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v

introduction
We may have always had data, but these days it seems we have never had quite so much 
data, nor so much demand for processes (and people) to put it to work. Yet in spite of 
the exploding interest in data engineering, data science, and machine learning it’s 
not always easy to know where to start and how to choose among all of the languages, 
tools, and technologies currently available. And even once those decisions are made, 
finding real-world explanations and examples to use as guides in doing useful work 
with data are all too often lacking.

 Fortunately, as the field evolves some popular (with good reason) choices and stan-
dards are appearing. Python, along with pandas, numpy, scikit-learn, and a whole eco-
system of data science tools, is increasingly being adopted as the language of choice 
for data engineering, data science, and machine learning. While it seems new 
approaches and processes for extracting meaning from data emerge every day, it’s also 
true that general outlines of how one gets, cleans, and deals with data are clearer than 
they were a few years ago.

 This sampler brings to together chapters from three Manning books to address 
these issues. First, we have a thorough discussion of the data science process from 
Introducing Data Science, by Davy Cielen, Arno D. B. Meysman, and Mohamed Ali, 
which lays out some of the considerations in starting a data science process and the 
elements that make up a successful project.  Moving on from that base, I’ve selected 
two chapters from my book, The Quick Python Book, 3rd Edition, which focus on the 
using the Python language to handle data. While my book covers the range of Python 
from the basics through advanced features, the chapters included here cover ways to 
use Python for processing data files and cleaning data, as well as how to use Python for 
exploring data. Finally, I’ve chosen a chapter from Real-world Machine Learning by Hen-
rik Brink, Joseph W. Richards, and Mark Fetherolf for some practical demonstrations 
of modelling and prediction with classification and regression.

 Getting started in the wide and complex world of data engineering and data science 
is challenging. This collection of chapters comes to the rescue with an understanding of 
the process combined with practical tips on using Python and real-world illustrations.
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There are a lot of factors to consider in extracting meaningful insights from 
data. Among other things, you need to know what sorts of questions you hope to 
answer, how you are going to go about it, what resources and how much time 
you’ll need, and how you will measure the success of your project. Once you 
have answered those questions, you can consider what data you need, as well as 
where and how you’ll get that data and what sort of preparation and cleaning it 
will need. Then after exploring the data comes the actual data modelling, argu-
ably the “science” part of “data science.” Finally, you’re likely to present your 
results and possibly productionize your process.

 Being able to think about data science with a framework like the above 
increases your chances of getting worthwhile results from the time and effort 
you spend on the project. This chapter, “The data science process” from Intro-
ducing Data Science, by Davy Cielen, Arno D. B. Meysman, and Mohamed Ali, lays 
out the steps in a mature data science process. While you don’t need to be 
strictly bound by these steps, and may spend less time or even ignore some of 
them, depending on you project, this framework will help keep your project on 
track.

The data science 
process
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Chapter 2 from Introducing Data Science 
by Davy Cielen, Arno D. B. Meysman, 
and Mohamed Ali.

The data science process
The goal of this chapter is to give an overview of the data science process without 
diving into big data yet. You’ll learn how to work with big data sets, streaming data, 
and text data in subsequent chapters.

2.1 Overview of the data science process
Following a structured approach to data science helps you to maximize your 
chances of success in a data science project at the lowest cost. It also makes it possi-
ble to take up a project as a team, with each team member focusing on what they 
do best. Take care, however: this approach may not be suitable for every type of 
project or be the only way to do good data science.

 The typical data science process consists of six steps through which you’ll iter-
ate, as shown in figure 2.1.

This chapter covers
 Understanding the flow of a data science 

process

 Discussing the steps in a data science 
process
2
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Figure 2.1 summarizes the data science process and shows the main steps and actions 
you’ll take during a project. The following list is a short introduction; each of the steps 
will be discussed in greater depth throughout this chapter.

1 The first step of this process is setting a research goal. The main purpose here is 
making sure all the stakeholders understand the what, how, and why of the proj-
ect. In every serious project this will result in a project charter.

2 The second phase is data retrieval. You want to have data available for analysis, so 
this step includes finding suitable data and getting access to the data from the 

Data science process

1: Setting the research goal

2: Retrieving data

3: Data preparation

4: Data exploration

5: Data modeling

6: Presentation and automation

–

Define research goal

Create project charter

–

Presenting data

Automating data analysis

–

–

Internal data

External data

–
Data retrieval

Data ownership

Data cleansing –

Physically impossible values

Errors against codebook

Missing values

Errors from data entry

Outliers

Spaces, typos, …

Data transformation

Combining data

–

–

Simple graphs

Nongraphical techniques

–

Extrapolating data

Derived measures

Link and brush

Combined graphs

Aggregating data

Creating dummies

– Set operators

Merging/joining data sets

Creating views

Model execution

Model and variable selection

Model diagnostic and model comparison

Reducing number of variables

Figure 2.1 The six steps of the data science process
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data owner. The result is data in its raw form, which probably needs polishing 
and transformation before it becomes usable.

3 Now that you have the raw data, it’s time to prepare it. This includes transform-
ing the data from a raw form into data that’s directly usable in your models. To 
achieve this, you’ll detect and correct different kinds of errors in the data, com-
bine data from different data sources, and transform it. If you have successfully 
completed this step, you can progress to data visualization and modeling.

4 The fourth step is data exploration. The goal of this step is to gain a deep under-
standing of the data. You’ll look for patterns, correlations, and deviations based 
on visual and descriptive techniques. The insights you gain from this phase will 
enable you to start modeling.

5 Finally, we get to the sexiest part: model building (often referred to as “data modeling” 
throughout this book). It is now that you attempt to gain the insights or make the 
predictions stated in your project charter. Now is the time to bring out the 
heavy guns, but remember research has taught us that often (but not always) a 
combination of simple models tends to outperform one complicated model. If 
you’ve done this phase right, you’re almost done. 

6 The last step of the data science model is presenting your results and automating the 
analysis, if needed. One goal of a project is to change a process and/or make 
better decisions. You may still need to convince the business that your findings 
will indeed change the business process as expected. This is where you can 
shine in your influencer role. The importance of this step is more apparent in 
projects on a strategic and tactical level. Certain projects require you to per-
form the business process over and over again, so automating the project will 
save time.

In reality you won’t progress in a linear way from step 1 to step 6. Often you’ll regress 
and iterate between the different phases. 

 Following these six steps pays off in terms of a higher project success ratio and 
increased impact of research results. This process ensures you have a well-defined 
research plan, a good understanding of the business question, and clear deliverables 
before you even start looking at data. The first steps of your process focus on getting 
high-quality data as input for your models. This way your models will perform better 
later on. In data science there’s a well-known saying: Garbage in equals garbage out. 

 Another benefit of following a structured approach is that you work more in pro-
totype mode while you search for the best model. When building a prototype, you’ll 
probably try multiple models and won’t focus heavily on issues such as program 
speed or writing code against standards. This allows you to focus on bringing busi-
ness value instead.

 Not every project is initiated by the business itself. Insights learned during analy-
sis or the arrival of new data can spawn new projects. When the data science team 
generates an idea, work has already been done to make a proposition and find a 
business sponsor. 
k.store/books/9781617296048
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 Dividing a project into smaller stages also allows employees to work together as a 
team. It’s impossible to be a specialist in everything. You’d need to know how to 
upload all the data to all the different databases, find an optimal data scheme that 
works not only for your application but also for other projects inside your company, 
and then keep track of all the statistical and data-mining techniques, while also being 
an expert in presentation tools and business politics. That’s a hard task, and it’s why 
more and more companies rely on a team of specialists rather than trying to find one 
person who can do it all.

 The process we described in this section is best suited for a data science project 
that contains only a few models. It’s not suited for every type of project. For instance, a 
project that contains millions of real-time models would need a different approach 
than the flow we describe here. A beginning data scientist should get a long way fol-
lowing this manner of working, though.

2.1.1 Don’t be a slave to the process

Not every project will follow this blueprint, because your process is subject to the prefer-
ences of the data scientist, the company, and the nature of the project you work on. 
Some companies may require you to follow a strict protocol, whereas others have a 
more informal manner of working. In general, you’ll need a structured approach when
you work on a complex project or when many people or resources are involved.

 The agile project model is an alternative to a sequential process with iterations. As 
this methodology wins more ground in the IT department and throughout the com-
pany, it’s also being adopted by the data science community. Although the agile meth-
odology is suitable for a data science project, many company policies will favor a more 
rigid approach toward data science. 

 Planning every detail of the data science process upfront isn’t always possible, 
and more often than not you’ll iterate between the different steps of the process. 
For instance, after the briefing you start your normal flow until you’re in the explor-
atory data analysis phase. Your graphs show a distinction in the behavior between 
two groups—men and women maybe? You aren’t sure because you don’t have a vari-
able that indicates whether the customer is male or female. You need to retrieve an 
extra data set to confirm this. For this you need to go through the approval process, 
which indicates that you (or the business) need to provide a kind of project char-
ter. In big companies, getting all the data you need to finish your project can be 
an ordeal. 

2.2 Step 1: Defining research goals and creating 
a project charter
A project starts by understanding the what, the why, and the how of your project (fig-
ure 2.2). What does the company expect you to do? And why does management place 
such a value on your research? Is it part of a bigger strategic picture or a “lone wolf” 
project originating from an opportunity someone detected? Answering these three 
store/books/9781617296048
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questions (what, why, how) is the goal of the first phase, so that everybody knows what 
to do and can agree on the best course of action.

–

Define research goal

Create project charter

Data science process

1: Setting the research goal

2: Retrieving data +

3: Data preparation +

4: Data exploration +

5: Data modeling +

6: Presentation and automation +
Figure 2.2 Step 1: Setting 
the research goal

 The outcome should be a clear research goal, a good understanding of the con-
text, well-defined deliverables, and a plan of action with a timetable. This information 
is then best placed in a project charter. The length and formality can, of course, differ 
between projects and companies. In this early phase of the project, people skills and 
business acumen are more important than great technical prowess, which is why this 
part will often be guided by more senior personnel.

2.2.1 Spend time understanding the goals and context of your research

An essential outcome is the research goal that states the purpose of your assignment 
in a clear and focused manner. Understanding the business goals and context is criti-
cal for project success. Continue asking questions and devising examples until you 
grasp the exact business expectations, identify how your project fits in the bigger pic-
ture, appreciate how your research is going to change the business, and understand 
how they’ll use your results. Nothing is more frustrating than spending months 
researching something until you have that one moment of brilliance and solve the 
problem, but when you report your findings back to the organization, everyone imme-
diately realizes that you misunderstood their question. Don’t skim over this phase 
lightly. Many data scientists fail here: despite their mathematical wit and scientific bril-
liance, they never seem to grasp the business goals and context. 

2.2.2 Create a project charter

Clients like to know upfront what they’re paying for, so after you have a good under-
standing of the business problem, try to get a formal agreement on the deliverables. 
All this information is best collected in a project charter. For any significant project 
this would be mandatory.
k.store/books/9781617296048
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 A project charter requires teamwork, and your input covers at least the following: 

 A clear research goal
 The project mission and context
 How you’re going to perform your analysis
 What resources you expect to use
 Proof that it’s an achievable project, or proof of concepts
 Deliverables and a measure of success
 A timeline

Your client can use this information to make an estimation of the project costs and the 
data and people required for your project to become a success.

2.3 Step 2: Retrieving data
The next step in data science is to retrieve the required data (figure 2.3). Sometimes 
you need to go into the field and design a data collection process yourself, but most of 
the time you won’t be involved in this step. Many companies will have already col-
lected and stored the data for you, and what they don’t have can often be bought 
from third parties. Don’t be afraid to look outside your organization for data, because 
more and more organizations are making even high-quality data freely available for 
public and commercial use.

Data science process

1: Setting the research goal

2: Retrieving data

3: Data preparation +

+

+

4: Data exploration +

5: Data modeling +

6: Presentation and automation +

–

Internal data

External data

–
Data retrieval

Data ownership

Figure 2.3 Step 2: 
Retrieving data

Data can be stored in many forms, ranging from simple text files to tables in a data-
base. The objective now is acquiring all the data you need. This may be difficult, and 
even if you succeed, data is often like a diamond in the rough: it needs polishing to be 
of any use to you.
store/books/9781617296048
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2.3.1 Start with data stored within the company 

Your first act should be to assess the relevance and quality of the data that’s readily 
available within your company. Most companies have a program for maintaining key 
data, so much of the cleaning work may already be done. This data can be stored in 
official data repositories such as databases, data marts, data warehouses, and data lakes
maintained by a team of IT professionals. The primary goal of a database is data stor-
age, while a data warehouse is designed for reading and analyzing that data. A data mart 
is a subset of the data warehouse and geared toward serving a specific business unit. 
While data warehouses and data marts are home to preprocessed data, data lakes con-
tains data in its natural or raw format. But the possibility exists that your data still 
resides in Excel files on the desktop of a domain expert. 

 Finding data even within your own company can sometimes be a challenge. As 
companies grow, their data becomes scattered around many places. Knowledge of 
the data may be dispersed as people change positions and leave the company. Doc-
umentation and metadata aren’t always the top priority of a delivery manager, so 
it’s possible you’ll need to develop some Sherlock Holmes–like skills to find all the 
lost bits.

 Getting access to data is another difficult task. Organizations understand the value 
and sensitivity of data and often have policies in place so everyone has access to what 
they need and nothing more. These policies translate into physical and digital barriers 
called Chinese walls. These “walls” are mandatory and well-regulated for customer data 
in most countries. This is for good reasons, too; imagine everybody in a credit card 
company having access to your spending habits. Getting access to the data may take 
time and involve company politics. 

2.3.2 Don’t be afraid to shop around

If data isn’t available inside your organization, look outside your organization’s walls. 
Many companies specialize in collecting valuable information. For instance, Nielsen 
and GFK are well known for this in the retail industry. Other companies provide data 
so that you, in turn, can enrich their services and ecosystem. Such is the case with 
Twitter, LinkedIn, and Facebook.

 Although data is considered an asset more valuable than oil by certain companies, 
more and more governments and organizations share their data for free with the 
world. This data can be of excellent quality; it depends on the institution that creates 
and manages it. The information they share covers a broad range of topics such as the 
number of accidents or amount of drug abuse in a certain region and its demograph-
ics. This data is helpful when you want to enrich proprietary data but also convenient 
when training your data science skills at home. Table 2.1 shows only a small selection 
from the growing number of open-data providers.
k.store/books/9781617296048
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2.3.3 Do data quality checks now to prevent problems later

Expect to spend a good portion of your project time doing data correction and cleans-
ing, sometimes up to 80%. The retrieval of data is the first time you’ll inspect the data 
in the data science process. Most of the errors you’ll encounter during the data-
gathering phase are easy to spot, but being too careless will make you spend many 
hours solving data issues that could have been prevented during data import.

 You’ll investigate the data during the import, data preparation, and exploratory 
phases. The difference is in the goal and the depth of the investigation. During data 
retrieval, you check to see if the data is equal to the data in the source document and 
look to see if you have the right data types. This shouldn’t take too long; when you 
have enough evidence that the data is similar to the data you find in the source docu-
ment, you stop. With data preparation, you do a more elaborate check. If you did a 
good job during the previous phase, the errors you find now are also present in the 
source document. The focus is on the content of the variables: you want to get rid of 
typos and other data entry errors and bring the data to a common standard among 
the data sets. For example, you might correct USQ to USA and United Kingdom to UK. 
During the exploratory phase your focus shifts to what you can learn from the data. Now 
you assume the data to be clean and look at the statistical properties such as distribu-
tions, correlations, and outliers. You’ll often iterate over these phases. For instance, 
when you discover outliers in the exploratory phase, they can point to a data entry 
error. Now that you understand how the quality of the data is improved during the 
process, we’ll look deeper into the data preparation step.

2.4 Step 3: Cleansing, integrating, and transforming data
The data received from the data retrieval phase is likely to be “a diamond in the 
rough.” Your task now is to sanitize and prepare it for use in the modeling and report-
ing phase. Doing so is tremendously important because your models will perform bet-
ter and you’ll lose less time trying to fix strange output. It can’t be mentioned nearly 
enough times: garbage in equals garbage out. Your model needs the data in a specific 

Table 2.1 A list of open-data providers that should get you started

Open data site Description

Data.gov The home of the US Government’s open data

https://open-data.europa.eu/ The home of the European Commission’s open data

Freebase.org An open database that retrieves its information from sites like 
Wikipedia, MusicBrains, and the SEC archive

Data.worldbank.org Open data initiative from the World Bank

Aiddata.org Open data for international development

Open.fda.gov Open data from the US Food and Drug Administration
store/books/9781617296048
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format, so data transformation will always come into play. It’s a good habit to correct 
data errors as early on in the process as possible. However, this isn’t always possible in 
a realistic setting, so you’ll need to take corrective actions in your program.

 Figure 2.4 shows the most common actions to take during the data cleansing, inte-
gration, and transformation phase.

 This mind map may look a bit abstract for now, but we’ll handle all of these 
points in more detail in the next sections. You’ll see a great commonality among all 
of these actions. 

2.4.1 Cleansing data

Data cleansing is a subprocess of the data science process that focuses on removing 
errors in your data so your data becomes a true and consistent representation of the 
processes it originates from.

 By “true and consistent representation” we imply that at least two types of errors 
exist. The first type is the interpretation error, such as when you take the value in your 

Data science process

3: Data preparation –

Data cleansing –

Physically impossible values

Errors against codebook

Missing values

Errors from data entry

Outliers

Spaces, typos, …

Data transformation

Combining data

–

Extrapolating data

Derived measures

Aggregating data

Creating dummies

– Set operators

Merging/joining data sets

Creating views

Reducing number of variables

1: Setting the research goal +

2: Retrieving data +

4: Data exploration +

5: Data modeling +

6: Presentation and automation +

Figure 2.4 Step 3: Data preparation
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data for granted, like saying that a person’s age is greater than 300 years. The second 
type of error points to inconsistencies between data sources or against your company’s 
standardized values. An example of this class of errors is putting “Female” in one table 
and “F” in another when they represent the same thing: that the person is female. 
Another example is that you use Pounds in one table and Dollars in another. Too 
many possible errors exist for this list to be exhaustive, but table 2.2 shows an overview 
of the types of errors that can be detected with easy checks—the “low hanging fruit,” 
as it were.

Sometimes you’ll use more advanced methods, such as simple modeling, to find and 
identify data errors; diagnostic plots can be especially insightful. For example, in fig-
ure 2.5 we use a measure to identify data points that seem out of place. We do a 
regression to get acquainted with the data and detect the influence of individual 
observations on the regression line. When a single observation has too much influ-
ence, this can point to an error in the data, but it can also be a valid point. At the data 
cleansing stage, these advanced methods are, however, rarely applied and often 
regarded by certain data scientists as overkill.

 Now that we’ve given the overview, it’s time to explain these errors in more detail.

Table 2.2 An overview of common errors

General solution 

Try to fix the problem early in the data acquisition chain or else fix it in the program.

Error description Possible solution

Errors pointing to false values within one data set

Mistakes during data entry Manual overrules

Redundant white space Use string functions

Impossible values Manual overrules

Missing values Remove observation or value

Outliers Validate and, if erroneous, treat as missing value 
(remove or insert)

Errors pointing to inconsistencies between data sets

Deviations from a code book Match on keys or else use manual overrules

Different units of measurement Recalculate

Different levels of aggregation Bring to same level of measurement by aggregation 
or extrapolation
store/books/9781617296048
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Figure 2.5 The encircled point influences the model heavily and is worth investigating because it 
can point to a region where you don’t have enough data or might indicate an error in the data, but it 
also can be a valid data point.

DATA ENTRY ERRORS

Data collection and data entry are error-prone processes. They often require human 
intervention, and because humans are only human, they make typos or lose their con-
centration for a second and introduce an error into the chain. But data collected by 
machines or computers isn’t free from errors either. Errors can arise from human 
sloppiness, whereas others are due to machine or hardware failure. Examples of 
errors originating from machines are transmission errors or bugs in the extract, trans-
form, and load phase (ETL). 

 For small data sets you can check every value by hand. Detecting data errors when 
the variables you study don’t have many classes can be done by tabulating the data 
with counts. When you have a variable that can take only two values: “Good” and 
“Bad”, you can create a frequency table and see if those are truly the only two values 
present. In table 2.3, the values “Godo” and “Bade” point out something went wrong 
in at least 16 cases.

Table 2.3 Detecting outliers on simple variables with 
a frequency table

Value Count

Good 1598647

Bad 1354468

Godo 15

Bade 1
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Most errors of this type are easy to fix with simple assignment statements and if-then-
else rules:

if x == “Godo”:
    x = “Good”
if x == “Bade”:
    x = “Bad”

REDUNDANT WHITESPACE

Whitespaces tend to be hard to detect but cause errors like other redundant charac-
ters would. Who hasn’t lost a few days in a project because of a bug that was caused by 
whitespaces at the end of a string? You ask the program to join two keys and notice 
that observations are missing from the output file. After looking for days through 
the code, you finally find the bug. Then comes the hardest part: explaining the 
delay to the project stakeholders. The cleaning during the ETL phase wasn’t well 
executed, and keys in one table contained a whitespace at the end of a string. This 
caused a mismatch of keys such as “FR ” – “FR”, dropping the observations that 
couldn’t be matched.

