
Modern
Convolutional Neural Network

Architectures
Andrew Ferlitsch

Google Cloud AI/Developer Relations

Repo: https://github.com/GoogleCloudPlatform/keras-idiomatic-programmer/tree/master/workshops/Modern_CNN

https://github.com/GoogleCloudPlatform/keras-idiomatic-programmer/tree/master/workshops/Modern_CNN

Macro Architecture

Stem
Convolution

Group

Conv
Group

Conv
Group

Conv
Group

Classifier
Group

...Pre-Stem
Group

Stem

Learner

Classifier

2

Micro Architecture

Conv
Block

Conv
Block

Conv
Block

...

Group

3

Parameters

Meta-Parameters - These are the parameters for configuring macro-architecture.

Hyper-parameters - These are the parameters for training the model.

Parameters - These are the parameters the model will learn during training.

4

Macro Architecture
def stem(inputs):
 ...

def learner(inputs, **metaparameters):
 ...

def classifier(inputs, n_classes):
 ...

inputs = Input(shape=...)

layers = stem(inputs)

layers = learner(layers, metaparameters=...)

outputs = classifier(layers, n_classes)

model = Model(inputs, outputs)

Procedural Style (Idiomatic) of
coding the macro architecture
of a model in TF.Keras.

5

Macro Architecture
class MyModel():
 def init(self, input_shape, n_classes, **metaparameters):
 inputs = Input(shape=input_shape)
 layers = stem(inputs)

 layers = learner(layers, metaparameters)
 outputs = classifier(layers, n_classes)

 model = Model(inputs, outputs)

 def stem(self, inputs):
 ...

 def learner(self, inputs, **metaparameters):
 ...

 def classifier(self, inputs, n_classes):
 ...

OOP Style (Composable) of
coding a model in TF.Keras.

6

Micro Architecture
def learner(inputs, **metaparameters):
 ...

 for group_params in metaparameters[‘groups’]:
inputs = group(inputs, group_parameters)

def group(inputs, **metaparameters):

 for block_params in metaparameters[‘n_blocks’]:
inputs = block(inputs, block_parameters)

def block(inputs, **metaparameters):
 ...

metaparameters = {
‘groups’ :[{ n_blocks: 4, filters: 32 }, {n_blocks: 8, filters:64}] }

Procedural Style (Idiomatic) of
coding the micro architecture
of a model in TF.Keras.

7

Micro Architecture
class MyModel():
 metaparameters = {
 ‘groups’ :[{ n_blocks: 4, filters: 32 }, {n_blocks: 8, filters:64}
] }

 def learner(self, inputs, **metaparameters):
 ...

 for group_params in metaparameters[‘groups’]:
 inputs = group(inputs, group_parameters)

 @staticmethod
 def group(inputs, **metaparameters):

 for block_params in metaparameters[‘n_blocks’]:
 inputs = block(inputs, block_parameters)

 @staticmethod
 def block(inputs, **metaparameters):
 ...

OOP Style (Composable) of
coding the micro architecture
of a model in TF.Keras.

@staticmethod provides
means to tear off buildable
micro components that afe
configured by metaparameters
(factory design pattern).

8

Stem

This is the model
entry part of the
Graph.

Stem
Convolution

Group

Pre-Stem
Group

Stem

Input

This is data
preprocessing part
of the Graph
(detachable).

Initial convolutional
layers for extracting
coarse features,
followed by pooling
the coarse feature
maps.

Data transformations
(T in ETL) of raw
data:

Image preprocessing
Image augmentation

post processing for
prediction.

9

VGG

Stem
Convolution

Group

Conv
Group

(64)

Conv
Group
(128)

Conv
Group
(256)

Feature Learning
Classification Learning

In paper, a group is called a block.

Conv
Group
(512)

Conv
Group
(512)

Classifier
Group

2014 ILSVRC 1st Runner Up

Filters increase by
2X across groups

10

VGG

Conv
Layer

VGG - Convolutional Group (Micro-Architecture)

Conv
Layer

...

Delay max pooling to end of convolutional group

Input OutputMax
Pooling

11

VGG
def group(inputs, **metaparameters):

 # Block of Layers
 n_filters = metaparameters[‘n_filters’]
 for layer_params in metaparameters[‘n_layers’’]:

 inputs = Conv2D(n_filters, (3, 3), strides=(1, 1),
 padding=’same’, activation=’relu’)(inputs)

 # Max Pooling (downsampling) at end of group
 inputs = MaxPooling2D((2, 2), strides=(2, 2))(inputs)
 return inputs

padding=’same’ preserves
size of feature maps:
(H, W)in = (H, W)out

strides=2 reduces height,
width by ½:
(H, W)in = (½ H, ½ W)out

12

VGG

Flatten
Layer

VGG Classifier Group (Micro-Architecture)

Dense
Layer
(4096)

Dense
Layer
(4096)

Classifi
er

(Dense)
Layer

Input Output

Two very large
(4096) dense
layers to learn
classification from
features (1D
embedding after
Flatten layer)

Flattening into
1D vector (lower
dimensional
embedding) also
referred to as the
Bottleneck Layer

13

ResNet

2015 ILSVRC Winner

Stem
Convolution

Group
Residual

Group

Final
Pooling
Flatten
Layer

Macro-Architecture

Residual
Group

Residual
Group

Classifi
er

(Dense)
Layer

Feature Learning Classification Learning

Residual
Group

Hidden layers
dropped in
classifier.

Classification
partially
moved into
top
convolutional
group

14

ResNet

First block uses
linear projection
for the residual
link to expand the
number of feature
maps
(dimensionality
expansion) to
match the number
of filters for the
corresponding
group.

