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Part 10 - Training Preparation and Hyperparameters 
As a Googler, one of my duties is to educate software engineers on how to use machine learning. I 
already had experience creating online tutorials, meetups, conference presentations, and 
coursework for coding school, but I am always looking for new ways to effectively teach. 

Welcome to my latest approach, the idiomatic programmer. My audience are software engineers 
who are proficient in non-AI frameworks, such as Angular, React, Django, etc. You should know at 
least the basics of Python. It's okay if you still struggle with what is a compression, what is a 
generator; you still have some confusion with the weird multi-dimensional array slicing, and this thing 
about which objects are mutable and non-mutable on the heap. For this tutorial it’s okay. 

You have a desire (or requirement) to become a machine learning engineer. What does that mean? 
A machine learning engineer (MLE) is an applied engineer. You don't need to know statistics (really 
you don't!), you don't need to know computational theory. If you fell asleep in your college calculus 
class on what a derivative is, that's okay, and if somebody asks you to do a dot product between two 
matrices you'd look them in the eyes and say why? 

Your job is to learn the knobs and levers of a framework, and apply your skills and experience to 
produce solutions for real world problems. That's what I am going to help you with. 

Overview 
In this part, we will cover best practices to prepare for training and hyperparameter tuning for a 
computer vision (image recognition) model.  

Let’s briefly revisit what a model is. Prior to machine learning, software developers designed and 
coded algorithms, incorporating theirs and others’ domain expertise for the problem the algorithm will 
solve. The algorithm was primarily based on human engineering, with some machine assistance. 
The types of algorithms humans design can be characterized as: 

● Having a low dimensional input space, 
● Discrete input space with finite state changes, and 
● A linear relationship between the output behaviors and the input space.  
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A model is an algorithm discovered by machine learning, which can be characterized as: 

● Having high dimensional input space, 
● A continuous input space, and 
● A non-linear relationship between the output behaviors and the input space. 

 
 
So what does this mean? 
 
High (vs. Low) Dimensionality 
 
Humans are very good at solving problems in low dimensional space. Low dimensionality is 
when there are just a few distinct inputs. For example, classifying an image as a polygon shape 
(e.g., triangle, rectangle, etc) using just two features: points and lines. Let’s start with perfect 
shapes in black on a white background. As an engineer, you would say the pixel value would 
determine if that pixel is a point (i.e., black). You would then write a set of rules looking at 
adjacent pixels, and if an adjacent pixel is black, then that’s part of a line. When you’re done 
scanning through the pixels, you code another set of rules for classifying the shape by counting 
the number of lines, the order in which they are connected and length of the line. 
 
Wow, that was easy! Now let’s say that the lines can be different shades of gray and the 
background may not be perfectly white. This becomes a third feature. As an engineer, you 
select a threshold where any pixel above or below the value is classified as black or white. That 
wasn’t too hard. Let’s introduce a fourth feature and say the polygons are hand-drawn and can 
be a little less than perfect. Now things become complicated in that you have to modify the 
adjacency rules for lines and line length being some threshold within what was otherwise 
perfect. Let’s introduce a fifth feature in that the shape can be any color and the background any 
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different color. As an engineer, you add a preprocessing step to find the mode pixel value and a 
threshold range around the value, and you call that the background color.  
 
By now you’re not correctly recognizing 100% of the time, but you’re getting 98.5% and you feel 
it’s good enough. Let’s now add in more features, such as an arbitrary background, endpoints of 
lines having some separation, the lines being of different colors, the polygon having different 
orientations. At some point, no matter how many rules you code, your accuracy will plummet. 
Why? At some point, you’ve introduced nonlinearities that exceed your ability to write rules for 
exceptions, edge cases, etc and you start overfitting to these special cases, which undos the 
generalization. 
 
High dimensionality is when the number of inputs exceeds our ability to abstract how these 
inputs collectively contribute to a solution. As in our extremely simple problem above, once we 
go to a high number of features, it would be impossible for an engineer to reliably code a set of 
rules. Prior to deep learning, this is what engineers did and we referred to these as expert 
systems (aka business intelligence). But they were costly to build, constantly needed 
updating/tuning, and generally only achieved at most 70% reliability. 
 
Continuous (vs. Discrete) Input Space 
 
Humans are very good at solving problems when the input space is discrete. A discrete input 
space is when we have a fixed number of features, such as was described in our polygon 
recognition problem. A continuous input space is when the input space does not consist of a 
fixed number of features, but an unbounded set. In other words, when we cannot predetermine 
the features. 
 
Let’s take fruit as an example. You probably could come up with an exhaustive list of types of 
fruits and their varieties, their shapes, textures and colors. But this is actually a continuous input 
space. Let’s just simply start with the fact that growers continuously breed (engineer) new 
varieties, which you could not anticipate. Let’s consider all the environmental conditions that the 
image may appear in: a kitchen, a garden, a commercial field, a warehouse, a grocery store, a 
kid’s school lunch --at some point, you could not anticipate all the environments. Let’s consider 
all the conditions of the fruit that may appear in the image:flowering stage, ripening stage, 
sliced, prepared, rottening, insect damaged, diseased, partially eaten --at some point, you could 
not anticipate all the conditions. 
 
Non-Linearity 
 
Before machine learning, most algorithms solved problems that were either all or very close to 
having some form of a linear relationship between the inputs and outputs. Classical use of linear 
and logistic regression and decision trees were used on problems that had low dimensionality in 
the input space and a high level of linearity, where the linearity could be expressed as a 
polynomial equation. 
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Algorithms which have high nonlinearity cannot be expressed as a polynomial equation. 
Instead, the algorithm needs to be decomposed into segments of linearity and then combined 
through activation functions. With large datasets and an increase in computing power, deep 
learning methods can be used to train a model to learn this decomposition and relationships 
(activations) between within the decomposition, which are typically represented as filters, 
weights and biases. 

Training Steps 
 
When training a model, the following steps are typically followed: 
 

1. Split the dataset into training, evaluation (validation) and test sets. 
2. Repeat 

a. Set hyperparameters such as batch size and learning rate. 
b. Repeat: 

i. Shuffle the training data. 
ii. Feed the training data through the neural network (epoch). 
iii. Measure accuracy of the model on the train and eval data per epoch. 
iv. Monitor for convergence. 

c. If targets for rate of convergence and accuracy are sufficient, stop training. 
3. Measure final accuracy with the test data. 

 
Let’s now explore these steps in greater detail.  

Splitting the Dataset 
 
Prior to training the model, the dataset needs to be split into training and test data, where a 
larger portion of the dataset will be used only for training, and a smaller portion only for testing. 
The latter, test, is sometimes referred to as the holdout set.  
 
In some cases, a portion of the training data is further split off into an evaluation or eval dataset, 
which is sometimes referred to as validation data. When the training data is large, typically a 
prior split is made for the eval data. The same eval data is then used at the end of each epoch 
to estimate what the accuracy will be on the test data (to be discussed further down); thus the 
eval data is never used as part of the training. When the training data is small, a different 
random portion of the training data is used for validation per epoch, which is referred to as 
cross-validation or rotation-estimation. In this case, eval data is used during training, but not on 
the specific epoch that it is used to estimate the accuracy on the test data. 
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Shuffling 
 
When a dataset is split, both the training and test data should have the same probability 
distribution of the labels (classes). For example, if 10% of the data is of label A, then both the 
training and test data should contain 10% of label A. 
 
A common mistake is to make an arbitrary split of the dataset. It’s not uncommon for datasets to 
be sequentially ordered by labels. For example, consider a dataset where all the data for label A 
comes first, then followed by label B, then label C, and so forth. If you made an arbitrary split, 
say the first 80% of the data is training and the last 20% is test, the training and test will not 
have the same probability distribution. Worse yet, it’s possible that some labels in the test data 
won’t appear in the training data (not learned) and some labels in training data won’t appear in 
test (not verified). The example below depicts this situation. 
 

 
 
The common practice is to randomly shuffle the dataset prior to splitting. If the dataset is 
sufficiently large, a random shuffle should produce a probability distribution of the labels that is 
the same in the training and test data.  
 
When the dataset is too small to maintain an equal probability distribution between train and test 
with a random shuffle, it is a common practice to stratify the data prior to randomly shuffling. In 
this case, the data is partitioned into bins by label (stratify), and then random selections are 
made from the bin according to the probability distribution for the training data. The remaining 
unselected data becomes the test data. 
 
In-Memory 
 
If your [preprocessed] image data is in-memory and stored either in a Python list or numpy 
array, the image data can be randomly shuffled efficiently. The code examples below 
demonstrate how to randomly shuffle a Python list. 
 
In this first example, the image data (x) and corresponding label (y) are represented as tuples: 
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import​ random 
# assume the dataset appears like [ (x,y), (x,y),...], where x is the image data 

# and y is the corresponding label 

 

# randomly shuffle the elements in the list dataset in place 

random​.​shuffle​(​dataset​) 

 
In this second example, the image data (x) and corresponding label (y) are represented by 
separate lists. Note that in this case, we use a ​random.seed()​. Since both the x and y lists will 
be randomly shuffled separately, we need both to have the same random sequence to align. We 
accomplish this using the same seed prior to shuffling the x and y data. 
 

import​ random 
# assume the dataset appears as [x, x, x, x] and [y, y, y, y], where x is the image  

# data and y is the corresponding label 

 

# pick an arbitrary number for a seed 

seed ​=​ ​101 
 

# seed the random sequence and shuffle the x (image) data 

random​.​seed​(​seed​) 
random​.​shuffle​(​x_data​) 
 

# reset the same seed to get the identical random sequence and shuffle the y 

# (label) data 

random​.​seed​(​seed​) 
random​.​shuffle​(​y_data​) 

 
The code examples below demonstrate how to randomly shuffle a numpy multi-dimensional 
array, when the image and corresponding labels are paired as tuples: 
 

import​ numpy ​as​ np 
# assume the dataset appears like [ (x,y), (x,y),...], where x is the image data 

# and y is the corresponding label 

 

# randomly shuffle the elements in the list dataset 

np​.​random​.​shuffle​(​dataset​) 

 
The code examples below demonstrate how to randomly shuffle a numpy multi-dimensional 
array, when the image and corresponding labels are in separate arrays: 
 

Copyright(c), 2019, Google, LLC 
6 



import​ numpy ​as​ np 
# assume the dataset appears as [x, x, x, x] and [y, y, y, y], where x is the image  

# data and y is the corresponding label 

 

# pick an arbitrary number for a seed 

seed ​=​ ​101 
 

# seed the random sequence and shuffle the x (image) data 

np​.​random​.​seed​(​seed​) 
np​.​random​.​shuffle​(​x_data​) 
 

# reset the same seed to get the identical random sequence and shuffle the y 

# (label) data 

np​.​random​.​seed​(​seed​) 
np​.​random​.​shuffle​(​y_data​) 

 
File Listing 
 
If your processed image data is in a file listing, like a CSV or JSON format, you can make an 
indirect index in memory to the file listing, and then randomly shuffle the in-memory index. The 
code below demonstrates using an indirect index to randomly shuffle the dataset as a file listing 
in a CSV file. 
 

import​ random 
 

# open the CSV file and count (using sum) the number of lines, which equals the  

# number of samples 

with​ open​(​csv_file​)​ ​as​ f​: 
        nimages  ​=​ sum​(​1​ ​for​ line ​in​ f​) 
        ​# subtract one from the total count if the first line in CSV file is a 
header 

        ​if​ header​: 
                nimages ​-=​ ​1 
 

# create a sequential index between 0 and nimages-1 

index ​=​ ​[​i ​for​ i ​in​ range​(​nimages​)] 
 

# now randomly sort the index 

random​.​shuffle​(​index​) 

 
The code below demonstrates using an indirect index to randomly shuffle the dataset as a file 
listing in a JSON file, where the files are a list ([]) of objects, and each object has the key 
‘image’. 
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dataset ​=​ json​.​load​(​json_file​) 
nimages ​=​ dataset​[​'image'​] 
 

# create a sequential index between 0 and nimages-1 

index ​=​ ​[​i ​for​ i ​in​ range​(​nimages​)] 
 

# now randomly sort the index 

random​.​shuffle​(​index​) 

 
Keras ImageDataGenerator 
 
In ​Keras​, an image dataset can be shuffled and split into training and eval (validation) with the 
ImageDataGenerator​ class. This class is used to ingest a dataset for feeding a neural network 
during training. In the code example below: 
 

1. The variable ​model​ refers to a Keras model that has already been compiled.  
2. x_train​ and ​y_train​ refers to a processed dataset for training (i.e., already split), 

where ​x_train​ typically is a numpy array, with each element a preprocessed image, 
and ​y_train​ typically is a numpy array, with each element the corresponding one-hot 
encoded label. 

3. The variable ​datagen​ is a generator, which is instantiated by ​ImageDataGenerator​ for 
feeding the neural network. 

4. The method ​flow()​ sequentially moves through the training data (​x_train​, ​y_train​) in 
a specified batch size, which is specified as 32 in this example. 

5. The parameter ​shuffle​ is set to ​True​, which causes the training data to be shuffled by 
the generator, at the beginning of each epoch. 

6. Each batch of training data is fed through the neural network using the model’s ​fit() 
method. 

 

from​ keras​.​preprocessing​.​image ​import​ ​ImageDataGenerator 
 

# x_train and y_train assume the image data and labels have been preprocessed and  

# split into training and test data. 

 

# instantiate an Image Data generator object 

datagen ​=​ ​ImageDataGenerator​() 
 

# the number of batches in an epoch 

nbatches ​=​ len​(​x_train​)​ ​// 32 
# the number of epochs (training passes over the entire training data) 

epochs ​=​ ​10 
 

for​ epoch ​in​ range​(​epochs​): 
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    batches ​=​ ​0 
    ​# Use generator to create batches 
    ​for​ x_batch​,​ y_batch ​in​ datagen​.​flow​(​x_train​,​ y_train​,​ batch_size​=​32​,  
                                         shuffle​=​True​): 
        model​.​fit​(​x_batch​,​ y_batch​) 
        batches ​+=​ ​1 
        ​if​ batches ​==​ nbatches​: 
            ​break 

 
In the code below, unlike above, the ​x_train​ data has not been normalized/standardized. In 
this case, the parameter ​rescale​ is passed to the instantiation of ​ImageDataGenerator​, which 
will result in the corresponding ​flow()​ method normalizing the pixel data (i.e., dividing by 255) 
while the data is being fed: 
 

from​ keras​.​preprocessing​.​image ​import​ ​ImageDataGenerator 
 

# x_train and y_train assume the image data and labels have been resized for the  

# CNN and split into training and test data, but the data has not been normalized. 

 

# instantiate an Image Data generator object and specify normalizing the image data 

datagen ​=​ ​ImageDataGenerator​(​rescale​=​1.​/​255​) 
 

# feed (train) the neural network 

 
In the code below, the ​rescale​ parameter is replaced with ​featurewise_std_normalization​, 
which will standardize the data. Since standardization requires calculating the mean and 
standard deviation of the pixel data across the entire training set, a call is made to the ​fit() 
method for the corresponding calculation. 
 

from​ keras​.​preprocessing​.​image ​import​ ​ImageDataGenerator 
 

# instantiate an Image Data generator object and specify standardizing the image 

# data 

datagen ​=​ ​ImageDataGenerator​(​featurewise_std_normalization​=​True​) 
 

# calculate the mean/stddev for standardization 

datagen​.​fit​(​x_train​) 
 

# feed (train) the neural network 

 
In the code below, the parameter validation_split is added to use 10% of the training data as 
validation data on each epoch. Additionally, we do a single call for training per epoch (vs. 
manually batch feeding it), by passing the ​datagen.flow()​ generator to the ​fit_generator()​: 
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from​ keras​.​preprocessing​.​image ​import​ ​ImageDataGenerator 
 

x_train ​and​ y_train assume the image data ​and​ labels have been resized ​for​ the  
# CNN and split into training and test data, but the data has not been normalized. 

 

# instantiate an Image Data generator object 

datagen ​=​ ​ImageDataGenerator​(​rescale​=​1.​/​255​,​ validation_split​=​0.1​) 
 

# the number of epochs (training passes over the entire training data) 

epochs ​=​ ​10 
 

for​ epoch ​in​ range​(​epochs​): 
    ​# Use generator to create batches 
    model​.​fit_generator​(​datagen​.​flow​(​x_data​,​ y_data​,​ batch_size​=​32​,​ shuffle​=​True​)) 
 

 
If the dataset is smaller, such as under a thousand, a random shuffle is less likely to produce an 
equal distribution of the classes (labels) between the training and test data. In these cases, the 
common practice is to stratify the distribution of the data. In stratification, one maintains data 
grouped by label, but randomly draws from each group in proportion to its distribution when 
creating a batch. For example, if the batch size is 32, and label A represents 25% and label B 
represents 75%, then a stratification method would draw at random 8 samples of label A and 24 
samples of label B.  
 
