
M A N N I N G

Tjeerd in ‘t Veen

IN DEPTH

S A M P L E C H A P T E R

www.itbook.store/books/9781617295188

https://itbook.store/books/9781617295188

Swift in Depth

by Tjeerd in ’t Veen

 Chapter 2

 Copyright 2019 Manning Publications

www.itbook.store/books/9781617295188

https://itbook.store/books/9781617295188

www.itbook.
brief contents
1 ■ Introducing Swift in depth 1

2 ■ Modeling data with enums 10

3 ■ Writing cleaner properties 35

4 ■ Making optionals second nature 52

5 ■ Demystifying initializers 78

6 ■ Effortless error handling 100

7 ■ Generics 122

8 ■ Putting the pro in protocol-oriented programming 145

9 ■ Iterators, sequences, and collections 168

10 ■ Understanding map, flatMap, and compactMap 198

11 ■ Asynchronous error handling with Result 229

12 ■ Protocol extensions 258

13 ■ Swift patterns 283

14 ■ Delivering quality Swift code 311

15 ■ Where to Swift from here 330
v

store/books/9781617295188

https://itbook.store/books/9781617295188

www.itbook.
Modeling data
with enums
Enumerations, or enums for short, are a core tool used by Swift developers. Enums
allow you to define a type by enumerating over its values, such as whether an HTTP
method is a get, put, post, or delete action, or denoting if an IP-address is either in
IPv4 or IPv6 format.

 Many languages have an implementation of enums, with a different type of
implementation per language. Enums in Swift, unlike in C and Objective-C, aren’t
only representations of integer values. Instead, Swift borrows many concepts from

This chapter covers
 How enums are an alternative to subclassing

 Using enums for polymorphism

 Learning how enums are “or” types

 Modeling data with enums instead of structs

 How enums and structs are algebraic types

 Converting structs to enums

 Safely handling enums with raw values

 Converting strings to enums to create robust
code
10

store/books/9781617295188

https://itbook.store/books/9781617295188

11Or vs. and

www.itbook.
the functional programming world, which bring plenty of benefits that you’ll explore
in this chapter.

 In fact, I would argue that enums are a little underused in Swift-land. I hope to
change that and help you see how enums can be surprisingly useful in many ways. My
goal is to expand your enum-vocabulary so that you can directly use these techniques
in your projects.

 First, you’ll see multiple ways to model your data with enums and how they fare
against structs and classes.

 Enums are a way to offer polymorphism, meaning that you can work with a single
type, representing more types. We shed some light on how we can store multiple types
into a single collection, such as an array.

 Then, you’ll see how enums are a suitable alternative to subclassing.
 We dive a little into some algebraic theory to understand enums on a deeper level; then

you’ll see how you can apply this theory and convert structs to enums and back again.
 As a cherry on top, we explore raw value enums and how you can use them to han-

dle strings cleanly.
 After reading this chapter, you may find that you’re modeling data better, writing

enums just a bit more often, and ending up with safer and cleaner code in your projects.

2.1 Or vs. and
Enums can be thought of as an “or” type. Enums can only be one thing at once—for
example, a traffic light can either be green or yellow or red. Alternatively, a die can
either be six-sided or twenty-sided, but not both at the same time.
store/books/9781617295188

https://itbook.store/books/9781617295188

12 CHAPTER 2 Modeling data with enums

www.itboo
JOIN ME! All code from this chapter is online. It’s more educational and fun if
you follow along. You can download the source code at https://mng.bz/gNre.

2.1.1 Modeling data with a struct

Let’s start off with an example that shows how to think about “or” and “and” types
when modeling data.

 In the upcoming example, you’re modeling message data in a chat application. A
message could be text that a user may send, but it could also be a join message or
leave message. A message could even be a signal to send balloons across the screen
(see figure 2.1). Because why not? Apple does it, too, in their Messages app.

 Here are some types of messages that your application might support:

 Join messages, such as “Mother in law has joined the chat”
 Text messages that someone can write, such as “Hello everybody!”

Family chat<

Mother in law

joined the chat

Mother in law

sends balloons

Mother in law:

Hello everybody! 6:40pm

Mother in law

has left the chat

Mike:

That was a close one

Mike:

Is writing a message

8:16pm

Mother in law:

Hello? Anyone? 8:12pm

Figure 2.1 A chat application
k.store/books/9781617295188

https://mng.bz/gNre
https://itbook.store/books/9781617295188

13Or vs. and

www.itbook.
 Send balloons messages, which include some animations and annoying sounds
that others can see and hear

 Leave messages, such as “Mother in law has left the chat”
 Draft messages, such as “Mike is writing a message”

Let’s create a data model to represent messages. Your first idea might be to use a
struct to model your Message. You’ll start by doing that and showcase the problems
that come with it. Then you’ll solve these problems by using an enum.

 You can create multiple types of messages in code, such as a join message when
someone enters a chatroom.

import Foundation // Needed for the Date type.

let joinMessage = Message(userId: "1",
contents: nil,
date: Date(),
hasJoined: true, // Set the joined Boolean
hasLeft: false,
isBeingDrafted: false,
isSendingBalloons: false)

You can also create a regular text message.

let textMessage = Message(userId: "2",
contents: "Hey everyone!", // Pass a message
date: Date(),
hasJoined: false,
hasLeft: false,
isBeingDrafted: false,
isSendingBalloons: false)

In your hypothetical messaging app, you can pass this message data around to other
users.

