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Part 1 

Getting started with
 reactive web applications 

This part of the book will get you started with reactive web applications by 
providing you with the foundation you need to understand the concepts dis­
cussed later in the book. You’ll learn how reactive web applications came to be 
and why they matter, and then you’ll get your hands dirty by building a simple 
reactive web application. You’ll also get a quick introduction to the concepts 
behind functional programming as well as to the Play Framework, should you 
not be familiar with those topics already. 
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Did you say reactive? 

This chapter covers 
■ Reactive applications and their origin 
■ Why reactive applications are necessary 
■ How Play helps you build reactive applications 

Over the past few years, web applications have started to take an increasingly 
important role in our lives. Be it large applications such as social networks, 
medium-sized ones such as e-banking sites, or smaller ones such as online account­
ing systems or project management tools for small businesses, our dependency on 
these services is clearly growing. This trend is now transitioning to physical devices, 
and the information technology research and advisory firm Gartner predicts that 
the Internet of Things will grow to an installed base of 26 billion units by 2020.1

 Reactive web applications are an answer to the new requirements of high avail­
ability and resource efficiency brought by this rapid evolution. Cloud computing 
and the subsequent emergence of cloud services have shifted web application 
development from an activity wherein one application tries to solve all kinds of 

Gartner, “Gartner Says the Internet of Things Installed Base Will Grow to  26 Billion Units By 2020” 
(December 12, 2013), www.gartner.com/newsroom/id/2636073. 
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4 CHAPTER 1 Did you say reactive? 

problems to a process of identifying and connecting to adequate cloud services and 
only solving those problems that have not been solved beforehand satisfactorily.

 We need a new set of tools to help us efficiently deal with the challenges that come 
with this evolution. The Play Framework has been designed from the ground up to 
make it possible to build reactive web applications that are capable of providing real-
time behavior to users even under high load and in a decentralized setting. At the 
time of this writing, Play is the only full-stack reactive web application framework avail­
able on the Java virtual machine. Embraced by large companies such as Morgan Stan­
ley, LinkedIn, and The Guardian, as well as many smaller players, Play is available as 
free, open source software, ready to be downloaded to your computer.

 In this chapter, we’ll look into what reactive web applications are, why you’d want 
to build such applications, and why the Play Framework is a good tool for this pur­
pose. We’ll start by disambiguating the meaning of the word “reactive” and look into 
how new trends in hardware design and software architecture call for a reconsidera­
tion of how to use computational resources. Finally, we’ll explore why failure handling 
plays a crucial role in this context, and how it can be achieved. 

1.1 Putting reactive into context 
If you’re reading this book, chances are that you’ve heard of concepts such as reac­
tive applications, reactive programming, reactive streams, or the Reactive Manifesto. 
Even though we can probably agree that all those terms sound a lot more exciting 
when prepended with reactive, you may wonder what reactive means in those differ­
ent contexts. Let’s find out by looking at the origins of the word in relation to com­
puter systems. 

1.1.1 Origins of reactive 

The concept of reactive systems isn’t new. In their paper “On the Development of Reac­
tive Systems”2 (published in 1985), David Harel and Amir Pnueli round up several 
dichotomies to characterize complex computer systems and propose a novel dichot­
omy: transformative versus reactive systems. Transformative systems accept a known set of 
inputs, transform those inputs, and produce outputs. For example, a transformative sys­
tem may prompt the user for some input, and then for some more, depending on what 
the user provided, to finally provide a result. Think, for example, of a pocket calculator, 
which accepts numbers and performs basic operations to finally return a result when 
the equals key is pressed. Reactive systems, on the other hand, are continuously stimu­
lated by the external environment, and their role is to continuously respond to these 
stimuli. For example, a wifi-enabled camera with motion-detection capabilities may 
notice a burglar enter a room and send an alert to the camera owner’s mobile phone, 
letting them witness helplessly their room being emptied of its precious belongings, as 
well as later on, the police arriving on the scene. 

2 A PDF version of the article is available at http://mng.bz/p1n3. 
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5 Putting reactive into context

 A few years later, Gérard Berry refined this definition by introducing the distinction 
between interactive and reactive programs. Whereas interactive programs set the speed 
at which they interact with the environment themselves, reactive programs are capable 
of interacting with the environment at the speed dictated by the environment.3

 Thus, reactive programs 

■ Are available to continuously interact with their environment 
■ Run at a speed that is dictated by the environment, not the program itself 
■ Work in response to external demand 

Coming back to present times, the preceding modus operandi of reactive programs 
looks a lot like how web applications operate or should be operating. Though appeal­
ing in theory, it takes quite some effort to fulfill these criteria, and possibly serious 
hardware resources, depending on the number of users and the nature of what they 
demand. It’s perhaps the lack of widespread high-performance hardware capable of 
delivering real-time interaction at scale that explains why we haven’t heard much of 
reactive systems until recently, when a set of core aspects that characterize reactive sys­
tems were published under the name Reactive Manifesto. 

1.1.2 The Reactive Manifesto 

The first version of the Reactive Manifesto was published in June 2013, and it 
describes a software architecture with the name Reactive Applications. Reactive applica­
tions are defined by a set of characteristics, or traits as they’re called in the manifesto 
(those traits have nothing to do with Scala’s traits), that altogether make up for 
applications that behave in the same way as the reactive programs we talked about ear­
lier: continuously available and readily responding to external demand. Although the 
Reactive Manifesto may seem like it’s describing an entirely new architectural pattern, 
its core principles have long been known in industries that require real-time behavior 
from their IT systems, such as financial trading.

 The following four traits make up reactive applications: 

■ Responsive—React to users 
■ Scalable—React to load 
■ Resilient—React to failure 
■ Event-driven—React to events 

A responsive application will satisfy the user’s expectations in terms of availability and 
real-time behavior. Real-time, or near real-time, means that the application will 
respond within a short or very short time. The time interval between the request and 
response is called latency, and it’s one of the key measurements when it comes to 
assessing how well a system performs. 

