
manning

Exploring Swift
Chapters selected by
Craig Grummitt

Author Picks

www.itbook.store/books/9781617296215

https://itbook.store/books/9781617296215

Exploring Swift
Selected by Craig Grummitt

Manning Author Picks

 Copyright 2018 Manning Publications
To pre-order or learn more about these books go to www.manning.com

www.itbook.store/books/9781617296215

http://www.manning.com/
https://itbook.store/books/9781617296215

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: Candace Gillhoolley, cagi@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN: 9781617296215
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 23 22 21 20 19 18

www.itbook.store/books/9781617296215

http://www.manning.com
https://itbook.store/books/9781617296215

iii

contents
introduction iv

SWIFT OBJECTS 1
Swift objects
Chapter 3 from iOS Development with Swift by Craig Grummitt 2

MODELING DATA WITH ENUMS 28
Modeling data with enums
Chapter 2 from Swift in Depth by Tjeerd in ’t Veen 29

GRAPH PROBLEMS 54
Graph problems
Chapter 4 from Classic Computer Science Problems in Swift by David Kopec 55

 index 85

www.itbook.store/books/9781617296215

https://itbook.store/books/9781617296215

iv

introduction
A lot’s happened since June 2014, when Apple shocked the developer community by
launching a new programming language called Swift. In 2015, another shock was in
store when Apple made Swift open source, opening the doors for the developer com-
munity to get involved in its progress. In the years since, Swift evolved into the power-
ful, modern and expressive language it is today. According to the latest stackoverflow
survey, Swift’s ranked the sixth most-loved programming language. And although
Swift’s primarily used in iOS and Mac OS development, Swift isn’t limited to building
iPhone apps and Mac programs—you’ll find it available in web development, server-
side development and cloud-based services. Craig Federighi, Senior VP of Software
Engineering at Apple, threw down the gauntlet in a podcast interview when he
declared his hopes for Swift to become “the language, the major language for the next
twenty years of programming in our industry.”

 It’s obviously a good time to explore Swift! This sampler brings together sample
chapters on Swift from three books available through Manning Publications. First—
we’ll look at an introduction to data types in Swift in a chapter from my own book, iOS
Development with Swift.

www.itbook.store/books/9781617296215

https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/
https://itbook.store/books/9781617296215

It’s not only Apple’s company motto, working with Swift also helps us to think
different! In the chapter “Swift objects” from my book iOS Development with Swift,
we take a look at data types in Swift—but we don’t linger too long on constructs
you’re probably already familiar with.

 We take a look at powerful features in Swift that may be new to you or work
differently than what you’re used to, such as structs, protocols, initializers, exten-
sions, operator overloading and generics. We also don’t skim over the mechanics
of these features, we also look at why you’d use them, and when they might be
appropriate, with useful examples.

 If you’re interested in continuing your study of Swift into developing apps for
iOS, this book then moves its focus from covering the basics in Swift to iOS
development, following the progress of an app from coming up with an idea for
an app right through to publishing it on the app store.

Swift objects

www.itbook.store/books/9781617296215

https://livebook.manning.com/#!/book/ios-development-with-swift/chapter-3
https://itbook.store/books/9781617296215

www.itbook.
Chapter 3 from iOS Development with Swift
by Craig Grummitt

Swift objects
It’s impossible to do anything in iOS development without using objects. Views are
objects, view controllers are objects, models are objects—even basic data types such
as String, Int, and Array are objects in Swift!

 An object in Swift is a specific instance of a type of thing. In this chapter, we’ll
look at different ways of building up and structuring these types of things in your
code. From experience in other languages, you may know this “type of thing” (or
type) as a class. While it’s true that types can be represented by classes in Swift,
they’re not the only type of thing in Swift—other types called structures and enu-
merations also exist. We’ll come back to those, but first let’s look at classes.

This chapter covers
 Exploring objects, methods, and parameters in

Swift

 Initializing properties

 Comparing inheritance with protocols

 Differentiating between classes and structs

 Exploring ways to extend your code
2

store/books/9781617296215

https://livebook.manning.com/#!/book/ios-development-with-swift/chapter-3
https://itbook.store/books/9781617296215

3Classes

www.itbook.
 Don’t forget, you can refer to the Swift cheat sheets in appendix B. This chapter is
summarized on the last page of the cheat sheets.

3.1 Classes
One approach for creating objects in Swift is with a class. A class defines what a type
does with methods. A method is a function defined within a type. Along with methods,
a class defines what a type is with properties. Properties are variables or constants
stored in a type.

 Let’s say you’ve decided to build a distance converter app. Your app will accept dis-
tances in miles or kilometers, and will display the distance in either form of measure-
ment, too.

 You decide the best approach is to build a type that stores distances, regardless of
the scale. You could create a distance with a miles or kilometers value, update the dis-
tance with a miles or kilometers value, or use the distance type to return its value as
miles or kilometers (see figure 3.1).

Distance
miles

kilometers

miles

kilometers

Figure 3.1 Distance type

3.1.1 Defining a class

Let’s start by defining a simple Distance type with a class. In this chapter, you’ll build
up this class to contain a distance using different measurement types.

1 Create a new playground to follow along, and call it Distance. Classes are
defined with the class keyword followed by the name of the class and the rest
of the definition contained within curly brackets.

2 Create a Distance class.

class Distance {

}

3 Now that you have a class, you can create (or instantiate) your class with the
name of the type, followed by parentheses, and assign this object to a variable:

var distance = Distance()

You might recognize the parentheses syntax from the previous chapter as an alterna-
tive syntax for creating or instantiating simple data types.

 Now that you have a class definition for Distance, you can add properties and
methods to it.
store/books/9781617296215

https://itbook.store/books/9781617296215

4 CHAPTER 3 Swift objects

www.itboo
3.1.2 Properties

Variables that we’ve looked at so far have been global variables—defined outside the
context of a class or function. Variables that are defined within a class are called prop-
erties, and fall into two broad categories: type properties and instance properties.

TYPE PROPERTIES

Type properties, also known as static properties, are relevant to all things of a certain
type. It isn’t even necessary that an instance of a type exist to access type properties.
Type properties are connected to the type rather than the object. You instantiate a type
property with the static keyword followed by a normal declaration of a variable.

 For example, maybe you’d like to store the number of kilometers in a mile in a
type property in your Distance class. In this case, a constant would make more sense,
because the number of kilometers in a mile won’t be changing any time soon. Use the
keyword let instead of var to define a constant.

1 Add a type property constant to your simple Distance class:

class Distance {
 static let kmPerMile = 1.60934
}

You could then retrieve or set this type property directly on the type.

2 Print to the console using the type property you created:

print ("2 miles = \(Distance.kmPerMile * 2) km")

INSTANCE PROPERTIES

Instance properties are relevant to specific objects or instances of a type.
 Because the miles value will be relevant to specific instances of Distance, add

miles as an instance property to your Distance class.

class Distance {
 static let kmPerMile = 1.60934
 var miles:Double
}

Whoops! If you’re following along in the playground, you’ll notice that this triggers a
compiler error. Tap the red dot to see more information on the error (see figure 3.2).
A pop-up appears below the line that describes the error along with Xcode’s suggested
fix.

Figure 3.2 Non-optional variable can't equal nil
k.store/books/9781617296215

https://itbook.store/books/9781617296215

5Classes

www.itbook.
 As we explored in the previous chapter, non-optionals can never equal nil. The
Distance class can’t contain a miles property that’s equal to nil.

 You have three possible alternatives to get rid of that red dot.

 One option is to give the property a default value. This is what Xcode suggests.
If you tap Fix Button, Xcode will resolve the problem in this way for you.
But a default value for the miles property doesn’t make sense. There’s no
reason why 0 or any other value should be a default value for miles. Press Com-
mand-Z to undo this fix.

 Another option is to make the miles property an optional. This is easy to do; all
you need to do is add a question mark:

var miles:Double?

This removes the error, but isn’t appropriate for this example either. If you
define a Distance object, you want it to have a value for miles! A distance with
a miles value of nil doesn’t make sense. Undo this fix too.

 You could pass a value to the miles property in an initializer. What’s an initial-
izer?

3.1.3 Initializers

An initializer is a special type of function that sets up a type. You can use an initializer
to pass in values when you instantiate the type.

 You can create an initializer with the init keyword followed by any parameters you
want to pass in to initialize the instance properties.

1 Add an initializer to the Distance class to pass in a value to initialize the miles
property.

class Distance {
 static let kmPerMile = 1.60934
 var miles:Double
 init(miles:Double) {
 self.miles = miles
 }
}

As you can see, you can use the keyword self to differentiate between the
instance property (self.miles) and the parameter (miles) that’s passed in to
the initializer.

Now that the miles property is set in the initializer, the requirement that all
non-optionals should contain non-nil values is satisfied, and the red dot should
go away.

2 You can now instantiate a Distance object by passing in a value for miles.

var distance = Distance(miles: 60)

Initializer

Initializes the
miles property
store/books/9781617296215

https://itbook.store/books/9781617296215

6 CHAPTER 3 Swift objects

www.itboo
NOTE By default you need to pass in the names of the arguments in initializ-
ers and functions. We’ll look at this in more detail shortly.

3 Now that you have a Distance class, you could introduce a km property if you
like, and initialize it in the initializer calculated from the miles value and the
kmPerMile type property.

class Distance {
 static let kmPerMile = 1.60934
 var miles:Double
 var km:Double
 init(miles:Double) {
 self.miles = miles
 self.km = miles * Distance.kmPerMile
 }
}

In case we need to calculate kilometers again, it may make sense to move this calcula-
tion to a method.

NOTE If all properties of a class have default values, Xcode will synthesize a
default initializer automatically for you with no arguments.

3.1.4 Methods

Functions defined inside a class are called methods. Like variables and properties,
methods can be divided into instance methods or type methods.

 Instance methods are methods that are relevant to an instance of a type, whereas
type methods apply to the type itself.

INSTANCE METHODS

Instance methods are relevant to each instance of a type.
 In the future, you might want your Distance class to return a nicely formatted ver-

sion of its data. Because the response will be different for each instance of Distance,
this would be more relevant as an instance method.

1 Add an instance method to your Distance class that returns a nicely formatted
miles string.

func displayMiles()->String {
 return "\(Int(miles)) miles"
}

2 You can call your instance method now using a Distance object.

var distance = Distance(miles: 60)
print(distance.displayMiles())
//prints "60 miles" to console

You currently calculate kilometers from miles in the Distance initializer. Let’s
refactor this calculation into a reusable method. You might be tempted to use
an instance method, but you’ll find this approach causes an error.

Adds km
property

Calculates km
from miles
k.store/books/9781617296215

https://itbook.store/books/9781617296215

7Classes

www.itbook.
3 Add an instance method that calculates kilometers from miles, and call it from
the initializer.

class Distance {
 static let kmPerMile = 1.60934
 var miles:Double
 var km:Double
 init(miles:Double) {
 self.miles = miles
 self.km = toKm(miles:miles)
 }
 func toKm(miles:Double)->Double {
 return miles * Distance.kmPerMile
 }
}

Curious! Why does calling an instance method in the initializer cause an error?
 Until an initializer has fulfilled its duties to provide initial values for all non-option-

als, the instance isn’t designated as safe and therefore its instance properties and
methods can’t be accessed.

 To solve this problem, one solution could be to ensure that all properties have val-
ues before using the instance method:

init(miles:Double) {
 self.miles = miles
 self.km = 0
 self.km = toKm(miles:miles)
}

But stepping back from the problem, converting miles to kilometers could be as easily
set up as a useful utility method on the type. Let’s refactor our toKm method as a type
method.

TYPE METHODS

Like type properties, type methods (also known as static methods) are methods that
can be called directly on the type, rather than individual instances of the type.

1 Use the static keyword to refactor the toKm method as a type method. Type
methods have implicit access to type properties, so we can remove the class
name Distance before kmPerMile:

static func toKm(miles:Double)->Double {
 return miles * kmPerMile
}

Similar to the way you used type properties, call a type method by prefacing it
with the type. For example, here’s how you could call the toKm method we set
up on the Distance class:

print(Distance.toKm(miles: 30))

Call instance method;
error here

Instance method

Provides default
value

No error now!
store/books/9781617296215

https://itbook.store/books/9781617296215

8 CHAPTER 3 Swift objects

www.itboo
Because type methods are called on the type and don’t depend on an instance
of a type, they can be used to initialize properties in the initializer.

2 Call your new static method in the initializer for Distance.

init(miles:Double) {
 self.miles = miles
 self.km = Distance.toKm(miles:miles)
}

OVERLOADING

It can be strange to developers new to Swift that it’s completely valid in Swift to have two
functions with the same name, as long as the names or types of the parameters are dis-
tinct. This is called overloading a function. “Overloading a function”—even the name
sounds a little scary! Don’t worry, this is standard practice in Swift and a useful tool.

 At the moment, the Distance class has a static method called toKm that calculates
kilometers from miles. What if later you find you need to calculate kilometers from
another form of measurement, for example, feet? You'll probably want to name that
method toKm, too. Well, in Swift you can do this by overloading the function by defin-
ing two functions with different parameter names, as shown in the following listing.

Listing 3.1 Overloading a function with different parameter names

static let feetPerKm:Double = 5280

static func toKm(miles:Double)->Double {
 return miles * kmPerMile
}
static func toKm(feet:Double)->Double {
 return feet / feetPerKm
}

Which method you use depends on the parameter name you pass:

let km = Distance.toKm(miles:60) //96.5604
let km2 = Distance.toKm(feet:100) // 0.03048

Similarly, perhaps in the future you want your Distance class to accept an Int value
for km in your toMiles method. This time, you could overload the function by defin-
ing two functions with the same name that expect different data types, as shown in the
following listing.

Listing 3.2 Overloading a function with different parameter data types

static func toMiles(km:Double)->Double {
 return km / kmPerMile
}
static func toMiles(km:Int)->Double {
 return Double(km) / kmPerMile
}

k.store/books/9781617296215

https://itbook.store/books/9781617296215

9Classes

www.itbook.
Again, the method you use depends on the data type of the parameter you pass.
Initializers can be overloaded as well.

1 Add a second initializer for the Distance class to initialize the object based on
kilometers. You’ll need to add a type method to calculate miles from kilometers
as well.

class Distance {
 static let kmPerMile = 1.60934
 var miles:Double
 var km:Double
 init(miles:Double) {
 self.miles = miles
 self.km = Distance.toKm(miles:miles)
 }
 init(km:Double) {
 self.km = km
 self.miles = Distance.toMiles(km:km)
 }
 static func toKm(miles:Double)->Double {
 return miles * kmPerMile
 }
 static func toMiles(km:Double)->Double {
 return km / kmPerMile
 }
}

2 You can now use miles or kilometers to instantiate a Distance object:

var distance1 = Distance(miles: 60)
var distance2 = Distance(km: 100)

The Distance class is shaping up, but it has a bit of redundancy to it. Whether you
store the distance in miles or kilometers, you’re storing the same distance twice using
two different measurement units. Shortly, we’ll look at how to clean up that redun-
dancy with computed properties.

Convenience initializers

convenience init(km:Double) {

Convenience
keyword

 self.init(miles:Distance.toMiles(km:km))

 Calls designated
 initializer

}

The initializers we’ve looked at so far have been designated initializers—the main ini-
tializer for the class that ensures that all instance properties have their initial values.
Convenience initializers are alternative initializers that add the keyword conve-
nience, and, by definition, must ultimately call self’s designated initializer to com-
plete the initialization process. Instead of overloading the initializer in the Distance
class, we could have added a convenience initializer.

Overloaded
initializer

New type
method
store/books/9781617296215

https://itbook.store/books/9781617296215

10 CHAPTER 3 Swift objects

www.itboo
3.1.5 Computed properties

Computed properties are properties that calculate their values from other properties.
 As you saw earlier, there might be a point in the future when you want to add addi-

tional measurements to your Distance class—centimeters, feet, inches, cubits, yards,
furlongs, nautical miles, light years, you get the idea. Should you keep all these ver-
sions of the same distance in memory? Probably not.

 One solution to avoid this redundancy is to decide on one core property that will
store the distance—in our Distance class, this could be miles. Then the other proper-
ties, rather than storing values, will calculate their value from the miles property.
These types of properties will be computed properties.

 Computed properties lie somewhere between properties and methods—they’re
methods implemented with the syntax of properties. They act similarly to getters and
setters in other languages.

 The computed property itself doesn’t store any data. Rather, when the property’s
value is retrieved, the getter calculates a value to return. Calculations are performed
in curly brackets {} and the value is returned using the return keyword.

1 To avoid redundancy, convert the km property to a read-only computed prop-
erty. The km property will no longer store data; rather, it will calculate kilome-
ters from the miles property at the moment it’s requested. The initializers will
no longer need to set the km property and will set the miles property directly.

class Distance {
 static let kmPerMile = 1.60934
 var miles:Double
 var km:Double {
 return Distance.toKm(miles:miles)
 }
 init(miles:Double) {
 self.miles = miles

self.km = Distance.toKm(miles:miles)
 }
 init(km:Double) {

 self.km = km
 self.miles = Distance.toMiles(km:km)
 }
 static func toKm(miles:Double)->Double {
 return miles * kmPerMile
 }
 static func toMiles(km:Double)->Double {
 return km / kmPerMile
 }
}

2 Confirm that the km property can continue to be retrieved like a normal property.

var distance = Distance(km: 100)
print ("\(distance.km) km is \(distance.miles) miles")
k.store/books/9781617296215

https://itbook.store/books/9781617296215

11Classes

www.itbook.
This solves the redundancy, but unfortunately there’s a problem. You want to be
able to update a distance object by setting the kilometer value.

3 Check what happens when you update the km property.

distance.km = 90

Because km is a read-only property, attempting to update it causes an error.

Computed properties can optionally also implement a setter. A setter is a block
of code that’s called when a computed property is set. Because the computed
property doesn’t store any data, the setter is used to set the same values that
derive the computed property’s value in the getter.

The getter approach used in the previous example uses shorthand syntax to
implement the getter. The longhand syntax uses a get keyword followed by
curly brackets {}.

4 Convert the km computed property to use the longhand syntax.

var km:Double {
 get {
 return Distance.toKm(miles:miles)
 }
}

The set syntax is similar to the get syntax, with the exception that the set syn-
tax receives a variable representing the new value.

5 Convert the km computed property so that it now can be “set,” as per the follow-
ing code snippet:

class Distance {
 static let kmPerMile = 1.60934
 var miles:Double
 var km:Double {
 get {
 return Distance.toKm(miles:miles)
 }
 set(newKm) {
 miles = Distance.toMiles(km:newKm)
 }
 }
 init(miles:Double) {
 self.miles = miles
 }
 init(km:Double) {
 self.miles = Distance.toMiles(km:km)
 }
 static func toKm(miles:Double)->Double {
 return miles * kmPerMile
 }
 static func toMiles(km:Double)->Double {
 return km / kmPerMile
 }
}

Error

Explicit getter syntax
store/books/9781617296215

https://itbook.store/books/9781617296215

12 CHAPTER 3 Swift objects

www.itboo
As you can see, setting the km property doesn’t store the value of kilometers.
Instead, it calculates and stores a value in the miles property.

6 Confirm you can now update a distance object using either miles or kilometers:

var distance = Distance(km: 100)
distance.km = 35
distance.miles = 90

7 Confirm you can also retrieve the values of either miles or kilometers:

print("Distance is \(distance.miles) miles")
print("Distance is \(distance.km) km")

Mission complete!

DOWNLOAD You can check your Distance class with mine in the Dis-
tance.playground. Download all the code for this chapter by selecting

Source Code > Clone and entering the repository location: https://
github.com/iOSAppDevelopmentwithSwiftinAction/Chapter3.