ResNet
Block

w/
Projection
Shortcut

ResNet Group (Micro-Architecture)

ResNet
Block

w/
Identity

Shortcut

ResNet
Block

w/
Identity

Shortcut

...
Input Output

Projection
shortcut
doubles
the
number of
filters.

15

ResNet
def group(inputs, strides=(2, 2), **metaparameters):

 n_filters = metaparameters[‘n_filters’]
 n_blocks = metaparameters[‘n_blocks’]

 # Linear Projection Block
 inputs = projection_block(inputs, n_filters, strides=strides)

 # Identity Blocks
 for _ in range(n_blocks-1):
 Inputs = identity_block(inputs, n_filters)

 return inputs

First group does not do
feature pooling in projection
block --while subsequent
groups do feature pooling.

Remaining blocks use identity
link (no projection).

16

ResNet
ResNet Stem Group

Zero
Padding

Strided
Conv
7x7

(64 filters)

Input Output

Dimensionality reduction - reduce
size of feature maps by 75%

Zero
Padding

Max
Pooling

2x2

Introduced
using a coarse
filter size (7x7)
vs. VGG (3x3).

Added
dimensionality
reduction with
strided
convolution and
max pooling.

17

ResNet

Convolution
1x1

Residual Block (Fig. 3(c) in Paper) with Identity Shortcut

Bottleneck
Convolution

3x3

Convolution
1x1

Filters x 4

Number of Feature
Maps is increased
4X

Input OutputAdd

In paper, this is called
dimensionality restoration

In paper, this is called
dimensionality reduction

In paper,this is denoted by the
formula
h(x) = f(x, {Wi}) + x

In paper, this is called bottleneck design

Initial
convolution
layers
reduce the
number of
features
maps from
previous
block
(bottleneck).

Last convolution increases the
number of feature maps.

18

ResNet
def identity_block(inputs, **metaparameters):
 n_filters = metaparameters[‘n_filters’]

 # Remember the input
 residual = inputs

 # Dimensionality Reduction
 inputs = Conv2D(n_filters, (1, 1), strides=(1, 1), …)(inputs)
 ...

 # Bottleneck Convolution
 inputs = Conv2D(n_filters, (3, 3), strides=(1, 1), …)(inputs)
 …

 # Dimensionality Expansion
 inputs = Conv2D(4 * n_filters, (1, 1), strides=(1, 1), …)(inputs)
 …

 # Add residual block input to output of residual block
 inputs = Add()([residual, inputs])
 return inputs

Start by saving a copy of the
input (residual).

Do a series of sequential
convolutions.

Do a matrix add of the saved
input (residual) with outputs of
the last convolution.

19

ResNet

Strided
Convolution

1x1

Residual Block (Fig. 3(c) in Paper) with (Linear) Projection Shortcut

Bottleneck
Convolution

3x3

Convolution
1x1

Filters x 4
Input OutputAdd

In paper, this is called projection
shortcut

Strided Convolution 1x1
Filters x 4

Reduces Filter Size
By 75%

In paper,this is denoted by the
formula
h(x) = f(x, {Wi}) + Wsx

A linear
projection
convolution is
used on the
residual in the
first block, so
the number of
feature maps
on the identity
link match the
output for the
matrix add
operation.

20

ResNet
def projection_block(inputs, strides=(2, 2), **metaparameters):
 n_filters = metaparameters[‘n_filters’]

 # Remember a Linear projection of the inputs
 residual = Conv2D(4 * n_filters, (1, 1), strides=strides,)(inputs)

 # Dimensionality Reduction
 inputs = Conv2D(n_filters, (1, 1), strides=(1, 1), …)(inputs)
 ...

 # Bottleneck Convolution
 inputs = Conv2D(n_filters, (3, 3), strides=(1, 1), …)(inputs)
 …

 # Dimensionality Expansion
 inputs = Conv2D(4 * n_filters, (1, 1), strides=(1, 1), …)(inputs)
 …

 # Add residual block input to output of residual block
 inputs = Add()([residual, inputs])
 return inputs

The remembered input
(residual) has the number of
filters increased 4X on the first
block to match the number of
filters on the output for the
matrix add operation.

21

ResNet

Classifier Group

Global
Average
Pooling

Input
Output
Dense

(N classes)
Output

Flattening of
feature maps
(bottleneck
layer) is
replaced by
averaging
each feature
map into a
single value
and
concatenating
into 1D vector.

Coarse
classification
learning
overlaps with
prior (toplevel)
convolutional
group.

Final (detail)
classification
learning is
done here.

22

Batch Normalization

Conv
Layer

Pixels values are
normalized, whereby the
distance between pixels
is proportional to their
frequency of occurrence
-- which speeds up
learning.

Conv
Layer

Pixel value spread

Conv
Layer

Variance in the pixel
values spreads per
layer (co-variance).

At some point, the
variance is too great
for the model to
learn - which limited
the depth of layers
(vanishing gradient).

Co-Variance Shift - Vanishing Gradient

23

Batch Normalization

Conv
LayerRe-normalize pixel

values after each
convolution.

Conv
Layer

Pixel value spread

Conv
Layer

Variance in the pixel
values stabilizes.

Can go deeper layers
without vanishing
gradient.

By-product benefit
was able to use
higher learning rates
and speed up
training time.

Solution - Renormalize after each convolution

24

Batch Normalization

 # Convolutional layer followed by batch normalization
 inputs = Conv2D(n_filters, (1, 1), strides=(1, 1), use_bias=False,
 kernel_initializer=’he_normal’)(inputs)
 inputs = BatchNormalization()(inputs)
 inputs = ReLU()(inputs)

Batch Normalization
(normalize over each batch)
added inserted before linear
activation unit (demonstrated
in ResNet).