3	 Gérard Berry, “Real-Time Programming: General Purpose or Special-Purpose Languages,” Information Process­
ing 89 (Elsevier Science Publishers, 1989): 11-18. 
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6 CHAPTER 1 Did you say reactive?

 In order to continuously interact with their environment, reactive applications 
must be able to adjust to the load they’re facing. Sudden traffic bursts may affect an 
application; for example, a popular tweet with a link to a news article could cause a 
rush on a news website. To this end, an application must be scalable: it must be able to 
make use of increased computational capacity when necessary. This means it must be 
able to make efficient use of the hardware on a single machine (which may have one 
or more CPU cores), and also be able to function across several computation nodes at 
its disposal, depending on the load. 

NOTE We use the term “computation node” or simply “node” to refer to a 
resource on which a web application runs. In practice, this may be a physical 
computer, a virtual machine, or even a logical node on a Platform-as-a-Service 
provider. 

Because even the simplest of software systems are prone to failure (whether software-
related or hardware-related), reactive applications need to be resilient to failure to meet 
the demand of continuous availability. The capability of an application to get back on 
its feet should it encounter a problem is arguably even more important when it comes 
to scalable systems, which are more complex in nature and distributed, because the 
likeliness of hardware or network failure is increased. 

Event-driven applications based on asynchronous communication can help you 
achieve the previously listed traits. In this setup, the system (or subsystem) reacts to 
discrete events such as HTTP requests without monopolizing computational resources 
as it waits for an event to occur. This natural level of concurrency yields better latency 
than traditional synchronous method calls. Another consequence of writing event-
driven programs is that components are loosely coupled, making the software much 
more maintainable in the longer term. 

1.1.3 Reactive programming 

Reactive programming is a programming para-	 Table 1.1 A simple spreadsheet 
digm based on data flows and the propagation	 demonstrating the concept of reactive 

programmingof changes. Consider, for example, the spread­
sheet represented in table 1.1. 


The cell C1 is defined programmatically in
 
the following way: 

= A1 * B1 
  

If we were to run the preceding example in 
spreadsheet software, as soon as either the value 
of A1 or B1 was changed, the result in C1 would change accordingly. The program­
ming language behind the spreadsheet thus allows us to define relations between the 
data that result in the propagation of changes across the spreadsheet. 

A B C 

1  6  7  42  

2 

3 
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7 Putting reactive into context

 In order to implement a real-time spreadsheet application, such as the one in 
Google Drive, we’d build on top of lower-level concepts such as events: when the user 
changes the value of cell A1, an event is fired. All the cells interested in the content of 
A1, such as cell C1 containing our expression, would act on this event by reevaluating 
themselves and displaying a new value. This process is entirely hidden from the user, 
who is only concerned with describing the high-level relation among cell values.

 In terms of web application development, this technique is increasingly being used 
for front-end application development: tools such as KnockoutJS, AngularJS, Meteor, 
and React.js all make use of this paradigm. The developers only need to describe how 
changes in the data propagate through the user interface; they don’t need to concern 
themselves with the nitty-gritty details of declaring listeners on specific DOM elements, 
thus greatly simplifying how reactive user interfaces can be implemented. We’ll look 
into reactive user interfaces in chapter 8. 

 Similar abstractions, wherein events play a central role, can also be found on the 
server side. A new initiative called Reactive Streams, which we’ll talk more about in 
chapter 9, aims at providing a standard interface for working with asynchronous 
stream processing on the JVM. 

1.1.4 The emergence of reactive technologies 

Over the years, a number of technologies and frameworks have been developed that 
share common aspects and can be broadly classified as reactive technologies. Building 
reactive applications takes more than simply using reactive technologies, as you’ll see 
later, but technologies must satisfy a number of prerequisites to enable reactive behav­
ior, most notably the capacity for asynchronous and event-driven code execution. 

 Microsoft’s Reactive Extensions (Rx; https://rx.codeplex.com/) is a library for 
composing asynchronous and event-based programs, available on the .NET platform 
and other platforms such as JavaScript. Node.js (http://nodejs.org) is a popular plat­
form for building asynchronous, event-driven applications in JavaScript. On the JVM, a 
number of libraries enable these capabilities, such as Apache MINA  (https:// 
mina.apache.org) and Netty (http://netty.io). 

 Those low-level technologies all offer basic tools for building asynchronous and 
event-driven applications, but it takes a bit more work to get to the state of a full-blown 
web application that also has to deal with concerns such as code organization, view tem­
plates, inclusion and organization of client-side resources such as stylesheets and 
JavaScript files, database connectivity, security, and so on. Many so-called full-stack web 
application frameworks exist, but few of them also include reactive technologies, and 
very few are built from the ground up using reactive technologies, embracing reactive 
principles at their core. Full-stack frameworks concern themselves with all the layers 
required to build and deploy an application: client-side UI technology (or a means to 
integrate it), server-side business logic, authentication, integration of database access, 
and various libraries for the most common tasks (such as remote web service calls). In 
a reactive application, all these layers must furthermore cooperate by following the same 
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8 CHAPTER 1 Did you say reactive? 

principles of asynchronous commu­
nication and error recovery.

Play application
On the JVM, the only mature full-

stack reactive web application
 
framework to this day is the Play
 
Framework. Other full-stack frame­
works such as Lift (http://liftweb
 
.net) provide a good alternative for
 
building web applications, but they
 
haven’t been designed with
 
asynchronicity, failure resilience,
 
and scalability as primary goals. 


Play is built on top of Netty and 
leverages its reactive behavior by 

sb
t b

ui
ld

 s
ys

te
m

 

Resource 
handling (CSS, 

JS, etc.) 
View templates 

Libraries (JSON, 
web services, 

OAuth, SSL, etc.)
Play core 

(routing, actions, lifecycle) 

Iteratees/Reactive Streams 

Netty 
(asynchronous I/O, 
HTTP, WebSockets) 

Database 
connectivity 

using asynchronous stream han-
Figure 1.1 High-level architecture of the Play Framework

dling provided by Reactive Streams
 
(see figure 1.1).


