

 Covers Play, Akka, and Reactive Streams

Manuel Bernhardt
FOREWORD BY James Roper

SAMPLE CHAPTER

M A N N I N G

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

Reactive Web Applications

by Manuel Bernhardt

Chapter 2

Copyright 2016 Manning Publications

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

brief contents

PART 1 GETTING STARTED WITH REACTIVE WEB APPLICATIONS1

1 ■ Did you say reactive? 3

2 ■ Your first reactive web application 26

3 ■ Functional programming primer 50

4 ■ Quick introduction to Play 71

PART 2 CORE CONCEPTS...101

5 ■ Futures 103

6 ■ Actors 134

7 ■ Dealing with state 164

8 ■ Responsive user interfaces 201

PART 3 ADVANCED TOPICS ..225

9 ■ Reactive Streams 227

10 ■ Deploying reactive Play applications 244

11 ■ Testing reactive web applications 263

v

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

 reactive web application
Your first

This chapter covers
■	 Creating a new Play project
■	 Streaming data from a remote server and

broadcasting it to clients

■	 Dealing with failure

In the previous chapter, we talked about the key benefits of adopting a reactive
approach to web application design and operation, and you saw that the Play
Framework is a good technology for this. Now it’s time to get your hands dirty
and build a reactive web application. We’ll build a simple application that con
nects to the Twitter API to retrieve a stream of tweets and send them to clients
using WebSockets.

2.1 Creating and running a new project
An easy way to start a new Play project is to use the Lightbend Activator, which is a
thin wrapper around Scala’s sbt build tool that provides templates for creating
new projects. The following instructions assume that you have the Activator

26

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

27 Creating and running a new project

installed on your computer. If you don’t, appendix A provides detailed instructions
for installing it.

 Let’s get started by creating a new project called “twitter-stream” in the workspace
directory, using the play-scala-v24 template:

~/workspace » activator new twitter-stream play-scala-2.4

This will start the process of creating a new project with Activator, using the template
as a scaffold:

Fetching the latest list of templates...

OK, application "twitter-stream" is being created using the "play-scala-2.4"

➥ template.

To run "twitter-stream" from the command line, "cd twitter-stream" then:

/Users/mb/workspace/twitter-stream/activator run

To run the test for "twitter-stream" from the command line,

➥ "cd twitter-stream" then:
/Users/mb/workspace/twitter-stream/activator test

To run the Activator UI for "twitter-stream" from the command line,

➥ "cd twitter-stream" then:
/Users/mb/workspace/twitter-stream/activator ui

You can now run this application from the project directory:

~/workspace » cd twitter-stream

~/workspace/twitter-stream » activator run

If you point your browser to http://localhost:9000, you’ll see the standard welcome
page for a Play project. At any time when running a Play project, you can access the
documentation at http://localhost:9000/@documentation.

PLAY RUNTIME MODES Play has a number of runtime modes. In dev mode
(triggered with the run command), the sources are constantly watched for
changes, and the project is reloaded with any new changes for rapid
development. Production mode, as its name indicates, is used for the
production operation of a Play application. Finally, test mode is active when
running tests, and it’s useful for retrieving specific configuration settings for
the test environment.

Besides running the application directly with the activator run command, it’s possible
to use an interactive console. You can stop the running application by hitting Ctrl-C and
start the console simply by running activator:

~/workspace/twitter-stream » activator

www.itbook.store/books/9781633430099

http://localhost:9000/@documentation
http://localhost:9000
https://itbook.store/books/9781633430099

28 CHAPTER 2 Your first reactive web application

That will start the console, as follows:

[info] Loading project definition from

/Users/mb/workspace/twitter-stream/project

[info] Set current project to twitter-stream

(in build file:/Users/mb/workspace/twitter-stream/)

[twitter-stream] $

Once you’re in the console, you can run commands such as run, clean, compile, and
so on. Note that this console is not Play-specific, but common to all sbt projects. Play
adds a few commands to it and makes it more suited to web application development.

 Table 2.1 lists some useful commands:

Table 2.1 Useful sbt console commands for working with Play

Command Description

run Runs the Play project in dev mode

start Starts the Play project in production mode

clean Cleans all compiled classes and generated sources

compile Compiles the project

test Runs the tests

dependencies Shows all the library dependencies of the project, including transitive ones

reload Reloads the project settings if they have been changed

When you start the application in the console with run, you can stop it and return to
the console by pressing Ctrl-D.