Eliminated the need for bias
parameters (i.e., use_bias =
False).

ResNet used random sample
from He-Normal distribution
for initializing weights (prior
was Xavier -- increased
likelihood of finding best
optima ~ accuracy on holdout
data). 25

ResNet V1.5

Convolution
1x1

Residual Block with (Linear) Projection Shortcut (v1.5)

Strided
Bottleneck

Convolution
3x3

Convolution
1x1

Filters x 4
Input OutputAdd

In paper, this is called projection shortcut

Strided Convolution 1x1
Filters x 4

Reduces Filter
Size
By 75%

In paper,this is denoted by the
formula
h(x) = f(x, {Wi}) + Wsx

The strided
convolution in
projection block is
moved to the 3x3
bottleneck
convolution.

Reduces number
of multi-ops of the
1x1 / 3x3 pair by
66%. On 4x4
patch, previous
was 37 multi-ops,
now 13.

Authors claim has
representational
equivalence with
V1 design.

26

ResNet V2

 # Convolutional layer followed by batch normalization
 inputs = BatchNormalization()(inputs)
 inputs = ReLU()(inputs)
 inputs = Conv2D(n_filters, (1, 1), strides=(1, 1), use_bias=False,
 kernel_initializer=’he_normal’)(inputs)

In V2, the Batch
Normalization/ReLU is moved
to before the convolution in
the identity and projection
blocks (but not in the stem).
Referred to as BN-RE-Conv
pre-activation.

The number of parameters
and matmul ops stays the
same, while the authors found
they got higher accuracies on
ImageNet and CIFAR-10
training.

27

Inception V1 (GoogLeNet)

2014 ILSVRC Winner

Stem
Convolutional

Group

Auxiliary
Classifier

Inception Macro Architecture

Inception
Group 4a
(1 block)

Classifier
Group

In paper, blocks are referred to
as inception modules.

Inception
Group
3a,3b

(2 blocks)

Inception
Group

4b,4c,4d
(3 blocks)

Group 3 and 4 end with MaxPooling

In paper, the authors theorized that the classifier
(loss function) is from the inputs, the performance
of upgrading the weights are early layers will
degrade. They proposed to address this by adding
auxiliary classifiers to contribute to adjusting the
weights at earlier layers.

Inception
Group 4e
(1 block)

Inception
Group
5a,5b

(2 blocks)

Auxiliary
Classifier

28

Inception V1 (GoogLeNet)
def learner(inputs, n_classes, **metaparameters):
 aux = [] # auxiliary outputs

 groups = metaparameters[‘groups’] # group 3, 4 and 5
 for group_params in groups:
 inputs, _aux = group(inputs, group_params)
 aux += _aux

 return inputs, aux

The learner constructs both
the sequential convolutional
groups (inputs), and the
non-sequential auxiliary
classifiers (aux).

29

Inception V1 (GoogLeNet)
Inception v1 Micro-Architecture

Inception
Block

Input
Output

Inception
Block

Output...

In paper, blocks are referred to
as inception modules.

Max
Pooling

(3x3)

Last group has no pooling of feature maps

The learner consists
of three groups,
where each group
consists of two or
more inception
blocks (modules)
and ends with a max
pooling layer for
dimensionality
reduction between
groups.

The total number of
filters per group
successively
increases.

The last group
does no have a
max pooling
layer -- instead
dimensionality
reduction is done
by the bottleneck
layer in the
classifier.

30

Inception V1 (GoogLeNet)
def group(inputs, pooling=True, **metaparameters):
 aux = [] # auxiliary outputs

 blocks = metaparameters[‘blocks’’]
 for block_params in blocks:
 # Add auxiliary classifier after previous block
 if block_params is None:
 aux.append(auxiliary(inputs, n_classes)
 else:
 # Filter sequence for each branch in block
 branch1x1, branch3x3, branch5x5, branchpool = block_params
 inputs = inception_block(inputs, branch1x1, branch3x3, branch5x5,
 branchpool)

 # Add max pooling at the end of the group
 if pooling:
 inputs = ZeroPadding2D((1, 1))(inputs)
 inputs = MaxPooling2D((3, 3), strides=(2, 2))(inputs)

 return inputs, aux

Here the metaparameters are
a sequential list of blocks and
auxiliary classifiers.

Each inception block (module)
uses a wide convolutional with
four parallel (branches)
convolutions.

The block parameters specify
the number of filters per
branch.

31

Inception V1 (GoogLeNet)

Pool

1 x 1

1 x 1 1 x 1 1 x 1

3 x 3 5 x 5

Concatenate

Inception v1 Block
Input

Output

Linear Projection

Filter Reduction

In paper, this is done to reduce computational
complexity on the 3x3 and the more expensive
5x5 filters.

In paper, this is referred to as a filter bank.

The input (feature
maps) are passed
thru four parallel
convolutions
(branches) of
differing filter sizes.

Authors claimed that
the different filter
sizes capture
different resolution of
details.

The output feature maps from each
branch are concatenated into a
single set of feature maps --referred
to as a filter bank.