CHALLENGE Confirm in the results sidebar that the distance object is instanti-
ating, updating, and displaying correctly using miles or kilometers.

3.1.6 Class inheritance

If you’re experienced in object-oriented programming (OOP), class inheritance and
subtyping will most likely be a familiar topic. In Swift, multiple classes can inherit the
implementation of one class through subclassing, forming an is-a relationship.

NOTE If you’re familiar with class inheritance, you can skim through to the
section called "Pros and cons."

Classes and subclasses form a hierarchy of relationships that looks like an upside-down
tree. At the top of the tree is the base class from which all classes inherit, and every
subclass inherits the methods and properties of its superclass and can add on imple-
mentation.

 Let’s explore inheritance by building up a class structure representing telephones.
Different types of telephones exist—from older rotary phones to the latest iPhones,
but they all share common functionalities: to make calls and to hang up.

 See figure 3.3 for a simplified representation of the hierarchy of relationships of
different types of telephones. At the base (top) of the tree is an abstract telephone,
which can initiate and terminate calls. This branches into landline and cellular
phones. Both landlines and cellular phones inherit the telephone’s ability to initiate
and terminate calls, but the cellular phone adds the ability to send an SMS. The vari-
ous types of phones that inherit from landlines and cellular phones add (among other
things) different input techniques. The various types of smartphones add their own
implementation of an operating system.
k.store/books/9781617296215

https://github.com/iOSAppDevelopmentwithSwiftinAction/Chapter3
https://github.com/iOSAppDevelopmentwithSwiftinAction/Chapter3
https://github.com/iOSAppDevelopmentwithSwiftinAction/Chapter3
https://itbook.store/books/9781617296215

13Classes

www.itbook.
NOTE This example isn’t intended to be comprehensive. If I listed everything
a smart phone could do, I’d be here all day!

Figure 3.3 Telephone inheritance

You could model these relationships with classes. Subclasses indicate their superclass
with a colon after their name, as shown in the following listing.

Listing 3.3 Class inheritance

class Telephone {
 func makeCall() {
 //make a call here
 }
 func hangUp() {
 //hang up here
 }

}
class landline:Telephone {

}
class Cellular:Telephone {
 func sendSMS() {
 //send SMS here
 }
}
//...

Telephone

makeCall
hangUp

Smart

touchInput
accessInternet

Cellular

sendSMS

Landline

Push-button

buttonInput

Rotary

rotaryInput

Windows

windowsOS

iPhone

iOS

Android

androidOS

Non-smart

buttonInput

Landline subclasses
Telephone

Cellular subclasses
Telephone

Cellular adds
functionality
store/books/9781617296215

https://itbook.store/books/9781617296215

14 CHAPTER 3 Swift objects

www.itboo
After modeling this hierarchy, a method could
receive a Telephone parameter, and regardless
of whether the parameter passed is an Android,
iOS, or even a rotary phone, the method knows
that it can tell the telephone to makeCall() or
hangUp():

OPEN Explore the rest of
the code in the Telephone-

ClassInheritance.playground.

func hangUpAndRedial(telephone:Telephone) {
 telephone.hangUp()
 telephone.makeCall()
}

OVERRIDING

In addition to inheriting the implementation of a superclass, a subclass can override
this implementation.

 The Cellular class probably wants to implement its own version of making a call
on cellular networks. It can do this by overriding the makeCall method, as shown in
the following listing.

Listing 3.4 Override method

class Cellular:Telephone {
 override func makeCall() {
 //make cellular call
 }
 func sendSMS() {
 //send SMS here
 }
}

Overriding a method will, by default, prevent the superclass’s implementation of that
method from running. Sometimes, a subclass might want to add to the superclass’s
implementation rather than replace it. In this case, the subclass can use the super key-
word to first call the method on the superclass, as shown in the following listing.

Listing 3.5 Call super

override func makeCall() {
 super.makeCall()
 //make cellular call
}

PROS AND CONS

Class inheritance is used extensively throughout Apple frameworks. For example, as
you saw in chapter 1, the UIButton class subclasses the UIControl class, which, in turn,
subclasses UIView.

 Inheritance is a powerful technique for expressing relationships and sharing
implementation between classes and lies at the heart of object-oriented programming.

 Inheritance has issues, however, that are worth noting.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

15Classes

www.itbook.
 Swift only permits inheritance from one class. iPhones aren’t simply telephones any
more. They’re game consoles, e-readers, video players, compasses, GPS devices,
step counters, heart rate monitors, fingerprint readers, earthquake detectors,
and the list goes on. How can an iPhone share common functionality and
implementation with these other devices? According to the simple inheritance
model, they can’t.

 Sharing code can only happen between subclasses and superclasses. Non-smart phones
and push-button phones both have push-button input, but neither of them
inherits from each other. iPads have iOS too, but they aren’t telephones. These
common implementations couldn’t be shared, according to the pure inheri-
tance model.

 Sometimes it’s not so clear which identity is the most relevant to subclass. Should you
have subclassed smartphones by operating system or by manufacturer? Both are
important and could potentially contain different functionality or properties.

The trend in pure Swift has moved away from class inheritance and toward implemen-
tation of protocols.

3.1.7 Protocols

Protocols are similar to interfaces in other languages. They specify the methods and
properties that a type that adopts the protocol will need to implement.

 Protocol methods only indicate the definition of the method and not the actual
body of the method, for example:

func makeCall()

If you rewrote the abstract Telephone class as a protocol, it would look like the follow-
ing code snippet:

protocol Telephone {
 func makeCall()
 func hangUp()
}

A type adopts a protocol with syntax similar to inheritance—a colon after the type
name. As the methods in a protocol don’t contain any implementation, a class that
adopts the protocol must explicitly implement these methods. If you rewrote the
Landline class to adopt the Telephone protocol, it would look like the following code
snippet:

class Landline:Telephone { Adopts the Telephone
protocol func makeCall() {

 //make a landline call here
 }
 func hangUp() {
 //hang up a landline call here
 }
}

Protocol methods

Implements the
protocol methods
store/books/9781617296215

https://itbook.store/books/9781617296215

16 CHAPTER 3 Swift objects

www.itboo
Protocol properties only indicate whether a property can be retrieved or set. For
example, if you add a phone number property to Telephone, it looks like the follow-
ing code snippet:

protocol Telephone {
 var phoneNo:Int { get set }
 func makeCall()
 func hangUp()
}

The protocol only specifies that the phoneNo property needs to exist in an adopting
type, and that the property needs to get or set. Implementing the property is left to
the adopting class.

class Landline:Telephone {
 var phoneNo:Int
 init(phoneNo:Int) {
 self.phoneNo = phoneNo
 }
 func makeCall() {
 //make a landline call here
 }
 func hangUp() {
 //hang up a landline call here
 }
}

PROTOCOL EXTENSIONS

Okay. I have a confession to make.
 I’ve been suggesting that protocols don’t contain implementation, and that’s not

entirely true. Protocols are blessed with the magical ability to be extended to add actual
functionality, which types that adopt the protocol will have access to.

 In the previous example, the functionality of making a call and hanging up could
be implemented in the Telephone protocol through use of an extension, as shown in
the following listing.

Listing 3.6 Extending a protocol

protocol Telephone {
 var phoneNo:Int { get set }
 func makeCall()
 func hangUp()
}
extension Telephone {
 func makeCall() {
 print("Make call")
 }
 func hangUp() {
 print("Hang up")
 }
}

Protocol
property

Adopts the
protocol property

Initializes the property

Extension
of protocol

Implementation of
methods in protocol
k.store/books/9781617296215

https://itbook.store/books/9781617296215

17Classes

www.itbook.
class Landline:Telephone {
 var phoneNo:Int
 init(phoneNo:Int) {
 self.phoneNo = phoneNo
 }
}

Because these methods are now implemented in the Telephone protocol, they no lon-
ger need to be implemented in a class that adopts that protocol. Note that the Land-
line class no longer implements the makeCall or hangUp methods.

 Extended protocols still can’t store properties, but because computed properties
don’t store properties, computed properties can be implemented in extended
protocols.

PROTOCOL RELATIONSHIPS

This integration of protocols and protocol extensions into the Swift language made
different and complex approaches possible for structuring relationships between
types. This is due to several factors:

 Like classes, protocols can inherit other protocols.
 Types can adopt multiple protocols.
 Protocols can represent different types of relationships.

Class inheritance places the emphasis on is-a relationships. As you’ve seen, protocols
can represent this relationship as well. When protocols represent an is-a relationship,
the convention is to use a noun. In our example, Landline is-a Telephone.

 But protocols aren’t limited to identity or is-a relationships. Another common rela-
tionship that is represented is capabilities, or can-do. A common convention for proto-
cols that represent a can-do relationship is to suffix its name with “able,” “ible,” or “ing.”

 Relationships in the real world are often not as simple as a pure inheritance model
can handle. Complexity and nuance need to be addressed, and protocols and proto-
col extensions are useful for this.

 Let’s look again at telephones, converting subclasses to is-a and can-do protocols.
Figure 3.4 illustrates one way you could redraw their relationships.

 In this example, a protocol called PushButtonable could be written to handle the
capability of button input. This protocol could then be adopted by both the push-but-
ton landline and the non-smart cellular phone. Despite not having an inheritance
relationship, the two classes could still share implementation through the Push-
Buttonable protocol extension.

 The iPhone no longer inherits all its smart characteristics through the Smart class.
Rather, it adopts specific capabilities through protocols such as Touchable or
Internetable. In this way, it could go beyond traditional telephone capabilities and
adopt protocols and share implementation through protocol extensions with
completely different devices. Maybe it could share VideoPlayable along with Tele-
vision, Navigable along with GPSDevice, or GamePlayable along with GameConsole.
store/books/9781617296215

https://itbook.store/books/9781617296215

18 CHAPTER 3 Swift objects

www.itboo
Using protocols to structure the relationships
in your code has been coined protocol-ori-
ented programming. Sure, you could continue
to program in Swift using familiar object-ori-
ented programming techniques, but it’s worth
exploring the possibilities with protocols.

Telephone

makeCall
hangUp

Cellular

sendSMS

Landline

Push-buttonRotary

Protocol

Class

Protocol inherits protocol

Class adopts protocol

Windows phone

windowsOS

iPhone

iOS

Android phone

androidOS

Non-smart

Internetable

accessInternet

Touchable

touchInput

PushButtonable

buttonInput

Rotaryable

rotaryInput

Key

Figure 3.4 Telephone using protocols

OPEN Explore the protocol
relationships in code in the

TelephoneProtocols.playground.

CHALLENGE Add a Television type that shares a VideoPlayable protocol
with iPhones, Androids, and Windows phones.

3.2 Structures
Classes aren’t the only “type of thing” in Swift. An alternative approach to creating
objects in Swift is with a structure.

 Structures have many similarities to classes. For example, they can

 Have properties
 Have methods
 Have initializers
 Adopt protocols

Define a structure with the struct keyword, for example:

struct Telephone {

}

k.store/books/9781617296215

https://itbook.store/books/9781617296215

19Structures

www.itbook.
Instantiation of a structure is identical to that of a class:

var telephone = Telephone()

3.2.1 Structures vs. classes

Structures have three main differences from classes worth noting:

 Structures can’t inherit.
 Structures can have memberwise initializers.
 Structures are value types.

Each of these is explained in the following sections.

STRUCTURES CAN’T INHERIT

Structures can’t inherit other structures. They can indirectly inherit functionality,
however, by adopting protocols, which, as you’ve seen, can inherit other protocols.

MEMBERWISE INITIALIZERS

If you don’t set up an initializer for a structure, an initializer that accepts all the struc-
ture’s properties as parameters will automatically be generated for you. This auto-
mated initializer is called a memberwise initializer.

 As you saw earlier in the chapter, when the Distance class didn’t initialize its miles
property, an error appeared. If you change the definition of this class to a struct, a
memberwise initializer is automatically generated and the error disappears:

struct Distance {
 var miles:Double
}

You can now instantiate this structure using the memberwise initializer:

var distance = Distance(miles: 100)

STRUCTURES ARE VALUE TYPES

An important distinction between structures and classes is how they’re treated when
they’re assigned to variables or passed to functions. Classes are assigned as references,
and structures are assigned as values.

 Look at the following listing. Predict the value of color1.name that will be printed
to the console.

Listing 3.7 Changes to reference types

class Color {
 var name = "red"
}
var color1 = Color()
var color2 = color1
color2.name = "blue"
print(color1.name)
store/books/9781617296215

https://itbook.store/books/9781617296215

20 CHAPTER 3 Swift objects

www.itboo
If you predicted "blue", pat yourself on the back!
Because classes are reference types, when color1
was assigned to the color2 variable, color2 was
assigned the reference to the underlying Color
object (see figure 3.5).

color1

color2

Color

name

Figure 3.5 Reference types In the end, both color1 and color2 refer to the
same object, and any changes to color2 are
reflected in color1 (and vice versa).

 In Swift, core data types such as String are value types. Look at the following list-
ing and predict the value of letter1 that will be printed to the console.

Listing 3.8 Changes to value types

var letter1 = "A"
var letter2 = letter1
letter2 = "B"
print(letter1)

If you went with "A", you’re right. This time, when
letter2 was assigned to the letter1 variable,
letter2 was assigned the value of letter1, instan-
tiating a new String object. You're left with two
String objects, as in figure 3.6.

letter1 String

letter2 String

Figure 3.6 Value types

 Because you now have two separate String objects, making a change to one of
them doesn’t affect the other.

 Like Strings, when a structure is assigned to a new variable, it’s copied. Let’s look
at the Color example again, but tweak one thing—it’s now a structure rather than a
class (to be clear, let’s also rename it ColorStruct). Now, what is the value of col-
or1.name that will be printed to the console in the following?

struct ColorStruct {
 var name = "red"
}
var color1 = ColorStruct()
var color2 = color1
color2.name = "blue"
print(color1.name)

If you predicted "red", you’re paying attention! Because structures are value types,
when color2 was assigned color1, only the value of color1 was copied, two Color-
Struct objects now exist, and any changes to color2 aren’t reflected in color1. Try it
out in a playground and see for yourself!

 Since Swift went open source, it’s been fascinating to explore how the language
looks “under the hood.” One thing you’ll discover if you look at the source of Swift is
that many of the core data types are implemented as structs, explaining why types
such as String are value types. Incidentally, this represents a change in direction from
k.store/books/9781617296215

https://itbook.store/books/9781617296215

21Structures

www.itbook.
Objective-C, where many types are implemented as classes (though references are
implemented differently).

CONSTANTS

We’ve looked at constants in brief, but now’s a good time to look at them a little closer.
 You undoubtedly are familiar with constants—they’re a special type of variable that

will never be reassigned. In Swift, a constant is declared using the let keyword instead
of var.

 For example, if you assign an instance of a Person type to a constant, you can’t
later assign another instance of the Person type to the same constant:

let person = Person(name: "Sandra")
person = Person(name: "Ian")

Error—can’t
reassign constant

TIP If a variable is never reassigned, for performance reasons you should
declare it a constant.

Here’s a tricky question for you: is it permissible to modify a property of a constant of
the Person type? For example:

person.name = "Ian"

If your answer was a confused expression and a shrug of the shoulders, you’re right!
 Whether a property of a constant can be modified depends on whether you have a

value type or a reference type, and I wasn’t clear in the question about whether
Person was defined as a class or a structure. I did warn you it was going to be tricky!

 For value types, the identity of the constant is tied up with the properties it con-
tains. If you change a property, the variable is no longer the same value. For value
types such as structures, it isn’t permissible to modify a constant’s properties.

 For reference types, the identity of the constant is a reference to an object. There
could be other constants or variables that point to that same object. For reference
types such as classes, it’s permissible to modify a constant’s properties.

WHICH OBJECT TYPE?
After learning the differences between classes and structures, the next question most
people want the answer to is this: which should I use, and when?

 To arrive at an answer of that complex question I find it helps to break it down into
smaller questions:

 Does the type need to subclass? The choice may be clear—sometimes your type
needs to subclass; therefore, you need a class.

 Should instances of this type be one of a kind? If you’re storing data in a type, and
want any changes to that data to be reflected elsewhere, it might make sense to
use a class.

 Is the value tied to the identity of this type? Consider a Point type that stores an x
and a y value. If you have two points that are both equal to (x:0, y:0), would
store/books/9781617296215

https://itbook.store/books/9781617296215

22 CHAPTER 3 Swift objects

www.itboo
they be equivalent? I suggest that they would. Therefore, the value is tied to its
identity and it should probably be implemented as a structure.

Now, consider an AngryFrog type that among other properties also contains
an x and a y value. If you have two angry frogs that both are positioned at (x:0,
y:0), would they be equivalent? I suggest probably not, because they’re proba-
bly two distinct entities, maybe traveling in different directions, or may be con-
trolled by different players. The identity of an AngryFrog would be tied to a
reference to a specific instance rather than the current values of its properties,
and therefore it should probably be implemented as a class.

For a visual representation of this decision process, see figure 3.7.

Need to subclass?

One of a kind?

Yes No

Value = identity?

No

No

Yes

Yes

Class Structure

Choose object type

Figure 3.7 Structure or class decision

A complex codebase may have additional factors to consider, but I find these three
questions a handy guide to arrive at an answer to the structure or class decision.

 Let’s practice this decision process with the Distance type you worked with earlier
in the chapter:

 Does the Distance type need to subclass? No, it doesn’t.
 Should there be only one Distance object? No, there can be more than one.
 Is the value equivalent to its identity? If you had two 100 km Distance objects,

they should be treated as equivalent, so yes, the value is equivalent to identity.

Therefore, the Distance type should probably be implemented as a structure. Fortu-
nately, changing a class to a structure or vice versa is straightforward. Swap the class
keyword over for struct, and that’s often all that’s necessary. Go ahead and change
the Distance class to a structure now.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

23Extensions

www.itbook.
 We still haven’t looked at all the object types available in Swift. To make things
even more interesting, you have yet another alternative to classes and structures,
called enums. We’ll cover enums in chapter 10.

3.3 Extensions
We’ve looked at protocol extensions to add functionality to protocols. Extensions can
also be used to add functionality to classes and structures.

 There’s much that extensions can do, but they do have limitations:

 Extensions can’t override functionality.
 Extensions can add computed properties, but can't add stored properties.
 Extensions of classes can't add designated initializers.

3.3.1 Extensions of your type

When we looked at the Distance class earlier in the chapter, we considered that at a
later point we may want to add additional measurements. Well, the time has come!
Let’s add feet to the Distance structure.

1 Open your Distance playground again.
2 Create an extension of your Distance structure.

extension Distance {
}

3 Add a feet computed property.

static let feetPerMile:Double = 5280

4 Add type methods to your extension to convert to miles and kilometers from
feet, or back again to feet from miles.

static func toMiles(feet:Double)->Double {
 return feet / feetPerMile
}
static func toKm(feet:Double)->Double {
 return toKm(miles:toMiles(feet:feet))
}
static func toFeet(miles:Double)->Double {
 return miles * feetPerMile
}

5 You can set up a computed property now for feet.

var feet:Double {
 get {
 return Distance.toFeet(miles:miles)
 }
 set(newFeet) {
 miles = Distance.toMiles(feet: newFeet)
 }
}

store/books/9781617296215

https://itbook.store/books/9781617296215

24 CHAPTER 3 Swift objects

D

www.itboo
6 Finally, create an initializer for the Distance structure.

 init(feet:Double) {
 self.miles = Distance.toMiles(feet:feet)
 }
}

Your Distance structure can now be initialized with feet and updated by setting feet.

OPEN Compare your Distance extension with mine in the DistanceEx-
tensions.playground.