 The Message struct looks as follows.

import Foundation

struct Message {
let userId: String
let contents: String?
let date: Date

let hasJoined: Bool
let hasLeft: Bool

Listing 2.1 A join chatroom message

Listing 2.2 A text message

Listing 2.3 The Message struct
store/books/9781617295188

https://itbook.store/books/9781617295188

14 CHAPTER 2 Modeling data with enums

www.itboo
let isBeingDrafted: Bool
let isSendingBalloons: Bool

}

Although this is one small example, it highlights a problem. Because a struct can con-
tain multiple values, you can run into bugs where the Message struct can be a text
message, a hasLeft command, and an isSendingBalloons command. An invalid mes-
sage state doesn’t bode well because a message can only be one or another in the busi-
ness rules of the application. The visuals won’t support an invalid message either.

 To illustrate, you can have a message in an invalid state. It represents a text mes-
sage, but also a join and a leave message.

let brokenMessage = Message(userId: "1",
contents: "Hi there", // Have text to show
date: Date(),
hasJoined: true, // But this message also signals

a joining state
hasLeft: true, // ... and a leaving state
isBeingDrafted: false,
isSendingBalloons: false)

In a small example, running into invalid data is harder, but it inevitably happens often
enough in real-world projects. Imagine parsing a local file to a Message, or some func-
tion that combines two messages into one. You don’t have any compile-time guaran-
tees that a message is in the right state.

 You can think about validating a Message and throwing errors, but then you’re
catching invalid messages at runtime (if at all). Instead, you can enforce correctness at
compile time if you model the Message using an enum.

2.1.2 Turning a struct into an enum

Whenever you’re modeling data, see if you can find mutually exclusive properties. A
message can’t be both a join and a leave message at the same time. A message can’t
also send balloons and be a draft at the same time.

 But a message can be a join message or a leave message. A message can also be a
draft, or it can represent the sending of balloons. When you detect “or” statements in a
model, an enum could be a more fitting choice for your data model.

 Using an enum to group the properties into cases makes the data much clearer
to grasp.

 Let’s improve the model by turning it into an enum.

import Foundation

enum Message {
case text

Listing 2.4 An invalid message with conflicting properties

Listing 2.5 Message as an enum (lacking values)
k.store/books/9781617295188

https://itbook.store/books/9781617295188

15Or vs. and

www.itbook.
case draft
case join
case leave
case balloon

}

But you’re not done yet because the cases have no values. You can add values by add-
ing a tuple to each case. A tuple is an ordered set of values, such as (userId: String,
contents: String, date: Date).

 By combining an enum with tuples, you can build more complex data structures.
Let’s add tuples to the enum’s cases now.

import Foundation

enum Message {
case text(userId: String, contents: String, date: Date)
case draft(userId: String, date: Date)
case join(userId: String, date: Date)
case leave(userId: String, date: Date)
case balloon(userId: String, date: Date)

}

By adding tuples to cases, these cases now have so-called associated values in Swift
terms. Also, you can clearly see which properties belong together and which proper-
ties don’t.

 Whenever you want to create a Message as an enum, you can pick the proper case
with related properties, without worrying about mixing and matching the wrong values.

let textMessage = Message.text(userId: "2", contents: "Bonjour!", date: Date())
let joinMessage = Message.join(userId: "2", date: Date())

When you want to work with the messages, you can use a switch case on them and
unwrap its inner values.

 Let’s say that you want to log the sent messages.

logMessage(message: joinMessage) // User 2 has joined the chatroom
logMessage(message: textMessage) // User 2 sends message: Bonjour!

func logMessage(message: Message) {
switch message {
case let .text(userId: id, contents: contents, date: date):

print("[\(date)] User \(id) sends message: \(contents)")
case let .draft(userId: id, date: date):

print("[\(date)] User \(id) is drafting a message")

Listing 2.6 Message as an enum (with values)

Listing 2.7 Creating enum messages

Listing 2.8 Logging messages
store/books/9781617295188

https://itbook.store/books/9781617295188

16 CHAPTER 2 Modeling data with enums

www.itboo
case let .join(userId: id, date: date):
print("[\(date)] User \(id) has joined the chatroom")

case let .leave(userId: id, date: date):
print("[\(date)] User \(id) has left the chatroom")

case let .balloon(userId: id, date: date):
print("[\(date)] User \(id) is sending balloons")

}
}

Having to switch on all cases in your entire application just to read a value from a sin-
gle message may be a deterrent. You can save yourself some typing by using the if
case let combination to match on a single type of Message.

if case let Message.text(userId: id, contents: contents, date: date) =
textMessage {

print("Received: \(contents)") // Received: Bonjour!
}

If you’re not interested in specific properties when matching on an enum, you can
match on these properties with an underscore, called a wild card, or as I like to call it,
the “I don’t care” operator.

if case let Message.text(_, contents: contents, _) = textMessage {
print("Received: \(contents)") // Received: Bonjour!

}

2.1.3 Deciding between structs and enums

Getting compiler benefits with enums is a significant benefit. But if you catch yourself
pattern matching often on a single case, a struct might be a better approach.

 Also, keep in mind that the associated values of an enum are containers without
additional logic. You don’t get free initializers of properties; with enums, you’d have
to manually add these.

 Next time you write a struct, try to group properties. Your data model might be a
good candidate for an enum!

2.2 Enums for polymorphism
Sometimes you need some flexibility in the shape of polymorphism. Polymorphism
means that a single function, method, array, dictionary—you name it—can work with
different types.

 If you mix types in an array, however, you end up with an array of type [Any] (as
shown in the following listing), such as when you put a Date, String, and Int into
one array.