32

Inception V1 (GoogLeNet)
def inception_block(inputs, f1x1, f3x3, f5x5, fpool):
 # The branches
 b1x1 = Conv2D(f1x1, (1, 1), strides=1, padding=’same’, activation=’relu’)(inputs)

 b3x3 = Conv2D(f3x3[0], (1, 1), strides=1, padding=’same’, activation=’relu’)(inputs)
 b3x3 = ZeroPadding2D((1, 1))(b3x3)
 b3x3 = Conv2D(f3x3[1], (3, 3), strides=1, padding=’valid’, activation=’relu’)(b3x3)

 b5x5 = Conv2D(f5x5[0], (1, 1), strides=1, padding=’same’, activation=’relu’)(inputs)
 b5x5 = ZeroPadding2D((1, 1))(b5x5)
 b5x5 = Conv2D(f3x3[1], (3, 3), strides=1, padding=’valid’, activation=’relu’)(ib5x5)

 bpool = MaxPooling2D((3, 3), strides=1)(inputs)
 bpool = Conv2D(fpool, (1, 1), strides=1, padding=’same’, activation=’relu’)(bpool)

 # The filter bank
 inputs = Concatenate()([b1x1, b3x3, b5x5, bpool])

 return inputs

The input is passed
thru four parallel
convolutions of
different filter sizes.

Zero padding used to
preserve the size of the
feature maps (i.e., all
branches have the
same size) for
subsequent concat.

Concatenate the
features maps from the
branches into a filter
bank. 33

Inception V1 (GoogLeNet)
Inception v1/v2 Auxiliary Classifier Group

Average
Pooling

(5x5)

Input
Dense

(N classes)

Output

Flatten Dropout

Reduces size of feature maps.

Conv
1x1

(128 filters)

Reduces number of feature
maps --feature pooling.

Dense
(1024)

Since the auxiliary classifier is much closer to the input,
an extra convolution and large dense (1024) layer were
added to increase accuracy, and dropout for
regularization.

34

Inception V1 (GoogLeNet)
Inception v1/v2 Auxiliary Classifier Group

Average
Pooling

(5x5)

Input
Dense

(N classes)

Output

Flatten Dropout

Reduces size of feature maps.

Conv
1x1

(128 filters)

Reduces number of feature
maps --feature pooling.

Dense
(1024)

Since the auxiliary classifier is much closer to the input,
an extra convolution and large dense (1024) layer were
added to increase accuracy, and dropout for
regularization.

35

Inception V1 (GoogLeNet)
Inception Classifier Group

Average
Pooling
(NxN)

Input Dense
(N classes) OutputFlatten Dropout

Feature Maps are 7x7
for v1/v2 and 8x8 for v3
(bottleneck layer) Reduces to 1x1 Feature

Maps, where N is the
input size

Classifier
reduced to
bottleneck layer
(pooling /
flattening) and
final dense
layer.

Dropout added
for
regularization.

36

Inception V3

2015 ILSVRC 1st Runner Up

Stem
Convolutional

Group

Inception V3 Macro Architecture

Grid
Reduction

Classifier
Group

In paper, blocks are referred to
as inception modules.

Inception
Group A

(3 blocks)

Inception
Group B

(5 blocks)

In paper, the authors theorize that the auxiliary
classifier acts as a regulazier

Grid
Reduction

Inception
Group C

(2 blocks)

Auxiliary
Classifier

In paper, these blocks are described in fig. 5, where
the 5x5 convolution is refactored as two 3x3 for 33%
less params, but representational equivalent.

In paper, these blocks are described in
fig. 6, where the nxn convolution is
refactored as a 1xn and nx1, where n = 7

In paper, these blocks are the same as
the blocks in V1.

37

Inception V3

2015 ILSVRC 1st Runner Up

Inception v3 Micro-Architecture

Inception
Block

Input
Output

Inception
Block

Output...

In paper, blocks are referred to
as inception modules. Each block has the same grid (feature map) size.

Grid
Reduction

Block

Reduces feature map size by 75%.
Last group has no reduction block

V3 has three
styles of
inception
blocks, referred
to as 35x35
(group A), 17x17
(group B) and
8x8 (group C).

V3 replaces max
pooling at the
end of a group
with a grid
reduction block
for feature
pooling
(dimensionality
reduction).

38

Inception V3
def group(inputs, **metaparameters):
 # The style of inception block for this group
 inception_block = metaparameters[‘inception’]
 # The style of grid reduction (or None) for this group
 grid_reduction = metaparameters[‘reduction’]
 # Include auxiliary classifier (or None) for this group
 auxiliary_classifier = metaparameters[‘auxiliary’]

 for block_params in metaparameters[‘blocks’]:
 # The number of filters per branch
 branch1, branch2, branch3, branch4 = block_params
 inputs = inception_block(inputs, branch1, branch2, branch3, branch4)

 if auxiliary_classifier is not None:
 aux = auxiliary(inputs, n_classes=auxiliary_classifier)

 if grid_reduction is not None:
 Inputs = grid_reduction(inputs)

 return inputs, aux

The metaparameters
consist of the style of
inception block and
grid reduction, and
whether to include the
auxiliary classifier.

All three styles of
inception block use
four branches.

Grid reduction done at
the end of each group,
except the last group.

39

Inception V3

Pool

1 x 1

1 x 1 1 x 1 1 x 1

3 x 3 5 x 5

Concatenate

Inception v3 Block 35x35 (Group A)
Input

Output

Linear Projection

Filter Reduction

In paper, this is done to reduce
computational complexity on the 3x3
and the more expensive 5x5 filters.

In paper, this inception module is referred
to as the traditional inception module
--but differs from V1 by using two
(double) 3x3 convolution layers, instead
of one.

3 x 3

The single 3x3 in
inception V1 is
replaced by a
double 3x3.

While adding
computational
complexity, the
authors state
that it increases
representational
power at small
increase in
computation.