 If you know to watch out for them, fixing redundant whitespaces is luckily easy 
enough in most programming languages. They all provide string functions that will 
remove the leading and trailing whitespaces. For instance, in Python you can use the 
strip() function to remove leading and trailing spaces.

FIXING CAPITAL LETTER MISMATCHES Capital letter mismatches are common. 
Most programming languages make a distinction between “Brazil” and “bra-
zil”. In this case you can solve the problem by applying a function that returns 
both strings in lowercase, such as .lower() in Python. “Brazil”.lower() ==
“brazil”.lower() should result in true.

IMPOSSIBLE VALUES AND SANITY CHECKS

Sanity checks are another valuable type of data check. Here you check the value 
against physically or theoretically impossible values such as people taller than 3 
meters or someone with an age of 299 years. Sanity checks can be directly expressed 
with rules:

check = 0 <= age <= 120

OUTLIERS

An outlier is an observation that seems to be distant from other observations or, more 
specifically, one observation that follows a different logic or generative process than 
the other observations. The easiest way to find outliers is to use a plot or a table with 
the minimum and maximum values. An example is shown in figure 2.6.

 The plot on the top shows no outliers, whereas the plot on the bottom shows possi-
ble outliers on the upper side when a normal distribution is expected. The normal dis-
tribution, or Gaussian distribution, is the most common distribution in natural sciences. 
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Figure 2.6 Distribution plots are helpful in detecting outliers and helping you understand the variable.

It shows most cases occurring around the average of the distribution and the occur-
rences decrease when further away from it. The high values in the bottom graph can 
point to outliers when assuming a normal distribution. As we saw earlier with the 
regression example, outliers can gravely influence your data modeling, so investigate 
them first. 

DEALING WITH MISSING VALUES

Missing values aren’t necessarily wrong, but you still need to handle them separately; 
certain modeling techniques can’t handle missing values. They might be an indicator 
that something went wrong in your data collection or that an error happened in the 
ETL process. Common techniques data scientists use are listed in table 2.4.
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Which technique to use at what time is dependent on your particular case. If, for 
instance, you don’t have observations to spare, omitting an observation is probably 
not an option. If the variable can be described by a stable distribution, you could 
impute based on this. However, maybe a missing value actually means “zero”? This can 
be the case in sales for instance: if no promotion is applied on a customer basket, that 
customer’s promo is missing, but most likely it’s also 0, no price cut. 

DEVIATIONS FROM A CODE BOOK

Detecting errors in larger data sets against a code book or against standardized values 
can be done with the help of set operations. A code book is a description of your data, a 
form of metadata. It contains things such as the number of variables per observation, 
the number of observations, and what each encoding within a variable means.  (For 
instance “0” equals “negative”, “5” stands for “very positive”.) A code book also tells 
the type of data you’re looking at: is it hierarchical, graph, something else? 

 You look at those values that are present in set A but not in set B. These are values 
that should be corrected. It’s no coincidence that sets are the data structure that we’ll 
use when we’re working in code. It’s a good habit to give your data structures addi-
tional thought; it can save work and improve the performance of your program.

 If you have multiple values to check, it’s better to put them from the code book 
into a table and use a difference operator to check the discrepancy between both 
tables. This way, you can profit from the power of a database directly. More on this in 
chapter 5.

Table 2.4 An overview of techniques to handle missing data

Technique Advantage Disadvantage

Omit the values Easy to perform You lose the information from an 
observation

Set value to null Easy to perform Not every modeling technique 
and/or implementation can han-
dle null values

Impute a static value such as 0 
or the mean

Easy to perform

You don’t lose information 
from the other variables in 
the observation

Can lead to false estimations 
from a model

Impute a value from an esti-
mated or theoretical distribution

Does not disturb the model 
as much

Harder to execute

You make data assumptions

Modeling the value (nondepen-
dent)

Does not disturb the model 
too much

Can lead to too much confidence 
in the model

Can artificially raise depen-
dence among the variables

Harder to execute

You make data assumptions
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DIFFERENT UNITS OF MEASUREMENT

When integrating two data sets, you have to pay attention to their respective units of 
measurement. An example of this would be when you study the prices of gasoline in 
the world. To do this you gather data from different data providers. Data sets can con-
tain prices per gallon and others can contain prices per liter. A simple conversion will 
do the trick in this case.

DIFFERENT LEVELS OF AGGREGATION

Having different levels of aggregation is similar to having different types of measure-
ment. An example of this would be a data set containing data per week versus one 
containing data per work week. This type of error is generally easy to detect, and sum-
marizing (or the inverse, expanding) the data sets will fix it.

 After cleaning the data errors, you combine information from different data 
sources. But before we tackle this topic we’ll take a little detour and stress the impor-
tance of cleaning data as early as possible.

2.4.2 Correct errors as early as possible

A good practice is to mediate data errors as early as possible in the data collection 
chain and to fix as little as possible inside your program while fixing the origin of the 
problem. Retrieving data is a difficult task, and organizations spend millions of dollars 
on it in the hope of making better decisions. The data collection process is error-
prone, and in a big organization it involves many steps and teams.

 Data should be cleansed when acquired for many reasons:

 Not everyone spots the data anomalies. Decision-makers may make costly mis-
takes on information based on incorrect data from applications that fail to cor-
rect for the faulty data.

 If errors are not corrected early on in the process, the cleansing will have to be 
done for every project that uses that data.

 Data errors may point to a business process that isn’t working as designed. For 
instance, both authors worked at a retailer in the past, and they designed a cou-
poning system to attract more people and make a higher profit. During a data 
science project, we discovered clients who abused the couponing system and 
earned money while purchasing groceries. The goal of the couponing system 
was to stimulate cross-selling, not to give products away for free. This flaw cost 
the company money and nobody in the company was aware of it. In this case 
the data wasn’t technically wrong but came with unexpected results.

 Data errors may point to defective equipment, such as broken transmission 
lines and defective sensors.

 Data errors can point to bugs in software or in the integration of software that 
may be critical to the company. While doing a small project at a bank we discov-
ered that two software applications used different local settings. This caused 
problems with numbers greater than 1,000. For one app the number 1.000 
meant one, and for the other it meant one thousand. 
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Fixing the data as soon as it’s captured is nice in a perfect world. Sadly, a data scientist 
doesn’t always have a say in the data collection and simply telling the IT department to 
fix certain things may not make it so. If you can’t correct the data at the source, you’ll 
need to handle it inside your code. Data manipulation doesn’t end with correcting 
mistakes; you still need to combine your incoming data. 

 As a final remark: always keep a copy of your original data (if possible). Sometimes 
you start cleaning data but you’ll make mistakes: impute variables in the wrong way, 
delete outliers that had interesting additional information, or alter data as the result 
of an initial misinterpretation. If you keep a copy you get to try again. For “flowing 
data” that’s manipulated at the time of arrival, this isn’t always possible and you’ll have 
accepted a period of tweaking before you get to use the data you are capturing. One 
of the more difficult things isn’t the data cleansing of individual data sets however, it’s 
combining different sources into a whole that makes more sense. 

2.4.3 Combining data from different data sources

Your data comes from several different places, and in this substep we focus on inte-
grating these different sources. Data varies in size, type, and structure, ranging from 
databases and Excel files to text documents. 

 We focus on data in table structures in this chapter for the sake of brevity. It’s easy 
to fill entire books on this topic alone, and we choose to focus on the data science pro-
cess instead of presenting scenarios for every type of data. But keep in mind that other 
types of data sources exist, such as key-value stores, document stores, and so on, which 
we’ll handle in more appropriate places in the book.

THE DIFFERENT WAYS OF COMBINING DATA

You can perform two operations to combine information from different data sets. The 
first operation is joining: enriching an observation from one table with information 
from another table. The second operation is appending or stacking: adding the observa-
tions of one table to those of another table.

 When you combine data, you have the option to create a new physical table or a 
virtual table by creating a view. The advantage of a view is that it doesn’t consume 
more disk space. Let’s elaborate a bit on these methods.

JOINING TABLES

Joining tables allows you to combine the information of one observation found in one 
table with the information that you find in another table. The focus is on enriching a 
single observation. Let’s say that the first table contains information about the pur-
chases of a customer and the other table contains information about the region where 
your customer lives. Joining the tables allows you to combine the information so that 
you can use it for your model, as shown in figure 2.7.

 To join tables, you use variables that represent the same object in both tables, such 
as a date, a country name, or a Social Security number. These common fields are 
known as keys. When these keys also uniquely define the records in the table they 
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Figure 2.7 Joining two tables 
on the Item and Region keys

are called primary keys. One table may have buying behavior and the other table may 
have demographic information on a person. In figure 2.7 both tables contain the cli-
ent name, and this makes it easy to enrich the client expenditures with the region of 
the client. People who are acquainted with Excel will notice the similarity with using a 
lookup function. 

 The number of resulting rows in the output table depends on the exact join type 
that you use. We introduce the different types of joins later in the book.

APPENDING TABLES

Appending or stacking tables is effectively adding observations from one table to 
another table. Figure 2.8 shows an example of appending tables. One table contains 
the observations from the month January and the second table contains observations 
from the month February. The result of appending these tables is a larger one with 
the observations from January as well as February. The equivalent operation in set the-
ory would be the union, and this is also the command in SQL, the common language 
of relational databases. Other set operators are also used in data science, such as set 
difference and intersection.
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Figure 2.8 Appending data 
from tables is a common 
operation but requires an 
equal structure in the tables 
being appended.
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USING VIEWS TO SIMULATE DATA JOINS AND APPENDS

To avoid duplication of data, you virtually combine data with views. In the previous 
example we took the monthly data and combined it in a new physical table. The prob-
lem is that we duplicated the data and therefore needed more storage space. In the 
example we’re working with, that may not cause problems, but imagine that every 
table consists of terabytes of data; then it becomes problematic to duplicate the data. 
For this reason, the concept of a view was invented. A view behaves as if you’re working 
on a table, but this table is nothing but a virtual layer that combines the tables for you. 
Figure 2.9 shows how the sales data from the different months is combined virtually 
into a yearly sales table instead of duplicating the data. Views do come with a draw-
back, however. While a table join is only performed once, the join that creates the view 
is recreated every time it’s queried, using more processing power than a pre-calculated
table would have.
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View: virtual table
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1-Jan

1-Jan

31-Jan

…

n

obs

1

2
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…
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n
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December sales
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31-Dec

…

n

obs

1

2

Date

Yearly sales

1-Jan

1-Jan

31-Dec

…

n

Figure 2.9 A view helps you combine data without replication.

ENRICHING AGGREGATED MEASURES

Data enrichment can also be done by adding calculated information to the table, such 
as the total number of sales or what percentage of total stock has been sold in a cer-
tain region (figure 2.10).

 Extra measures such as these can add perspective. Looking at figure 2.10, we now 
have an aggregated data set, which in turn can be used to calculate the participation 
of each product within its category. This could be useful during data exploration 
but more so when creating data models. As always this depends on the exact case, but 
from our experience models with “relative measures” such as % sales (quantity of 
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Figure 2.10 Growth, sales by product class, and rank sales are examples of derived and 
aggregate measures.

product sold/total quantity sold) tend to outperform models that use the raw num-
bers (quantity sold) as input. 

2.4.4 Transforming data

Certain models require their data to be in a certain shape. Now that you’ve cleansed 
and integrated the data, this is the next task you’ll perform: transforming your data so 
it takes a suitable form for data modeling. 

TRANSFORMING DATA

Relationships between an input variable and an output variable aren’t always linear. 
Take, for instance, a relationship of the form y = ae bx. Taking the log of the indepen-
dent variables simplifies the estimation problem dramatically. Figure 2.11
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Figure 2.11 Transforming x to log x makes the relationship between x and y linear (right), compared 
with the non-log x (left).

 shows how 
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transforming the input variables greatly simplifies the estimation problem. Other 
times you might want to combine two variables into a new variable.

REDUCING THE NUMBER OF VARIABLES

Sometimes you have too many variables and need to reduce the number because they 
don’t add new information to the model. Having too many variables in your model 
makes the model difficult to handle, and certain techniques don’t perform well when 
you overload them with too many input variables. For instance, all the techniques 
based on a Euclidean distance perform well only up to 10 variables. 

Data scientists use special methods to reduce the number of variables but retain the 
maximum amount of data. We’ll discuss several of these methods in chapter 3. Fig-
ure 2.12
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Figure 2.12 Variable 
reduction allows you to 
reduce the number of 
variables while 
maintaining as much 
information as possible.

 shows how reducing the number of variables makes it easier to understand the 

Euclidean distance
Euclidean distance or “ordinary” distance is an extension to one of the first things 
anyone learns in mathematics about triangles (trigonometry): Pythagoras’s leg theo-
rem. If you know the length of the two sides next to the 90° angle of a right-angled 
triangle you can easily derive the length of the remaining side (hypotenuse). The for-
mula for this is hypotenuse = . The Euclidean distance between 
two points in a two-dimensional plane is calculated using a similar formula: distance 

= . If you want to expand this distance calculation to more 
dimensions, add the coordinates of the point within those higher dimensions to the for-
mula. For three dimensions we get distance = .

side1 + side2 2

x1 x2– 2 y1 y2– 2+ 

x1 x2– 2 y1 y2– 2 z1 z2– 2+ +
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key values. It also shows how two variables account for 50.6% of the variation within 
the data set (component1 = 27.8% + component2 = 22.8%). These variables, called 
“component1” and “component2,” are both combinations of the original variables. 
They’re the principal components of the underlying data structure. If it isn’t all that clear 
at this point, don’t worry, principal components analysis (PCA) will be explained more 
thoroughly in chapter 3. What you can also see is the presence of a third (unknown) 
variable that splits the group of observations into two.

TURNING VARIABLES INTO DUMMIES

Variables can be turned into dummy variables (figure 2.13). Dummy variables can 
only take two values: true(1) or false(0). They’re used to indicate the absence of a 
categorical effect that may explain the observation. In this case you’ll make separate 
columns for the classes stored in one variable and indicate it with 1 if the class is 
present and 0 otherwise. An example is turning one column named Weekdays into 
the columns Monday through Sunday. You use an indicator to show if the observa-
tion was on a Monday; you put 1 on Monday and 0 elsewhere. Turning variables into 
dummies is a technique that’s used in modeling and is popular with, but not exclu-
sive to, economists.
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Figure 2.13 Turning variables into 
dummies is a data transformation that 
breaks a variable that has multiple 
classes into multiple variables, each 
having only two possible values: 0 or 1.

 In this section we introduced the third step in the data science process—cleaning, 
transforming, and integrating data—which changes your raw data into usable input 
for the modeling phase. The next step in the data science process is to get a better 
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understanding of the content of the data and the relationships between the variables 
and observations; we explore this in the next section.

2.5 Step 4: Exploratory data analysis
During exploratory data analysis you take a deep dive into the data (see figure 2.14). 
Information becomes much easier to grasp when shown in a picture, therefore you 
mainly use graphical techniques to gain an understanding of your data and the inter-
actions between variables. This phase is about exploring data, so keeping your mind 
open and your eyes peeled is essential during the exploratory data analysis phase. The 
goal isn’t to cleanse the data, but it’s common that you’ll still discover anomalies you 
missed before, forcing you to take a step back and fix them.

Data science process

1: Setting the research goal +

2: Retrieving data +

3: Data preparation +

5: Data modeling +

6: Presentation and automation +

4: Data exploration –

Simple graphs

Nongraphical techniques

Link and brush

Combined graphs

Figure 2.14 Step 4: 
Data exploration

The visualization techniques you use in this phase range from simple line graphs or 
histograms, as shown in figure 2.15, to more complex diagrams such as Sankey and 
network graphs. Sometimes it’s useful to compose a composite graph from simple 
graphs to get even more insight into the data. Other times the graphs can be ani-
mated or made interactive to make it easier and, let’s admit it, way more fun. An 
example of an interactive Sankey diagram can be found at http://bost.ocks.org/ 
mike/sankey/.

 Mike Bostock has interactive examples of almost any type of graph. It’s worth 
spending time on his website, though most of his examples are more useful for data 
presentation than data exploration.
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Figure 2.15 From top to bottom, a bar chart, a line plot, and a distribution 
are some of the graphs used in exploratory analysis.
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These plots can be combined to provide even more insight, as shown in figure 2.16.
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Figure 2.16 Drawing multiple plots together can help you understand the structure of your data 
over multiple variables.

 Overlaying several plots is common practice. In figure 2.17 we combine simple 
graphs into a Pareto diagram, or 80-20 diagram.

 Figure 2.18 shows another technique: brushing and linking. With brushing and link-
ing you combine and link different graphs and tables (or views) so changes in one 
graph are automatically transferred to the other graphs. An elaborate example of this 
can be found in chapter 9. This interactive exploration of data facilitates the discovery 
of new insights.

 Figure 2.18 shows the average score per country for questions. Not only does this 
indicate a high correlation between the answers, but it’s easy to see that when you 
select several points on a subplot, the points will correspond to similar points on the 
other graphs. In this case the selected points on the left graph correspond to points 
on the middle and right graphs, although they correspond better in the middle and 
right graphs.
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Two other important graphs are the histogram shown in figure 2.19 and the boxplot
shown in figure 2.20.

 In a histogram a variable is cut into discrete categories and the number of occur-
rences in each category are summed up and shown in the graph. The boxplot, on the 
other hand, doesn’t show how many observations are present but does offer an 
impression of the distribution within categories. It can show the maximum, minimum, 
median, and other characterizing measures at the same time.
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Figure 2.17 A Pareto diagram is a combination of the values and a cumulative distribution. It’s easy 
to see from this diagram that the first 50% of the countries contain slightly less than 80% of the total 
amount. If this graph represented customer buying power and we sell expensive products, we probably 
don’t need to spend our marketing budget in every country; we could start with the first 50%.
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Figure 2.18 Link and brush allows you to select observations in one plot and highlight the same 
observations in the other plots.
k.store/books/9781617296048

https://itbook.store/books/9781617296048


27Step 4: Exploratory data analysis

www.itbook.
Frequency

Age

60

10

8

6

4

2

0
65 70 75 80 85 90

Figure 2.19 Example histogram: 
the number of people in the age-
groups of 5-year intervals
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Figure 2.20 Example boxplot: each user category has a distribution of the 
appreciation each has for a certain picture on a photography website.

The techniques we described in this phase are mainly visual, but in practice they’re 
certainly not limited to visualization techniques. Tabulation, clustering, and other 
modeling techniques can also be a part of exploratory analysis. Even building simple 
models can be a part of this step. 

 Now that you’ve finished the data exploration phase and you’ve gained a good 
grasp of your data, it’s time to move on to the next phase: building models.
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2.6 Step 5: Build the models
With clean data in place and a good understanding of the content, you’re ready to 
build models with the goal of making better predictions, classifying objects, or gain-
ing an understanding of the system that you’re modeling. This phase is much more 
focused than the exploratory analysis step, because you know what you’re looking 
for and what you want the outcome to be. Figure 2.21 shows the components of 
model building.

Data science process

1: Setting the research goal +

2: Retrieving data +

3: Data preparation +

4: Data exploration +

6: Presentation and automation +

5: Data modeling – Model execution

Model and variable selection

Model diagnostic and model comparison

Figure 2.21 Step 5: 
Data modeling

The techniques you’ll use now are borrowed from the field of machine learning, data 
mining, and/or statistics. In this chapter we only explore the tip of the iceberg of 
existing techniques, while chapter 3 introduces them properly. It’s beyond the scope 
of this book to give you more than a conceptual introduction, but it’s enough to get 
you started; 20% of the techniques will help you in 80% of the cases because tech-
niques overlap in what they try to accomplish. They often achieve their goals in similar 
but slightly different ways. 

 Building a model is an iterative process. The way you build your model depends on 
whether you go with classic statistics or the somewhat more recent machine learning 
school, and the type of technique you want to use. Either way, most models consist of 
the following main steps:

1 Selection of a modeling technique and variables to enter in the model
2 Execution of the model
3 Diagnosis and model comparison

2.6.1 Model and variable selection

You’ll need to select the variables you want to include in your model and a modeling 
technique. Your findings from the exploratory analysis should already give a fair idea 
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of what variables will help you construct a good model. Many modeling techniques 
are available, and choosing the right model for a problem requires judgment on your 
part. You’ll need to consider model performance and whether your project meets all 
the requirements to use your model, as well as other factors: 

 Must the model be moved to a production environment and, if so, would it be 
easy to implement? 

 How difficult is the maintenance on the model: how long will it remain relevant 
if left untouched?  

 Does the model need to be easy to explain?  

When the thinking is done, it’s time for action. 

2.6.2 Model execution

Once you’ve chosen a model you’ll need to implement it in code.

