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Parameters

Meta-Parameters  - These are the parameters for configuring macro-architecture. 

Hyper-parameters - These are the parameters for training the model.

Parameters           - These are the parameters the model will learn during training.
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Macro Architecture
def stem(inputs):
      ...

def learner(inputs, **metaparameters):
      ...

def classifier(inputs, n_classes):
      ...

inputs = Input(shape=...)

layers = stem(inputs)

layers = learner(layers, metaparameters=...)

outputs = classifier(layers, n_classes)

model = Model(inputs, outputs)

Procedural Style (Idiomatic) of 
coding the macro architecture 
of a model in TF.Keras.
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Macro Architecture
class MyModel():
      def init(self, input_shape, n_classes, **metaparameters):
            inputs = Input(shape=input_shape)
            layers = stem(inputs)

   layers = learner(layers, metaparameters)
            outputs = classifier(layers, n_classes)

   model = Model(inputs, outputs)

      def stem(self, inputs):
             ...

       def learner(self, inputs, **metaparameters):
             ...

       def classifier(self, inputs, n_classes):
              ...

OOP Style (Composable) of 
coding a model in TF.Keras.
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Micro Architecture
def learner(inputs, **metaparameters):
      ...

      for group_params in metaparameters[‘groups’]:
inputs = group(inputs, group_parameters)

def group(inputs, **metaparameters):

      for block_params in metaparameters[‘n_blocks’]:
inputs = block(inputs, block_parameters)

def block(inputs, **metaparameters):
      ...

metaparameters = {
‘groups’ :[ { n_blocks: 4, filters: 32 }, {n_blocks: 8, filters:64} ] }

Procedural Style (Idiomatic) of 
coding the micro architecture 
of a model in TF.Keras.
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Micro Architecture
class MyModel():
     metaparameters = {
     ‘groups’ :[ { n_blocks: 4, filters: 32 }, {n_blocks: 8, filters:64} 
     ] }

    def learner(self, inputs, **metaparameters):
          ...

          for group_params in metaparameters[‘groups’]:
    inputs = group(inputs, group_parameters)

    @staticmethod
    def group(inputs, **metaparameters):

         for block_params in metaparameters[‘n_blocks’]:
    inputs = block(inputs, block_parameters)

    @staticmethod
     def block(inputs, **metaparameters):
          ...

OOP Style (Composable) of 
coding the micro architecture 
of a model in TF.Keras.

@staticmethod provides 
means to tear off buildable 
micro components that afe 
configured by metaparameters 
(factory design pattern).
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Stem

This is the model 
entry part of the 
Graph.

Stem
Convolution 

Group

Pre-Stem
Group

Stem

Input

This is data 
preprocessing part 
of the Graph 
(detachable).

Initial convolutional 
layers for extracting 
coarse features, 
followed by pooling 
the coarse feature 
maps.

Data transformations 
(T in ETL) of raw 
data:

Image preprocessing
Image augmentation

post processing for 
prediction.
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VGG
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Feature Learning
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In paper, a group is called a block.
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2014 ILSVRC 1st Runner Up

Filters increase by 
2X across groups
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VGG

Conv
Layer

VGG - Convolutional Group (Micro-Architecture)

Conv
Layer

...

Delay max pooling to end of convolutional group

Input OutputMax 
Pooling
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VGG
def group(inputs, **metaparameters):

      # Block of Layers
      n_filters = metaparameters[‘n_filters’]
      for layer_params in metaparameters[‘n_layers’’]:

  inputs = Conv2D(n_filters, (3, 3), strides=(1, 1),        
                                       padding=’same’, activation=’relu’)(inputs)

       # Max Pooling (downsampling) at end of group
       inputs = MaxPooling2D((2, 2), strides=(2, 2))(inputs)
       return inputs

padding=’same’ preserves 
size of feature maps: 
(H, W)in = (H, W)out

strides=2 reduces height, 
width by ½: 
(H, W)in = (½ H, ½ W)out
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VGG

Flatten
Layer

VGG Classifier Group (Micro-Architecture)
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Layer
(4096)
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(4096)
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er

(Dense)
Layer

Input Output

Two very large 
(4096) dense 
layers to learn 
classification from 
features (1D 
embedding after 
Flatten layer)

Flattening into 
1D vector (lower 
dimensional 
embedding) also 
referred to as the 
Bottleneck Layer
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ResNet

2015 ILSVRC Winner
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Residual
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Hidden layers 
dropped in 
classifier.

Classification 
partially 
moved into 
top 
convolutional 
group
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ResNet

First block uses 
linear projection 
for the residual 
link to expand the 
number of feature 
maps 
(dimensionality 
expansion) to 
match the number 
of filters for the 
corresponding 
group.

ResNet
Block

w/
Projection
Shortcut

ResNet Group (Micro-Architecture)

ResNet
Block

w/
Identity

Shortcut

ResNet
Block

w/ 
Identity

Shortcut

...
Input Output

Projection 
shortcut 
doubles 
the 
number of 
filters.

15



ResNet
def group(inputs, strides=(2, 2), **metaparameters):

      n_filters = metaparameters[‘n_filters’]
      n_blocks = metaparameters[‘n_blocks’]
      
      # Linear Projection Block
      inputs = projection_block(inputs, n_filters, strides=strides)
      
       # Identity Blocks
       for _ in range(n_blocks-1):
           Inputs = identity_block(inputs, n_filters)

       return inputs

First group does not do 
feature pooling in projection 
block --while subsequent 
groups do feature pooling.

Remaining blocks use identity 
link (no projection).
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ResNet
ResNet Stem Group

Zero
Padding

Strided
Conv
7x7

(64 filters)

Input Output

Dimensionality reduction - reduce 
size of feature maps by 75%

Zero
Padding

Max
Pooling

2x2

Introduced 
using a coarse 
filter size (7x7) 
vs. VGG (3x3).