40

Inception V3

Pool

1 x 1

1 x 1 1 x 1 1 x 1

1 x 7 1 x 7

Concatenate

Inception v3 Block 17x17 (Group B)
Input

Output

Linear Projection

Filter Reduction

In paper, this is done to reduce
computational complexity on the 7x7
filters

In paper, this inception module is
referred as factorization of n x n into 1 x
n and n x 1 (where n = 7), which is
depicted in figure 6

7 x 1 7 x 1

 1 x 7

7 x 1

Factorizes the 5x5
convolution into a
spatially separable
convolution of 1x7, 7x1.
Lowers computational
complexity from 25
matmul ops to 14 per
stride.

Factorizes the double
3x3 convolution into
two 1x7, 7x1. Increase
computational
complexity from 18
matmul ops to 14.

Authors state it
increases
representational power.

41

Inception V3

Pool

1 x 1

1 x 1 1 x 1 1 x 1

1 x 3 3 x 3

Concatenate

Inception v3 Block 8x8 (Group C)
Input

Output

Linear Projection

Filter Reduction

In paper, this is done
to reduce
computational
complexity on the
3x3 filters.

3 x 1

3 x 1 1 x 3Concatenate

Concatenate

Split & Merge

Factorizes the 3x3
convolution into
parallel spatially
separable
convolution 1x3,
3x1.

42

ResNeXt

2016 ILSVRC 1st Runner Up

Stem
Convolution

Group

Residual
Next

Group

Final
Pooling
Flatten
Layer

ResNeXt Macro-Architecture

Residual
Next

Group

Residual
Next

Group

Classifi
er

(Dense)
Layer

Feature Learning Classification Learning

Residual
Next

Group

43

ResNeXt

ResNeXt
Block

w/
Projection
Shortcut

ResNeXt - ResNeXt Group (Micro-Architecture)

ResNeXt
Block

w/
Identity

Shortcut

ResNeXt
Block

w/
Identity

Shortcut

...Input Output

Projection
shortcut
doubles
the number
of filters
coming in.

Uses a
Residual
Next block in
place of
Residual
block
(ResNet).

Output filters
is two times
the number
of input
filters.

44

ResNeXt

Convolution
1x1

Residual Next Block (Fig. 3(c) in Paper) with Identity Shortcut

Group
Convolution

3x3

Convolution
1x1

Filters x 2

Number of Feature
Maps is increased
2X

Input OutputAdd

In paper, this is split-transform-merge

The paper introduces a new meta-parameter
“cardinality”, as the width of the group layer The 3x3

convolution in
a Residual
block is
replaced by a
3x3 group
convolution.

The feature
maps are split
into N
segments
(cardinality),
where each
goes through a
separate
convolution.

45

ResNeXt
def identity_block(inputs, filters_in, filters_out, cardinality=32):
 # removed for brevity ...
 # calculate the number of filters per group
 filters_group = filters_in // cardinality

 # wide layer (split-transform)
 groups = []
 for i in range(cardinality):
 # calculate start/end of partition for the group
 start = i * filters_group
 end = start + filters_group
 group = Lambda(lambda z: z[:, :, :, start : end])(inputs)
 groups.append(Conv2D(filters_card, (3, 3), strides=(1, 1), padding=’same’,
 use_bias=False)(group)

 # merge
 inputs = Concatenate()(groups)
 inputs = BatchNormalization()(inputs)
 # removed for brevity …

 return inputs

We use a TF.Keras
Lamda layer to perform
the splitting of the
feature maps during
training/inference in the
graph.

The convolutional
outputs of each group
are then concatenated
together.

The convolutions can
be processed in
parallel on a GPU
(CUDA).

46

DenseNet

Stem
Convolution

Group
Dense
 Group

DenseNet Macro-Architecture

Dense
 Group

Dense
Group

Dense
Group

Final
Pooling
Flatten
Layer

Classifi
er

(Dense)
Layer

Classification LearningFeature Learning

Number of filters is the same for all groups

Stem has 2X the
number of filters as
the groups.

In paper, the number of filters is referred
to as k.

47

DenseNet

Dense
Block

Trans
Block

Dense Group Micro-Architecture

Input Output

Reduces size of concatenation feature maps passed
between groups.

In paper, the reduction is referred to as
the compression factorIn paper, the dense group is called a

dense block

Except for the
last group.
Each group
ends with a
transitional
block which
does a
dimensionality
reduction
(feature
pooling).

48

DenseNet
def group(inputs, **metaparameters):
 # The amount of reduction (compression factor) or None
 reduction = metaparameters[‘reduction’]
 # Parameters for residual sub-blocks with dense block
 blocks = metaparameters[‘blocks’]:

 inputs = dense_block(inputs, blocks)

 if reduction is not None:
 inputs = trans_block(inputs, reduction)

 return inputs

The metaparameters
consist of reduction
(compression factor),
and the number of
filters per block.

Reduction
(compression) done at
the end of each group,
except the last group.

49

DenseNet

Residual
Block

C
on

ca
te

na
te

Residual
Block

C
on

ca
te

na
te

Residual
Block

C
on

ca
te

na
te

Dense Block Micro-Architecture

Feature maps from the input are concatenated
with the output

Identity Links

Input ... Output

In paper, this is referred to as feature
map reuse.

In paper, this is denoted by the formula:
xl = Hl([x0, x1, … xl-1])

By concatenating
feature maps at
each block layer,
the feature maps
are successively
accumulated.

Thus each layer
sees the feature
maps from all
previous layers.

50

DenseNet
def dense_block(inputs, blocks):
 # Parameters for residual sub-blocks with dense block
 blocks = metaparameters[‘blocks’]:

 for block_params in blocks:
 # block_params is the number of filters
 n_filters = block_params
 inputs = residual_dense_block(inputs, n_filters)

 return inputs

The concatenation
operation occurs within
the residual dense
block, as the final step.