CHALLENGE To confirm it’s now possible, create a new instance of Distance
using feet, update this value, and then print this value to the console. Then
extend the DistanceExtensions playground to include another form of mea-
suring distance.

3.3.2 Extensions of their type

You aren’t limited to extending your own code. You can also extend classes, structures,
or protocols of third-party code, or even of Apple frameworks or the Swift language!

 As you saw in the previous chapter, the dictionary doesn’t contain a method to join
with another dictionary. Let’s rectify this situation!

Extends
ictionary

1 Create a new playground, and call it Extensions.
2 Add an extension to Dictionary so that it can add to another dictionary.

extension Dictionary {
 func add(other:Dictionary)->Dictionary {
 var returnDictionary:Dictionary = self
 for (key,value) in other {
 returnDictionary[key] = value
 }
 return returnDictionary
 }
}

3 To confirm your new extension works, create two sample dictionaries ready to
add together:

var somelanguages = ["eng":"English","esp":"Spanish","ita":"Italian"]
var moreLanguages = ["deu":"German","chi":"Chinese","fre":"French"]

4 Now use your new method to join the two dictionaries:

var languages = somelanguages.add(other:moreLanguages)

Defines new
method to extend
Dictionary
k.store/books/9781617296215

https://itbook.store/books/9781617296215

25Extensions

www.itbook.
From now on, whenever you want to join two
dictionaries in a project that contains this
extension, the add method is available to you.
Because this method is defined directly on the
Dictionary structure, you didn’t need to
define the datatypes of the key and value, making this method available for all
Dictionary types.

OPEN Compare your code
in this section with mine in

the Extensions playground.

3.3.3 Operator overloading

I’m not completely happy with the add method. It’s not intuitive that you’re returning
the union of the two dictionaries, rather than adding one dictionary directly to the
other. I think it would be clearer if you’d used the add (+) operator, the way you can
with Arrays. Fortunately, Swift makes it possible to define or redefine operators!
Redefining functionality for an operator is called operator overloading.

 The + operator function receives a left and right parameter and returns a value
of the same type.

1 Redefine the add method in a Dictionary extension as an overloading of the +
operator.

func +(left: [String:String], right:[String:String]) -> [String:String] {
 var returnDictionary = left
 for (key,value) in right {
 returnDictionary[key] = value
 }
 return returnDictionary
}

Apart from how it’s defined, not much has changed from the body of the
method. The data types of the key and value need to be specified because
you’re no longer defining a generic Dictionary inside a Dictionary extension.
Apart from that tweak, the code is similar, and you now can add two
Dictionarys (with key/value String/String) with the plus (+) operator, which
is much more intuitive!

2 You'll still need two sample dictionaries to add together:

var somelanguages = ["eng":"English","esp":"Spanish","ita":"Italian"]
var moreLanguages = ["deu":"German","chi":"Chinese","fre":"French"]

3 Add the two dictionaries together again, but this time use your overloaded add
operator:

var languages = somelanguages + moreLanguages

CHALLENGE Overload the == operator to determine whether two Distance
objects are equivalent. Tip: The == operator returns a Bool value.
store/books/9781617296215

https://itbook.store/books/9781617296215

26 CHAPTER 3 Swift objects

www.itboo
3.3.4 Generics

It’s a shame, however, that this new overloaded operator will only “operate” on a spe-
cific type of Dictionary—one with a key that's a String, and a value that’s a String.
What if you had another Dictionary with a key/value of Int/String? You’d need to
define an overloaded operator again, for each combination of keys/values! How tire-
some.

 This is where a concept called generics is super useful. A generic can be substituted
in a function for any type, but must consistently represent the same type. It turns a
function that deals with a specific data type to a generic function that can work with
any data type.

 Pass in a list of generics between angle brackets <>, after the function or operator
name. Like function parameters, generics can be given any name you like.

1 Make the overloaded + operator for adding Dictionarys generic for any data-
type for key or value.

func +<Key,Value>(left: [Key:Value], right:[Key:Value]) -> [Key:Value]
{ var returnDictionary = left
 for (key,value) in right {
 returnDictionary[key] = value
 }
 return returnDictionary
}

2 Again, you’ll need two sample dictionaries to add together.

let somelanguages = ["eng":"English","esp":"Spanish","ita":"Italian"]
let moreLanguages = ["deu":"German","chi":"Chinese","fre":"French"]

3 Check your generic method still adds these dictionaries of with a String key
and String value.

var languages = somelanguages + moreLanguages

Great, it still works! But will it add dictionaries of another type?

4 Create two sample dictionaries of another type to check. Let’s try dictionaries
with an Int key and String value:

let someRomanNumerals =
 ➥[1:"I",5:"V",10:"X",50:"L",100:"C",500:"D",1000:"M"]
let moreRomanNumberals = [1:"I",2:"II",3:"III",4:"IV",5:"V"]

5 Confirm your overloaded operator can now join this different type of
Dictionary.

var romanNumerals = someRomanNumerals + moreRomanNumberals

Generics are another powerful tool to add to your programmer’s arsenal. The Swift
team themselves use them to define Arrays and Dictionarys, which is why you didn’t
k.store/books/9781617296215

https://itbook.store/books/9781617296215

27Summary

www.itbook.
need to define the data type of the Dictionary when you extended it. You were
already using this powerful feature!

3.4 Summary
In this chapter, you learned the following:

 Use classes or structures to represent types.
 Classes are reference types; structures are value types.
 Use initializers to initialize values.
 Use computed properties as getters and setters.
 Consider protocols to share functionality between classes or structures.
 Use extensions to add functionality to classes and structures.
 Use operator overloading to redefine operators.
 Use generics to make functions more flexible.
store/books/9781617296215

https://itbook.store/books/9781617296215

Another fascinating data type exists in Swift, called enumerations, or enums.
You may have experience with enumerations in other languages—they’re a bril-
liant way for storing a list of values or states in a type, that a variable of that type
could then accept. For example, instead of storing a direction as a string, such as
“North”, you could create an enum type which defines all possible directions in
what are called cases.

 Those are the basics—but the enums get taken to another level in Swift. Enu-
merations are types in their own right—they can define initializers and methods
or conform to protocols. Enumeration cases in Swift can also optionally be asso-
ciated with values, which opens up a whole world of possibilities.

 All of these features of enums make them an awesome alternative for model-
ing certain types of data. Tjeerd in ‘t Veen takes you on a deep dive into many
topics in Swift in his book Swift in Depth. In the chapter “Modeling data with
enums” we’ll take a look at using enums for modeling data compared to sub-
classing and structs.

Modeling data
with enums

www.itbook.store/books/9781617296215

https://www.manning.com/books/swift-in-depth
https://itbook.store/books/9781617296215

www.itbook.
Chapter 2 from Swift in Depth
by Tjeerd in ’t Veen

Modeling data with enums
Enumerations, or enums for short, are a core tool to use as a Swift developer.
Enums allow you to define a type by enumerating over its values, such as whether a
HTTP method’s a get, put, post or delete action, or denoting if an IP-address is either
in IPv4 or IPv6 format.

 Many languages have an implementation of enums, with a different type of
implementation for each language. Enums in Swift, unlike in C and Objective-C,
aren’t representations of integer values. Instead, Swift borrows a lot of concepts

This chapter covers
 You’ll see how enums are an alternative to subclassing.

 How to use enums for polymorphism.

 You’ll learn how enums are “or” types.

 How to model data with enums instead of structs.

 How enums and structs are algebraic types.

 How to convert structs to enums.

 How to safely handle enums with raw values.

 How to convert strings to enums to create robust code.
29

store/books/9781617296215

https://livebook.manning.com/#!/book/swift-in-depth/chapter-2/v-7/51
https://itbook.store/books/9781617296215

30 CHAPTER 2 Modeling data with enums

www.itbook.
from the functional programming world which bring plenty of benefits that we’ll
explore in this chapter.

 In fact, I’d argue enums are underused in Swift-land. This chapter hopes to change
that and help you see how enums can be surprisingly useful in a number of ways.

 You’ll see how enums are a suited alternative to subclassing and how enums can
help you fit multiple types inside a data structure, such as an array.

 Then, you’ll learn multiple ways to model your data with enums and how they fare
against structs and classes.

 We’ll dive into some algebraic theory to understand enums on a deeper level; then
you’ll see how we can apply this theory and convert structs to enums and back again.

 As the cherry on top, we’ll explore raw value enums and how we can use them to
handle strings cleanly.

 After reading this chapter, you may find yourself writing enums more often, end-
ing up with safer and cleaner code in your projects.

2.1 Enums instead of subclassing
Subclassing allows you to build a hierarchy of your data. For example, we could have a
fast food restaurant selling burgers, fries, the usual. For that, we’d create a superclass
of FastFood, with subclasses like Burger, Fries, and Soda.

 One of the limitations of modeling your software with hierarchies—e.g., subclass-
ing—is that you’re constrained into a specific direction which won’t always match
your needs.

 For example, the aforementioned restaurant has been getting complaints of cus-
tomers wanting to serve authentic Japanese sushi with their fries. The restaurant
intends to accommodate them, but their subclassing model doesn’t fit this new
requirement.

 In an ideal world, it makes sense to model your data hierarchically, but in practice,
you’ll sometimes hit edge cases and exceptions which may not fit your model.

 In this section, we’re going to explore the limitations of modeling our data via sub-
classing in a real-world scenario and solve these with the help of enums.

2.1.1 Forming a model for a workout app

Next up we’re building a model layer for a workout app, which tracks runs and cycles
for someone. A workout includes the starttime, endtime and a distance.

Tip

Join me!
All code from this chapter can be found online. It’s more educational and
fun if you follow along. You can download the source code at https://git-
hub.com/tjeerdintveen/manning-swift-in-depth/tree/master/ch02- enums/
store/books/9781617296215

https://github.com/tjeerdintveen/manning-swift-in-depth/tree/master/ch02-enums/
https://github.com/tjeerdintveen/manning-swift-in-depth/tree/master/ch02-enums/
https://github.com/tjeerdintveen/manning-swift-in-depth/tree/master/ch02-enums/
https://itbook.store/books/9781617296215

31Enums instead of subclassing

www.itboo
 We’ll create a Run and a Cycle struct that represents the data we’re modeling.

Listing 2.1 The Run struct

import Foundation // We need foundation for the Date type.

struct Run {
 let id: String
 let startTime: Date
 let endTime: Date
 let distance: Float
 let onRunningTrack: Bool
}

struct Cycle {

 enum CycleType {
 case regular
 case mountainBike
 case racetrack
 }

 let id: String
 let startTime: Date
 let endTime: Date
 let distance: Float
 let incline: Int
 let type: CycleType
}

These structs are a good starting point for our data layer.
 Admittedly, it can be cumbersome having to create separate logic in our applica-

tion for both the Run and Cycle types. Let’s start solving this via subclassing. Then
we’ll quickly learn which problems subclassing brings, after which you’ll see how
enums can solve some of these problems.

2.1.2 Creating a superclass

Many similarities exist between Run and Cycle which, at first look, make a good candi-
date for a superclass. The benefit with a superclass is that we can pass the superclass
around in our methods and arrays etc. This saves us from creating specific meth-
ods and arrays for each workout type.

 We could create a superclass called Workout, then turn Run and Cycle into a class
and make them subclass Workout.

Listing 2.2 The Cycle struct
k.store/books/9781617296215

https://itbook.store/books/9781617296215

32 CHAPTER 2 Modeling data with enums

www.itbook.
Figure 2.1 A subclassing
hierarchy.

Hierarchically, the subclassing structure makes a lot of sense; because workouts
share many values. We’ve a superclass called Workout with two subclasses, Run and
Cycle, which inherit from Workout.

 Our new Workout superclass contains the properties that both Run and Cycle share.
Specifically, id, startTime, endTime and distance.

2.1.3 The downsides of subclassing

We’ll quickly touch upon issues when it comes down to subclassing.
 First of all, we’re forced to use classes. Classes can be favorable, but the choice

between classes, structs or other enums disappears when subclassing.

Note

Being forced to use classes isn’t the biggest problem. Let’s showcase another limita-
tion by adding a new type of workout, called Pushups, which stores multiple repeti-
tions and a single date. Its superclass Workout requires a startTime, endTime and
distance value which Pushups doesn’t need.

 Subclassing Workout doesn’t work because some properties on Workout don’t
apply to Pushups.

 To allow Pushups to subclass Workout, we’d have to refactor the superclass and
all its subclasses. We’d do this by moving startTime, endTime, and distance from
Workout to the Cycle and Run classes because these properties aren’t part of a Push-
ups class.

Structs and classes
We’ll cover structs and classes in depth in later chapters.
store/books/9781617296215

https://itbook.store/books/9781617296215

33Enums instead of subclassing

www.itboo
Refactoring an entire data model shows the issue when subclassing. As soon as we intro-
duce a new subclass, we risk the need to refactor the superclass and all its subclasses.
That’s a significant impact on existing architecture and a downside of subclassing.

 Let’s consider an alternate approach involving enums.

2.1.4 Refactoring a data model with enums

By using enums, we stay away from a hierarchical structure yet we can still keep the
option of passing a single Workout around in our application. We’ll also be able to
add new workouts without needing to refactor the existing workouts.

 We do this by creating a Workout enum instead of a superclass. We can contain dif-
ferent workouts inside the Workout enum.

enum Workout {
 case run(Run)
 case cycle(Cycle)
 case pushups(Pushups)
}

Now Run, Cycle and Pushups won’t subclass Workout anymore. In fact all the work-
outs can be any type. Such as a struct, class or even another enum.

 We can create a Workout by passing it a Run, Cycle or Pushups workout.
 For example, we can create a Pushups struct that contains the repetitions and

the date of the workout. Then we can put this pushups struct inside a Workout enum.

let pushups = Pushups(repetitions: [22,20,10], date: Date())
let workout = Workout.pushups(pushups)

Now we can pass a Workout around in our application. Whenever we want to extract
the workout, we can pattern match on it.

Listing 2.3 Workout as an enum

Listing 2.4 Creating a workout

Figure 2.2 A refactored subclassing hierarchy.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

34 CHAPTER 2 Modeling data with enums

www.itboo
Listing 2.5 Pattern matching on a workout

switch workout {
case .run(let run):
 print("Run: \(run)")
case .cycle(let cycle):
 print("Cycle: \(cycle)")
case .pushups(let pushups):
 print("Pushups: \(pushups)")
}

The benefit of this solution’s that we can add new workouts without refactoring exist-
ing ones. For example, if we introduce an Abs workout, we can add it to Workout
without touching Run, Cycle or Pushups.

Listing 2.6 Adding a new workout to the Workout enum

enum Workout {
 case run(Run)
 case cycle(Cycle)
 case pushups(Pushups)
 case abs(Abs) // New workout introduced.
}

Not having to refactor other workouts in order to add a new one’s a big benefit and
worth considering using enums over subclassing.

2.1.5 Deciding on subclassing or enums

It’s not always easy to determine when enums or subclasses fit your data model.
 When types share a lot of properties, and if you predict that this won’t change in

the future, you can get far with classic subclassing. Subclassing steers you into a more
rigid hierarchy. On top of that, you’re forced to use classes.

 When similar types start to diverge, or if you want to keep using enums and structs
(as opposed to classes only), then creating an encompassing enum offers more flexi-
bility and could be the better choice.

 The downside of enums is that now your code needs to match on all cases in your
entire application. Although this may require extra work when adding new cases, it‘s
also a safety net where the compiler makes sure you haven’t forgotten to handle a case
somewhere in your application.

 Another downside of enums is that at the time of writing, enums can’t be extended
with new cases. Enums lock down a model to a fixed number of cases, and unless you
own the code, you can’t change this rigid structure. For example, perhaps you’re offer-
ing an enum via a third-party library, and now its implementers can’t expand on it.

 These are trade-offs you’ll have to make. If you can lock down your datamodel to a
fixed manageable amount of cases, then enums can be a good choice.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

35Enums for polymorphism

www.itbook.
2.1.6 Exercises

1 Can you name two benefits of using subclassing over enums with associated
types?

2 Can you name two benefits of using enums with associated types over subclassing?

2.2 Enums for polymorphism
Sometimes we need flexibility in the shape of polymorphism. Polymorphism meaning
that a single function, method, array, dictionary—you name it—can work with differ-
ent types.

 If we mix types in an array, we end up with an Array of type [Any]. Such as when
we put a Date, String, and Int inside one array.

Listing 2.7 Filling an array with multiple values

let arr: [Any] = [Date(), "Why was six afraid of seven?", "Because...", 789]

Arrays explicitly want to be filled with the same type. In Swift, what these mixed types
have in common, is that they’re an Any type.

 Handling Any types often not ideal. Because we don’t know what Any represents at
compile-time, we’d need to check against the Any type at runtime to see what it pres-
ents. For instance, we could match on any types via pattern matching, using a switch
statement.

Listing 2.8 Matching on Any values at runtime

let arr: [Any] = [Date(), "Why was six afraid of seven?", "Because...", 789]

for element in arr {
 // element is "Any" type
 switch element {
 case let stringValue as String: "received a string: \(stringValue)"
 case let intValue as Int: "received an Int: \(intValue)"
 case let dateValue as Date: "received a date: \(dateValue)"
 default: print("I am not interested in this value")
 }
}

 We can still figure out what Any is at runtime, but we don’t know what to expect
when matching on an Any type; we must also implement a default case to catch the
values in which we aren’t interested.

 Working with Any types are sometimes needed when you can’t know what some-
thing is at compile-time, such as when you’re receiving unknown data from a server. If
we know beforehand the types that we’re dealing with, we can get compile-time safety
by using an enum.
store/books/9781617296215

https://itbook.store/books/9781617296215

36 CHAPTER 2 Modeling data with enums

www.itboo
2.2.1 Compile-time polymorphism

Imagine that we’d like to store two different types in an array. Such as a Date and a
range of two dates, of type Range<Date>.

Note

We can create a DateType representing either a single date or a range of dates. Then
we can fill up an array of both a Date and Range<Date>.

Listing 2.9 Adding multiple types to an array via an enum

let now = Date()
let hourFromNow = Date(timeIntervalSinceNow: 3600)

let dates: [DateType] = [
 DateType.singleDate(now),
 DateType.dateRange(now..<hourFromNow)
]

The enum itself merely contains two cases, each with its own associated value.

Listing 2.10 Introducing a DateType enum

enum DateType {
 case singleDate(Date)
 case dateRange(Range<Date>)
}

The array itself consists only out of DateType instances. In turn, each DateType har-
bors one of multiple types.

Figure 2.3 Array enums.

Thanks to the enum, we end up with an array containing multiple types, while main-
taining compile-time safety.

What are these <Date> brackets?
Range’s a type that represents a lower and upper bound. The <Date> nota-
tion indicates that Range is storing a generic type, which we’ll explore
deeply in a future chapter.
The Range<Date> notation tells us that we’re working with a range of two
Date types.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

37Or versus and

www.itbook.
 Namely, if we read values from the array, we could switch on each value.

Listing 2.11 Matching on the dateType enum

for dateType in dates {
 switch dateType {
 case .singleDate(let date): print("Date is \(date)")
 case .dateRange(let range): print("Range is \(range)")
 }
}

The compiler also helps us if we ever modify the enum.
 By way of illustration, if we added a year case to the enum, the compiler will tell us

that we forgot to handle a case.

Listing 2.12 Adding a year case to DateType

enum DateType {
 case singleDate(Date)
 case dateRange(Range<Date>)
 case year(Int
}

The compiler throws:

Listing 2.13 The compiler notifies us

error: Enums.playground:27:5: error: switch must be exhaustive
 switch dateType {
 ^

Enums.playground:27:5: note: add missing case: '.year(_)'
 switch dateType {

Thanks to enums, we can bring back compile-time safety when mixing types inside
arrays, and other structures, such as dictionaries.