REMARK This is the first time we’ll go into actual Python code execution so 
make sure you have a virtual env up and running. Knowing how to set this up 
is required knowledge, but if it’s your first time, check out appendix D. 

All code from this chapter can be downloaded from https://www.manning 
.com/books/introducing-data-science. This chapter comes with an ipython 
(.ipynb) notebook and Python (.py) file.

Luckily, most programming languages, such as Python, already have libraries such as 
StatsModels or Scikit-learn. These packages use several of the most popular tech-
niques. Coding a model is a nontrivial task in most cases, so having these libraries 
available can speed up the process. As you can see in the following code, it’s fairly easy 
to use linear regression (figure 2.22) with StatsModels or Scikit-learn. Doing this your-
self would require much more effort even for the simple techniques. The following 
listing shows the execution of a linear prediction model.

import statsmodels.api as sm   
import numpy as np             
predictors = np.random.random(1000).reshape(500,2)                       
target = predictors.dot(np.array([0.4, 0.6])) + np.random.random(500)    
lmRegModel = sm.OLS(target,predictors)  
result = lmRegModel.fit()               
result.summary() 

Shows model 
fit statistics.

Listing 2.1 Executing a linear prediction model on semi-random data

Imports required 
Python modules.

Creates random data for 
predictors (x-values) and 

semi-random data for 
the target (y-values) of the 

model. We use predictors as 
input to create the target so 
we infer a correlation here.

Fits linear 
regression 
on data.
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Okay, we cheated here, quite heavily so. We created predictor values that are meant to pre-
dict how the target variables behave. For a linear regression, a “linear relation” between 
each x (predictor) and the y (target) variable is assumed, as shown in figure 2.22.

Y (target variable)

X (predictor variable)

Figure 2.22 Linear 
regression tries to fit a 
line while minimizing the 
distance to each point

 We, however, created the target variable, based on the predictor by adding a bit of 
randomness. It shouldn’t come as a surprise that this gives us a well-fitting model. The 
results.summary() outputs the table in figure 2.23. Mind you, the exact outcome 
depends on the random variables you got.

Model fit: higher is
better but too high is
suspicious.

p-value to show whether
a predictor variable has
a significant influence on
the target. Lower is better
and <0.05 is often
considered “significant.”

Linear equation coefficients.
y = 0.7658xl + 1.1252x2.

Figure 2.23 Linear regression 
model information output
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Let’s ignore most of the output we got here and focus on the most important parts: 

 Model fit —For this the R-squared or adjusted R-squared is used. This measure 
is an indication of the amount of variation in the data that gets captured by 
the model. The difference between the adjusted R-squared and the R-squared 
is minimal here because the adjusted one is the normal one + a penalty for 
model complexity. A model gets complex when many variables (or features) are 
introduced. You don’t need a complex model if a simple model is available, so 
the adjusted R-squared punishes you for overcomplicating. At any rate, 0.893 is 
high, and it should be because we cheated. Rules of thumb exist, but for models 
in businesses, models above 0.85 are often considered good. If you want to win 
a competition you need in the high 90s. For research however, often very low 
model fits (<0.2 even) are found. What’s more important there is the influence 
of the introduced predictor variables.

 Predictor variables have a coefficient —For a linear model this is easy to interpret. In 
our example if you add “1” to x1, it will change y by “0.7658”. It’s easy to see how 
finding a good predictor can be your route to a Nobel Prize even though your 
model as a whole is rubbish. If, for instance, you determine that a certain gene 
is significant as a cause for cancer, this is important knowledge, even if that 
gene in itself doesn’t determine whether a person will get cancer. The example 
here is classification, not regression, but the point remains the same: detecting 
influences is more important in scientific studies than perfectly fitting models 
(not to mention more realistic). But when do we know a gene has that impact? 
This is called significance. 

 Predictor significance —Coefficients are great, but sometimes not enough evi-
dence exists to show that the influence is there. This is what the p-value is 
about. A long explanation about type 1 and type 2 mistakes is possible here 
but the short explanations would be: if the p-value is lower than 0.05, the vari-
able is considered significant for most people. In truth, this is an arbitrary 
number. It means there’s a 5% chance the predictor doesn’t have any influ-
ence. Do you accept this 5% chance to be wrong? That’s up to you. Several 
people introduced the extremely significant (p<0.01) and marginally signifi-
cant thresholds (p<0.1). 

Linear regression works if you want to predict a value, but what if you want to classify 
something? Then you go to classification models, the best known among them being 
k-nearest neighbors. 

 As shown in figure 2.24, k-nearest neighbors looks at labeled points nearby an 
unlabeled point and, based on this, makes a prediction of what the label should be.
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Let’s try it in Python code using the Scikit learn library, as in this next listing. 

from sklearn import neighbors 
predictors = np.random.random(1000).reshape(500,2)         
target = np.around(predictors.dot(np.array([0.4, 0.6])) +  
         np.random.random(500))                            
clf = neighbors.KNeighborsClassifier(n_neighbors=10)  
knn = clf.fit(predictors,target)                      
knn.score(predictors, target) 

Gets model fit score: what 
percent of the classification 
was correct?

As before, we construct random correlated data and surprise, surprise we get 85% of 
cases correctly classified. If we want to look in depth, we need to score the model. 
Don’t let knn.score() fool you; it returns the model accuracy, but by “scoring a 
model” we often mean applying it on data to make a prediction. 

prediction = knn.predict(predictors)

Now we can use the prediction and compare it to the real thing using a confusion 
matrix.

metrics.confusion_matrix(target,prediction)

We get a 3-by-3 matrix as shown in figure 2.25.
 
 

Listing 2.2 Executing k-nearest neighbor classification on semi-random data

(a) 1-nearest neighbor

x

+
+ +

+ +

+
–

–
–
–

–
–
–

–

–

(b) 2-nearest neighbor (c) 3-nearest neighbor

x

+
+ +

+ +

+
–

–
–
–

–
–
–

–

–
x

+
+ +

+ +

+
–

–
–
–

–
–
–

–

–

Figure 2.24 K-nearest neighbor techniques look at the k-nearest point to make a prediction.

Imports modules.
Creates random predic
data and semi-random
target data based on 
predictor data.

Fits 10-nearest 
neighbors model.
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Actual value

Predicted value

Number of correctly
predicted cases

Figure 2.25 Confusion matrix: it shows how many cases were correctly classified and incorrectly 
classified by comparing the prediction with the real values. Remark: the classes (0,1,2) were 
added in the figure for clarification.

The confusion matrix shows we have correctly predicted 17+405+5 cases, so that’s 
good. But is it really a surprise? No, for the following reasons:

 For one, the classifier had but three options; marking the difference with last 
time np.around() will round the data to its nearest integer. In this case that’s 
either 0, 1, or 2. With only 3 options, you can’t do much worse than 33% cor-
rect on 500 guesses, even for a real random distribution like flipping a coin. 

 Second, we cheated again, correlating the response variable with the predic-
tors. Because of the way we did this, we get most observations being a “1”. By 
guessing “1” for every case we’d already have a similar result.

 We compared the prediction with the real values, true, but we never predicted 
based on fresh data. The prediction was done using the same data as the data 
used to build the model. This is all fine and dandy to make yourself feel good, 
but it gives you no indication of whether your model will work when it encoun-
ters truly new data. For this we need a holdout sample, as will be discussed in 
the next section.

Don’t be fooled. Typing this code won’t work miracles by itself. It might take a while to 
get the modeling part and all its parameters right. 

 To be honest, only a handful of techniques have industry-ready implementa-
tions in Python. But it’s fairly easy to use models that are available in R within Python
with the help of the RPy library. RPy provides an interface from Python to R. R is a 
free software environment, widely used for statistical computing. If you haven’t 
already, it’s worth at least a look, because in 2014 it was still one of the most popular 
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(if not the most popular) programming languages for data science. For more infor-
mation, see http://www.kdnuggets.com/polls/2014/languages-analytics-data-mining-
data-science.html.

2.6.3 Model diagnostics and model comparison

You’ll be building multiple models from which you then choose the best one based on 
multiple criteria. Working with a holdout sample helps you pick the best-performing 
model. A holdout sample is a part of the data you leave out of the model building so it 
can be used to evaluate the model afterward. The principle here is simple: the model 
should work on unseen data. You use only a fraction of your data to estimate the 
model and the other part, the holdout sample, is kept out of the equation. The model 
is then unleashed on the unseen data and error measures are calculated to evaluate it. 
Multiple error measures are available, and in figure 2.26 we show the general idea on 
comparing models. The error measure used in the example is the mean square error.

MSE 1
n
--- Ŷi Yi–( )2

i 1=

n

∑= Figure 2.26 Formula for 
mean square error

Mean square error is a simple measure: check for every prediction how far it was from 
the truth, square this error, and add up the error of every prediction.
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…
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1

0
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0

1102255861Total
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Figure 2.27 A holdout sample helps you compare models and ensures that you can 
generalize results to data that the model has not yet seen.

 Figure 2.27 compares the performance of two models to predict the order size 
from the price. The first model is size = 3 * price and the second model is size = 10. To 
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estimate the models, we use 800 randomly chosen observations out of 1,000 (or 80%), 
without showing the other 20% of data to the model. Once the model is trained, we 
predict the values for the other 20% of the variables based on those for which we 
already know the true value, and calculate the model error with an error measure. 
Then we choose the model with the lowest error. In this example we chose model 1 
because it has the lowest total error.

 Many models make strong assumptions, such as independence of the inputs, and 
you have to verify that these assumptions are indeed met. This is called model diagnostics.

 This section gave a short introduction to the steps required to build a valid model. 
Once you have a working model you’re ready to go to the last step.

2.7 Step 6: Presenting findings and building applications 
on top of them
After you’ve successfully analyzed the data and built a well-performing model, you’re 
ready to present your findings to the world (figure 2.28). This is an exciting part; all 
your hours of hard work have paid off and you can explain what you found to the 
stakeholders. 

Data science process

1: Setting the research goal +

2: Retrieving data +

3: Data preparation +

4: Data exploration +

5: Data modeling +

6: Presentation and automation –

Presenting data

Automating data analysis

Figure 2.28 Step 6: 
Presentation and 
automation

Sometimes people get so excited about your work that you’ll need to repeat it over 
and over again because they value the predictions of your models or the insights that 
you produced. For this reason, you need to automate your models. This doesn’t always 
mean that you have to redo all of your analysis all the time. Sometimes it’s sufficient 
that you implement only the model scoring; other times you might build an applica-
tion that automatically updates reports, Excel spreadsheets, or PowerPoint presenta-
tions. The last stage of the data science process is where your soft skills will be most 
useful, and yes, they’re extremely important. In fact, we recommend you find dedi-
cated books and other information on the subject and work through them, because 
why bother doing all this tough work if nobody listens to what you have to say?
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 If you’ve done this right, you now have a working model and satisfied stakeholders, 
so we can conclude this chapter here.

2.8 Summary
In this chapter you learned the data science process consists of six steps:

 Setting the research goal —Defining the what, the why, and the how of your project 
in a project charter.

 Retrieving data —Finding and getting access to data needed in your project. This 
data is either found within the company or retrieved from a third party.

 Data preparation —Checking and remediating data errors, enriching the data 
with data from other data sources, and transforming it into a suitable format for 
your models.

 Data exploration —Diving deeper into your data using descriptive statistics and 
visual techniques.

 Data modeling —Using machine learning and statistical techniques to achieve 
your project goal.

 Presentation and automation —Presenting your results to the stakeholders and 
industrializing your analysis process for repetitive reuse and integration with 
other tools.
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One of the key ingredients in data science projects is, obviously, data. 
Much of the time that data will be stored in files. Those files might be found in 
different places, and they probably will have different formats and different 
structures. It will be your job to get those files and decide how to extract their 
data and combine in way that is meaningful for your project. You will also almost 
certainly need to massage and clean that data in various ways.

 The following chapter, “Processing data files,” is from my book, The Quick 
Python Book, 3rd edition. While it’s intended to be a book introducing all of the 
Python language, for the 3rd edition I chose to use the last 5 chapters to focus a 
bit more on how to use Python to handle data.

 This chapter introduces several aspects of reading and writing data files, 
from plain text files and delimited files to more structured formats like JSON 
and XML, even to spreadsheet files. It also discusses several common scenarios 
for massaging and cleaning the data extracted from those files, including han-
dling incorrectly encoded files, null bytes, and other common hassles.

Processing data files
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Chapter 21 from The Quick Python Book, 
3rd edition by Naomi Ceder.

Processing data files
Much of the data available is contained in text files. This data can range from 
unstructured text, such as a corpus of tweets or literary texts, to more structured 
data in which each row is a record and the fields are delimited by a special charac-
ter, such as a comma, a tab, or a pipe (|). Text files can be huge; a data set can be 
spread over tens or even hundreds of files, and the data in it can be incomplete or 
horribly dirty. With all the variations, it’s almost inevitable that you’ll need to read 
and use data from text files. This chapter gives you strategies for using Python to do 
exactly that. 

This chapter covers
 Using ETL (extract-transform-load)

 Reading text data files (plain text and CSV)

 Reading spreadsheet files

 Normalizing, cleaning, and sorting data

 Writing data files
38
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21.1 Welcome to ETL
The need to get data out of files, parse it, turn it into a useful format, and then do 
something with it has been around for as long as there have been data files. In fact, 
there is a standard term for the process: extract-transform-load (ETL). The extraction 
refers to the process of reading a data source and parsing it, if necessary. The transfor-
mation can be cleaning and normalizing the data, as well as combining, breaking up, 
or reorganizing the records it contains. The loading refers to storing the transformed 
data in a new place, either a different file or a database. This chapter deals with the 
basics of ETL in Python, starting with text-based data files and storing the transformed 
data in other files. I look at more structured data files in chapter 22 and storage in 
databases in chapter 23. 

21.2 Reading text files
The first part of ETL—the “extract” portion—involves opening a file and reading its 
contents. This process seems like a simple one, but even at this point there can be 
issues, such as the file’s size. If a file is too large to fit into memory and be manipu-
lated, you need to structure your code to handle smaller segments of the file, possibly 
operating one line at a time. 

21.2.1 Text encoding: ASCII, Unicode, and others

Another possible pitfall is in the encoding. This chapter deals with text files, and in 
fact, much of the data exchanged in the real world is in text files. But the exact nature 
of text can vary from application to application, from person to person, and of course 
from country to country. 

 Sometimes, text means something in the ASCII encoding, which has 128 charac-
ters, only 95 of which are printable. The good news about ASCII encoding is that it’s 
the lowest common denominator of most data exchange. The bad news is that it 
doesn’t begin to handle the complexities of the many alphabets and writing systems of 
the world. Reading files using ASCII encoding is almost certain to cause trouble and 
throw errors on character values that it doesn’t understand, whether it’s a German ü, a 
Portuguese ç, or something from almost any language other than English.

 These errors arise because ASCII is based on 7-bit values, whereas the bytes in a 
typical file are 8 bits, allowing 256 possible values as opposed to the 128 of a 7-bit 
value. It’s routine to use those additional values to store additional characters—any-
thing from extra punctuation (such as the printer’s en dash and em dash) to symbols 
(such as the trademark, copyright, and degree symbols) to accented versions of alpha-
betical characters. The problem has always been that if, in reading a text file, you 
encounter a character in the 128 outside the ASCII range, you have no way of know-
ing for sure how it was encoded. Is the character value of 214, say, a division symbol, 
an Ö, or something else? Short of having the code that created the file, you have no 
way to know.
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UNICODE AND UTF-8
One way to mitigate this confusion is Unicode. The Unicode encoding called UTF-8 
accepts the basic ASCII characters without any change but also allows an almost 
unlimited set of other characters and symbols according to the Unicode standard. 
Because of its flexibility, UTF-8 was used in more 85% of web pages served at the time 
I wrote this chapter, which means that your best bet for reading text files is to assume 
UTF-8 encoding. If the files contain only ASCII characters, they’ll still be read cor-
rectly, but you’ll also be covered if other characters are encoded in UTF-8. The good 
news is that the Python 3 string data type was designed to handle Unicode by default. 

 Even with Unicode, there’ll be occasions when your text contains values that can’t 
be successfully encoded. Fortunately, the open function in Python accepts an optional 
errors parameter that tells it how to deal with encoding errors when reading or writ-
ing files. The default option is 'strict', which causes an error to be raised whenever 
an encoding error is encountered. Other useful options are 'ignore', which causes 
the character causing the error to be skipped; 'replace', which causes the character 
to be replaced by a marker character (often, ?); 'backslashreplace', which replaces 
the character with a backslash escape sequence; and 'surrogateescape', which trans-
lates the offending character to a private Unicode code point on reading and back to 
the original sequence of bytes on writing. Your particular use case will determine how 
strict you need to be in handling or resolving encoding issues.

 Look at a short example of a file containing an invalid UTF-8 character, and see 
how the different options handle that character. First, write the file, using bytes and 
binary mode:

>>> open('test.txt', 'wb').write(bytes([65, 66, 67, 255, 192,193])) 

This code results in a file that contains “ABC” followed by three non-ASCII characters, 
which may be rendered differently depending on the encoding used. If you use vim to 
look at the file, you see

ABCÿÀÁ
~

Now that you have the file, try reading it with the default 'strict' errors option:

>>> x = open('test.txt').read()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python3.6/codecs.py", line 321, in decode
    (result, consumed) = self._buffer_decode(data, self.errors, final)
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 3: 

invalid start byte

The fourth byte, which had a value of 255, isn’t a valid UTF-8 character in that posi-
tion, so the 'strict' errors setting raises an exception. Now see how the other error 
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options handle the same file, keeping in mind that the last three characters raise an 
error:

>>> open('test.txt', errors='ignore').read()
'ABC'
>>> open('test.txt', errors='replace').read()
'ABC���'
>>> open('test.txt', errors='surrogateescape').read()
'ABC\udcff\udcc0\udcc1'
>>> open('test.txt', errors='backslashreplace').read()
'ABC\\xff\\xc0\\xc1'
>>>

If you want any problem characters to disappear, 'ignore' is the option to use. The 
'replace' option only marks the place occupied by the invalid character, and the 
other options in different ways attempt to preserve the invalid characters without 
interpretation.

21.2.2 Unstructured text

Unstructured text files are the easiest sort of data to read but the hardest to extract 
information from. Processing unstructured text can vary enormously, depending on 
both the nature of the text and what you want to do with it, so any comprehensive dis-
cussion of text processing is beyond the scope of this book. A short example, however, 
can illustrate some of the basic issues and set the stage for a discussion of structured 
text data files. 

 One of the simplest issues is deciding what forms a basic logical unit in the file. If you 
have a corpus of thousands of tweets, the text of Moby Dick, or a collection of news sto-
ries, you need to be able to break them up into cohesive units. In the case of tweets, each 
may fit onto a single line, and you can read and process each line of the file fairly simply. 

 In the case of Moby Dick or even a news story, the problem can be trickier. You may 
not want to treat all of a novel or news item as a single item in many cases. But if that’s 
the case, you need to decide what sort of unit you do want and then come up with a 
strategy to divide the file accordingly. Perhaps you want to consider the text paragraph 
by paragraph. In that case, you need to identify how paragraphs are separated in your 
file and create your code accordingly.  If a paragraph is the same as a line in the text 
file, the job is easy. Often, however, the line breaks in a text file are shorter, and you 
need to do a bit more work.

 Now look at a couple of examples:

Call me Ishmael.  Some years ago--never mind how long precisely--
having little or no money in my purse, and nothing particular
to interest me on shore, I thought I would sail about a little
and see the watery part of the world.  It is a way I have
of driving off the spleen and regulating the circulation.
Whenever I find myself growing grim about the mouth;
whenever it is a damp, drizzly November in my soul; whenever I
find myself involuntarily pausing before coffin warehouses,
and bringing up the rear of every funeral I meet;
and especially whenever my hypos get such an upper hand of me,
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that it requires a strong moral principle to prevent me from
deliberately stepping into the street, and methodically knocking
people's hats off--then, I account it high time to get to sea
as soon as I can.  This is my substitute for pistol and ball.
With a philosophical flourish Cato throws himself upon his sword;
I quietly take to the ship.  There is nothing surprising in this.
If they but knew it, almost all men in their degree, some time
or other, cherish very nearly the same feelings towards
the ocean with me.

There now is your insular city of the Manhattoes, belted round by wharves
as Indian isles by coral reefs--commerce surrounds it with her surf.
Right and left, the streets take you waterward.  Its extreme downtown
is the battery, where that noble mole is washed by waves, and cooled
by breezes, which a few hours previous were out of sight of land.
Look at the crowds of water-gazers there.