Listing 2.9 Matching on a single case

Listing 2.10 Matching on a single case with the "I don’t care" underscore
k.store/books/9781617295188

https://itbook.store/books/9781617295188

17Enums for polymorphism

www.itbook.
let arr: [Any] = [Date(), "Why was six afraid of seven?", "Because...", 789]

Arrays explicitly want to be filled with the same type. In Swift, what these mixed types
have in common is that they are an Any type.

 Handling Any types are often not ideal. Since you don’t know what Any represents
at compile time, you have to check against the Any type at runtime to see what it pres-
ents. For instance, you could match on any types via pattern matching, using a switch
statement.

let arr: [Any] = [Date(), "Why was six afraid of seven?", "Because...", 789]

for element: Any in arr {
// element is "Any" type
switch element {
case let stringValue as String: "received a string: \(stringValue)"
case let intValue as Int: "received an Int: \(intValue)"
case let dateValue as Date: "received a date: \(dateValue)"
default: print("I am not interested in this value")

}
}

You can still figure out what Any is at runtime. But you don’t know what to expect
when matching on an Any type; therefore, you must also implement a default case to
catch the values in which you’re not interested.

 Working with Any types is sometimes needed when you can’t know what something
is at compile time, such as when you’re receiving unknown data from a server. But if
you know beforehand the types that you’re dealing with, you can get compile-time
safety by using an enum.

2.2.1 Compile-time polymorphism

Imagine that you’d like to store two different types in an array, such as a Date and a
range of two dates of type Range<Date>.

WHAT ARE THESE <DATE> BRACKETS? Range is a type that represents a lower
and upper bound. The <Date> notation indicates that Range is storing a
generic type, which you’ll explore deeply in chapter 7.

The Range<Date> notation tells you that you’re working with a range of two
Date types.

You can create a DateType representing either a single date or a range of dates. Then
you can fill up an array of both a Date and Range<Date>, as shown next.

Listing 2.11 Filling an array with multiple values

Listing 2.12 Matching on Any values at runtime
store/books/9781617295188

https://itbook.store/books/9781617295188

18 CHAPTER 2 Modeling data with enums

www.itboo
let now = Date()
let hourFromNow = Date(timeIntervalSinceNow: 3600)

let dates: [DateType] = [
DateType.singleDate(now),
DateType.dateRange(now..<hourFromNow)

]

The enum itself merely contains two cases, each with its associated value.

enum DateType {
case singleDate(Date)
case dateRange(Range<Date>)

}

The array itself consists only of DateType instances. In turn, each DateType harbors
one of the multiple types (see figure 2.2).

Thanks to the enum, you end up with an array containing multiple types, while main-
taining compile-time safety. If you were to read values from the array, you could switch
on each value.

for dateType in dates {
switch dateType {
case .singleDate(let date): print("Date is \(date)")
case .dateRange(let range): print("Range is \(range)")
}

}

The compiler also helps if you modify the enum. By way of illustration, if you add a
year case to the enum, the compiler tells you that you forgot to handle a case.

enum DateType {
case singleDate(Date)

Listing 2.13 Adding multiple types to an array via an enum

Listing 2.14 Introducing a DateType enum

Listing 2.15 Matching on the dateType enum

Listing 2.16 Adding a year case to DateType

DateType

singleDate

DateType

dateRange

, Figure 2.2 Array enums
k.store/books/9781617295188

https://itbook.store/books/9781617295188

19Enums instead of subclassing

www.itbook.
case dateRange(Range<Date>)
case year(Int)
}

The compiler is now throwing the following.

error: switch must be exhaustive
switch dateType {
^

add missing case: '.year(_)'
switch dateType {

Thanks to enums, you can bring back compile-time safety when mixing types inside
arrays and other structures such as dictionaries.

 Of course, you must know beforehand what kind of cases you expect. When you
know what you’re working with, the added compile-time safety is a nice bonus.

2.3 Enums instead of subclassing
Subclassing allows you to build a hierarchy of your data. For example, you could have
a fast food restaurant selling burgers, fries, the usual. For that, you’d create a super-
class of FastFood, with subclasses like Burger, Fries, and Soda.

 One of the limitations of modeling your software with hierarchies (subclassing) is
that doing so constrains you in a specific direction that won’t always match your needs.

 For example, the aforementioned restaurant has been getting complaints from
customers wanting authentic Japanese sushi with their fries. They intend to accommo-
date the customers, but their subclassing model doesn’t fit this new requirement.

 In an ideal world, modeling your data hierarchically makes sense. But in practice,
you’ll sometimes hit edge cases and exceptions that may not fit your model.

 In this section, we explore these limitations of modeling your data via subclassing
in more of a real-world scenario and solve these with the help of enums.

2.3.1 Forming a model for a workout app

Next up, you’re building a model layer for a workout app, which tracks running and
cycling sessions for someone. A workout includes the start time, end time, and a distance.

 You’ll create both a Run and a Cycle struct that represent the data you’re modeling.

import Foundation

struct Run {
let id: String
let startTime: Date

Listing 2.17 Compiler notifies you of an error

Listing 2.18 The Run struct

Year is newly
added.

Need Foundation
for the Date type
store/books/9781617295188

https://itbook.store/books/9781617295188

20 CHAPTER 2 Modeling data with enums

www.itboo
let endTime: Date
let distance: Float
let onRunningTrack: Bool

}

struct Cycle {

enum CycleType {
case regular
case mountainBike
case racetrack

}

let id: String
let startTime: Date
let endTime: Date
let distance: Float
let incline: Int
let type: CycleType

}

These structs are a good starting point for your data layer.
 Admittedly, having to create separate logic in your application for both the Run

and Cycle types can be cumbersome. Let’s try to solve this via subclassing. Then you’ll
quickly learn which problems accompany subclassing, after which you’ll see how
enums can solve some of these problems.