Split Percentages 
 
When training a neural network, one splits the processed image dataset into training data and 
test data. That is, a portion of the preprocessed image dataset is set aside to test the accuracy 
of the trained model, and is not used as part of the training. Generally only a small percentage 
should be set aside, and the larger the image dataset, the smaller that percentage can be. 
Below is a general rule of thumb of the percentage to set aside for test data, based on the 
number of images in the dataset: 
 

 Less than     1000 20% 
 Less than     10000 10% 
 Greater than 10000  5% 
 

The code example below splits a dataset into 80% training and 20% test using ​numpy​. In this 
example, the dataset is presumed to be randomly shuffled. A ​pivot​ point in the dataset is 
calculated where all the elements prior to the pivot are training data and all the elements after 
the pivot are test. 
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import​ random 
import​ numpy ​as​ np 
 

# Make a fake dataset of 100 samples of 10 classes (labels) 

# x are the images 

x ​=​ ​[[​_​,​_​]​ ​for​ _ ​in​ range​(​100​)] 
# y are the corresponding labels, randomly chosen 

y ​=​ ​[​ random​.​randint​(​1​,​10​)​ ​for​ _ ​in​ range​(​100​)] 
 

# percent of dataset for training 

percent ​=​ ​0.2  
 

# find the pivot point in dataset to split 

pivot ​=​ ​int​(​len​(​x​)​ ​*​ ​(​1​ ​-​ percent​)) 
 

# presumed to be randomly shuffled 

x_train ​=​ x​[​0​:​pivot​] 
y_train ​=​ y​[​0​:​pivot​] 
x_test  ​=​ x​[​pivot​:] 
y_test  ​=​ y​[​pivot​:] 
 

print​(​"Train"​,​ len​(​x_train​),​ len​(​y_train​))​ ​# will output Train 80 80 
print​(​"Test "​,​ len​(​x_test​),​  len​(​y_test​))​  ​# will output Test  20 20 

 
The code example below splits a dataset into 80% training and 20% test using the 
train_test_split()​ method from ​scikit-learn​. In this example, with the parameter ​shuffle 
set to ​True​, the dataset will be randomly shuffled prior to splitting. 
 

import​ random 
from​ sklearn​.​model_selection ​import​ train_test_split 
 

# Make a fake dataset of 100 samples of 10 classes (labels) 

# x are the images 

x ​=​ ​[[​_​,​_​]​ ​for​ _ ​in​ range​(​100​)] 
# y are the corresponding labels, randomly chosen 

y ​=​ ​[​ random​.​randint​(​1​,​10​)​ ​for​ _ ​in​ range​(​100​)] 
 

# Split the dataset (x, y) into 80% training and 20% test 

x_train​,​ x_test​,​ y_train​,​ y_test ​=​ train_test_split​(​x​,​ y​,​ test_size​=​0.2​,  
                                                    shuffle​=​True​) 
 

print​(​"Train"​,​ len​(​x_train​),​ len​(​y_train​))​ ​# will output Train 80 80 
print​(​"Test "​,​ len​(​x_test​),​  len​(​y_test​))​  ​# will output Test  20 20 

 
In the code example below using ​Keras,​ we specify the percentage split between training and 
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evaluation data at the time we instantiate the ​ImageDataGenerator​ object, while the actual 
shuffle and split is deferred until feeding. 
 

# instantiate an Image Data generator object 

# and preset splitting the data into 80% train and 20% test 

datagen ​=​ ​ImageDataGenerator​(​validation_split​=​0.2​) 
# ... 

Hyperparameter Tuning 
 
Let’s start by explaining the difference between learned parameters and hyperparameters. The 
learned parameters are parameters that are learned during training. For neural networks, these 
typically are the weights on each neural network connection, the biases on each node, and for 
convolutional neural networks, the filters in each convolutional layer. These learned parameters 
stay as part of the model when the model is done training. 
 
Hyperparameters are parameters used to train the model, but not part of the trained model 
itself. That is, once trained the hyperparameters no longer exist. Hyperparameters are used to 
improve the training of the model, such as for: 
 

1. How long does it take to train the model? 
2. How fast does the model converge? 
3. Does it find the global optima? 
4. How accurate is the model? 
5. How overfitted is the model? 

 
Another perspective of hyperparameters is that they are a means to measure cost and quality of 
developing the model. We will cover the above and other questions as we go more into the 
hyperparameters. 
 
Epochs 
 
The most basic hyperparameter is the number of epochs --though this is now being more 
commonly replaced with steps. The epochs hyperparameter is the number of times you will pass 
the entire training data through the neural network during training. Training is very expensive in 
compute time. It includes both the forward feed to pass the training data through and the 
backward propagation to update (train) the model’s parameters. For example, if a full pass of 
the data (epoch) takes 15 minutes and we run 100 epochs, the training time will take 25 hrs. 
 
Early presumptions on training were that the more times you feed the training data into the 
model, the better the accuracy. What we’ve found, particularly on larger and more complex 
networks, is that there is a point where the accuracy will degrade. Today, we now look for 
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convergence on an acceptable local optima for the purpose of how the model will be used in an 
application. If we overtrain the neural network, the following can happen: 
 

1. The neural network becomes overfitted to the training data, showing increasing accuracy 
on the training data, but degrading accuracy on the test data. 

2. In deeper neural networks, the layers will learn in a non-uniform manner and have 
different convergence rates. Thus, as some layers are working towards convergence, 
others may have convergence and thus start diverging. 

3. Continued training may cause the neural network to pop out of one local optima and 
start converging on another local optima that is less accurate. 

 
It’s understandable if you’re struggling with the concepts of convergence and optimas -- we will 
gradually go into more detail as we discuss hyperparameters. 
 
Let’s start with a simple convnet model in Keras using the CIFAR-10 dataset to demonstrate the 
concept of convergence and then diverging. In the code below, we have intentionally left out 
methods which prevent overfitting, like dropout or batch normalization. 
 

import​ keras 
from​ keras ​import​ ​Sequential 
from​ keras​.​layers ​import​ ​Conv2D​,​ ​MaxPooling2D​,​ ​Dropout​,​ ​Flatten​,​ ​Dense 
from​ keras​.​datasets ​import​ cifar10 
 

# load the Keras builtin CIFAR-10 dataset 

(​x_train​,​ y_train​),​ ​(​x_test​,​ y_test​)​ ​=​ cifar10​.​load_data​() 
 

# Get the shape of each image (should be 32x32) 

height ​=​ x_train​.​shape​[​1​] 
width  ​=​ x_train​.​shape​[​2​] 
 

# Next we need to normalize the pixel data 

x_train ​=​ x_train ​/​ ​255.0 
x_test  ​=​ x_test  ​/​ ​255.0 
 

# Next we need to one-hot encode the labels 

num_classes ​=​ ​10 
y_train ​=​ keras​.​utils​.​to_categorical​(​y_train​,​ num_classes​) 
y_test  ​=​ keras​.​utils​.​to_categorical​(​y_test​,​  num_classes​) 
 

# Our simple CovNet model 

model ​=​ ​Sequential​() 
model​.​add​(​Conv2D​(​32​,​ kernel_size​=(​3​,​ ​3​), 
                 activation​=​'relu'​, 
                 input_shape​=(​height​,​ width​,​ ​3​))) 
model​.​add​(​Conv2D​(​64​,​ ​(​3​,​ ​3​),​ activation​=​'relu'​)) 

Copyright(c), 2019, Google, LLC 
13 



model​.​add​(​MaxPooling2D​(​pool_size​=(​2​,​ ​2​))) 
model​.​add​(​Flatten​()) 
model​.​add​(​Dense​(​128​,​ activation​=​'relu'​)) 
model​.​add​(​Dense​(​num_classes​,​ activation​=​'softmax'​)) 
 

model​.​compile​(​loss​=​keras​.​losses​.​categorical_crossentropy​, 
              optimizer​=​keras​.​optimizers​.​Adadelta​(), 
              metrics​=[​'accuracy'​]) 
 

# Train the model 

epochs​=​20 
batch_size​=​32 
model​.​fit​(​x_train​,​ y_train​, 
          batch_size​=​batch_size​, 
          epochs​=​epochs​, 
          verbose​=​1​, 
          validation_data​=(​x_test​,​ y_test​)) 

 
Below are the stats for the first six epochs. You can see with each pass there is a steady 
reduction in loss, which means the neural network is getting closer to fitting the data. 
Additionally, the accuracy on the training data is going up from 48.75% to 88.3% and on the 
validation data from 61.26% to 69.23%. 
 

Train​ on ​50000​ samples​,​ validate on ​10000​ samples 
Epoch​ ​1​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​61s​ ​1ms​/​step ​-​ loss​:​ ​1.4311​ ​-​ acc​: 
0.4875​ ​-​ val_loss​:​ ​1.1157​ ​-​ val_acc​:​ ​0.6126 
Epoch​ ​2​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​59s​ ​1ms​/​step ​-​ loss​:​ ​0.9873​ ​-​ acc​: 
0.6536​ ​-​ val_loss​:​ ​1.1588​ ​-​ val_acc​:​ ​0.5883 
Epoch​ ​3​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​59s​ ​1ms​/​step ​-​ loss​:​ ​0.8072​ ​-​ acc​: 
0.7197​ ​-​ val_loss​:​ ​1.0325​ ​-​ val_acc​:​ ​0.6475 
Epoch​ ​4​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​59s​ ​1ms​/​step ​-​ loss​:​ ​0.6512​ ​-​ acc​: 
0.7736​ ​-​ val_loss​:​ ​1.0646​ ​-​ val_acc​:​ ​0.6469 
Epoch​ ​5​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​58s​ ​1ms​/​step ​-​ loss​:​ ​0.4972​ ​-​ acc​: 
0.8293​ ​-​ val_loss​:​ ​0.9752​ ​-​ val_acc​:​ ​0.6908 
Epoch​ ​6​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​58s​ ​1ms​/​step ​-​ loss​:​ ​0.3479​ ​-​ acc​: 
0.8830​ ​-​ val_loss​:​ ​1.0822​ ​-​ val_acc​:​ ​0.6923 

 
Let’s now look at epochs 11 thru 20. You can see that we’ve hit a 100% on the training data, 
which means we are tightly fitted to the training data. On the other hand, our accuracy on the 
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validation data plateaued at 69.96%. Thus, after six epochs, there was no improvement from 
continued training, and we can conclude that by epoch 7 the model was overfitted to the training 
data. 
 

Epoch​ ​11​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​58s​ ​1ms​/​step ​-​ loss​:​ ​0.0198​ ​-​ acc​: 
0.9944​ ​-​ val_loss​:​ ​2.0663​ ​-​ val_acc​:​ ​0.6915 
Epoch​ ​12​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​59s​ ​1ms​/​step ​-​ loss​:​ ​0.0112​ ​-​ acc​: 
0.9970​ ​-​ val_loss​:​ ​2.1746​ ​-​ val_acc​:​ ​0.6939 
Epoch​ ​13​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​59s​ ​1ms​/​step ​-​ loss​:​ ​0.0077​ ​-​ acc​: 
0.9978​ ​-​ val_loss​:​ ​2.2837​ ​-​ val_acc​:​ ​0.6907 
Epoch​ ​14​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​60s​ ​1ms​/​step ​-​ loss​:​ ​0.0048​ ​-​ acc​: 
0.9988​ ​-​ val_loss​:​ ​2.4035​ ​-​ val_acc​:​ ​0.6916 
Epoch​ ​15​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​60s​ ​1ms​/​step ​-​ loss​:​ ​0.0025​ ​-​ acc​: 
0.9994​ ​-​ val_loss​:​ ​2.4452​ ​-​ val_acc​:​ ​0.6980 
Epoch​ ​16​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​59s​ ​1ms​/​step ​-​ loss​:​ ​0.0017​ ​-​ acc​: 
0.9996​ ​-​ val_loss​:​ ​2.6432​ ​-​ val_acc​:​ ​0.6912 
Epoch​ ​17​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​59s​ ​1ms​/​step ​-​ loss​:​ ​9.8118e-04​ ​- 
acc​:​ ​0.9998​ ​-​ val_loss​:​ ​2.6411​ ​-​ val_acc​:​ ​0.6973 
Epoch​ ​18​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​59s​ ​1ms​/​step ​-​ loss​:​ ​8.6766e-05​ ​- 
acc​:​ ​1.0000​ ​-​ val_loss​:​ ​2.6870​ ​-​ val_acc​:​ ​0.6994 
Epoch​ ​19​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​58s​ ​1ms​/​step ​-​ loss​:​ ​2.3760e-05​ ​- 
acc​:​ ​1.0000​ ​-​ val_loss​:​ ​2.7450​ ​-​ val_acc​:​ ​0.6991 
Epoch​ ​20​/​20 
50000​/​50000​ ​[==============================]​ ​-​ ​59s​ ​1ms​/​step ​-​ loss​:​ ​1.5005e-05​ ​- 
acc​:​ ​1.0000​ ​-​ val_loss​:​ ​2.7683​ ​-​ val_acc​:​ ​0.6996 

 
The values of the loss function for the training and validation data also indicate that the model is 
overfitting. The loss function between epochs 11 and 20 for the training data continues to get 
smaller, but for the corresponding validation data it had plateaued and then gets worse (i.e., 
diverging). 
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Steps 
 
Over the course of the last few years, a lot of insights have been learned by researchers and 
practitioners on how neural networks learn. These insights have lead to focusing on 
regularization, normalization, augmentation, and sampling distributions. In shorter words, we 
can improve accuracy and reduce training time by changing the sampling distribution of the 
training dataset.  
 
In epochs, we think of a sequential draw of batches from our training data. Even though we 
randomly shuffle the training data at the start of each epoch, the sampling distribution is still the 
same. 
 
Let’s now think of the entire population of what we want to recognize. In statistics, we call this 
the population distribution, as depicted in the figure below. 

 
 
But we will never have a dataset that is the actual entire population distribution. Instead, we 
have some sample, which we refer to as a sampling distribution of the population distribution, as 
depicted in the figure below. 
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Another way to improve our model is to additionally learn the best sampling distribution to train 
the model with. While our dataset may be fixed, we can do a number of methods to alter the 
distribution, and thus learn the sampling distribution that best fits training the model. These 
methods include: 
 

1. Regularization / Dropout 
2. Batch Normalization 
3. Data Augmentation 

 
From this perspective, we no longer see feeding the neural network as sequential passes over 
the training data, but as making random draws from a sampling distribution. In this context, 
steps refers to the number of batches (draws) we will make from the sampling distribution of our 
training data. 
 
When we add dropout layers to the neural networks, we are randomly dropping activations on a 
per sample basis. In addition to reducing overfitting of a neural network, we are also changing 
the distribution. 
 
With batch normalization, we are minimizing covariance shift between our batches of training 
data (samples). Like using standardization on our input, the activations are rescaled using 
standardization (i.e., subtract the batch mean and divide by the batch standard deviation). This 
normalization reduces the fluctuations in updates to parameters in the model --referred to as 
adding more stability to the training. In addition, this normalization mimics drawing from a 
sampling distribution that is more representative of the population distribution. 
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With data augmentation, we create new samples by modifying existing samples within a set of 
parameters, from which we randomly select the modification, which also contributes to changing 
the distribution. 
 
With batch normalization, regularization/dropout and data augmentation, no two epochs will 
have the same sampling distribution. In this case, the practice now is to limit the number of 
random draws from each new sampling distribution, which is referred to as steps. For example, 
if steps is set to 1000, then per epoch, only a 1000 random batches will be selected and feed 
into the neural network for training. 
 
In Keras, we can specify both the number of epochs and steps as parameters to the ​fit()​ or 
fit_generator()​ methods: 
 

model​.​fit​(​x_train​,​ y_train​, 
          batch_size​=​32​, 
          epochs​=​10​, 
          steps_per_epoch​=​1000​) 

 
Batch Size 
 
To understand how to set batch size, you should have a basic understanding of the three types 
of gradient descent algorithms; wherein the gradient descent algorithm is the means by which 
the model parameters are updated (learned) during training.  
 
Stochastic Gradient Descent 
 
In stochastic gradient descent (SGD), the model is updated after each sample is fed through 
during training. Since each sample is randomly selected, the variance between samples can 
result in large swings in the gradient. A benefit to this is that during training one is less likely to 
converge on a local optima, and more likely to find the global optima to converge on. Another 
benefit is that the rate of change in loss can be monitored in real-time, which may aid in 
algorithms that do auto-hyperparameter tuning. The downside is that this is more 
computationally expensive per epoch. 
 
Batch Gradient Descent 
 
In batch gradient descent, the error loss per sample is calculated as each sample is fed through 
during training, but the updating of the model is done at the end of each epoch (i.e., after the 
entire training data is passed through). As a result, the gradient is smoothed out since it’s 
calculated across the loss of all the samples, instead of a single sample. A benefit to this is that 
this is less computational expensive per epoch and the training more reliably converges. The 
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downside is that the model may converge on a less accurate local optima, and an entire epoch 
needs to be run to monitor performance data. 
 
Mini-Batch Gradient Descent 
 
The mini-batch gradient descent method is a tradeoff between stochastic and batch gradient 
descent. Instead of one sample or all samples, the neural network is fed in mini-batches which 
are a subset of the entire training data. The smaller the mini-batch side, the more the training 
will resemble stochastic gradient descent, while larger batch sizes will resemble batch gradient 
descent. 
 
For certain models and datasets, stochastic gradient descent (SGD) works best. In general, it’s 
a common practice to use the trade-off of mini-batch gradient descent. The hyperparameter 
batch_size​ is the size of the mini-batch. Due to hardware architectures, the most time/space 
efficient batch sizes are multiples of 8, such as 8, 16, 32 and 64. The ​batch_size​ that is most 
commonly tried first is 32. One generally never sees a batch size greater than 128. 
 
In Keras, you can specify the batch_size either in the model ​fit() ​or​ fit_generator() 
methods: 
 

# model is a compiled keras model (Model or Sequential class). 

model​.​fit​(​x_train​,​ y_train​,​ batch_size​=​32​) 

 
Alternately, if using the ​ImageDataGenerator​, batch_size can be specified in the corresponding 
flow()/flow_from_directory()/flow_from_dataframe()​ methods: 
 

# randomly rotate images +/- 20 degrees 

datagen ​=​ ​ImageDataGenerator​(​rotation_range​=​20​) 
 

# train the model 

model​.​fit_generator​(​datagen​.​flow​(​x_train​,​ y_train​,​ batch_size​=​32​),​ epochs​=​10​) 

 
Learning Rate 
 
The ​learning rate​ is generally the most influential of the hyperparameters. It can have a 
significant impact on the length of time to train a neural network, whether the neural network 
converges on a local optima, and whether it converges on the best (global) local optima. 
 