In the sample, which is indeed the beginning of Moby Dick, the lines are broken more 
or less as they might be on the page, and paragraphs are indicated by a single blank 
line. If you want to deal with each paragraph as a unit, you need to break the text on 
the blank lines. Fortunately, this task is easy if you use the string split() method. 
Each newline character in a string can represented by "\n". Naturally, the last line of a 
paragraph’s text ends with a newline, and if the next line is blank, it’s immediately fol-
lowed by a second newline for the blank line:

 

>>> moby_text = open("moby_01.txt").read()         

Reads all of file as 
a single string

>>> moby_paragraphs = moby_text.split("\n\n")     
>>> print(moby_paragraphs[1])
There now is your insular city of the Manhattoes, belted round by wharves
as Indian isles by coral reefs--commerce surrounds it with her surf.
Right and left, the streets take you waterward.  Its extreme downtown
is the battery, where that noble mole is washed by waves, and cooled
by breezes, which a few hours previous were out of sight of land.
Look at the crowds of water-gazers there.

Splitting the text into paragraphs is a very simple first step in handling unstructured 
text. You might also need to do more normalization of the text before processing. 
Suppose that you want to count the rate of occurrence of every word in a text file. If 
you just split the file on whitespace, you get a list of words in the file. Counting their 
occurrences accurately will be hard, however, because This, this, this., and this, are not 
the same. The way to make this code work is to normalize the text by removing the 
punctuation and making everything the same case before processing. For the example 
text above, the code for a normalized list of words might look like this:

 

>>> moby_text = open("moby_01.txt").read()       

Reads all of the file 
as a single string

 
>>> moby_paragraphs = moby_text.split("\n\n")       
>>> moby = moby_paragraphs[1].lower()             

Splits on two 
newlines together

Makes everything 
lowercase
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>>> moby = moby.replace(".", "")                  
>>> moby = moby.replace(",", "")                  
>>> moby_words = moby.split()
>>> print(moby_words)
['there', 'now', 'is', 'your', 'insular', 'city', 'of', 'the', 'manhattoes,', 

'belted', 'round', 'by', 'wharves', 'as', 'indian', 'isles', 'by', 
'coral', 'reefs--commerce', 'surrounds', 'it', 'with', 'her', 'surf', 
'right', 'and', 'left,', 'the', 'streets', 'take', 'you', 'waterward', 
'its', 'extreme', 'downtown', 'is', 'the', 'battery,', 'where', 'that', 
'noble', 'mole', 'is', 'washed', 'by', 'waves,', 'and', 'cooled', 'by', 
'breezes,', 'which', 'a', 'few', 'hours', 'previous', 'were', 'out', 
'of', 'sight', 'of', 'land', 'look', 'at', 'the', 'crowds', 'of', 
'water-gazers', 'there']

QUICK CHECK: NORMALIZATION Look closely at the list of words generated. Do 
you see any issues with the normalization so far? What other issues do you 
think you might encounter in a longer section of text? How do you think you 
might deal with those issues?

21.2.3 Delimited flat files

Although reading unstructured text files is easy, the downside is their very lack of 
structure. It’s often much more useful to have some organization in the file to help 
with picking out individual values. The simplest way is to break the file into lines and 
have one element of information per line. You may have a list of the names of files to 
be processed, a list of people’s names that need to be printed (on name tags, say), or 
maybe a series of temperature readings from a remote monitor. In such cases, the data 
parsing is very simple: You read in the line and convert it to the right type, if necessary. 
Then the file is ready to use.

 Most of the time, however, things aren’t not quite so simple. Usually, you need to 
group multiple related bits of information, and you need your code to read them in 
together. The common way to do this is to put the related pieces of information on 
the same line, separated by a special character. That way, as you read each line of the 
file, you can use the special characters to split the file into its different fields and put 
the values of those fields in variables for later processing.

 This file is a simple example of temperature data in delimited format:

State|Month Day, Year Code|Avg Daily Max Air Temperature (F)|Record Count for 
Daily Max Air Temp (F)

Illinois|1979/01/01|17.48|994
Illinois|1979/01/02|4.64|994
Illinois|1979/01/03|11.05|994
Illinois|1979/01/04|9.51|994
Illinois|1979/05/15|68.42|994
Illinois|1979/05/16|70.29|994
Illinois|1979/05/17|75.34|994
Illinois|1979/05/18|79.13|994
Illinois|1979/05/19|74.94|994

This data is pipe-delimited, meaning that each field in the line is separated by the 
pipe (|) character, in this case giving you four fields: the state of the observations, the 

Removes 
periodsRemoves 

commas
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date of the observations, the average high temperature, and the number of stations 
reporting. Other common delimiters are the tab character and the comma. The 
comma is perhaps the most common, but the delimiter could be any character you 
don’t expect to occur in the values. (More about that issue next.) Comma delimiters 
are so common that this format is often called CSV (comma-separated values), and 
files of this type often have a .csv extension as a hint of their format.  

 Whatever character is being used as the delimiter, if you know what character it is, 
you can write your own code in Python to break each line into its fields and return 
them as a list. In the previous case, you can use the string split() method to break a 
line into a list of values:

>>> line = "Illinois|1979/01/01|17.48|994"
>>> print(line.split("|"))
['Illinois', '1979/01/01', '17.48', '994']

Note that this technique is very easy to do but leaves all the values as strings, which 
might not be convenient for later processing.

TRY THIS: READ A FILE Write the code to read a text file (assume 
temp_data_pipes_00a.txt, as shown in the example), split each line of the file 
into a list of values, and add that list to a single list of records.

What issues or problems did you encounter in implementing this code? How 
might you go about converting the last three fields to the correct date, real, 
and int types?

21.2.4 The csv module

If you need to do much processing of delimited data files, you should become familiar 
with the csv module and its options. When I’ve been asked to name my favorite mod-
ule in the Python standard library, more than once I’ve cited the csv module—not 
because it’s glamorous (it isn’t), but because it has probably saved me more work and 
kept me from more self-inflicted bugs over my career than any other module. 

 The csv module is a perfect case of Python’s “batteries included” philosophy. 
Although it’s perfectly possible, and in many cases not even terribly hard, to roll your 
own code to read delimited files, it’s even easier and much more reliable to use the 
Python module. The csv module has been tested and optimized, and it has features 
that you probably wouldn’t bother to write if you had to do it yourself, but that are 
truly handy and time-saving when available. 

 Look at the previous data, and decide how you’d read it by using the csv module. 
The code to parse the data has to do two things: read each line and strip off the trail-
ing newline character, and then break up the line on the pipe character and append 
that list of values to a list of lines. Your solution to the exercise might look something 
like this:

>>> results = []
>>> for line in open("temp_data_pipes_00a.txt"):
...     fields = line.strip().split("|")
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...     results.append(fields)

... 
>>> results
[['State', 'Month Day, Year Code', 'Avg Daily Max Air Temperature (F)', 

'Record Count for Daily Max Air Temp (F)'], ['Illinois', '1979/01/01', 
'17.48', '994'], ['Illinois', '1979/01/02', '4.64', '994'], ['Illinois', 
'1979/01/03', '11.05', '994'], ['Illinois', '1979/01/04', '9.51', 
'994'], ['Illinois', '1979/05/15', '68.42', '994'], ['Illinois', 
'1979/05/16', '70.29', '994'], ['Illinois', '1979/05/17', '75.34', 
'994'], ['Illinois', '1979/05/18', '79.13', '994'], ['Illinois', 
'1979/05/19', '74.94', '994']]

To do the same thing with the csv module, the code might be something like this:

>>> import csv
>>> results = [fields for fields in 

csv.reader(open("temp_data_pipes_00a.txt", newline=''), delimiter="|")]
>>> results
[['State', 'Month Day, Year Code', 'Avg Daily Max Air Temperature (F)', 

'Record Count for Daily Max Air Temp (F)'], ['Illinois', '1979/01/01', 
'17.48', '994'], ['Illinois', '1979/01/02', '4.64', '994'], ['Illinois', 
'1979/01/03', '11.05', '994'], ['Illinois', '1979/01/04', '9.51', 
'994'], ['Illinois', '1979/05/15', '68.42', '994'], ['Illinois', 
'1979/05/16', '70.29', '994'], ['Illinois', '1979/05/17', '75.34', 
'994'], ['Illinois', '1979/05/18', '79.13', '994'], ['Illinois', 
'1979/05/19', '74.94', '994']]

In this simple case, the gain over rolling your own code doesn’t seem so great. Still, 
the code is two lines shorter and a bit clearer, and there’s no need to worry about 
stripping off newline characters. The real advantages come when you want to deal 
with more challenging cases. 

 The data in the example is real, but it’s actually been simplified and cleaned. The 
real data from the source is more complex. The real data has more fields, some fields 
are in quotes while others are not, and the first field is empty. The original is tab-
delimited, but for the sake of illustration, I present it as comma-delimited here:

"Notes","State","State Code","Month Day, Year","Month Day, Year Code",Avg 
Daily Max Air Temperature (F),Record Count for Daily Max Air Temp 
(F),Min Temp for Daily Max Air Temp (F),Max Temp for Daily Max Air Temp 
(F),Avg Daily Max Heat Index (F),Record Count for Daily Max Heat Index 
(F),Min for Daily Max Heat Index (F),Max for Daily Max Heat Index 
(F),Daily Max Heat Index (F) % Coverage

,"Illinois","17","Jan 01, 1979","1979/01/
01",17.48,994,6.00,30.50,Missing,0,Missing,Missing,0.00%

,"Illinois","17","Jan 02, 1979","1979/01/02",4.64,994,-
6.40,15.80,Missing,0,Missing,Missing,0.00%

,"Illinois","17","Jan 03, 1979","1979/01/03",11.05,994,-
0.70,24.70,Missing,0,Missing,Missing,0.00%

,"Illinois","17","Jan 04, 1979","1979/01/
04",9.51,994,0.20,27.60,Missing,0,Missing,Missing,0.00%

,"Illinois","17","May 15, 1979","1979/05/
15",68.42,994,61.00,75.10,Missing,0,Missing,Missing,0.00%

,"Illinois","17","May 16, 1979","1979/05/
16",70.29,994,63.40,73.50,Missing,0,Missing,Missing,0.00%
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,"Illinois","17","May 17, 1979","1979/05/
17",75.34,994,64.00,80.50,82.60,2,82.40,82.80,0.20%

,"Illinois","17","May 18, 1979","1979/05/
18",79.13,994,75.50,82.10,81.42,349,80.20,83.40,35.11%

,"Illinois","17","May 19, 1979","1979/05/
19",74.94,994,66.90,83.10,82.87,78,81.60,85.20,7.85%

Notice that some fields include commas. The convention in that case is to put quotes 
around a field to indicate that it’s not supposed to be parsed for delimiters. It’s quite 
common, as here, to quote only some fields, especially those in which a value might 
contain the delimiter character. It also happens, as here, that some fields are quoted 
even if they’re not likely to contain the delimiting character.

 In a case like this one, your home-grown code becomes cumbersome. Now you can 
no longer split the line on the delimiting character; you need to be sure that you look 
only at delimiters that aren’t inside quoted strings. Also, you need to remove the 
quotes around quoted strings, which might occur in any position or not at all. With 
the csv module, you don’t need to change your code at all. In fact, because the 
comma is the default delimiter, you don’t even need to specify it:

>>> results2 = [fields for fields in csv.reader(open("temp_data_01.csv", 
newline=''))]

>>> results2
[['Notes', 'State', 'State Code', 'Month Day, Year', 'Month Day, Year Code', 

'Avg Daily Max Air Temperature (F)', 'Record Count for Daily Max Air 
Temp (F)', 'Min Temp for Daily Max Air Temp (F)', 'Max Temp for Daily 
Max Air Temp (F)', 'Avg Daily Min Air Temperature (F)', 'Record Count 
for Daily Min Air Temp (F)', 'Min Temp for Daily Min Air Temp (F)', 'Max 
Temp for Daily Min Air Temp (F)', 'Avg Daily Max Heat Index (F)', 
'Record Count for Daily Max Heat Index (F)', 'Min for Daily Max Heat 
Index (F)', 'Max for Daily Max Heat Index (F)', 'Daily Max Heat Index 
(F) % Coverage'], ['', 'Illinois', '17', 'Jan 01, 1979', '1979/01/01', 
'17.48', '994', '6.00', '30.50', '2.89', '994', '-13.60', '15.80', 
'Missing', '0', 'Missing', 'Missing', '0.00%'], ['', 'Illinois', '17', 
'Jan 02, 1979', '1979/01/02', '4.64', '994', '-6.40', '15.80', '-9.03', 
'994', '-23.60', '6.60', 'Missing', '0', 'Missing', 'Missing', '0.00%'], 
['', 'Illinois', '17', 'Jan 03, 1979', '1979/01/03', '11.05', '994', '-
0.70', '24.70', '-2.17', '994', '-18.30', '12.90', 'Missing', '0', 
'Missing', 'Missing', '0.00%'], ['', 'Illinois', '17', 'Jan 04, 1979', 
'1979/01/04', '9.51', '994', '0.20', '27.60', '-0.43', '994', '-16.30', 
'16.30', 'Missing', '0', 'Missing', 'Missing', '0.00%'], ['', 
'Illinois', '17', 'May 15, 1979', '1979/05/15', '68.42', '994', '61.00', 
'75.10', '51.30', '994', '43.30', '57.00', 'Missing', '0', 'Missing', 
'Missing', '0.00%'], ['', 'Illinois', '17', 'May 16, 1979', 
'1979/05/16', '70.29', '994', '63.40', '73.50', '48.09', '994', '41.10', 
'53.00', 'Missing', '0', 'Missing', 'Missing', '0.00%'], ['', 
'Illinois', '17', 'May 17, 1979', '1979/05/17', '75.34', '994', '64.00', 
'80.50', '50.84', '994', '44.30', '55.70', '82.60', '2', '82.40', 
'82.80', '0.20%'], ['', 'Illinois', '17', 'May 18, 1979', '1979/05/18', 
'79.13', '994', '75.50', '82.10', '55.68', '994', '50.00', '61.10', 
'81.42', '349', '80.20', '83.40', '35.11%'], ['', 'Illinois', '17', 'May 
19, 1979', '1979/05/19', '74.94', '994', '66.90', '83.10', '58.59', 
'994', '50.90', '63.20', '82.87', '78', '81.60', '85.20', '7.85%']]
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Notice that the extra quotes have been removed and that any field values with com-
mas have the commas intact inside the fields—all without any more characters in the
command.

QUICK CHECK: HANDLING QUOTING Consider how you’d approach the problems 
of handling quoted fields and embedded delimiter characters if you didn't 
have the csv library. Which would be easier to handle: the quoting or the 
embedded delimiters?

21.2.5 Reading a csv file as a list of dictionaries

In the preceding examples, you got a row of data back as a list of fields. This result 
works fine in many cases, but sometimes it may be handy to get the rows back as dic-
tionaries where the field name is the key. For this use case, the csv library has a     Dic-
tReader, which can take a list of fields as a parameter or can read them from the first 
line of the data. If you want to open the data with a DictReader, the code would look 
like this:

>>> results = [fields for fields in csv.DictReader(open("temp_data_01.csv", 
newline=''))]

>>> results[0]
OrderedDict([('Notes', ''), ('State', 'Illinois'), ('State Code', '17'), 

('Month Day, Year', 'Jan 01, 1979'), ('Month Day, Year Code', 
'1979/01/01'), ('Avg Daily Max Air Temperature (F)', '17.48'), ('Record 
Count for Daily Max Air Temp (F)', '994'), ('Min Temp for Daily Max Air 
Temp (F)', '6.00'), ('Max Temp for Daily Max Air Temp (F)', '30.50'), 
('Avg Daily Min Air Temperature (F)', '2.89'), ('Record Count for Daily 
Min Air Temp (F)', '994'), ('Min Temp for Daily Min Air Temp (F)', '-
13.60'), ('Max Temp for Daily Min Air Temp (F)', '15.80'), ('Avg Daily 
Max Heat Index (F)', 'Missing'), ('Record Count for Daily Max Heat Index 
(F)', '0'), ('Min for Daily Max Heat Index (F)', 'Missing'), ('Max for 
Daily Max Heat Index (F)', 'Missing'), ('Daily Max Heat Index (F) % 
Coverage', '0.00%')])

Note that the csv.DictReader returns OrderedDicts, so the fields stay in their origi-
nal order. Although their representation is a little different, the fields still behave like 
dictionaries:

>>> results[0]['State']
'Illinois'

If the data is particularly complex, and specific fields need to be manipulated, a 
DictReader can make it much easier to be sure you’re getting the right field; it also 
makes your code somewhat easier to understand. Conversely, if your data set is quite 
large, you need to keep in mind that DictReader can take on the order of twice as 
long to read the same amount of data.

21.3 Excel files
The other common file format that I discuss in this chapter is the Excel file, which is 
the format that Microsoft Excel uses to store spreadsheets. I include Excel files here 
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because the way you end up treating them is very similar to the way you treat delimited 
files. In fact, because Excel can both read and write CSV files, the quickest and easiest 
way to extract data from an Excel spreadsheet file often is to open it in Excel and then 
save it as a CSV file. This procedure doesn’t always make sense, however, particularly if 
you have a lot of files. In that case, even though you could theoretically automate the 
process of opening and saving each file in CSV format, it’s probably faster to deal with 
the Excel files directly. 

 It’s beyond the scope of this book to have an in-depth discussion of spreadsheet 
files, with their options for multiple sheets in the same file, macros, and various for-
matting options. Instead, in this section I look at an example of reading a simple one-
sheet file simply to extract the data from it.

 As it happens, Python’s standard library doesn’t have a module to read or write 
Excel files. To read that format, you need to install an external module. Fortunately, 
several modules are available to do the job. For this example, you use one called 
OpenPyXL, which is available from the Python package repository. You can install it 
with the following command from a command line:

$pip install openpyxl

Here’s a view of the previous data, but in a spreadsheet:

Reading the file is fairly simple, but it’s still more work than CSV files require. First, 
you need to load the workbook; next, you need to get the specific sheet; then you can 
iterate over the rows; and from there, you extract the values of the cells. Some sample 
code to read the spreadsheet looks like this:

>>> from openpyxl import load_workbook
>>> wb = load_workbook('temp_data_01.xlsx')
>>> results = []
>>> ws = wb.worksheets[0]
>>> for row in ws.iter_rows():
...     results.append([cell.value for cell in row])
...  
>>> print(results)
[['Notes', 'State', 'State Code', 'Month Day, Year', 'Month Day, Year Code', 

'Avg Daily Max Air Temperature (F)', 'Record Count for Daily Max Air 
Temp (F)', 'Min Temp for Daily Max Air Temp (F)', 'Max Temp for Daily 
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Max Air Temp (F)', 'Avg Daily Max Heat Index (F)', 'Record Count for 
Daily Max Heat Index (F)', 'Min for Daily Max Heat Index (F)', 'Max for 
Daily Max Heat Index (F)', 'Daily Max Heat Index (F) % Coverage'], 
[None, 'Illinois', 17, 'Jan 01, 1979', '1979/01/01', 17.48, 994, 6, 
30.5, 'Missing', 0, 'Missing', 'Missing', '0.00%'], [None, 'Illinois', 
17, 'Jan 02, 1979', '1979/01/02', 4.64, 994, -6.4, 15.8, 'Missing', 0, 
'Missing', 'Missing', '0.00%'], [None, 'Illinois', 17, 'Jan 03, 1979', 
'1979/01/03', 11.05, 994, -0.7, 24.7, 'Missing', 0, 'Missing', 
'Missing', '0.00%'], [None, 'Illinois', 17, 'Jan 04, 1979', 
'1979/01/04', 9.51, 994, 0.2, 27.6, 'Missing', 0, 'Missing', 'Missing', 
'0.00%'], [None, 'Illinois', 17, 'May 15, 1979', '1979/05/15', 68.42, 
994, 61, 75.1, 'Missing', 0, 'Missing', 'Missing', '0.00%'], [None, 
'Illinois', 17, 'May 16, 1979', '1979/05/16', 70.29, 994, 63.4, 73.5, 
'Missing', 0, 'Missing', 'Missing', '0.00%'], [None, 'Illinois', 17, 
'May 17, 1979', '1979/05/17', 75.34, 994, 64, 80.5, 82.6, 2, 82.4, 82.8, 
'0.20%'], [None, 'Illinois', 17, 'May 18, 1979', '1979/05/18', 79.13, 
994, 75.5, 82.1, 81.42, 349, 80.2, 83.4, '35.11%'], [None, 'Illinois', 
17, 'May 19, 1979', '1979/05/19', 74.94, 994, 66.9, 83.1, 82.87, 78, 
81.6, 85.2, '7.85%']]

This code gets you the same results as the much simpler code did for a csv file. It’s not 
surprising that the code to read a spreadsheet is more complex, because spreadsheets 
are themselves much more complex objects. You should also be sure that you under-
stand the way that data has been stored in the spreadsheet. If the spreadsheet contains 
formatting that has some significance, if labels need to be disregarded or handled dif-
ferently, or if formulas and references need to be processed, you need to dig deeper 
into how those elements should be processed, and you need to write more-complex code.

