
M A N N I N G

Atishay Jain

CHAPTER 1

Static sites and dynamic JAMstack apps

www.itbook.store

https://itbook.store

Save 50% on this book – eBook, pBook, and MEAP. Enter mehia50 in the
Promotional Code box when you checkout. Only at manning.com.


Hugo in Action
Static sites and dynamic JAMstack apps
by Atishay Jain

ISBN 9781617297007
350 pages
$39.99

www.itbook.store

https://itbook.store

Hugo in Action
Static sites and dynamic JAMstack apps

Atishay Jain

Chapter 1

 Copyright 2019 Manning Publications
To pre-order or learn more about these books go to www.manning.com

www.itbook.store

https://itbook.store

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: Erin Twohey, corp-sales@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Marija Tudor

ISBN: 9781617297007
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 24 23 22 21 20 19

www.itbook.store

https://itbook.store

iii

 contents
1.1 Parts of the JAMstack 2

1.2 How does the JAMstack work? 5

1.3 How is JAM different from LAMP, MEAN, or MERN? 7

1.4 Why use the JAMstack? 9

1.5 Selecting the builder 11

1.6 Why choose Hugo? 13

1.7 Is speed really important? 17

1.8 What can we build with Hugo? 18

www.itbook.store

https://itbook.store

www.itbook.sto
The JAMstack with Hugo
If you’ve been associated with websites recently or have friends who work for com-
panies with web-based products, you must know how much work it is to maintain a
website. With the need for DevOps engineers, system administrators, and database
architects, keeping a website running on the internet is a full-time job for an entire
team, not only an individual. The upkeep of content is so difficult that creators,
such as WordPress.com, are move at an unprecedented rate to manage hosting or
even give away their content to platforms such as Medium or FaceBook.

 The JAMstack provides a way of doing web development that minimizes the day-to-day
overhead of maintaining websites. The term was coined by the co-founder and CEO of
Netlify, Matt Biilmann, in 2016. It forgoes the databases by storing all the content into
files that are compiled during deployment and then distributed over a Content Deli-
very Network (CDN). The dynamic, server-based content is provided by Application

This chapter covers
 Basics of the JAMstack for building websites

 Principles of static site generators

 Understanding the Hugo static site generator

 Benefits the Hugo static site generator

 Use cases best suited for JAMstack and Hugo
1

re

https://itbook.store

2 CHAPTER 1 The JAMstack with Hugo

www.itboo
Programming Interfaces (APIs) maintained by third parties or hosted by a cloud service
provider with minimal day-to-day involvement by the website owner. This way, web deve-
lopers are free from the tasks of handling security updates, Denial of Service (DoS)
attacks, and the constant monitoring required to keep hackers at bay.

 The JAMstack is heavily reliant on the core web technologies of HTML, CSS, and
JavaScript. It offers the ability to get up and running in the modern web quickly. We
can build websites offering great performance with low costs and requiring little main-
tenance. It can be used to build websites for a great variety of use cases, from individual
blogs to business websites. The JAMstack can work in harmony with a server-based
framework by providing full support for static content, while the user-generated, server-
-based content can still be provided by a traditional framework.

 Hugo is among the most popular of the frameworks in the JAMstack and pro-
vides the best build speeds. It meets the promise of the tool with which we can enjoy
web development without having the annoyances related to the setup, upkeep, or
day-to-day maintenance. Hugo is a rare tool with which the developer can choose when to have
coffee, because it eliminates the waiting for compilation, updates, and deployment. Hugo takes
a template and all the content of the website in a markup format and converts it to
the HTML that can be hosted as is.

 I congratulate you for picking up this book and embarking on the journey to radi-
cally simplify your approach to web development.

1.1 Parts of the JAMstack
The JAMstack is different from traditional web development stacks in which a collec-
tion of tools and technologies are prescribed to develop websites. In the JAMstack, the
static content is created in a markup language, stored alongside the template, and then
compiled at deployment time so that it can be used as is when requested by a client.

The JAMstack doesn’t prescribe any specific technology to be used to develop websites.
It provides an approach to web development where the core of the website is prebuilt and
the dynamic nature is added by client-side scripting.

The websites built on the JAMstack consist of three distinct parts: JavaScript, APIs, and
Markup.

1.1.1 JavaScript

JavaScript provides the dynamic functionality to the JAMstack. It enables developers
to react to user actions and modify the user interface at runtime. The word JavaScript
doesn’t necessarily mean the JavaScript language. It includes all approaches to client-
-side scripting, including languages that compile to JavaScript and runtimes built over
WebAssembly. The JAMstack leaves the specifics the JavaScript framework and its
management to the web developer.

 In traditional Content Management Systems (CMS), the server plays a major role
in handling user interactions. Fresh pages need to be generated even when a part of
k.store

https://itbook.store

3Parts of the JAMstack

www.itbook.
the page needs to be modified. That isn’t only unnecessary, it’s suboptimal. Modern
JavaScript is fully capable of storing the user state in the browser and updating the
content based on it. It can communicate with the server and update the interface
without the user needing to perform a reload or see a flicker in the interface.

 Traditional CMS have failed to adopt to these new trends, features, and capabilities
of the web platform. While they do have JavaScript support, it has been patched over a
system where the server still participates heavily in these dynamic interactions. The
JAMstack prescribes using JavaScript for the use cases where it shines the best: provid-
ing interactive interfaces to the end user and communicating from the client to the
server. Chapter 8 is dedicated to using JavaScript to enhance the website.