Added 
dimensionality 
reduction with 
strided 
convolution and 
max pooling.

17



ResNet

Convolution
1x1

Residual Block (Fig. 3(c) in Paper) with Identity Shortcut

Bottleneck
Convolution

3x3

Convolution
1x1

Filters x 4

Number of Feature 
Maps is increased 
4X

Input OutputAdd

In paper, this is called 
dimensionality restoration

In paper, this is called 
dimensionality reduction

In paper,this is denoted by the 
formula
h(x) = f(x, {Wi}) + x

In paper, this is called bottleneck design

Initial 
convolution 
layers 
reduce the 
number of 
features 
maps from 
previous 
block
(bottleneck).

Last convolution increases the 
number of feature maps.
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ResNet
def identity_block(inputs, **metaparameters):
      n_filters = metaparameters[‘n_filters’]

      # Remember the input
      residual = inputs

      # Dimensionality Reduction
      inputs = Conv2D(n_filters, (1, 1), strides=(1, 1), …)(inputs)
      ...
      
       # Bottleneck Convolution
       inputs = Conv2D(n_filters, (3, 3), strides=(1, 1), …)(inputs)
       …

       # Dimensionality Expansion
       inputs = Conv2D(4 * n_filters, (1, 1), strides=(1, 1), …)(inputs)
       …

       # Add residual block input to output of residual block
       inputs = Add()([residual, inputs])
       return inputs

Start by saving a copy of the 
input (residual).

Do a series of sequential 
convolutions.

Do a matrix add of the saved 
input (residual) with outputs of 
the last convolution.
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ResNet

Strided
Convolution

1x1

Residual Block (Fig. 3(c) in Paper) with (Linear) Projection  Shortcut

Bottleneck
Convolution

3x3

Convolution
1x1

Filters x 4
Input OutputAdd

In paper, this is called projection 
shortcut

Strided Convolution 1x1
Filters x 4

Reduces Filter Size
By 75%

In paper,this is denoted by the 
formula
h(x) = f(x, {Wi}) + Wsx

A linear 
projection 
convolution is 
used on the 
residual in the 
first block, so 
the number of 
feature maps 
on the identity 
link match the 
output for the 
matrix add 
operation.
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ResNet
def projection_block(inputs, strides=(2, 2), **metaparameters):
      n_filters = metaparameters[‘n_filters’]
      
      # Remember a Linear projection of the inputs
      residual = Conv2D(4 * n_filters, (1, 1), strides=strides, ....)(inputs)

      # Dimensionality Reduction
      inputs = Conv2D(n_filters, (1, 1), strides=(1, 1), …)(inputs)
      ...
      
       # Bottleneck Convolution
       inputs = Conv2D(n_filters, (3, 3), strides=(1, 1), …)(inputs)
       …

       # Dimensionality Expansion
       inputs = Conv2D(4 * n_filters, (1, 1), strides=(1, 1), …)(inputs)
       …

       # Add residual block input to output of residual block
       inputs = Add()([residual,  inputs])
       return inputs

The remembered input 
(residual) has the number of 
filters increased 4X on the first 
block to match the number of 
filters on the output for the 
matrix add operation.
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ResNet

Classifier Group

Global
Average
Pooling

Input
Output
Dense

(N classes)
Output

Flattening of 
feature maps 
(bottleneck 
layer) is 
replaced by 
averaging 
each feature 
map into a 
single value 
and 
concatenating 
into 1D vector.

Coarse 
classification 
learning 
overlaps with  
prior (toplevel) 
convolutional 
group.

Final (detail) 
classification 
learning is 
done here.
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Batch Normalization

Conv
Layer

Pixels  values are 
normalized, whereby the 
distance between pixels 
is proportional to their 
frequency of occurrence 
-- which speeds up 
learning.

Conv
Layer

Pixel value spread

Conv
Layer

Variance in the pixel 
values spreads per 
layer (co-variance).

At some point, the 
variance is too great 
for the model to 
learn - which limited 
the depth of layers 
(vanishing gradient).

Co-Variance Shift - Vanishing Gradient
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Batch Normalization

Conv
LayerRe-normalize pixel 

values after each 
convolution.

Conv
Layer

Pixel value spread

Conv
Layer

Variance in the pixel 
values stabilizes.

Can go deeper layers 
without vanishing 
gradient.

By-product benefit 
was able to use 
higher learning rates 
and speed up 
training time.

Solution - Renormalize after each convolution
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Batch Normalization

      # Convolutional layer followed by batch normalization
      inputs = Conv2D(n_filters, (1, 1), strides=(1, 1), use_bias=False, 
                                  kernel_initializer=’he_normal’)(inputs)
      inputs = BatchNormalization()(inputs)
      inputs = ReLU()(inputs)

Batch Normalization 
(normalize over each batch) 
added inserted before linear 
activation unit (demonstrated 
in ResNet).

Eliminated the need for bias 
parameters (i.e., use_bias = 
False).

ResNet used random sample 
from He-Normal distribution 
for initializing weights (prior 
was Xavier -- increased 
likelihood of finding best 
optima ~ accuracy on holdout 
data). 25



ResNet V1.5

Convolution
1x1

Residual Block with (Linear) Projection  Shortcut (v1.5)

Strided
Bottleneck

Convolution
3x3

Convolution
1x1

Filters x 4
Input OutputAdd

In paper, this is called projection shortcut

Strided Convolution 1x1
Filters x 4

Reduces Filter 
Size
By 75%

In paper,this is denoted by the 
formula
h(x) = f(x, {Wi}) + Wsx

The strided 
convolution in 
projection block is 
moved to the 3x3 
bottleneck 
convolution.