When doing updates to the model parameters during the backward propagation pass, the 
gradient descent algorithm is used to derive a value to add/subtract to the parameters in the 
model from the loss function for that pass. These additions and subtractions could result in large 
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swings in parameter values. If a model has and continues to have large swings in parameter 
values, the model will be ‘all over the map’ and never converge.  
 
What is convergence? This is when there is a steady reduction in the loss (referred to as 
minimizing the loss) and a steady increase or plateau in the accuracy per pass. If you observe 
big swings in the amount of loss and/or accuracy, then the training of your model is not 
converging. If the training is not converging, it won’t matter how many epochs you run, it will 
never finish training. 
 
The learning rate provides us with a means to control the degree that the model parameters are 
updated. In the basic method, the learning rate is a fixed coefficient between 0 and 1 that is 
multiplied against the value to add/subtract, to reduce the amount being added or subtracted. 
These smaller increments add more stability during the training and increase the likelihood of 
convergence. 
 
Small vs Large Learning Rate 
 
If we use a very small learning rate, like 0.001, we will eliminate large swings in the model 
parameters during updates. This will generally guarantee that the training will converge on a 
local optima. But there is a drawback. First, the smaller we make the increments, the more 
passes of the training data (epochs) will be needed to minimize the loss. That means more time 
to train. Second, the smaller the increments the less likely the training will explore other local 
optimas, which might be more accurate than the one that the training is converging on; instead, 
it may converge on poor local optima or get stuck on a saddle point. 
 
A large learning rate, like 0.1, likely will cause big jumps in the model parameters during 
updates. In some cases, it might initially lead to faster convergence (less epochs). The 
drawback is that even if you are initially converging fast, the jumps may overshoot and start 
causing the convergence to swing back and forth, or hop across different local optima. At very 
high learning rates, the training may start to diverge (i.e., increasing loss). 
 
There are a lot of factors of what will be the best learning rate at different times during the 
training. In best practice the rate will range between 0.1 and 10e-5. 
 
Below is a basic formula of how a weight is adjusted by multiplying the learning rate by the 
amount calculated to add/subtract (gradient): 
 

weight ​+=​ ​-​learning_rate ​*​ gradient 

 
Decay 
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A common practice has been to start with a slightly larger learning rate, and then gradually 
decay the learning rate. The larger learning rate would at first explore different local optima to 
converge on and make some initial deep swings into the respective local optimas. The rate of 
convergence and minimizing the loss function on the initial updates can be used to hone in on 
the best (good) local optima. From that point, the learning rate is gradually decayed. As the 
learning rate decays, it is less likely for swings out of the good local optima to occur and the 
steadily decreasing learning rate will tune the convergence to approach the minimal point; 
albeit, the smaller and smaller learning rate will increase training time. So the decay becomes a 
trade-off between small increases in final accuracy and the overall training time. 
 
Below is a basic formula of how decay is added to the calculation of updating the weights, 
where on each update, the learning rate is reduced by the decay amount.  
 

weight ​+=​ ​-​learning_rate ​*​ gradient 
learning_rate ​-=​ decay 

 
Momentum 
 
Another practice is to accelerate or decelerate the rate of change based on prior changes. If we 
have large jumps in convergence, we risk jumping out of the local optima, so we may want to 
decelerate the learning rate; while if we have small to no changes in convergence, we may want 
to accelerate the learning rate to hop over a saddle point. Typically values for momentum range 
from 0.5 to 0.99. 
 

velocity ​=​ ​(​momentum ​*​ velocity​)​ ​-​ ​(​learning_rate ​*​ gradient​) 
weight ​+=​ velocity 

 
Adaptive Learning Rate 
 
There are many popular algorithms that dynamically adapt the learning rate: 
 

● Adadelta 
● Adagrad 
● Adam 
● AdaMax 
● AMSGrad 
● Momentum 
● Nadam 
● Nesterov 
● RMSprop 
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The explanation of these are beyond the scope of this section. For Keras, these learning rate 
algorithms are specified when the optimizer is defined for minimizing the loss function. 
 

from​ keras ​import​ optimizers 
 

# instantiate an optimizer 

optimizer ​=​ optimizers​.​RMSprop​(​lr​=​0.001​,​ rho​=​0.9​,​ epsilon​=​None​,​ decay​=​0.0​) 
 

# compile the model, specifying the loss function and optimizer 

model​.​compile​(​loss​=​'mean_squared_error'​,​ optimizer​=​optimizer​) 

 
Validation Data 
 
An alternative to splitting the dataset into training and test data is to have an additional 
validation dataset. In this version -- train, validation, and test --, the test data contains the 
holdout data that is not used during training and only for final evaluation. 
 
The validation data is drawn from the training data. When the training dataset is large, the 
validation data is pre-drawn from the training data and set aside. On smaller training datasets, 
the validation data is randomly drawn and removed from the training data on a per epoch basis, 
which is referred to as cross-validation. 
 
Typically, the validation data will be 5 to 10% of the training data. The remaining training data is 
then fed through the neural network, and a training accuracy is determined. Subsequently, a 
forward pass (prediction) is made of the validation data and a validation accuracy is determined. 
 
This method provides additional insight while training; whereby after each epoch the validation 
data gives a likely indicator of what the accuracy would be with the test data. Along with the rate 
of reduction in the loss function, convergence of the training accuracy, the validation accuracy 
adds more information about the progress of the training. For example, if the training starts to 
overfit the model, we would expect to see an increasing gap between the training and validation 
accuracy. 

Feeding 
 
To train a neural network, the training data is fed through the neural network in a forward pass 
either as individual samples (stochastic), batches (mini-batch) or an epoch (batch) at a time, 
followed by a backward propagation pass to update the parameters of the model. This process 
is referred to as feeding the neural network, and the mechanisms for feeding the neural network 
are called feeders. 
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Keras has several feeders which can be used with image data. 
 
In-Memory Feeder 
 
If your memory resources are sufficient to hold the entire preprocessed image data in memory, 
the most efficient (fastest) way to feed a neural network for training is to use an in-memory 
feeder. Typically, the preprocessed image data is stored as a contiguous region of memory. The 
feeder uses an indirect index to each preprocessed image in memory, by which the feeder can 
randomly shuffle, draw batches, and do transforms without moving memory. 
 

 
 

# the mini-batch size 

batch_size ​=​ ​32 
 

# the number of epochs 

epochs​=​10 
 

# once the model is compiled and the image data has been preprocessed, 

# the fit method will start training the model, where x_train and y_train 

# are the preprocessed image data and one-hot encoded labels 

model​.​fit​(​x_train​,​ y_train​,​ batch_size​=​batch_size​,​ epochs​=​epochs​) 

 
In-Memory Generator 
 
The ​fit_generator()​ method is similar to the ​fit()​ method, but uses a generator, which is 
constructed with the ​ImageDataGenerator​ class. This generator enables image augmentation, 
where augmented images are generated on-the-fly as the neural network is being fed.  The 
flow()​ method of the data generator then constructs mini-batches which consist of a 
combination of the original images and augmented versions. 
 

# randomly rotate images +/- 20 degrees 

datagen ​=​ ​ImageDataGenerator​(​rotation_range​=​20​) 
 

# train the model using the flow() method of the generator to create mini-batches 

model​.​fit_generator​(​datagen​.​flow​(​x_train​,​ y_train​,​ batch_size​=​32​),​ epochs​=​10​) 
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On-Disk Generator 
 
If your memory resources are not sufficient to hold the entire preprocessed dataset in memory, 
then you will need to continuously feed the neural network by drawing batches from the on-disk 
storage of the preprocessed (or original) image data. 
 
The drawback is that for each mini-batch, the generator must re-read the preprocessed (or 
original) data from the disk. 
 
In the code below, we first create a generator using the ​ImageDataGenerator​ class, which we 
will use in conjunction with the ​flow_from_directory()​ method. This method reads the image 
data in its original image format. We will need to pass parameters to do some preprocessing 
on-the-fly each time an image is read from disk. In this example we add normalization of the 
pixel data by setting the ​rescale​ parameter to divide each pixel value by 255, which will 
normalize the pixels (for 8 bits per channel). The ​flow_from_directory()​ will then create 
mini-batches of size 32 and resize each preprocessed image to fit an input vector of 128x128x3 
(for three channels --RGB). 
 

# normalize the pixel data (rescale) as its read from memory, and 

# randomly rotate images +/- 20 degrees 

datagen ​=​ ​ImageDataGenerator​(​rescale​=​1​/​255.​,​ rotation_range​=​20​) 
 

# train the model using the flow_from_directory() method 

model​.​fit_generator​(​datagen​.​flow_from_directory​(​'dataset'​,​ target_size​=(​128​,​128​), 
                    batch_size​=​32​),​ epochs​=​10​) 

 
 
Hybrid Mixed In-Memory and On-Disk 
 
Continuously re-reading each image from on-disk is the least efficient method to feed the neural 
network for training. Instead, one can consider using a hybrid approach. Let’s revisit the concept 
of a sampling distribution, which approximates the distribution of a population. Let’s say you 
have 16GB of memory to hold data, and the preprocessed dataset is 64GB. What we do in a 
hybrid feeding, is that we take a large segment of the preprocessed data (8BG in our example) 
at a time, which has been stratified. We then are going to repeatedly feed the same segment to 
the neural network as epochs. But each time, we do image augmentation such that each epoch 
is a unique sampling distribution of the entire preprocessed image dataset. Below is a 
description of the steps to do a hybrid in-memory/on-disk feeding: 
 

1. Create a stratified index to the preprocessed image data on disk. 
2. Partition the stratified index into partitions based on the available memory to hold a 

segment in memory. 
3. For each segment: 
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a. Repeat for a specified number of epochs 
i. Randomly shuffle the segment per epoch. 
ii. Randomly apply image augmentation to create a unique sampling 

distribution per epoch. 
iii. Feed the mini-batches to the neural network. 

Test Data 
 
The test data, also known as the hold-out set, is the portion of the dataset that was not used in 
training. These are samples that the model never saw during training. Once the model has been 
trained with the training data, a forward pass is made through the trained model (referred to as 
evaluation) to predict the likely accuracy the model will have when deployed and predicting 
(inference) on samples it has not seen before. 
 
Generally, the accuracy of the test data is slightly less than that of the training data. If there is a 
large difference between the training accuracy (high) and the test accuracy (low), then the 
model is overfitted to the training data. 
 
In ​Keras​, once the model has been trained, we use the ​evaluate()​ method to obtain the 
accuracy on the test data.  
 

# Evaluate the model using the test (hold-out) data 

score ​=​ model​.​evaluate​(​x_test​,​ y_test​) 
print​(​"Test Accuracy"​,​ score​[​1​]) 

 
Below is an example output of the above example code: 
 

# example output 

Test​ accuracy​:​ ​0.6996 

 

Next 
 
In the second part, we will cover training in more detail, as well as checkpointing, and 
deployment.  
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Part 11 - Training and Deployment 

Overview 
In this part, we will cover best practices for training and deploying a computer vision (image 
recognition) model.  
 
 
Training Cycle 

Let’s start by discussing the training cycle, before we do a deep dive. The general phases of training 
are: 

● Pretraining - find best hyperparameters for training. Repeat: 
○ Set initial hyperparameters. 
○ Run a partial training session. 
○ Examine rate of changes in accuracy and loss on training and validation data. 
○ If acceptable, stop the pre-training phase. 

 
● Set training objectives: 

○ Accuracy on validation data. 
○ Rate of progression in reducing loss on training data. 
○ Plan number of epochs or steps to meet objectives. 

 
● Training: 

○ Start full training. 
○ If objectives are met, early stop and checkpoint model 
○ If diverging from objectives, terminate training 

Pretraining 
 
The purpose of the pretraining phase is to find the best hyperparameter settings to initiate a full 
training run. Let’s revisit what goes wrong when the wrong hyperparameters are used during 
training: 
 

● It takes an excessive amount of time to train the model. 
● The model gets stuck on a saddle point and never converges. 
● The model becomes overfitted and diverges. 
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Weights/Biases Initialization 
 
When training starts, all the weights and biases need an initial value. Those initial values can 
impact how long and how accurate the model will be, even when everything else is right. If we 
initialize the weights to zero, then all the updates to the weights in the neural network during 
training will be the same --i.e., the neurons will be symmetric. As a result, the network is the 
same as a single neuron. 
 
For biases, this is not the case, and the current practice is to initialize them to zero. 
 
For the weights, they are initialized by some random distributions. A uniform random distribution 
will generally produce a good result. But practices have shown that a uniform distribution can 
result in significant variance in the final accuracy. In the past, using a uniform random 
distribution, several instances of the model would be trained in parallel with different uniform 
random distributions. 
 
In 2010, a paper by Xavier Glorot demonstrated that drawing a random distribution from a 
Gaussian distribution with a mean of zero resulted more consistently in obtaining the best 
accuracy. The specific distribution, known now as Xavier initialization, works best when the 
activation function for hidden units is a tanh, which was the convention of the time. In 2015, a 
variant of Xavier known as He, was found to work best when the activation function for the 
hidden units was a ReLU or Leaky ReLU. 
 
Keras supports a large variety of random initializers. By default, the weights are initialized by a 
uniform random distribution and the biases are set to zero. Since CNN uses ReLU and Leaky 
ReLU activations for the convolutional and dense layers, the best practice today is to initialize 
the weights using the He initialization. 
 

from​ keras ​import​ initializers 
 

# initialize the weights using He initialization when activation function is ReLU 

model​.​add​(​Dense​(​128​,​ kernel_initializer​=​'he_normal'​)) 
model​.​add​(​ReLU​()) 

 
Initial Learning Rate 
 
The learning rate is considered to have the most impact on training your model and the most 
uncertainty of what the initial rate should be. It is highly dependent on the type of image data 
and the distribution of images (samples) in the dataset. The best practice is that the initial 
learning rate will be between 0.1 and 10e-5. But how do you pick the number? Does one just 
guess and try and try again? Sort of. Today, we do what’s called grid search. One will train 
several instances of the model for short number of epochs at different learning rates and look at 
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the rate of change in the loss and accuracy of the validation data. Generally, a grid search is 
used on a set of learning rates, where the set is typically a logarithmic scale between 0.1 and 
10e-5, such as: ​[ 0.1, 0.01, 0.001, 0.0001, 0.00001 ] 
 
For each learning rate, an instance of the model is trained for a small number of epochs. This is 
typically 5 or 10 epochs. The loss vs. accuracy is then plotted per learning rate. One then looks 
for the learning rate that sustains a reduction in loss and increase in accuracy vs. a sharp 
increase in loss. When plotted, once tends to see a U shape. The ideal best learning rate will 
either be at the bottom of the U shape or on the near the bottom on the left-side (converging). 
 
What you’re trying to achieve here is to find the highest initial learning rate that: 
 

● Makes the fastest route to convergence on initial training start,  
● Prevents the training from being stuck on a saddle point, but: 
● Not so large, that it either: 

○ Bounces around different local optima, or 
○ Dives into a poor local optima. 

 
On the other hand, one does not want to pick an initial learning rate on the lowest-end that: 
 

● Increases training time to converge, 
● Gets stuck or a saddle point, or 
● Does not explore for better local optimas. 

 
The concept of gradient descent is a measurement of the slope of the rate of change. If we have 
a function, say f(x) where the relationships between the input and the outputs is linear, we would 
expect the slope to be a straight line, as depicted below. In this case, the learning rate would 
only affect how long it would take to find the global optima, but since there is only one optima, 
we would find it nonetheless. 
 
On the other hand, if f(x) is a polynomial function, we expect the slope to look more like a 
curved bowl. Now the learning rate would affect whether we find the global optima. That is, too 
high of a rate and we bounce around the curved bowl. A tiny learning rate, and we are (almost) 
guaranteed to descend eventually to the global optima, but it may take a long time. 
 
Linear and polynomial functions are easily solvable with the classical modeling techniques of 
linear algebra, such as linear/logistic regression/classifiers and CART analysis. What deep 
learning and neural networks provide is the ability to find solutions, and hence very good or the 
actual global optima of real-world problems that have high non-linearity. 
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In the simplified third example depicted above, the function f(x) is comprised of segments of 
non-linearity. In addition to a global optima, we depict a local optima which the training could 
dive into and converge on, overlooking the global optima. Likewise is a saddle point. This is a 
plateaued region of the slope. If our learning rate is too small, one might bounce back and forth 
on the plateau and never escape. 
 
Decay and Momentum 
 
In addition to the initial learning rate, optimizer algorithms employ a variety of techniques to 
adapt the learning rate as training proceeds. The most basic is decay. The assumption here is 
that one starts with a somewhat high learning rate to speed up diving down into a good optima, 
but then gradually decay the learning rate to prevent overlooking better local optima, and if a 
good optima, not to bounce out of it. As the learning rate is decayed, the rate of reducing the 
loss will also decrease, which will lengthen the overall learning. It’s a trade-off between overall 
time to train the model vs. converging on a global (or otherwise good) optima. 
 
Momentum is another strategy used in conjunction with decay. In this case, instead of using a 
fixed decay rate, the previous rate of change is used to dynamically increase or decrease the 
decay rate. 
 
The details and options of optimizers is outside the scope of this handbook. In Keras, optimizers 
can be specified in two ways.  
 