 Play deals with the typical concerns of web application development such as client-
side resource handling, project compilation, and packaging by making use of the sbt 
build tool. It comes with a number of useful libraries to address common concerns 
such as JSON handling and web service access and offers access to databases though a 
range of plugins. Throughout the rest of this book, you’ll learn how to use the Play 
Framework as an effective tool to build reactive web applications.

 Let’s now take a closer look at how web applications work and how they make use 
of computational resources to understand why the asynchronous, event-driven behav­
ior of reactive web applications is necessary. 

1.2 Rethinking computational resource utilization 
To understand the why and how of reactive applications, we need to take a quick look 
at computers. They have certainly evolved a lot over the past decades, especially in 
terms of CPU clock speed (MHz to GHz) and memory (kilobytes to gigabytes). The 
most significant change, however, which has happened in the past few years, is that 
although the clock speed of CPUs isn’t increasing very much, the number of cores 
each CPU has is changing. At the time of writing, most computers have at least 4 CPU 
cores, and there are already vendors offering CPUs with 1024 cores. On the other 
hand, the overall architecture of computers and the mechanism by which programs 
are executed haven’t undergone a significant evolution, so some of the limitations of 
this architecture, such as the von Neumann bottleneck,4 become more of a problem now­
adays. To understand how this evolution affects web application development, let’s 
take a look at the two most popular web server architectures. 

4	 John Backus, “Can programming be liberated from the von Neumann style? A functional style and its algebra 
of programs,” Communications of the ACM 21 (8) (August 1978): 613-41. 
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9 Rethinking computational resource utilization 

1.2.1 Threaded versus evented web application servers 

Roughly speaking, there are two categories of programming models in which web serv­
ers can be placed. In the threaded model, large numbers of threads take care of handling 
the incoming requests. In an evented model, a small number of request-processing 
threads communicate with each other through message passing. Reactive web applica­
tion servers adopt the evented model. 

THREADED SERVERS 

A threaded server, such as Apache Tomcat, can be imagined as a train station with 
multiple platforms.5 The station chief (acceptor thread) decides which trains (HTTP 
requests) go on which platform (request processing threads). There can be as many 
trains at the same time as there are platforms. Figure 1.2 illustrates how a threaded 
web server processes HTTP requests. 

HTTP 
requests 

Accepter thread Connection queue Request-processing 
threads 

Figure 1.2 Threaded web server 

As implied by the name, threaded web servers rely on using many threads as well as on 
queuing. The analogy between trains and threaded web application servers is 
depicted in table 1.2. 

Table 1.2 Imagining threaded web application servers as train stations 

Train station Threaded server 

More trains come in than there are platforms; 
trains have to queue up and wait. 

Trains hanging around at the platform for too long 
may be cancelled. 

Too many trains queuing up in the station can 
cause huge delays and passengers to go home. 

More HTTP requests reach the server than there are 
worker threads; users connecting to the application 
have to wait. 

HTTP requests taking too long to process are can­
celled; the user may see a page with HTTP Error 408 
- Request timeout. 

Too many requests queuing up can cause users to 
leave the site. 

See Julian Doherty, “How Your Web Server Works,” http://madlep.com/How-your-web-server-works-/. 5 
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EVENTED SERVERS 

To explain how evented servers work, let’s take the example of a waiter in a restaurant.
 A waiter can take orders from several customers and pass them on to multiple 

chefs in the kitchen. The waiter will divide their time between the different tasks at 
hand and not spend too much time on a single task. They don’t need to deal with the 
whole order at once: first come the drinks, then the entrees, later the main course, 
and finally dessert and an espresso. As a result, a waiter can effectively and efficiently 
serve many tables at once.

 As I write this book, Play is built on top of Netty. When building an application 
with Play, developers implement the behavior of the chefs that cook up the response, 
rather than the behavior of the waiters, which is already provided by Play.

 The mechanism of an evented web server is shown in figure 1.3.
 In an evented web server, incoming requests are sliced and diced into events that 

represent the various smaller pieces of work involved in handling the whole request, 
such as parsing the request body, retrieving a file from disk, or making a call to 
another web service. The slicing and dicing is done by event handlers, which may trig­
ger I/O actions, resulting in new events later on. Say, for example, that you wanted to 
issue a request for the size of a file on the web server. In this case, the event handler 
dealing with the request will make an asynchronous call to the disk. When the operat­
ing system is done figuring out the size of the file, it emits an interrupt, which results 
in a new event. When it’s the turn of that event to be handled, you’ll get a response 
with the size. While the operating system is taking care of figuring out the size of the 
file, the event loop can process other events in the queue.

 One important implication of the evented programming model is that the time 
spent on tasks needs to be small. If a chef insisted on cooking the whole order when a 
waiter simply wanted to place it, there would be many angry unserved customers once 
the waiter finally got back from the kitchen. The evented model only works if the 
entire pipeline is asynchronous: orders, or HTTP requests, are processed without block­
ing. The term nonblocking I/O is often used to refer to input-output operations that 
don’t hold up the current execution thread while doing their work, but instead send a 
notification when the work is done. 

HTTP requests 

Event queue 

Event 

Event loop 

Event 
handler 

Figure 1.3 Evented web server 
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11 Rethinking computational resource utilization 

MEMORY UTILIZATION IN THREADED AND EVENTED WEB SERVERS 

Evented web servers make much better use of hardware resources than threaded 
ones. Instead of having to spawn thousands or tens of thousands of “train track” 
worker threads to deal with large numbers of incoming requests, only a few “waiter” 
threads are necessary. There are two advantages to working with a smaller number of 
threads: reduced memory footprint and much improved performance due to reduced 
context switching, thread management time, and scheduling overhead.