2.3.2 Creating a superclass

Many similarities exist between Run and Cycle, which at first look make a good candi-
date for a superclass. The benefit of a superclass is that you can pass the superclass
around, such as in your methods and arrays. A superclass saves you from creating spe-
cific methods and arrays for each workout subclass.

 You could create a superclass called Workout; then you can turn Run and Cycle into
classes and make them subclass Workout, which inherits from Workout (see figure 2.3).

Listing 2.19 The Cycle struct

Workout

let id: String
let startTime: Date
let endTime: Date
let distance: Float

Run

let onRunningTrack: Bool

Cycle

let incline: Float
let cycleType: CycleType

Figure 2.3 A subclassing hierarchy
k.store/books/9781617295188

https://itbook.store/books/9781617295188

21Enums instead of subclassing

www.itbook.
Hierarchically, the subclassing structure makes a lot of sense because workouts share so
many values.

 The new Workout superclass contains the properties that both Run and Cycle
share, specifically id, startTime, endTime, and distance.

2.3.3 The downsides of subclassing

Here we quickly touch upon issues related to subclassing. First of all, you’re forced to
use classes. Classes can be favorable, but having the choice between classes, structs, or
other enums disappears when you use subclassing.

 Being forced to use classes, however, isn’t the biggest problem. Let’s showcase
another limitation by adding a new type of workout, called Pushups, which stores mul-
tiple repetitions and a single date.

class Pushups: Workout {
let repetitions: [Int]
let date: Date

}

Subclassing Workout doesn’t work properly because some properties of Workout don’t
apply to Pushups. Workout requires a startTime, endTime, and distance value, none
of which Pushups needs.

 To allow Pushups to subclass Workout, you’d have to refactor the superclass and all
its subclasses. You would do this by moving startTime, endTime, and distance from
Workout to the Cycle and Run classes because these properties aren’t part of a Pushups
class (see figure 2.4).

Refactoring an entire data model shows the issue when subclassing. As soon as you
introduce a new subclass, you risk needing to refactor the superclass and all its sub-
classes, which is a significant impact on existing architecture.

 Let’s consider another approach involving enums.

Listing 2.20 The Pushups class

Pushups subclasses
Workout

Workout

let id: String

Run

let onRunningTrack: Bool
let startTime: Date
let endTime: Date
let distance: Float

Cycle

let incline: Float
let cycleType: CycleType
let startTime: Date
let endTime: Date
let distance: Float

Pushups

let repetitions: [Int]
let date: Date

Figure 2.4 A refactored subclassing hierarchy
store/books/9781617295188

https://itbook.store/books/9781617295188

22 CHAPTER 2 Modeling data with enums

www.itboo
2.3.4 Refactoring a data model with enums

By using enums, you stay away from a hierarchical structure, yet you can still keep the
option of passing a single Workout around in your application. You’ll also be able to
add new workouts without needing to refactor the existing workouts.

 You do this by creating a Workout enum instead of a superclass. You can contain
different workouts inside the Workout enum.

enum Workout {
case run(Run)
case cycle(Cycle)
case pushups(Pushups)

}

Now Run, Cycle, and Pushups won’t subclass Workout anymore. In fact, all the work-
outs can be any type, such as a struct, class, or even another enum.

 You can create a Workout by passing it a Run, Cycle, or Pushups workout. For exam-
ple, you can convert Pushups to a struct, initialize it, and pass it to the pushups case
inside the Workout enum.

let pushups = Pushups(repetitions: [22,20,10], date: Date())
let workout = Workout.pushups(pushups)

Now you can pass a Workout around in your application. Whenever you want to
extract the workout, you can pattern match on it.

switch workout {
case .run(let run):

print("Run: \(run)")
case .cycle(let cycle):

print("Cycle: \(cycle)")
case .pushups(let pushups):

print("Pushups: \(pushups)")
}

The benefit of this solution is that you can add new workouts without refactoring exist-
ing ones. For example, if you introduce an Abs workout, you can add it to Workout with-
out touching Run, Cycle, or Pushups.

enum Workout {
case run(Run)
case cycle(Cycle)

Listing 2.21 Workout as an enum

Listing 2.22 Creating a workout

Listing 2.23 Pattern matching on a workout

Listing 2.24 Adding a new workout to the Workout enum
k.store/books/9781617295188

https://itbook.store/books/9781617295188

23Algebraic data types

www.itbook.
case pushups(Pushups)
case abs(Abs)

}

Not having to refactor other workouts to add a new one is a significant benefit and
worth considering using enums over subclassing.

2.3.5 Deciding on subclassing or enums

Trying to determine when enums or subclasses fit your data model isn’t always easy.
 When types share many properties, and you predict that won’t change in the

future, you can get very far with classic subclassing. But subclassing steers you into a
more rigid hierarchy. On top of that, you’re forced to use classes.

 When similar types start to diverge, or if you want to keep using enums and structs
(as opposed to classes only), creating an encompassing enum offers more flexibility
and could be the better choice.

 The downside of enums is that now your code needs to match all cases in your
entire application. Although this may require extra work when adding new cases, it
also is a safety net where the compiler makes sure you haven’t forgotten to handle a
case somewhere in your application.