 Spreadsheets also often have other possible issues. At this writing, it’s common for 
spreadsheets to be limited to around a million rows. Although that limit sounds large, 
more and more often you’ll need to handle data sets that are larger. Also, spread-
sheets sometimes automatically apply inconvenient formatting. One company I 
worked for had part numbers that consisted of a digit and at least one letter followed 
by some combination of digits and letters. It was possible to get a part number such as 
1E20. Most spreadsheets automatically interpret 1E20 as scientific notation and save it 
as 1.00E+20 (1 times 10 to the 20th power) while leaving 1F20 as a string. For some rea-
son, it’s rather difficult to keep this from happening, and particularly with a large data 
set, the problem won’t be detected until farther down the pipeline, if all. For these 
reasons, I recommend using CSV or delimited files when at all possible. Users usually 
can save a spreadsheet as CSV, so there’s usually no need put up with the extra com-
plexity and formatting hassles that spreadsheets involve.

21.4 Data cleaning
One common problem you’ll encounter in processing text-based data files is dirty 
data. By dirty, I mean that there are all sorts of surprises in the data, such as null val-
ues, values that aren’t legal for your encoding, or extra whitespace. The data may also 
be unsorted or in an order that makes processing difficult. The process of dealing 
with situations like these is called data cleaning.
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21.4.1 Cleaning

In a very simple example data clean, you might need to process a file that was 
exported from a spreadsheet or other financial program, and the columns dealing 
with money may have percentage and currency symbols (such as %, $, £, and ?), as 
well as extra groupings that use a period or comma. Data from other sources may have 
other surprises that make processing tricky if they’re not caught in advance. Look 
again at the temperature data you saw previously. The first data line looks like this:

 [None, 'Illinois', 17, 'Jan 01, 1979', '1979/01/01', 17.48, 994, 6, 30.5, 
2.89, 994, -13.6, 15.8, 'Missing', 0, 'Missing', 'Missing', '0.00%']

Some columns, such as 'State' (field 2) and 'Notes' (field 1), are clearly text, and 
you wouldn’t be likely to do much with them. There are also two date fields in differ-
ent formats, and you might well want to do calculations with the dates, possibly to 
change the order of the data and to group rows by month or day, or possibly to calcu-
late how far apart in time two rows are. 

 The rest of the fields seem to be different types of numbers; the temperatures are 
decimals, and the record counts columns are integers. Notice, however, that the heat 
index temperatures have a variation: When the value for the  'Max Temp for Daily 
Max Air Temp (F)' field is below 80, the values for the heat index fields aren’t 
reported, but instead are listed as 'Missing', and the record count is 0. Also note that 
the 'Daily Max Heat Index (F) % Coverage' field is expressed as a percentage of 
the number of temperature records that also qualify to have a heat index. Both of 
these issues will be problematic if you want to do any math calculations on the values 
in those fields, because both 'Missing' and any number ending with % will be parsed 
as strings, not numbers.

 Cleaning data like this can be done at different steps in the process. Quite often, I 
prefer to clean the data as it’s being read from the file, so I might well replace the 
'Missing' with a None value or an empty string as the lines are being processed. You 
could also leave the 'Missing' strings in place and write your code so that no math 
operations are performed on a value if it is 'Missing'.

TRY THIS: CLEANING DATA How would you handle the fields with 'Missing' as 
possible values for math calculations? Can you write a snippet of code that 
averages one of those columns?

What would you do with the average column at the end so that you could also 
report the average coverage? In your opinion, would the solution to this prob-
lem be at all linked to the way that the 'Missing' entries were handled?

21.4.2 Sorting

As I mentioned earlier, it’s often useful to have data in the text file sorted before pro-
cessing. Sorting the data makes it easier to spot and handle duplicate values, and it 
can also help bring together related rows for quicker or easier processing. In one case, 
I received a 20 million–row file of attributes and values, in which arbitrary numbers of 
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them needed to be matched with items from a master SKU list. Sorting the rows by the 
item ID made gathering each item’s attributes much faster. How you do the sorting 
depends on the size of the data file relative to your available memory and on the 
complexity of the sort. If all the lines of the file can fit comfortably into available 
memory, the easiest thing may be to read all of the lines into a list and use the list’s 
sort method:

>>> lines = open("datafile").readlines()
>>> lines.sort()

You could also use the sorted() function, as in sorted_lines = sorted(lines). 

This function preserves the order of the lines in your original list, which usually is 
unnecessary. The drawback to using the sorted() function is that it creates a new 
copy of the list. This process takes slightly longer and consumes twice as much mem-
ory, which might be a bigger concern.

 If the data set is larger than memory and the sort is very simple (just by an easily 
grabbed field), it may be easier to use an external utility, such as the UNIX sort com-
mand, to preprocess the data:

$ sort data > data.srt

In either case, sorting can be done in reverse order and can be keyed by values, not 
the beginning of the line. For such occasions, you need to study the documentation of 
the sorting tool you choose to use. A simple example in Python would be to make a 
sort of lines of text case-insensitive. To do this, you give the sort method a key func-
tion that makes the element lowercase before making a comparison:

>>> lines.sort(key=str.lower)

This example uses a lambda function to ignore the first five characters of each string:

>>> lines.sort(key=lambda x: x[5:])

Using key functions to determine the behavior of sorts in Python is very handy, but be 
aware that the key function is called a lot in the process of sorting, so a complex key 
function could mean a real performance slowdown, particularly with a large data set.

21.4.3 Data cleaning issues and pitfalls

It seems that there are as many types of dirty data as there are sources and use cases 
for that data. Your data will always have quirks that do everything from making pro-
cessing less accurate to making it impossible to even load the data. As a result, I can’t 
provide an exhaustive list of the problems you might encounter and how to deal with 
them, but I can give you some general hints.

 Beware of whitespace and null characters. The problem with whitespace characters 
is that you can’t see them, but that doesn’t mean that they can’t cause troubles. 
Extra whitespace at the beginning and end of data lines, extra whitespace 
around individual fields, and tabs instead of spaces (or vice versa) can all make 
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your data loading and processing more troublesome, and these problems aren’t 
always easily apparent. Similarly, text files with null characters (ASCII 0) may 
seem okay on inspection but break on loading and processing.

 Beware punctuation. Punctuation can also be a problem. Extra commas or peri-
ods can mess up CSV files and the processing of numeric fields, and unescaped 
or unmatched quote characters can also confuse things.

 Break down and debug the steps. It’s easier to debug a problem if each step is sepa-
rate, which means putting each operation on a separate line, being more ver-
bose, and using more variables. But the work is worth it. For one thing, it makes 
any exceptions that are raised easier to understand, and it also makes debug-
ging easier, whether with print statements, logging, or the Python debugger. It 
may also be helpful to save the data after each step and to cut the file size to just 
a few lines that cause the error.

21.5 Writing data files
 The last part of the ETL process may involve saving the transformed data to a data-
base (which I discuss in chapter 22), but often it involves writing the data to files. 
These files may be used as input for other applications and analysis, either by people 
or by other applications. Usually, you have a particular file specification listing what 
fields of data should be included, what they should be named, what format and con-
straints there should be for each, and so on 

21.5.1 CSV and other delimited files

Probably the easiest thing of all is to write your data to CSV files. Because you’ve 
already loaded, parsed, cleaned, and transformed the data, you’re unlikely to hit any 
unresolved issues with the data itself. And again, using the csv module from the 
Python standard library makes your work much easier. 

 Writing delimited files with the csv module is pretty much the reverse of the read 
process. Again, you need to specify the delimiter that you want to use, and again, the 
csv module takes care of any situations in which your delimiting character is included 
in a field:

>>> temperature_data = [['State', 'Month Day, Year Code', 'Avg Daily Max Air 
Temperature (F)', 'Record Count for Daily Max Air Temp (F)'], 
['Illinois', '1979/01/01', '17.48', '994'], ['Illinois', '1979/01/02', 
'4.64', '994'], ['Illinois', '1979/01/03', '11.05', '994'], ['Illinois', 
'1979/01/04', '9.51', '994'], ['Illinois', '1979/05/15', '68.42', 
'994'], ['Illinois', '1979/05/16', '70.29', '994'], ['Illinois', 
'1979/05/17', '75.34', '994'], ['Illinois', '1979/05/18', '79.13', 
'994'], ['Illinois', '1979/05/19', '74.94', '994']]

>>> csv.writer(open("temp_data_03.csv", "w", 
newline='')).writerows(temperature_data)

This code results in the following file:

State,"Month Day, Year Code",Avg Daily Max Air Temperature (F),Record Count 
for Daily Max Air Temp (F)
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Illinois,1979/01/01,17.48,994
Illinois,1979/01/02,4.64,994
Illinois,1979/01/03,11.05,994 
Illinois,1979/01/04,9.51,994
Illinois,1979/05/15,68.42,994
Illinois,1979/05/16,70.29,994
Illinois,1979/05/17,75.34,994
Illinois,1979/05/18,79.13,994
Illinois,1979/05/19,74.94,994

Just as when reading from a CSV file, it’s possible to write dictionaries instead of lists if 
you use a DictWriter. If you do use a DictWriter, be aware of a couple of points: You 
must specify the fields names in a list when you create the writer, and you can use the 
DictWriter’s writeheader method to write the header at the top of the file. So 
assume that you have the same data as previously, but in dictionary format:

{'State': 'Illinois', 'Month Day, Year Code': '1979/01/01', 'Avg Daily Max 
Air Temperature (F)': '17.48', 'Record Count for Daily Max Air Temp 
(F)': '994'}

You can use a DictWriter object from the csv module to write each row, a dictionary, 
to the correct fields in the CSV file:

>>> fields = ['State', 'Month Day, Year Code', 'Avg Daily Max Air Temperature 
(F)', 'Record Count for Daily Max Air Temp (F)']

>>> dict_writer = csv.DictWriter(open("temp_data_04.csv", "w"), 
fieldnames=fields)

>>> dict_writer.writeheader()
>>> dict_writer.writerows(data)
>>> del dict_writer

21.5.2 Writing Excel files

Writing spreadsheet files is unsurprisingly similar to reading them. You need to create 
a workbook, or spreadsheet file; then you need to create a sheet or sheets; and finally, 
you write the data in the appropriate cells. You could create a new spreadsheet from 
your CSV data file like this:

>>> from openpyxl import Workbook
>>> data_rows = [fields for fields in csv.reader(open("temp_data_01.csv"))]
>>> wb = Workbook()
>>> ws = wb.active
>>> ws.title = "temperature data"
>>> for row in data_rows:
...     ws.append(row)
... 
>>> wb.save("temp_data_02.xlsx")

It’s also possible to add formatting to cells as you write them to the spreadsheet file. 
For more on how to add formatting, please refer to the xlswriter documentation.
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21.5.3 Packaging data files

If you have several related data files, or if your files are large, it may make sense to 
package them in a compressed archive. Although various archive formats are in use, 
the zip file remains popular and almost universally accessible to users on almost every 
platform. For hints on how to create zip-file packages of your data files, please refer to 
chapter 20. 

LAB 21: WEATHER OBSERVATIONS The file of weather observations provided 
here is by month and then by county for the state of Illinois from 1979 to 
2011. Write the code to process this file to extract the data for Chicago (Cook 
County) into a single CSV or spreadsheet file. This process includes replacing 
the 'Missing' strings with empty strings and translating the percentage to a 
decimal. You may also consider what fields are repetitive (and therefore can 
be omitted or stored elsewhere). The proof that you’ve got it right occurs 
when you load the file into a spreadsheet. You can download a solution with 
the book’s source code.

Summary
 ETL (extract-transform-load) is the process of getting data from one format, 

making sure that it’s consistent, and then putting it in a format you can use. 
ETL is the basic step in most data processing.

 Encoding can be problematic with text files, but Python lets you deal with some 
encoding problems when you load files.

 Delimited or CSV files are common, and the best way to handle them is with the 
csv module.

 Spreadsheet files can be more complex than CSV files but can be handled 
much the same way.

 Currency symbols, punctuation, and null characters are among the most com-
mon data cleaning issues; be on the watch for them.

 Presorting your data file can make other processing steps faster. 
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In order to choose and construct useful models in a data science project you 
need to get to know the data. What bits of data do you have? What problems 
might there be? Given the nature of the data, what approaches might work best?

 In the last chapter of The Quick Python Book, 3rd edition I introduce a key 
Python tool for exploring data, Jupyter notebook. Based on an earlier project 
called IPython, Jupyter notebooks are a daily staple for many data professionals.

 It’s hard to explain all of the features that make Jupyter notebooks so useful 
for data exploration – they execute Python code, they make testing easy to write 
chunks of Python, then execute them on your data, see what the result is, and 
adapt it as needed. Jupyter works well with the excellent Python data handling 
framework, Pandas, as well as various graphing tools. Jupyter notebooks are web-
based, it’s to share them with others, and they can even be used as a presentation 
tool.

 With all of these features in mind, I’ve selected this chapter to give an idea of 
ways to explore data as part of a data science project.

Exploring data
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Chapter 24 from The Quick Python Book, 
3rd edition by Naomi Ceder.

Exploring data
Over the past few chapters, I’ve dealt with some aspects of using Python to get and 
clean data. Now it’s time to look at a few of the things that Python can help you do 
to manipulate and explore data.

24.1 Python tools for data exploration
In this chapter, we’ll look at some common Python tools for data exploration: Jupy-
ter notebook, pandas, and matplotlib. I can only touch briefly on a few features of 
these tools, but the aim is to give you an idea of what is possible and some initial 
tools to use in exploring data with Python. 

This chapter covers
 Python’s advantages for handling data

 Jupyter Notebook

 pandas

 Data aggregation 

 Plots with matplotlib
56
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24.1.1 Python’s advantages for exploring data

Python has become one of the leading languages for data science and continues to 
grow in that area. As I’ve mentioned, however, Python isn’t always the fastest language 
in terms of raw performance. Conversely, some data-crunching libraries, such as 
NumPy, are largely written in C and heavily optimized to the point that speed isn’t an 
issue. In addition, considerations such as readability and accessibility often outweigh 
pure speed; minimizing the amount of developer time needed is often more impor-
tant. Python is readable and accessible, and both on its own and in combination with 
tools developed in the Python community, it’s an enormously powerful tool for 
manipulating and exploring data. 

24.1.2 Python can be better than a spreadsheet

Spreadsheets have been the tools of choice for ad-hoc data manipulation for decades. 
People who are skilled with spreadsheets can make them do truly impressive tricks: 
spreadsheets can combine different but related data sets, pivot tables, use lookup 
tables to link data sets, and much more. But although people everywhere get a vast 
amount of work done with them every day, spreadsheets do have limitations, and 
Python can help you go beyond those limitations. 

 One limitation that I’ve already alluded to is the fact that most spreadsheet soft-
ware has a row limit—currently, about 1 million rows, which isn’t enough for many 
data sets. Another limitation is the central metaphor of the spreadsheet itself. Spread-
sheets are two-dimensional grids, rows and columns, or at best stacks of grids, which 
limits the ways you can manipulate and think about complex data.

 With Python, you can code your way around the limitations of spreadsheets and 
manipulate data the way you want. You can combine Python data structures such as 
lists, tuples, sets, and dictionaries in endlessly flexible ways, or you can create your own 
classes to package both data and behavior exactly the way you need. 

24.2 Jupyter notebook
Probably one of the most compelling tools for exploring data with Python doesn’t 
augment what the language itself does, but changes the way you use the language to 
interact with your data. Jupyter notebook is a web application that allows you to create 
and share documents that contain live code, equations, visualizations, and explana-
tory text. Although several other languages are now supported, it originated in con-
nection with IPython, an alternative shell for Python developed by the scientific 
community. 

 What makes Jupyter such a convenient and powerful tool is the fact that you inter-
act with it in a web browser. It lets you combine text and code, as well as modify and 
execute your code interactively. You can not only run and modify code in chunks, but 
also save and share the notebooks with others. 
k.store/books/9781617296048

https://itbook.store/books/9781617296048


58 CHAPTER 24 Exploring data

www.itboo
 The best way to get a feel for what Jupyter notebook can do is start playing with it. 
It’s fairly easy to run a Jupyter process locally on your machine, or you can access 
online versions. For some options, see the sidebar on ways to run Jupyter.

24.2.1 Starting a kernel

When you have Jupyter installed, running, and open in your browser, you need to start 
a Python kernel. One nice thing about Jupyter is that it lets you run multiple kernels 
at the same time. You can run kernels for different versions of Python and for other 
languages such as R, Julia, and even Ruby. 

 

Ways to run Jupyter
Jupyter online: Accessing online instances of Jupyter is one of the easiest ways to get 
started. Currently, Project Jupyter, the community behind Jupyter, hosts free note-
books at https://jupyter.org/try. You can also find demo notebooks and kernels for 
other languages. At this writing, you can also access free notebooks on Microsoft’s 
Azure platform at https://notebooks.azure.com, and many other ways are available. 

Jupyter locally: Although using an online instance is quite convenient, it’s not very 
much work to set up your own instance of Jupyter on your computer. Usually for 
local versions, you point your browser to localhost:8888.

If you use Docker, you have several containers to choose among. To run the data 
science notebook container, use something like this:

docker run -it --rm -p 8888:8888 jupyter/datascience-notebook 

If you’d rather run directly on your system, it’s easy to install and run Jupyter in a vir-
tualenv.

macOS and Linux systems: First, open a command window, and enter the following 
commands:

 > python3 -m venv jupyter
 > cd jupyter
 > source bin/activate
 > pip install jupyter
 > jupyter-notebook

Windows systems:

> python3 -m venv jupyter
 > cd jupyter
 > Scripts/bin/activate
 > pip install jupyter
 > Scripts/jupyter-notebook

The last command should run the Jupyter notebook web app and open a browser win-
dow pointing at it. 
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Figure 24.1 Starting a Python kernel

Starting a kernel is easy. Just click the new button and select Python 3 (figure 24.1).

24.2.2 Executing code in a cell

When you have a kernel running, you can start entering and running Python code. 
Right away, you’ll notice a few differences from the ordinary Python command shell. 
You won’t get the >>> prompt that you see in the standard Python shell, and pressing 
Enter just adds new lines in the cell. To execute the code in a cell, illustrated in figure 
24.2, choose Cell > Run Cells, click the Run button immediately to the left of the 
down arrow on the button bar, or use the key combination Alt-Enter. After you use 
Jupyter notebook a little bit, it’s quite likely that the Alt-Enter key combination will 
become quite natural to you. 

 You can test how it works by entering some code or an expression into the first cell 
of your new notebook and then pressing Alt-Enter.

Figure 24.2 Executing code in a notebook cell

As you can see, any output is shown immediately below the cell, and a new cell is cre-
ated and ready for your next input. Also note that each cell that’s executed is num-
bered in the order in which it’s executed.
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TRY THIS: USING JUPYTER NOTEBOOK Enter some code in the notebook and 
experiment with running it. Check out the Edit, Cell, and Kernel menus to 
see what options are there. When you have a little code running, use the Ker-
nel menu to restart the kernel, repeat your steps, and then use the Cell menu 
to rerun the code in all of the cells.

24.3 Python and pandas
In the course of exploring and manipulating data, you perform quite a few common 
operations, such as loading data into a list or dictionary, cleaning data, and filtering 
data. Most of these operations are repeated often, have to be done in standard pat-
terns, and are simple and often tedious. If you think that this combination is a strong 
reason to automate those tasks you’re not alone. One of the now-standard tools for 
handling data in Python—pandas—was created to automate the boring heavy lifting 
of handling data sets.

24.3.1 Why you might want to use pandas

pandas was created to make manipulating and analyzing tablular or relational data 
easy by providing a standard framework for holding the data, with convenient tools 
for frequent operations. As a result, it’s almost more of an extension to Python than a 
library, and it changes the way you can interact with data. The plus side is that after 
you grok how pandas work, you can do some impressive things and save a lot of time. 
It does take time to learn how to get the most from pandas, however. As with many 
tools, if you use pandas for what it was designed for, it excels. The simple examples I 
show you in the following sections should give you a rough idea whether pandas is a 
tool that’s suited for your use cases.

24.3.2 Installing pandas

pandas is easy to install with pip. It’s often used along with matplotlib for plotting, so 
you can install both tools from the command line of your Jupyter virtual environment 
with this code:

> pip install pandas matplotlib

From a cell in a Jupyter notebook, you can use

In [ ]: !pip install pandas matplotlib

If you use pandas, life will be easier if you use the following three lines:

%matplotlib inline
import pandas as pd
import numpy as np

The first line is a Jupyter “magic” function that enables matplotlib to plot data in the 
cell where your code is (which is very useful). The second line imports pandas with 
the alias of pd, which is both easier to type and common among pandas users; the last 
k.store/books/9781617296048

https://itbook.store/books/9781617296048


61Python and pandas

www.itbook.
line also imports numpy. Although pandas depends quite a bit on numpy, you won’t 
use it explicitly in the following examples, but it’s reasonable to get into the habit of 
importing it anyway.