 Each thread created on the JVM has its own stack space, which is by default 1 MB. 
The default thread pool size of Apache Tomcat is 200, which means that Apache Tom­
cat needs to be assigned over 200 MB of memory in order to start. In contrast, you can 
run a simple Play application with 16 MB of memory. And although 200 MB may not 
seem like a lot of memory these days, let’s not forget that this means that 200 MB are 
required to process 200 incoming HTTP requests at the same time, without taking into 
account the memory necessary to perform additional tasks involved in handling these 
requests. If you wanted to cater to 10,000 requests at the same time, you’d need a lot 
of memory, which may not always be readily available. The threaded model has diffi­
culty scaling up to a larger number of concurrent users because of its demands on 
available memory.

 In addition to utilizing a lot of memory, the threaded approach results in ineffi­
cient use of the CPU. 

1.2.2 Developing web applications fit for multicore architectures 

Threaded web servers rely on multiple thread pools to distribute the available CPU 
resources among incoming requests. This mechanism is mostly hidden from develop­
ers, letting developers work as though there were only one main thread. Arguably, 
developing against an abstraction that hides away the increased complexity of dealing 
with multiple threads may appear simpler at first. Indeed, programming contracts 
such as the Servlet API provide the illusion that there’s only one main thread of execu­
tion answering an incoming HTTP request and all the resources in the world to answer 
it. But the reality is somewhat different, and this leaky abstraction brings its own set 
of drawbacks.6 

SHARED MUTABLE STATE AND ASYNCHRONOUS PROGRAMMING 

If you’ve built web applications served by a threaded server, chances are that you’ve 
found yourself facing the side effects of a race condition caused by the use of shared 
mutable state. Threads on the JVM, while running in parallel, do not run in isolation: 
they have access to the same memory space, open file handles, and other shared 
resources as other threads. One classic example of the problems caused by this behav­
ior is a Java servlet making use of the DateFormat class: 

private static final DateFormat dateFormatter = new SimpleDateFormat();
 

6 Joel Spolsky, “The Law of Leaky Abstractions,” http://www.joelonsoftware.com/articles/LeakyAbstractions.html. 
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12 CHAPTER 1 Did you say reactive? 

The problem with the preceding line is that DateFormat is not thread-safe. When 
called by two threads concurrently, it doesn’t act differently depending on what 
thread is calling it, and makes use of the same variables to hold its internal state. This 
leads to unpredictable behavior and to bugs that are usually hard to understand and 
analyze. Even experienced developers spend a lot of time trying to understand race 
conditions, deadlocks, and other strange, funny, or despairing side effects brought 
about by this unfortunate situation. This isn’t to say that applications written in an 
evented way are immune to the phenomenon of shared mutable state—for the most 
part, application developers decide whether or not to make use of mutable data struc­
tures and what level of exposition to give them. But the design of frameworks such as 
Play and languages such as Scala discourages developers from making use of shared 
mutable state. 

LANGUAGE DESIGN AND IMMUTABLE STATE 

Languages and tools favoring the use of immutable state make it easier to develop web 
applications that have to deal with concurrent access. The Scala programming lan­
guage is designed to use immutable values by default, rather than mutable variables. 
Although it’s possible to write programs in an immutable fashion in Java, a lot more 
boilerplate is involved than in Scala. For example, declaring an immutable value in 
Scala is done like this: 

val theAnswer = 42
 

The same result would be achieved in Java by explicitly prepending the final keyword: 

final int theAnswer = 42
 

This may seem like a minor difference, but over the course of writing a large applica­
tion, it means that the final keyword needs to be used many, many times. When it 
comes to more-complex data structures, such as lists and maps, Scala provides these 
data structures in both their immutable and mutable versions, favoring the immutable 
one by default: 

val a = List(1, 2, 3)
 

Java, on the other hand, doesn’t provide immutable data structures in its collection 
library. You’d have to use third-party libraries such as Google’s Guava library (https:// 
github.com/google/guava) to get a useful set of immutable data structures. 

LOCKS AND CONTENTION 

To avoid the side effects caused by concurrent access to non-thread-safe resources, locks 
are used to let other threads know that a resource is currently busy. If all goes well, the 
thread holding the lock will release it and thus inform other possibly waiting threads 
that they may now access the resource in turn. In some situations, however, threads 
may wait for one another to release a lock and be stuck in a deadlock. If a thread holds 
on to a resource for too long, this may cause resource starvation from the viewpoint of 
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13 Rethinking computational resource utilization 

The Scala programming language 
One of the main design goals of the Scala programming language is to enable devel­
opers to tackle the complexity of programming multicore and distributed systems. It 
does so by favoring immutable values and data structures over mutable ones, provid­
ing functions and higher-order functions as first-class citizens of the language, as well 
as easing the use of an expression-oriented programming style. For this reason, this 
book’s examples are written in Scala rather than Java. (It should, however, be noted 
that Play, Akka, and Reactive Streams all have Java APIs.) We’ll review the core con­
cepts of functional programming with Scala in chapter 3. 

other threads. When the load on a web application that relies on locks surges, it isn’t 
unusual to observe lock contention, which results in decreased performance for the 
whole application. 

The new many-core architecture that CPU vendors have moved toward doesn’t 
make locks look any better. If a CPU offers over 1,000 real threads of execution, but 
the application relies on locks to synchronize access to a few regions in memory, one 
can only imagine how much performance loss this mechanism will entail. There is a 
clear need for a programming model that better suits the multithread and multicore 
paradigm. 

THE APPARENT COMPLEXITY OF ASYNCHRONOUS PROGRAMMING 

For a long time, writing asynchronous programs hasn’t been popular among develop­
ers because it can seem more difficult than writing good old synchronous programs. 
Instead of the ordered sequence of operations in a synchronous program, a request-
handling procedure may end up being split into several pieces when written in an 
asynchronous fashion. 

One of the popular ways of writing asynchronous code is to make use of callbacks. 
Because the program’s flow of execution isn’t blocked when waiting for an operation 
to complete (such as retrieving data from a remote web service), the developer needs 
to implement a callback method that’s executed once the data is available. Propo­
nents of the threaded programming model would argue that when the processing is a 
bit more complicated, this leads to a style of code known as “callback hell.” 