1.1.2 Application Programming Interfaces (APIs)

APIs provide a well-defined contract for communicating with a web service. APIs
abstract the entire server functionality, and the client doesn’t need to understand the
server internals to consume the service. In the JAMstack, JavaScript is responsible for
much of work that’s traditionally done on the server, but certain tasks still need to be
performed at a central location. This includes storage of the application state so that
it can be restored on a different machine, computations that require more processing
power than a single machine, and data that needs to be transmitted back from the
viewer of the website to the servers. These tasks are performed using APIs. The APIs
are created using backend technology that’s used to create the entire CMS in the tra-
ditional stack. The JAMstack doesn’t restrict the API style to be used for the communi-
cation, and we’re free to choose our approach. Representational State Transfer
(REST) is the most popular API style in the web platform. We’ll use REST APIs in
chapter 7 and building one in chapter 10.

 Many CMS expose APIs to communicate with the underlying functionality that can
be consumed using JavaScript. While technically these approaches fit in the JAMstack
definition, the JAMstack advises minimizing the building of APIs to reduce the main-
tenance overhead. Many third-party API providers provide high-level APIs that deve-
lopers can leverage without having to go through the overhead of building everything
themselves. From handling forms to full text search, much functionality can be
obtained at scale without writing custom code.

 Even when we need to write custom backends, the cloud service providers make
that task easier than building from scratch. With Function as a Service (FAAS), the
service providers make it extremely easy to set up an API. The cloud service providers
take the ownership of uptime, ongoing security updates, and scaling with user load
along with maintaining performance and availability across the globe. The developer
needs to understand the cloud platform, build an optimal function based on the con-
straints of the platform, and hand it over to the service provider. The ongoing work is
minimal and needed mostly to enhance functionality or update any dependencies
that the developer has chosen for building the function.
store

https://itbook.store

4 CHAPTER 1 The JAMstack with Hugo

www.itboo
1.1.3 Markup

Markup forms the data layer of the JAMstack. Unlike traditional databases, Markup is
stored in text files and meant to be readable and editable by humans in their raw form
without going through a complicated Integrated Development Environment (IDE).
Markup languages provide a means to write formatted documents along with the asso-
ciated metadata and links to assets in a terse and readable way. Markdown is the most
popular of the markup languages used for writing content in the JAMstack, and we’ll
go into detail on this in chapter 3. It can be accompanied with a variety of metadata
languages, one of which is Yaml Ain’t Markup Language (YAML), which we’ll also dis-
cuss in chapter 3.

HTML (HyperText Markup Language) is also a markup language, and you’re free to
choose that for writing your data in the JAMstack. Human-readable languages such as
Markdown make it easier to read and maintain. They’re converted to HTML during
rendering and enforce keeping the presentation (CSS) out of content.

A website built with a JavaScript based framework and a backend mostly hosted as
cloud functions with no markup for content meets the definition of the JAMstack.
Writing data as Markup provides many advantages over the approach of storing it in a
database and fetching it using an API, especially if the data is unstructured. We can
use a version control system like Git to version the data changes. Having the data
along with the code eases migration across services and build environments. We can
store all configuration together. Optimization and testing gets easier with the ability to
boot build environments on demand. With unstructured content, most of the organi-
zation and querying capabilities of the databases aren’t useful. Hosting blogs or
generic web pages based on a database isn’t the best use of resources. It’s possible
mostly because of the effort that has been put into optimizing databases and program-
ming languages used to build these CMS for other use cases.

 With the popularity of Git and GitHub, many developers are already familiar with
markup languages, especially Markdown. Most readme files in code repositories are
written in a markup language. These languages are stable, standardized, easy to learn,
and easy to understand. You can find quite a bit of tooling available to write in these
languages or migrate data across them. They also work well with diff and merge tools
(which are used for version comparison across changes in Git), and most major pro-
gramming languages have libraries to parse them, which provides extreme flexibility
to programmers to manipulate data the way they like.

 Using the JAMstack, we write our websites as text-based documents, leverage Java-
Script and third-party APIs for our dynamic processing needs, and then build one-off
first-party services if they’re still required on the cloud to have minimal maintenance.
Figure 1.1 shows the process of building a website with the JAMstack.
k.store

https://itbook.store

5How does the JAMstack work?

www.itbook.
1.2 How does the JAMstack work?
The core of the website using the JAMstack lies in two folders. One folder contains the
content in the form of Markup data (Item 1 in figure 1.1) that’s shown to the user,
while the other one contains the theme as a user interface (UI) templates (Item 2 in
figure 1.1). These folders are normally managed in one version-controlled repository,
and the build system automatically generates the HTML content and pushes it live.
The website is managed by a Content Delivery Network (CDN). The CDN consists of a
set of geographically distributed web servers that cache the website content and can
provide that to the users with high performance and low cost. The CDN provider
takes care of maintaining the uptime, availability across the planet, and scaling the
operations with the load.

Figure 1.1 Building websites with the JAMstack. This figure describes the various parts of the JAMstack as
described in section 1.2. Markers 1-3 describe the flow of information when the user navigates to the website
from the main content to the JavaScript execution and accesses the various types of APIs. Markers 1 and 2 are
the two main parts of the JAMstack based website, the user interface templates and the content in a markup
language. A, B, and C describe the three things that the developer needs to do in order to update the website:
update the code for the static portion, deploy the first-party APIs, and configure the third-party ones.
store

https://itbook.store

6 CHAPTER 1 The JAMstack with Hugo

www.itboo
 The content is organized into files, which have both the data to be presented to
the user as well as metadata for organizing content such as its tags, menu placements,
etc. The content is written in the markup language that provides support for format-
ting content as well as organizing it into sections.