 Another downside of enums is that at the time of writing, enums can’t be
extended with new cases. Enums lock down a model to a fixed number of cases, and
unless you own the code, you can’t change this rigid structure. For example, per-
haps you’re offering an enum via a third-party library, and now its implementers
can’t expand on it.

 These are trade-offs you’ll have to make. If you can lock down your data model to a
fixed, manageable number of cases, enums can be a good choice.

2.3.6 Exercises

1 Can you name two benefits of using subclassing instead of enums with associ-
ated types?

2 Can you name two benefits of using enums with associated types instead of sub-
classing?

2.4 Algebraic data types
Enums are based on something called algebraic data types, which is a term that comes
from functional programming. Algebraic data types commonly express composed
data via something called sum types and product types.

 Enums are sum types; an enum can be only one thing at once, hence the “or” way of
thinking covered earlier.

 On the other end of the spectrum are product types, types that contains multiple val-
ues, such as a tuple or struct. You can think of a product type as an “and” type—for
example, a User struct can have both a name and an id. Alternatively, an address class
can have a street and a house number and a zip code.

New workout is
introduced
store/books/9781617295188

https://itbook.store/books/9781617295188

24 CHAPTER 2 Modeling data with enums

www.itboo
 Let’s use this section to cover a bit of theory so that you can reason about enums
better. Then we move on to some practical examples where you’ll turn an enum into a
struct and vice versa.

2.4.1 Sum types

Enums are sum types, which have a fixed number of values they can represent. For
instance, the following enum called Day represents any day in the week. There are
seven possible values that Day can represent.

enum Day {
case sunday
case monday
case tuesday
case wednesday
case thursday
case friday
case saturday

}

To know the number of possible values of an enum, you add (sum) the possible values
of the types inside. In the case of the Day enum, the total sum is seven.

 Another way to reason about possible values is the UInt8 type. Ranging from 0 to
255, the total number of possible values is 256. It isn’t modeled this way, but you can
think of an UInt8 as if it’s an enum with 256 cases.

 If you were to write an enum with two cases, and you added an UInt8 to one of the
cases, this enum’s possible variations jump from 2 to 257.

 For instance, you can have an Age enum—representing someone’s age—where the
age can be unknown, but if it is known, it contains an UInt8.

enum Age {
case known(UInt8)
case unknown

}

Age now represents 257 possible values, namely, the unknown case(1) + known
case(256).

2.4.2 Product types

On the other end of the spectrum are product types. A product type multiplies the
possible values it contains. As an example, if you were to store two Booleans inside a
struct, the total number of variations is the product (multiplication) of these two
enums.

Listing 2.25 The Day enum

Listing 2.26 The Age enum
k.store/books/9781617295188

https://itbook.store/books/9781617295188

25Algebraic data types

www.itbook.
struct BooleanContainer {
let first: Bool
let second: Bool

}

The first Boolean (two possible values) times the second Boolean (two possible values)
is four possible states that this struct may have.

 In code, you can prove this by revealing all the variations.

BooleanContainer(first: true, second: true)
BooleanContainer(first: true, second: false)
BooleanContainer(first: false, second: true)
BooleanContainer(first: false, second: false)

When you’re modeling data, the number of variations is good to keep in mind. The
higher the number of possible values a type has, the harder it is to reason about a
type’s possible states.

 As hyperbole, having a struct with 1,000 strings for properties has a lot more possi-
ble states than a struct with a single Boolean property.

2.4.3 Distributing a sum over an enum

I won’t focus only on theory regarding sum and product types, either. You’re not here
to write a dry, theoretically based graduate paper, but to produce beautiful work.

 Imagine that you have a PaymentType enum containing three cases, which repre-
sent the three ways a customer can pay.

enum PaymentType {
case invoice
case creditcard
case cash

}

Next, you’re going to represent the status of a payment. A struct is a suitable candi-
date to store some auxiliary properties besides the PaymentType enum, such as when a
payment is completed and whether or not it concerns a recurring payment.

struct PaymentStatus {
let paymentDate: Date?
let isRecurring: Bool
let paymentType: PaymentType

}

Listing 2.27 A struct containing two Booleans

Listing 2.28 BooleanContainer has four possible variations

Listing 2.29 Introducing PaymentType

Listing 2.30 A PaymentStatus struct
store/books/9781617295188

https://itbook.store/books/9781617295188

26 CHAPTER 2 Modeling data with enums

www.itboo
The product of all the variations would be all possible dates times 2 (Boolean) times 3
(enum with three cases). You’d have a high number of variations because the struct
can store many date variations.

 Like cream cheese on a bagel, you’re smearing the properties of the struct out over
the cases of the enum by following the rules of algebraic data types (see figure 2.5).

You end up with an enum taking the same name as the struct. Each case represents
the original enum’s cases with the struct’s properties inside.

enum PaymentStatus {
case invoice(paymentDate: Date?, isRecurring: Bool)
case creditcard(paymentDate: Date?, isRecurring: Bool)
case cash(paymentDate: Date?, isRecurring: Bool)

}

All the information is still there, and the number of possible variations is still the
same. Except this time you flipped the types inside out!

 As a benefit, you’re only dealing with a single type; the price is that you have some
repetition inside each case. There’s no right or wrong; it is merely a different
approach to model the same data while leaving the same number of possible varia-
tions intact. It’s a neat trick that displays the algebraic nature of types and helps you
model enums in multiple ways. Depending on your needs, an enum might be a fitting
alternative to a struct containing an enum, or vice versa.