Reduces number 
of multi-ops of the 
1x1 / 3x3 pair by 
66%. On 4x4 
patch, previous 
was 37 multi-ops, 
now 13.

Authors claim has 
representational 
equivalence with 
V1 design.
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ResNet V2

      # Convolutional layer followed by batch normalization
      inputs = BatchNormalization()(inputs)
      inputs = ReLU()(inputs)
      inputs = Conv2D(n_filters, (1, 1), strides=(1, 1), use_bias=False, 
                                  kernel_initializer=’he_normal’)(inputs)

In V2, the Batch 
Normalization/ReLU is moved 
to before the convolution in 
the identity and projection 
blocks (but not in the stem). 
Referred to as BN-RE-Conv 
pre-activation.

The number of parameters 
and matmul ops stays the 
same, while the authors found 
they got higher accuracies on 
ImageNet and CIFAR-10 
training.
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Inception V1 (GoogLeNet)

2014 ILSVRC Winner

Stem
Convolutional

Group

Auxiliary
Classifier

Inception Macro Architecture

Inception
Group 4a
(1 block)

Classifier
Group

In paper, blocks are referred to
as inception modules.

Inception
Group 
3a,3b

(2 blocks)

Inception
Group 

4b,4c,4d
(3 blocks)

Group 3 and 4 end with MaxPooling

In paper, the authors theorized that the classifier 
(loss function) is from the inputs, the performance 
of upgrading the weights are early layers will 
degrade. They proposed to address this by adding 
auxiliary classifiers to contribute to adjusting the 
weights at earlier layers.

Inception
Group 4e
(1 block)

Inception
Group 
5a,5b

(2 blocks)

Auxiliary
Classifier
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Inception V1 (GoogLeNet)
def learner(inputs, n_classes, **metaparameters):
      aux = [] # auxiliary outputs

      groups = metaparameters[‘groups’] # group 3, 4 and 5
      for group_params in groups:
            inputs, _aux = group(inputs, group_params)
            aux += _aux

       return inputs, aux

The learner constructs both 
the sequential convolutional 
groups (inputs), and the 
non-sequential auxiliary 
classifiers (aux).
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Inception V1 (GoogLeNet)
Inception v1 Micro-Architecture

Inception
Block

Input
Output

Inception
Block

Output...

In paper, blocks are referred to
as inception modules.

Max
Pooling

(3x3)

Last group has no pooling of feature maps

The learner consists 
of three groups, 
where each group 
consists of two or 
more inception 
blocks (modules) 
and ends with a max 
pooling layer for 
dimensionality 
reduction between 
groups.

The total number of 
filters per group 
successively 
increases.

The last group 
does no have a 
max pooling 
layer -- instead 
dimensionality 
reduction is done 
by the bottleneck 
layer in the 
classifier.
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Inception V1 (GoogLeNet)
def group(inputs, pooling=True, **metaparameters):
      aux = [] # auxiliary outputs

      blocks = metaparameters[‘blocks’’]
      for block_params in blocks:
            # Add auxiliary classifier after previous block
            if block_params is None:
                aux.append(auxiliary(inputs, n_classes)
            else:
                # Filter sequence for each branch in block
                branch1x1, branch3x3, branch5x5, branchpool = block_params
                inputs = inception_block(inputs, branch1x1, branch3x3, branch5x5,
                                                        branchpool)

       # Add max pooling at the end of  the group
       if pooling:
           inputs = ZeroPadding2D((1, 1))(inputs)
           inputs = MaxPooling2D((3, 3), strides=(2, 2))(inputs)

       return inputs, aux

Here the metaparameters are 
a sequential list of blocks and 
auxiliary classifiers.

Each inception block (module) 
uses a wide convolutional with 
four parallel (branches) 
convolutions. 

The block parameters specify 
the number of filters per 
branch.
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Inception V1 (GoogLeNet)

Pool

1 x 1

1 x 1 1 x 1 1 x 1

3 x 3  5 x 5

Concatenate

Inception v1 Block
Input

Output

Linear Projection

Filter Reduction

In paper, this is done to reduce computational 
complexity on the 3x3 and the more expensive 
5x5 filters.

In paper, this is referred to as a filter bank.

The input (feature 
maps) are passed 
thru four parallel 
convolutions 
(branches) of 
differing filter sizes.

Authors claimed that 
the different filter 
sizes capture 
different resolution of 
details.

The output feature maps from each 
branch are concatenated into a 
single set of feature maps --referred 
to as a filter bank.

32



Inception V1 (GoogLeNet)
def inception_block(inputs, f1x1, f3x3, f5x5, fpool):
       # The branches
       b1x1 = Conv2D(f1x1, (1, 1), strides=1, padding=’same’, activation=’relu’)(inputs)

       b3x3 = Conv2D(f3x3[0], (1, 1), strides=1, padding=’same’, activation=’relu’)(inputs)
       b3x3 = ZeroPadding2D((1, 1))(b3x3)
       b3x3 = Conv2D(f3x3[1], (3, 3), strides=1, padding=’valid’, activation=’relu’)(b3x3)
   
       b5x5 = Conv2D(f5x5[0], (1, 1), strides=1, padding=’same’, activation=’relu’)(inputs)
       b5x5 = ZeroPadding2D((1, 1))(b5x5)
       b5x5 = Conv2D(f3x3[1], (3, 3), strides=1, padding=’valid’, activation=’relu’)(ib5x5)

       bpool = MaxPooling2D((3, 3), strides=1)(inputs)
       bpool = Conv2D(fpool, (1, 1), strides=1, padding=’same’, activation=’relu’)(bpool)
      
       # The filter bank
       inputs = Concatenate()([b1x1, b3x3, b5x5, bpool])
       
       return inputs

The input is passed 
thru four parallel 
convolutions of 
different filter sizes.