 We must beforehand know what kind of cases we expect and want to match
against. But, when you know what you’re working with, the added compile-time
safety’s a nice bonus.

2.3 Or versus and
Enums are based on something called algebraic data types, which is a term that comes
from functional programming languages, where enums are sometimes referred to as
sum types.

 Enums—or sum types—can be thought of as an “or” type. Sum types can only be
one thing at once, e.g., A traffic light can either be green or yellow or red. Or how a
die can either be six-sided or twenty-sided, but not both at the same time.

Year’s newly added.
store/books/9781617296215

https://itbook.store/books/9781617296215

38 CHAPTER 2 Modeling data with enums

www.itbook.
 On the other end of the spectrum, we’ve another concept called product types.
A product type’s a type that contains multiple values, such as a class, tuple or struct.

 You can think of a product type as an “and” type. E.g., a User struct can have both
a name and an id. Or an address class can have a street and a house number and a zip
code.

2.3.1 Modeling data with a struct

Let’s start off with an example that shows how to think about “or” and “and” types
when modeling data.

 In the upcoming example, we’re modeling message data in a chat application.
A message could be text that a user may send, but it could also be a join or leave mes-
sage. A message could even be a signal to send balloons across the screen. Because
why not, Apple does it in their Messages app.
If we’d list the types of messages that our application supports, we’d have:

 A join message, such as “Mother-in-law has joined the chat.”
 A text message that someone can write. Such as “Hello everybody!”
 A send balloons message, which includes some animations and annoying

sounds that others see and hear.
 A leave message, such as “Mother-in-law has left the chat.”
 When someone’s drafting a message, such as “Mike is writing a message.”

Let’s create a data model to represent messages. Our first idea might be to use a
struct to model our Message. We’ll start by doing that and showcase the problems it
brings. Then we’ll solve these problems by using an enum.

 We can create multiple types of messages in code, such as a join message when
someone enters a chatroom.
store/books/9781617296215

https://itbook.store/books/9781617296215

39Or versus and

www.itboo
Figure 2.4 A chat application.

Listing 2.14 A join chatroom message

import Foundation // Needed for the Date type.

let joinMessage = Message(userId: "1",
 contents: nil,
 date: Date(),
 hasJoined: true, // We set the joined boolean
 hasLeft: false,
 isBeingDrafted: false,
 isSendingBalloons: false)

We can also create a regular text message.

Listing 2.15 A text message

let textMessage = Message(userId: "2",
 contents: "Hey everyone!", // We pass a message
 date: Date(),
 hasJoined: false,
 hasLeft: false,
 isBeingDrafted: false,
 isSendingBalloons: false)

In our hypothetical messaging app, we can pass this message data around to other
users. Our Message struct looks as follows:
k.store/books/9781617296215

https://itbook.store/books/9781617296215

40 CHAPTER 2 Modeling data with enums

www.itboo
Listing 2.16 The Message struct

import Foundation

struct Message {
 let userId: String
 let contents: String?
 let date: Date

 let hasJoined: Bool
 let hasLeft: Bool

 let isBeingDrafted: Bool
 let isSendingBalloons: Bool
}

Although this is one small example, it displays a problem. Because a struct can contain
multiple values, we can run into bugs where the Message struct can both be a text
message, as well as a hasLeft command as well as an isSendingBalloons command.
An invalid message state doesn’t bode well because a message can only be one or
another in the business rules of the application. The visuals won’t support an invalid
message either.

 To illustrate, we’ve a message in an invalid state. It represents a text message,
but also a join and a leave message.

Listing 2.17 An invalid message with conflicting properties.

let brokenMessage = Message(userId: "1",
 contents: "Hi there", // We have text to show
 date: Date(),
 hasJoined: true, // But this message also signals a

joining state
 hasLeft: true, // ... and a leaving state
 isBeingDrafted: false,
 isSendingBalloons: false)

In a small example, it’s harder to run into invalid data, but it surely happens often
enough in real-world projects. Imagine a Message being created from a local file or
some function that combines two messages into one. No compile-time guarantees
ensure that a message’s in the right state.

 We can think about validating a Message and throwing errors, but then we’re
catching invalid messages at runtime (if at all). Instead, we can enforce correctness at
compile-time if we model the Message using an enum.

2.3.2 Turning a struct into an enum

Whenever you’re modeling data, see if you can find mutually exclusive properties. A
message can’t be both a join and a leave message at the same time. A message can’t
also send balloons and be a draft at the same time.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

41Or versus and

www.itbook.
 A message can be a join or leave message. A message can also be a draft or rep-
resent the sending of balloons. When you detect “or” statements in a model, an enum
could be a more fitting choice for your data model.

 Using an enum to group the properties into cases makes the data much clearer to
grasp. Let’s improve our model by turning it into an enum.

Listing 2.18 Message as an enum (lacking values)

import Foundation

enum Message {
 case text
 case draft
 case join
 case leave
 case balloon
}

The total sum of variations of Message is five cases. Hence why enums are sometimes
called sum types.

 But, we’re not there yet, because the cases have no values. We can add values by
adding a tuple to each case.

 A tuple’s an ordered set of values. Such as (userId: String, contents:

String, date: Date).
 By combining an enum with tuples, we can build more complex data structures.

Let’s add tuples to the enum’s cases now:

Listing 2.19 Message as an enum, with values

import Foundation

enum Message {
 case text(userId: String, contents: String, date: Date)
 case draft(userId: String, date: Date)
 case join(userId: String, date: Date)
 case leave(userId: String, date: Date)
 case balloon(userId: String, date: Date)
}

By adding tuples to cases, these cases have so-called associated values in Swift terms.
Also, it’s clear which properties belong together.

 Now, whenever we want to create a Message as an enum, we can pick the proper
case with related properties; there’s no chance that we’ll mix and match the wrong
values.

Listing 2.20 Creating enum messages

let textMessage = Message.text(userId: "2", contents: "Bonjour!", date: Date())
let joinMessage = Message.join(userId: "2", date: Date())
store/books/9781617296215

https://itbook.store/books/9781617296215

42 CHAPTER 2 Modeling data with enums

www.itboo
When we want to work with the messages, we can use a switch case on them and
unwrap its inner values.

 Let’s say we want to log the messages which have been sent.

Listing 2.21 Logging messages

logMessage(message: joinMessage) // User 2 has joined the chatroom
logMessage(message: textMessage) // User 2 sends message: Bonjour!

func logMessage(message: Message) {
 switch message {
 case let .text(userId: id, contents: contents, date: date):
 print("[\(date)] User \(id) sends message: \(contents)")
 case let .draft(userId: id, date: date):
 print("[\(date)] User \(id) is drafting a message")
 case let .join(userId: id, date: date):
 print("[\(date)] User \(id) has joined the chatroom")
 case let .leave(userId: id, date: date):
 print("[\(date)] User \(id) has left the chatroom")
 case let .balloon(userId: id, date: date):
 print("[\(date)] User \(id) is sending balloons")
 }
}

It may be a deterrent having to switch on all cases in your entire application to read a
value from a single message. You can save yourself some typing by using the if
case let combination to match on a single type of Message.

Listing 2.22 Matching on a single case

if case let Message.text(userId: id, contents: contents, date: date) =
textMessage {
 print("Received: \(contents)") // Received: Bonjour!
}

If we’re not interested in certain properties when matching on an enum, we can
match on these properties with an underscore, called a wild card, or how I call it, the
“don’t care” operator.

Listing 2.23 Matching on a single case with the “I don’t care” underscore.

if case let Message.text(_, contents: contents, _) = textMessage {
 print("Received: \(contents)") // Received: Bonjour!
}

2.3.3 Deciding between structs and enums

Getting compiler benefits with enums is a significant benefit, but, if you catch yourself
frequently pattern matching on a single case then a struct might be a better approach.

 Also, keep in mind that the associated values of an enum are containers without
additional logic. If we had a struct or class, then we’d pass data via an initializer. This
k.store/books/9781617296215

https://itbook.store/books/9781617296215

43Enums are algebraic data types

www.itbook.
initializer would perform some cleanup work. For instance, trimming the whitespace
of a string.

 Next time you write a struct, see if you can try and group properties. Your data
model might be a good candidate for an enum!

2.4 Enums are algebraic data types
Previously, we touched briefly upon sum and product types. Let’s use this section to go
a little deeper allowing us to reason about enums better.

2.4.1 Algebraic data types

Enums, tuples, and structs are algebraic data types. Algebraic data types revolve
around two operations: sum and product. Let’s take a closer look at sum and product
types before applying it to a data model.

2.4.2 Sum types

Enums are sum types. Sum types have a fixed number of values that they can repre-
sent. For instance, the following enum called Day represents any day in the week.
Seven possible values can represent Day.

Listing 2.24 The Day enum

enum Day {
 case sunday
 case monday
 case tuesday
 case wednesday
 case thursday
 case friday
 case saturday
}

To know the number of possible values of an enum, we add (sum) the possible values
of the types inside. In the case of the Day enum, this means that the total sum’s seven.

 Another way to reason about possible values is the Int8 type. Ranging from -127 to
128, the total number of possible values is 256 (127 + 128 + 1 for including 0). It isn’t
modeled this way, but you can think of an Int8 as if it’s an enum with 256 cases.

 If we were to write an enum with two cases, and we added an Int8 to one of the
cases, then this enum’s possible variations jumps from 2 to 257.

 For instance, we can have an Age enum—representing someone’s age—where if
the age can be unknown, but if it’s known, it contains an Int8.

Listing 2.25 The Age enum

enum Age {
 case known(Int8)
 case unknown
}

store/books/9781617296215

https://itbook.store/books/9781617296215

44 CHAPTER 2 Modeling data with enums

www.itboo
There are now 257 possible values can be represented by Age. Namely, the unknown
case (1) + known case (256).

2.4.3 Product types

On the other end of the spectrum, we have product types. A product type multiplies
the possible values of the values it contains.

 As an example, if we were to store two booleans inside a struct, the total
number of variations is the multiplication—also known as the product—of these two
enums.

Listing 2.26 A struct containing two booleans

struct BooleanContainer {
 let first: Bool
 let second: Bool
}

The first boolean (two possible values) times the second boolean (two possible val-
ues) is four possible states.

 In code this could be proven by showing all variations.

Listing 2.27 BooleanContainer has four possible variations

BooleanContainer(first: true, second: true)
BooleanContainer(first: true, second: false)
BooleanContainer(first: false, second: true)
BooleanContainer(first: false, second: false)

This is good to keep in mind when modeling data. The higher the number of
possible values a type has, the harder it’s to reason about.

 As a hyperbole, having a struct with 1000 strings for properties has a lot more pos-
sible states than a struct with a single boolean property.

2.4.4 Distributing a sum over an enum

Knowing about sum and product types won’t stay all theory either. We’re not here to
write a dry, theoretically-based graduate paper, but to produce beautiful work.

 Let’s briefly cover a more in-depth look at the algebra behind the theory, and then
you’ll see how to use this knowledge as a tool to turn structs into enums and back
again.

 In arithmetic, as an example, we can write two variations of a calculation. We can
have a sum (2 + 3) which we multiply by 4.

Listing 2.28 Arithmetic

4 * (2 + 3)

Alternatively, the multiplication (product) can be distributed over the sums for the
same effect, in a different notation.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

45Enums are algebraic data types

www.itbook.
Listing 2.29 Distributing a multiplication over sums.

4 * 2 + 4 * 3

Enums, tuples, and structs are algebraic and follow the same principle. E.g., we can
distribute a struct over an enum.

 Imagine that we’ve a PaymentType enum containing three cases; This enum rep-
resents the three ways a customer can pay.

Listing 2.30 Introducing PaymentType

enum PaymentType {
 case invoice
 case creditcard
 case cash
}

Next, we’re going to represent the status of a payment. A struct’s a suitable candidate
to store some auxiliary properties besides the PaymentStatus enum, such as when a
payment’s completed and if it concerns a recurring payment.

Listing 2.31 A PaymentStatus enum

struct PaymentStatus {
 let paymentDate: Date?
 let isRecurring: Bool
 let paymentType: PaymentType
}

The product of all the variations are: All possible dates times 2 (boolean) times 3 (enum
with three cases). This is a high number.

 Like cream cheese on a bagel, we’ll smear the properties of the struct out over
the cases of the enum by following the rules of algebraic data types.
store/books/9781617296215

https://itbook.store/books/9781617296215

46 CHAPTER 2 Modeling data with enums

www.itboo
 We end up with an enum taking the same name as the struct. Each case rep-
resents the original enum’s cases with the struct’s properties inside.

Listing 2.32 PaymentStatus containing cases

enum PaymentStatus {
 case invoice(paymentDate: Date?, isRecurring: Bool)
 case creditcard(paymentDate: Date?, isRecurring: Bool)
 case cash(paymentDate: Date?, isRecurring: Bool)
}

All the information’s still there, and the number of possible variations is still the
same. Except for this time, we flipped the types inside out!

 As a benefit, we’re only dealing with a single type; the price is repetition inside each
case. Right or wrong isn’t the issue; it’s merely a different approach to model the same
data while leaving the same number of possible variations intact.

 It’s a neat trick that displays the algebraic nature of types and helps us model
enums in multiple ways. Depending on your needs, an enum might be a fitting alter-
native to a struct containing an enum, or vice versa.

2.4.5 Exercise

Given this data structure:
enum Topping {
 case creamCheese
 case peanutButter
 case jam
}

enum BagelType {
 case cinnamonRaisin
 case glutenFree
 case oatMeal
 case blueberry
}

struct Bagel {
 let topping: Topping
 let type: BagelType
}

3 What’s the number of possible variations of Bagel?
4 Turn Bagel into an enum while keeping the same amount of possible variations.
5 Given this enum representing a Puzzle game for a certain age range (baby, tod-

dler, etc.) and containing some puzzle pieces.

enum Puzzle {
 case baby(numberOfPieces: Int)
 case toddler(numberOfPieces: Int)
 case preschooler(numberOfPieces: Int)
k.store/books/9781617296215

https://itbook.store/books/9781617296215

47A safer use of strings

www.itbook.
 case gradeschooler(numberOfPieces: Int)
 case teenager(numberOfPieces: Int)
}

How could this enum be represented as a struct instead?

2.5 A safer use of strings
Dealing with strings and enums is quite common. Let’s go ahead and pay some extra
attention to them to do it correctly.

 This section highlights some dangers when dealing with enums that hold a String
raw value.

 When an enums defined as a raw value type, then all cases of that enum carry some
value inside them.

 Enums with raw values are defined by having a type added to an enum’s declara-
tion.

The raw values that an enum can store are only reserved for String, Character and
integer and floating-point number types.

 An enum with raw values are values which are attached to enum’s cases at compile
time. In contrast, enums with associated types—which we’ve used in the previous sec-
tions—store their values at runtime.

 When creating an enum with a String raw type, each raw value takes on the
name of the case. We don’t need to add a string value if the rawValue is the same as
the case name.

Listing 2.33 Enum with raw values, with string values omitted.

enum Currency: String {
 case euro
 case usd
 case gbp
}

Because the enum still has a raw value type, such as String, each case still carries the
raw values inside them.

2.5.1 Dangers of raw values

Some caution’s needed when working with raw values. Because once you read an
enum’s raw values, you lose some help from the compiler.

 For instance, we’re going to set up parameters for a hypothetical API call. We’d
use these parameters to request transactions in the currency that we supply.
store/books/9781617296215

https://itbook.store/books/9781617296215

48 CHAPTER 2 Modeling data with enums

www.itbook.
 We’ll use the Currency enum to construct parameters for our API call. We can
read the enum’s raw value by accessing the raw value property and set up our API
parameters that way.

Listing 2.34 Setting a raw value inside parameters.

let currency = Currency.euro
print(currency.rawValue) // "euro"

let parameters = ["filter": currency.rawValue]
print(parameters) // ["filter": "euro"]

To introduce a bug, we’ll change the rawValue of the euro case, from “ euro” to
“ eur” (dropping the “o”), because eur is the currency notation of the euro.

Listing 2.35 Renaming a string

enum Currency: String {
 case euro = "eur"
 case usd
 case gbp
}

The problem, because the API call relied on the rawValue to creating our parame-
ters, is that the parameters are now affected for the API call.

 The compiler won’t notify us, because the raw value’s still valid code.

Listing 2.36 Unexpected parameters

let parameters = ["filter": currency.rawValue]
// We expect "euro" but got "eur"
print(parameters) // ["filter": "eur"]

Everything still compiles, but we silently introduced a bug in a part of our application.
 It may sound obvious to make sure to update a string everywhere. But imagine that

you’re working on a big project where this enum was created in a completely different
part of the application, or perhaps offered from a framework. An innocuous change
on the enum may be damaging somewhere else in your application. These issues can
sneak up on you, and it’s easy to miss the newly introduced bugbecausewe don’t know
it happens at compile time.

 We can play it safe and ignore an enum’s raw values and match on the enum cases
itself. When we set the parameters this way, we’ll know at compile time when a case
changes.

Listing 2.37 Explicit raw values

let parameters: [String: String]
switch currency {
 case .euro: parameters = ["filter": "euro"]
 case .usd: parameters = ["filter": "usd"]
store/books/9781617296215

https://itbook.store/books/9781617296215

49A safer use of strings

www.itbook.
 case .gbp: parameters = ["filter": "gbp"]
}

// We're back to using "euro" again
print(parameters) // ["filter": "euro"]

We’re recreating strings and ignoring the enum’s raw values. It may be redundant
code, but at least we’ll have exactly the values we need. Any changes to the raw val-
ues won’t catch us off guard because the compiler will now be able to help us. We
could even consider dropping the raw values altogether if our application allows.

 Perhaps even better, is that we do use the raw values, but we add safety by writing
unit tests to make sure that nothing breaks. This way we’ll have a safety net and the
benefits of using raw values.

 These are all trade-off you’ll have to make, but it’s good to be extra conscious of the
fact that you lose help from the compiler once you start using raw values from an enum.

2.5.2 Matching on Strings

Whenever we pattern match on a string, we’re opening the door to missed cases. This
section covers the downsides of matching on strings and showcase how to make an
enum out of it for added safety.

 In the next example, we’re modeling a user-facing image management system in
which customers can store and group their favorite photos, images, and gifs. Depend-
ing on the file type, we need to know whether or not to show a particular icon, indicat-
ing it’s a jpeg, bitmap, gif or an unknown type.

 In a real-world application, you’d also check real metadata of an image, but for a
quick and dirty approach, we’ll only look at the extension.

 The iconName function gives our application the name of the icon to display
over an image, based on the file extension. E.g., a jpeg image has a little icon
shown on it, this icon’s name will be “assetIconJpeg.”

Listing 2.38 Matching on strings

func iconName(for fileExtension: String) -> String {
 switch fileExtension {
 case "jpg": return "assetIconJpeg"
 case "bmp": return "assetIconBitmap"
 case "gif": return "assetIconGif"
 default: return "assetIconUnknown"
 }
}

iconName(for: "jpg") // "assetIconJpeg"

Matching on strings works, but there are a couple of problems with this approach,
versus matching on enums.

 It’s easy to make a typo and harder to make it match. For example, expecting “jpg”
but getting “jpeg” or “JPG” from an outside source.
store/books/9781617296215

https://itbook.store/books/9781617296215

50 CHAPTER 2 Modeling data with enums

www.itbook.
 The function returns an unknown icon as soon as we deviate only a little, for exam-
ple by passing it a capitalized string.

iconName(for: "JPG") // "assetIconUnknown", not favorable.

Sure, an enum doesn’t solve all problems right away, but if you’d repeatedly match on
the same string, the chances of typos increase.