Listing 2.31 PaymentStatus containing cases

PaymentStatus (enum)

paymentDate isRecurring)

)

case invoice(

case creditcard(paymentDate

)

isRecurring

case cash(paymentDate isRecurring

PaymentType

case invoice
case creditcard
case cash

PaymentStatus (struct)

paymentType

paymentDate isRecurring

Figure 2.5 Turning a struct into an enum
k.store/books/9781617295188

https://itbook.store/books/9781617295188

27A safer use of strings

www.itbook.
2.4.4 Exercise

Given this data structure

enum Topping {
case creamCheese
case peanutButter
case jam

}

enum BagelType {
case cinnamonRaisin
case glutenFree
case oatMeal
case blueberry

}

struct Bagel {
let topping: Topping
let type: BagelType

}

3 What is the number of possible variations of Bagel?
4 Turn Bagel into an enum while keeping the same amount of possible variations.
5 Given the following enum representing a puzzle game for a specific age range

(such as baby, toddler, or teenager) and containing some puzzle pieces

enum Puzzle {
case baby(numberOfPieces: Int)
case toddler(numberOfPieces: Int)
case preschooler(numberOfPieces: Int)
case gradeschooler(numberOfPieces: Int)
case teenager(numberOfPieces: Int)

}

How would this enum be represented as a struct instead?

2.5 A safer use of strings
Dealing with strings and enums is quite common. Let’s go ahead and pay some extra
attention to them so that you’ll do it correctly. This section highlights some dangers
when dealing with enums that hold a String raw value.

 When an enum is defined as a raw value type, all cases of that enum carry some
value inside them.

 Enums with raw values are defined by having a type added to an enum’s declaration.

enum Currency: String {
case euro = "euro"
case usd = "usd"
case gbp = "gbp"

}

Listing 2.32 Enums with raw values and string values

String is the raw
value type.

All cases contain
string values.
store/books/9781617295188

https://itbook.store/books/9781617295188

28 CHAPTER 2 Modeling data with enums

www.itboo
The raw values that an enum can store are only reserved for String, Character, and
integer and floating-point number types.

 An enum with raw values means each case has a value that’s defined at compile-
time. In contrast, enums with associated types—which you’ve used in the previous sec-
tions—store their values at runtime.

 When creating an enum with a String raw type, each raw value takes on the
name of the case. You don’t need to add a string value if the rawValue is the same as
the case name, as shown here.

enum Currency: String {
case euro
case usd
case gbp

}

Since the enum still has a raw value type, such as String, each case still carries the raw
values inside them.

2.5.1 Dangers of raw values

Use some caution when working with raw values, because once you read an enum’s
raw values, you lose some help from the compiler.

 For instance, you’re going to set up parameters for a hypothetical API call. You’d
use these parameters to request transactions in the currency you supply.

 You’ll use the Currency enum to construct parameters for your API call. You can
read the enum’s raw value by accessing the raw value property, and set up your API
parameters that way.

let currency = Currency.euro
print(currency.rawValue) // "euro"

let parameters = ["filter": currency.rawValue]
print(parameters) // ["filter": "euro"]

To introduce a bug, change the rawValue of the euro case, from “euro” to “eur”
(dropping the “o”), since eur is the currency notation of the euro.

enum Currency: String {
case euro = "eur"
case usd
case gbp

}

Listing 2.33 Enum with raw values, with string values omitted

Listing 2.34 Setting a raw value inside parameters

Listing 2.35 Renaming a string
k.store/books/9781617295188

https://itbook.store/books/9781617295188

29A safer use of strings

www.itbook.
Because the API call relied on the rawValue to create your parameters, the parame-
ters are now affected for the API call.

 The compiler won’t notify you, because the raw value is still valid code.

let parameters = ["filter": currency.rawValue]
// Expected "euro" but got "eur"
print(parameters) // ["filter": "eur"]

Everything still compiles. Unfortunately, you silently introduced a bug in part of your
application.

 Always make sure to update a string everywhere, which may sound obvious. But
imagine that you’re working on a big project where this enum was created in a com-
pletely different part of the application, or perhaps offered from a framework. An
innocuous change on the enum may be damaging elsewhere in your application.
These issues can sneak up on you, and they’re easy to miss because you don’t get noti-
fied at compile time.

 You can play it safe and ignore an enum’s raw values and match on the enum cases.
As shown in the following code, when you set the parameters this way, you’ll know at
compile time when a case changes.

let parameters: [String: String]
switch currency {

case .euro: parameters = ["filter": "euro"]
case .usd: parameters = ["filter": "usd"]
case .gbp: parameters = ["filter": "gbp"]

}

// Back to using "euro" again
print(parameters) // ["filter": "euro"]

You’re recreating strings and ignoring the enum’s raw values. It may be redundant
code, but at least you’ll have precisely the values you need. Any changes to the raw val-
ues won’t catch you off guard because the compiler will now help you. You could even
consider dropping the raw values altogether if your application allows.

 Perhaps even better is that you do use the raw values, but you add safety by writing
unit tests to make sure that nothing breaks. This way you’ll have a safety net and the
benefits of using raw values.

 These are all trade-offs you’ll have to make. But it’s good to be aware that you lose
help from the compiler once you start using raw values from an enum.

Listing 2.36 Unexpected parameters

Listing 2.37 Explicit raw values
store/books/9781617295188

https://itbook.store/books/9781617295188

30 CHAPTER 2 Modeling data with enums

www.itboo
2.5.2 Matching on strings

Whenever you pattern match on a string, you open the door to missed cases. This sec-
tion covers the downsides of matching on strings and showcases how to make an
enum out of it for added safety.