Zero padding used to 
preserve the size of the 
feature maps (i.e., all 
branches have the 
same size) for 
subsequent concat.

Concatenate the 
features maps from the 
branches into a filter 
bank. 33



Inception V1 (GoogLeNet)
Inception v1/v2 Auxiliary Classifier Group

Average
Pooling

(5x5)

Input
Dense

(N classes)

Output

Flatten Dropout

Reduces size of feature maps.

Conv
1x1

(128 filters)

Reduces number of feature 
maps --feature pooling.

Dense
(1024)

Since the auxiliary classifier is much closer to the input, 
an extra convolution and large dense (1024) layer were 
added to increase accuracy, and dropout for 
regularization.
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Inception V1 (GoogLeNet)
Inception v1/v2 Auxiliary Classifier Group

Average
Pooling

(5x5)

Input
Dense

(N classes)

Output

Flatten Dropout

Reduces size of feature maps.

Conv
1x1

(128 filters)

Reduces number of feature 
maps --feature pooling.

Dense
(1024)

Since the auxiliary classifier is much closer to the input, 
an extra convolution and large dense (1024) layer were 
added to increase accuracy, and dropout for 
regularization.
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Inception V1 (GoogLeNet)
Inception Classifier Group

Average
Pooling
(NxN)

Input Dense
(N classes) OutputFlatten Dropout

Feature Maps are 7x7 
for v1/v2 and 8x8 for v3 
(bottleneck layer) Reduces to 1x1 Feature 

Maps, where N is the 
input size

Classifier 
reduced to 
bottleneck layer 
(pooling / 
flattening) and 
final dense 
layer.

Dropout added 
for 
regularization.
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Inception V3

2015 ILSVRC 1st Runner Up

Stem
Convolutional

Group

Inception V3 Macro Architecture

Grid
Reduction

Classifier
Group

In paper, blocks are referred to
as inception modules.

Inception
Group A

(3 blocks)

Inception
Group B

(5 blocks)

In paper, the authors theorize that the auxiliary 
classifier acts as a regulazier

Grid
Reduction

Inception
Group C

(2 blocks)

Auxiliary
Classifier

In paper, these blocks are described in fig. 5, where 
the 5x5 convolution is refactored as two 3x3 for 33% 
less params, but representational equivalent.

In paper, these blocks are described in 
fig. 6, where the nxn convolution is 
refactored as a 1xn and nx1, where n = 7

In paper, these blocks are the same as 
the blocks in V1.
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Inception V3

2015 ILSVRC 1st Runner Up

Inception v3 Micro-Architecture

Inception
Block

Input
Output

Inception
Block

Output...

In paper, blocks are referred to
as inception modules. Each block has the same grid (feature map) size.

Grid
Reduction

Block

Reduces feature map size by 75%. 
Last group has no reduction block

V3 has three 
styles of 
inception 
blocks, referred 
to as 35x35 
(group A), 17x17 
(group B) and 
8x8 (group C).

V3 replaces max 
pooling at the 
end of a group 
with a grid 
reduction block 
for feature 
pooling 
(dimensionality 
reduction).
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Inception V3
def group(inputs, **metaparameters):
       # The style of inception block for this group
       inception_block = metaparameters[‘inception’]
       # The style of grid reduction (or None) for this group
       grid_reduction  = metaparameters[‘reduction’]
       # Include auxiliary classifier (or None) for this group
       auxiliary_classifier = metaparameters[‘auxiliary’]

       for block_params in metaparameters[‘blocks’]:
             # The number of filters per branch
             branch1, branch2, branch3, branch4 = block_params
             inputs = inception_block(inputs, branch1, branch2, branch3, branch4)

       if auxiliary_classifier is not None:
             aux = auxiliary(inputs, n_classes=auxiliary_classifier)
       
       if grid_reduction is not None:
             Inputs = grid_reduction(inputs)

       return inputs, aux

The metaparameters 
consist of the style of 
inception block and 
grid reduction, and 
whether to include the 
auxiliary classifier.

All three styles of 
inception block use 
four branches. 

Grid reduction done at 
the end of each group, 
except the last group.
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Inception V3

Pool

1 x 1

1 x 1 1 x 1 1 x 1

3 x 3  5 x 5

Concatenate

Inception v3 Block 35x35 (Group A)
Input

Output

Linear Projection

Filter Reduction

In paper, this is done to reduce 
computational complexity on the 3x3 
and the more expensive 5x5 filters.

In paper, this inception module is referred 
to as the traditional inception module 
--but differs from V1 by using two 
(double) 3x3 convolution layers, instead 
of one.

3 x 3

The single 3x3 in 
inception V1 is 
replaced by a 
double 3x3.

While adding 
computational 
complexity, the 
authors state 
that it increases 
representational 
power at small 
increase in 
computation.

40



Inception V3

Pool

1 x 1

1 x 1 1 x 1 1 x 1

1 x 7  1 x 7

Concatenate

Inception v3 Block 17x17 (Group B)
Input

Output

Linear Projection

Filter Reduction

In paper, this is done to reduce 
computational complexity on the 7x7 
filters

In paper, this inception module is 
referred as factorization of n x n into 1 x 
n and n x 1 (where n = 7), which is 
depicted in figure 6

7 x 1 7 x 1

 1 x 7

7 x 1

Factorizes the 5x5 
convolution into a 
spatially separable 
convolution of 1x7, 7x1. 
Lowers computational 
complexity from 25 
matmul ops to 14 per 
stride.

Factorizes the double 
3x3 convolution into 
two 1x7, 7x1. Increase 
computational 
complexity from 18 
matmul ops to 14.