 The theme folder has the UI templates that convert the content into a webpage by
adding common page elements as well as styling the content to match the looks of the
website. It provides support for creating content pages as well as common pages such
as content listings, the home page, contact page, etc. The theme folder can be
swapped with a different theme to have a different look for the website, and the
framework tries to ensure that minimal content changes are needed when switching
across themes.

 The websites built with this approach are in the commonly called static websites.
Static websites are pre-compiled during deployment. In comparison, dynamic websites
require server code to generate the HTML each time it’s requested. Tools that help in
building static websites are called static site generators.

 The developer periodically pushes the changes to the theme and as well as web
content that’s published automatically (Item A in figure 1.1). The content folder is
actively updated to add articles while UI changes come through the theme folder. The
developer is also responsible for deploying the first-party APIs (Item B in figure 1.1)
and configuring the third-party APIs (Item C in figure 1.1) used in the website.

 Websites generally have two types of users: users who have proper browsers that
execute JavaScript, or bots that might not support JavaScript execution and parse the
HTML to form their view of the website.

 When a user requests a webpage, the browser loads the core content of the website
from the CDN (Step 1 in figure 1.1). The website also includes JavaScript that gets
executed (Step 2 in figure 1.1). This JavaScript in turn may request data from the var-
ious APIs available (Step 3 in figure 1.1). There are three types of APIs that can be
used to provide dynamic functionality via JavaScript:

 Pseudo APIs—These APIs are statically generated along with the website from
the markup content. These APIs can provide raw access to data in a program-
ming-friendly format such as JSON (JavaScript Object Notation) instead of
HTML that’s generated from the template. This way, we can build the entire UI
in a client-side JavaScript-based framework (such as Angular, Vue, or React).
They can also be used for providing dynamic functionality such as search to a
static website on the client side without building a server layer.

 Third-Party Services—These services are built and managed by vendors external
to the website developer, such as Netlify, PayPal, or Amazon. These vendors pro-
vide certain capabilities exposed as APIs on their platform that are maintained
by them and can be used directly from the frontend.

 First-Party Services—For websites that depend on unique server-side processing
for providing functionality, those services have to be built by website developers.
These are also exposed through APIs that are accessed from JavaScript in the
k.store

https://itbook.store

7How is JAM different from LAMP, MEAN, or MERN?

www.itbook.
JAMstack. For having a low maintenance overhead, it’s advised to build these in
a managed system, such as FAAS, where the major part of the maintenance
work can be managed by a cloud service provider.

Contents of the code repository for a JAMstack based website include:

 UI template—The templates to generate the HTML and CSS used in the website.
Most builders have their own template engine based on the technology they’re
built with.

 Content—The textual data that’s rendered with the HTML template.
 Images, fonts, and other resources—Non-textual data to help render the website

and other data associated with it, including bundled content that’s down-
loaded.

 Config—Website configuration present in a text-based format.

1.3 How is JAM different from LAMP, MEAN, or MERN?
Traditional web stacks such as LAMP, MEAN, or MERN consist of three main layers.
The bottom-most layer in these stacks is the database layer, where a database such as
MySQL or MongoDB is used to manage content. Above this is the application server
layer written in a server-side programming language such as PHP or Node.js, where
the business logic to communicate with the database resides. This is the web server
layer that hosts images, CSS, and JavaScript files. Those JavaScript files may be written
in plain JavaScript, in case of LAMP, or rely on a framework such as Angular or React
in the cases of MEAN and MERN.

Doing it old school
The approach of writing content in a folder on disk and uploading it on a shared host-
ing provider that manages the content looks much like the early web where we used
to upload HTML and PHP files over an FTP connection. The parallels are obvious,
which raises the question of what’s different this time.

The web has matured since we moved off to controlling full servers. Many features
that required server code back then can now be built using frontend technology. The
shared hosting has upgraded itself to the cloud, where you can scale not only hosting
but arbitrary computation to the internet scale. Even the traditional servers are now
hosted in the cloud.

The other major change from that era is the tooling. Tools such as FrontPage were
built for designers and end users, which made the website a mesh of copy-pasted
scripts that the website author didn’t understand. Modern tools target developers
with a focus on optimization, maintenance, and performance. Websites can be engi-
neered in these tools rather than being meshed together.

We’ve learned from the early days of the web, and we have a much better system with
enough power and flexibility to build any application desired without compromises.
store

https://itbook.store

8 CHAPTER 1 The JAMstack with Hugo

www.itboo
 The three layers of the web stack are typically managed by different teams with dif-
ferent expertise. Apart from these teams is also a content team that creates and enters
content into the database. The website and the content have a different flow and are
managed and released differently. All this adds complexity to the entire process, possi-
bilities of miscommunication, and waste of resources.

 The JAMstack tries to merge all these roles and have a single system for everyone
involved, thereby making it possible to have a single team manage a website. The ren-
dering logic and the content live in the same code repository, and the database layer is
replaced by a standard markup language. A team managing a JAMstack-based website
can have sub-teams with different expertise, but with a shared source of truth, build,
release and version management flow, the synchronization overhead is greatly
reduced. People get an option to wear multiple hats, coordinate closely, and simplify
the job of everyone else.

 By standardizing on content markup and letting go of the database for content that
isn’t user generated, the need for the application servers is minimized. For any logic
that’s not possible by static files, the JAMstack recommends relying on third-party APIs
and rolling your own if nothing is available. The frontend can communicate with these
APIs using the JavaScript layer, and their release cycle of this home-grown application
server can be decoupled.

