
yet was carrying an error-context. Now you know how to apply monadic error handling.

 Here’s a controversial thought: you can use the Result type for all the error han-
dling in your project. You get more compile-time benefits, but at the price of more dif-
ficult programming. Error handling is more rigid with Result, but your code will be
safer and stricter as a reward. And if you want to speed up your work a little, you can
always create a Result type containing AnyError and take it from there.

Summary
 Using the default way of URLSession’s data tasks is an error-prone way of error

handling.
 Result is offered by the Swift Package Manager and is a good way to handle

asynchronous error handling.
 Result has two generics and is a lot like Optional, but has a context of why

something failed.
 Result is a compile-time safe way of error handling, and you can see which

error to expect before running a program.
 By using map and flatMap and mapError, you can cleanly chain transformations

of your data while carrying an error context.
 Throwing functions can be converted to a Result via a special throwing initial-

izer. This initializer allows you to mix and match two error throwing idioms.
 You can postpone strict error handling with the use of AnyError.
 With AnyError, multiple errors can live inside Result.
 If you’re working with many types of errors, working with AnyError can be

faster, at the expense of not knowing which errors to expect at compile time.

Listing 11.26 Implementing Never

You extend Never to make it
conform to the Error protocol.

You now use the Neve
type to indicate that you

SubscriptionsLoade
never fails
store/books/9781617295188

https://itbook.store/books/9781617295188

254 CHAPTER 11 Asynchronous error handling with Result

www.itboo
 AnyError can be a good alternative to NSError so that you reap the benefits of
Swift error types.

 You can use the Never type to indicate that a Result can’t have a failure case,
or a success case.

Answers
1 By looking at the map function on Result, see if you can create mapError:

extension Result {

public func mapError<E: Error>(_ transform: (ErrorType) throws
➥ -> E) rethrows -> Result<Value, E> {

switch self {
case .success(let value):

return Result<Value, E>(value)
case .failure(let error):

return Result<Value, E>(try transform(error))
}

}

}

The following part is the answer to exercises 2 and 3:
2 Using the techniques you’ve learned, try to connect to a real API. See if you can

implement the FourSquare API (http://mng.bz/nxVg) and obtain the venues
JSON. You can register to receive free developer credentials.

3 See if you can use map, mapError, and even flatMap to transform the result, so
that you call the completion handler only once.

4 The server can return an error, even if the call succeeds. For example, if you
pass a latitude and longitude of 0, you get an errorType and errorDetail value
in the meta key in the JSON. Try to make sure that this error is reflected in the
Result type:

// You need an error
enum FourSquareError: Error {

case couldNotCreateURL
case networkError(Error)
case serverError(errorType: String, errorDetail: String)
case couldNotParseData

}

let clientId = ENTER_YOUR_ID
let clientSecret = ENTER_YOUR_SECRET
let apiVersion = "20180403"

// A helper function to create a URL
func createURL(endpoint: String, parameters: [String: String]) -> URL? {

let baseURL = "https://api.foursquare.com/v2/"
k.store/books/9781617295188

http://mng.bz/nxVg
https://itbook.store/books/9781617295188

255Answers

www.itbook.
// You convert the parameters dictionary in an array of URLQueryItems
var queryItems = parameters.map { pair -> URLQueryItem in

return URLQueryItem(name: pair.key, value: pair.value)
}

// Add default parameters to query
queryItems.append(URLQueryItem(name: "v", value: apiVersion))
queryItems.append(URLQueryItem(name: "client_id", value: clientId))
queryItems.append(URLQueryItem(name: "client_secret", value:

clientSecret))

var components = URLComponents(string: baseURL + endpoint)
components?.queryItems = queryItems
return components?.url

}

 // The getvenues call
func getVenues(latitude: Double, longitude: Double, completion:
➥ @escaping (Result<[JSON], FourSquareError>) -> Void) {

let parameters = [
"ll": "\(latitude),\(longitude)",
"intent": "browse",
"radius": "250"

]

guard let url = createURL(endpoint: "venues/search", parameters:
parameters)

else {
completion(Result(.couldNotCreateURL))
return

}

let task = URLSession.shared.dataTask(with: url) { data, response,
error in

let translatedError = error.map { FourSquareError.networkError(
$0) }

// Convert optional data and optional to Result
let result = Result<Data, FourSquareError>(value: data, error:

translatedError)
// Parsing Data to JSON
.flatMap { data in

guard
let rawJson = try?