As a string value to the parameter ​optimizer​ in the ​compile()​ method. In this case, the 
selected optimizer is configured with default settings. 
 

model​.​compile​(​optimizer​=​'rmsprop'​,​ loss​=​'categorical_crossentropy'​,  
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              metrics​=[​'accuracy'​]) 

 
An optimizer can also be specified from the ​optimizer​ class, and configured when the 
optimizer object is instantiated. 
 

from​ keras ​import​ optimizers 
 

optimizer ​=​ optimizers​.​RMSProp​(​lr​=​0.01​) 
model​.​compile​(​optimizer​=​optimizer​,​ loss​=​'categorical_crossentropy'​,  
              metrics​=[​'accuracy'​]) 

 
Checkpointing and Early Stop 
 
Checkpointing 
 
Checkpointing is periodically saving the learned model parameters and current hyperparameter 
values during training. There are two reasons for doing this: 
 

● To be able to resume training of a model without restarting the training (i.e., where it left 
off). 

● Identify a past point training that the model gave the best results. 
 
In the former case (resume training), for resource management one may split the training across 
sessions. For example, one might reserve (or be authorized) one hour a day for training. At the 
end of the one hour training each day, the training is checkpointed. The following day, training is 
resume by restoring from the checkpoint. 
 
Why wouldn’t saving the model’s weights and biases be enough? In neural networks, some of 
the hyperparameter values will dynamically change, such as the learning rate and decay. One 
would want to resume at the same hyperparameter values at the time the training was paused. 
 
In another scenario, one may implement continuous learning as a part of a continuous build and 
integration process. In this scenario, new labeled images are continuously added to the training 
data, and one only wants to incrementally retrain the model vs. retraining from scratch on each 
build cycle. 
 
In the later case (find best result), during training the model may have trained past the best 
optima, and started to diverge and/or overfit. In this case, one would not want to start retraining 
from scratch with fewer epochs (or other hyperparameter changes), but instead identify the 
epoch that achieved the best results, and restore (set) the learned model parameters to those 
that were checkpointed at the end of that epoch. 
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Checkpointing occurs at the end of an epoch, but should one checkpoint after each epoch? 
Probably not. That can be expensive space wise. Let’s presume that the model has 25 million 
parameters (e.g., ResNet-50), where each parameter is a 32-bit floating point value (4 bytes). 
Each checkpoint would then require 100Mb to save. After 10 epochs, that would already be one 
gigabyte of disk space. 
 
One generally only checkpoints after each epoch if the number of model parameters is small 
and/or the number of epochs is small. In the code example below, a checkpoint is instantiated 
with the ​ModelCheckpoint​ class. The parameter ​filepath​ is the file path of where to write the 
checkpoint to. The filepath can either be a complete file path or a formatted file path. In the 
former case, the checkpoint file would be overwritten each time. In the case below, we used the 
format syntax `epoch:02d’ to generate a unique file for each checkpoint, based on the epoch 
number. For example, if it’s the third epoch, the file would be ‘mymodel-03.h5’. Also note that 
checkpoints are written in a HDF5 file format. 
 

from​ keras​.​callbacks ​import​ ​ModelCheckpoint 
 

# Create a unique checkpoint file per checkpoint using the formatting option  

# {epoch:02d} 

filepath ​=​ ​"mymodel-{epoch:02d}.hdf5" 
 

# Create a checkpoint 

checkpoint ​=​ ​ModelCheckpoint​(​filepath​) 
 

# Train the model and use the callbacks parameter to enable the checkpoint 

model​.​fit​(​x_train​,​ y_train​,​ epochs​=​epochs​,​ batch_size​=​batch_size​,  

          callbacks​=[​checkpoint​]) 

 
A model can then be subsequently restored from a checkpoint using the ​load_model()​ method: 
 

from​ keras​.​models ​import​ load_model 
 

# restore a model from a saved checkpoint 

model ​=​ load_modal​(​'mymodel-03.h5'​) 

 
For models with larger number of parameters and/or number of epochs, one may choose to 
save a checkpoint on every nth epoch (e.g., every 4th epoch) with the parameter ​period​. In the 
code example below, a checkpoint is saved on every 4th epoch: 
 

from​ keras​.​callbacks ​import​ ​ModelCheckpoint 
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# Create a unique checkpoint file per checkpoint using the formatting option  

# {epoch:02d} 

filepath ​=​ ​"mymodel-{epoch:02d}.hdf5" 
 

# Create a checkpoint for every 4th epoch 

checkpoint ​=​ ​ModelCheckpoint​(​filepath​,​ period​=​4​) 
 

# Train the model and use the callbacks parameter to enable the checkpoint 

model​.​fit​(​x_train​,​ y_train​,​ epochs​=​epochs​,​ batch_size​=​batch_size​,  

          callbacks​=[​checkpoint​]) 

 
Alternately, one may choose to save the current best checkpoint with the parameters 
save_best_only​ set to ​True​ and ​monitor​ to the measurement to base the decision on. For 
example, if ​monitor​ is set to ​val_acc​, it will only write a checkpoint if the valuation accuracy is 
higher than the last saved checkpoint. If the parameter is set to ​val_loss​, it will only write a 
checkpoint if the valuation loss is lower than the last saved checkpoint. 
 
 

from​ keras​.​callbacks ​import​ ​ModelCheckpoint 
 

# Create a unique checkpoint file per checkpoint using the formatting option  

# {epoch:02d} 

filepath ​=​ ​"mymodel-{epoch:02d}.hdf5" 
 

# Create a checkpoint for every 4th epoch 

checkpoint ​=​ ​ModelCheckpoint​(​filepath​,​ save_best_only​=​True​,​ monitor​=​'val_acc'​) 
 

# Train the model and use the callbacks parameter to enable the checkpoint 

model​.​fit​(​x_train​,​ y_train​,​ epochs​=​epochs​,​ batch_size​=​batch_size​,  

          callbacks​=[​checkpoint​]) 

 
Early Stopping 
 
An early stop is setting a condition upon which training is terminated earlier than the set limits 
(e.g., number of epochs). This is generally set to conserve resources and/or prevent 
overtraining when a goal objective is reached, such as a level of accuracy, convergence on 
evaluation loss, etc. For example, one might set a training for 20 epochs, which average 30 
minutes each --for a total of 10 hours. But if the objective is met after 8 epochs, it would be ideal 
to terminate the training, saving 6 hours of resources. 
 
An early stop is specified in a manner similar to a checkpoint. An ​EarlyStopping​ object is 
instantiated with the configured with target goal, and passed to the ​callbacks​ parameter of the 
fit()​ method. 
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In the code example below, training will be stopped early if the valuation loss stops reducing 
from the previous epoch: 
 

from​ keras​.​callbacks ​import​ ​EarlyStopping 
 

# set an early stop (termination of training) when the valuation loss has stopped  

# reducing (default setting). 

earlystop ​=​ ​EarlyStopping​(​monitor​=​'val_loss'​) 
 

# Train the model and use early stop to stop training early if the valuation loss  

# stops decreasing 

model​.​fit​(​x_train​,​ y_train​,​ epochs​=​epochs​,​ batch_size​=​batch_size​,  

          callbacks​=[​earlystop​]) 

 
In addition to monitoring the valuation loss for early stop, one can alternately monitor the 
valuation accuracy with the parameter setting ​monitor=”val_acc”​. There are some additional 
parameters for fine tuning to prevent inadvertent early stop, such as on a saddle point where 
more training will overcome. The parameter ​patience​ specifies a minimum number of epochs 
without improvement before early stop, and the parameter ​min_delta​ specifies a minimum 
threshold to determine if the model improved or not. In the code example below, the training will 
stop early if there is no improvement in the valuation loss after three epochs. 
 

from​ keras​.​callbacks ​import​ ​EarlyStopping 
 

# set an early stop (termination of training) when the valuation loss has stopped  

# reducing for three epochs. 

earlystop ​=​ ​EarlyStopping​(​monitor​=​'val_loss'​,​ patience​=​3​) 
 

# Train the model and use early stop to stop training early if the valuation loss  

# stops decreasing 

model​.​fit​(​x_train​,​ y_train​,​ epochs​=​epochs​,​ batch_size​=​batch_size​,  

          callbacks​=[​earlystop​]) 

Model Saving/Restoring 
 
Save 
 
In Keras, we can save both the model and the trained parameters (i.e., weights and biases). 
The model and weights can be saved separately or together. The ​save()​ method will save both 
the weights/biases and the model to a specified file in HDF5 file format. Below is an example: 
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# Train a model 

model​.​fit​(​x_train​,​ y_train​,​ epochs​=​epochs​,​ batch_size​=​batch_size​) 
 

# Save the model and trained weights and biases. 

model​.​save​(​'mymodel.h5'​) 

 
The trained weights/biases and the model can be saved separately. For example, one may want 
to create and save a model, which is not trained, and then use this pre-built model to train 
several different versions of the same model; whereby the saved model can be reused as a 
pre-built model, and the saved (learned) model parameters can be used for transfer learning. 
 
When saving a model only, the model architecture can be saved either in JSON or YAML 
format. In the example below, the method ​to_json()​ returns the model architecture as a JSON 
object in a string format (i.e., not a dictionary format). The JSON string representation of the 
model architecture is then written to a file (e.g., model.json) 
 

import​ json 
 

# Save the model in JSON string format 

json_string ​=​ model​.​to_json​() 
 

# Write the JSON string to a file 

with​ open​(​'model.json'​,​ ​'w'​)​ ​as​ f​:​   
         f​.​write​(​s​) 

 
In the code example below, the learned model weights and biases, after training, are saved in a 
HDF5 format: 
 

# Train a model 

model​.​fit​(​x_train​,​ y_train​,​ epochs​=​epochs​,​ batch_size​=​batch_size​) 
 

# Save the trained (learned) model parameters 

model​.​save_weights​(​'mymodel-weights.h5'​) 

 
Restore 
 
In Keras, we can restore a model architecture and/or the model parameters (i.e., weights and 
biases). Restoring a model architecture is generally done for loading a pre-built model, while 
loading both the model architecture and model parameters is generally done for transfer 
learning. One should note that loading the model and model parameters is not the same as 
checkpointing, in that one is not restoring the current state of hyperparameters and this method 
therefore should not be used for continuous learning. 
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from​ keras​.​models ​import​ load_model 
 

# load a pre-trained model 

model ​=​ load_model​(​'mymodel.h5'​) 

 
In the code example below, the model architecture is loaded from a previous saved model 
architecture (i.e., pre-built model) as a JSON string. 
 

from​ keras​.​models ​import​ model_from_json 
 

# Read the JSON string from a file 

with​ open​(​'mymodel.json'​,​ ​'r'​)​ ​as​ f​:​   
         s ​=​ f​.​read​() 
 

# Load the model architecture 

model ​=​ model_from_json​(​s​) 

 
In the code example below, the trained weights/biases for a model are loaded into the 
corresponding pre-built model, using the ​load_weights()​ method. Having different sets of 
trained weights/biases for the same pre-built model can be advantages for transfer learning. In 
this case, separate instances of the pre-built model are trained for different categories of images 
(e.g., medical, nature, etc). In this case, when doing transfer learning, one selects the set of 
trained weights/biases which corresponds to the category of the new image data to train a new 
model instance. 
 

from​ keras​.​models ​import​ load_weights 
from​ keras​.​models ​import​ model_from_json 
 

# Read the JSON string from a file 

with​ open​(​'mymodel.json'​,​ ​'r'​)​ ​as​ f​:​   
         s ​=​ f​.​read​() 
 

# Load the model architecture 

model ​=​ model_from_json​(​s​) 
 

# Load the trained weights for the model 

model​.​load_weights​(​'mymodel-weights.h5'​) 
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Hyperparameter Search 
 
Hyperparameter search is the process of finding the optimal (or near) values for initializing the 
hyperparameters for training. Depending on the tools and methodology, the process maybe 
assisted or automated. In both cases, a process will take a range of hyperparameter values, a 
distribution within that range, and generate some set of combinations. For each combination, a 
training instance is executed for some short-length training session. Generally, depending on 
the compute resources, a plurality of training instances are executed in parallel.  
 
Once all the hyperparameter search training sessions have completed, one then selects the 
best combination by: 
 

● In the assist case, each combination is displayed with a corresponding set of metrics at 
the time of the short length training session completed. These typically are: 

○ Validation Accuracy, Recall, Precision, F1 
○ Validation Loss, Rate of Change 

● In the automated case, the algorithm will process the metrics for each combination and 
make a determination which combination will provide the best results in a full training 
run. 

 
 
 
Hyperparameters to Tune 
 
The most influential hyperparameter is the learning rate. In general, the following is a rank order 
of how influential a hyperparameter will be to tuning for optimizing the training of a model (time 
and performance): 
 

● Learning Rate 
● Dropout (or other Regularization) 
● Batch Size 
● Optimizer Algorithm 

 
The following are common practices when evaluating hyperparameter tuning: 
 

1. Good: Expect a big drop in training loss from the first epoch by the third epoch. 
2. Bad  : The training loss stays plateaued, or decreases in tiny amounts. 
3. Bad  : The train loss shows NaN. 
4. Good: The validation accuracy, while modestly less, parallels the train accuracy. 
5. Bad   : The validation accuracy stays plateaued while the training accuracy decreases. 
6. Bad   : The validation accuracy increases while the training accuracy decreases. 
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7. Good: The validation loss steadily decreases. 
8. Bad  : The validation loss stays plateaued. 
9. Bad  : The validation loss bounces back (decreases) and forth (increases). 

 
Common ranges for hyperparameter search are: 
 

Learning Rate: [ 0.1, 0.01, 0.001, 0.0001, 0.00001 ] 
Dropout          : 0.10, 0.25, 0.50 
Batch Size      : 32, 64, 128 
Optimizer        : Adam, Adagrad, RMSprop 

 
In general, one would not try all combinations; in that the number of combinations would be too 
high. In our example above, we would have 5 x 3 x 2 x 3 = 90. Generally, a more modest 
number of combinations are tried; whereby the combinations are selected at random. 
 
Homebrew Search 
 
Hyperparameter search is still considered a black magic art. Before using an assist or 
automated hyperparameter search tool, I recommend one gets familiar with the process by 
performing a homebrewed search for awhile build up one’s personal insight. 

 
The code example below is a simple homebrewed hyperparameter assisted search, which one 
can practice with and expand on. The code consists of the following: 
 

● model_fn() - Constructs a model instance, and compiles it. The dropout layer in the 
model is configurables, as well as the optimizer and learning rate. 
 

● train_fn() - Does a short duration training (specified by number of epochs) on the 
train/validation data. Will output train and validation loss and accuracy on each epoch. 
 

● hyper_search(): Does the combination selection and invokes making a model instance 
and short training session per combination. 

 

from​ keras ​import​ optimizers 
import​ random 
 

def​ model_fn​(​learning_rate​,​ optimizer​,​ dropout​): 
        ​''' make an instance of the model ''' 
        ​# ADD CODE to construct the model here 
        ​# set dropout rates based on the dropout parameter. 
        ​# common convention is to ½ the dropout amount on each subsequent dropout  
        ​# layer. 
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        ​# select the optimizer and set the learning rate 
        ​if​ optimizer ​==​ ​'adam'​: 
                opt ​=​ optimizers​.​Adam​(​lr​=​learning_rate​) 
        ​elif​ optimizer ​==​ ​'adagrad'​: 
                opt ​=​ optimizers​.​Adagrad​(​lr​=​learning_rate​) 
        ​elif​ optimizer ​==​ ​'rmsprop'​: 
                opt ​=​ optimizers​.​RMSprop​(​lr​=​learning_rate​) 
        ​elif​ optimizer ​==​ ​'sgd'​: 
                opt ​=​ optimizers​.​SGD​(​lr​=​learning_rate​) 
 

        ​# compile the model 
        model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​opt​,  
              metrics​=[​'accuracy'​]) 
 

        ​# return the model 
        ​return​ model 
 

def​ train_fn​(​model​,​ nepochs​,​ batch_size​,​ x_train​,​ y_train​,​ x_val​,​ y_val​): 
        ​''' train the model for a fixed number of epochs ''' 
         

        ​# create a feeder and add some basic image augmentation 
        datagen ​=​ ​ImageDataGenerator​(​horizontal_flip​=​True​,​ vertical_flip​=​True​,  
                                     rotation​=​30​) 
         

        ​# train the model for the short number of epochs 
        model​.​fit_generator​(​datagen​.​flow​(​x_train​,​ y_train​,​ batch_size​=​batch_size​,  
                            shuffle​=​True​), 
                            steps_per_epoch​=​len​(​x_train​)​ ​/​ batch_size​,  
                            epochs​=​nepochs​,​ verbose​=​1​,  
                            validation_data​=(​x_val​,​ y_val​)) 
 

def​ hyper_search​(​nepochs​,​ ncombos​,​ x_train​,​ y_train​,​ x_val​,​ y_val​): 
        ​''' Perform a Hyperparameter Search''' 
        ​# the hyperparameter ranges to search from 
        learning_rates ​=​ ​[​ ​0.1​,​ ​0.01​,​ ​0.001​,​ ​0.0001​,​ ​0.00001​ ​] 
        dropouts ​=​ ​[​ ​0.10​,​ ​0.25​,​ ​0.25​ ​] 
        batch_sizes ​=​ ​[​ ​32​,​ ​128​ ​] 
        optimizers ​=​ ​[​ ​'adam'​,​ ​'adagrad'​,​ ​'rmsprop'​ ​] 
 

        ​# Generate the specified (ncombos) random combinations 
        ​for​ n ​in​ range​(​ncombos​): 
                learning_rate ​=​ random​.​choice​(​learning_rates​) 
                dropout ​=​ random​.​choice​(​dropouts​) 
                batch_size ​=​ random​.​choice​(​batch_sizes​) 
                optimizer ​=​ random​.​choice​(​optimizers​) 
 

                ​# Construct the model instance 
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                model ​=​ model_fn​(​learning_rate​,​ optimizer​,​ dropout​) 
  

                ​# Do the short run training session 
                train_fn​(​model​,​ nepochs​,​ batch_size​,​ x_train​,​ y_train​,​ x_val​,  
                         y_val​) 

 
Hyperparameter Assist and Automation Tools 
 
There are a number of packages for doing automated or assisted search for the best 
hyperparameters settings when training a model in Keras. The three most popular packages 
currently are (in no specific order): 
 

● Talos (Assist) 
● Hyperas (Assist) 
● scikit-learn’s GridSearchCV (Automated) 

Deployment 
 
Prerequisite 
 
To deploy a trained model for use in an application, one should have first saved the model 
architecture and trained weights/biases, such as with the ​model.save(filepath)​ method (see 
earlier description). Once saved, one will want to copy (move) the corresponding file to the 
compute instance where the model will be ran. 
 