 A new release of a JAMstack-based website is inexpensive to create and distribute,
and a team can provide hundreds of releases in a single day without creating any
issues. The UI team has access to all the content that they can optimize for. The con-
tent team gets the benefit of being a part of the production process and can align the
content with the UI without needing any special coordination. The backend work is
trimmed to only the operations that need complicated backend logic.

 Another difference in the JAMstack is the reduction of the render steps to show a
website. All websites frameworks output HTML/CSS and JavaScript because that’s the
only thing that browsers understand. The difference in approach between all of them
is deciding where this HTML is generated:

 2000s Era (LAMP/Ruby on Rails)—The bulk of the HTML is generated when the
server receives the request. The server processes the request parameters, que-
ries the database, and then generates the output HTML individually for each
request.

 2010s Era (MEAN, MERN)—The rendered HTML is mostly generated in the
browser. The server sends the JavaScript code to the browser, which requests
additional data then computes the HTML to be rendered.

 JAMstack—The bulk of the HTML is generated when the content change is
pushed onto the server and is served as is to the client on each request.

In the approach from the 2000s era, every request involves processing and consump-
tion of resources at the server to generate the HTML. In the 2010s-era stacks, this pro-
cessing cost is incurred in every client as well as on the server for each page. With the
JAMstack, this cost is incurred only once per page per release. Because scrapers such
k.store

https://itbook.store

9Why use the JAMstack?

www.itbook.
as the Googlebot index every webpage on every update, the JAMstack is the most
resource-optimized way of creating a website.

The JAMstack doesn’t prohibit server or client processing. It advises using those only
when needed. Deploy-time processing is more efficient and safer. It’s advised for all cases
where it’s practically possible.

1.4 Why use the JAMstack?
Pre-building of HTML content shown to the user has many unique advantages from
minimal operations and great performance to cost reductions.

1.4.1 Minimal operations

With the content built before publishing and supplied as plain HTML, the number of
moving parts in a website reduces drastically. When the hosting is managed by a third
party, the developer doesn’t have to worry about security updates, patches, or hot
fixes. Server-side code can patched by the hosting provider. The cloud hosts provide
almost 100% uptime without any active involvement from the website owner. The
developer has need to be on call or think about servers, scaling, load balancing,
uptime across continents or any other operations overhead. The developer can focus
on the joy of building, and the business can focus on their core competency, rather
than setting up a DevOps team.

The Acme Story: Act I Scene I, DevOps and the JAMstack
In this book we’ll witness the transformation that takes hold within the technical team
at Acme Corporation as they embark on the journey to embrace Hugo and the JAMstack.
Acme Corporation is the leading supplier of digital shapes on the planet. Like most
companies, it has a small IT department that manages, apart from other things, the
company website, its online shopping platform, blogs, and parts of the company’s web-
based marketing data. The small technology team includes a web developer, Alex, and
a system administrator, Bob. The technology team is overloaded with work and there-
fore follows the simple mantra: If it ain’t broke, don’t fix it. As a result, most of the web
stack has remained the same from the early 2000s. The management has agreed that
the patchy mobile website needs to go, and they don’t want to host servers anymore.

Bob: Hey Alex. I have some great news.

Alex: They let you take the old hard disks home?

Bob: We’re moving the existing system to the cloud. It’ll be so awesome.

Alex: I haven’t even completed my investigation on the JAMstack. How come?

Bob: I convinced the management over coffee. I’m moving to Devops.

Alex: I really like the JAMstack. It’s cheaper, faster, and doesn’t even need a lot of
DevOps.

Bob: Not doing. Dude I need a job.
store

https://itbook.store

10 CHAPTER 1 The JAMstack with Hugo

www.itboo
1.4.2 Great performance

The pre-built HTML provided as a static website can be hosted completely on a CDN.
This way, the content can be easily cached and served from a server located close to
the end user. This eliminates the round trip to an application server and the database
query that can become a bottleneck. Most site generators targeting the JAMstack
generate the HTML at compile time, which means that the HTML is already available
to render when the user requests. The JavaScript layer can add functionality if
needed, but the website is functional even with a single HTTP request. Generating
Accelerated Mobile Pages (AMP) is also easy, and a basic website with the JAMstack
can provide a 90%+ performance score on most audits. If a developer is sensitive to
performance while building the theme, the JAMstack-based website can meet all crite-
ria for a 100% score in these audits.

1.4.3 Lower costs

With the removal of the database and the application servers from the hosting stack,
the hardware costs are greatly reduced. With the operations becoming automatic,
most DevOps requirements aren’t present. All this translates to major cost savings. You
can have a website for free using static site hosts such as GitHub Pages and Netlify. The
website can also be hosted on all major cloud providers such as AWS S3, Google Cloud
Storage, or Azure Storage at extremely low costs. You don’t need to have IT or DevOps
teams to manage the fleet of servers.

1.4.4 Developer productivity

The entire JAMstack-based site can be managed by a version control system such as
Git. You don’t need to set up complicated development environments. Running the
code locally is one command away, and most websites can be deployed by a simple
push to a server many times a day. No complicated tooling is required to build a web-
site, and all of the content as well as the theme can be managed by a simple text edi-
tor. This gives the developer the time and flexibility to focus on the content of the
website.