JSONSerialization.jsonObject(with: data, options: []),
let json = rawJson as? JSON
else {

return Result(.couldNotParseData)
}
return Result(json)

}
// Check for server errors
.flatMap { (json: JSON) -> Result<JSON, FourSquareError> in

if
let meta = json["meta"] as? JSON,
let errorType = meta["errorType"] as? String,
store/books/9781617295188

https://itbook.store/books/9781617295188

256 CHAPTER 11 Asynchronous error handling with Result

www.itboo
let errorDetail = meta["errorDetail"] as? String {
return Result(.serverError(errorType: errorType,

errorDetail: errorDetail))
}

return Result(json)
}
// Extract venues
.flatMap { (json: JSON) -

> Result<[JSON], FourSquareError> in
guard

let response = json["response"] as? JSON,
let venues = response["venues"] as? [JSON]
else {

return Result(.couldNotParseData)
}
return Result(venues)

}

completion(result)
}

task.resume()
}

// Times square
let latitude = 40.758896
let longitude = -73.985130

// Calling getVenues

getVenues(latitude: latitude, longitude: longitude) { (result:
Result<[JSON], FourSquareError>) in
switch result {
case .success(let categories): print(categories)
case .failure(let error): print(error)
}

}

5 Given the throwing functions, see if you can use them to transform Result in
your FourSquare API:

enum FourSquareError: Error {
// ... snip
case unexpectedError(Error) // Adding new error for when conversion

to Result fails
}

func getVenues(latitude: Double, longitude: Double, completion:
➥ @escaping (Result<[JSON], FourSquareError>) -> Void) {

// ... snip
let result = Result<Data, FourSquareError>(value: data, error:

translatedError)
// Parsing Data to JSON
k.store/books/9781617295188

https://itbook.store/books/9781617295188

257Answers

www.itbook.
.flatMap { data in
do {

return Result(try parseData(data))
} catch {

return Result(.unexpectedError(error))
}

}
// Check for server errors
.flatMap { (json: JSON) -> Result<JSON, FourSquareError> in

do {
return Result(try validateResponse(json: json))

} catch {
return Result(.unexpectedError(error))

}
}
// Extract venues
.flatMap { (json: JSON) -> Result<[JSON], FourSquareError> in

do {
return Result(try extractVenues(json: json))

} catch {
return Result(.unexpectedError(error))

}
}

store/books/9781617295188

https://itbook.store/books/9781617295188

Tjeerd in ‘t Veen

I
t’s fun to create your fi rst toy iOS or Mac app in Swift.
Writing secure, reliable, professional-grade software is a
different animal altogether. The Swift language includes an

amazing set of high-powered features, and it supports a wide
range of programming styles and techniques. You just have to
roll up your sleeves and learn Swift in depth.

Swift in Depth guides you concept by concept through the
skills you need to build professional software for Apple plat-
forms, such as iOS and Mac; also on the server with Linux.
By following the numerous concrete examples, enlightening
explanations, and engaging exercises, you’ll fi nally grok power-
ful techniques like generics, effi cient error handling, protocol-
oriented programming, and advanced Swift patterns. Author
Tjeerd in ’t Veen reveals the high-value, diffi cult-to-discover
Swift techniques he’s learned through his own hard-won
experience.

What’s Inside
● Writing reusable code with generics
● Iterators, sequences, and collections
● Protocol-oriented programming
● Understanding map, fl atMap, and compactMap
● Asynchronous error handling with Result
● Best practices in Swift

Written for advanced-beginner and intermediate-level Swift
programmers.

Tjeerd in ‘t Veen is a senior software engineer and architect in
the mobile division of a large international banking fi rm.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/swift-in-depth

$49.99 / Can $65.99 [INCLUDING eBOOK]

Swift IN DEPTH

iOS DEVELOPMENT

M A N N I N G

“An excellent guide to
using the advanced features
of Swift to produce clean,

high-performing code. The
content is masterfully

delivered, making it easy to
quickly level-up your skills.”
—Jason Pike, Atlas RFID Solutions

“Highly recommended
to anyone interested in the

Apple platform. For the
novice who wants to become
an expert, this is defi nitely
where you should start!”

—Helmut Reiterer
Revenue Recovery Solutions

“Because Swift is so new, it’s
hard to fi nd good resources to
learn it. Look no further than

this book.”—Tyler Slater, Jolt

See first page

www.itbook.store/books/9781617295188

https://itbook.store/books/9781617295188

	11 Asynchronous error handling with Result
	11.1 Why use the Result type?
	11.1.1 Getting your hands on Result
	11.1.2 Result is like Optional, with a twist
	11.1.3 Understanding the benefits of Result
	11.1.4 Creating an API using Result
	11.1.5 Bridging from Cocoa Touch to Result

	11.2 Propagating Result
	11.2.1 Typealiasing for convenience
	11.2.2 The search function

	11.3 Transforming values inside Result
	11.3.1 Exercise
	11.3.2 flatMapping over Result
	11.3.3 Exercises

	11.4 Mixing Result with throwing functions
	11.4.1 From throwing to a Result type
	11.4.2 Converting a throwing function inside flatMap
	11.4.3 Weaving errors through a pipeline
	11.4.4 Finishing up
	11.4.5 Exercise

	11.5 Multiple errors inside of Result
	11.5.1 Introducing AnyError

	11.6 Impossible failure and Result
	11.6.1 When a protocol defines a Result

	11.7 Closing thoughts
	Summary
	Answers