Listing 1.1 Example of nested callbacks in JavaScript 

The main function composes a 
list of items and their prices. First callback function 

handles the retrieval
var fetchPriceList = function() {
 Second callback of the itemsfunction is called $.get('/items', function(items) { 

for each item var priceList = [];
 
items.forEach(function(item, itemIndex) {
 

$.get('/prices', { itemId: item.id }, function(price) {
 Third callback method 
priceList.push({ item: item, price: price });
 handles the retrieval of 
if ( priceList.length == items.length ) {
 the price of one item 
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14 CHAPTER 1 Did you say reactive? 

return priceList;
 
}
 

Fourth callback 
method performs 

error handling 
when a price 

can’t be retrieved 

}).fail(function() {
 
priceList.push({ item: item });
 
if ( priceList.length == items.length ) {
 

return priceList;
 
}
 Fifth callback method 

});
 performs error 
}
 handling if the items

}).fail(function() {
 can’t be retrieved 
alert("Could not retrieve items");
 

});
 
}
 

It’s easy to imagine that if you had to retrieve data from more sources, the level of call­
back nesting would be further increased and the code harder to understand and 
maintain. There are dozens of articles about callback hell and even one domain name 
(http://callbackhell.com) dedicated to this issue, and it’s often encountered in larger 
Node.js (http://nodejs.org) applications. 

 But writing asynchronous applications doesn’t need to be that hard. Callbacks, for 
all of their merits, are an abstraction that’s too low-level to write complex asynchro­
nous flows. JavaScript is only slowly catching up on tools and abstractions enabling a 
more human approach to asynchronous programming, but languages such as Scala 
have been designed with these abstractions in mind, leveraging well-known functional 
programming principles that make it possible to approach the problem from a differ­
ent angle. 

NOVEL WAYS OF WRITING ASYNCHRONOUS PROGRAMS 

Tools inspired by functional programming concepts, such as Java 8 lambdas or Scala’s 
first-order functions, greatly simplify the handling of multiple callbacks (as compared 
to the rather meager options that the JavaScript language provides). On top of this 
tooling built into the programming languages, abstractions such as futures and actors 
are powerful means to write and compose asynchronous request-handling pipelines, 
largely eliminating the phenomenon of callback hell.

 Switching from an imperative, synchronous style of writing applications to a more 
functional and asynchronous style doesn’t happen overnight. We’ll discuss the tools, 
techniques, and mental model of asynchronous programming in chapters 3 and 5.

 By adopting an evented request-handling model, Play can make much better use 
of a computer’s resources. But what happens if, despite having an extremely perfor­
mant request-processing pipeline, you hit the hardware limits of your server? Let’s 
find out how Play can help you scale horizontally to several servers. 

1.2.3 The horizontal application architecture 

When developing a web application, a few fundamental choices have to be made that 
have a profound impact on how the web application can be operated. Unfortunately, 
web applications are often developed without considering what happens to the appli­
cation after the code has been shipped and deployed on the production server. This 
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can lead to profound limitations, such as when it comes to running the application on 
more than just one computer. If the application wasn’t designed for this operational 
mode from the start, chances are that it won’t be practicable to run it this way without 
significant changes to the code. In the following discussion, we’ll explore a few 
deployment models and consider their benefits and disadvantages. We’ll also look at 
the advantages of the so-called horizontal deployment model enabled and embraced by 
reactive applications. 

SINGLE-SERVER DEPLOYMENTS 

The single-server deployment is a very common deployment 
model. Web applications are deployed on a single computer, 
and often the database is deployed on that same computer, as 
shown in figure 1.4.

Web application 

 This deployment is widely used because of its relative sim­
plicity, but it comes with a few important limitations. When the 
load on the server exceeds the capabilities of the hardware, or 
when the hardware fails, or when security or application 
upgrades need to be installed, the unavoidable result is that Figure 1.4 Traditional 
the application becomes unavailable. The usage load that this application deployment 

Database 

modelkind of setup can handle depends to a great extent on the 
hardware—when there’s a need for more performance, a more powerful computer 
with more memory and faster CPUs is necessary. The process of increasing the load a 
server can handle by switching to more performant hardware is called vertical scaling. 

REPLICATED DEPLOYMENTS 

For applications that need better availability or performance, a popular setup involves 
replication of the data across two computers, as shown in figure 1.5. 

Router 

Web application Web application 

Database Database 
Figure 1.5 Replicated 
application deployment 
model 
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16 CHAPTER 1 Did you say reactive? 

In this kind of setup, both the database and the server-side state, such as server-side 
user sessions or caches, need to be replicated (by making use of Apache Tomcat’s clus­
tering capabilities or similar functionality). On the database level, master-to-master 
replication can be employed. This solution makes it possible to update one deploy­
ment after another, thus allowing uptime during upgrades. But the complexity 
involved in correctly configuring this kind of setup more often than not limits the 
number of replicas to two. From a developer’s perspective, the web application is still 
developed as though it were running on a single computer, and the underlying frame­
work or application server takes care of replicating server-side state.

 The complexity inherent in a multi-machine setup isn’t eliminated but instead 
pushed to the application server. This makes it more difficult to deal with error states 
elegantly (without annoying the user too much), given that the error happens at a dif­
ferent level than the application itself and isn’t a first-class concern of the application. 

HORIZONTAL DEPLOYMENTS 

In a horizontal architecture, as shown in figure 1.6, the same version of the web appli­
cation is deployed across many nodes.

 Those nodes may be physical computers or virtual machines, and an important 
characteristic about them is that they don’t know anything about each other and don’t 
share any state. This share-nothing principle is at the core of so-called stateless architec­
tures, wherein each node is self-contained, and its presence or absence doesn’t affect 
other nodes in any way (except, perhaps, with increased or decreased load, depend­
ing on the traffic). The advantage of such an architecture is that the application can 
be scaled easily by adding new nodes to a front end router, and rolling updates can be 
performed by bringing up new nodes with the new version and then switching the 

Database node 

Web application node 

Database node 

Web application node 

Database node 

Web application node 

Database node 

Web application node 

Router 

Figure 1.6 Horizontal architecture model 
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17 Failure-handling as first-class concern 

routing layer to point to those new nodes. These so-called hot redeploy mechanisms are 
popular with Platform-as-a-Service (PaaS) providers such as Heroku. 