Authors state it 
increases 
representational power.
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Inception V3

Pool

1 x 1

1 x 1 1 x 1 1 x 1

1 x 3  3 x 3

Concatenate

Inception v3 Block 8x8 (Group C)
Input

Output

Linear Projection

Filter Reduction

In paper, this is done 
to reduce 
computational 
complexity on the 
3x3 filters.

3 x 1

3 x 1  1 x 3Concatenate

Concatenate

Split & Merge

Factorizes the 3x3 
convolution into 
parallel spatially 
separable 
convolution 1x3, 
3x1.
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ResNeXt

2016 ILSVRC 1st Runner Up

Stem
Convolution 

Group

Residual 
Next

Group

Final
Pooling
Flatten
Layer

ResNeXt Macro-Architecture

Residual
Next

Group

Residual
Next

Group

Classifi
er

(Dense)
Layer

Feature Learning Classification Learning

Residual
Next

Group
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ResNeXt

ResNeXt
Block

w/
Projection
Shortcut

ResNeXt - ResNeXt Group (Micro-Architecture)

ResNeXt
Block

w/
Identity

Shortcut

ResNeXt
Block

w/ 
Identity

Shortcut

...Input Output

Projection 
shortcut 
doubles 
the number 
of filters 
coming in.

Uses a 
Residual 
Next block in 
place of 
Residual 
block 
(ResNet).

Output filters 
is two times 
the number 
of input 
filters.
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ResNeXt

Convolution
1x1

Residual Next Block (Fig. 3(c) in Paper) with Identity Shortcut

Group
Convolution

3x3 

Convolution
1x1

Filters x 2

Number of Feature 
Maps is increased 
2X

Input OutputAdd

In paper, this is split-transform-merge

The paper introduces a new meta-parameter 
“cardinality”, as the width of the group layer The 3x3 

convolution in 
a Residual 
block is 
replaced by a 
3x3 group 
convolution.

The feature 
maps are split 
into N 
segments 
(cardinality), 
where each 
goes through a 
separate 
convolution.
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ResNeXt
def identity_block(inputs, filters_in, filters_out, cardinality=32):
       # removed for brevity ...
       # calculate the number of filters per group
       filters_group = filters_in // cardinality

       # wide layer (split-transform)
       groups = []
       for i in range(cardinality):
             # calculate start/end of partition for the group
             start = i * filters_group
             end  = start + filters_group
             group = Lambda(lambda z: z[:, :, :, start : end])(inputs)
             groups.append(Conv2D(filters_card, (3, 3), strides=(1, 1), padding=’same’, 
                                       use_bias=False)(group)

       # merge
       inputs = Concatenate()(groups)
       inputs = BatchNormalization()(inputs)
       # removed for brevity …

       return inputs

We use a TF.Keras 
Lamda layer to perform 
the splitting of the 
feature maps during 
training/inference in the 
graph.

The convolutional 
outputs of each group 
are then concatenated 
together.

The convolutions can 
be processed in 
parallel on a GPU 
(CUDA).
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DenseNet

Stem
Convolution 

Group
Dense
 Group

DenseNet Macro-Architecture

Dense
 Group

Dense
Group

Dense
Group

Final
Pooling
Flatten
Layer

Classifi
er

(Dense)
Layer

Classification LearningFeature Learning

Number of filters is the same for all groups

Stem has 2X the
number of filters as
the groups.

In paper, the number of filters is referred 
to as k.
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DenseNet

Dense
Block

Trans
Block

Dense Group Micro-Architecture

Input Output

Reduces size of concatenation feature maps passed 
between groups.

In paper, the reduction is referred to as 
the compression factorIn paper, the dense group is called a 

dense block

Except for the 
last group. 
Each group 
ends with a 
transitional 
block which 
does a 
dimensionality 
reduction 
(feature 
pooling).
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DenseNet
def group(inputs, **metaparameters):
       # The amount of reduction (compression factor) or None
       reduction  = metaparameters[‘reduction’]
       # Parameters for residual sub-blocks with dense block
       blocks = metaparameters[‘blocks’]:

       inputs = dense_block(inputs, blocks)
       
       if reduction is not None:
             inputs = trans_block(inputs, reduction)

       return inputs

The metaparameters 
consist of reduction 
(compression factor), 
and the number of 
filters per block.

Reduction 
(compression) done at 
the end of each group, 
except the last group.
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DenseNet

Residual
Block

C
on

ca
te

na
te

Residual
Block

C
on

ca
te

na
te

Residual
Block

C
on

ca
te

na
te

Dense Block Micro-Architecture

Feature maps from the input are concatenated 
with the output

Identity Links

Input ... Output

In paper, this is referred to as feature 
map reuse.

In paper, this is denoted by the formula:
xl = Hl([x0, x1, … xl-1])

By concatenating 
feature maps at 
each block layer, 
the feature maps 
are successively 
accumulated.

Thus each layer 
sees the feature 
maps from all 
previous layers.
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DenseNet
def dense_block(inputs, blocks):
       # Parameters for residual sub-blocks with dense block
       blocks = metaparameters[‘blocks’]:

       for block_params in blocks:
             # block_params is the number of filters
             n_filters = block_params
             inputs = residual_dense_block(inputs, n_filters)

       return inputs

The concatenation 
operation occurs within 
the residual dense 
block, as the final step.
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DenseNet

Convolution
1x1

(4X filters)

Residual Dense Block with Identity Shortcut

Convolution
3x3

(X filters)

Dimensionality expansion 
Feature maps increased 
by 4X

Input OutputConcatenate

Dimensionality reduction  -
Feature maps decreased 
to X.

The feature maps 
from the input 
(identity link) are 
concatenated 
with the output 
feature maps.