 Also, if any bugs are introduced by matching on strings, we’ll know it at runtime,
but switching on enums are exhaustive. If we switched on an enum instead, we’d know
about bugs (e.g., forgetting to handle a case) at compile time.

 Let’s create an enum out of it! We do this by introducing an enum with a String
raw type, as indicated by enum ImageType: String.

// Introducing the enum
enum ImageType: String {
 case jpg case bmp
 case gif
}

This time when we match in the iconName function, we turn the string into an enum
first by passing a rawValue. This way we’ll know if ImageType gets another case added
to it. The compiler tells us that iconName needs to be updated and handle a new case.

func iconName(for fileExtension: String) -> String {
 guard let imageType = ImageType(rawValue: fileExtension) else {
 return "assetIconUnknown"
 }
 switch imageType {
 case .jpg: return "assetIconJpeg"
 case .bmp: return "assetIconBitmap"
 case .gif: return "assetIconGif"
 }
}

But we still haven’t solved the issue of slightly differing values, such as “jpeg” or
“JPEG.” If we were to capitalize “jpg,” the iconName function would return “imagetype
unknown.”

 Let’s take care of that now by matching on multiple strings at once.
 We can implement our own initializer which accepts a rawvalue string.

Listing 2.39 Unknown icon

Listing 2.40 Creating an enum with a String raw value

Listing 2.41 iconName creates an enum

The function tries to convert the
string to ImageType, it returns
“assetIconUnknown” if this fails.iconName now

matches on the
enum, giving us
compiler
benefits if we
missed a case.
store/books/9781617296215

https://itbook.store/books/9781617296215

51A safer use of strings

www.itbook.
Listing 2.42 Adding a custom initializer to ImageType

enum ImageType: String {
 case jpg
 case bmp
 case gif

 init?(rawValue: String) {
 switch rawValue.lowercased() {
 case "jpg", "jpeg": self = .jpg
 case "bmp", "bitmap": self = .bmp
 case "gif", "gifv": self = .gif
 default: return nil
 }
 }

}

A couple of things to note here. We set the ImageType case depending on its
passed rawValue, but not before turning it into a lowercased string to make the pat-
tern matching case-insensitive.

 Next, we give each case multiple options to match on. Such as case "jpg",

"jpeg" to catch more cases. We could write it out by using more cases, but this is a
clean way to group pattern matching.

 Now our string matching’s more robust and we can match on variants of the
strings.

Listing 2.43 Passing different strings

iconName(for: "jpg") // "Received jpg"
iconName(for: "jpeg") // "Received jpg"
iconName(for: "JPG") // "Received a jpg"
iconName(for: "JPEG") // "Received a jpg"
iconName(for: "gif") // "Received a gif"

If we have a bug in the conversion, we can write a test case for it and only have to fix
the enum in one location, instead of fixing multiple string matching sprinkled around
in the application.

 Working with strings this way’s now more idiomatic, the code has been made safer
and more expressive. The tradeoff’s that a new enum has to be created, which may be
redundant if you pattern match on a string only once.

Note

Optional init?
The initializer from ImageType returns an optional. An optional initializer
indicates that it can fail. When the initializer fails—when we give it an unus-
able string—the initializer returns a nil value. Not to worry if this isn’t clear
yet, we’ll handle optionals in-depth in a future chapter.

The string matching’s now
case-insensitive, making it
more forgiving.

The initializer matches on
multiple strings at once,
such as “jpg” and “jpeg.”
store/books/9781617296215

https://itbook.store/books/9781617296215

52 CHAPTER 2 Modeling data with enums

www.itboo
 As soon as you see code matching on a string repeatedly, converting it to an
enum’s a good choice.

2.5.3 Exercises

6 Which raw types are supported by enums?
7 Are an enum's raw values set at compile time or runtime?
8 Are an enum's associated values set at compile time or runtime?
9 Which types can go inside an associated value?

CLOSING THOUGHTS

As you can see, enums are more than a list of values. Once you start “thinking in
enums”, you’ll get a lot of safety and robustness in return.

 I hope this chapter inspires you to use enums in surprisingly fun and useful ways.
Perhaps you’ll use enums more often to combine them with, or substitute, structs and
classes.

 In fact, perhaps next time as a pet project, see how far you can get by using only
enums and structs. It’ll be an excellent workout to think in sum and product types!

2.6 Summary
In this chapter, you learned that

 Enums are sometimes an alternative to subclassing, allowing for a flexible archi-
tecture.

 Enums give you the ability to catch problems at compile time instead of run-
time.

 Enums can be used to group properties together.
 Enums are sometimes called sum types, based on algebraic data types.
 Structs can be distributed over enums.
 When working with enum’s raw values, you forego catching problems at com-

pile time.
 Handling strings can be made safer by converting them to enums.
 When converting a string to an enum, grouping cases and using a lowercased

string makes conversion easier.

Great job, you survived the first chapter! I hope you’ve got a share of “ aha”
moments already. There’s a lot more to come; let’s quickly move on.

2.7 Answers
1 A superclass prevents duplication, no need to declare the same property

twice. With subclassing, you can also override existing functionality.
2 No need to refactor anything if you add another type. Whereas with subclassing

you risk refactoring a superclass and its existing subclasses. Second, you aren’t
forced to use classes.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

53Answers

www.itbook.
3 What are the number possible variations of Bagel? Twelve. Three for Topping
times four for BagelType.

4 There are two ways, because Bagel contains two enums. You can pick which
enum to store the data in.

// We can use the Topping enum as the enum's cases.
enum Bagel {
 case creamCheese(BagelType)
 case peanutButter(BagelType)
 case jam(BagelType)
}

// Alternatively, we can use the BagelType enum as the enum's cases.
enum Bagel {
 case cinnamonRaisin(Topping)
 case glutenFree(Topping)
 case oatMeal(Topping)
 case blueberry(Topping)
}

5 How could this enum be represented as a struct instead?

enum AgeRange {
 case baby
 case toddler
 case preschooler
 case gradeschooler
 case teenager
}

struct Puzzle {
 let ageRange: AgeRange
 let numberOfPieces: Int
}

6 String, Character and integer and floating-point types.
7 Raw type values are determined at compile time.
8 Associated values are set at runtime.
9 All types fit inside an associated value.

Listing 2.44 Bagel as enum, two variations

Listing 2.45 Puzzle as struct
store/books/9781617296215

https://itbook.store/books/9781617296215

Finally, let’s take a look at how we can apply what we’ve learned about Swift
with a sample from the book Classic Computer Science Problems in Swift. In the chap-
ter “Graph problems”, author David Kopec introduces us to the problem of
graphing networks—such as a train network—with vertices and edges (think
train stations and train-lines).

 David looks at implementing a data structure to represent such networks in
code and then explores solving related problems, such as finding the shortest
path between two stations, or minimizing the track needed to connect all the sta-
tions, using algorithms discovered 100 years ago!

 This example doesn’t only apply to train-networks. Plenty of real world exam-
ples exist of networks that this sort of discussion could apply to, and several are
discussed at the end of the chapter. Beyond the specifics of this topic, I think it’s
fascinating to examine the process of how to approach complex problems such
as these, a worthwhile exercise for those wanting to further their adventure in
Swift!

Graph problems

www.itbook.store/books/9781617296215

https://livebook.manning.com/#!/book/swift-in-depth/chapter-2/v-7/49
https://itbook.store/books/9781617296215

www.itbook.
Chapter 4 from Classic Computer Science
Problems in Swift by David Kopec

Graph problems
A graph is an abstract mathematical construct that is used for modeling a real-world
problem by dividing the problem into a set of connected nodes. We call each of the
nodes a vertex and each of the connections an edge. For instance, a subway map can
be thought of as a graph representing a transportation network. Each of the dots
represents a station, and each of the lines represents a route between two stations.
In graph terminology, we would call the stations “vertices” and the routes “edges.”

 Why is this useful? Not only do graphs help us abstractly think about a problem,
they also let us apply several well-understood and performant search and optimiza-
tion techniques. For instance, in the subway example, suppose we want to know the
shortest route from one station to another. Or, suppose we wanted to know the
minimum amount of track needed to connect all of the stations. Graph algorithms
that you will learn in this chapter can solve both of those problems. Further, graph
algorithms can be applied to any kind of network problem—not just transportation
networks. Think of computer networks, distribution networks, and utility networks.
Search and optimization problems across all of these spaces can be solved using
graph algorithms.

 In this chapter, we won’t work with a graph of subway stations, but instead cities
of the United States and potential routes between them. Figure 4.1 is a map of the
continental United States and the fifteen largest metropolitan statistical areas
(MSAs) in the country, as estimated by the U.S. Census Bureau.1

 Famous entrepreneur Elon Musk has suggested building a new high-speed
transportation network composed of capsules traveling in pressurized tubes.
According to Musk, the capsules would travel at 700 miles per hour and be suitable

1 Data from the United States Census Bureau’s American Fact Finder, https://factfinder.census.gov/.
55

store/books/9781617296215

https://factfinder.census.gov/
https://www.manning.com/books/classic-computer-science-problems-in-swift
https://www.manning.com/books/classic-computer-science-problems-in-swift
https://itbook.store/books/9781617296215

56 CHAPTER 4 Graph problems

www.itboo
Los
Angeles

Houston

New York

Miami

Chicago

Dallas

Washington
Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

Riverside

Figure 4.1 A map of the 15 largest MSAs in the United States

for cost-effective transportation between cities less than 900 miles apart.2 He calls this
new transportation system the “Hyperloop.” In this chapter we will explore classic
graph problems in the context of building out this transportation network.

 Musk initially proposed the Hyperloop idea for connecting Los Angeles and San
Francisco. If one were to build a national Hyperloop network, it would make sense to
do so between America’s largest metropolitan areas. In figure 4.2 the state outlines from
figure 4.1 are removed. In addition, each of the MSAs is connected with some of its
neighbors (not always its nearest neighbors, to make the graph a little more interesting).

 Figure 4.2 is a graph with vertices representing the 15 largest MSAs in the United
States and edges representing potential Hyperloop routes between cities. The routes
were chosen for illustrative purposes. Certainly other potential routes could be part of
a new Hyperloop network.

 This abstract representation of a real-world problem highlights the power of graphs.
Now that we have an abstraction to work with, we can ignore the geography of the
United States and concentrate on thinking about the potential Hyperloop network sim-
ply in the context of connecting cities. In fact, as long as we keep the edges the same,
we can think about the problem with a different looking graph. In figure 4.3, the loca-
tion of Miami has moved. The graph in figure 4.3, being an abstract representation, can
still address the same fundamental computational problems as the graph in figure 4.2,
even if Miami is not where we would expect it. But for our sanity, we will stick with the
representation in figure 4.2.

2 Elon Musk, “Hyperloop Alpha,” http://mng.bz/chmu.
k.store/books/9781617296215

http://mng.bz/chmu
https://itbook.store/books/9781617296215

57Building a graph framework

www.itbook.
Los
Angeles

Houston

New York

Miami

Chicago

Dallas

Washington
Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

Riverside

Figure 4.2 A graph with the vertices representing the 15 largest MSAs in the United States and
the edges representing potential Hyperloop routes between them

Los
Angeles

Houston

New YorkChicago

Dallas

Miami
Washington

Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

Riverside

Figure 4.3 An equivalent graph to that in figure 4.2, with the location of Miami moved

4.1 Building a graph framework
Swift has been promoted as enabling a protocol-oriented style of programming (as
opposed to the traditional object-oriented or functional paradigms).3 Although
the orthodoxy of this new paradigm is still being fleshed-out, what is clear is that it puts
interfaces and composition ahead of inheritance. Whereas the class is the fundamental

3 Dave Abrahams, “Protocol-Oriented Programming in Swift,” WWDC 2015, Session 408, Apple Inc.,
http://mng.bz/zWP3.
store/books/9781617296215

http://mng.bz/zWP3
https://itbook.store/books/9781617296215

58 CHAPTER 4 Graph problems

www.itboo
building block in the object-oriented paradigm, and the function is the fundamental
building block in functional programming, the protocol is the fundamental building
block in protocol-oriented programming. In that light, we will try building a graph
framework in a protocol-first style.

NOTE The framework described in this section, and the examples that follow
it, are largely based on a simplified version of my SwiftGraph open source
project (https://github.com/davecom/SwiftGraph). SwiftGraph includes
several features that go beyond the scope of this book.

We want this graph framework to be as flexible as possible, so that it can represent as
many different problems as possible. To achieve this goal, we will use generics to
abstract away the type of the vertices, and we will define an easy-to-adopt protocol for
edges. Every vertex will ultimately be assigned an integer index, but it will be stored as
the user-defined generic type.

 Let’s start work on the framework by defining the Edge protocol.

public protocol Edge: CustomStringConvertible {
 var u: Int { get set } // index of the "from" vertex
 var v: Int { get set } // index of the "to" vertex
 var reversed: Edge { get }
}

An Edge is defined as a connection between two vertices, each of which is represented
by an integer index. By convention, u is used to refer to the first vertex, and v is used
to represent the second vertex. You can also think of u as “from” and v as “to.” In this
chapter, we are only working with bidirectional edges (edges that can be travelled in
both directions), but in directed graphs, also known as digraphs, edges can also be one-
way, and the reversed property is meant to return an Edge that travels in the opposite
direction. All Edge adoptees must implement CustomStringConvertible so they can
be easily printed to the console.

 The Graph protocol is about the essential role of a graph: associating vertices with
edges. Again, we want to let the actual types of the vertices and edges be whatever the user
of the framework desires. This lets the framework be used for a wide range of problems
without needing to make intermediate data structures that glue everything together. In
this light, we will use the Swift keyword associatedtype to define types that adopters of
Graph can configure. For example, in a graph like the one for Hyperloop routes, we
might define VertexType to be String, because we would use strings like “New York” and
“Los Angeles” as the vertices. The only requirement of a potential VertexType is that it
implements Equatable. String implements Equatable, so it is a valid VertexType.

protocol Graph: class, CustomStringConvertible {
 associatedtype VertexType: Equatable
 associatedtype EdgeType: Edge
 var vertices: [VertexType] { get set }
 var edges: [[EdgeType]] { get set }
}

k.store/books/9781617296215

https://github.com/davecom/SwiftGraph
https://itbook.store/books/9781617296215

59Building a graph framework

www.itboo
The vertices array can be an array of any type that adopts Equatable. Each vertex
will be stored in the array, but we will later refer to them by their integer index in the
array. The vertex itself may be a complex data type, but its index will always be an Int,
which is easy to work with. On another level, by putting this index between graph algo-
rithms and the vertices array, it allows us to have two vertices that are equal in the
same graph (imagine a graph with a country’s cities as vertices, where the country has
more than one city named “Springfield”). Even though they are the same, they will
have different integer indexes.

 There are many ways to implement a graph data structure, but the two most com-
mon are to use a vertex matrix or adjacency lists. In a vertex matrix, each cell of the
matrix represents the intersection of two vertices in the graph, and the value of that
cell indicates the connection (or lack thereof) between them. Our graph data struc-
ture uses adjacency lists. In this graph representation, every vertex has an array (or
list) of vertices that it is connected to. Our specific representation uses an array of
arrays of edges, so for every vertex there is an array of edges via which the vertex is
connected to other vertices. edges is this two-dimensional array.

 Notice, as well, that anything that adopts Graph must also adopt class and Custom-
StringConvertible. We want graph data structures to be reference types for memory-
management purposes. It will also be slightly easier to write some of the protocol exten-
sions if we know the adopters will be classes. class ensures that all graphs adopters are
classes. CustomStringConvertible forces adopters of the protocol to be printable.

 Introduced in Swift 2, protocol extensions allow fully fleshed out functions to be a
part of a protocol. Amazingly, this will allow us to implement most of the functionality
a graph needs before we actually define a concrete adopter of Graph. The following
code shows the entirety of the protocol extension that adds this basic functionality,
with in-source comments describing each of the functions.

extension Graph {
 /// How many vertices are in the graph?
 public var vertexCount: Int { return vertices.count }

 /// How many edges are in the graph?
 public var edgeCount: Int { return edges.joined().count }

 /// Get a vertex by its index.
 ///
 /// - parameter index: The index of the vertex.
 /// - returns: The vertex at i.
 public func vertexAtIndex(_ index: Int) -> VertexType {
 return vertices[index]
 }

 /// Find the first occurrence of a vertex if it exists.
 ///
 /// - parameter vertex: The vertex you are looking for.
 /// - returns: The index of the vertex. Return nil if it can't find it.
 public func indexOfVertex(_ vertex: VertexType) -> Int? {
k.store/books/9781617296215

https://itbook.store/books/9781617296215

60 CHAPTER 4 Graph problems

www.itboo
 if let i = vertices.index(of: vertex) {
 return i
 }
 return nil
 }

 /// Find all of the neighbors of a vertex at a given index.
 ///
 /// - parameter index: The index for the vertex to find the neighbors of.
 /// - returns: An array of the neighbor vertices.
 public func neighborsForIndex(_ index: Int) -> [VertexType] {
 return edges[index].map({self.vertices[$0.v]})
 }

 /// Find all of the neighbors of a given Vertex.
 ///
 /// - parameter vertex: The vertex to find the neighbors of.
 /// - returns: An optional array of the neighbor vertices.
 public func neighborsForVertex(_ vertex: VertexType) -> [VertexType]? {
 if let i = indexOfVertex(vertex) {
 return neighborsForIndex(i)
 }
 return nil
 }

 /// Find all of the edges of a vertex at a given index.
 ///
 /// - parameter index: The index for the vertex to find the children of.
 public func edgesForIndex(_ index: Int) -> [EdgeType] {
 return edges[index]
 }

 /// Find all of the edges of a given vertex.
 ///
 /// - parameter vertex: The vertex to find the edges of.
 public func edgesForVertex(_ vertex: VertexType) -> [EdgeType]? {
 if let i = indexOfVertex(vertex) {
 return edgesForIndex(i)
 }
 return nil
 }

 /// Add a vertex to the graph.
 ///
 /// - parameter v: The vertex to be added.
 /// - returns: The index where the vertex was added.
 public func addVertex(_ v: VertexType) -> Int {
 vertices.append(v)
 edges.append([EdgeType]())
 return vertices.count - 1
 }

 /// Add an edge to the graph.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

61Building a graph framework

www.itboo
 ///
 /// - parameter e: The edge to add.
 public func addEdge(_ e: EdgeType) {
 edges[e.u].append(e)
 edges[e.v].append(e.reversed as! EdgeType)
 }
}

Let’s step back for a moment and consider why this protocol has two versions of most
of its functions. We know from the protocol definition that the array vertices is an
array of elements of type VertexType, which can be anything that implements
Equatable. So we have vertices of type VertexType that are stored in the vertices
array. But if we want to retrieve or manipulate them later, we need to know where they
are stored in that array. Hence, every vertex has an index in the array (an integer)
associated with it. If we don’t know a vertex’s index, we need to look it up by searching
through vertices. That is why there are two versions of every function. One operates
on Int indexes, and one operates on VertexType itself. The functions that operate on
VertexType look up the relevant indices and call the index-based function.

 Most of the functions are fairly self-explanatory, but neighborsForIndex()
deserves a little unpacking. It returns the neighbors of a vertex. A vertex’s neighbors are
all of the other vertices that are directly connected to it by an edge. For example, in
figure 4.2, New York and Washington are neighbors (the only neighbors) of Philadel-
phia. We find the neighbors for a vertex by looking at the ends (the vs) of all of the
edges going out from it.

public func neighborsForIndex(_ index: Int) -> [VertexType] {
 return edges[index].map({self.vertices[$0.v]})
}

edges[index] is the adjacency list, the list of edges through which the vertex in ques-
tion is connected to other vertices. In the closure of the map call, $0 represents one
particular edge, and $0.v represents the neighbor that the edge is connected to.
map() will return all of the vertices (as opposed to just their indices), because $0.v is
passed as an index into the vertices array.