24.3.3 Data frames

One basic structure that you get with pandas is a data frame. A data frame is a two-
dimensional grid, rather similar to a relational database table except in memory. Cre-
ating a data frame is easy; you give it some data. To keep things absolutely simple, give 
it a 3 x 3 grid of numbers as the first example. In Python, such a grid is a list of lists:

grid = [[1,2,3], [4,5,6], [7,8,9]]
print(grid)

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Sadly, in Python the grid won’t look like a grid unless you make some additional 
effort. So see what you can do with the same grid as a pandas data frame:

import pandas as pd
df = pd.DataFrame(grid)
print(df)

   0  1  2
0  1  2  3
1  4  5  6
2  7  8  9

That code is fairly straightforward; all you needed to do was turn your grid into a data 
frame. You’ve gained a more gridlike display, and now you have both row and column 
numbers. It’s often rather bothersome to keep track of what column number is what, 
of course, so give your columns names:

df = pd.DataFrame(grid, columns=["one", "two", "three"] )
print(df)

   one  two  three
0    1    2      3
1    4    5      6
2    7    8      9

You may wonder whether naming the columns has any benefit, but the column names 
can be put to use with another pandas trick: the ability to select columns by name. If 
you want the contents only of column "two", for example, you can get it very simply:

print(df["two"])
0    2
1    5
2    8
Name: two, dtype: int64
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Here, you’ve already saved time in comparison to Python. To get only column two of 
your grid, you’d need to use a list comprehension while also remembering to use a 
zero-based index (and you still wouldn’t get the nice output):

print([x[1] for x in grid])
[2, 5, 8]

You can loop over data frame column values just as easily as the list you got by using a 
comprehension:

for x in df["two"]:
    print(x)
2
5
8

That’s not bad for a start, but by using a list of columns in double brackets, you can do 
better, getting a subset of the data frame that’s another data frame. Instead of getting 
the middle column, get the first and last columns of your data frame as another data 
frame:

edges = df[["one", "three"]]
print(edges)
   one  three
0    1      3
1    4      6
2    7      9

A data frame also has several methods that apply the same operation and argument to 
every item in the frame. If you want to add two to every item in the data frame’s edges, 
you could use the add() method:

print(edges.add(2))
   one  three
0    3      5
1    6      8
2    9     11

Here again, it’s possible to get the same result by using list comprehensions and/or 
nested loops, but those techniques aren’t as convenient. It’s pretty easy to see how 
such functionality can make life easier, particularly for someone who’s more inter-
ested in the information that the data contains than in the process of manipulating it. 

24.4 Data cleaning
In earlier chapters, I discussed a few ways to use Python to clean data. Now that I’ve 
added pandas to the mix, I’ll show you examples of how to use its functionality to 
clean data. As I present the following operations, I also refer to ways that the same 
operation might be done in plain Python, both to illustrate how using pandas is differ-
ent and to show why pandas isn’t right for every use case (or user, for that matter). 
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24.4.1 Loading and saving data with pandas

pandas has an impressive collection of methods to load data from different sources. It 
supports several file formats (including fixed-width and delimited text files, spread-
sheets, JSON, XML, and HTML), but it’s also possible to read from SQL databases, 
Google BiqQuery, HDF, and even clipboard data. You should be aware that many of 
these operations aren’t actually part of pandas itself; pandas relies on having other 
libraries installed to handle those operations, such as SQLAlchemy for reading from 
SQL databases. This distinction matters mostly if something goes wrong; quite often, 
the problem that needs to be fixed is outside pandas, and you’re left to deal with the 
underlying library. 

 Reading a JSON file with the read_json() method is simple:

mars = pd.read_json("mars_data_01.json")

This code gives you a data frame like this:

                                   report
abs_humidity                         None
atmo_opacity                        Sunny
ls                                    296
max_temp                               -1
max_temp_fahrenheit                  30.2
min_temp                              -72
min_temp_fahrenheit                 -97.6
pressure                              869
pressure_string                    Higher
season                           Month 10
sol                                  1576
sunrise              2017-01-11T12:31:00Z
sunset               2017-01-12T00:46:00Z
terrestrial_date               2017-01-11
wind_direction                         --
wind_speed                           None

For another example of how simple reading data into pandas is, load some data from 
the CSV file of temperature data from chapter 21 and from the JSON file of Mars 
weather data used in chapter 22. In the first case, use the read_csv() method:

 
 

 temp = pd.read_csv("temp_data_01.csv")

          4      5    6     7     8      9    10    11    12     13    14 \  

0  1979/01/01  17.48  994   6.0  30.5   2.89  994 -13.6  15.8    NaN    0   
1  1979/01/02   4.64  994  -6.4  15.8  -9.03  994 -23.6   6.6    NaN    0   
2  1979/01/03  11.05  994  -0.7  24.7  -2.17  994 -18.3  12.9    NaN    0   
3  1979/01/04   9.51  994   0.2  27.6  -0.43  994 -16.3  16.3    NaN    0   
4  1979/05/15  68.42  994  61.0  75.1  51.30  994  43.3  57.0    NaN    0   
5  1979/05/16  70.29  994  63.4  73.5  48.09  994  41.1  53.0    NaN    0   
6  1979/05/17  75.34  994  64.0  80.5  50.84  994  44.3  55.7  82.60    2   

Note that the \ at the end of the header 
line is an indication that the table is 

too long to be printed on one line and 
more columns are printed below.
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7  1979/05/18  79.13  994  75.5  82.1  55.68  994  50.0  61.1  81.42  349   
8  1979/05/19  74.94  994  66.9  83.1  58.59  994  50.9  63.2  82.87   78   

     15    16      17  
0   NaN   NaN  0.0000  
1   NaN   NaN  0.0000  
2   NaN   NaN  0.0000  
3   NaN   NaN  0.0000  
4   NaN   NaN  0.0000  
5   NaN   NaN  0.0000  
6  82.4  82.8  0.0020  
7  80.2  83.4  0.3511  
8  81.6  85.2  0.0785

Clearly, loading the file in a single step is appealing, and you can see that pandas had 
no issues loading the file. You can also see that the empty first column has been trans-
lated into NaN (not a number). You do still have the same issue with 'Missing' for 
some values, and in fact it might make sense to have those 'Missing' values converted 
to NaN:

temp = pd.read_csv("temp_data_01.csv", na_values=['Missing'])

The addition of the na_values parameter controls what values will be translated to 
NaN on load. In this case, you added the string 'Missing' so that the row of the data 
frame was translated from

NaN  Illinois  17  Jan 01, 1979  1979/01/01  17.48  994  6.0  30.5  2.89994  
-13.6  15.8  Missing  0  Missing  Missing  0.00%

to

NaN  Illinois  17  Jan 01, 1979  1979/01/01  17.48  994  6.0  30.5  2.89994  
-13.6  15.8  NaN0  NaN  NaN  0.00%

This technique can be particularly useful if you have one of those data files in which, for 
whatever reason, "no data" is indicated in a variety of ways: NA, N/A, ?, -, and so on. To 
handle a case like that, you can inspect the data to find out what’s used and then reload 
it, using the na_values parameter to standardize all those variations as NaN. 

SAVING DATA

If you want to save the contents of a data frame, a pandas data frame has a similarly 
broad collection of methods. If you take your simple grid data frame, you can write it 
in several ways. This line

df.to_csv("df_out.csv", index=False)    

writes a file that looks like this:

one,two,three
1,2,3
4,5,6
7,8,9

Setting index to False means that 
the row indexes will not be written.
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Similarly, you can transform a data grid to a JSON object or write it to a file:
 
 

df.to_json()     

Supplying a file path as an argument writes 
the JSON to that file rather than returning it.

'{"one":{"0":1,"1":4,"2":7},"two":{"0":2,"1":5,"2":8},"three":{"0":3,"1":6,"2
":9}}'

24.4.2 Data cleaning with a data frame

Converting a particular set of values to NaN on load is a very simple bit of data clean-
ing that pandas makes trivial. Going beyond that, data frames support several opera-
tions that can make data cleaning less of a chore. To see how this works, reopen the 
temperature CSV file, but this time, instead of using the headers to name the col-
umns, use the range() function with the names parameter to give them numbers, 
which will make referring to them easier. You also may recall from an earlier example 
that the first field of every line—the "Notes" field—is empty and loaded with NaN val-
ues. Although you could ignore this column, it would be even easier if you didn’t have 
it. You can use the range() function again, this time starting from 1, to tell pandas to 
load all columns except the first one. But if you know that all of your values are from 
Illinois and you don’t care about the long-form date field, you could start from 4 to 
make things much more manageable:

 

temp = pd.read_csv("temp_data_01.csv", na_values=['Missing'], header=0, 
names=range(18), usecols=range(4,18))

Setting header=0 turns off reading 
the header for column labels.

print(temp)  

           4      5    6     7     8      9    10    11    12     13   14  \
0  1979/01/01  17.48  994   6.0  30.5   2.89  994 -13.6  15.8    NaN    0   
1  1979/01/02   4.64  994  -6.4  15.8  -9.03  994 -23.6   6.6    NaN    0   
2  1979/01/03  11.05  994  -0.7  24.7  -2.17  994 -18.3  12.9    NaN    0   
3  1979/01/04   9.51  994   0.2  27.6  -0.43  994 -16.3  16.3    NaN    0   
4  1979/05/15  68.42  994  61.0  75.1  51.30  994  43.3  57.0    NaN    0   
5  1979/05/16  70.29  994  63.4  73.5  48.09  994  41.1  53.0    NaN    0   
6  1979/05/17  75.34  994  64.0  80.5  50.84  994  44.3  55.7  82.60    2   
7  1979/05/18  79.13  994  75.5  82.1  55.68  994  50.0  61.1  81.42  349   
8  1979/05/19  74.94  994  66.9  83.1  58.59  994  50.9  63.2  82.87   78   

     15    16      17  
0   NaN   NaN   0.00%  
1   NaN   NaN   0.00%  
2   NaN   NaN   0.00%  
3   NaN   NaN   0.00%  
4   NaN   NaN   0.00%  
5   NaN   NaN   0.00%  
6  82.4  82.8   0.20%  
7  80.2  83.4  35.11%  
8  81.6  85.2   7.85%      

Now you have a data frame that has only the columns you might want to work with. 
But you still have an issue: the last column, which lists the percentage of coverage for 
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the heat index, is still a string ending with a percentage sign rather than an actual per-
centage. This problem is apparent if you look at the first row’s value for column 17:

temp[17][0]
'0.00%'

To fix this problem, you need to do two things: Remove the % from the end of the value 
and then cast the value from string to a number. Optionally, if you want to represent the 
resulting percentage as a fraction, you need to divide it by 100. The first bit is simple 
because pandas lets you use a single command to repeat an operation on a column:

temp[17] = temp[17].str.strip("%")
temp[17][0]
'0.00'

This code takes the column and calls a string strip() operation on it to remove the 
trailing %. Now when you look at the first value in the column (or any of the other val-
ues), you see that the offending percentage sign is gone. It’s also worth noting that 
you could have used other operations, such as replace("%", ""), to achieve the same 
result.

 The second operation is to convert the string to a numeric value. Again, pandas 
lets you perform this operation with one command:

temp[17] = pd.to_numeric(temp[17])
temp[17][0]
0.0

Now the values in column 17 are numeric, and if you want to, you can use the div()
method to finish the job of turning those values into fractions:

temp[17] = temp[17].div(100)
temp[17]

0    0.0000
1    0.0000
2    0.0000
3    0.0000
4    0.0000
5    0.0000
6    0.0020
7    0.3511
8    0.0785
Name: 17, dtype: float64

In fact, it would be possible to achieve the same result in a single line by chaining the 
three operations together:

temp[17] = pd.to_numeric(temp[17].str.strip("%")).div(100)

This example is very simple, but it gives you an idea of the convenience that pandas can 
bring to cleaning your data. pandas has a wide variety of operations for transforming 
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data, as well as the ability to use custom functions, so it would be hard to think of a sce-
nario in which you couldn’t streamline data cleaning with pandas.

 Although the number of options is almost overwhelming, a wide variety of tutorials 
and videos is available, and the documentation at http://pandas.pydata.org is 
excellent.

TRY THIS: CLEANING DATA WITH AND WITHOUT PANDAS Experiment with the 
operations. When the final column has been converted to a fraction, can you 
think of a way to convert it back to a string with the trailing percentage sign?

By contrast, load the same data into a plain Python list by using the csv mod-
ule, and apply the same changes by using plain Python.

24.5 Data aggregation and manipulation
The preceding examples probably gave you some idea of the many options pandas gives 
you for performing fairly complex operations on your data with only a few commands. 
As you might expect, this level of functionality is also available for aggregating data. In 
this section, I walk through a few simple examples of aggregating data to illustrate some 
of the many possibilities. Although many options are available, I focus on merging data 
frames, performing simple data aggregation, and grouping and filtering.

24.5.1 Merging data frames

Quite often in the course of handling data, you need to relate two data sets. Suppose 
that you have one file containing the number of sales calls made per month by mem-
bers of a sales team, and in another file, you have the dollar amounts of the sales in 
each of their territories:

calls = pd.read_csv("sales_calls.csv")
print(calls)

   Team member  Territory  Month  Calls
0        Jorge          3      1    107
1        Jorge          3      2     88
2        Jorge          3      3     84
3        Jorge          3      4    113
4          Ana          1      1     91
5          Ana          1      2    129
6          Ana          1      3     96
7          Ana          1      4    128
8          Ali          2      1    120
9          Ali          2      2     85
10         Ali          2      3     87
11         Ali          2      4     87

revenue = pd.read_csv("sales_revenue.csv")
print(revenue)

    Territory  Month  Amount
0           1      1   54228
1           1      2   61640
2           1      3   43491
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3           1      4   52173
4           2      1   36061
5           2      2   44957
6           2      3   35058
7           2      4   33855
8           3      1   50876
9           3      2   57682
10          3      3   53689
11          3      4   49173

Clearly, it would be very useful to link revenue and team-member activity. These two 
files are very simple, yet merging them with plain Python isn’t entirely trivial. pandas 
has a function to merge two data frames:

calls_revenue = pd.merge(calls, revenue, on=['Territory', 'Month'])

The merge function creates a new data frame by joining the two frames on the col-
umns specified in the column field. The merge function works similarly to a relational-
database join, giving you a table that combines the columns from the two files:

print(calls_revenue)
   Team member  Territory  Month  Calls  Amount
0        Jorge          3      1    107   50876
1        Jorge          3      2     88   57682
2        Jorge          3      3     84   53689
3        Jorge          3      4    113   49173
4          Ana          1      1     91   54228
5          Ana          1      2    129   61640
6          Ana          1      3     96   43491
7          Ana          1      4    128   52173
8          Ali          2      1    120   36061
9          Ali          2      2     85   44957
10         Ali          2      3     87   35058
11         Ali          2      4     87   33855

In this case, you have a one-to-one correspondence between the rows in the two fields, 
but the merge function can also do one-to-many and many-to-many joins, as well as 
right and left joins.

QUICK CHECK: MERGING DATA SETS How would you go about merging to data 
sets like the ones in the Python example?

24.5.2 Selecting data

It can also be useful to select or filter the rows in a data frame based on some condition. 
In the example sales data, you may want to look only at territory 3, which is also easy:

 print(calls_revenue[calls_revenue.Territory==3])

  Team member  Territory  Month  Calls  Amount
0       Jorge          3      1    107   50876
1       Jorge          3      2     88   57682
2       Jorge          3      3     84   53689
3       Jorge          3      4    113   49173
k.store/books/9781617296048

https://itbook.store/books/9781617296048


69Data aggregation and manipulation

www.itbook.
In this example, you select only rows in which the territory is equal to 3 but using 
exactly that expression, revenue.Territory==3, as the index for the data frame. From 
the point of view of plain Python, such use is nonsense and illegal, but for a pandas 
data frame, it works and makes for a much more concise expression. 

 More complex expressions are also allowed, of course. If you want to select only 
rows in which the amount per call is greater than 500, you could use this expression 
instead:

print(calls_revenue[calls_revenue.Amount/calls_revenue.Calls>500])

  Team member  Territory  Month  Calls  Amount
1       Jorge          3      2     88   57682
2       Jorge          3      3     84   53689
4         Ana          1      1     91   54228
9         Ali          2      2     85   44957

Even better, you could calculate and add that column to your data frame by using a 
similar operation:

calls_revenue['Call_Amount'] = calls_revenue.Amount/calls_revenue.Calls
print(calls_revenue)

   Team member  Territory  Month  Calls  Amount  Call_Amount
0        Jorge          3      1    107   50876   475.476636
1        Jorge          3      2     88   57682   655.477273
2        Jorge          3      3     84   53689   639.154762
3        Jorge          3      4    113   49173   435.159292
4          Ana          1      1     91   54228   595.912088
5          Ana          1      2    129   61640   477.829457
6          Ana          1      3     96   43491   453.031250
7          Ana          1      4    128   52173   407.601562
8          Ali          2      1    120   36061   300.508333
9          Ali          2      2     85   44957   528.905882
10         Ali          2      3     87   35058   402.965517
11         Ali          2      4     87   33855   389.137931

Again, note that pandas’s built-in logic replaces a more cumbersome structure in 
plain Python.

QUICK CHECK: SELECTING IN PYTHON What Python code structure would you 
use to select only rows meeting certain conditions? 

24.5.3 Grouping and aggregation

As you might expect, pandas has plenty of tools to summarize and aggregate data as 
well. In particular, getting the sum, mean, median, minimum, and maximum values 
from a column uses clearly named column methods:

print(calls_revenue.Calls.sum())
print(calls_revenue.Calls.mean())
print(calls_revenue.Calls.median())
print(calls_revenue.Calls.max())
print(calls_revenue.Calls.min())
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1215
101.25
93.5
129
84

If, for example, you want to get all of the rows in which the amount per call is above 
the median, you can combine this trick with the selection operation:

print(calls_revenue.Call_Amount.median())
print(calls_revenue[calls_revenue.Call_Amount >= 

calls_revenue.Call_Amount.median()])

464.2539427570093
  Team member  Territory  Month  Calls  Amount  Call_Amount
0       Jorge          3      1    107   50876   475.476636
1       Jorge          3      2     88   57682   655.477273
2       Jorge          3      3     84   53689   639.154762
4         Ana          1      1     91   54228   595.912088
5         Ana          1      2    129   61640   477.829457
9         Ali          2      2     85   44957   528.905882

In addition to being able to pick out summary values, it’s often useful to group the 
data based on other columns. In this simple example, you can use the groupby
method to group your data. You may want to know the total calls and amounts by 
month or by territory, for example. In those cases, use those fields with the data 
frame’s groupby method:

print(calls_revenue[['Month', 'Calls', 'Amount']].groupby(['Month']).sum())

       Calls  Amount
Month               
1        318  141165
2        302  164279
3        267  132238
4        328  135201

print(calls_revenue[['Territory', 'Calls', 
'Amount']].groupby(['Territory']).sum())

           Calls  Amount
Territory               
1            444  211532
2            379  149931
3            392  211420

In each case, you select the columns that you want to aggregate, group them by the 
values in one of those columns, and (in this case) sum the values for each group. You 
could also use any of the other methods mentioned earlier in this chapter.

 Again, all these examples are simple, but they illustrate a few of the options you 
have for manipulating and selecting data with pandas. If these ideas resonate with 
your needs, you can learn more by studying the pandas documentation at http://pan-
das.pydata.org.
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TRY THIS: GROUPING AND AGGREGATING Experiment with pandas and the data 
in previous examples. Can you get the calls and amounts by both team mem-
ber and month?

24.6 Plotting data
Another very attractive feature of pandas is the ability to plot the data in a data frame 
very easily. Although you have many options for plotting data in Python and Jupyter 
notebook, pandas can use matplotlib directly from a data frame. You may recall that 
when you started your Jupyter session, one of the first commands you gave was the 
Jupyter “magic” command to enable matplotlib for inline plotting:

%matplotlib inline

Because you have the ability to plot, see how you might plot some data (figure 24.3). 
To continue with the sales example, if you want to plot the quarter’s mean sales by ter-
ritory, you can get a graph right in your notebook just by adding .plot.bar():

calls_revenue[['Territory', 'Calls']].groupby(['Territory']).sum().plot.bar()

Figure 24.3 Bar plot of a pandas data frame in Jupyter notebook

Other options are available. plot() alone or .plot.line() creates a line graph, 
.plot.pie() creates a pie chart, and so on. 

 Thanks to the combination of pandas and matplotlib, plotting data in a Jupyter 
notebook is quite easy. I should also note that although such plotting is easy, there are 
many things that it doesn’t do extremely well.

TRY THIS: PLOTTING Plot a line graph of the monthly average amount per call. 

24.7 Why you might not want to use pandas
The preceding examples illustrate only a tiny fraction of the tools pandas can offer 
you in cleaning, exploring, and manipulating data. As I mentioned at the beginning 
of this chapter, pandas is an excellent tool set that excels in what it was designed to do. 
That doesn’t mean, however, that pandas is the tool for all situations or for all people. 
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 There are reasons why you might elect to use plain old Python (or some other tool) 
instead. For one thing, as I mention earlier, learning to fully use pandas is in some ways 
like learning another language, which may not be something you have the time or incli-
nation for. Also, pandas may not be ideal in all production situations, particularly with 
very large data sets that don’t require much in the way of math operations or with data 
that isn’t easy to put into the formats that work best with pandas. Munging large collec-
tions of product information, for example, probably wouldn’t benefit so much from 
pandas; neither would basic processing of a stream of transactions. 