 On the storage layer, a good counterpart to a share-nothing web application layer is 
a storage technology that supports some form of clustering. NoSQL databases such as 
MongoDB, Cassandra, Couchbase, and new versions of relational databases (such as 
WebScaleSQL; http://webscalesql.org) are a good fit for such scalable front end layers. 

 One consequence of using a horizontal architecture is that a user may be con­
nected randomly to one of the front end nodes by the routing layer instead of always 
ending up on the same node. Given that there’s no shared state between nodes, a 
server-side session (the default in the Servlet Standard and in frameworks built on top 
of it) can’t be used. The Play Framework embraces the share-nothing philosophy at its 
core and provides a client-side user session based on cookies, which we’ll talk about in 
chapter 8.

 Thanks to its low memory footprint, Play is also a good candidate for multi-node 
deployments through PaaS or on other cloud-based platforms, where the amount of 
memory available to a single node is typically much lower than on a dedicated server. 

1.3 Failure-handling as first-class concern 
When the New York Stock Exchange (NYSE) opened at 9:30 AM on August 1, 2012, the 
automatic trading software of the Knight Capital Group (KCG) started trading stocks 
automatically, as it had been built to do and had done for many years. A few days earlier, 
a new version of the application had been rolled out on the servers, enabling customers 
of the company to participate in the Retail Liquidation Program at the NYSE. But on this 
August 1, things would be a little different: in the 45 minutes from when the market 
opened until it was shut down, the application generated a loss of 440 million USD. Oops.7

 Building applications that don’t fail is extremely difficult, and if those applications 
are meant to be built at a reasonable pace it’s close to impossible. Instead of avoiding 
failure, reactive systems are designed and built from the ground up to embrace fail­
ure, leveraging the principle of supervision, which if employed might have prevented 
the fate of KCG. Reactive systems detect failure on their own and spring back into 
shape automatically, or degrade in such a way as to minimize catastrophic failure.

 To cope with failure up front, it’s important to understand what can go wrong. 
Let’s look a bit closer at why failure is inevitable (you may not be convinced just yet 
that this is the case) and at what techniques can be used to cope with it. 

1.3.1 Failure is inevitable 

Unlike the development teams of the onboard shuttle group, which built the software 
that ran the space shuttles at a rate of a few lines of code per day,8 most development 

7	 Doug Seven, “Knightmare: A DevOps Cautionary Tale,” http://dougseven.com/2014/04/17/knightmare-a­
devops-cautionary-tale. 

8	 Charles Fishman, “They Write the Right Stuff” (December 31, 1996), http://www.fastcompany.com/28121/ 
they-write-right-stuff. 
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teams will produce software that contains errors (and hopefully, at a higher rate of lines 
of code per day). Even when employing test-driven development methodologies and 
achieving a perfect code coverage score, chances are that the software will not be 
entirely error-free. Applications fail because of human mistakes all the time, and 
increasing software quality is an iterative process. The difficulty of building failure-
tolerant applications is increased many times when it comes to distributed systems 
running on different computers.

 At the ACM Symposium on the Principles of Distributed Computing in July 2000, 
Eric Brewer gave a keynote speech 9 in which he presented the CAP theorem. CAP 
stands for consistency, availability, and tolerance to network partitions. 

 The essence of the theorem is that in the presence of network partitions, depicted 
in figure 1.7, you can have either consistency of data across servers or availability of all 
servers, but not both at the same time.

 Suppose we wanted to build an online trading platform to deal with a high volume 
of orders. To satisfy our expected load, we set up four servers, all connected to the 

Database 

Web application 

A 

Database 

Web application 

B 

Database 

Web application 

C 

Database 

Web application 

D 

Web application Web application Web application Web application 

A B C D 

Database Database Database Database 

Figure 1.7 Network partition on a system with four servers. When the partition occurs, server A is 
isolated from the other servers, yet the application running on the server is still reachable from the 
outside world. Changes occurring on this server will occur in isolation, and once the network partition 
is over, there may be data inconsistency between server A and servers B, C, and D. 

Eric Brewer, “Towards Robust Distributed Systems,” www.cs.berkeley.edu/~brewer/cs262b-2004/PODC­
keynote.pdf. 

9 
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internet, and additionally interconnected on a LAN. (Never mind that in practice 
such a setup wouldn’t pass any of the security audits required for online trading. Let’s 
just go with it for this example.) Each server is hosting a web application as well as a 
database that keeps data changes synchronous via replication on the LAN. When an 
order is placed on any of the nodes, this information is automatically propagated to all 
other server instances, thus ensuring the consistency of the data in our small cluster.

 Now let’s suppose that through an unfortunate turn of events, a member of the 
office cleaning personnel trips over the LAN cable of server A, thus disconnecting it 
from the internal network, but not from the internet. If a user now places an order via 
server A to buy a number of shares, and the order is successfully executed, nothing 
would prevent another user from placing a buy order for the same shares on any of 
the other nodes of the system and having it execute correctly. When the network 
recovers, we’d wind up with node A being in an inconsistent state, and we’d have quite 
a problem as a result of having sold the same shares twice.

 Even if it can be argued that network partitions are rare, they still happen often 
enough that they can’t just be overlooked. Technologies such as Amazon’s DynamoDB 
were built with network partitions as a key part of their design.10 Using the Command 
and Query Responsibility Segregation (CQRS) pattern in combination with Event 
Sourcing, which we’ll discuss in chapter 7, is an increasingly popular mix of tech­
niques for achieving eventual consistency—ensuring that even though a system may at 
first not be consistent at all times across all nodes, it will eventually converge so that all 
nodes see the latest version of an update. 