 Another important thing to note is the way addEdge() works. addEdge() first adds
an edge to the adjacency list of the “from” vertex (u), and then adds a reversed version
of itself to the adjacency list of the “to” vertex (v). The second step is necessary
because this graph is not directed. We want every edge added to be bidirectional—
that means that u will be a neighbor of v in the same way that v is a neighbor of u.

public func addEdge(_ e: EdgeType) {
 edges[e.u].append(e)
 edges[e.v].append(e.reversed as! EdgeType)
}

k.store/books/9781617296215

https://itbook.store/books/9781617296215

62 CHAPTER 4 Graph problems

www.itbook.
4.1.1 A concrete implementation of Edge

As was mentioned earlier, we are only dealing with bidirectional edges in this chapter.
Beyond being bidirectional or unidirectional, edges can also be unweighted or weighted.
A weighted edge is one that has some comparable value (usually numeric, but not
always) associated with it. We could think of the weights in our potential Hyperloop
network as being the distances between the stations. For now, though, we will deal
with an unweighted version of the graph. An unweighted edge is simply a connection
between two vertices. Another way of putting it is that in an unweighted graph we
know which vertices are connected, whereas in a weighted graph we know which verti-
ces are connected and we know something about those connections.

 Our implementation of an unweighted edge, UnweightedEdge, will of course
implement the Edge protocol. It must have a place for a “from” vertex (u), a place for
a “to” vertex (v), and a way to reverse itself. It also must implement CustomString-
Convertible, as required by Edge, which means having a description property.

open class UnweightedEdge: Edge {
 public var u: Int // "from" vertex
 public var v: Int // "to" vertex
 public var reversed: Edge {
 return UnweightedEdge(u: v, v: u)
 }

 public init(u: Int, v: Int) {
 self.u = u
 self.v = v
 }

 //MARK: CustomStringConvertable
 public var description: String {
 return "\(u) <-> \(v)"
 }
}

4.1.2 A concrete implementation of Graph

UnweightedEdge is pretty simple. Surprisingly, so is our concrete implementation of
Graph. An UnweightedGraph is a Graph whose vertices can be any Equatable type (as
per the Graph protocol) and whose edges are of type UnweightedEdge. By defining the
types of the vertices and edges arrays, we are implicitly filling in the associated types
VertexType and EdgeType in the Graph protocol.

open class UnweightedGraph<V: Equatable>: Graph {
 var vertices: [V] = [V]()
 var edges: [[UnweightedEdge]] = [[UnweightedEdge]]() //adjacency lists

 public init() {
 }

 public init(vertices: [V]) {
store/books/9781617296215

https://itbook.store/books/9781617296215

63Building a graph framework

www.itboo
 for vertex in vertices {
 _ = self.addVertex(vertex)
 }
 }

 /// This is a convenience method that adds an unweighted edge.
 ///
 /// - parameter from: The starting vertex's index.
 /// - parameter to: The ending vertex's index.
 public func addEdge(from: Int, to: Int) {
 addEdge(UnweightedEdge(u: from, v: to))
 }

 /// This is a convenience method that adds an unweighted, undirected
 ➥ edge between the first occurrence of two vertices.
 ///
 /// - parameter from: The starting vertex.
 /// - parameter to: The ending vertex.
 public func addEdge(from: V, to: V) {
 if let u = indexOfVertex(from) {
 if let v = indexOfVertex(to) {
 addEdge(UnweightedEdge(u: u, v: v))
 }
 }
 }

 /// MARK: Implement CustomStringConvertible
 public var description: String {
 var d: String = ""
 for i in 0..<vertices.count {
 d += "\(vertices[i]) -> \(neighborsForIndex(i))\n"
 }
 return d
 }
}

The new abilities in UnweightedGraph are init methods, convenience methods for
adding UnweightedEdges to the graph, and the property description for confor-
mance with CustomStringConvertible.

 Now that we have concrete implementations of Edge and Graph we can actually cre-
ate a representation of the potential Hyperloop network. The vertices and edges in
cityGraph correspond to the vertices and edges represented in figure 4.2.

var cityGraph: UnweightedGraph<String>

➥ = UnweightedGraph<String>(vertices: ["Seattle", "San

➥ Francisco", "Los Angeles", "Riverside", "Phoenix", "Chicago",

➥ "Boston", "New York", "Atlanta", "Miami", "Dallas", "Houston",

➥ "Detroit", "Philadelphia", "Washington"])

cityGraph.addEdge(from: "Seattle", to: "Chicago")
cityGraph.addEdge(from: "Seattle", to: "San Francisco")
cityGraph.addEdge(from: "San Francisco", to: "Riverside")
cityGraph.addEdge(from: "San Francisco", to: "Los Angeles")
k.store/books/9781617296215

https://itbook.store/books/9781617296215

64 CHAPTER 4 Graph problems

www.itbook.
cityGraph.addEdge(from: "Los Angeles", to: "Riverside")
cityGraph.addEdge(from: "Los Angeles", to: "Phoenix")
cityGraph.addEdge(from: "Riverside", to: "Phoenix")
cityGraph.addEdge(from: "Riverside", to: "Chicago")
cityGraph.addEdge(from: "Phoenix", to: "Dallas")
cityGraph.addEdge(from: "Phoenix", to: "Houston")
cityGraph.addEdge(from: "Dallas", to: "Chicago")
cityGraph.addEdge(from: "Dallas", to: "Atlanta")
cityGraph.addEdge(from: "Dallas", to: "Houston")
cityGraph.addEdge(from: "Houston", to: "Atlanta")
cityGraph.addEdge(from: "Houston", to: "Miami")
cityGraph.addEdge(from: "Atlanta", to: "Chicago")
cityGraph.addEdge(from: "Atlanta", to: "Washington")
cityGraph.addEdge(from: "Atlanta", to: "Miami")
cityGraph.addEdge(from: "Miami", to: "Washington")
cityGraph.addEdge(from: "Chicago", to: "Detroit")
cityGraph.addEdge(from: "Detroit", to: "Boston")
cityGraph.addEdge(from: "Detroit", to: "Washington")
cityGraph.addEdge(from: "Detroit", to: "New York")
cityGraph.addEdge(from: "Boston", to: "New York")
cityGraph.addEdge(from: "New York", to: "Philadelphia")
cityGraph.addEdge(from: "Philadelphia", to: "Washington")

cityGraph has vertices of type String, and we indicate each vertex with the name of
the MSA that it represents. It is irrelevant in what order we add the edges to city-
Graph. Because we implemented CustomStringConvertible in UnweightedGraph with
a nicely printed description of the graph, we can now pretty-print (that’s a real term!)
the graph.

print(cityGraph)

You should get output similar to the following:

Seattle -> ["Chicago", "San Francisco"]
San Francisco -> ["Seattle", "Riverside", "Los Angeles"]
Los Angeles -> ["San Francisco", "Riverside", "Phoenix"]
Riverside -> ["San Francisco", "Los Angeles", "Phoenix", "Chicago"]
Phoenix -> ["Los Angeles", "Riverside", "Dallas", "Houston"]
Chicago -> ["Seattle", "Riverside", "Dallas", "Atlanta", "Detroit"]
Boston -> ["Detroit", "New York"]
New York -> ["Detroit", "Boston", "Philadelphia"]
Atlanta -> ["Dallas", "Houston", "Chicago", "Washington", "Miami"]
Miami -> ["Houston", "Atlanta", "Washington"]
Dallas -> ["Phoenix", "Chicago", "Atlanta", "Houston"]
Houston -> ["Phoenix", "Dallas", "Atlanta", "Miami"]
Detroit -> ["Chicago", "Boston", "Washington", "New York"]
Philadelphia -> ["New York", "Washington"]
Washington -> ["Atlanta", "Miami", "Detroit", "Philadelphia"]
store/books/9781617296215

https://itbook.store/books/9781617296215

65Finding the shortest path

www.itboo
4.2 Finding the shortest path
The Hyperloop is so fast that, for optimizing travel time from one station to another, it
probably matters less how long the distances are between the stations and more how
many hops it takes (how many stations need to be visited) to get from one station to
another. Each station may involve a layover, so just like with flights, the fewer stops
the better.

 In graph theory, a set of edges that connects two vertices is known as a path. In
other words, a path is a way of getting from one vertex to another vertex. In the con-
text of the Hyperloop network, a set of tubes (edges) represents the path from one
city (vertex) to another (vertex). Finding optimal paths between vertices is one of the
most common problems that graphs are used for.

4.2.1 Defining a path

In our graphs, a path can simply be thought of as an array of edges.

public typealias Path = [Edge]

Every Edge knows the index of its “from” vertex (u) and its “to” vertex (v), so given a
Graph, it is easy to deduce the vertices that it connects. There’s a method in Graph for
that, vertexAtIndex(). It would be nice to have a method to pretty-print a Path
within a Graph. We can do that in a short extension to Graph.

extension Graph {
 /// Prints a path in a readable format
 public func printPath(_ path: Path) {
 for edge in path {
 print("\(vertexAtIndex(edge.u)) > \(vertexAtIndex(edge.v))")
 }
 }
}

4.2.2 Revisiting breadth-first search (BFS)

In an unweighted graph, finding the shortest path means finding the path that has
the fewest edges between the starting vertex and the destination vertex. To build out
the Hyperloop network, it might make sense to first connect the furthest cities on the
highly populated seaboards. That raises the question, “what is the shortest path
between Boston and Miami?”

 Luckily, we already know an algorithm for finding shortest paths, and we can reuse
it to answer this question. Breadth-first search, introduced in chapter 2, is just as viable
for graphs as it is for mazes. In fact, the mazes we worked with in chapter 2 really are
graphs. The vertices are the locations in the maze, and the edges are the moves that
can be made from one location to another. In an unweighted graph, a breadth-first
search will find the shortest path between any two vertices.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

66 CHAPTER 4 Graph problems

www.itboo
 We can rewrite the breadth-first search implementation from chapter 2 to suit
working with Graph. We can even reuse the same Queue class, unchanged.

public class Queue<T> {
 private var container: [T] = [T]()
 public var isEmpty: Bool { return container.isEmpty }
 public func push(_ thing: T) { container.append(thing) }
 public func pop() -> T { return container.removeFirst() }
}

The new version of bfs() will be an extension to Graph. It will no longer operate on
Nodes, as in chapter 2, but instead on vertices, referred to by their indices (Ints).
Recall from chapter 2 that we used the Node class to keep track of the parent of each
new Node we found. There was also a function, nodeToPath(), that used the parent
property of each node to generate a path from the goal back to the start node (but
reversed to start at the start). We will use a similar function, pathDictToPath(), to
generate a Path from our starting vertex to the destination vertex.

/// Takes a dictionary of edges to reach each node and returns an array
 ➥ of edges
/// that goes from `from` to `to`
public func pathDictToPath(from: Int, to: Int, pathDict:
➥ [Int: Edge]) -> Path {
 if pathDict.count == 0 {
 return []
 }
 var edgePath: Path = Path()
 var e: Edge = pathDict[to]!
 edgePath.append(e)
 while (e.u != from) {
 e = pathDict[e.u]!
 edgePath.append(e)
 }
 return Array(edgePath.reversed())
}

In the new version of bfs(), in lieu of having access to the parent property on Node,
we will use a dictionary associating each vertex index with the Edge that got us to it.
This is what we will call pathDict. pathDictToPath() extrapolates from this dictio-
nary the Path that connects the from vertex to the to vertex by looking at every Edge
between to and from in pathDict.

 As you study the implementation of bfs() on Graph, it may be helpful to flip back
to the implementation of bfs() you are already familiar with from chapter 2. How has
it changed? What has stayed the same? All of the basic machinery, aside from path-
Dict, is essentially the same, but several of the parameter types and generic types have
been modified.

extension Graph {
 //returns a path to the goal vertex
 func bfs(initialVertex: VertexType, goalTestFn:
 ➥ (VertexType) -> Bool) -> Path? {
k.store/books/9781617296215

https://itbook.store/books/9781617296215

67Finding the shortest path

www.itbook.
 guard let startIndex = indexOfVertex(initialVertex)
 ➥ else { return nil }
 // frontier is where we've yet to go
 let frontier: Queue<Int> = Queue<Int>()
 frontier.push(startIndex)
 // explored is where we've been
 var explored: Set<Int> = Set<Int>()
 explored.insert(startIndex)
 // how did we get to each vertex
 var pathDict: [Int: EdgeType] = [Int: EdgeType]()
 // keep going while there is more to explore
 while !frontier.isEmpty {
 let currentIndex = frontier.pop()
 let currentVertex = vertexAtIndex(currentIndex)
 // if we found the goal, we're done
 if goalTestFn(currentVertex) {
 return pathDictToPath(from: startIndex, to: currentIndex,
 ➥ pathDict: pathDict)
 }
 // check where we can go next and haven't explored
 for edge in edgesForIndex(currentIndex)
 ➥ where !explored.contains(edge.v) {
 explored.insert(edge.v)
 frontier.push(edge.v)
 pathDict[edge.v] = edge
 }
 }
 return nil // never found the goal
 }
}

The new bfs() takes a starting vertex, initialVertex, a function that will determine
if the goal is reached, goalTestFn(), and returns an optional Path. The returned
optional Path will be nil if initialVertex is not actually in the Graph (this is deter-
mined by the guard statement). It will also return nil if goalTestFn() never returns
true for any of the searched vertices in the graph. frontier and explored are much
the same as they were in chapter 2, except that now the generic type of each is set to
Int—the index of a vertex in a Graph. This version of bfs() has no successorFn().
Instead, edgesForIndex() brings the next unexplored vertices onto the frontier.
Finally, the last main difference between this version and the prior one is the use of
pathDict, which gets updated when a new vertex is added to the queue, and which is
used to return the final Path when the goal is found by calling pathDictToPath().

 We are now ready to find the shortest path (in terms of number of edges) between
Boston and Miami. We can pass a closure to bfs() that tests for a goal of a vertex equiv-
alent to the String "Miami". If a Path is found, we can print it using the printPath()
method introduced earlier as a protocol extension to Graph.

if let bostonToMiami = cityGraph.bfs(initialVertex: "Boston",

➥ goalTestFn: { $0 == "Miami" }) {
 cityGraph.printPath(bostonToMiami)
}

store/books/9781617296215

https://itbook.store/books/9781617296215

68 CHAPTER 4 Graph problems

www.itbook.
The output should look something like this:

Boston > Detroit
Detroit > Washington
Washington > Miami

Boston to Detroit to Washington to Miami, composed of three edges, is the shortest
route between Boston and Miami in terms of number of edges. Figure 4.4 highlights
this route.

Los
Angeles

Houston

New York

Miami

Chicago

Dallas

Washington
Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

Riverside

Figure 4.4 The shortest route between Boston and Miami, in terms of number of edges, is highlighted.

4.3 Minimizing the cost of building the network
Imagine we want to connect all 15 of the largest MSAs to the Hyperloop network. Our
goal is to minimize the cost of rolling out the network, so that means using a mini-
mum of track. The question is then, “how can we connect all of the MSAs using the
minimum amount of track?”

4.3.1 Workings with weights

To understand the amount of track that a particular edge may require, we need to
know the distance that the edge represents. This is an opportunity to re-introduce the
concept of weights. In the Hyperloop network, the weight of an edge is the distance
between the two MSAs that it connects. Figure 4.5 is the same as figure 4.2, except it
has a weight added to each edge, representing the distance in miles between the two
vertices that the edge connects.

 To handle weights, we will need a new implementation of Edge and a new imple-
mentation of Graph. Once again, we want to design our framework in as flexible a way
store/books/9781617296215

https://itbook.store/books/9781617296215

69Minimizing the cost of building the network

www.itboo
Los
Angeles

Houston

New York

Miami

Chicago

Dallas

Washington
Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

613
190

81
123

482
396

238

543

923

588

604

968

702

721

225

805

1704

1737

887

1015

307
357
50

386
348

678

Riverside

Figure 4.5 A weighted graph of the 15 largest MSAs in the United States, where each of the weights
represents the distance between two MSAs in miles

as possible. To this end, we will allow the type of the weights associated with edges in
our new WeightedEdge and WeightedGraph to be generic and therefore determined at
creation time. But in order to execute several algorithms on weighted graphs, we do
need the weights to have two properties: It must be possible to compare them, and it
must be possible to add them together.

 Any type that implements Comparable can be compared using operators like ==
and <. There is no built-in protocol in Swift for specifying that a type can be added, so
we will create our own.

public protocol Summable {
 static func +(lhs: Self, rhs: Self) -> Self
}

If a type implements Summable, it means that instances of it can be added together. All
of our weights must be Summable, meaning it must be possible to add them together,
so they must implement the + operator. Of course, one category of types that can be
added is numbers. Because the built-in number types in Swift already implement the +
operator, it is possible to add Summable support to them without any work.

extension Int: Summable {}
extension Double: Summable {}
extension Float: Summable {}

A WeightedEdge will have a generic type, W, representing the type of its weight. It will also
implement the protocols Edge and Comparable. Why does it implement Comparable?
k.store/books/9781617296215

https://itbook.store/books/9781617296215

70 CHAPTER 4 Graph problems

www.itbook.
The reason is that Jarnik’s algorithm, which we will cover shortly, requires the ability to
compare one edge with another.

open class WeightedEdge<W: Comparable & Summable>: Edge, Comparable {
 public var u: Int
 public var v: Int
 public let weight: W

 public var reversed: Edge {
 return WeightedEdge(u: v, v: u, weight: weight)
 }

 public init(u: Int, v: Int, weight: W) {
 self.weight = weight
 self.u = u
 self.v = v
 }

 //Implement CustomStringConvertible protocol
 public var description: String {
 return "\(u) <\(weight)> \(v)"
 }

 //MARK: Operator Overloads for Comparable
 static public func == <W>(lhs: WeightedEdge<W>,
 ➥ rhs: WeightedEdge<W>) -> Bool {
 return lhs.u == rhs.u && lhs.v == rhs.v && lhs.weight == rhs.weight
 }

 static public func < <W>(lhs: WeightedEdge<W>, rhs:
 ➥ WeightedEdge<W>) -> Bool {
 return lhs.weight < rhs.weight
 }
}

The implementation of WeightedEdge is not immensely different from the implemen-
tation of UnweightedEdge. It just has a new weight property and the implementation of
Comparable via the == and < operators. The < operator is only interested in looking at
weights, because Jarnik’s algorithm is interested in finding the smallest edge by weight.