1.4.5 Longevity

HTML/CSS is the most stable technology built, and browsers bend backward to con-
tinue to support all features that they’ve supported since the 1990s. If you host a JAM-
stack-based website and vanish from the internet for a decade, it will still be there in
mostly the same state where you left it when you come back. The internet isn’t as forgiv-
ing to any other technology stack as it is to plain HTML/CSS/JavaScript hosted on a
static server. You can even continue to use the static site generator in a virtual machine
without updating the version forever. Because the generator isn’t hosted, security vulne-
rabilities in the generator don’t impact the website, and you can build it offline, away
from all the hackers.
k.store

https://itbook.store

11Selecting the builder

www.itbook.
1.4.6 Tooling

With fewer moving parts and a well-defined structure, the tooling for the JAMstack is
much more advanced and powerful than the other stacks. One-click deployment is
readily available with hands-off support for scaling through Netlify, GitHub Pages, etc.
Having the entire website present as code also means that there’s nothing to hide.
There are no complicated configurations for security or performance, no extra mana-
gement overhead for different layers in the stack, and no special IDE to get up and
running.

1.5 Selecting the builder
The JAMstack doesn’t prescribe a specific technology, and the developer is free to
choose the technology of his/her liking to build the website. You can find a huge list
of static site builders with various tradeoffs to choose from. Hugo is one of them.

1.5.1 Jekyll

Jekyll is the oldest of modern static site builders and is the most popular. Written by
Tom Werner, the co-founder and former CEO of GitHub, Jekyll has been the first-class
citizen of GitHub since the beginning. With this tight partnership, it has benefitted
immensely from GitHub’s success. Built in Ruby, Jekyll has a wide variety of plugins to
choose from and a huge community ecosystem. You can find a great deal of help on
Stack Overflow and a plugin to almost anything you want to build. While still

Updating on the fly
When new to the JAMstack, it may seem like a major limitation to be unable to update
the content of the website on the fly. Most traditional systems provide an admin
mode to update the website on the fly, but nothing seems prescribed in the JAM-
stack.

This isn’t a limitation as there’s no need for any special tooling to update a JAM-
stack-based website. The content is written in a markup language that’s so friendly
and easy to use that we can provide updates in any text editor. Most version control
providers such as Github, GitLab, and Bitbucket provide the ability to commit new
changes from the browser that can be automatically built and deployed into produc-
tion.

With this approach, we get the benefits of having a full version control system for our
content alongside the ability to choose the editor to write it in. As a bonus we can
update the theme wherever and whenever desired. Textual content, automatic
deployment, and continuous integration make sure we don’t miss the admin mode in
a WordPress instance.
store

https://itbook.store

12 CHAPTER 1 The JAMstack with Hugo

www.itboo
extremely popular, Jekyll has several pain points that prompts users to look around.
Jekyll can become extremely slow as the website grows. While the Ruby language has
improved immensely in performance ever since 2.0 and Jekyll has had multiple versi-
ons targeting performance, the core of the platform built while exploring the new
domain is difficult to improve. Performance isn’t a feature that can be built on the
top, and while most developers start with Jekyll for their first static website, many leave
the ecosystem due to the day-to-day pains of building with it.

1.5.2 Gatsby

Gatsby is a relative newcomer in the world of static site builders that has gained popu-
larity extremely quickly. Built with React and using GraphQL, Gatsby comes with a
strong plugin ecosystem and a lightweight core. It relies on plugins for most of its
functionality and provides a versatile core that can be used for any workflow. It builds
a progressive web app that’s managed in the browser with the data load going through
the GraphQL interface. Gatsby is the right choice for developers already well versed
with React and GraphQL and are willing to maintain the dependency tree across a
fast-moving ecosystem across React, Webpack, and Gatsby itself.

1.5.3 Hexo, Pelican, VuePress, Nuxt and others

The static site ecosystem has a long tail of frameworks built using multiple languages,
frameworks and flavors. Hexo is written in pure JavaScript. Pelican is written in
Python. Nuxt and VuePress allow you to use the Vue.js JavaScript library. If you
strongly like an ecosystem, you can find a static site generator available in your favorite
language and framework.

1.5.4 Hugo

Hugo is the fastest of the static site generators, where the development team prides in
building a system that can render a complicated website with hundreds of pages in less
than a second. Written in Go (Golang), Hugo is distributed as a single binary with all
batteries included. With the lack of reliance on plugins, the core team has taken on the
responsibility of standardizing most of the features providing the benefit of engineer-
ing them for maximum performance. Its template language is a full programming lan-
guage that can be used to build anything. The documentation is well-maintained, and
the community is active in the forums. While not yet 1.0, Hugo has a huge number of
features all baked into the single module. It’s used by many popular websites with mil-
lions of monthly users.
k.store

https://itbook.store

13Why choose Hugo?

www.itbook.
1.6 Why choose Hugo?
Hugo is among the oldest of static site frameworks that has continued to climb in
popularity over the years. Its creator, Steve Francia, has immense experience with the
Drupal Content Management System and he has brought some of the best practices
and rectified Drupal’s design flaws with Hugo.

 Hugo lies at the sweet spot between a framework such as WordPress, which is built
primarily for non-technical audience, and Rails or Express.js, which provide power to
generate generic software but require ongoing maintenance effort. With Hugo you
get the flexibility that’s one level below Rails/Express.js with the maintenance effort
that’s similar to picking up a third-party hosted WordPress instance with the added
advantage of wonderful performance right from the start. Hugo is built for users who
don’t mind getting their hands into the code but who do need to maintain sanity and
have a life outside the project they’re building. Developers choosing Hugo rarely
move off to other approaches of website building. It comes due to variety of reasons.