The accumulated 
feature maps will 
then be the input 
to the next block.
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DenseNet
def residual_dense_block(inputs, n_filters):
       # remember the input
       residual = inputs

       # dimensionality expansion
       inputs = BatchNormalization()(inputs)
       inputs = ReLU()(inputs)
       inputs = Conv2D(4 * n_filters, (1, 1), strides=(1, 1), use_bias=False)(inputs)

       # bottleneck convolution
       inputs = BatchNormalization()(inputs)
       inputs = ReLU()(inputs)
       Inputs = Conv2D(n_filters, (3, 3), striddes=(1, 1), padding=’same’, 
                                   use_bias=False)(inputs)

       # Concatenate residual block input to output of residual block
       inputs = Concatenate()([residual, inputs])
       return inputs

Uses the BN-RE-Conv 
pre-activation form for 
convolutional layers, 
except for the stem.

The bottleneck 
convolution does a 
dimensionality 
reduction on the 
number of feature 
maps to reduce the 
overall number as they 
accumulate across 
blocks.
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DenseNet

Convolution
1x1

(filters/C)

Dense Transitional Block

Average
Pooling

2x2

Dimensionality reduction 
Number of feature maps 
decreased by ratio of C.

Input Output

Dimensionality reduction  -
Feature map sizes decreased 
by 75%

In paper, the reduction is referred to as 
the compression factor

Finally, the 
compressed 
feature maps are 
further reduced 
by pooling.

Each dense block 
is followed by a 
transitional block, 
except for the last 
block.

The number of 
feature maps is 
reduced by the 
compression 
metaparameter.
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SENet

2017 ILSVRC Winner   

Stem
Convolution 

Group

Conv 
Group

w/
SE Links

SENet Macro-Architecture

Conv 
Group

w/
SE Links

Conv
Group

w/
SE Links

Classifier
Group...

Residual-Block based architecture 
(e.g., ResNet, ResNeXt, Inception)

SENet is a 
derivative of 
the residual 
block method 
(ResNet/ResN
eXt) by 
modifying the 
identity/project
ion link with a 
squeeze-excit
ation block. 
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SENet

The 
identity/projection 
link on each 
residual block is 
followed by a 
squeeze-excitation 
link.Residual

Block
w/

SE Link

Residual Group w/SE Link (Micro-Architecture)

Residual
Block

w/
SE Link

Residual 
Block

w/
SE Link

...

Existing Block with identity/projection link 
passed through Squeeze-Excitation (SE) block

Input
Output
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SENet
def group(inputs, strides=(2, 2), **metaparameters):
       # the number of blocks in the group
       blocks = metaparameters[‘blocks’]
       # the ratio of reduction in the SE link.
       ratio = metaparameters[‘ratio’]

       # first block is the projection shortcut block
       block = blocks.pop()
       inputs = projection_block(inputs, block[‘n_filters’], strides=strides, ratio=ratio)

       # remaining blocks use residual block with identity link
       for block in blocks:
             inputs = identity_block(inputs, block[‘n_filters’], ratio=ratio)

       return inputs

Metaparameters consist 
of blocks (which have 
number of filters) and the 
amount of reduction of 
filters in the 
squeeze-excitation link 
(ratio).

**code demonstration for 
ResNet architecture.
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SENet

Depicts adding the 
Squeeze-Excitation 
link to the output of 
the residual block 
(prior to the add op 
of the identity link).

Residual
Block
w/o

Identity
Link

Residual Block + Identity Shortcut w/SE Link

SE
Block

Output

In paper, this is referred to as a link

SE block inserted 
between the residual 
block and identity add 
op.

Add

In paper, this performs a 
split-transform-merge operation on 
the identity link before adding into 
the output of the residual block.
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SENet
def identity_block(inputs, n_filters, ratio=16):
       # remember the input
       residual = inputs

       # removed for brevity ...
      
        # pass the output of the residual block thru the SE block
        inputs = se_block(inputs, ratio)

       # add the identity link to the output of the SE block
       inputs = Add()([residual, inputs])

       return inputs

The SE block (link) is 
inserted between the 
output of the residual 
block and corresponding 
matrix add with the 
identity link.
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SENet

Depicts adding the 
Squeeze-Excitation 
link in a residual 
block with a 
projection shortcut.

Residual
Block
w/o

Identity
Link

Residual Block + Projection Shortcut w/SE Link

SE
Block

OutputAdd

Projection

Matches number of 
input filters to output 
filters for matrix add.
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SENet

SE Link (block) 
uses a residual 
style block with 
identity link.

Instead of 
convolutions, it 
flattens the feature 
maps, and passes 
them thru two 
dense layers.

First dense layer 
reduce the number 
of feature maps 
(ratio) and the 
second restores 
them.

Global
Average
Pooling
(1x1xC)

Squeeze-Excitation Block

Dense 
C / r Filters

(ReLU)
(1x1xC/r)

Dense
C Filters

(Sigmoid)
(1x1xC)

Input
(HxWxC) Output

In paper, this is the squeeze.

In paper, this is the split-transform op.

r is the filter reduction ratio

In paper, this is the merge op, 
which is referred to as Scale.

Multiply

In paper, this is the 
excitation.

61



SENet
def se_block(inputs, n_filters, ratio=16):
       # remember the input
       residual = inputs

       # get the number of filters in the input
       n_filters = inputs.shape[-1]

       # squeeze (dimensionality reduction)
       inputs = GlobalAveragePooling2D()(inputs)

       # reshape the 1D vector into 1x1xC (C=no. of filters)
       inputs = Reshape((1, 1, n_filters))(inputs)

       # reduce the number of feature maps
       inputs = Dense(  n_filters // ratio, activation=’relu’)(inputs)

       # excitation (dimensionality restoration)
       inputs = Dense(filters, activation=’sigmoid’)(inputs)

       inputs = Multiply()([residual, inputs])
       return inputs

The SE block is similar in 
design to a residual 
block, in that it uses an 
identity link to add the 
input to the output of the 
block.