 A WeightedGraph is a lot like an UnweightedGraph: It has init methods, it has
convenience methods for adding WeightedEdges, and it implements Custom-

StringConvertible via a description property. Where it differs is in the new
generic type, W, that matches the type its weighted edges take. There is also a new
method, neighborsForIndexWithWeights(), that returns not only each neighbor
but also the weight of the edge that got to it. This method is useful for the new
version of description.

open class WeightedGraph<V: Equatable & Hashable, W: Comparable & Summable>:

➥ Graph {
 var vertices: [V] = [V]()
 var edges: [[WeightedEdge<W>]] = [[WeightedEdge<W>]]() //adjacency lists
store/books/9781617296215

https://itbook.store/books/9781617296215

71Minimizing the cost of building the network

www.itbook.
 public init() {
 }

 public init(vertices: [V]) {
 for vertex in vertices {
 _ = self.addVertex(vertex)
 }
 }

 /// Find all of the neighbors of a vertex at a given index.
 ///
 /// - parameter index: The index for the vertex to find the neighbors of.
 /// - returns: An array of tuples including the vertices as the first
 ➥ element and the weights as the second element.
 public func neighborsForIndexWithWeights(_ index: Int) -> [(V, W)] {
 var distanceTuples: [(V, W)] = [(V, W)]()
 for edge in edges[index] {
 distanceTuples += [(vertices[edge.v], edge.weight)]
 }
 return distanceTuples
 }

 /// This is a convenience method that adds a weighted edge.
 ///
 /// - parameter from: The starting vertex's index.
 /// - parameter to: The ending vertex's index.
 /// - parameter weight: the Weight of the edge to add.
 public func addEdge(from: Int, to: Int, weight:W) {
 addEdge(WeightedEdge<W>(u: from, v: to, weight: weight))
 }

 /// This is a convenience method that adds a weighted edge between the
 ➥ first occurrence of two vertices. It takes O(n) time.
 ///
 /// - parameter from: The starting vertex.
 /// - parameter to: The ending vertex.
 /// - parameter weight: the Weight of the edge to add.
 public func addEdge(from: V, to: V, weight: W) {
 if let u = indexOfVertex(from) {
 if let v = indexOfVertex(to) {
 addEdge(WeightedEdge<W>(u: u, v: v, weight:weight))
 }
 }
 }

 //Implement Printable protocol
 public var description: String {
 var d: String = ""
 for i in 0..<vertices.count {
 d += "\(vertices[i]) -> \(neighborsForIndexWithWeights(i))\n"
 }
 return d
 }
}

store/books/9781617296215

https://itbook.store/books/9781617296215

72 CHAPTER 4 Graph problems

www.itbook.
It is now possible to actually define a weighted graph. The weighted graph we will
work with is a representation of figure 4.5, called cityGraph2.

let cityGraph2: WeightedGraph<String,

➥ Int> = WeightedGraph<String, Int>(vertices:

➥ ["Seattle", "San Francisco", "Los Angeles", "Riverside",

➥ "Phoenix", "Chicago", "Boston", "New York", "Atlanta",

➥ "Miami", "Dallas", "Houston", "Detroit", "Philadelphia", "Washington"])

cityGraph2.addEdge(from: "Seattle", to: "Chicago", weight: 1737)
cityGraph2.addEdge(from: "Seattle", to: "San Francisco", weight: 678)
cityGraph2.addEdge(from: "San Francisco", to: "Riverside", weight: 386)
cityGraph2.addEdge(from: "San Francisco", to: "Los Angeles", weight: 348)
cityGraph2.addEdge(from: "Los Angeles", to: "Riverside", weight: 50)
cityGraph2.addEdge(from: "Los Angeles", to: "Phoenix", weight: 357)
cityGraph2.addEdge(from: "Riverside", to: "Phoenix", weight: 307)
cityGraph2.addEdge(from: "Riverside", to: "Chicago", weight: 1704)
cityGraph2.addEdge(from: "Phoenix", to: "Dallas", weight: 887)
cityGraph2.addEdge(from: "Phoenix", to: "Houston", weight: 1015)
cityGraph2.addEdge(from: "Dallas", to: "Chicago", weight: 805)
cityGraph2.addEdge(from: "Dallas", to: "Atlanta", weight: 721)
cityGraph2.addEdge(from: "Dallas", to: "Houston", weight: 225)
cityGraph2.addEdge(from: "Houston", to: "Atlanta", weight: 702)
cityGraph2.addEdge(from: "Houston", to: "Miami", weight: 968)
cityGraph2.addEdge(from: "Atlanta", to: "Chicago", weight: 588)
cityGraph2.addEdge(from: "Atlanta", to: "Washington", weight: 543)
cityGraph2.addEdge(from: "Atlanta", to: "Miami", weight: 604)
cityGraph2.addEdge(from: "Miami", to: "Washington", weight: 923)
cityGraph2.addEdge(from: "Chicago", to: "Detroit", weight: 238)
cityGraph2.addEdge(from: "Detroit", to: "Boston", weight: 613)
cityGraph2.addEdge(from: "Detroit", to: "Washington", weight: 396)
cityGraph2.addEdge(from: "Detroit", to: "New York", weight: 482)
cityGraph2.addEdge(from: "Boston", to: "New York", weight: 190)
cityGraph2.addEdge(from: "New York", to: "Philadelphia", weight: 81)
cityGraph2.addEdge(from: "Philadelphia", to: "Washington", weight: 123)

Because WeightedGraph implements CustomStringConvertible, we can print out
cityGraph2.

print(cityGraph2)

In the output, you will see both the vertices each vertex is connected to and the weight
of those connections.

Seattle -> [("Chicago", 1737), ("San Francisco", 678)]
San Francisco -> [("Seattle", 678), ("Riverside", 386), ("Los Angeles", 348)]
Los Angeles -> [("San Francisco", 348), ("Riverside", 50), ("Phoenix", 357)]
Riverside -> [("San Francisco", 386), ("Los Angeles", 50), ("Phoenix", 307),

➥ ("Chicago", 1704)]
Phoenix -> [("Los Angeles", 357), ("Riverside", 307), ("Dallas", 887),

➥ ("Houston", 1015)]
Chicago -> [("Seattle", 1737), ("Riverside", 1704), ("Dallas", 805),

➥ ("Atlanta", 588), ("Detroit", 238)]
Boston -> [("Detroit", 613), ("New York", 190)]
store/books/9781617296215

https://itbook.store/books/9781617296215

73Minimizing the cost of building the network

www.itbook.
New York -> [("Detroit", 482), ("Boston", 190), ("Philadelphia", 81)]
Atlanta -> [("Dallas", 721), ("Houston", 702), ("Chicago", 588),

➥ ("Washington", 543), ("Miami", 604)]
Miami -> [("Houston", 968), ("Atlanta", 604), ("Washington", 923)]
Dallas -> [("Phoenix", 887), ("Chicago", 805), ("Atlanta", 721),

➥ ("Houston", 225)]
Houston -> [("Phoenix", 1015), ("Dallas", 225), ("Atlanta", 702),

➥ ("Miami", 968)]
Detroit -> [("Chicago", 238), ("Boston", 613), ("Washington", 396),

➥ ("New York", 482)]
Philadelphia -> [("New York", 81), ("Washington", 123)]
Washington -> [("Atlanta", 543), ("Miami", 923), ("Detroit", 396),

➥ ("Philadelphia", 123)]

4.3.2 Finding the minimum spanning tree

A tree is a special kind of graph that has one, and only one, path between any two verti-
ces. This implies that there are no cycles in a tree (which is sometimes called being acy-
clic). A cycle can be thought of as a circle (in the common sense, not the geometrical
sense): If it is possible to traverse a graph from a starting vertex, never repeat any
edges, and get back to the same starting vertex, then it has a cycle. Any graph that is
not a tree can become a tree by pruning edges. Figure 4.6 illustrates pruning an edge
to turn a graph into a tree.

Figure 4.6 In (a), a cycle exists between vertices B, C, and D, so it is not a tree.
In (b), the edge connecting C and D has been pruned, so the graph is a tree.

A

B ED

C

(a)

A

B ED

C

(b)

 A connected graph is a graph that has some way of getting from any vertex to any
other vertex (all of the graphs we are looking at in this chapter are connected). A
spanning tree is a tree that connects every vertex in a graph. A minimum spanning tree is a
tree that connects every vertex in a weighted graph with the minimum total weight
(compared to other spanning trees). For every weighted graph, it is possible to effi-
ciently find its minimum spanning tree.

 Whew, that was a lot of terminology! The point is that finding a minimum span-
ning tree is the same as finding a way to connect every vertex in a weighted graph with
the minimum weight. This is an important and practical problem for anyone design-
ing a network (transportation network, computer network, and so on)—how can
every node in the network be connected for the minimum cost? That cost may be in
terms of wire, track, road, or anything else. For instance, for a telephone network,
another way of posing the problem is, “what is the minimum length of cable one
needs to connect every phone?”
store/books/9781617296215

https://itbook.store/books/9781617296215

74 CHAPTER 4 Graph problems

www.itboo
CALCULATING THE TOTAL WEIGHT OF A WEIGHTED PATH

Before we develop a method for finding a minimum spanning tree, we will develop a
function we can use to test our future development. The solution to the minimum
spanning tree problem will consist of an array of weighted edges that compose the
tree. The function totalWeight() takes an array of WeightedEdge<W> and finds the
total weight, W, that results from adding all of its edges’ weights together.

public func totalWeight<W>(_ edges: [WeightedEdge<W>]) -> W? {
 guard let firstWeight = edges.first?.weight else { return nil }
 return edges.dropFirst().reduce(firstWeight) { (result, next) -> W in
 return result + next.weight
 }
}

reduce() is a higher-order function built in to most programming languages that can
be programmed in a functional style. It takes a sequence of values and combines
them via a closure. The closure is passed the result of each prior combination (the
parameter result here) and the next value to be combined (next here). There’s one
problem—reduce() also requires a starting value. For most numbers, this would
be 0, but because we don’t know if W actually represents a number, we pull the first
element out of edges and use it as the starting value. Because we do not want to re-
add the first element after using it as the starting value, we call dropFirst() to
ensure it is not added twice.

TIP reduce() is also known as “fold” in many other programming languages.

JARNIK’S ALGORITHM

Jarnik’s algorithm for finding a minimum spanning tree works by dividing a graph
into two parts: the vertices in the still-being-assembled minimum spanning tree, and
the vertices not yet in the minimum spanning tree. It takes the following steps:

1 Pick an arbitrary vertex to be in the minimum spanning tree.
2 Find the lowest-weight edge connecting the minimum spanning tree to the ver-

tices not yet in the minimum spanning tree.
3 Add the vertex at the end of that minimum edge to the minimum spanning tree.
4 Repeat steps 2 and 3 until every vertex in the graph is in the minimum span-

ning tree.

NOTE Jarnik’s algorithm is commonly referred to as Prim’s algorithm. Two
Czech mathematicians, Otakar Borůvka and Vojtěch Jarník, interested in mini-
mizing the cost of laying electric lines in the late 1920s, came up with algorithms
to solve the problem of finding a minimum spanning tree. Their algorithms were
“rediscovered” decades later by others.4

4 Helena Durnova, “Otakar Boruvka (1899-1995) and the Minimum Spanning Tree” (Institute of Mathematics
of the Czech Academy of Sciences, 2006), https://dml.cz/handle/10338.dmlcz/500001.
k.store/books/9781617296215

https://dml.cz/handle/10338.dmlcz/500001
https://itbook.store/books/9781617296215

75Minimizing the cost of building the network

www.itboo
To run Jarnik’s algorithm efficiently, a priority queue is used. Every time a new vertex
is added to the minimum spanning tree, all of its outgoing edges that link to vertices out-
side the tree are added to the priority queue. The lowest-weight edge is always popped
off the priority queue, and the algorithm keeps executing until the priority queue is
empty. This ensures that the lowest-weight edges are always added to the tree first. Edges
that connect to vertices already in the tree are ignored when they are popped.

 The following code for mst() is the full implementation of Jarnik’s algorithm,5

along with a utility function for printing a WeightedPath and a new type defined in
this extension of WeightedGraph.

WARNING Jarnik’s algorithm will not necessarily work correctly in a graph
with directed edges. It also will not work in a graph that is not connected.

/// Extensions to WeightedGraph for building a Minimum-Spanning Tree (MST)
public extension WeightedGraph {
 typealias WeightedPath = [WeightedEdge<W>]

 /// Find the minimum spanning tree in a weighted graph. This is the set
 ➥ of edges
 /// that touches every vertex in the graph and is of minimal combined
 ➥ weight. This function
 /// uses Jarnik's algorithm (aka Prim's algorithm) and so assumes the
 ➥ graph has
 /// undirected edges. For a graph with directed edges, the result may
 ➥ be incorrect. Also,
 /// if the graph is not fully connected, the tree will only span the
 ➥ connected component from which
 /// the starting vertex belongs.
 ///
 /// - parameter start: The index of the vertex to start creating
 ➥ the MST from.
 /// - returns: An array of WeightedEdges containing the minimum
 ➥ spanning tree, or nil if the starting vertex is invalid. If

 ➥ there are is only one vertex connected to the starting vertex,
 ➥ an empty list is returned.
 public func mst(start: Int = 0) -> WeightedPath? {
 if start > (vertexCount - 1) || start < 0 { return nil }
 var result: [WeightedEdge<W>] = [WeightedEdge<W>]() // the final
 ➥ MST goes in here
 var pq: PriorityQueue<WeightedEdge<W>> =
 ➥ PriorityQueue<WeightedEdge<W>>(ascending: true) // minPQ
 var visited: [Bool] = Array<Bool>(repeating: false, count:
 ➥ vertexCount) // already been to these

 func visit(_ index: Int) {
 visited[index] = true // mark as visited
 for edge in edgesForIndex(index) { // add all edges coming from
 ➥ here to pq
 if !visited[edge.v] { pq.push(edge) }
 }
 }

5 Robert Sedgewick and Kevin Wayne, Algorithms, 4th Edition (Addison-Wesley Professional, 2011), p. 619.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

76 CHAPTER 4 Graph problems

www.itbook.
 visit(start) // the first vertex is where everything begins

 while let edge = pq.pop() { // keep going as long as there are
 ➥ edges to process
 if visited[edge.v] { continue } // if we've been both places,
 ➥ ignore
 result.append(edge) // otherwise this is the current smallest
 ➥ so add it to the result set
 visit(edge.v) // visit where this connects
 }

 return result
 }

 /// Pretty-print an edge list returned from an MST
 /// - parameter edges The edge array representing the MST
 public func printWeightedPath(_ weightedPath: WeightedPath) {
 for edge in weightedPath {
 print("\(vertexAtIndex(edge.u)) \(edge.weight)>
 ➥ \(vertexAtIndex(edge.v))")
 }
 if let tw = totalWeight(weightedPath) {
 print("Total Weight: \(tw)")
 }
 }
}

Let’s walk through mst(), line by line.

public func mst(start: Int = 0) -> WeightedPath? {
 if start > (vertexCount - 1) || start < 0 { return nil }

The algorithm returns an optional WeightedPath representing the minimum span-
ning tree. It does not matter where the algorithm starts (assuming the graph is con-
nected and undirected), so the default is set to vertex index 0. If it so happens that the
start is invalid, mst() returns nil.

var result: [WeightedEdge<W>] = [WeightedEdge<W>]() // the final MST goes

➥ in here
var pq: PriorityQueue<WeightedEdge<W>> =

➥ PriorityQueue<WeightedEdge<W>>(ascending: true) // minPQ
var visited: [Bool] = Array<Bool>(repeating: false, count: vertexCount)

➥ // already been to these

result will ultimately hold the weighted path containing the minimum spanning
tree. This is where we will add WeightedEdges, as the lowest-weight edge is popped off
and takes us to a new part of the graph. Jarnik’s algorithm is considered a greedy algo-
rithm because it always selects the lowest-weight edge. pq is where newly discovered
edges are stored and the next-lowest-weight edge is popped. visited keeps track of
store/books/9781617296215

https://itbook.store/books/9781617296215

77Minimizing the cost of building the network

www.itboo
vertex indices that we have already been to. This could also have been accomplished
with a Set, similar to explored in bfs().

func visit(_ index: Int) {
 visited[index] = true // mark as visited
 for edge in edgesForIndex(index) { // add all edges coming from here
 ➥ to pq
 if !visited[edge.v] { pq.push(edge) }
 }
}

visit() is an inner convenience function that marks a vertex as visited and adds all of
its edges that connect to vertices not yet visited to pq. Note how easy the adjacency-list
model makes finding edges belonging to a particular vertex.

visit(start) // the first vertex is where everything begins

It does not matter which vertex is visited first, unless the graph is not connected. If the
graph is not connected, but is instead made up of disconnected components, mst() will
return a tree that spans the particular component that the starting vertex belongs to.

while let edge = pq.pop() { // keep going as long as there are edges to
 process
 if visited[edge.v] { continue } // if we've been both places, ignore
 result.append(edge) // otherwise this is the current smallest so add
 ➥ it to the result set
 visit(edge.v) // visit where this connects
}
return result

While there are still edges on the priority queue, we pop them off and check if they
lead to vertices not yet in the tree. Because the priority queue is ascending, it pops the
lowest-weight edges first. This ensures that the result is indeed of minimum total
weight. Any edge popped that does not lead to an unexplored vertex is ignored.
Otherwise, because the edge is the lowest seen so far, it is added to the result set, and
the new vertex it leads to is explored. When there are no edges left to explore, the
result is returned.

 Let’s finally return to the problem of connecting all 15 of the largest MSAs in the
United States by Hyperloop, using a minimum amount of track. The route that
accomplishes this is simply the minimum spanning tree of cityGraph2. Let’s try run-
ning mst() on cityGraph2.

if let mst = cityGraph2.mst() {
 cityGraph2.printWeightedPath(mst)
}

Thanks to the pretty-printing printWeightedPath() method, the minimum spanning
tree is easy to read.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

78 CHAPTER 4 Graph problems

www.itboo
Seattle 678> San Francisco
San Francisco 348> Los Angeles
Los Angeles 50> Riverside
Riverside 307> Phoenix
Phoenix 887> Dallas
Dallas 225> Houston
Houston 702> Atlanta
Atlanta 543> Washington
Washington 123> Philadelphia
Philadelphia 81> New York
New York 190> Boston
Washington 396> Detroit
Detroit 238> Chicago
Atlanta 604> Miami
Total Weight: 5372

In other words, this is the cumulatively shortest collection of edges that connects all of
the MSAs in the weighted graph. The minimum length of track needed to connect all
of them is 5372 miles. Figure 4.7 illustrates the minimum spanning tree.

Los
Angeles

Houston

New York

Miami

Chicago

Dallas

Washington
Philadelphia

Atlanta

Boston

San Francisco

Phoenix

Detroit

Seattle

Riverside

Figure 4.7 The highlighted edges represent a minimum spanning tree that connects all 15 MSAs.

4.4 Finding shortest paths in a weighted graph
As the Hyperloop network gets built, it is unlikely the builders will have the ambition
to connect the whole country at once. Instead, it is likely the builders will want to min-
imize the cost to lay track between key cities. The cost to extend the network to partic-
ular cities will obviously depend on where the builders start.

 Finding the cost to any city from some starting city is a version of the “single-source
shortest path” problem. That problem asks, “what is the shortest path (in terms of
total edge weight) from some vertex to every other vertex in a weighted graph?”
k.store/books/9781617296215

https://itbook.store/books/9781617296215

79Finding shortest paths in a weighted graph

www.itbook.
4.4.1 Dijkstra’s algorithm

Dijkstra’s algorithm solves the single-source shortest path problem. It is provided a start-
ing vertex, and it returns the lowest-weight path to any other vertex on a weighted graph.
It also returns the minimum total weight to every other vertex from the starting vertex.
Dijkstra’s algorithm starts at the single-source vertex, and then continually explores the
closest vertices to the start vertex. For this reason, like Jarnik’s algorithm, Dijkstra’s algo-
rithm is greedy. When Dijkstra’s algorithm encounters a new vertex, it keeps track of how
far it is from the start vertex, and updates this value if it ever finds a shorter path. It also
keeps track of what edge got it to each vertex, like a breadth-first search.

 Here are all of the algorithm’s steps:

1 Add the start vertex to a priority queue.
2 Pop the closest vertex from the priority queue (at the beginning this is just the

start vertex)—we’ll call it the current vertex.
3 Look at all of the neighbors connected to the current vertex. If they have not

previously been recorded, or the edge offers a new shortest path to them, then
for each of them record its distance from the start, record the edge that pro-
duced this distance, and add the new vertex to the priority queue.

4 Repeat steps 2 and 3 until the priority queue is empty.
5 Return the shortest distance to every vertex from the start vertex and the path

to get to each of them.