Table 1.1 Web builder technology comparison

Area

Approach Word-
Press

Custom
(Rails)

Custom 
(MERN)

Jekyll Gatsby Hugo

Takes Content in
Markdown

✕ ✕ ✕ ✔ ✔ ✔

Can Version Control
Content

✕ ✕ ✕ ✔ ✔ ✔

Auto scales with
load

✕ ✕ ✕ ✔ ✔ ✔

Can quickly preview
content(including
launch of preview
mode)

✔ — — ✕ ✕ ✔

Small set of
dependencies

✔ ✔ ✕ ✔ ✕ ✔

Minimal DevOps ✔ ✕ ✕ ✔ ✔ ✔

Low update effort ✔ — — — — ✔

Large Plugin
Ecosystem

✔ ✔ ✔ ✔ ✔ ✕
store

https://itbook.store

14 CHAPTER 1 The JAMstack with Hugo

www.itboo
1.6.1 Hugo is fast

Hugo is the fastest static site builder available. While we may not be able to appreciate
this when starting a project, this is extremely important in our day-to-day lives. Waiting
for compilation or refresh is a major reason of developer frustration and can mean
the death of a hobby project. This becomes even more important when the techno-
logy changes force us to go through a major change in our website template. The
advent of mobile devices brought death to a huge number of WordPress themes,
where updating each and every aspect was so painful that the developer gave up. Even
with a decade worth of content, a Hugo-based website will continue to provide a
respectable performance for development. A rewrite or a facelift of a Hugo-based
website is much easier and more fun than with any of the slower frameworks.

1.6.2 Hugo is built for performance

The community that sprang up looking for and working with the fastest static site
builder has a natural tendency to look for performance in everything. Therefore, the
core principles of performance orientation flow in the entire ecosystem. You can find
advice on how to improve the performance of your website in easy-to-do steps in the
community forums. If you find a random script from the internet for doing something
with Hugo, a high likelihood exists that it will be optimized for performance.

 The core performance of Hugo also impacts its output. The performance primi-
tives are available for other uses. Developers can learn from the approach that Hugo
uses for optimizing their own workflows. The quality of an average Hugo-based web-
site is much better than an average website in general.

1.6.3 Hugo is self-contained

A plugin heavy system appears to provide much flexibility and many capabilities until
the concept of maintenance rolls in. Your site could go bad if one plugin is aban-
doned, even though the framework is actively maintained. This has been a classic
problem with frameworks like Rails, where each major version became a huge pain for
migrating all the plugins. The same can be seen in the popular ecosystems of the past,
such as JQuery, Backbone, and AngularJS where plugins are not updated. Even Jekyll,
which is extremely popular and actively maintained has a huge problem of plugin rot.

You’re not alone
Hugo is extremely popular in the industry and has been used at scale for websites
such as Bootstrap (https://getbootstrap.com), Lets Encrypt (https://letsencrypt.org),
Smashing Magazine (https://www.smashingmagazine.com), Netlify (https://www.
netlify.com/) and 1Password Support (https://support.1password.com/).

Smashing Magazine migrated their huge website with thousands of pages from Word-
Press to Hugo for its great performance and ease of use.
k.store

https://itbook.store

15Why choose Hugo?

www.itbook.
 Being self-contained has allowed Hugo to bypass issues that have plagued other
projects. The core team has been able to standardize optimal approaches to perform
tasks that have been made available natively. The Hugo team has optimized Hugo
without needing lower-level API compatibility. They continue to write complicated
multi-threaded logic for the standardized workflows to eke out the few extra seconds
that the users can spend elsewhere. The users get much more support than from the
plugin authors and have lesser fears of abandonment of their core workflows.

 Being self-contained doesn’t mean Hugo isn’t extensible. The Go template lan-
guage is powerful and users can share snippets of code as modules that can be reused
and can perform complicated logic using this language.

1.6.4 Hugo is distributed as a single file

Hugo packages all its core dependencies and resources in a single executable file.
This makes downloading Hugo, transferring it to another machine, or backing it up
extremely simple. In systems where due to security concerns, each file has continued

Hugo and the Go language
A major skepticism among developers while choosing Hugo is the fear of the Go lan-
guage. Go isn’t a mainstream language and has a small community in comparison to
the other options. But this shouldn’t impact your decision to use Hugo. There is no
need to learn Go or understand how it works to be successful with Hugo. This book
doesn’t have a single line of Go code. We don’t need to learn how most of our tools
work internally to successfully use them. Go is an internal detail for the users of Hugo
that they don’t need to worry about while using it.

Go is language built with parallel computation is mind and is optimized for building
software. Hugo benefits immensely from Go’s speed without forcing upon its users
all the complexities. Hugo users only have to use the Go template language, which
despite the name, is a different language from Go itself. It’s Turing complete (that is,
it can be used to write programs that involves formal logic, the basis of all modern
computation) and allows us to write anything we want including modules and func-
tions without the complexity of multi-threaded code. Even the Go template language
may not be needed if you aren’t planning to write your own theme or shortcodes. You
can write content in a markup language and pick a theme off the shelf to build your
website.

Most other JAMstack-based website builders are written in a single-threaded sequen-
tial flow. This allows them to have plugins at the cost of performance. With most
major features available within Hugo, you don’t compromise on a slow framework.