Data Preprocessing Pipeline 
 
One needs to create a data preprocessing pipeline that will preprocess the new images in the 
same way that the images in the training dataset were preprocessed. This includes: 
 

● Resizing the images. 
● Padding of the images. 
● Number of Channels 
● Pixel data type 
● Normalization or Standardization 

 
For resizing, the images will need to be the same shape as the input shape of the trained model 
(e.g., (128, 128, 3)). It’s likely that the source of the new images will be in a different height and 
width shape from the input shape, and in other cases the images maybe different in height and 
weight amongst them. 
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Models are typically trained on shapes where height == width (e.g., 128 x 128). If your new 
images always have height == width, then one can simply resize them to the input shape of the 
model. When resizing, if the image is being downsampled (made smaller), the interpolation 
algorithm INTER_AREA typically will produce the best results, while if upsampled (made 
bigger), the interpolation algorithm INTER_CUBIC will typically produce the best results. 
 
If your images are from a mobile camera, they will likely be either in a portrait or landscape 
layout, where height != width. If one arbitrarily resized these images into a square (height == 
width), the original aspect ratio will not be preserved, and the spatial relationships of features in 
the image will be distorted. In this case, the image needs to be padded so the height == width, 
prior to resizing. 
 
One also needs to consider the number of channels of the new image. If the model takes three 
channels (e.g., RGB) and the new image is grayscale, one will need to first convert it to 
3-channel RGB image. In the same scenario, if the image is a PNG with an alpha channel for 
transparency (i.e., 4 channels), the 4th channel needs to be removed. 
 
If the model was trained with images that had 8 bits per pixel per channel (UINT8), and the new 
image has 16 bits per pixel per channel (UINT16), one needs to change the datatype if the 
pixels, correspondingly. 
 
The pixel data will then need to be normalized or standardized the same manner that was used 
in the training of the model. In the case of standardization, the values calculated for the mean 
and standard deviation from the training data needs to be saved and copied with the saved 
model to the compute engine, and loaded into the preprocessing pipeline. 
 
 
Model Loading 
 
While the application is running, the model should only be loaded one time (vs. loading per 
prediction). It would be very inefficient to continuously load the model, given the very large size 
of a typical model’s weights and biases (e.g., 100Mb+). 

Diagnostics 
 
A final note on diagnostics while training. We will show outputs from some training sessions that 
demonstrate when something is going wrong. 
 
In our example, we use a simple ConvNet with 2M parameters to train the coarse labels for 
CIFAR-100 dataset, which consists of 20 categories. We use the builtin dataset in Keras and 
further split the training data into training and validation data, as below: 
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from​ keras​.​datasets ​import​ cifar100 
import​ numpy ​as​ np 
 

# get the train and test data 

(​x_train​,​ y_train​),​ ​(​x_test​,​ y_test​)​ ​=​ cifar100​.​load_data​(​label_mode​=​'coarse'​) 
 

# normalize the pixel data between 0 and 1 

x_train ​=​ ​(​x_train ​/​ ​255.0​).​astype​(​np​.​float32​) 
x_test  ​=​ ​(​x_test ​/​ ​255.0​).​astype​(​np​.​float32​) 
 

# convert the labels to categorical 

nclasses ​=​ np​.​max​(​y_train​)​ ​+​ ​1 
y_train ​=​ utils​.​to_categorical​(​y_train​,​ nclasses​) 
y_test  ​=​ utils​.​to_categorical​(​y_test​,​ nclasses​) 
 

# further split off from the training data the validation data (10%) 

pivot ​=​ ​int​(​len​(​x_train​)​ ​*​ ​0.9​) 
x_val ​=​ x_train​[​pivot​:] 
y_val ​=​ y_train​[​pivot​:] 
x_train ​=​ x_train​[:​pivot​] 
y_train ​=​ y_train​[:​pivot​] 

 
We ran several training sessions using an Adam optimizer for ten epochs each, and varied the 
learning rate. On our first training session, we use an aggressive learning rate of 0.1. From the 
results below, one sees our accuracy loss from the first epoch to the tenth never actually 
decreases and our accuracy is stuck in the 5% range. For 20 categories, that what we would 
expect if the prediction is random. We are not learning anything, but simply bouncing back and 
forth trying to find an optima to dive down into. 
 

Epoch​ ​1​/​10 
352​/​351​ ​[==============================]​ ​-​ ​44s​ ​125ms​/​step ​-​ loss​:​ ​15.2716​ ​-​ acc​: 
0.0503​ ​-​ val_loss​:​ ​15.3767​ ​-​ val_acc​:​ ​0.0460 
Epoch​ ​2​/​10 
352​/​351​ ​[==============================]​ ​-​ ​42s​ ​119ms​/​step ​-​ loss​:​ ​15.3049​ ​-​ acc​: 
0.0505​ ​-​ val_loss​:​ ​15.3767​ ​-​ val_acc​:​ ​0.0460 
Epoch​ ​3​/​10 
352​/​351​ ​[==============================]​ ​-​ ​42s​ ​120ms​/​step ​-​ loss​:​ ​15.3052​ ​-​ acc​: 
0.0504​ ​-  
Epoch​ ​10​/​10 
352​/​351​ ​[==============================]​ ​-​ ​41s​ ​117ms​/​step ​-​ loss​:​ ​15.3055​ ​-​ acc​: 
0.0504​ ​-​ val_loss​:​ ​15.3767​ ​-​ val_acc​:​ ​0.0460 

 
Next, we lower the learning rate by a magnitude to 0.01. We had a substantial drop in the initial loss 
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from 15 to 3. But, as above, our loss stays essentially the same and the accuracy again is around 
5%. While our swings are not as wild while looking for an optima to dive into, the learning rate is still 
too large to find one. 
 

Epoch​ ​1​/​10 
352​/​351​ ​[==============================]​ ​-​ ​43s​ ​123ms​/​step ​-​ loss​:​ ​3.0251​ ​-​ acc​: 
0.0500​ ​-​ val_loss​:​ ​2.9968​ ​-​ val_acc​:​ ​0.0460 
Epoch​ ​2​/​10 
352​/​351​ ​[==============================]​ ​-​ ​40s​ ​114ms​/​step ​-​ loss​:​ ​2.9964​ ​-​ acc​: 
0.0486​ ​-​ val_loss​:​ ​2.9965​ ​-​ val_acc​:​ ​0.0460 
Epoch​ ​3​/​10 
352​/​351​ ​[==============================]​ ​-​ ​40s​ ​114ms​/​step ​-​ loss​:​ ​2.9961​ ​-​ acc​: 
0.0490​ ​-​ val_loss​:​ ​2.9966​ ​-​ val_acc​:​ ​0.0422 
... 

Epoch​ ​10​/​10 
352​/​351​ ​[==============================]​ ​-​ ​40s​ ​115ms​/​step ​-​ loss​:​ ​2.9959​ ​-​ acc​: 
0.0466​ ​-​ val_loss​:​ ​2.9965​ ​-​ val_acc​:​ ​0.0422 

 
Next, we lower the learning rate by another magnitude to 0.001. Now, we see some improvement. 
Our loss is steadily going down and our accuracy is going up. But the rate of decline in the loss 
function is small. We don’t know if we are just going so slow it will take a lot of epochs, or we have 
dived into a poor local optima. 
 

Epoch​ ​1​/​10 
352​/​351​ ​[==============================]​ ​-​ ​43s​ ​123ms​/​step ​-​ loss​:​ ​2.5162​ ​-​ acc​: 
0.2211​ ​-​ val_loss​:​ ​2.4523​ ​-​ val_acc​:​ ​0.2610 
Epoch​ ​2​/​10 
352​/​351​ ​[==============================]​ ​-​ ​40s​ ​114ms​/​step ​-​ loss​:​ ​2.1625​ ​-​ acc​: 
0.3258​ ​-​ val_loss​:​ ​2.2507​ ​-​ val_acc​:​ ​0.3200 
Epoch​ ​3​/​10 
352​/​351​ ​[==============================]​ ​-​ ​40s​ ​114ms​/​step ​-​ loss​:​ ​2.0423​ ​-​ acc​: 
0.3662​ ​-​ val_loss​:​ ​2.1630​ ​-​ val_acc​:​ ​0.3482 
... 

Epoch​ ​10​/​10 
352​/​351​ ​[==============================]​ ​-​ ​40s​ ​115ms​/​step ​-​ loss​:​ ​1.7465​ ​-​ acc​: 
0.4550​ ​-​ val_loss​:​ ​1.9470​ ​-​ val_acc​:​ ​0.4180 

 
Next, we double this learning rate to 0.002 and see if we can get an improvement. We don’t really 
see any difference. 
 

Epoch​ ​1​/​10 
352​/​351​ ​[==============================]​ ​-​ ​44s​ ​125ms​/​step ​-​ loss​:​ ​2.5566​ ​-​ acc​: 
0.2064​ ​-​ val_loss​:​ ​2.5235​ ​-​ val_acc​:​ ​0.2322 
Epoch​ ​2​/​10 
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352​/​351​ ​[==============================]​ ​-​ ​40s​ ​114ms​/​step ​-​ loss​:​ ​2.2015​ ​-​ acc​: 
0.3169​ ​-​ val_loss​:​ ​2.2833​ ​-​ val_acc​:​ ​0.2956 
Epoch​ ​3​/​10 
... 

Epoch​ ​10​/​10 
352​/​351​ ​[==============================]​ ​-​ ​41s​ ​116ms​/​step ​-​ loss​:​ ​1.7438​ ​-​ acc​: 
0.4550​ ​-​ val_loss​:​ ​1.9590​ ​-​ val_acc​:​ ​0.4070 

 
Let’s try going the other direction and instead of doubling the learning rate, let’s cut it in half to 
0.0005. What we see is that the performance degrades. It’s likely the best learning rate for this 
model and dataset is around 0.001. 
 

Epoch​ ​1​/​10 
352​/​351​ ​[==============================]​ ​-​ ​44s​ ​125ms​/​step ​-​ loss​:​ ​2.5507​ ​-​ acc​: 
0.2115​ ​-​ val_loss​:​ ​2.4716​ ​-​ val_acc​:​ ​0.2750 
Epoch​ ​2​/​10 
352​/​351​ ​[==============================]​ ​-​ ​41s​ ​116ms​/​step ​-​ loss​:​ ​2.2437​ ​-​ acc​: 
0.3023​ ​-​ val_loss​:​ ​2.2966​ ​-​ val_acc​:​ ​0.3228 
Epoch​ ​3​/​10 
... 

Epoch​ ​10​/​10 
352​/​351​ ​[==============================]​ ​-​ ​41s​ ​115ms​/​step ​-​ loss​:​ ​1.8893​ ​-​ acc​: 
0.4136​ ​-​ val_loss​:​ ​2.0811​ ​-​ val_acc​:​ ​0.3776 

 
 

Next 
 
In the next part, we will cover the principal behind and best practices for transfer learning. 
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Part 12 - Pre-built Models & Transfer Learning 

Overview 
In this part, we will cover best practices for using pre-built models for training and transfer learning. 

Pre-built Models 
 
The ​Keras​ framework comes with a number of pre-built models, which you can use either as-is 
to train a new model, or modify and/or fine-tune for transfer learning. These models are based 
on best-in-class models for image classification, which have been award winning models in 
competitions like ImageNet. These model architectures are cited frequently in deep learning 
research papers. 
 
Documentation on the pre-built Keras models are found ​here​. The pre-built model architectures 
include: 
 

Sequential CNN 
VGG16, VGG19 

Residual CNN 
ResNet 

Wide Layer CNN 
ResNeXt, Inception 

Advanced CNN 
DenseNet, Xception, NASNet 

Mobile 
MobileNet 

 
The pre-built Keras models are imported from the ​keras.applications​ module. Below are 
some examples: 
 

from​ keras​.​applications ​import​ VGG16 
from​ keras​.​applications ​import​ VGG19 
from​ keras​.​applications ​import​ ​ResNet50 
from​ keras​.​applications ​import​ ​InceptionV3 
from​ keras​.​applications ​import​ ​InceptionResNetV2 
from​ keras​.​applications ​import​ ​DenseNet121 
from​ keras​.​applications ​import​ ​DenseNet169 
from​ keras​.​applications ​import​ ​DenseNet201 
from​ keras​.​applications ​import​ ​Xception 
from​ keras​.​applications ​import​ ​NASNetLarge 
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from​ keras​.​applications ​import​ ​NASNetMobile 
from​ keras​.​applications ​import​ ​MobileNet 

 
The Base Model 
 
By default, the pre-built models are complete but untrained (i.e., the weights and biases are 
randomly initialized). Each untrained pre-built model is configured for a specific input shape (see 
documentation), and number of output classes. In most cases the input shape is either (224, 
224, 3) or (299, 299, 3). The models will also take input in channel first format as in (3, 224, 
224) and (3, 299, 299). In most cases, the number of output classes is 1000, meaning the 
models can identify 1000 common image labels. 
 
 

 
 
The pre-built models do not have an assigned loss function and optimizer. Prior to using them, 
one must issue the ​compile()​ method to assign the loss, optimizer and performance 
measurements. 
 

from​ keras​.​applications ​import​ ​ResNet50 
 

# Get a pre-built ResNet50 model 

model ​=​ ​ResNet50​() 
 

# Compile the model for training 

model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​'adam'​,  
              metrics​=[​'accuracy'​]) 
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# Now train the model 

 
Using the pre-built models in the manner above is pretty limited, considering not only is the input 
size fixed, but so is the number of categories for the classifier, which is 1000. It’s unlikely 
whatever you need to do will use the default configuration. 
 
Next we will explore some ways to configure the pre-built models to perform various tasks. 
 
Pre-Trained 
 
All of the pre-built models come with weights and biases pre-trained from​ ImageNet 2012 
dataset; which is a dataset of 1.2 million images across 1000 classes. If your need is simply to 
predict if an image is within the 1000 classes of ​ImageNet​ dataset, then one can use the 
pre-trained pre-built models as-is. The mapping of label identifiers to class names can be found 
in this ​Github repo​. Examples of classes include things like bald eagle, toilet paper, strawberry, 
and balloon. 
 
The code below uses the pre-built ResNet model pre-trained with ImageNet weights to classify 
(predict) an image of an elephant, where: 
 

1. The ​preprocess_input()​ method will preprocess the image according to the method 
used by the pre-built ResNet model. 

2. The ​decode_predictions()​ method will map label identifiers back to the class name. 
3. The pre-built ResNet model is instantiated with Imagenet weights. 
4. An image of an elephant is read in by openCV and then resized to (224, 224) to fit the 

input shape of the model. 
5. The image is then preprocessed using the model’s ​preprocessed_input()​ method. 
6. The image is then reshaped into a batch. 
7. The image is then classified by the model using the ​predict()​ method. 
8. The top 3 predicted labels are then mapped to their class names using 

decode_predictions()​ and printed. In this example, one might see ‘African Elephant’ 
as the top prediction. 

 

from​ keras​.​applications ​import​ ​ResNet50 
from​ keras​.​applications​.​resnet ​import​ preprocess_input​,​ decode_predictions 
 

# Get a pre-built ResNet50 model 

model ​=​ ​ResNet50​(​weights​=​'imagenet'​) 
 

# Read the image into memory as a numpy array 

image ​=​ cv2​.​imread​(​'elephant.jpg'​,​ cv2​.​IMREAD_COLOR​) 
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# Resize the image to fit the input shape of ResNet model 

image ​=​ cv2​.​resize​(​image​,​ ​(​224​,​ ​224​),​ cv2​.​INTER_LINEAR​) 
 

# Preprocess the image using the same image processing used by the pre-built model 

image ​=​ preprocess_input​(​image​) 
 

# Reshape from (224, 224, 3) to (1, 224, 224, 3) for the predict() method 

image ​=​ image​.​reshape​((-​1​,​ ​224​,​ ​224​,​ ​3​)) 
 

# Call the predict() method to classify the image 

predictions ​=​ model​.​predict​(​image​) 
 

# Display the class name based on the predicted label using the decode function for 

# the built-in model. 

print​(​decode_predictions​(​preds​,​ top​=​3​)) 

 
New Classifier 
 
The final classifier layer in all the pre-built models can be removed and replaced with a new 
classifier. The new classifier can then be used to train the pre-built model for a new dataset and 
set of classes. For example, if you had a dataset of twenty different classes of noodle dishes, 
you would simply remove the existing classifier layer, replace it with a new twenty node 
classifier layer, compile the model and train it. 
 
In all the pre-built models, the classifier layer is referred to as the top layer. When instantiating 
an instance of a pre-built model, you would set the parameter ​include_top​ to ​False​ to get an 
instance without the classifier. Additionally, when the ​include_top=False​, one can also reset 
the input shape of the model with the parameter ​input_shape​.  
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As for the input shape, the documentation for the pre-built models has a limitation on the 
minimum input shape size. For most models, this is 32 x 32. I generally don’t advise using the 
pre-built models in this manner, because for most of these architectures, the final feature maps 
before the global average pooling layer (i.e., last layer before classifier) will be 1x1 (single pixel) 
feature maps --essentially losing all spatial relationships. Though, even down to this size, 
researchers have found that when used with CIFAR-10 and CIFAR-100, which are 32 x 32 
images, they are able to find good hyperparameter settings before advancing to 
competition-grade (e.g., ImageNet) image datasets. 
 