 In the next example, you’re modeling a user-facing image management system in
which customers can store and group their favorite photos, images, and gifs. Depend-
ing on the file type, you need to know whether or not to show a particular icon, indi-
cating it’s a jpeg, bitmap, gif, or an unknown type.

 In a real-world application, you’d also check real metadata of an image; but for a
quick and dirty approach, you’ll look only at the extension.

 The iconName function gives your application the name of the icon to display over
an image, based on the file extension. For example, a jpeg image has a little icon
shown on it; this icon’s name is "assetIconJpeg".

func iconName(for fileExtension: String) -> String {
switch fileExtension {
case "jpg": return "assetIconJpeg"
case "bmp": return "assetIconBitmap"
case "gif": return "assetIconGif"
default: return "assetIconUnknown"
}

}

iconName(for: "jpg") // "assetIconJpeg"

Matching on strings works, but a couple of problems arise with this approach (versus
matching on enums). Making a typo is easy, and thus harder to make it match—for
example, expecting “jpg” but getting “jpeg” or “JPG” from an outside source.

 The function returns an unknown icon as soon as you deviate only a little—for
example, by passing it a capitalized string.

iconName(for: "JPG") // "assetIconUnknown", not favorable

Sure, an enum doesn’t solve all problems right away, but if you repeatedly match on
the same string, the chances of typos increase.

 Also, if any bugs are introduced by matching on strings, you’ll know it at runtime.
But switching on enums are exhaustive. If you were to switch on an enum instead,
you’d know about bugs (such as forgetting to handle a case) at compile time.

 Let’s create an enum out of it! You do this by introducing an enum with a String
raw type.

Listing 2.38 Matching on strings

Listing 2.39 Unknown icon
k.store/books/9781617295188

https://itbook.store/books/9781617295188

31A safer use of strings

www.itbook.
enum ImageType: String {
case jpg
case bmp
case gif

}

This time when you match in the iconName function, you turn the string into an enum
first by passing a rawValue. This way you’ll know if ImageType gets another case added
to it. The compiler will tell you that iconName needs to be updated and handle a new
case.

func iconName(for fileExtension: String) -> String {
guard let imageType = ImageType(rawValue: fileExtension) else {

return "assetIconUnknown"
}
switch imageType {
case .jpg: return "assetIconJpeg"
case .bmp: return "assetIconBitmap"
case .gif: return "assetIconGif"
}

}

But you still haven’t solved the issue of slightly differing values, such as “jpeg” or
“JPEG.” If you were to capitalize “jpg,” the iconName function would return "asset-
IconUnknown".

 Let’s take care of that now by matching on multiple strings at once. You can imple-
ment your initializer, which accepts a raw value string.

enum ImageType: String {
case jpg
case bmp
case gif

init?(rawValue: String) {
switch rawValue.lowercased() {
case "jpg", "jpeg": self = .jpg
case "bmp", "bitmap": self = .bmp
case "gif", "gifv": self = .gif
default: return nil
}

}

}

Listing 2.40 Creating an enum with a String raw value

Listing 2.41 iconName creates an enum

Listing 2.42 Adding a custom initializer to ImageType

Introducing
the enum

The function tries to convert the
string to ImageType; it returns
"assetIconUnknown" if this fails.

iconName now matches on
the enum, giving you compiler
benefits if you missed a case.

The string matching is
now case-insensitive,
making it more forgiving.

The initializer matches on
multiple strings at once,
such as "jpg" and "jpeg."
store/books/9781617295188

https://itbook.store/books/9781617295188

32 CHAPTER 2 Modeling data with enums

www.itboo
OPTIONAL INIT? The initializer from ImageType returns an optional. An optional
initializer indicates that it can fail. When the initializer does fail—when you
give it an unusable string—the initializer returns a nil value. Don’t worry if
this isn’t clear yet; you’ll handle optionals in depth in chapter 4.

Note a couple of things here. You set the ImageType case depending on its passed
rawValue, but not before turning it into a lowercased string so you make the pattern
matching case-insensitive. Next, you give each case multiple options to match on—
such as case "jpg", "jpeg"—so that it can catch more cases. You could have written it
out by using more cases, but this is a clean way to group pattern matching.

 Now your string matching is more robust, and you can match on variants of the
strings.

iconName(for: "jpg") // "Received jpg"
iconName(for: "jpeg") // "Received jpg"
iconName(for: "JPG") // "Received a jpg"
iconName(for: "JPEG") // "Received a jpg"
iconName(for: "gif") // "Received a gif"

If you do have a bug in the conversion, you can write a test case for it and only have to
fix the enum in one location, instead of fixing multiple string-matching sprinkled
around in the application.

 Working with strings this way is now more idiomatic; the code has been made safer
and more expressive. The trade-off is that a new enum has to be created, which may
be redundant if you pattern-match on a string only once.

 But as soon as you see code matching on a string repeatedly, converting it to an
enum is a good choice.

2.5.3 Exercises

6 Which raw types are supported by enums?
7 Are an enum’s raw values set at compile time or runtime?
8 Are an enum’s associated values set at compile time or runtime?
9 Which types can go inside an associated value?

2.6 Closing thoughts
As you can see, enums are more than a list of values. Once you start “thinking in
enums,” you’ll get a lot of safety and robustness in return, and you can turn structs to
enums and back again.

 I hope that this chapter inspired you to use enums in surprisingly fun and useful
ways. Perhaps you’ll use enums more often to combine them with, or substitute for,
structs and classes.