 To make things even more interesting, network partitions are just one of many 
things that can go wrong when working with distributed systems. In 1994, Peter 
Deutsch drafted out seven fallacies of distributed computing, and an additional one 
was added by James Gosling in 1997. The result is known as the eight fallacies of dis­
tributed computing:11 

1 The network is reliable
 
2 Latency is zero
 
3 Bandwidth is infinite
 
4 The network is secure
 
5 Topology doesn’t change
 
6 There is one administrator
 
7 Transport cost is zero
 
8 The network is homogeneous
 

As you can see from the length of this list, there are many reasons building a highly 
available system is difficult. In order for a system to be truly resilient, fault-tolerance 
can’t be an afterthought—it must be handled right from the start. 

10 Giuseppe DeCandia et al., “Dynamo: Amazon’s Highly Available Key-value Store,” http://mng.bz/YY5A. 
11 “The Eight Fallacies of Distributed Computing,” https://blogs.oracle.com/jag/resource/Fallacies.html. 
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1.3.2 Building applications with failure in mind 

Though failure is unavoidable, there are ways to influence how a system fails and how 
quickly it recovers. Not every kind of failure needs to render an entire application 
unavailable. 

RESILIENT CLIENTS 

Take, for example, the online service Trello, a project-management tool inspired by 
the Kanban methodology. Trello allows you to create cards and edit their content, 
drag and drop them from one list to another, and perform a lot more actions. When 
there’s a problem with the network connection, be it on the client side or the server 
side, the Trello application doesn’t simply stop responding but instead exhibits one of 
the most important behaviors of a reactive web application: resiliency. A user doesn’t 
need to interrupt their work but can continue to use the service, and when the con­
nection is recovered, the actions saved locally are transmitted back to the server. As 
shown in figure 1.8, users are constantly kept informed about the status of the applica­
tion and made aware of situations in which their actions can’t be saved properly. 

BULKHEADING 

Watertight bulkhead partitions, used in shipbuilding for centuries, are an effective way to 
prevent a ship from sinking by compartmentalizing different sections. Should the ship 

Figure 1.8 Failure handling and user interaction in Trello 
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hit an iceberg, only the damaged compartments would be flooded—the whole ship 
would stay afloat if enough compartments remained intact. (It should be noted here 
that in the case of the Titanic, the bulkheads were not truly watertight, which explains 
why this mechanism did not work as designed.)

 The bulkhead pattern can be used in web applications at different levels. For 
example, LinkedIn’s home page features a lot of information kept in different sec­
tions: people you may know, people you recently visited, people who have viewed your 
profile, people who have viewed your updates, and so on. Those sections appear to be 
loaded at the same time but are in fact retrieved from various back-end services and 
composed together asynchronously.12 When one of the back-end services is unavail­
able or takes a long time to load, the other sections aren’t affected and are loaded on 
a first-come, first-served basis. Sections that can’t get an answer from their service can 
render themselves differently or hide themselves entirely if necessary. 

SUPERVISION AND ACTORS 

Supervision is one of the fundamental concepts used by reactive applications in order 
to be fault-tolerant.

 When considering supervision, you might think of adult supervision of children or 
supervision in a work environment. In both cases, a hierarchical relationship exists— 
between parent and child or boss and employee. Though different in nature, these 
human relationships have a few common aspects: 

■	 The supervisor (parent or boss) is responsible for the mistakes the supervised 
(child or employee) makes. 

■	 The supervisor gets to know about the mistakes of the supervised (this may not 
always be true in reality, but let’s assume it is for the sake of this explanation). 

■	 The supervisor has to decide how to react to those mistakes. 

Building on these three aspects, we can say that the core idea of supervision in the 
context of software systems is one of separation of concerns: the responsibility of execut­
ing a task is separated from the responsibility of deciding how failures are dealt with 
and ensuring that they are dealt with.

 Joe Armstrong’s thesis, “Making reliable distributed systems in the presence of soft­
ware errors,”13 introduces the Erlang computing language, designed with the idea 
that software, no matter how well it may be tested, always has mistakes in it. He goes 
on to introduce supervision as a means to counteract those mistakes when possible. 

 When implementing a given task, a developer may not always be able to predict all 
the errors that may arise. More often than not there’s a degree of uncertainty when 
implementing an application. And even when an error condition is expected, the best 
reaction to the error may not be clear because it will depend on the current state of the 
systems. Software systems—especially distributed systems that combine many moving 

12	 Yevgeniy Brikman, “Play at LinkedIn: Composable and streamable Play apps,” http://www.slideshare.net/ 
brikis98/composable-and-streamable-play-apps. 

13 A PDF of the article is available at http://mng.bz/uFsr. 
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parts—gain in robustness and resilience through experience and by seeing the system 
behave in reality. By isolating the risky parts of a task into supervised units of code, 
developers can acknowledge the sometimes unpredictable nature of these systems and 
factor the unpredictability right into their design.

 A popular implementation of supervision can be found in the actor programming 
model, which is at the core of Erlang and is also represented on the JVM by Akka. It 
revolves around small units of software called actors, which, much like humans, can 
communicate with each other by sending and reacting to messages. Just as in human 
communication, messages are sent asynchronously, which means that an actor doesn’t 
freeze and wait for a response to a message before it resumes its work.

 Actors exist in a supervision hierarchy: each actor has a supervisor and can have 
one or several child actors for which it is responsible. Unhandled errors raised by a 
child actor are communicated to the parent actor, which decides to react in one way 
or another. We’ll discuss actors in detail in chapter 6. 

1.3.3 Dealing with load 

Reactive web applications are designed to cope with varying loads. When building web 
applications, one critical piece of information that should flow into the design is the 
expected load in terms of requests per second that the application should be able to 
handle. This varies depending on the application: a meeting room–scheduling appli­
cation on a company intranet isn’t likely to generate as much interest (or be available 
to as many users) as a social media site for sharing funny video clips. Often, and espe­
cially in the early stages of a project, concerns about performance are dismissed as pre­
mature optimization, the attitude being, “We’ll take care of it when we have enough 
users.” In reality though, if a site gets popular, users won’t gently and slowly visit the 
site turn by turn, giving developers time to come up with a way to increase capacity. 
Instead, the site may be featured on a popular news feed such as Hacker News, and 
suddenly tens of thousands of people will rush to it without warning. (Incidentally, 
Hacker News regularly features stories about the impact of being featured on Hacker 
News, sometimes including the amount of the Amazon Web Services bill.) The prob­
lem with such bursts in the number of visitors is that they are often unpredictable, and 
not being able to cope with them may well mean a website will lose one of its few 
chances to get noticed by the general public.