 The point is that you should choose your tools thoughtfully based on the problems 
at hand. In many cases, pandas will truly make your life easier as you work with data, 
but in other cases, plain old Python may be your best bet.

Summary
 Python offers many benefits for data handling, including the ability to handle 

very large data sets and the flexibility to handle data in ways that match your 
needs.

 Jupyter notebook is a useful way to access Python via a web browser, which also 
makes improved presentation easier.

 pandas is a tool that makes many common data-handling operations much eas-
ier, including cleaning, combining, and summarizing data.

 pandas also makes simple plotting much easier. 
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The “science”  part of “data science” is the modelling, the part that creates 
the predictions, correlations, or classifications that form the information we 
hope to get out a data science project.

 For the final chapter of this ebook, I’ve chosen a chapter from Real-world 
Machine Learning by Henrik Brink, Joseph W. Richards, and Mark Fetherolf on 
“Modeling and prediction.” This chapter lays out the basics of machine learning 
modelling and explains the difference between supervised and unsupervised 
learning. From there it uses the Python package scikit-learn to demonstrate sev-
eral common machine learning approaches, including logistic regression, sup-
port vector machines, k-nearest neighbors, linear regression, and random forest 
algorithms to model problems like the survival chances of passengers on the 
Titanic, number recognition, and mileage prediction.

Modeling and 
prediction
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Chapter 3 from Real-world Machine 
Learning by Henrik Brink, Joseph 
W. Richards, and Mark Fetherolf.

Modeling and prediction
The previous chapter covered guidelines and principles of data collection, prepro-
cessing, and visualization. The next step in the machine-learning workflow is to use 
that data to begin exploring and uncovering the relationships that exist between 
the input features and the target. In machine learning, this process is done by build-
ing statistical models based on the data. This chapter covers the basics required to 
understand ML modeling and to start building your own models. In contrast to most
machine-learning textbooks, we spend little time discussing the various approaches 
to ML modeling, instead focusing attention on the big-picture concepts. This will 
help you gain a broad understanding of machine-learning model building and 
quickly get up to speed on building your own models to solve real-world problems. 
For those seeking more information about specific ML modeling techniques, please 
see the appendix.

This chapter covers
 Discovering relationships in data through ML 

modeling

 Using models for prediction and inference

 Building classification models

 Building regression models
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 We begin the chapter with a high-level overview of statistical modeling. This discus-
sion focuses on the big-picture concepts of ML modeling, such as the purpose of mod-
els, the ways in which models are used in practice, and a succinct look at types of 
modeling techniques in existence and their relative strengths and weaknesses. From 
there, we dive into the two most common machine-learning models: classification and 
regression. In these sections, we give more details about how to build models on your 
data. We also call attention to a few of the most common algorithms used in practice 
in the “Algorithm highlight” boxes scattered throughout the chapter.

3.1 Basic machine-learning modeling
The objective of machine learning is to discover patterns and relationships in data 
and to put those discoveries to use. This process of discovery is achieved through the 
use of modeling techniques that have been developed over the past 30 years in statis-
tics, computer science, and applied mathematics. These various approaches can range 
from simple to tremendously complex, but all share a common goal: to estimate the 
functional relationship between the input features and the target variable. 

 These approaches also share a common workflow, as illustrated in figure 3.1: use of 
historical data to build and optimize a model that is, in turn, used to make predictions 
based on new data. This section prepares you for the practical sections later in the 
chapter. You’ll look at the general goal of machine learning modeling in the next sec-
tion, and move on to seeing how the end product can be used and a few important 
aspects for differentiating between ML algorithms.

3.1.1 Finding the relationship between input and target

Let’s frame the discussion of ML modeling around an example. Recall the Auto MPG 
dataset from chapter 2. The dataset contains metrics about automobiles, such as 

AnswersNew data

Prediction

Modeling

Model optimization

Model building

Historical data

Model evaluation

Figure 3.1 The basic ML workflow
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manufacturer region, model year, vehicle weight, horsepower, and number of cylin-
ders. The purpose of the dataset is to understand the relationship between the input 
features and a vehicle’s miles per gallon (MPG) rating.

 Input features are typically referred to using the symbol X, with subscripts differen-
tiating inputs when multiple input features exist. For instance, we’ll say that X1 refers 
to manufacturer region, X2 to model year, X3 to vehicle weight, and so forth. The col-
lection of all the input features is referred to as the bold X. Likewise, the target vari-
able is typically referred to as Y.

 The relationship between the inputs, X, and output, Y, can be succinctly repre-
sented by this simple formula:

In this equation, f represents the unknown function that relates the input variables to 
the target, Y. The goal of ML modeling is to accurately estimate f by using data. The symbol 
represents random noise in the data that’s unrelated to the function f. The function f 
is commonly referred to as the signal, whereas the random variable  is called the noise. 
The challenge of machine learning is to use data to determine what the true signal is, 
while ignoring the noise.

 In the Auto MPG example, the function f describes the true MPG rating for an auto-
mobile as a function of that car’s many input features. If you knew that function per-
fectly, you could know the MPG rating for any car, real or fictional. But you could have 
numerous sources of noise, , including (and certainly not limited to) the following:

 Imperfect measurement of each vehicle’s MPG rating caused by small inaccura-
cies in the measuring devices—measurement noise

 Variations in the manufacturing process, causing each car in the fleet to have 
slightly different MPG measurements—manufacturing process noise

 Noise in the measurement of the input features, such as weight and horsepower
 Lack of access to the broader set of features that would exactly determine MPG

Using the noisy data that you have from hundreds of vehicles, the ML approach is to 
use modeling techniques to find a good estimate for f. This resultant estimate is 
referred to as an ML model. 

Target

Model
or signal

Error
or noise

Explanatory
features X1…Xn

Y = f(X) + ε
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 In sections 3.2 and 3.3, we describe in further detail how these ML modeling tech-
niques work. Indeed, the bulk of the academic literature on machine learning deals 
with how to best estimate f. 

3.1.2 The purpose of finding a good model

Assuming that you have a good estimate of f, what next? Machine learning has two 
main goals: prediction and inference.

PREDICTION

After you have a model, you can use that model to generate predictions of the target, 
Y, for new data, Xnew, by plugging those new features into the model. In mathematical 
notation, if fest denotes your machine-learning estimate of f (recall that f denotes the 
true relationship between the features and the target), then predictions for new data 
can be obtained by plugging the new data into this formula:

Ypred = fest(Xnew)

These predictions can then be used to make decisions about the new data or may be 
fed into an automated workflow.

 Going back to the Auto MPG example, suppose that you have an ML model, fest, 
that describes the relationship between MPG and the input metrics of an automobile. 
Prediction allows you to ask the question, “What would the MPG of a certain automo-
bile with known input metrics be?” Such a predictive ability would be useful for 
designing automobiles, because it would allow engineers to assess the MPG rating of 
different design concepts and to ensure that the individual concepts meet MPG 
requirements.

 Prediction is the most common use of machine-learning systems. Prediction is cen-
tral to many ML use cases, including these:

 Deciphering handwritten digits or voice recordings
 Predicting the stock market
 Forecasting
 Predicting which users are most likely to click, convert, or buy
 Predicting which users will need product support and which are likely to 

unsubscribe
 Determining which transactions are fraudulent
 Making recommendations

Because of the high levels of predictive accuracy attained by machine-learning 
approaches and the rapid speed by which ML predictions can be generated, ML is 
used every day by thousands of companies for predictive purposes.

INFERENCE

In addition to making predictions on new data, you can use machine-learning models 
to better understand the relationships between the input features and the output target.
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A good estimate of f can enable you to answer deep questions about the associations 
between the variables at hand. For example:

 Which input features are most strongly related to the target variable?
 Are those relationships positive or negative?
 Is f a simple relationship, or is it a function that’s more nuanced and nonlinear?

These inferences can tell you a lot about the data-generating process and give clues to 
the factors driving relationships in the data. Returning to the Auto MPG example, you 
can use inference to answer questions such as these: Does manufacturer region have 
an effect on MPG? Which of the inputs are most strongly related to MPG? And are 
they negatively or positively related? Answers to these questions can give you an idea 
of the driving factors in automobile MPG and give clues about how to engineer vehi-
cles with higher MPG. 

3.1.3 Types of modeling methods

Now the time has come to dust off your statistics knowledge and dive into some of the 
mathematical details of ML modeling. Don’t worry—we’ll keep the discussion rela-
tively broad and understandable for those without much of a statistics background!

 Statistical modeling has a general trade-off between predictive accuracy and model 
interpretability. Simple models are easy to interpret, yet won’t produce accurate pre-
dictions (particularly for complicated relationships). Complex models may produce 
accurate predictions, but may be black-box and hard to interpret. 

 In addition, the machine-learning model has two main types: parametric and non-
parametric. The essential difference is that parametric models assume that f takes a 
specific functional form, whereas nonparametric models don’t make such strict assump-
tions. Therefore, parametric approaches tend to be simple and interpretable, but less 
accurate. Likewise, nonparametric approaches are usually less interpretable but more 
accurate across a broad range of problems. Let’s take a closer look at both parametric 
and nonparametric approaches to ML modeling.

PARAMETRIC METHODS

The simplest example of a parametric approach is linear regression. In linear regres-
sion, f is assumed to be a linear combination of the numerical values of the inputs. 
The standard linear regression model is as follows:

f(X) = 0 + X1 × 1 + X2 × 2 + …

In this equation, the unknown parameters, 0, 1,… can be interpreted as the inter-
cept and slope parameters (with respect to each of the inputs). When you fit a para-
metric model to some data, you estimate the best values of each of the unknown 
parameters. Then you can turn around and plug those estimates into the formula for 
f(X) along with new data to generate predictions. 

 Other examples of commonly used parametric models include logistic regression, 
polynomial regression, linear discriminant analysis, quadratic discriminant analysis, 
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(parametric) mixture models, and naïve Bayes (when parametric density estimation is 
used). Approaches often used in conjunction with parametric models for model selec-
tion purposes include ridge regression, lasso, and principal components regression. 
Further details about some of these methods are given later in this chapter, and a 
description of each approach is given in the appendix. 

 The drawback of parametric approaches is that they make strong assumptions 
about the true form of the function f. In most real-world problems, f doesn’t assume 
such a simple form, especially when there are many input variables (X). In these situa-
tions, parametric approaches will fit the data poorly, leading to inaccurate predictions. 
Therefore, most real-world approaches to machine learning depend on nonparametric 
machine-learning methods.

NONPARAMETRIC METHODS

In nonparametric models, f doesn’t take a simple, fixed function. Instead, the form and 
complexity of f adapts to the complexity of the data. For example, if the relationship 
between X and Y is wiggly, a nonparametric approach will choose a function f that 
matches the curvy patterns. Likewise, if the relationship between the input and output 
variable is smooth, a simple function f will be chosen.

 A simple example of a nonparametric model is a classification tree. A classification 
tree is a series of recursive binary decisions on the input features. The classification 
tree learning algorithm uses the target variable to learn the optimal series of splits 
such that the terminal leaf nodes of the tree contain instances with similar values of 
the target.

 Take, for example, the Titanic Passengers dataset. The classification tree algorithm
first seeks the best input feature to split on, such that the resulting leaf nodes contain 
passengers who either mostly lived or mostly died. In this case, the best split is on the 
sex (male/female) of the passenger. The algorithm continues splitting on other input 
features in each of the subnodes until the algorithm can no longer detect any good 
subsequent splits.

 Classification trees are nonparametric because the depth and complexity of the 
tree isn’t fixed in advance, but rather is learned from the data. If the relationship 
between the target variable and the input features is complex and there’s a sufficient 
amount of data, then the tree will grow deeper, uncovering more-nuanced patterns. 
Figure 3.2 shows two classification trees learned from different subsets of the Titanic 
Passengers dataset. In the left panel is a tree learned from only 400 passengers: the 
resultant model is simple, consisting of only a single split. In the right panel is a tree 
learned from 891 passengers: the larger amount of data enables the model to grow in 
complexity and find more-detailed patterns in the data.

 Other examples of nonparametric approaches to machine learning include k-nearest 
neighbors, splines, basis expansion methods, kernel smoothing, generalized additive 
models, neural nets, bagging, boosting, random forests, and support vector machines. 
Again, more details about some of these methods are given later in this chapter, and a 
description of each approach is given in the appendix. 
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3.1.4 Supervised versus unsupervised learning

Machine-learning problems fall into two camps: supervised and unsupervised. Super-
vised problems are ones in which you have access to the target variable for a set of 
training data, and unsupervised problems are ones in which there’s no identified tar-
get variable.

 All the examples so far in this book fall in the supervised camp. These problems 
each contain a target of interest (Did the Titanic passenger survive? Did the customer 
churn? What’s the MPG?) and a set of training data with known values of the target. 
Indeed, most problems in machine learning are supervised in nature, and most ML 
techniques are designed to solve supervised problems. We spend the vast majority of 
this book describing how to solve supervised problems.

 In unsupervised learning, you have access to only input features, and don’t have an 
associated target variable. So what kinds of analyses can you perform if there’s no tar-
get available? The unsupervised learning approach has two main classes:

 Clustering —Use the input features to discover natural groupings in the data and 
to divide the data into those groups. Methods: k-means, Gaussian mixture mod-
els, and hierarchical clustering.

 Dimensionality reduction —Transform the input features into a small number of 
coordinates that capture most of the variability of the data. Methods: principal 
component analysis (PCA), multidimensional scaling, manifold learning.

Both clustering and dimensionality reduction have wide popularity (particularly, k-means
and PCA), yet are often abused and used inappropriately when a supervised approach 
is warranted.

Gender = M

Died
207/40

Died
460/93

Lived
36/117

Classification tree: Small amount of data

Gender = M

Age ≥ 6.5

Died
8/1

Lived
0/15

SibSp ≥ 2.5 Lived
9/161

Pclass ≥ 2.5

Lived
48/69

Died
24/3

Fare ≥ 23.35

Classification tree: Large amount of data

Figure 3.2 A decision tree is an example of a nonparametric ML algorithm, because its functional 
form isn’t fixed. The tree model can grow in complexity with larger amounts of data to capture more-
complicated patterns. In each terminal node of the tree, the ratio represents the number of training 
instances in that node that died versus lived.
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  But unsupervised problems do play a significant role in machine learning, often 
in support of supervised problems, either to help compile training data for learning 
or to derive new input features on which to learn. You’ll return to the topic of unsu-
pervised learning in chapter 8. 

 Now, let’s transition to the more practical aspects of ML modeling. Next we 
describe the steps needed to start building models on your own data and the practical 
considerations of choosing which algorithm to use. We break up the rest of the chap-
ter into two sections corresponding to the two most common problems in machine 
learning: classification and regression. We begin with the topic of classification.

3.2 Classification: predicting into buckets
In machine learning, classification describes the prediction of new data into buckets 
(classes) by using a classifier built by the machine-learning algorithm. Spam detec-
tors put email into Spam and No Spam buckets, and handwritten digit recognizers 
put images into buckets from 0 through 9, for example. In this section, you’ll learn 
how to build classifiers based on the data at hand. Figure 3.3 illustrates the process 
of classification.

Data Classifier

A B

Figure 3.3 A classification process. 
Rectangles and circles are divided by 
a classifier into classes A and B. This 
is a case of binary classification with 
only two classes.

Let’s again use an example. In chapter 2, you looked at the Titanic Passengers dataset
for predicting survival of passengers onboard the ill-fated ship. Figure 3.4 shows a sub-
set of this data.
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Figure 3.4 A subset of the Titanic Passengers dataset
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As we’ve previously discussed, typically the best way to start an ML project is to get a 
feel for the data by visualizing it. For example, it’s considered common knowledge 
that more women than men survived the Titanic, and you can see that this is the case 
from the mosaic plot in figure 3.5 (if you’ve forgotten about mosaic plots, look back at 
section 2.3.1).

Female Standardized residuals:

Fewer
counts than

expected

<–4 –4:–2 –2:0 0:2 2:4 >4

No difference
from statistical
independence

More
counts than

expected

24% female 76% male

Gender

26% of
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died

74% of
females
survived

N
o

Y
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Male

Mosaic plot for Titanic data: Gender vs. survival

S
ur

vi
ve

d?

Figure 3.5 Mosaic plot showing overwhelming support for the idea that more women than men survived 
the disaster.

By using the visualization techniques in section 2.3, you can get a feeling for the per-
formance of each feature in the Titanic Passengers dataset. But it’s important to real-
ize that just because a single feature looks good or bad, it doesn’t necessarily show the 
performance of the feature in combination with one or more other features. Maybe 
the age together with the sex and social status divides the passengers much better than 
any single feature. In fact, this is one of the main reasons to use machine-learning algo-
rithms in the first place: to find signals in many dimensions that humans can’t dis-
cover easily.

 The following subsections introduce the methodology for building classification 
models and making predictions. You’ll look at a few specific algorithms and the differ-
ence between linear and nonlinear algorithms.
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3.2.1 Building a classifier and making predictions

The first order of business is to choose the classification algorithm to use for building 
the classifier. Many algorithms are available, and each has pros and cons for different 
data and deployment requirements. The appendix provides a table of algorithms and 
a comparison of their properties. You’ll use this table throughout the book for select-
ing algorithms to try for different problems. In this section, the choice of algorithm 
isn’t essential; in the next chapter, you’ll learn how to properly measure the perfor-
mance of the algorithm and choose the best for the job.

 The next step is to ready the data for modeling. After exploring some of the fea-
tures in the dataset, you may want to preprocess the data to deal with categorical 
features, missing values, and so on (as discussed in chapter 2). The preprocessing 
requirements are also dependent on the specific algorithm, and the appendix lists 
these requirements for each algorithm. 

 For the Titanic survival model, you’ll start by choosing a simple classification algo-
rithm: logistic regression.1 For logistic regression, you need to do the following:

1 Impute missing values.
2 Expand categorical features. 
3 From chapter 2, you know that the Fare feature is heavily skewed. In this situation, 

it’s advantageous (for some ML models) to transform the variable to make the fea-
ture distribution more symmetric and to reduce the potentially harmful impact of 
outliers. Here, you’ll choose to transform Fare by taking the square root.

The final dataset that you’ll use for modeling is shown in figure 3.6.
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Figure 3.6 The first five rows of the Titanic Passengers dataset after processing categorical 
features and missing values, and transforming the Fare variable by taking the square root (see the 
prepare_data function in the source code repository). All features are now numerical, which is 
the preferred format for most ML algorithms.

You can now go ahead and build the model by running the data through the logistic 
regression algorithm. This algorithm is implemented in the scikit-learn Python pack-
age, and the model-building and prediction code look like the following listing.

1 The regression in logistic regression doesn’t mean it’s a regression algorithm. Logistic regression expands 
linear regression with a logistic function to make it suitable for classification.
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from sklearn.linear_model import LogisticRegression as Model 

def train(features, target):
  model = Model()
  model.fit(features, target) 
  return model

def predict(model, new_features):
  preds = model.predict(new_features) 
  return preds

# Assume Titanic data is loaded into titanic_feats, 
# titanic_target and titanic_test
model = train(titanic_feats, titanic_target) 
predictions = predict(model, titanic_test) 

urns 
ions 
r 1)

After building the model, you predict the survival of previously unseen passengers 
based on their features. The model expects features in the format given in figure 3.6, 
so any new passengers will have to be run through exactly the same processes as the 
training data. The output of the predict function will be 1 if the passenger is pre-
dicted to survive, and 0 otherwise.

 It’s useful to visualize the classifier by plotting the decision boundary. Given two of 
the features in the dataset, you can plot the boundary that separates surviving passen-
gers from the dead, according to the model. Figure 3.7 shows this for the Age and 
square-root Fare features.

Listing 3.1 Building a logistic regression classifier with scikit-learn

Imports 
the logistic 
regression 
algorithm

Fits the logistic regression 
algorithm using features 
and target data

Makes predictions on a 
new set of features 
using the model

Returns the model 
built by the algorithm
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Died (actual)

Classifier
predicts: Survived

Decision
boundary
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predicts: Died

Figure 3.7 The decision boundary for the Age and sqrt(Fare) features. The diamonds show passengers 
who survived, whereas circles denote passengers who died. The light background denotes the 
combinations of Age and Fare that are predicted to yield survival. Notice that a few instances overlap the 
boundary. The classifier isn’t perfect, but you’re looking in only two dimensions. The algorithm on the full 
dataset finds this decision boundary in 10 dimensions, but that becomes harder to visualize.
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Algorithm highlight: logistic regression
In these “Algorithm highlight” boxes, you’ll take a closer look at the basic ideas 
behind the algorithms used throughout the book. This allows curious readers to try 
to code up, with some extra research, basic working versions of the algorithms. Even 
though we focus mostly on the use of existing packages in this book, understanding 
the basics of a particular algorithm can sometimes be important to fully realize the 
predictive potential. 