Listing 2.43 Passing different strings
k.store/books/9781617295188

https://itbook.store/books/9781617295188

33Answers

www.itbook.
 In fact, perhaps next time as a pet project, see how far you can get by using only
enums and structs. Limiting yourself to enums and structs is an excellent workout to
help you think in sum and product types!

Summary
 Enums are sometimes an alternative to subclassing, allowing for a flexible

architecture.
 Enums give you the ability to catch problems at compile time instead of runtime.
 You can use enums to group properties together.
 Enums are sometimes called sum types, based on algebraic data types.
 Structs can be distributed over enums.
 When working with enum’s raw values, you forego catching problems at com-

pile time.
 Handling strings can be made safer by converting them to enums.
 When converting a string to an enum, grouping cases and using a lowercased

string makes conversion easier.

Answers
1 Can you name two benefits of using subclassing instead of enums with associ-

ated types?
A superclass prevents duplication; no need to declare the same property

twice. With subclassing, you can also override existing functionality.

2 Can you name two benefits of using enums with associated types instead of sub-
classing?

No need to refactor anything if you add another type, whereas with subclass-
ing you risk refactoring a superclass and its existing subclasses. Second, you’re
not forced to use classes.

3 Given the data structure, what is the number of possible variations of Bagel?
Twelve (3 toppings times 4 bagel types)

4 Given the data structure, turn Bagel into an enum while keeping the same
amount of possible variations.

Two ways, because Bagel contains two enums. You can store the data in
either enum:

// Use the Topping enum as the enum's cases.
enum Bagel {

case creamCheese(BagelType)
case peanutButter(BagelType)
case jam(BagelType)

}

// Alternatively, use the BagelType enum as the enum's cases.
enum Bagel {

case cinnamonRaisin(Topping)
store/books/9781617295188

https://itbook.store/books/9781617295188

34 CHAPTER 2 Modeling data with enums

www.itboo
case glutenFree(Topping)
case oatMeal(Topping)
case blueberry(Topping)

}

5 Given the enum representing a puzzle game for a specific age range, how would
this enum be represented as a struct instead?

enum AgeRange {
case baby
case toddler
case preschooler
case gradeschooler
case teenager

}

struct Puzzle {
let ageRange: AgeRange
let numberOfPieces: Int

}

6 Which raw types are supported by enums?
String, character, and integer and floating-point types

7 Are an enum’s raw values set at compile time or runtime?
Raw type values are determined at compile time.

8 Are an enum’s associated values set at compile time or runtime?
Associated values are set at runtime.

9 Which types can go inside an associated value?
All types fit inside an associated value.
k.store/books/9781617295188

https://itbook.store/books/9781617295188

Tjeerd in ‘t Veen

I
t’s fun to create your fi rst toy iOS or Mac app in Swift.
Writing secure, reliable, professional-grade software is a
different animal altogether. The Swift language includes an

amazing set of high-powered features, and it supports a wide
range of programming styles and techniques. You just have to
roll up your sleeves and learn Swift in depth.

Swift in Depth guides you concept by concept through the
skills you need to build professional software for Apple plat-
forms, such as iOS and Mac; also on the server with Linux.
By following the numerous concrete examples, enlightening
explanations, and engaging exercises, you’ll fi nally grok power-
ful techniques like generics, effi cient error handling, protocol-
oriented programming, and advanced Swift patterns. Author
Tjeerd in ’t Veen reveals the high-value, diffi cult-to-discover
Swift techniques he’s learned through his own hard-won
experience.

What’s Inside
● Writing reusable code with generics
● Iterators, sequences, and collections
● Protocol-oriented programming
● Understanding map, fl atMap, and compactMap
● Asynchronous error handling with Result
● Best practices in Swift

Written for advanced-beginner and intermediate-level Swift
programmers.

Tjeerd in ‘t Veen is a senior software engineer and architect in
the mobile division of a large international banking fi rm.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/swift-in-depth

$49.99 / Can $65.99 [INCLUDING eBOOK]

Swift IN DEPTH

iOS DEVELOPMENT

M A N N I N G

“An excellent guide to
using the advanced features
of Swift to produce clean,

high-performing code. The
content is masterfully

delivered, making it easy to
quickly level-up your skills.”
—Jason Pike, Atlas RFID Solutions

“Highly recommended
to anyone interested in the

Apple platform. For the
novice who wants to become
an expert, this is defi nitely
where you should start!”

—Helmut Reiterer
Revenue Recovery Solutions

“Because Swift is so new, it’s
hard to fi nd good resources to
learn it. Look no further than

this book.”—Tyler Slater, Jolt

See first page

www.itbook.store/books/9781617295188

https://itbook.store/books/9781617295188

	2 Modeling data with enums
	2.1 Or vs. and
	2.1.1 Modeling data with a struct
	2.1.2 Turning a struct into an enum
	2.1.3 Deciding between structs and enums

	2.2 Enums for polymorphism
	2.2.1 Compile-time polymorphism

	2.3 Enums instead of subclassing
	2.3.1 Forming a model for a workout app
	2.3.2 Creating a superclass
	2.3.3 The downsides of subclassing
	2.3.4 Refactoring a data model with enums
	2.3.5 Deciding on subclassing or enums
	2.3.6 Exercises

	2.4 Algebraic data types
	2.4.1 Sum types
	2.4.2 Product types
	2.4.3 Distributing a sum over an enum
	2.4.4 Exercise

	2.5 A safer use of strings
	2.5.1 Dangers of raw values
	2.5.2 Matching on strings
	2.5.3 Exercises

	2.6 Closing thoughts
	Summary
	Answers