51

DenseNet

Convolution
1x1

(4X filters)

Residual Dense Block with Identity Shortcut

Convolution
3x3

(X filters)

Dimensionality expansion
Feature maps increased
by 4X

Input OutputConcatenate

Dimensionality reduction -
Feature maps decreased
to X.

The feature maps
from the input
(identity link) are
concatenated
with the output
feature maps.

The accumulated
feature maps will
then be the input
to the next block.

52

DenseNet
def residual_dense_block(inputs, n_filters):
 # remember the input
 residual = inputs

 # dimensionality expansion
 inputs = BatchNormalization()(inputs)
 inputs = ReLU()(inputs)
 inputs = Conv2D(4 * n_filters, (1, 1), strides=(1, 1), use_bias=False)(inputs)

 # bottleneck convolution
 inputs = BatchNormalization()(inputs)
 inputs = ReLU()(inputs)
 Inputs = Conv2D(n_filters, (3, 3), striddes=(1, 1), padding=’same’,
 use_bias=False)(inputs)

 # Concatenate residual block input to output of residual block
 inputs = Concatenate()([residual, inputs])
 return inputs

Uses the BN-RE-Conv
pre-activation form for
convolutional layers,
except for the stem.

The bottleneck
convolution does a
dimensionality
reduction on the
number of feature
maps to reduce the
overall number as they
accumulate across
blocks.

53

DenseNet

Convolution
1x1

(filters/C)

Dense Transitional Block

Average
Pooling

2x2

Dimensionality reduction
Number of feature maps
decreased by ratio of C.

Input Output

Dimensionality reduction -
Feature map sizes decreased
by 75%

In paper, the reduction is referred to as
the compression factor

Finally, the
compressed
feature maps are
further reduced
by pooling.

Each dense block
is followed by a
transitional block,
except for the last
block.

The number of
feature maps is
reduced by the
compression
metaparameter.

54

SENet

2017 ILSVRC Winner

Stem
Convolution

Group

Conv
Group

w/
SE Links

SENet Macro-Architecture

Conv
Group

w/
SE Links

Conv
Group

w/
SE Links

Classifier
Group...

Residual-Block based architecture
(e.g., ResNet, ResNeXt, Inception)

SENet is a
derivative of
the residual
block method
(ResNet/ResN
eXt) by
modifying the
identity/project
ion link with a
squeeze-excit
ation block.

55

SENet

The
identity/projection
link on each
residual block is
followed by a
squeeze-excitation
link.Residual

Block
w/

SE Link

Residual Group w/SE Link (Micro-Architecture)

Residual
Block

w/
SE Link

Residual
Block

w/
SE Link

...

Existing Block with identity/projection link
passed through Squeeze-Excitation (SE) block

Input
Output

56

SENet
def group(inputs, strides=(2, 2), **metaparameters):
 # the number of blocks in the group
 blocks = metaparameters[‘blocks’]
 # the ratio of reduction in the SE link.
 ratio = metaparameters[‘ratio’]

 # first block is the projection shortcut block
 block = blocks.pop()
 inputs = projection_block(inputs, block[‘n_filters’], strides=strides, ratio=ratio)

 # remaining blocks use residual block with identity link
 for block in blocks:
 inputs = identity_block(inputs, block[‘n_filters’], ratio=ratio)

 return inputs

Metaparameters consist
of blocks (which have
number of filters) and the
amount of reduction of
filters in the
squeeze-excitation link
(ratio).

**code demonstration for
ResNet architecture.

57

SENet

Depicts adding the
Squeeze-Excitation
link to the output of
the residual block
(prior to the add op
of the identity link).

Residual
Block
w/o

Identity
Link

Residual Block + Identity Shortcut w/SE Link

SE
Block

Output

In paper, this is referred to as a link

SE block inserted
between the residual
block and identity add
op.

Add

In paper, this performs a
split-transform-merge operation on
the identity link before adding into
the output of the residual block.

58

SENet
def identity_block(inputs, n_filters, ratio=16):
 # remember the input
 residual = inputs

 # removed for brevity ...

 # pass the output of the residual block thru the SE block
 inputs = se_block(inputs, ratio)

 # add the identity link to the output of the SE block
 inputs = Add()([residual, inputs])

 return inputs

The SE block (link) is
inserted between the
output of the residual
block and corresponding
matrix add with the
identity link.

59

SENet

Depicts adding the
Squeeze-Excitation
link in a residual
block with a
projection shortcut.

Residual
Block
w/o

Identity
Link

Residual Block + Projection Shortcut w/SE Link

SE
Block

OutputAdd

Projection

Matches number of
input filters to output
filters for matrix add.

60

SENet

SE Link (block)
uses a residual
style block with
identity link.

Instead of
convolutions, it
flattens the feature
maps, and passes
them thru two
dense layers.

First dense layer
reduce the number
of feature maps
(ratio) and the
second restores
them.

Global
Average
Pooling
(1x1xC)

Squeeze-Excitation Block

Dense
C / r Filters

(ReLU)
(1x1xC/r)

Dense
C Filters

(Sigmoid)
(1x1xC)

Input
(HxWxC) Output

In paper, this is the squeeze.

In paper, this is the split-transform op.

r is the filter reduction ratio

In paper, this is the merge op,
which is referred to as Scale.

Multiply

In paper, this is the
excitation.