In the code below, we instantiate a pre-built ResNet model and replace it with a new classifier 
for 20 classes: 
 

1. Remove the existing classifier with the parameter ​include_top​. 
2. Set the input shape to (100, 100, 3) with the parameter ​input_shape 
3. Retain the final pooling/flattening layer (before classifier) as a global average pooling 

layer with the parameter ​pooling​. 
4. Add a dense layer with twenty nodes and a softmax activation function. 
5. Compile the model 

 

from​ keras​.​applications ​import​ ​ResNet50 
from​ keras​.​layers ​import​ ​Dense 

Copyright(c), 2019, Google, LLC 
48 



 

# Get a pre-built model for input shape (100,100,3) and without the classifier 

model ​=​ ​ResNet50​(​include_top​=​False​,​ input_shape​=(​100​,​ ​100​,​ ​3​),​ pooling​=​'avg'​) 
 

# Add a classifier for 20 classes 

outputs ​=​ ​Dense​(​20​,​ activation​=​'softmax'​)(​model​.​output​) 
model ​=​ ​Model​(​model​.​input​,​ outputs​) 
 

# Compile the model for training 

model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​'adam'​,  
              metrics​=[​'accuracy'​]) 
 

# Now train the model 

 
For most of these models, the final layer preceding the classifier is a global average pooling 
layer. This layer acts as both a final pooling layer for the feature maps and a flatten operation 
(convert to 1D vector).  In some cases, one might want to replace this layer with one’s own 
custom final pooling/flatten layer. In this case, one either specifies the parameter ​pooling​ to 
None​ or not specify it, which is the default setting. 
 
In the code example below, we replace the final pooling/flattening layer with a flattening (no 
pooling) layer. 
 

from​ keras​.​applications ​import​ ​ResNet50 
from​ keras​.​layers ​import​ ​Dense​,​ ​Flatten 
from​ keras ​import​ ​Model 
 

# Get a pre-built model for input shape (100,100,3) and without the classifier 

model ​=​ ​ResNet50​(​include_top​=​False​,​ input_shape​=(​100​,​ ​100​,​ ​3​),​ pooling​=​None​) 
 

# Flatten the Feature Maps into a 1D vector 

output ​=​ ​Flatten​()(​model​.​output​) 
 

# Add a classifier for 20 classes 

output ​=​ ​Dense​(​20​,​ activation​=​'softmax'​)(​output​) 
 

# Compile the model for training 

model ​=​ ​Model​(​model​.​input​,​ output​) 
model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​'adam'​,  
              metrics​=[​'accuracy'​]) 
 

# Now train the model 
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Transfer Learning 
 
Transfer learning is where one uses pretrained models for one task and retrains the classifier 
and/or fine-tune layers for a new task, similar to what was discussed above in the subsection on  
New Classifier​. 
 
There are two general approaches to transfer learning: 
 

● Similar Tasks (Image Domains) 
● Distinct Tasks 

 
Similar Tasks 
 
When deciding on the approach, we look at the similarity of the source (pre-trained) domain of 
images and the destination (new) domain. The more similar, the more of the existing bottom 
layers we can reuse without retraining. For example, if one had a model trained on fruits, it’s 
likely that all of the bottom layers of the pretrained model can be reused without retraining for 
building a new model to recognize vegetables. 
 
That is, we are assuming that the coarse features learned at the bottom-most layers will be the 
same for the new classifier, and learning finer details from the coarser details in the middle and 
final layers, all can be reused as-is, prior to entering the topmost layer(s) for classification.  
 
When the source and destination domains have this high level of similarity, we generally can 
replace the existing topmost classifier layer with a new classifier layer, freeze the lower layers 
and train only the classifier layer. Since we don’t need to learn the weights/biases for the other 
layers, we can generally train a model for the new domain with substantially less data and fewer 
epochs. 
 
While having more data is always better, transfer learning between similar source and 
destination domains provides the ability to train with substantially smaller datasets. The two best 
practices for the minimum size of the dataset are: 
 

- Each class (label) is 10% as big as in the source dataset. 
- Each class (label) has at least 100 images. 

 
In contrast to the method shown for the ​New Classifier​, we modify the code to freeze all the 
layers preceding the topmost classifier layer prior to training. Freezing prevents the 
weights/biases of these layer(s) from being updated (retrained) during training of the classifier 
(topmost) layer. In Keras, each layer has the property ​freeze​, which defaults to ​True​.  
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The code example below will: 
 

1. Use a pre-built model with pre-trained weights/biases (ImageNet 2012),  
2. Drop the existing classifier from the pre-built model (topmost layer). 
3. Freeze the remaining layers. 
4. Add a new classifier layer. 
5. Train the model through transfer learning. 

 

from​ keras​.​applications ​import​ ​ResNet50 
from​ keras​.​layers ​import​ ​Dense 
from​ keras ​import​ ​Model 
 

# Get a pre-trained/pre-built model without the classifier and retain the global  

# average pooling # layer following the final convolution (bottleneck) layer 

model ​=​ ​ResNet50​(​include_top​=​False​,​ pooling​=​'avg'​,​ weights​=​'imagenet'​) 
 

# Freeze the weights of the remaining layer 

for​ layer ​in​ model​.​layers​: 
    layer​.​trainable ​=​ ​False 
 

# Add a classifier for 20 classes 

output ​=​ ​Dense​(​20​,​ activation​=​'softmax'​)(​model​.​output​) 
 

# Compile the model for training 

model ​=​ ​Model​(​model​.​input​,​ output​) 
model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​'adam'​,  
              metrics​=[​'accuracy'​]) 
 

# Now train the model 

 
Note in the above code example, we retained the original input shape (i.e., 224, 224, 3). In 
practice, if we changed the input shape the pre-existing trained weights/biases won’t match the 
resolution of the feature extraction they were trained on. In this case, it’s better to handle this as 
a distinct task case. 
 
Distinct Task 
 
When the source and destination domain of the image datasets are non-similar, one starts with 
the same steps as in the similar task approach above, but then follows up with fine-tuning the 
bottom layers. The steps in this approach generally are: 
 

1. Add a new classifier layer and freeze the remaining layer. 
2. Train the new classifier layer for the target number of epochs. 
3. Repeat for fine-tuning: 
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a. Unfreeze the next bottom-most convolutional group (moving in direction of top to 
bottom) 

b. Train for a few epochs to fine-tune. 
4. Once the convolutional groups are fine-tuned: 

a. Unfreeze the convolutional stem group 
b. Train for a few epochs to fine-tune 

 

 
 
The code example below demonstrates first a coarse training for the add classifier level, 
followed by fine-tuning of each convolutional group and finally the stem convolutional group, 
where: 
 

1. The classifier layer is trained with 50 epochs. 
2. Each convolutional group from top-most to bottom-most, along with predecessors is 

trained for 5 epochs. 
3. The stem convolutional (and hence whole model) is trained for an additional 5 epochs. 

 

from​ keras​.​applications ​import​ ​ResNet50 
from​ keras​.​layers ​import​ ​Dense 
from​ keras ​import​ ​Model 
import​ keras​.​layers 
 

# Get a pre-trained/pre-built model without the classifier and retain the global  

# average pooling # layer following the final convolution (bottleneck) layer 

model ​=​ ​ResNet50​(​include_top​=​False​,​ pooling​=​'avg'​,​ weights​=​'imagenet'​) 
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# Freeze the weights of the remaining layer 

for​ layer ​in​ model​.​layers​: 
    ​Layer​.​trainable ​=​ ​False 
 

# Add a classifier for 20 classes 

output ​=​ ​Dense​(​20​,​ activation​=​'softmax'​)(​model​.​output​) 
 

# Compile the model for training 

model ​=​ ​Model​(​model​.​input​,​ output​) 
model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​'adam'​,  
              metrics​=[​'accuracy'​]) 
 

# Train the classifier 

model​.​fit​(​x_data​,​ y_data​,​ batch_size​=​32​,​ epochs​=​50​,​ validation_split​=​0.2​) 
 

stem ​=​ ​None​ ​# layer that is the convolutional layer for the stem group 
groups ​=​ ​[]​ ​# the add layer for each convolutional group 
conv2d ​=​ ​[]​ ​# the convolutional layers of a group 
 

first_conv2d ​=​ ​True 
for​ layer ​in​ model​.​layers​: 
        ​if​ type​(​layer​)​ ​==​ layers​.​convolutional​.​Conv2D​: 
        ​# In ResNet50, the first Conv2D is the stem convolutional layer 
        ​if​ first_conv2d ​==​ ​True​: 
                stem ​=​ layer 
                first_conv2d ​=​ ​False 
        ​# Keep list of convolutional layers per convolutional group 
        ​else​: 
                conv2d​.​append​(​layer​) 
        ​# Each convolutional group in Residual Networks ends with a Add layer. 
        ​# Maintain list in reverse order (top-most conv group is top of list) 
        ​elif​ type​(​layer​)​ ​==​ layers​.​merge​.​Add​: 
                groups​.​insert​(​0​,​ conv2d​) 
                conv2d ​=​ ​[] 
 

# Unfreeze a convolutional group at a time (from top-most to bottom-most) 

# And fine-tune (train) that layer 

for​ i ​in​ range​(​1​,​ len​(​groups​)): 
       ​# Unfreeze the convolutional layers in this conv/residual group 
        ​for​ layer ​in​ groups​[​i​]: 
            layer​.​trainable ​=​ ​True 
 

       ​# re-compile the model for training 
       model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​'adam'​,  
                     metrics​=[​'accuracy'​]) 
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        ​# Fine-tune train the convolutional group(s) 
        model​.​fit​(​x_data​,​ y_data​,​ batch_size​=​32​,​ epochs​=​5​) 
 

# Unfreeze the stem convolutional and do a final fine-tuning 

stem​.​trainable ​=​ ​True 
model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​'adam'​,  
              metrics​=[​'accuracy'​]) 
model​.​fit​(​x_data​,​ y_data​,​ batch_size​=​32​,​ epochs​=​5​,​ validation_split​=​0.2​) 

 
Note in the above example, when unfreezing layers for fine-tuning, the model must be 
re-compiled prior to issuing the next training session. 
 
Domain Specific Weights 
 
In the previous examples, we initialized the frozen layers of the model with weights learned from 
the​ ImageNet 2012​ dataset. One may desire to have pre-trained weights from a specific 
domain, other than the​ ImageNet 2012​. In the code example below, we first train a ResNet50 
pre-built architecture for a specific domain (e.g., produce) and then subsequently use the 
pretrained domain specific weights and initialization to train another ResNet50 model in a similar 
domain. 
 
To do so, the code does the following: 
 

1. Instantiate an uninitialized ResNet50 model without the classifier and pooling layer, 
which we designate as the base model. 

2. Save the base model architecture for later reuse in transfer learning 
(​produce-model.json​). 

3. Add a classifier (​Flatten​ and ​Dense​ layers) and train for a specific (source) domain 
(e.g., produce). 

4. Save the weights for the trained model (​produce-weights.h5​) 
5. Load the base model architecture (`model-produce.json), which does not contain the 

classifier layer. 
6. Initialize the base model architecture with the pretrained weights for the source domain 

(​model-produce.h5​). 
7. Add a classifier for the new similar domain. 
8. Train the model/classifier for the new similar domain. 

 

from​ keras​.​applications ​import​ ​ResNet50 
from​ keras ​import​ ​Model 
from​ keras​.​layers ​import​ ​Dense​,​ ​Flatten 
from​ keras​.​models ​import​ load_model​,​ model_from_json 
 

model ​=​ ​ResNet50​(​include_top​=​False​,​ pooling​=​None​,​ input_shape​=(​100​,​ ​100​,​ ​3​)) 
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# save the base model 

base_model ​=​ model​.​to_json​()​# Write the JSON string to a file 
with​ open​(​'produce-model.json'​,​ ​'w'​)​ ​as​ f​:​   
        f​.​write​(​base_model​) 
 

# Add classifier 

output ​=​ ​Flatten​(​name​=​'bottleneck'​)(​model​.​output​) 
output ​=​ ​Dense​(​20​,​ activation​=​'softmax'​)(​output​) 
 

# do training here 

 

# save the model weights 

model​.​save_weights​(​'produce-weights.h5'​) 
 

# Read the JSON string for the base model from a file 

with​ open​(​'produce-model.json'​,​ ​'r'​)​ ​as​ f​:​   
        base_model ​=​ f​.​read​() 
 

# Reuse the base model and trained weights 

model ​=​ model_from_json​(​base_model​) 
model​.​load_weights​(​'produce-weights.h5'​) 
 

# Add classifier 

output ​=​ ​Flatten​(​name​=​'bottleneck'​)(​model​.​output​) 
output ​=​ ​Dense​(​20​,​ activation​=​'softmax'​)(​output​) 
 

# Compile the model 

model ​=​ ​Model​(​model​.​input​,​ output​) 
model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​'adam'​, 
metrics​=[​'accuracy'​]) 
     

# train the new model for a new dataset 

 
Domain Transfer Weight Initialization 
 
Another form of transfer learning is the transfer of domain specific weights to use as weight 
initialization in a model one will otherwise fully retrain. In this case, one is trying to improve on 
using an initializer based on a random weight distribution algorithm (e.g., Xavier for tanh and 
He-Normal for ReLU activation functions). After the hyperparameters have been selected, it’s 
common practice to start training several instances of the model in parallel with different 
instances of the weight initialization. The rate of convergence and accuracy of the validation 
data are then monitored to identify instances that may converge on poorer local optima, which 
are then terminated. As training proceeds, eventually all but one of the training sessions is 
terminated, with the final training session running to completion. 
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The assumption is that the differences in the weight initialization may cause some training 
sessions to prematurely dive down into a poorer local optima. So one hedges their bet by 
initiating several training sessions, each with a different random distribution of the weight 
initialization. 
 
Transferring of domain specific weights is a one-shot weight initialization approach. The 
presumption is to generate a set of weight initialization that is generalized enough that model 
training will lead to the best local (or global) optima. Ideally during initial training, the weights of 
the model will:: 
 

● Point in the general right direction for convergence. 
● Be over generalized to prevent diving into an arbitrary local optima. 
● Be used as the initialization weights for a single (one-shot) training session which will 

converge on the best local optima. 
 
The steps for this form of weight initialization are: 
 

1. Instantiate a model, with a random weight distribution (Xavier, He-Normal, etc). 
2. Use high level of dropout and/or regularization to prevent fitting to the data. 
3. Run a few epochs. 
4. Save the weights. 
5. Start a full training session using the saved weights. 

 

from​ keras​.​applications ​import​ ​ResNet50 
from​ keras ​import​ ​Model 
from​ keras​.​layers ​import​ ​Dense​,​ ​Flatten 
 

# Instantiate base model with default weight initialization (i.e., He-Normal) 

model ​=​ ​ResNet50​(​include_top​=​False​,​ pooling​=​None​,​ input_shape​=(​100​,​ ​100​,​ ​3​)) 
 

# save the base model 

base_model ​=​ model​.​to_json​()​# Write the JSON string to a file 
with​ open​(​'model.json'​,​ ​'w'​)​ ​as​ f​:​   
        f​.​write​(​base_model​) 
 

# Add a dropout layer and classifier to the base ResNet Model 

output ​=​ layers​.​Dropout​(​0.75​)(​model​.​output​) 
output ​=​ layers​.​Dense​(​20​,​ activation​=​'softmax'​)(​output​) 
model  ​=​ ​Model​(​model​.​input​,​ output​) 
 

# do pre-training here for a few epochs (e.g., 5 epochs) 

 

# save the model weights as the weight initializer 
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model​.​save_weights​(​'weights-init.h5'​) 
 

# Read the JSON string for the base model from a file 

with​ open​(​'model.json'​,​ ​'r'​)​ ​as​ f​:​   
        base_model ​=​ f​.​read​() 
 

# Reuse the base model 

model ​=​ model_from_json​(​base_model​) 
 

# Initialize the weights using domain transfer weight initialization 

model​.​load_weights​(​'weights-init.h5'​) 
 

# Add classifier without Dropout 

output ​=​ ​Dense​(​20​,​ activation​=​'softmax'​)(​model​.​output​) 
 

model ​=​ ​Model​(​model​.​input​,​ output​) 
model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​'adam'​, 
metrics​=[​'accuracy'​]) 
     

# train the new model 

 
Negative Transfer 
 
In some cases one will find that transfer learning results in lower accuracy than training from 
scratch. That is, when using a pre-trained model to train a new model, the overall performance 
during training is less than what it would be if the model was not pre-trained. 
 
This is referred to as negative transfer. In this case, the source and destination domains are so 
distinct that the learned weights for the source domain cannot be reused on the destination 
domain. Additionally, when the weights are reused the the model will not converge, and quite 
possibly diverge. 
 
In general, one can usually spot negative transfer within five to ten epochs. 
 

Next 
 
In the next part, we will cover moving from exploration into a production environment with 
tf.keras and Tensorflow 2.0 
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Part 13 - Production 

Overview 
In this part, we will cover migrating from a preparation/exploratory phase to a production 
environment. This part will cover updating and replacing parts of your code from pure keras to 
tf.keras​ and ​Tensorflow (TF) 2.0​ ecosystem for a production environment. 

tf.keras 

The ​tf.keras ​is Tensorflow’s integration of the Keras layers for constructing models using the 
Sequential and Functional API. This version of the API is optimized for Tensorflow and will execute 
(training) at faster speeds than pure Keras. The current best practice for using Keras in a production 
environment is to use tf.keras implementation. 