 The capability of an application to perform well under load and to scale out to the 
necessary number of nodes (hardware servers or virtualized ones) can’t be an after­
thought. Unlike simple features such as the capability to log in using an existing 
Google, Facebook, or Twitter account, scalability is a cross-cutting concern and needs to 
be factored into the design right from the beginning. Reactive systems often make use 
of stateless architectures, which we discussed in the section “Horizontal deployments.” 
Let’s look at a few tools available for handling increased load on an application. 
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CAPACITY PLANNING WITH LITTLE’S LAW 

Little’s law is a formula from queuing theory often used for dimensioning telecommu­
nication infrastructures (such as traditional telephone installations). When applied to 
the domain of web servers, it states that 

L = � * W  

where 

■ L is the average number of requests served at the same time 
■ � is the average rate at which requests arrive on the system 
■ W is the average time it takes to process a request 

In the case of a meeting room–scheduling application for a company intranet, if 
there’s an average of one request per minute and each request takes 100 ms to pro­
cess, the average number of concurrent requests will be approximately 0.0017. In 
other words, there’s no need to worry about scaling out for this application.

 On the other hand, the site for sharing funny videos may get 10,000 requests per 
second (many people like to watch those videos instead of working), and if the pro­
cessing time is 100 ms, the application faces on average 1,000 concurrent requests. In 
this case we might want to adopt a number of design and deployment decisions that 
allow for handling 1,000 requests at the same time. If, for example, we know that one 
node in our system is capable of handling 100 concurrent requests, we’ll need 10 such 
nodes to handle the entire load. 

DYNAMICALLY SCALING IN AND OUT 

As I’ve already pointed out, it’s hard to predict the effective number of users visiting a 
website. The time of the day, weather conditions, and mentions via social media ser­
vices may influence how high the load on the funny video clip site will be. Instead of 
running at full capacity all the time, it may be worth saving some money by scaling up 
and down depending on the load.

 One approach would be to measure the effective load on the site using a monitor­
ing tool, and then shut down or start up nodes accordingly. But as heroic as it may 
sound, getting up at 3:00 AM when receiving an SMS alert that the load has increased, 
and going online to slide the Heroku slider to the right may not be a very good strat­
egy for the health of the website operator. Instead, using Little’s law in combination 
with scripts to automate this process seems more reasonable. We’ll look at an example 
of elastically scaling a Play deployment with Clever Cloud in chapter 10. 

BACK PRESSURE PROPAGATION 

One of the main features of the web application for sharing funny videos is to show 
those videos to visitors. If we were to store the videos on a third-party storage service, 
such as Amazon S3, and display them using a video player on our site, we’d have to 
stream the video to the client through our server. If, however, the client’s bandwidth 
was not as good as that of our server (which is often the case, especially for mobile 
devices), we’d need to keep the video in memory on the server for the duration of the 
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streaming. With many users watching videos at the same time, we’d certainly run out 
of memory very quickly. Back pressure propagation is a means of regulating the speed of 
streams by taking into account the effective consumption speed on the consumer side. 
Instead of keeping the entire video in memory on our server, a setup involving back 
pressure would allow us to modulate the speed at which the data is retrieved from 
Amazon S3 so we’d only buffer a small amount in memory on the server, fetching 
more of it as the video is played on the user’s phone. 

 The Play Framework builds on the concept of back pressure and utilizes it for core 
concerns, such as request body parsing and WebSocket handling. The Reactive 
Streams initiative that we briefly mentioned in the context of reactive programming 
provides this capability, as you’ll see in chapter 9. 

CIRCUIT BREAKERS 

Sometimes, it may not be possible to scale a service out, such as when communicating 
with a legacy application (for example, a mainframe system in a banking environ­
ment). In this case, we may need a different approach for dealing with load bursts to 
protect the legacy service from overload and avoid cascading failures.

 In an electric circuit, a circuit breaker is an automatic switch that’s meant to pro­
tect the circuit from overload or short circuits. On an abstract level, it functions as 
illustrated in figure 1.9.

 In the context of a web application, a circuit breaker is configured to check 
whether the service it protects responds within a certain time frame, and if the service 
takes longer to answer than this timeout, the circuit trips into an open state. After a 
certain amount of time (which can also be configured), the circuit goes into a half-
open state and a new attempt is made to contact the service. If it responds within the 
intended time frame, the circuit is closed again; otherwise, it trips into the open state 
again and waits longer for the service to recover.

 Circuit breakers are an effective way to protect legacy services from overloading. Play 
can easily leverage the circuit breaker implementation provided by Akka, this combi­
nation having been employed successfully in a project for the Walmart Canada site.14 

Open 

Closed 

Attempt reset 

teseRpirT

Half open 

Figure 1.9 Different states of a circuit breaker 

14	 Lightbend, “Walmart Boosts Conversions by 20% with Lightbend Reactive Platform,” www.lightbend.com/ 
resources/case-studies-and-stories/walmart-boosts-conversions-by-20-with-lightbend-reactive-platform. 
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1.4 Summary 
In this chapter, you were introduced to reactive applications and why they matter. In 
particular, we looked at 

■	 The meaning and origins of reactive applications and reactive technologies, 
including the Play Framework 

■	 How threads are executed by a CPU and how an asynchronous, event-driven 
programming style embraced by evented servers makes better use of resources 

■	 Different deployment models, including stateless, horizontal architectures that 
scale well under load 

■	 The importance of failure handling and different methods that reactive appli­
cations employ to become resilient 

In the next chapter, we’ll get our hands dirty and build a small reactive web applica­
tion with Play. 
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