61

SENet
def se_block(inputs, n_filters, ratio=16):
 # remember the input
 residual = inputs

 # get the number of filters in the input
 n_filters = inputs.shape[-1]

 # squeeze (dimensionality reduction)
 inputs = GlobalAveragePooling2D()(inputs)

 # reshape the 1D vector into 1x1xC (C=no. of filters)
 inputs = Reshape((1, 1, n_filters))(inputs)

 # reduce the number of feature maps
 inputs = Dense(n_filters // ratio, activation=’relu’)(inputs)

 # excitation (dimensionality restoration)
 inputs = Dense(filters, activation=’sigmoid’)(inputs)

 inputs = Multiply()([residual, inputs])
 return inputs

The SE block is similar in
design to a residual
block, in that it uses an
identity link to add the
input to the output of the
block.

Each feature map is
reduced to a single pixel,
followed by reducing the
number (squeeze).

The number of filters is
then restored (excitation).

62

SqueezeNet

Stem
Convolution

Group

Fire
Group

(16->32)

SqueezeNet Macro-Architecture

Fire
Group

(32->64)

Feature Learning Classification Learning

Fire
Group

(64)
+

Dropout

Classifier
Group

Delayed Dimensionality reduction -
reduce size of feature maps by
75%

Last Fire module adds
dropout to prevent
overfitting.

Double the number of filters from
the first to second fire group 63

SqueezeNet
SqueezeNet Group Micro-Architecture

Fire
Block

(N filters)
Input

Output

Progressively increases filters
where number of output filters is
2X of the input filters

Fire
Block

Output... Fire
Block

(2N filters)

In paper, a block is referred to as a
module.

Max
Pooling

3x3

Last Fire module adds
dropout to prevent
overfitting.

Each group,
except the
last group,
delays max
pooling until
after the last
fire block.

64

SqueezeNet
def group(inputs, **metaparameters):
 # the blocks for the group
 blocks = metaparameters[‘blocks’]
 # amount of drop out (otherwise max pooling)
 dropout = metaparameters[‘dropout’]

 for block_params in blocks:
 # number of filters for the block
 n_filters = block_params
 inputs = fire_block(inputs, n_filters)

 # delayed max pooling
 if dropout is None:
 inputs = MaxPooling2D()(inputs)
 # last group, do dropout instead
 else:
 inputs = Dropout(dropout)

 return inputs

The blocks
metaparameter specifies
the number of fire blocks,
and the number of filters
per block.

The last group specifies a
dropout; otherwise the
group ends with delayed
max pooling.

65

SqueezeNet

Convolution
1x1

(N Filters)

SqueezeNet Fire Block

Input
Output

Convolution
1x1

(4N Filters)

Convolution
3x3

(4N Filters)

Concatenate

Number of filters is
increased 4X

In paper, this is referred to as the
squeeze step

In paper, this is
referred to as the
expand step

The input is first
squeezed by
reducing the
number of
feature maps
using a linear
projection.

The features
maps are then
expanded by
increasing the
number of filters
using parallel
linear projection
and 3x3
convolution.

66

SqueezeNet
def fire_block(inputs, n_filters):
 # squeeze
 inputs = Conv2D(n_filters, (1, 1), strides=(1, 1), padding=’same’,
 activation=’relu’)(inputs)

 # expand
 expand_1x1 = Conv2D(4 * n_filters, (1, 1), strides=(1, 1), padding=’same’,
 activation=’relu’)(inputs)
 expand_3x3 = Conv2D(4 * n_filters, (1, 1), strides=(1, 1), padding=’same’,
 activation=’relu’)(inputs)

 # concatenate the feature maps from the branches
 inputs = Concatenate()([expand_1x1, expand_3x3])

 return inputs

The input is reduced
(squeezed) using a 1x1
linear projection
convolution.

The output is then
passed to two parallel
convolutions to increase
(expand) the number of
feature maps by 4X.

The feature maps from
the two parallel
convolutions are
concatenated for the
output.

67

Multi-Label Classifier

Micro-Architecture (Multi-Label CNN) - Classifier

Classifier
Group

Classifier
Group

Classifier
Group

Multiple ‘softmax’ classifiers

Feature maps from
bottleneck layer of learner
group

Pool/Flatten
(1D Vector)

During training, the losses
from each classifier are
aggregated into a combined
loss for updating weights.

Multi-Label Classifier
def classifier(x, classes):
 # Construct softmax classifier per group of classes
 outputs = []
 for n_classes in classes:
 output = Dense(n_classes, activation=’softmax’)(x)
 outputs.append(output)]

 # Return the multiple outputs as a list
 return outputs

When compiling (build) the model, is equivalent to:

model = model(inputs, [outputs1, outputs2, …, outputsN])

A multi-label CNN is a
CNN model with multiple
outputs from a single
input.

When using the
Functional API, this is the
same as building the
model using a single
input with multiple
outputs.

Weights are updated
during training using the
combined loss across all
outputs.

69

Siamese Twin
Siamese Neural Network Macro-Architecture

L1
Distance

Classifier
Group

(Logistic)

Calculates the L1 (Manhattan)
distance between two 1D vectors

Shared Layers - structure and
learned weights are shared between
the two models (symmetric)

Input 1

Twin
Model

Twin
Model

Input 2

In paper, these are called twins

Bottleneck Layer - final feature
maps flattened into 1D vectors

Calculates probability of an image
pair belonging to the same class.

In paper, these are called
image pairs

70

AutoEncoder
AutoEncoder Macro-Architecture

Conv
Feature
Pooling

Conv
Feature
Pooling

Conv
Feature
Pooling

...

Encoder

Conv
Feature

Unpoolin
g

Conv
Feature

Unpoolin
g

Conv
Feature

Unpoolin
g

...

Decoder

Progressively Feature Pool Progressively Feature Unpool
Symmetric to Encoder

Learn the function f(x) = x’, f(x’) = x,
where x’ is lower dimensionality than x.