Each feature map is 
reduced to a single pixel, 
followed by reducing the 
number (squeeze).

The number of filters is 
then restored (excitation).
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SqueezeNet

Stem
Convolution 

Group

Fire
Group

(16->32)

SqueezeNet Macro-Architecture

Fire
Group

(32->64)

Feature Learning Classification Learning

Fire
Group

(64)
+

Dropout

Classifier
Group

Delayed Dimensionality reduction - 
reduce size of feature maps by 
75%

Last Fire module adds 
dropout to prevent 
overfitting.

Double the number of filters from 
the first to second fire group 63



SqueezeNet
SqueezeNet Group Micro-Architecture

Fire
Block

(N filters)
Input

Output

Progressively increases filters 
where number of output filters is 
2X of the input filters

Fire
Block

Output... Fire
Block

(2N filters)

In paper, a block is referred to as a 
module.

Max
Pooling

3x3

Last Fire module adds 
dropout to prevent 
overfitting.

Each group, 
except the 
last group, 
delays max 
pooling until 
after the last 
fire block.
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SqueezeNet
def group(inputs, **metaparameters):
       # the blocks for the group
       blocks = metaparameters[‘blocks’]
       # amount of drop out (otherwise max pooling)
       dropout = metaparameters[‘dropout’]

       for block_params in blocks:
              # number of filters for the block
              n_filters = block_params
              inputs = fire_block(inputs, n_filters)

        # delayed max pooling
        if dropout is None:
              inputs = MaxPooling2D()(inputs)
        # last group, do dropout instead
        else:
              inputs = Dropout(dropout)

        return inputs

The blocks 
metaparameter specifies 
the number of fire blocks, 
and the number of filters 
per block.

The last group specifies a 
dropout; otherwise the 
group ends with delayed 
max pooling.
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SqueezeNet

Convolution
1x1

(N Filters)

SqueezeNet Fire Block

Input
Output

Convolution
1x1

(4N Filters)

Convolution
3x3

(4N Filters)

Concatenate

Number of filters is 
increased 4X

In paper, this is referred to as the 
squeeze step

In paper, this is 
referred to as the 
expand step

The input is first 
squeezed by 
reducing the 
number of 
feature maps 
using a linear 
projection.

The features 
maps are then 
expanded by 
increasing the 
number of filters 
using parallel 
linear projection 
and 3x3 
convolution.
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SqueezeNet
def fire_block(inputs, n_filters):
       # squeeze
       inputs = Conv2D(n_filters, (1, 1), strides=(1, 1), padding=’same’, 
                     activation=’relu’)(inputs)

       # expand
       expand_1x1 = Conv2D(4 * n_filters, (1, 1), strides=(1, 1), padding=’same’,
                                             activation=’relu’)(inputs)
       expand_3x3 = Conv2D(4 * n_filters, (1, 1), strides=(1, 1), padding=’same’,
                                             activation=’relu’)(inputs)

       # concatenate the feature maps from the branches
       inputs = Concatenate()([expand_1x1, expand_3x3])

       return inputs
   

The input is reduced 
(squeezed) using a 1x1 
linear projection 
convolution.

The output is then 
passed to two parallel 
convolutions to increase 
(expand) the number of 
feature maps by 4X.

The feature maps from 
the two parallel 
convolutions are 
concatenated for the 
output.
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Multi-Label Classifier

Micro-Architecture (Multi-Label CNN) - Classifier

Classifier
Group

Classifier
Group

Classifier
Group

Multiple ‘softmax’ classifiers

Feature maps from 
bottleneck layer of learner 
group

Pool/Flatten
(1D Vector)

During training, the losses 
from each classifier are 
aggregated into a combined 
loss for updating weights.



Multi-Label Classifier
def classifier(x, classes):
       # Construct softmax classifier per group of classes
       outputs = []
       for n_classes in classes:
           output = Dense(n_classes, activation=’softmax’)(x)
           outputs.append(output)]

       # Return the multiple outputs as a list
       return outputs

   

# When compiling (build) the model, is equivalent to:

model = model(inputs, [outputs1, outputs2, …, outputsN])

A multi-label CNN is a 
CNN model with multiple 
outputs from a single 
input.

When using the 
Functional API, this is the 
same as building the 
model using a single 
input with multiple 
outputs.

Weights are updated 
during training using the 
combined loss across all 
outputs.
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Siamese Twin
Siamese Neural Network Macro-Architecture

L1
Distance

Classifier
Group

(Logistic)

Calculates the L1 (Manhattan) 
distance between two 1D vectors

Shared Layers - structure and 
learned weights are shared between 
the two models (symmetric)

Input 1

Twin
Model

Twin
Model

Input 2

In paper, these are called twins

Bottleneck Layer - final feature 
maps flattened into 1D vectors

Calculates probability of an image 
pair belonging to the same class.

In paper, these are called 
image pairs
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AutoEncoder
AutoEncoder Macro-Architecture

Conv
Feature
Pooling

Conv
Feature
Pooling

Conv
Feature
Pooling

...

Encoder

Conv
Feature

Unpoolin
g

Conv
Feature

Unpoolin
g

Conv
Feature

Unpoolin
g

...

Decoder

Progressively Feature Pool Progressively Feature Unpool
Symmetric to Encoder

Learn the function f(x) = x’, f(x’) = x, 
where x’ is lower dimensionality than x.