The extension to WeightedGraph for Dijkstra’s algorithm includes DijkstraNode, a
simple data structure for keeping track of costs associated with each vertex explored
so far and for comparing them. This is not dissimilar to the Node class in chapter 2. It
also includes utility functions for converting the returned array of distances to
something easier to use for looking up by vertex, and for calling dijkstra() without
vertex indices.

 Without further ado, here is the code for the extension. We will go over it line by
line after.

public extension WeightedGraph {

 /// Represents a node in the priority queue used
 /// for selecting the next
 struct DijkstraNode: Comparable, Equatable {
 let vertex: Int
 let distance: W

 public static func < (lhs: DijkstraNode, rhs: DijkstraNode) -> Bool {
 return lhs.distance < rhs.distance
 }

 public static func == (lhs: DijkstraNode, rhs: DijkstraNode)
 ➥ -> Bool {
 return lhs.distance == rhs.distance
 }
store/books/9781617296215

https://itbook.store/books/9781617296215

80 CHAPTER 4 Graph problems

www.itboo
 }

 /// Finds the shortest paths from some route vertex to every other
 ➥ vertex in the graph.
 ///
 /// - parameter graph: The WeightedGraph to look within.
 /// - parameter root: The index of the root node to build the shortest
 ➥ paths from.
 /// - parameter startDistance: The distance to get to the root node
 ➥ (typically 0).
 /// - returns: Returns a tuple of two things: the first, an array
 ➥ containing the distances, the second, a dictionary containing
 ➥ the edge to reach each vertex. Use the function
 ➥ pathDictToPath() to convert the dictionary into something
 ➥ useful for a specific point.
 public func dijkstra(root: Int, startDistance: W) -> ([W?],
 ➥ [Int: WeightedEdge<W>]) {
 var distances: [W?] = [W?](repeating: nil, count: vertexCount)
 ➥ // how far each vertex is from start
 distances[root] = startDistance // the start vertex is
 ➥ startDistance away
 var pq: PriorityQueue<DijkstraNode> =
 ➥ PriorityQueue<DijkstraNode>(ascending: true)
 var pathDict: [Int: WeightedEdge<W>] = [Int: WeightedEdge<W>]()
 ➥ // how we got to each vertex
 pq.push(DijkstraNode(vertex: root, distance: startDistance))

 while let u = pq.pop()?.vertex { // explore the next closest vertex
 guard let distU = distances[u] else { continue } // should
 ➥ already have seen it
 for we in edgesForIndex(u) { // look at every edge/vertex
 ➥ from the vertex in question
 let distV = distances[we.v] // the old distance to
 ➥ this vertex
 if distV == nil || distV! > we.weight + distU { // if
 ➥ we have no old distance or we found a shorter path
 distances[we.v] = we.weight + distU
 ➥ // update the distance to this vertex
 pathDict[we.v] = we // update the edge on the shortest
 ➥ path to this vertex
 pq.push(DijkstraNode(vertex: we.v, distance:
 ➥ we.weight + distU)) // explore it soon
 }
 }
 }

 return (distances, pathDict)
 }

 /// A convenience version of dijkstra() that allows the supply of
 ➥ the root
 /// vertex instead of the index of the root vertex.
 public func dijkstra(root: V, startDistance: W)
 ➥ -> ([W?], [Int: WeightedEdge<W>]) {
k.store/books/9781617296215

https://itbook.store/books/9781617296215

81Finding shortest paths in a weighted graph

www.itboo
 if let u = indexOfVertex(root) {
 return dijkstra(root: u, startDistance: startDistance)
 }
 return ([], [:])
 }

 /// Helper function to get easier access to Dijkstra results.
 public func distanceArrayToVertexDict(distances: [W?]) -> [V : W?] {
 var distanceDict: [V: W?] = [V: W?]()
 for i in 0..<distances.count {
 distanceDict[vertexAtIndex(i)] = distances[i]
 }
 return distanceDict
 }
}

The first few lines of dijkstra() use data structures you have become familiar with,
except for distances, which is a placeholder for the distances to every vertex in the
graph from the root. Initially all of these distances are nil, because we do not yet
know how far each of them is—that is what we are using Dijkstra’s algorithm to fig-
ure out!

public func dijkstra(root: Int, startDistance: W) -> ([W?],

➥ [Int: WeightedEdge<W>]) {
 var distances: [W?] = [W?](repeating: nil, count: vertexCount)
 ➥ // how far each vertex is from start
 distances[root] = startDistance // the start vertex is startDistance away
 var pq: PriorityQueue<DijkstraNode> =
 ➥ PriorityQueue<DijkstraNode>(ascending: true)
 var pathDict: [Int: WeightedEdge<W>] = [Int: WeightedEdge<W>]()
 ➥ // how we got to each vertex
 pq.push(DijkstraNode(vertex: root, distance: startDistance))

The first node pushed onto the priority queue contains the root vertex.

while let u = pq.pop()?.vertex { // explore the next closest vertex
 guard let distU = distances[u] else { continue } // should already have
 ➥ seen it

We keep running Dijkstra’s algorithm until the priority queue is empty. u is the
current vertex we are searching from, and distU is the stored distance for getting to
u along known routes. Every vertex explored at this stage has already been found, so
it must have a known distance. If it doesn’t, something is wrong, hence the guard
statement.

for we in edgesForIndex(u) { // look at every edge/vertex from the vertex

➥ in question
 let distV = distances[we.v] // the old distance to this vertex
k.store/books/9781617296215

https://itbook.store/books/9781617296215

82 CHAPTER 4 Graph problems

www.itbook.
Next, every edge connected to u is explored. distV is the distance to any known vertex
attached by an edge to u.

if distV == nil || distV! >

➥ we.weight + distU { // if we have no old distance or we found a

➥ shorter path
 distances[we.v] = we.weight + distU // update the distance to this vertex
 pathDict[we.v] = we // update the edge on the shortest path to
 ➥ this vertex
 pq.push(DijkstraNode(vertex: we.v, distance: we.weight + distU))
 ➥ // explore it soon
}

If we have found a vertex that has not yet been explored (distV == nil), or we have
found a new, shorter path to it, we record that new shortest distance to v and the edge
that got us there. It is okay to force unwrap distV here, because the second part of the
“or” operator (||) is short-circuited, and we know if we get to it that distV is not nil.
Finally, we push any vertices that have new paths to them to the priority queue.

return (distances, pathDict)

dijkstra() returns both the distances to every vertex in the weighted graph from the
root vertex, and the pathDict that can unlock the shortest paths to them. It is safe to
run Dijkstra’s algorithm now. Let’s start by finding the distance from Los Angeles to
every other MSA in the graph.

let (distances, pathDict) = cityGraph2.dijkstra(root: "Los Angeles",

➥ startDistance: 0)
var nameDistance: [String: Int?] =

➥ cityGraph2.distanceArrayToVertexDict(distances: distances)
for (key, value) in nameDistance {
 print("\(key) : \(String(describing: value!))")
}

Your output should look something like this:

Phoenix : 357
Detroit : 1992
Houston : 1372
Washington : 2388
Riverside : 50
Chicago : 1754
Dallas : 1244
Atlanta : 1965
New York : 2474
Philadelphia : 2511
Boston : 2605
San Francisco : 348
Seattle : 1026
Los Angeles : 0
Miami : 2340
store/books/9781617296215

https://itbook.store/books/9781617296215

83Real-world applications

www.itbook.
We can use our old friend, pathDictToPath(), to find the shortest path between Los
Angeles and a specific other MSA—say Boston. Finally, we can use printWeighted-
Path() to pretty-print the result.

let path = pathDictToPath(from:

➥ cityGraph2.indexOfVertex("Los Angeles")!, to:

➥ cityGraph2.indexOfVertex("Boston")!, pathDict: pathDict)
cityGraph2.printWeightedPath(path as! [WeightedEdge<Int>])

The shortest path from Los Angeles to Boston is

Los Angeles 50> Riverside
Riverside 1704> Chicago
Chicago 238> Detroit
Detroit 613> Boston
Total Weight: 2605

You may have noticed that Dijkstra’s algorithm has some resemblance to Jarnik’s algo-
rithm. They are both greedy, and it is possible to implement them using quite similar
code if one is sufficiently motivated. Another algorithm that Dijkstra’s algorithm
resembles is A* from chapter 2. A* can be thought of as a modification of Dijkstra’s
algorithm. Add a heuristic and restrict Dijkstra’s algorithm to finding a single destina-
tion, and the two algorithms are the same.

4.5 Real-world applications
A huge amount of our world can be represented using graphs. You have seen in this
chapter how effective they are for working with transportation networks, but many
other kinds of networks have the same essential optimization problems: telephone
networks, computer networks, utility networks (electricity, plumbing, and so on). As a
result, graph algorithms are essential for efficiency in the telecommunications, ship-
ping, transportation, and utility industries.

 Retailers must handle complex distribution problems. Stores and warehouses can
be thought of as vertices and the distances between them as edges. The algorithms are
the same. The internet itself is a giant graph, with each connected device a vertex and
each wired or wireless connection being an edge. Whether a business is saving fuel or
wire, minimum spanning tree and shortest path problem-solving are useful for more
than just games. Some of the world’s most famous brands became successful by opti-
mizing graph problems: think of Walmart building out an efficient distribution net-
work, Google indexing the web (a giant graph), and FedEx finding the right set of
hubs to connect the world’s addresses.

 Some obvious applications of graph algorithms are social networks and map appli-
cations. In a social network, people are vertices, and connections (friendships on
Facebook, for instance) are edges. In fact, one of Facebook’s most prominent devel-
oper tools is known as the “Graph API” (https://developers.facebook.com/
docs/graph-api). In map applications like Apple Maps and Google Maps, graph algo-
rithms are used to provide directions and calculate trip times.
store/books/9781617296215

https://developers.facebook.com/docs/graph-api
https://developers.facebook.com/docs/graph-api
https://developers.facebook.com/docs/graph-api
https://itbook.store/books/9781617296215

84 CHAPTER 4 Graph problems

www.itboo
 Several popular video games also make explicit use of graph algorithms. MiniMetro
and Ticket to Ride are two examples of games that closely mimic the problems solved
in this chapter.

4.6 Exercises
1 Add support to the graph framework for removing edges and vertices.
2 Add support to the graph framework for directed graphs (digraphs).
3 Add an extension to Graph for depth-first search (see chapter 2).
4 Use this chapter’s graph framework to prove or disprove the classic Bridges of

Konigsberg problem.
k.store/books/9781617296215

https://itbook.store/books/9781617296215

 index

www.itbook.
 notation 36

Symbols

{ } (curly brackets) 3, 10
+ operator 25, 69
<> (angle brackets) 26
|| operator 82

A

acyclic 73
add operator 25
algebraic data types 37

enums as 43
angle brackets 26
Any types 35
array

enum and adding multiple types to 36–37
filling with multiple values 35
reading values from 37
storing two different types in 36

associated values 41
associatedtype keyword 58

B

BFS (breadth-first searches) 65–68
bfs() function 66
bidirectional edges 58

C

Cellular class 14
class keyword 3, 22

classes 3–18
computed properties 10–12
defining 3
downsides of subclassing and 32–33
inheritance 12–15

overriding 14
pros and cons of 14–15

initializers 5–6
methods 6–9

instance methods 6–7
overloading functions 8–9
type (static) methods 7

properties 4–5
instance properties 4–5
type (static) properties 4

protocols 15–18
extensions 16–17
relationships 17–18

structures versus 19–23
as value types 19–21
choosing between 21–23
constants 21
inheritance 19
memberwise initializers 19

code sharing 15
compiler error 4
compile-time polymorphism 36–37
computed properties 10–12
connected graph 73
constants 21
convenience initializers 9
costs of building networks, minimizing 68–78

finding minimum spanning tree 73–78
working with weights 68–72

CustomStringConvertible 58, 62
85

store/books/9781617296215

https://itbook.store/books/9781617296215

86 INDEX

www.itboo
D

data model
and deciding on subclassing or enums 34
example of creating 38
refactoring with enums 33–34

data modeling
and mutually exclusive properties 40
struct and, example of 38–40

description property 62
designated initializers 9
Dijkstra’s algorithm 79–83
directed graphs 58
Distance class 3–10, 12, 19, 22–23
distribution, sum over enum, example of 44–46
dropFirst() function 74

E

Edge protocol, implementing 62
enumerations. See enums
enums

adding tuples to cases 41
and catching problems at compile time 52
and compile-time polymorphism 36–37
and compile-time safety 36
and hierarchial structure 33
and polymorphism 35–37
as alternative to struct containing an enum 46
as alternative to subclassing 30–35
as sum types 37, 43
combining with tuples 41
compiler benefits with 42
converting to strings 29
creating with String raw value 50
data model refactoring 33–34
data modeling 29
deciding between enums and subclasses 34
defined 29
downsides of 34
encompassing enum 34
grouping properties 41
implementation in different languages 29
matching on a single case, example of 42
raw value type 47
raw values, dangers of 47–49
turning structs into 40–42

extensions 23–27
generics 26
of protocols 16–17
of types 23–25
operator overloading 25

F

frameworks, for graphs 57–64
Edge protocol 62
Graph protocol 62–64

G

generic type 36
generics 26
goalTestFn() function 67
graph problems

building graph frameworks 57–64
Edge protocol 62
Graph protocol 62–64

finding shortest paths 65–68
breadth-first search 65–68
defining paths 65
in weighted graphs 78–83

minimizing costs of building networks 68–78
finding minimum spanning tree 73–78
working with weights 68–72

real-world applications of 83–84
Graph protocol, implementing 62–64
greedy algorithm 76
guard statement 67

H

Hyperloop 56

I

init methods 63
initializers 42

memberwise 19
overview 5–6

instance methods 6–7
instance properties 4–5
Int8 type 43

J

Jarnik’s algorithm 70, 74–78

L

landline class 15, 17
let keyword 21
k.store/books/9781617296215

https://itbook.store/books/9781617296215

87INDEX

www.itbook.
M

makeCall method 14
map() function 61
memberwise initializers 19
Messages app, Apple 38
methods 6–9

instance methods 6–7
overloading functions 8–9
type (static) methods 7

minimum spanning tree 73
MSAs (metropolitan statistical areas) 55
mst() function 76

N

neighborsForIndexWithWeights() method 70
networks

minimizing costs of building 68–78
finding minimum spanning tree 73–78
working with weights 68–72

Node class 66
nodeToPath() function 66

O

object creation 2–27
with classes 3–18

computed properties 10–12
defining class 3
inheritance 12–15
initializers 5–6
methods 6–9
properties 4–5
protocols 15–18

with structures 18–23
OOP (object-oriented programming) 12
operators, overloading 24–25
optional initializer 51
or operator 82
overloading functions 8–9

P

parameters, unexpected, raw values and 48
path 65
pathDictToPath() function 66–67, 83
paths

defining 65
finding shortest 65–68

finding shortest in weighted graphs 78–83
weighted 74

Point type 21
polymorphism 29

Any types and 35
described 35
flexibility and 35

printPath() method 67
printWeightedPath() function 77, 83
product types 44

as opposed to sum types 38
properties

enums and grouping 41, 43, 52
instance properties 4–5
type (static) properties 4

protocols
extensions 16–17
relationships 17–18

PushButtonable protocol 17

R

Range notation 36
raw values

and losing help from a compiler 47, 49
dangers of 47–49
enum change and possible damage 48
enums and 47
explicit, example of 48
setting inside parameters, example of 48
unexpected parameters, example of 48

rawValue, passing 50
red dot 4–5
reduce() function 74
refactoring

data model with enums 33–34
entire data model 33

return keyword 10
reversed property 58

S

sharing code 15
Smart class 17
software, and limitations of modeling with

hierarchies 30
spanning trees, finding minimum 73–78

calculating total weight of weighted paths 74
Jarnik's algorithm 74–78

static keyword 4, 7
String raw value 47

creating enum with 50
store/books/9781617296215

https://itbook.store/books/9781617296215

88 INDEX

www.itboo
strings
and making conversion to enums easier 52
matching on 49–52

adding custom initializer 50
and slightly different values 50
bugs and 50
conversion bug 51
downsides 49
example of 49
multiple options for each case 51
multiple strings 50
optional initializer 51
passing different strings 51
typos and 49

safer use of 47–52
structs

as algebraic data types 43
converting to enums 29
distributing a struct over an enum, example

of 45
example of modeling message data 38–40
modeling data with 38–40
turning into enum 40–42

structures 18–23
classes versus 19–23

as value types 19–21
choosing between 21–23
constants 21
inheritance 19
memberwise initializers 19

subclasses 21
deciding between subclasses and enums 34

subclassing
and building data hierarchy 30
and more rigid hierarchy 34
building model layer, example of 30–31
creating a superclass 31–32
downsides of 32–33
enums as alternative to 30–35
limitations of modeling software with 30

sum types 37, 43–44
and fixed number of values 43
as different name for enums 41

Summable weights 69
superclasses

benefits 31
creating 31–32

Swift developers, enums and 29
Swift, implementation of enums in 29
switch statement 35

T

Telephone parameter 14
toKm method 7
totalWeight() function 74
tuples

adding to cases 41
as algebraic data types 43

type (static) methods 6–7
type (static) properties 4

U

UIControl class 14
unweighted edge 62

V

value types 20
vertex matrix 59
vertexAtIndex() method 65
VertexType 58, 61
VideoPlayable protocol 18
visit() function 77

W

weighted edge 62
weights

finding shortest paths in weighted graphs
78–83

of weighted paths, calculating total 74
working with 68–72
k.store/books/9781617296215

https://itbook.store/books/9781617296215

	contents
	Introduction
	Swift objects
	Swift objects
	3.1 Classes
	3.1.1 Defining a class
	3.1.2 Properties
	3.1.3 Initializers
	3.1.4 Methods
	3.1.5 Computed properties
	3.1.6 Class inheritance
	3.1.7 Protocols

	3.2 Structures
	3.2.1 Structures vs. classes

	3.3 Extensions
	3.3.1 Extensions of your type
	3.3.2 Extensions of their type
	3.3.3 Operator overloading
	3.3.4 Generics

	3.4 Summary

	Modeling data with enums
	Modeling data with enums
	2.1 Enums instead of subclassing
	2.1.1 Forming a model for a workout app
	2.1.2 Creating a superclass
	2.1.3 The downsides of subclassing
	2.1.4 Refactoring a data model with enums
	2.1.5 Deciding on subclassing or enums
	2.1.6 Exercises

	2.2 Enums for polymorphism
	2.2.1 Compile-time polymorphism

	2.3 Or versus and
	2.3.1 Modeling data with a struct
	2.3.2 Turning a struct into an enum
	2.3.3 Deciding between structs and enums

	2.4 Enums are algebraic data types
	2.4.1 Algebraic data types
	2.4.2 Sum types
	2.4.3 Product types
	2.4.4 Distributing a sum over an enum
	2.4.5 Exercise

	2.5 A safer use of strings
	2.5.1 Dangers of raw values
	2.5.2 Matching on Strings
	2.5.3 Exercises

	2.6 Summary
	2.7 Answers

	Graph problems
	Graph problems
	4.1 Building a graph framework
	4.1.1 A concrete implementation of Edge
	4.1.2 A concrete implementation of Graph

	4.2 Finding the shortest path
	4.2.1 Defining a path
	4.2.2 Revisiting breadth-first search (BFS)

	4.3 Minimizing the cost of building the network
	4.3.1 Workings with weights
	4.3.2 Finding the minimum spanning tree

	4.4 Finding shortest paths in a weighted graph
	4.4.1 Dijkstra’s algorithm

	4.5 Real-world applications
	4.6 Exercises

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