While Go isn’t mainstream, it’s used to develop important foundational technology
such as Docker and Kubernetes. Therefore, it doesn’t have a major risk of being
abandoned. By Go not being mainstream, the Hugo developers have unique leverage
to influence the programming language and get the features that improve Hugo.
Hugo’s creator, Steve Francia, has led the project management and strategy for the
Go Programming language and its best features have rubbed onto Hugo.
store

https://itbook.store

16 CHAPTER 1 The JAMstack with Hugo

www.itboo
scrutiny, and a single binary file with no other dependencies really shines. Developers
can check-in the Hugo binary with their source code if they need use it in a restricted
environment. With a single file taking care of everything, there are no dependencies
to update and no build system needed to manage. This is in stark contrast to Java-
Script-based static site builders that have hundreds of dependencies, each of which
might need to be vetted by a security team for use in an enterprise environment.

1.6.5 Hugo can be extremely low maintenance

With fewer moving parts (plugins and operating system dependencies), a small instal-
lation step, no database, and no complicated hosting steps, the maintenance churn
with Hugo can be much less than the other approaches of web development. Each
dependency is maintenance. You can get a powerful website with low maintenance
with only Hugo and a hosting provider. While Hugo has had updates where backward
compatibility has broken, you’re free to take the updates when you have time and
don’t have to go down and fix arcane plugins. The churn in Hugo is also reducing as
it approaches the stability of 1.0. This cannot be said about most other ecosystems in
the web development world.

1.6.6 Hugo can save you from analysis paralysis

Hugo is opinionated and built with many tools and techniques to get up and running
quickly. While the powerful template system allows you to roll your own solution to a
problem, most of the common ones have already been dealt with. Hugo has a generic
implementation for an approach to pagination, to categorizing content into unlimited
types of categories as well as to getting core website elements such as menus. Hugo
comes with a built-in templates such as YouTube embeds and Instagram images that
can save you time getting started. Eventually you might want to customize them to fit
your own needs but getting up and running is easy with Hugo because of the well-docu-
mented and popular approach of solving most problems.

1.6.7 Hugo is powerful

Despite being opinionated, Hugo is versatile. The Go template language that Hugo
extends is a powerful and flexible language. This provides the ability to developers to
write proper programs within Hugo. The standard library provided by Hugo is huge
and growing. It comes with great performance right from the start. Even if you write
bad code, the core performance of the built-in functions will be able to save grace for
a long time. With access to APIs during website generation, Hugo provides big power
without losing on the performance of the generated output.

 With Hugo, you can write functions anywhere in your website including while
developing content (as custom shortcodes embedded in the markup) to do special
processing. You can encapsulate that into something that can be reused or leave one-
time snippets of code on specific pages.
k.store

https://itbook.store

17Is speed really important?

www.itbook.
 Hugo has web development primitives but not using them doesn’t seem like fight-
ing the framework. If you don’t use the built-in features of Hugo and decide to roll
your own, they may not work across themes, but you can still be successful with Hugo.

1.6.8 Hugo is scalable

Hugo already caters to websites with multi-lingual content having thousands of pages
and millions of monthly active users. Hugo has a proven record of handling the scale
of the biggest and heavily used websites on the internet. There are already enough
primitives and capabilities to scale the Hugo based website from a developer to a
team. Hugo supports a wide variety of input and output formats and has a variety of
features to enable automation of day-to-day life of a non-technical member of the
team.

1.6.9 Hugo is a community project

Hugo is maintained by a community of volunteers with no parallel commercial inte-
rest in the project. This allows for the direction of the project to be in the best interest
of the community. Hugo cannot pivot, get acquired, or shut down at the whim of a
corporation.

1.7 Is speed really important?
The important of build performance cannot be emphasized enough. Hugo employs
many techniques to speed up build times, such as having a multi-threaded core with
support for caching at all layers to prevent as much rework as possible. This results in
freeing up the developer from the burden of noticing the build time.

 When you launch Hugo in the watch mode (a special mode for development) the
website come up in less than a second. It reloads with the speed of typing without hav-
ing to go through the entire step of setting up fancy hot module replacements for live
reload. This feature isn’t only for the theme with a dummy content but for the entire
website that can be pushed to production. This provides the flexibility to edit the web-
site in the five minutes you might have between other chores. In other frameworks,
getting up and ready is itself a task. It takes so much time to get to the development
mode, that for minor bugs that are found while browsing, we tend to ignore them sim-
ply for the effort.

 With the entire data traveling with your website and getting recompiled on the fly,
the developer gets the freedom to experiment and see the results instantly, as well as
to push to production without dedicating extra mental effort. Same is the case with
data entry. A big burden with static site builders with slow build time is that commit-
ting data is something that the content writer needs to plan for, since getting up and
running itself can take five minutes where you can lose the chain of thought. The con-
tent flexibility of WordPress and the runtime performance of the JAMstack are not an
either/or with a framework like Hugo.
store

https://itbook.store

18 CHAPTER 1 The JAMstack with Hugo

www.itboo
 With this being done at the framework level and all the primitives exposed, as a
developer you start to rethink your website building strategy. Does this code need to
go into JavaScript that has to run on every one of the billion customer machines that
visit this page, or can we write this such that it runs once and saves the results as SVGs
or precomputed HTML so that the customers don’t have to re-execute? These minor
tweaks while building go a long way in improving the website performance.

1.8 What can we build with Hugo?
The JAMstack is a versatile concept and can be applied to a huge variety of problems.
Hugo is applicable to most of them and has been a poster child for the success of the
JAMstack with its ability to handle scale. It shines when the information needs to flow
from the server to the client and the client is mostly used for consumption of the said
information rather than creation. This fits the traditional definition of publishing
where the content creators provide content via a medium(like the web) to the con-
sumers. The following sections explain things that Hugo specializes in.