Tensorflow (TF) 2.0 

The ​Tensorflow 2.0​ ecosystem provides high speed performance in feeding, distributed training, 
quantization of models and model serving (in conjunction with ​TFX Serving​). The current best 
practice for using Keras in a production environment is to use the TF 2.0 ecosystem. 

Migrating Models to tf.keras 

Migrating your pure Keras models to tf.keras is fairly straightforward for TF 1.14 version, while a few 
extra steps are required for TF 2.0, which is currently in alpha as of this writing. We will first cover 
the migration to TF 1.14. 

The first step is to update your Tensorflow implementation to the last pre-2.0 release, which is 
version 1.14, using the ​pip​ on the command line (terminal or console). 
 

cmd​>​ pip install ​-​U tensorflow 

 
From a python shell (or notebook), you can verify that the current installed version of Tensorflow 
is 1.14 as follows: 
 

import​ tensorflow ​as​ tf 
# should output '1.13.1' 

print​(​tf​.​__version__​) 
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You generally only need to make the following changes: 
 

● Change all the ​import/from keras.xxx​ statements to ​import/from 
tensorflow.keras.xxx​. 

● When checkpointing, tf.keras will default to the Tensorflow checkpointing format (yaml). 
Add the parameter ​save_format=’h5’​ to save to Keras checkpointing format (HDF5). 
 

In the example below is a simple DNN multi-class classifier that is trained with the Keras builtin 
dataset for MNIST. 
 

# imports as pure Keras 

from​ keras ​import​ ​Sequential​,​ ​Input​,​ optimizers 
from​ keras​.​layers ​import​ ​Dense​,​ ​Flatten 
from​ keras​.​datasets ​import​ mnist 
from​ keras​.​utils ​import​ to_categorical 
import​ numpy ​as​ np 
 

# Keras builtin dataset 

(​x_train​,​ y_train​),​ ​(​x_test​,​ y_test​)​ ​=​ mnist​.​load_data​() 
 

# Data preprocessing 

x_train ​=​ ​((​x_train ​/​ ​255.0​).​astype​(​np​.​float​)).​reshape​(-​1​,​ ​28​,​ ​28​,​ ​1​) 
x_test  ​=​ ​((​x_test  ​/​ ​255.0​).​astype​(​np​.​float​)).​reshape​(-​1​,​ ​28​,​ ​28​,​ ​1​) 
 

# Label encoding 

y_train ​=​ to_categorical​(​y_train​) 
y_test  ​=​ to_categorical​(​y_test​) 
 

# Build a DNN multi-class classifier 

model ​=​ ​Sequential​() 
model​.​add​(​Flatten​(​input_shape​=(​28​,​ ​28​,​ ​1​))) 
model​.​add​(​Dense​(​512​,​ activation​=​'relu'​)) 
model​.​add​(​Dense​(​512​,​ activation​=​'relu'​)) 
model​.​add​(​Dense​(​10​,​ activation​=​'softmax'​)) 
 

# Compile the model 

model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​optimizers​.​Adam​(),  

              metrics​=[​'accuracy'​]) 
 

# Train the model 

model​.​fit​(​x_train​,​ y_train​,​ epochs​=​10​,​ batch_size​=​32​,  
          validation_data​=(​x_test​,​ y_test​)) 

 
  

Copyright(c), 2019, Google, LLC 
59 



In the example below, we made the following changes to migrate the model from pure Keras to 
tf.keras: 
 

● Add import of tensorflow 
● Import model classes from tf.keras 

 
 

# imports as tf.keras 

import​ tensorflow ​as​ tf 
from​ tensorflow​.​keras ​import​ ​Sequential​,​ ​Input​,​ optimizers 
from​ tensorflow​.​keras​.​layers ​import​ ​Dense​,​ ​Flatten 
from​ tensorflow​.​keras​.​datasets ​import​ mnist 
from​ tensorflow​.​keras​.​utils ​import​ to_categorical 
import​ numpy ​as​ np 
 

# Keras builtin dataset 

(​x_train​,​ y_train​),​ ​(​x_test​,​ y_test​)​ ​=​ mnist​.​load_data​() 
 

# Data preprocessing 

x_train ​=​ ​((​x_train ​/​ ​255.0​).​astype​(​np​.​float​)).​reshape​(-​1​,​ ​28​,​ ​28​,​ ​1​) 
x_test  ​=​ ​((​x_test  ​/​ ​255.0​).​astype​(​np​.​float​)).​reshape​(-​1​,​ ​28​,​ ​28​,​ ​1​) 
 

# Label encoding 

y_train ​=​ to_categorical​(​y_train​) 
y_test  ​=​ to_categorical​(​y_test​) 
 

# Build a DNN multi-class classifier 

model ​=​ ​Sequential​() 
model​.​add​(​Flatten​(​input_shape​=(​28​,​ ​28​,​ ​1​))) 
model​.​add​(​Dense​(​512​,​ activation​=​'relu'​)) 
model​.​add​(​Dense​(​512​,​ activation​=​'relu'​)) 
model​.​add​(​Dense​(​10​,​ activation​=​'softmax'​)) 
 

# Compile the model 

model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​Adam​(), 
metrics​=[​'accuracy'​]) 
 

# Train the model 

model​.​fit​(​x_train​,​ y_train​,​ epochs​=​10​,​ batch_size​=​32​,​ validation_data​=(​x_test​,  
          y_test​)) 
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Tensorflow Dataset API 
 
In the Tensorflow production environment, if the dataset is in-memory and small, then the 
recommendation is to use ​numpy​ multi-dimensional arrays as inputs, as in the above examples. 
 
If you use large datasets, or distributed training, the recommendation is to use the Tensorflow 
Dataset API. The Dataset API provides the ability to create in-memory iterators using 
tf.data.Dataset​ which provides both maximum efficiency for feeding a neural network, as 
well as support for distributed training. 
 
In the updated example below, we: 
 

● Convert ​x_train​ and ​y_train​ to a ​tf.data.Dataset​ (dataset) using 
tf.data.Dataset.from_tensor_slices(). 

● Convert ​x_test​ and ​y_test​ to a ​tf.data.Dataset​ (test_dataset). 
● Set parameters for the dataset iterators: batch size = 32 (​.batch(32)​), shuffle 

(​.shuffle(512)​) and repeat (​.repeat()​). 
● Update the ​fit()​ method using the dataset iterators. 

 
Note, that we add setting the number of steps per epoch. We do this because 
tf.data.dataset​ is an iterator (not an array), and thus we need to tell the iterator how many 
batches there are in the training data. In this case, we divide the length of the training data by 
the ​batch_size​ to calculate the number of steps. 
 

# imports as tf.keras 

import​ tensorflow ​as​ tf 
from​ tensorflow​.​keras ​import​ ​Sequential​,​ ​Input​,​ optimizers 
from​ tensorflow​.​keras​.​layers ​import​ ​Dense​,​ ​Flatten 
from​ tensorflow​.​keras​.​datasets ​import​ mnist 
from​ tensorflow​.​keras​.​utils ​import​ to_categorical 
import​ numpy ​as​ np 
 

# Keras builtin dataset 

(​x_train​,​ y_train​),​ ​(​x_test​,​ y_test​)​ ​=​ mnist​.​load_data​() 
 

# Data preprocessing 

x_train ​=​ ​((​x_train ​/​ ​255.0​).​astype​(​np​.​float​)).​reshape​(-​1​,​ ​28​,​ ​28​,​ ​1​) 
x_test  ​=​ ​((​x_test  ​/​ ​255.0​).​astype​(​np​.​float​)).​reshape​(-​1​,​ ​28​,​ ​28​,​ ​1​) 
 

# Label encoding 

y_train ​=​ to_categorical​(​y_train​) 
y_test  ​=​ to_categorical​(​y_test​) 
 

# Set the batch_size 
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# TF dataset iterator (training) 

dataset ​=​ tf​.​data​.​Dataset​.​from_tensor_slices​((​x_train​,​ y_train​)) 
dataset ​=​ dataset​.​batch​(​batch_size​) 
dataset ​=​ dataset​.​shuffle​(​512​) 
dataset ​=​ dataset​.​repeat​() 
 

# TF dataset iterator (test) 

test_dataset ​=​ tf​.​data​.​Dataset​.​from_tensor_slices​((​x_test​,​ y_test​)) 
test_dataset ​=​ test_dataset​.​batch​(​batch_size​) 
 

# Build a DNN multi-class classifier 

model ​=​ ​Sequential​() 
model​.​add​(​Flatten​(​input_shape​=(​28​,​ ​28​,​ ​1​))) 
model​.​add​(​Dense​(​512​,​ activation​=​'relu'​)) 
model​.​add​(​Dense​(​512​,​ activation​=​'relu'​)) 
model​.​add​(​Dense​(​10​,​ activation​=​'softmax'​)) 
 

# Compile the model 

model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​tf​.​train​.​AdamOptimizer​(),  
              metrics​=[​'accuracy'​]) 
 

# Train the model 

model​.​fit​(​dataset​,​ epochs​=​10​,​ steps_per_epoch​=​len​(​x_train​)​//batch_size,  

          validation_data​=​test_dataset​,​ validation_steps​=​len​(​x_test​)​//batch_size) 

 
Repeat() 
 
The ​repeat()​ method specifies the number of times to repeat feeding the entire dataset 
(epoch) during training. If no value is specified, then by default it will repeat forever. When using 
in conjunction with the Keras ​fit()​ method, where one specifies the number of epochs, no 
value should be specified for ​repeat()​, as shown above. 
 
Shuffle() 
 
The ​shuffle()​ method specifies shuffling the dataset per epoch when feeding the dataset. By 
default, the dataset is not shuffled, thus each pass will see the same ordering of images in the 
batches. The ​shuffle()​ method takes a single parameter ​buffer_size​. This specifies the 
number of elements (i.e., images) to randomly shuffle in place. A value of 1 would be no 
shuffling. If the dataset fits entirely in memory, then a value equal to the size of the dataset (i.e., 
len(x_train)) would do a uniform shuffling across the entire dataset. Otherwise, the dataset is 
shuffled a segment at a time. For example, a ​shuffle(512)​ will shuffle 512 images at a time. 
 
Batch() 
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The ​batch()​ method specifies the batch size when feeding. In other words, the tf.data.dataset 
iterator will return this many examples (e.g., images) from the training data per iteration. 
 
Prefetch() 
 
The prefetch() method is used when training on multi-core CPU or in conjunction with a 
CPU+GPU. Image preprocessing steps and feeding during training are the I/O intensive 
operations and generally are most efficiently done on the CPU, while the matrix operations 
during training are most efficient on the GPU. 
 
By default, the image preprocessing/feeding and training are done serially, which can lead to I/O 
bottlenecking on the GPU. When prefetch is set to 1, another thread will be run on the CPU to 
be generating the next mini-batch while the current mini-batch is being fed and trained. Below is 
a code example of setting the prefetch attribute; note how the methods can be chained together: 
 

dataset ​=​ dataset​.​batch​(​32​).​shuffle​(​512​).​repeat​().​pretch​(​1​) 

 
Note, in our earlier example we only specified ​batch()​ for the test data. Since the test data is 
only forward feed once (no backward propagation), there is no need to specify ​shuffle()​ or 
repeat()​. 
 
TFRecords 
 
Another alternate method to feeding data from disk to a model while training is to use 
Tensorflow’s ​TFRecord​ file format. This format is a binary format that was originally designed for 
efficient serialization of structured data using Google’s protocol buffer definitions. The fine 
details of the format are beyond the scope of this section; instead we will cover just how the 
format has been utilized for images for training CNNs.  
 
The format has similarities to both a Python dictionary and JSON objects. A sample (e.g., 
image) and corresponding metadata are encapsulated within a ​tf.Example​ class object. A 
tf.Example​ object consists of a list of one or more ​tf.train.Feature​ entries. Each feature 
entry can be of one of three data types: 
 

● tf.train.ByteList 
● tf.train.FloatList 
● tf.train.Int64List 

 
The ​tf.train.ByteList​ is used for sequences of bytes or a string. A ​tf.train.FloatList​ is 
used for 32-bit (single precision) or 64-bit (double precision) float point numbers. A 
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tf.train.Int64List​ is used for both 32-bit and 64-bit signed and unsigned integers, and 
booleans. 
 
There are several common practices for encoding image data into ​TFRecord​ format, of which 
share the following in common: 
 

● A Feature entry for encoding of the image data. 
● A Feature entry for the image shape (for reconstruction). 
● A Feature entry for the corresponding label. 

 
Below is a generic example of defining a ​tf.train.Example​ for encoding an image, where the 
/entries here/ are the dictionary entries for the image data and corresponding metadata: 
 

example ​=​ tf​.​train​.​Example​(​features ​=​ ​{​ ​/entries here/​ ​}) 

 
Let’s start with the basics. In the code below we create a ​TFRecord​ object for an image which 
has not been decoded --i.e., in the compressed on-disk format. The benefit with this approach is 
that we use the least amount of disk space when ​TFRecord​ is stored. The drawback is that each 
time we read the ​TFRecord​ from disk while feeding the neural network during training, the 
image data must be uncompressed --which is a time vs. space trade-off. 
 
In the code example below, we define a function for converting an on-disk image file (parameter 
path​) and corresponding label (parameter ​label​) as follows: 
 

● The on-disk image is first read in and uncompressed into a raw bitmap using OpenCV 
method ​cv2.imread()​ to obtain the shape of the image (i.e., rows, columns, channels). 

● The on-disk image is read in a second time using ​tf.gfile.FastGFile()​ in its original 
compressed format. Note, the ​tf.gfile.FastGFile()​ is equivalent to a ​open()​, but if 
the image is stored on GCS bucket, the method is optimized for I/O read/write 
performance. 

● A ​tf.train.Example()​ is instantiated with three dictionary entries for the features 
object: 

○ image - a ​BytesList​ for the uncompressed (original on-disk data) image data. 
○ label - a ​Int64List​ for the label value. 
○ shape - a ​Int64List​ for the tuple (rows, height, channels) shape of the image. 

 
In our example, if we assume that the size of the on-disk image is 24K bytes, then the size of 
the ​TFRecord​ file will be about 25K bytes. 
 

import​ tensorflow ​as​ tf 
import​ numpy ​as​ np 
import​ sys 

Copyright(c), 2019, Google, LLC 
64 



import​ cv2 
 

def​ ​TFRecordImage​(​path​,​ label​): 
        ​''' The original compressed version of the image ''' 
     

        ​# read in (and uncompress) the image to get its shape 
        image ​=​ cv2​.​imread​(​path​) 
        shape ​=​ image​.​shape 
     

        ​# read in the image a second time for the original bytes (not uncompressed) 
        ​with​ tf​.​gfile​.​FastGFile​(​path​,​ ​'rb'​)​ ​as​ fid​: 
            disk_image ​=​ fid​.​read​() 
          

        ​# make the record 
        ​return​ tf​.​train​.​Example​(​features ​=​ tf​.​train​.​Features​(​feature ​=​ ​{ 
        ​'image'​:​ tf​.​train​.​Feature​(​bytes_list ​=​ tf​.​train​.​BytesList​(​value ​=  
                                  ​[​disk_image​])), 
        ​'label'​:​ tf​.​train​.​Feature​(​int64_list ​=​ tf​.​train​.​Int64List​(​value ​=  
                                  ​[​label​])), 
        ​'shape'​:​ tf​.​train​.​Feature​(​int64_list ​=​ tf​.​train​.​Int64List​(​value ​=  
                                  ​[​shape​[​0​],​ shape​[​1​],​ shape​[​2​]])) 
        ​})) 
 

example ​=​ ​TFRecordImage​(​'example.jpg'​,​ ​0​) 
# output would be something like: 25,000 

print​(​example​.​ByteSize​()) 

 
In the next code example, we now store the uncompressed image data in the ​TFRecord​. This 
has the benefit of only reading the image from disk once, and it does not need to be 
uncompressed each time the ​TFRecord​ is read from disk during training. The drawback is that 
the size of the record will be substantially larger than the on-disk version of the image. In the 
above example, assuming a 95% JPEG compression, the size of the ​TFRecord​ would be 500K 
bytes. Note, in the ​BytesList​ encoding of the image data, the ​np.uint8​ data format is 
retained. 
 

def​ ​TFRecordImageUncompressed​(​path​,​ label​): 
        ​''' The uncompressed version of the image ''' 
     

        ​# read in (and uncompress) the image 
        image ​=​ cv2​.​imread​(​path​) 
        shape ​=​ image​.​shape 
          

        ​# make the record 
        ​return​ tf​.​train​.​Example​(​features ​=​ tf​.​train​.​Features​(​feature ​=​ ​{ 
        ​'image'​:​ tf​.​train​.​Feature​(​bytes_list ​=​ tf​.​train​.​BytesList​(​value ​=  
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                                  ​[​image​.​tostring​()])), 
        ​'label'​:​ tf​.​train​.​Feature​(​int64_list ​=​ tf​.​train​.​Int64List​(​value ​=  
                                  ​[​label​])), 
        ​'shape'​:​ tf​.​train​.​Feature​(​int64_list ​=​ tf​.​train​.​Int64List​(​value ​=  
                                  ​[​shape​[​0​],​ shape​[​1​],​ shape​[​2​]])) 
        ​})) 
 

example ​=​ ​TFRecordImageUncompressed​(​'example.jpg'​,​ ​0​) 
# output would be something like: 500,000 

print​(​example​.​ByteSize​()) 

 
In our final code example, we first normalize the pixel data (i.e., dividing by 255) and store the 
normalized image data. The advantage to this method is that we do not need to normalize the 
pixel data each time the ​TFRecord​ is read from disk during training. The drawback is that now 
the pixel data is stored as a ​np.float32​, which is four times bigger than the corresponding 
np.uint8​. Assuming the same above image example, the size of the ​TFRecord​ will now be 2M 
bytes. 
 

def​ ​TFRecordImageNormalized​(​path​,​ label​): 
        ​''' The normalized version of the image ''' 
     

        ​# read in (uncompress) the image and normalize the pixel data 
        image ​=​ ​(​cv2​.​imread​(​path​)​ ​/​ ​255.0​).​astype​(​np​.​float32​) 
        shape ​=​ image​.​shape 
          

        ​# make the record 
        ​return​ tf​.​train​.​Example​(​features ​=​ tf​.​train​.​Features​(​feature ​=​ ​{ 
        ​'image'​:​ tf​.​train​.​Feature​(​bytes_list ​=​ tf​.​train​.​BytesList​(​value ​=  
                                  ​[​image​.​tostring​()])), 
        ​'label'​:​ tf​.​train​.​Feature​(​int64_list ​=​ tf​.​train​.​Int64List​(​value ​=  

                                  ​[​label​])), 
        ​'shape'​:​ tf​.​train​.​Feature​(​int64_list ​=​ tf​.​train​.​Int64List​(​value ​=  
                                  ​[​shape​[​0​],​ shape​[​1​],​ shape​[​2​]])) 
        ​})) 
 

example ​=​ ​TFRecordImageNormalized​(​'example.jpg'​,​ ​0​) 
# output should be something like: 2,000,000 

print​(​example​.​ByteSize​()) 

 
Now that we have constructed a ​TFRecord​ in memory, the next step is to write the record to 
disk. To maximize the efficiency of writing to and reading back from on-disk storage, the records 
are serialized to a string format for storing in Google’s ​protocol buffer​ format. In the code 
example below, the ​tf.python_io.TFRecordWriter​ is an object which will write a serialized 
record to a file in Google’s ​protocol buffer​ format. It is also a common convention when 
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writing a ​TFRecord​ to disk, to use the suffix ​.tfrecord​ in the file name. 
  