AutoEncoder
# metaparameter: filters per layer in encoder
layers = [ { ‘n_filters’: 64 }, { ‘n_filters’: 32 }, { ‘n_filters’: 32 } ]

# input shape to autoencoder
inputs = Input(input_shape=(32, 32, 3))

# the encoder
x = encoder(inputs, layers=layers)

# the decoder
outputs = decoder(x, layers=layers)

model = Model(inputs, outputs)

# compile using mean square error as the loss function
model.compile(loss=’mse’, ….)

Construct autoencoder 
as an encoder and then 
decoder, where decoder 
is reverse symmetric to 
encoder.

Loss function is mean 
square error.
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AutoEncoder
AutoEncoder Micro-Architecture - Encoder

Conv
Feature
Pooling

(1/2H 
x 

1/2W)

Conv
Feature
Pooling

(1/4H
x

1/4W)

Conv
Feature
Pooling

(1/8H
x

1/8W)

...

Each convolution 
downsamples feature maps 
by 75%.

Number of filters are halved 
or held constant.

Output is typically 90% 
reduction in size from input.

Typically, the encoder is 
three layers, where each 
layer reduces height and 
width by ½. 

Final feature maps are 
⅛ in height and width.

A high number of filters 
(e.g.,64) than the 
channels (e.g., 3) are 
used and progressively 
reduced or stay the 
same.

Objective is to reduce 
HxWx3 input by 90% for 
⅛ H x ⅛ W x C



AutoEncoder
AutoEncoder Micro-Architecture - Decoder

Conv
Feature

Unpooling
(2H 
x 

2W)

Conv
Feature

Unpooling
(4H
x

4W)

Conv
Feature

Unpooling
(8H
x

8W)

...

Each deconvolution 
upsamples feature maps by 
75%.

Number of filters are 
symmetrically the same as 
the encoder, except the last 
deconvolution.

Last deconvolution, the number of 
filters is the number of channels for 
the input to AutoEncoder (e.g., 3).

The decoder is 
symmetric to the 
encoder, progressively 
increasing the feature 
map sizes in reverse 
order.

The last deconvolution 
restores the number of 
channels to the input.



AutoEncoder
def encoder(x, **metaparameters):
       # Progressive feature pooling 
       layers = metaparameters[‘layers’]
       for layer in layers:
           n_filters = layer[‘n_filters’]
           x = Conv2D(n_filters, (3, 3), strides=2, padding=’same’)(x)

       # Return the bottleneck layer (encoding)
       return x

 def decoder(x, **metaparameters):
      # Progressive feature unpooling (in reverse order)
      layers = metaparameters[‘layers’]
      for _ in range(len(layers-1), 0, -1):
           n_filters = layers[_][‘n_filters’]
           x = Conv2DTranspose(n_filters, (3, 3), strides=2)(x)
 
      # On last deconvolution, restore the number of channels to the input.
      x = Conv2DTranspose(3, (3, 3), strides=2, padding=’same’)(x)

Progressively reduce the 
feature map HxW by ½ 
(strides=2). 

Generally, the number of 
filters is halved or kept 
the same.

Progressively increase 
the feature map HxW by 
2 (strides=2).
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R-CNN

76

Selective
Search

Conv
Net

R-CNN Macro-Architecture

SVM Classifiers

In paper, 2000 region proposals 
are generated per image.

Feature Learning Classification and Location (Bounding Box) Learning

Pretrained 
Convolutional Neural 
Network

Image Regions
Feature Vectors

In paper, this is referred to as three modules.

In paper, the feature vectors are 4096

In paper, image regions are warped 
to fit the size of the ConvNet 
(227x227).



Fast R-CNN
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Selectiv
e

Search

Conv
Net

Fast R-CNN Macro-Architecture

Classifier

Feature Learning Classification and Location (Bounding Box) Learning

Pretrained 
Convolutional Neural 
Network

Shared Feature Maps

Feature Vectors

In paper, the region based feature maps are 
pooled into same size (e.g. 7x7) feature maps.

In paper, an image is passed through 
the pretrained convolutional neural 
network to generate shared feature 
maps.

Stem
Convolution 

Group

Region 
of 

Interest 
(RoI)

Pooling

Region Proposals

Bounding Box
Regresser

In paper, during training R/N region proposals are 
passed in, where R = 128 and N = 2 (minibatch size).
During inference, 2000 region proposals were used.

Region Feature 
Maps

In paper, the 
classifier and 
bounding box 
regresser are trained 
together using a 
multi-task loss.



Faster R-CNN
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Stem
Convolution 

Group

Region
Proposal
Network

(RPN)

Faster R-CNN Macro-Architecture

Conv
Net

Shared Feature Maps

Region 
of 

Interest 
(RoI)

Pooling

In paper, region proposals are learned.

Feature & Classification Learning

Location (Bounding Box) Learning

Pretrained Convolutional 
Neural Network

Classifier

Bounding Box
Regresser

In paper, the RPN is 
first trained, and then 
the classifier, 
bounding box and 
regresser are trained 
together using a 
multi-task loss.



Faster R-CNN
def stem(inputs):
       # VGG16 w/o classifier ...
       return bottleneck_feature_maps

def learner(x):
       # region proposal network (RPN) ...
      
       # region of interest pooling (RoI) ...

       return pooled_roi_feature_maps
   
def classifier(x):
       # softmax classifier for object classification ...
       # linear regression for bounding box ...

       return object_classes,  bounding_boxes

       

TODO
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Faster R-CNN
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Stem
Convolution 

Group

Faster R-CNN Micro-Architecture - Convolutional Front End (Shared Layers)

Conv
Net

In paper, pretrained network is a 
VGG16 with input 800x600.

VGG16

Bottleneck Layer - 256 Feature Maps

In paper, for 800x600 image input, 
feature maps are 37x50