1.8.1 Personal websites and blogs

Gone are the days of hiding away from the internet. Through one means or the other,
everyone in the modern world who has an internet user as a friend or relative is
already present on the internet. Rather than trying to hide from it, the right approach
is to embrace the internet and control your online impression rather than letting it
depend on others.

 Hugo is well-suited for getting up and running with a personal website. Big goals
for personal websites are low maintenance, low costs, and the flexibility to showcase
your own personal tastes. Throughout this book, we’ll see how we can build some-
thing extremely low maintenance, almost-free hosting, and enough flexibility to cus-
tomize as much as you desire. Add to that you get great performance, ability to update
when and where you want, full SEO support, and a quick start.

 You can pick up any one of the publicly available Hugo themes to get started and
be up and running with a decent website in minutes. You’ll be surprised how many
features are available without any customization. Once you’re there, it’s easy to fork
the theme and start customizing it to leave your unique impression on the internet.

1.8.2 Non-technology business website

Hugo scales to teams updating content in parallel without any problem. Businesses
whose core competencies aren’t building websites need something easy to maintain,
with low costs and great performance. They also want flexibility and control. Hugo
ticks all these boxes. It’s well thought out and easy to understand for any vendor team
who may be added to the website development on a short-term contract. Hugo pro-
vides few instances where a developer could write bad code that would slow down the
website. The entire mechanism is flexible enough to add the one custom page that
k.store

https://itbook.store

19What can we build with Hugo?

www.itbook.
the business needs immediately without having to go through and rip apart the entire
website.

 With the JavaScript and API layer of the JAMstack, Hugo websites can be extended
to provide features reserved for dynamic websites updating on the fly on a server.
You’ll see in this book how we can build low-cost and low-maintenance features such
as shopping carts and pay screens keeping the rest of the website managed statically.

1.8.3 Documentation websites

Hugo has great support for reading structured data from a file on disk like a CSV or a
JSON and then creating a website out of it. You can still apply your own custom
themes. It has built-in support for syntax highlighting and can scale to a large number
of pages extremely easily. This makes it well suited to write custom websites that could
read from the API docs and prepare a neatly formatted version of the specification.

1.8.4 Hybrid JAMstack-based websites

All websites have pages that are meant to display content. These include pages such as
the privacy policy, a generic About Us page, a blog, a product listing page, and a news-
room where the company releases press statements. For all this content, which is
meant to be consumed rather than operated upon, Hugo and the JAMstack can help
keeping the content running at a low cost, with high availability and a great perfor-
mance. The pages which are specifically based on a server technology can be delive-
red separately or built in JavaScript communicating with the servers using APIs
exposed by them.

 While Hugo can tackle many of the challenges that are faced while building a web-
site, Hugo isn’t perfect for all use cases of web development. In case where a large
amount of user generated content is required, such as building a social network, the
benefits of Hugo don’t come into play. Similarly, for building an app like a photo edi-
tor in the browser, Hugo isn’t the right choice. In these cases, Hugo can be used for
building the static portions of the website such as the corporate pages, the company
blog, the About Us page, and the privacy policy, the core functionality of the website is
something where Hugo doesn’t help much.

Summary
 The JAMstack is an approach to web development where instead of storing the

content in a database and querying at runtime, most content is stored along
with them theme as files and compiled into the website during deployment.

 The static content in the JAMstack is written in a markup language that com-
piles to HTML. The dynamic content is available in the form of APIs that can be
accessed by Javascript.

 The JAMstack provides massive savings in terms of cost, operations, and mainte-
nance, and we also get a fast website.
store

https://itbook.store

20 CHAPTER 1 The JAMstack with Hugo

www.itboo
 Hugo is a framework to help build these so-called static websites that provide
good build performance and are available as a single binary.

 Hugo meets the promise of low ongoing maintenance, a great developer expe-
rience, and scalability to a huge team.

 Hugo especially shines at places where the information flow is from the server
to the client, such as personal or company websites, news posts, blogs, docu-
mentation, etc.

 For places where the information flow is from the client to the server or perso-
nalized based on the user, Hugo follows the JAMstack and that information can
be added using the Javascript layer that communicates to the servers ideally
hosted on the cloud.
k.store

https://itbook.store

	Promo
	contents
	The JAMstack with Hugo
	1.1 Parts of the JAMstack
	1.1.1 JavaScript
	1.1.2 Application Programming Interfaces (APIs)
	1.1.3 Markup

	1.2 How does the JAMstack work?
	1.3 How is JAM different from LAMP, MEAN, or MERN?
	1.4 Why use the JAMstack?
	1.4.1 Minimal operations
	1.4.2 Great performance
	1.4.3 Lower costs
	1.4.4 Developer productivity
	1.4.5 Longevity
	1.4.6 Tooling

	1.5 Selecting the builder
	1.5.1 Jekyll
	1.5.2 Gatsby
	1.5.3 Hexo, Pelican, VuePress, Nuxt and others
	1.5.4 Hugo

	1.6 Why choose Hugo?
	1.6.1 Hugo is fast
	1.6.2 Hugo is built for performance
	1.6.3 Hugo is self-contained
	1.6.4 Hugo is distributed as a single file
	1.6.5 Hugo can be extremely low maintenance
	1.6.6 Hugo can save you from analysis paralysis
	1.6.7 Hugo is powerful
	1.6.8 Hugo is scalable
	1.6.9 Hugo is a community project

	1.7 Is speed really important?
	1.8 What can we build with Hugo?
	1.8.1 Personal websites and blogs
	1.8.2 Non-technology business website
	1.8.3 Documentation websites
	1.8.4 Hybrid JAMstack-based websites
	Summary