# Create a writer for writing a TFRecord in protocol buffer format 

with​ tf​.​python_io​.​TFRecordWriter​(​'example.tfrecord'​)​ ​as​ writer​: 
        writer​.​write​(​example​.​SerializeToString​()) 

 
A on-disk ​.tfrecord​ file may contain multiple ​TFRecord​ objects. Below is a code example of 
writing multiple serialized ​TFRecords​ to a ​.tfrecord​ file: 
 

with​ tf​.​python_io​.​TFRecordWriter​(​'example.tfrecord'​)​ ​as​ writer​: 
        ​# examples is a list of TFRecords, one per image 
        ​for​ example ​in​ examples​: 
            writer​.​write​(​example​.​SerializeToString​()) 

 
The next code example demonstrates how to read each ​TFRecord​ from a ​.tfrecord​ file in 
sequential order. In the example below we assume that the file example.tfrecord contains 
multiple serialized ​TFRecords​. The ​tf.python_io.record_interator()​ creates an iterator 
object, that when used in a for statement will read into memory each serialized ​TFRecord​ in 
sequential order. The method ​ParseFromString()​ is used to deserialize the data into an 
in-memory ​TFRecord​ format. 
 

# create an iterator for iterating through TFRecords in sequential order 

iterator ​=​ tf​.​python_io​.​tf_record_iterator​(​'example.tfrecord'​) 
for​ record ​in​ iterator​: 
        ​# each record is read in as a serialized string 
        example ​=​ tf​.​train​.​Example​() 
        ​# convert the serialized string to a TFRecord 
        example​.​ParseFromString​(​record​) 

 
Alternatively, we can read and iterate through a set of ​TFRecord​ from a ​.tfrecord​ file using 
the ​tf.data.TFRecordDataset​ class. In the code example below, we: 
 

● Instantiate a​ tf.data.TFRecordDataset​ object as an iterator for the on-disk records. 
● Define the dictionary ​feature_description​ to specify how to deserialize the serialized 

TFRecord​. 
● Define the helper function ​_parse_function()​ for taking a serialized ​TFRecord​ (proto) 

and deserializing it using the dictionary ​feature_description​. 
● Use the ​map()​ method to iteratively deserialize each ​TFRecord​. 

 
 

# create an iterator for the on-disk dataset 
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dataset ​=​ tf​.​data​.​TFRecordDataset​(​'example.tfrecord'​) 
 

# create a dictionary description for deserializing a TFRecord 

feature_description ​=​ ​{ 
    ​'image'​:​ tf​.​FixedLenFeature​([],​ tf​.​string​), 
    ​'label'​:​ tf​.​FixedLenFeature​([],​ tf​.​int64​), 
    ​'shape'​:​ tf​.​FixedLenFeature​([],​ tf​.​int64​), 
} 

 

def​ _parse_function​(​proto​): 
    ​''' parse the next serialized TFRecord using the feature description ''' 
    ​return​ tf​.​parse_single_example​(​proto​,​ feature_description​) 
 

parsed_dataset ​=​ dataset​.​map​(​_parse_function​) 

 
If we print ​parsed_dataset​, the output should be: 
 

<MapDataset​ shapes: {image: (), shape: (), label: ()}, types: {image: tf.string, 
shape: tf.int64, label: tf.int64}​> 

 
 
tf.keras Saving/Restoring Model Weights 
 
In Keras, model weights are saved in a HDF5 file format. In the tf.keras implementation, by 
default they are saved in Tensorflow’s checkpoint format. 
 

# Build a DNN multi-class classifier 

model ​=​ ​Sequential​() 
model​.​add​(​Flatten​(​input_shape​=(​28​,​ ​28​,​ ​1​))) 
# lines deleted for brevity 

model​.​add​(​Dense​(​10​,​ activation​=​'softmax'​)) 
 

# Compile the model 

model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​Adam​(),  

              metrics​=[​'accuracy'​]) 
 

# Train the model 

model​.​fit​(​dataset​,​ epochs​=​10​,​ steps_per_epoch​=​len​(​x_train​)​//32,  

          validation_data​=​val_dataset​,​ validation_steps​=​len​(​x_test​)​//32) 
 

# save the model weights in TF checkpoint format. 

model​.​save_weights​(​'my-model-weights'​) 
 

# later restore the weights 
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mode​.​load_weights​(​'my-model-weights'​) 

 
To save in Keras HDF5 file format style, add the parameter ​save_format=’h5’​ to the 
save_weights()​ method: 
 

# save the model weights in Keras HDF5 format 

model​.​save_weights​(​'my-model-weights.h5'​,​ save_format​=​'h5'​) 
 

# later restore the weights 

mode​.​load_weights​(​'my-model-weights.h5'​) 

 
Checkpointing and other Callbacks 
 
When using tf.keras, one uses the tf.keras.callbacks methods for specifying callbacks (such as 
checkpointing or early stopping) in place of pure Keras methods for callbacks. The builtin 
tf.keras callbacks are: 
 

● tf.keras.callbacks.ModelCheckpoint​ - for saving checkpoints during training. 
● tf.keras.callbacks.EarlyStopping​ - for early stopping during training. 
● tf.keras.callbacks.LearningRateScheduler​ - fine-grain control of dynamically 

changing the learning rate during training. 
● tf.keras.callbacks.TensorBoard​ - Monitor the training using TensorBoard. 

 

In the code example below, a checkpoint callback is declared for each epoch, where the 
checkpoint data will be stored in a file with prefix ‘weights.’ followed by the epoch number. 

 

# create a checkpoint for each epoch 

checkpoint ​=​ tf​.​keras​.​callbacks​.​ModelCheckpoint​(​'weights.{epoch:02}'​) 
 

model​.​fit​(​dataset​,​ epochs​=​10​,​ steps_per_epoch​=​len​(​x_train​)​//32,  

          validation_data​=​val_dataset​,​ validation_steps​=​len​(​x_test​)​//32,  
          callbacks​=[​checkpoint​]) 

 
tf.keras Saving/Restoring the Model  
 
In Tensorflow 2.0, the recommendation is to save the tf.keras model and weights (when trained) 
in Tensorflow’s ​SavedModel​ format. This format is compatible across all of Tensorflow 
components, including ​TFX Serving.​ By default, for backwards compatibility, the 
tf.keras.save()​ and ​tf.keras.load_model()​ methods. 
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To save in the ​SavedModel​ format and restore, one uses the 
tf.keras.experimental.export_saved_model()​ and 
tf.experimental.load_from_saved_model()​, respectively. 
 

# Save a (un)trained tf.keras model in SavedFormat 

tf​.​keras​.​experimental​.​export_saved_model​(​model​,​ ​'my_saved_model'​) 
 

# restore (load) a tf.keras model in SavedFormat. 

model ​=​ tf​.​keras​.​experimental​.​load_from_saved_model​(​'my_saved_model'​) 

 
Converting Keras models to tf.estimators for Distributed Training (TF 1.1X) 
 
Tensorflow’s 1.1X (e.g., 1.13) Estimator-based models provide the following benefits: 

● Estimator-based models can be trained on a local host or on a distributed multi-server 
environment without changing the model.  

● Estimator-based models can be trained on CPUs, GPUs, or TPUs without recoding your 
model. 

Ic 
 

● Create and compile a tf.keras model. 
● Convert the tf.keras model to an Estimator model using 

tf.keras.estimator.model_to_estimator()​ method 
● Define an input function for feeding the estimator during training. 

○ In this example, we assume the training data is in a numpy multi-dimensional 
array, so we use the ​tf.estimator.inputs.numpy_input_fn()​ method. 

○ Set the parameters for the training image data (​x​) and labels (​y​) to the 
corresponding numpy arrays ​x_train​ and ​y_train​. 

○ Set the number of epochs to 10 and set reshuffling the training data after each 
epoch. 

● Call the estimator method ​train()​ to train the model, feeding 2000 mini-batches 
(​steps​) per epoch. 

 

from​ tensorflow​.​keras ​import​ ​Sequential​,​ ​Input​,​ optimizers 
from​ tensorflow​.​keras​.​layers ​import​ ​Dense​,​ ​Flatten 
 

# Build a DNN multi-class classifier 

model ​=​ ​Sequential​() 
model​.​add​(​Flatten​(​input_shape​=(​28​,​ ​28​,​ ​1​))) 
# … deleted for brevity 

 

# Compile the model 

Copyright(c), 2019, Google, LLC 
70 



model​.​compile​(​loss​=​'categorical_crossentropy'​,​ optimizer​=​tf​.​train​.​AdamOptimizer​(),  
              metrics​=[​'accuracy'​]) 
 

# Create an estimator model from the compiled model 

estimator ​=​ tf​.​keras​.​estimator​.​model_to_estimator​(​model​) 
 

# Make an input function for the estimator 

train_input_fn ​=​ tf​.​estimator​.​inputs​.​numpy_input_fn​( 
    x​=​x_train​, 
    y​=​y_train​, 
    num_epochs​=​10​, 
    shuffle​=​True​) 
 

# Train the estimator version of the model 

estimator​.​train​(​input_fn​=​train_input_fn​,​ steps​=​2000​) 

 
tf.distribute.Strategy for Distributed Training (TF 2.0) 
 
In Tensorflow 2.0, a tf.keras model can be used as-is for distributed training (w/o converting to 
tf.estimator), using ​tf.distribute.Strategy​. There are five distributed strategies to choose 
from. For the purpose of this handbook, we will only cover the most common strategy 
tf.distribute.Strategy​. This strategy will mirror (replicate) copies of the model to each 
compute device (e.g., GPU), feeds the replicated models with data parallelism, and implements 
a parameter server for updating the parameters on each model during backward probagation. 
 
In the code example below, we: 
 

● Set a ​tf.distribute.Strategy​ for ​MirroredStrategy​. 
● Use the ​with​ directive when building (constructing) and compiling the model. 
● Then train the model (not required to be within the ​mirrored_strategy.scope() 

 

mirrored_strategy ​=​ tf​.​distribute​.​MirroredStrategy​() 
with​ mirrored_strategy​.​scope​(): 
  model ​=​ ​…​ ​# build the model 
  model​.​compile​(...)​ ​# compile the model 
 

model​.​fit​(...) 
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Building Data Preprocessing into the Model (TF 2.0) 
 
Another recommendation of TF 2.0, is to build the data preprocessing into the graph. Prior to TF 
2.0, data preprocessing (e.g., normalization) occurred upstream from the model and was ran on 
the CPU. If the CPU was not sufficient in speed for feeding the data to the GPUs, the GPUs 
would be starved waiting for the next batch of data, and not run at their full capacity. TF 2.0 
introduced new components to move data preprocessing into the graph, which are: 
 

● Builtin data preprocessing as graph ops using Tensorflow Transform component 
(tft.transform). 

● The @tf.function decorator for converting Python code into graph ops using ​AutoGraph​. 
● Subclassing of layers to add data preprocessing to the graph as a pre-stem operation. 

 
Some of the benefits of moving data preprocessing into the graph are: 
 

● Keeping the GPUs from being I/O bottleneck so they run at full capacity. 
● Not having to re-implement the data preprocessing pipeline for prediction (inference), 

since it is built into the graph. 
● The graph optimization is applied to the transform graph operations to further improve 

their speed. 

Let's start by showing a basic template for subclassing layers and then explain it: 
 

class​ ​NewLayer​(​layers​.​Layer​): 
    ​def​ __init__​(​self​): 
        ​super​(​NewLayer​,​ ​self​).​__init__​() 
        ​self​.​my_vars ​=​ blash​,​ blah 
 

    ​def​ build​(​self​,​ input_shape​): 
        ​""" Handler for building the layer """ 
        ​self​.​kernel ​=​ blah​,​ blah 
 

    ​def​ call​(​self​,​ inputs​): 
        ​""" Handler for layer object as callable """ 
        outputs ​=​ ​do​ something ​with​ inputs 
        ​return​ outputs 

 
The first line in the above template class NewLayer(layers.Layer) indicates we want to create a 
new class object named NewLayer which is subclassed (derived) from the tf.keras layers class. 
This will give us a custom layer definition. 
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init() method (template) 

This is the initializer (constructor) for the class object instantiation. We use the initializer to               
initialize layer specific variables. 

build() method (template) 

This method handles the building of the layer when the model is compiled. A typical action is to                  
define the shape of the kernel (trainable parameters) and initialization of the kernel. 

call() method (template) 

This method handles calling the layer as a callable (function call) for execution in the graph. 

Subclassing a Custom Layer 

In the code below, we subclass a custom layer for doing preprocessing of the input, and where                 
the preprocessing is converted to graph operations in the model. 

The first line in the code class ​Normalize(layers.Layer) indicates we want to create a new               
class object named ​Normalize​ which is subclassed (derived) from the tf.keras layers class. 

init() method (custom example) 

Since we won't have any constants or variables to preserve, we don't have any need to add                 
anything to this method. 

build() method (custom example) 

Our custom layer won't have any trainable parameters. We will tell the compile process to not                
set up any gradient descent updates on the kernel during training by setting the layers class                
variable self.kernel to None. 

call() method (custom example) 

This is where we add our preprocessing. The parameter inputs is the input tensor to the layer                 
during training and prediction. A TF tensor object implements polymorphism to overload            
operators. We use the overloaded division operator, which will broadcast the division operation             
across the entire tensor --thus each element will be divided by 255.0. 

Finally, we add the decorator @tf.function to tell ​TensorFlow AutoGraph to convert convert the              
Python code in this method to graph operations in the model. 
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class​ ​Normalize​(​layers​.​Layer​): 
    ​""" Custom Layer for Preprocessing Input """ 
    ​def​ __init__​(​self​): 
        ​""" Constructor """ 
        ​super​(​Normalize​,​ ​self​).​__init__​() 
  

    ​def​ build​(​self​,​ input_shape​): 
        ​""" Handler for Input Shape """ 
        ​self​.​kernel ​=​ ​None 
  

    ​@tf​.​function 
    ​def​ call​(​self​,​ inputs​): 
        ​""" Handler for layer object is callable """ 
        inputs ​=​ inputs ​/​ ​255.0 
        ​return​ inputs 

 

Let's build a model to train on the MNIST dataset. We will keep it really basic: 
 

1. Use the Functional API method for defining the model. 
2. Make the first layer of our model the custom preprocessing layer. 
3. The remaining layers are a basic DNN for MNIST. 

 

# Create the input vector for 28x28 MNIST images 

inputs ​=​ ​Input​((​28​,​ ​28​)) 
 
# The first layer is the preprocessing layer, which is bound to the input vector 
x ​=​ Normalize()(inputs) 
 
# Next layer, we flatten the preprocessed input into a 1D vector 
x ​=​ Flatten()(x) 
 
# Create a hidden dense layer of 128 nodes 
x ​=​ Dense(​128​, activation​=​'relu'​)(x) 
 
# Create an output layer for classifying the 10 digits 
outputs ​=​ Dense(​10​, activation​=​'sigmoid'​)(x) 
 
# Instantiate the model 
model ​=​ Model(inputs, outputs) 
 
# Compile the model 
model​.​compile(loss​=​'sparse_categorical_crossentropy'​, optimizer​=​'adam'​, metrics​=​[​'acc'​]) 
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We will get the tf.keras builtin dataset for MNIST. The dataset is pre-split into train and test data. 
The data is separated into numpy multi-dimensional arrays for images and labels. The image 
data is not preprocessed --i.e., all the values are between 0 and 255. The label data is not 
one-hot-encoded --hence why we compiled with ​loss='sparse_categorical_crossentropy' 
 

from​ tensorflow​.​keras​.​datasets ​import​ mnist 
 

# Load the train and test data into memory 

(​x_train​,​ y_train​),​ ​(​x_test​,​ y_test​)​ ​=​ mnist​.​load_data​() 

 
Let's now train the model (with the preprocessing built into the model graph) on the 
unpreprocessed MNIST data. 
 

model​.​fit​(​x_train​,​ y_train​,​ epochs​=​10​,​ batch_size​=​32​,​ validation_split​=​0.1​, 
verbose​=​1​) 
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