The first algorithm you’ll look at is the logistic regression algorithm, arguably the sim-
plest ML algorithm for classification tasks. It’s helpful to think about the problem as 
having only two features and a dataset divided into two classes. Figure 3.7 shows an 
example, with the features Age and sqrt(Fare); the target is Survived or Died. To build 
the classifier, you want to find the line that best splits the data into the target 
classes. A line in two dimensions can be described by two parameters. These two 
numbers are the parameters of the model that you need to determine. 

The algorithm then consists of the following steps:

1 You can start the search by picking the parameter values at random, hence plac-
ing a random line in the two-dimensional figure.

2 Measure how well this line separates the two classes. In logistic regression, you 
use the statistical deviance for the goodness-of-fit measurement.

3 Guess new values of the parameters and measure the separation power.
4 Repeat until there are no better guesses. This is an optimization procedure that 

can be done with a range of optimization algorithms. Gradient descent is a pop-
ular choice for a simple optimization algorithm.

This approach can be extended to more dimensions, so you’re not limited to two fea-
tures in this model. If you’re interested in the details, we strongly encourage you to 
research further and try to implement this algorithm in your programming language of 
choice. Then look at an implementation in a widely used ML package. We’ve left out 
plenty of details, but the preceding steps remain the basis of the algorithm.

Some properties of logistic regression include the following:

 The algorithm is relatively simple to understand, compared to more-complex algo-
rithms. It’s also computationally simple, making it scalable to large datasets.

 The performance will degrade if the decision boundary that separates the classes 
needs to be highly nonlinear. See section 3.2.2.

 Logistic regression algorithms can sometimes overfit the data, and you often need 
to use a technique called regularization that limits this danger. See section 3.2.2 
for an example of overfitting.

Further reading 
If you want to learn more about logistic regression and its use in the real world, check 
out Applied Logistic Regression by David Hosmer et al. (Wiley, 2013).
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3.2.2 Classifying complex, nonlinear data

Looking at figure 3.7, you can understand why logistic regression is a linear algorithm: 
the decision boundary is a straight line. Of course, your data might not be well sepa-
rated by a straight line, so for such datasets you should use a nonlinear algorithm. But 
nonlinear algorithms are typically more demanding computationally and don’t scale 
well to large datasets. You’ll look further at the scalability of various types of algo-
rithms in chapter 8.

 Looking again at the appendix, you can pick a nonlinear algorithm for modeling 
the Titanic Passengers dataset. A popular method for nonlinear problems is a support 
vector machine with a nonlinear kernel. Support vector machines are linear by 
nature, but by using a kernel, this model becomes a powerful nonlinear method. You 
can change a single line of code in listing 3.1 to use this new algorithm, and the deci-
sion boundary is plotted in figure 3.8:

from sklearn.svm import SVC as Model

You can see that the decision boundary in figure 3.8 is different from the linear one in 
figure 3.7. What you see here is a good example of an important concept in machine 
learning: overfitting. The algorithm is capable of fitting well to the data, almost at the 
single-record level, and you risk losing the ability to make good predictions on new 
data that wasn’t included in the training set; the more complex you allow the model to 
become, the higher the risk of overfitting.
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Figure 3.8 Nonlinear decision boundary of the Titanic survival support vector 
machine classifier with a nonlinear kernel. The light background denotes the 
combinations of Age and Fare that are predicted to yield survival.
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Usually, you can avoid overfitting a nonlinear model by using model parameters built 
into the algorithm. By tweaking the parameters of the model, keeping the data 
unchanged, you can obtain a better decision boundary. Note that you’re currently 
using intuition to determine when something is overfitting; in chapter 4, you’ll learn 
how to use data and statistics to quantify this intuition. For now, you’ll use our (the 
authors’) experience and tweak a certain parameter called gamma. You don’t need to 
know what gamma is at this point, only that it helps control the risk of overfitting. In 
chapter 5, you’ll see how to optimize the model parameters without only guessing at 
better values. Setting gamma = 0.1 in the SVM classifier, you obtain the much improved 
decision boundary shown in figure 3.9. 
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Figure 3.9 Decision boundary of nonlinear RBF-kernel SVM with gamma = 0.1

Algorithm highlight: support vector machines
The support vector machine (SVM) algorithm is a popular choice for both linear and 
nonlinear problems. It has some interesting theoretical and practical properties that 
make it useful in many scenarios. 

The main idea behind the algorithm is, as with logistic regression discussed previously, 
to find the line (or equivalent in higher dimensions) that separates the classes opti-
mally. Instead of measuring the distance to all points, SVMs try to find the largest mar-
gin between only the points on either side of the decision line. The idea is that there’s 
no reason to worry about points that are well within the boundary, only ones that 
are close. In the following image, you can see that lines H1 and H2 are bad separation
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 The Elements of Statistical Learning: Data Mining, Inference, and Prediction by 
Trevor Hastie et al. (Springer, 2009).

 Pattern Recognition and Machine Learning by Christopher Bishop (Springer, 2007).

3.2.3 Classifying with multiple classes

Up to this point, you’ve looked at classification into only two classes. In some cases, 
you’ll have more than two classes. A good real-world example of multiclass classifica-
tion is the handwritten digit recognition problem. Whenever you send old-school mail 
to your family, a robot reads the handwritten ZIP code and determines where to send 
the letter, and good digit recognition is essential in this process. A public dataset, the 

(continued)

boundaries, because the distance to the closest point on both sides of the line isn’t 
the largest it can be. H3 is the optimal line.

Although this algorithm is also linear in the sense that the separation boundary is 
linear, SVMs are capable of fitting to nonlinear data, as you saw earlier in this sec-
tion. SVMs use a clever technique in order to fit to nonlinear data: the kernel trick. A 
kernel is a mathematical construct that can “warp” the space where the data lives. 
The algorithm can then find a linear boundary in this warped space, making the 
boundary nonlinear in the original space.

Further reading
Hundreds of books have been written about machine-learning algorithms, covering 
everything from their theoretical foundation and efficient implementation to their 
practical use. If you’re looking for a more rigorous treatment of these topics, we rec-
ommend two classic texts on ML algorithms:

X2

X1

H1 H2 H3

An SVM decision boundary (H3) is often 
superior to decision boundaries found by 
other ML algorithms. 
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MNIST database,1 is available for research into these types of problems. This dataset 
consists of 60,000 images of handwritten digits. Figure 3.10 shows a few of the hand-
written digit images.

Figure 3.10 Four randomly chosen handwritten digits from the 
MNIST database

The images are 28 × 28 pixels each, but we convert each image into 282 = 784 features, 
one feature for each pixel. In addition to being a multiclass problem, this is also a 
high-dimensional problem. The pattern that the algorithm needs to find is a complex 
combination of many of these features, and the problem is nonlinear in nature. 

 To build the classifier, you first choose the algorithm to use from the appendix. 
The first nonlinear algorithm on the list that natively supports multiclass problems is 
the k-nearest neighbors classifier, which is another simple but powerful algorithm for 
nonlinear ML modeling. You need to change only one line in listing 3.1 to use the 
new algorithm, but you’ll also include a function for getting the full prediction proba-
bilities instead of just the final prediction:

from sklearn.neighbors import KNeighborsClassifier as Model

def predict_probabilities(model, new_features):
  preds = model.predict_proba(new_features)
  return preds

Building the k-nearest neighbors classifier and making predictions on the four digits 
shown in figure 3.10, you obtain the table of probabilities shown in figure 3.11.

 You can see that the predictions for digits 1 and 3 are spot on, and there’s only a 
small (10%) uncertainty for digit 4. Looking at the second digit (3), it’s not surprising 
that this is hard to classify perfectly. This is the main reason to get the full probabilities 
in the first place: to be able to take action on things that aren’t perfectly certain. This 
is easy to understand in the case of a post office robot routing letters; if the robot is 
sufficiently uncertain about some digits, maybe we should have a good old human 
look at it before we send it out wrong.

1 You can find the MNIST Database of Handwritten Digits at http://yann.lecun.com/exdb/mnist/.
store/books/9781617296048

http://yann.lecun.com/exdb/mnist/
https://itbook.store/books/9781617296048


90 CHAPTER 3 Modeling and prediction

www.itboo
Digit 1

0
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0

0

0

0
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7

3

9

5

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2 3

0.0

0.7

0.0

0.0

4 5

0.0

0.2

0.0

0.9

6 7

1

0

0

0

8

0

0

0

0

9

0.0

0.1

1.0

0.1

Predicted digit

Digit 2 has a probability
of 0.2 of being 5.

Figure 3.11 Table of predicted probabilities from a k-nearest neighbors classifier, as applied to the 
MNIST dataset

3.3 Regression: predicting numerical values
Not every machine-learning problem is about putting records into classes. Sometimes 
the target variable takes on numerical values—for example, when predicting dollar 

Algorithm highlight: k-nearest neighbors
The k-nearest neighbors algorithm is a simple yet powerful nonlinear ML method. It’s 
often used when model training should be quick, but predictions are typically slower. 
You’ll soon see why this is the case.

The basic idea is that you can classify a new data record by comparing it with sim-
ilar records from the training set. If a dataset record consists of a set of numbers, 
ni, you can find the distance between records via the usual distance formula:

. 

When making predictions on new records, you find the closest known record and assign
that class to the new record. This would be a 1-nearest neighbor classifier, as you’re 
using only the closest neighbor. Usually you’d use 3, 5, or 9 neighbors and pick the 
class that’s most common among neighbors (you use odd numbers to avoid ties).

The training phase is relatively quick, because you index the known records for fast 
distance calculations to new data. The prediction phase is where most of the work is 
done, finding the closest neighbors from the entire dataset.

The previous simple example uses the usual Euclidean distance metric. You can also 
use more-advanced distance metrics, depending on the dataset at hand.

K-nearest neighbors is useful not only for classification, but for regression as well. 
Instead of taking the most common class of neighbors, you take the average or 
median values of the target values of the neighbors. Section 3.3 further details 
regression.

d n1
2 n2

2 ... nn
2+ +=
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values in a financial model. We call the act of predicting numerical values regression, 
and the model itself a regressor. Figure 3.12 illustrates the concept of regression.

Data Regressor

0.5 1.0 1.5 2.0

Figure 3.12 In this regression 
process, the regressor is predicting 
the numerical value of a record.

As an example of a regression analysis, you’ll use the Auto MPG dataset introduced in 
chapter 2. The goal is to build a model that can predict the average miles per gallon of 
a car, given various properties of the car such as horsepower, weight, location of ori-
gin, and model year. Figure 3.13 shows a small subset of this data.

0

MPG Cylinders Displacement

1

2

3

4

18

15

18

16

8

8

8

8

307

350

318

304

17 8 302

Horsepower

130

165

150

150

140

Weight

3504

3693

3436

3433

3449

Acceleration

12.0

11.5

11.0

12.0

10.5

Model/year

70

70

70

70

70

Origin

1

1

1

1

1

Figure 3.13 Small subset of the Auto MPG data

In chapter 2, you discovered useful relationships between the MPG rating, the car 
weight, and the model year. These relationships are shown in figure 3.14.

 In the next section, you’ll look at how to build a basic linear regression model to 
predict the miles per gallon values of this dataset of vehicles. After successfully 
building a basic model, you’ll look at more-advanced algorithms for modeling non-
linear data.

3.3.1 Building a regressor and making predictions

Again, you’ll start by choosing an algorithm to use and getting the data into a suitable 
format. Arguably, the linear regression algorithm is the simplest regression algorithm. As 
the name indicates, this is a linear algorithm, and the appendix shows the data prepro-
cessing needed in order to use this algorithm. You need to (1) impute missing values
and (2) expand categorical features. Our Auto MPG dataset has no missing values, 
store/books/9781617296048
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Scatterplots for MPG data

Figure 3.14 Using scatter plots, you can see that Vehicle Weight and Model Year are useful for predicting 
MPG. See chapter 2 for more details.

but there’s one categorical column: Origin. After expanding the Origin column (as 
described in section 2.2.1 in chapter 2), you obtain the data format shown in figure 3.15.

387

MPG Cylinders Displacement

388

389

390

391

27

44

32

28

4

4

4

4

140

97

135

120

31 4 119

Horsepower

86

52

84

79

82

Weight

2790

2130

2295

2625

2720

Acceleration

15.6

24.6

11.6

18.6

19.4

Model/year

82

82

82

82

82

Origin
= 1

1

0

1

1

1

Origin
= 2

0

1

0

0

0

Origin
= 3

0

0

0

0

0

Figure 3.15 The Auto MPG data after expanding the categorical Origin column

 You can now use the algorithm to build the model. Again, you can use the code 
structure defined in listing 3.1 and change this line:

from sklearn.linear_model import LinearRegression as Model

With the model in hand, you can make predictions. In this example, however, you’ll 
split the dataset into a training set and a testing set before building the model. In 
chapter 4, you’ll learn much more about how to evaluate models, but you’ll use some 
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simple techniques in this section. By training a model on only some of the data while 
holding out a testing set, you can subsequently make predictions on the testing set and 
see how close your predictions come to the actual values. If you were training on all the 
data and making predictions on some of that training data, you’d be cheating, as 
the model is more likely to make good predictions if it’s seen the data while training. 

 Figure 3.16 shows the results of making predictions on a held-out testing set, and 
how they compare to the known values. In this example, you train the model on 80% 
of the data and use the remaining 20% for testing.

A useful way to compare more than a few rows of predictions is to use our good friend, 
the scatter plot, once again. For regression problems, both the actual target values and 
the predicted values are numeric. Plotting the predictions against each other in a scatter 
plot, introduced in chapter 2, you can visualize how well the predictions follow the 
actual values. This is shown for the held-out Auto MPG test set in figure 3.17.

10

35

Predicted
MPG

15 20 25 30 35 40 45 50

40

30

10

15

25

20

5

MPG

Figure 3.17 A scatter plot of the actual versus predicted values on the held-out 
test set. The diagonal line shows the perfect regressor. The closer all of the 
predictions are to this line, the better the model.

 This figure 
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0
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0

0

Origin = 3
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0
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13.601050

15.181120
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Figure 3.16 Comparing MPG predictions 
on a held-out testing set to actual values
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shows great prediction performance, as the predictions all fall close to the optimal diag-
onal line. By looking at this figure, you can get a sense of how your ML model might per-
form on new data. In this case, a few of the predictions for higher MPG values seem to 
be underestimated, and this may be useful information for you. For example, if you want 
to get better at estimating high MPG values, you might need to find more examples of 
high MPG vehicles, or you might need to obtain higher-quality data in this regime.

Algorithm highlight: linear regression
Like logistic regression for classification, linear regression is arguably the simplest 
and most widely used algorithm for building regression models. The main strengths 
are linear scalability and a high level of interpretability. 

This algorithm plots the dataset records as points, with the target variable on the y-axis,
and fits a straight line (or plane, in the case of two or more features) to these points. 
The following figure illustrates the process of optimizing the distance from the points 
to the straight line of the model.

A straight line can be described by two parameters for lines in two dimensions, and 
so on. You know this from the a and b in y = a × x + b from the basic math. These 
parameters are fitted to the data, and when optimized, they completely describe the 
model and can be used to make predictions on new data.
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Scatterplots for MPG data

Line with smallest
distance to all points.

Demonstration of how linear regression determines the best-fit line. Here, the dark line is the 
optimal linear regression fitted line on this dataset, yielding a smaller mean-squared deviation from 
the data to any other possible line (such as the dashed line shown).
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3.3.2 Performing regression on complex, nonlinear data

In some datasets, the relationship between features can’t be fitted by a linear model, 
and algorithms such as linear regression may not be appropriate if accurate predic-
tions are required. Other properties, such as scalability, may make lower accuracy a 
necessary trade-off. Also, there’s no guarantee that a nonlinear algorithm will be more 
accurate, as you risk overfitting to the data. As an example of a nonlinear regression 
model, we introduce the random forest algorithm. Random forest is a popular method
for highly nonlinear problems for which accuracy is important. As evident in the 
appendix, it’s also easy to use, as it requires minimal preprocessing of data. In fig-
ures 3.18 and 3.19, you can see the results of making predictions on the Auto MPG 
test set via the random forest model.
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Figure 3.18 Table of actual versus predicted MPG values 
for the nonlinear random forest regression model
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Figure 3.19 Comparison of MPG data versus predicted values for the nonlinear 
random forest regression model
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This model isn’t much different from the linear algorithm, at least visually. It’s not 
clear which of the algorithms performs the best in terms of accuracy. In the next chap-
ter, you’ll learn how to quantify the performance (often called the accuracy score of the 
model) so you can make meaningful measurements of how good the prediction accu-
racy is. 

3.4 Summary
In this chapter, we introduced machine-learning modeling. Here we list the main 
takeaways from the chapter:

 The purpose of modeling is to describe the relationship between the input fea-
tures and the target variable. 

 You can use models either to generate predictions for new data (whose target is 
unknown) or to infer the true associations (or lack thereof) present in the data.

Algorithm highlight: random forest
For the last algorithm highlight of this chapter, we introduce the random forest (RF) 
algorithm. This highly accurate nonlinear algorithm is widely used in real-world classi-
fication and regression problems.

The basis of the RF algorithm is the decision tree. Imagine that you need to make a 
decision about something, such as what to work on next. Some variables can help 
you decide the best course of action, and some variables weigh higher than others. 
In this case, you might ask first, “How much money will this make me?” If the answer 
is less than $10, you can choose to not go ahead with the task. If the answer is more 
than $10, you might ask the next question in the decision tree, “Will working on this 
make me happy?” and answer with a yes/no. You can continue to build out this tree 
until you’ve reached a conclusion and chosen a task to work on.

The decision tree algorithm lets the computer figure out, based on the training set, 
which variables are the most important, and put them in the top of the tree, and then 
gradually use less-important variables. This allows it to combine variables and say, 
“If the amount is greater than $10 and makes me happy, and amount of work less 
than 1 hour, then yes.”

A problem with decision trees is that the top levels of the tree have a huge impact on 
the answer, and if the new data doesn’t follow exactly the same distribution as the 
training set, the ability to generalize might suffer. This is where the random forest 
method comes in. By building a collection of decision trees, you mitigate this risk. 
When making the answer, you pick the majority vote in the case of classification, or 
take the mean in case of regression. Because you use votes or means, you can also 
give back full probabilities in a natural way that not many algorithms share.

Random forests are also known for other kinds of advantages, such as their immunity 
to unimportant features, noisy datasets in terms of missing values, and mislabeled 
records. 
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 There are hundreds of methods for ML modeling. Some are parametric, mean-
ing that the form of the mathematical function relating the features to the target 
is fixed in advance. Parametric models tend to be more highly interpretable yet 
less accurate than nonparametric approaches, which are more flexible and can 
adapt to the true complexity of the relationship between the features and the tar-
get. Because of their high levels of predictive accuracy and their flexibility, non-
parametric approaches are favored by most practitioners of machine learning.

 Machine-learning methods are further broken into supervised and unsuper-
vised methods. Supervised methods require a training set with a known target, 
and unsupervised methods don’t require a target variable. Most of this book is 
dedicated to supervised learning. 

 The two most common problems in supervised learning are classification, in 
which the target is categorical, and regression, in which the target is numerical. 
In this chapter, you learned how to build both classification and regression 
models and how to employ them to make predictions on new data.

 You also dove more deeply into the problem of classification. Linear algorithms 
can define linear decision boundaries between classes, whereas nonlinear 
methods are required if the data can’t be separated linearly. Using nonlinear 
models usually has a higher computational cost.

 In contrast to classification (in which a categorical target is predicted), you pre-
dict a numerical target variable in regression models. You saw examples of linear 
and nonlinear methods and how to visualize the predictions of these models.

3.5 Terms from this chapter

Word Definition

model The base product from using an ML algorithm on training data.

prediction Predictions are performed by pulling new data through the model.

inference The act of gaining insight into the data by building the model and not making predictions.

(non)parametric Parametric models make assumptions about the structure of the data. Nonparamet-
ric models don’t.

(un)supervised Supervised models, such as classification and regression, find the mapping between 
the input features and the target variable. Unsupervised models are used to find pat-
terns in the data without a specified target variable.

clustering A form of unsupervised learning that puts data into self-defined clusters.

dimensionality 
reduction

Another form of unsupervised learning that can map high-dimensional datasets to a 
lower-dimensional representation, usually for plotting in two or three dimensions.

classification A supervised learning method that predicts data into buckets.

regression The supervised method that predicts numerical target values.
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In the next chapter, you’ll look at creating and testing models, the exciting part of 
machine learning. You’ll see whether your choice of algorithms and features is going 
to work to solve the problem at hand. You’ll also see how to rigorously validate a 
model to see how good its predictions are likely to be on new data. And you’ll learn 
about validation methods, metrics, and some useful visualizations for assessing your 
models’ performance.
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