AutoEncoder
metaparameter: filters per layer in encoder
layers = [{ ‘n_filters’: 64 }, { ‘n_filters’: 32 }, { ‘n_filters’: 32 }]

input shape to autoencoder
inputs = Input(input_shape=(32, 32, 3))

the encoder
x = encoder(inputs, layers=layers)

the decoder
outputs = decoder(x, layers=layers)

model = Model(inputs, outputs)

compile using mean square error as the loss function
model.compile(loss=’mse’, ….)

Construct autoencoder
as an encoder and then
decoder, where decoder
is reverse symmetric to
encoder.

Loss function is mean
square error.

72

AutoEncoder
AutoEncoder Micro-Architecture - Encoder

Conv
Feature
Pooling

(1/2H
x

1/2W)

Conv
Feature
Pooling

(1/4H
x

1/4W)

Conv
Feature
Pooling

(1/8H
x

1/8W)

...

Each convolution
downsamples feature maps
by 75%.

Number of filters are halved
or held constant.

Output is typically 90%
reduction in size from input.

Typically, the encoder is
three layers, where each
layer reduces height and
width by ½.

Final feature maps are
⅛ in height and width.

A high number of filters
(e.g.,64) than the
channels (e.g., 3) are
used and progressively
reduced or stay the
same.

Objective is to reduce
HxWx3 input by 90% for
⅛ H x ⅛ W x C

AutoEncoder
AutoEncoder Micro-Architecture - Decoder

Conv
Feature

Unpooling
(2H
x

2W)

Conv
Feature

Unpooling
(4H
x

4W)

Conv
Feature

Unpooling
(8H
x

8W)

...

Each deconvolution
upsamples feature maps by
75%.

Number of filters are
symmetrically the same as
the encoder, except the last
deconvolution.

Last deconvolution, the number of
filters is the number of channels for
the input to AutoEncoder (e.g., 3).

The decoder is
symmetric to the
encoder, progressively
increasing the feature
map sizes in reverse
order.

The last deconvolution
restores the number of
channels to the input.

AutoEncoder
def encoder(x, **metaparameters):
 # Progressive feature pooling
 layers = metaparameters[‘layers’]
 for layer in layers:
 n_filters = layer[‘n_filters’]
 x = Conv2D(n_filters, (3, 3), strides=2, padding=’same’)(x)

 # Return the bottleneck layer (encoding)
 return x

 def decoder(x, **metaparameters):
 # Progressive feature unpooling (in reverse order)
 layers = metaparameters[‘layers’]
 for _ in range(len(layers-1), 0, -1):
 n_filters = layers[_][‘n_filters’]
 x = Conv2DTranspose(n_filters, (3, 3), strides=2)(x)

 # On last deconvolution, restore the number of channels to the input.
 x = Conv2DTranspose(3, (3, 3), strides=2, padding=’same’)(x)

Progressively reduce the
feature map HxW by ½
(strides=2).

Generally, the number of
filters is halved or kept
the same.

Progressively increase
the feature map HxW by
2 (strides=2).

75

R-CNN

76

Selective
Search

Conv
Net

R-CNN Macro-Architecture

SVM Classifiers

In paper, 2000 region proposals
are generated per image.

Feature Learning Classification and Location (Bounding Box) Learning

Pretrained
Convolutional Neural
Network

Image Regions
Feature Vectors

In paper, this is referred to as three modules.

In paper, the feature vectors are 4096

In paper, image regions are warped
to fit the size of the ConvNet
(227x227).

Fast R-CNN

77

Selectiv
e

Search

Conv
Net

Fast R-CNN Macro-Architecture

Classifier

Feature Learning Classification and Location (Bounding Box) Learning

Pretrained
Convolutional Neural
Network

Shared Feature Maps

Feature Vectors

In paper, the region based feature maps are
pooled into same size (e.g. 7x7) feature maps.

In paper, an image is passed through
the pretrained convolutional neural
network to generate shared feature
maps.

Stem
Convolution

Group

Region
of

Interest
(RoI)

Pooling

Region Proposals

Bounding Box
Regresser

In paper, during training R/N region proposals are
passed in, where R = 128 and N = 2 (minibatch size).
During inference, 2000 region proposals were used.

Region Feature
Maps

In paper, the
classifier and
bounding box
regresser are trained
together using a
multi-task loss.

Faster R-CNN

78

Stem
Convolution

Group

Region
Proposal
Network

(RPN)

Faster R-CNN Macro-Architecture

Conv
Net

Shared Feature Maps

Region
of

Interest
(RoI)

Pooling

In paper, region proposals are learned.

Feature & Classification Learning

Location (Bounding Box) Learning

Pretrained Convolutional
Neural Network

Classifier

Bounding Box
Regresser

In paper, the RPN is
first trained, and then
the classifier,
bounding box and
regresser are trained
together using a
multi-task loss.

Faster R-CNN
def stem(inputs):
 # VGG16 w/o classifier ...
 return bottleneck_feature_maps

def learner(x):
 # region proposal network (RPN) ...

 # region of interest pooling (RoI) ...

 return pooled_roi_feature_maps

def classifier(x):
 # softmax classifier for object classification ...
 # linear regression for bounding box ...

 return object_classes, bounding_boxes

TODO

79

Faster R-CNN

80

Stem
Convolution

Group

Faster R-CNN Micro-Architecture - Convolutional Front End (Shared Layers)

Conv
Net

In paper, pretrained network is a
VGG16 with input 800x600.

VGG16

Bottleneck Layer - 256 Feature Maps

In paper, for 800x600 image input,
feature maps are 37x50