AUTO-RELOADING By prepending a command with ~, such as ~ run or ~ compile,
you can instruct sbt to listen to changes in the source files. In this way, every time
a source file is saved, the project is automatically recompiled or reloaded.

Now that you’re all set to go, let’s start building a simple reactive application, which, as
you may have guessed from the name of the empty project we’ve created, has some
thing to do with Twitter.

 What we’ll build is an application that will connect to one of Twitter’s streaming
APIs, transform the stream asynchronously, and broadcast the transformed stream to
clients using WebSocket, as illustrated in figure 2.1. We’ll start by building a small
Twitter client to stream the data, and then build the transformation pipeline that we’ll
plug into a broadcasting mechanism.

www.itbook.store/books/9781633430099

file:/Users/mb/workspace/twitter-stream
https://itbook.store/books/9781633430099

29 Connecting to Twitter’s streaming API

Twitter client

Twitter stream transformer

Tweet broadcaster

WebSocket client #2

n#tneilctekcoSbeW1#tneilctekcoSbeW

Twitter

Figure 2.1 Reactive Twitter broadcaster

2.2 Connecting to Twitter’s streaming API
To get started, we’ll connect to the Twitter filter API.1 At this point, we’ll just focus on
getting data from Twitter and displaying it on the console—we’ll deal with sending it
to clients connecting to our application at a later stage.

 Start by opening the project in your favorite IDE. Most modern IDEs have exten
sions to support Play projects nowadays, and you can find resources on the topic in
the Play documentation (www.playframework.com/documentation), so we won’t look
into setting up various flavors of IDEs here.

2.2.1 Getting the connection credentials to the Twitter API

Twitter uses the OAuth authentication mechanism to secure its API. To use the API, you
need a Twitter account and OAuth consumer key and tokens. Register with Twitter (if
you haven’t already), and then you can go to https://apps.twitter.com where you can
request access to the API for an application. This way, you’ll get an API key and an API
secret, which together represent the consumer key. In addition to these keys, you’ll need
to generate request tokens (in the Details tab of the Twitter Apps web application). At
the end of this process, you should have access to four values:

1	 The Twitter API documentation can be found at https://dev.twitter.com/streaming/reference/post/
statuses/filter.

www.itbook.store/books/9781633430099

https://dev.twitter.com/streaming/reference/post/statuses/filter
https://dev.twitter.com/streaming/reference/post/statuses/filter
https://apps.twitter.com
http://www.playframework.com/documentation
https://itbook.store/books/9781633430099

30 CHAPTER 2 Your first reactive web application

■ The API key
■ The API secret
■ An access token
■ An access token secret

Once you have all the necessary keys, you’ll need to add them to the application con
figuration in conf/application.conf. This way, you’ll be able to retrieve them easily
from the application later on. Add the keys at the end of the file as follows:

Twitter

twitter.apiKey="<your api key>"

twitter.apiSecret="<your api secret>"

twitter.token="<your access token>"

twitter.tokenSecret="<your access token secret>"

2.2.2 Working around a bug with OAuth authentication

As a technical book author, I want my examples to flow and my code to look simple,
beautiful, and elegant. Unfortunately the reality of software development is that bugs
can be anywhere, even in projects with a very high code quality, which the Play
Framework definitely is. One of those bugs has its origins in the async-http-client
library that Play uses, and it plagues the 2.4.x series of the Play Framework. It can’t be
easily addressed without breaking binary compatibility, which is why it will likely not
be fixed within the 2.4.x series.2

 More specifically, this bug breaks the OAuth authentication mechanism when a
request contains characters that need to be encoded (such as the @ or # characters).
As a result, we have to use a workaround in all chapters making use of the Twitter API.
Open the build.sbt file at the root of the project, and add the following line:

libraryDependencies += "com.ning" % "async-http-client" % "1.9.29"

2.2.3 Streaming data from the Twitter API

The first thing we’ll do now is add some functionality to the existing Application con
troller in app/controllers/Application.scala. When you open the file, it should look
rather empty, like this:

class Application extends Controller {

def index = Action {

Ok(views.html.index("Your new application is ready."))

}

}

The index method defines a means for obtaining a new Action. Actions are the mech
anism Play uses to deal with incoming HTTP requests, and you’ll learn a lot more
about them in chapter 4.

https://github.com/playframework/playframework/pull/4826 2

www.itbook.store/books/9781633430099

https://github.com/playframework/playframework/pull/4826
https://itbook.store/books/9781633430099

31 Connecting to Twitter’s streaming API

 Start by adding a new tweets action to the controller.

Listing 2.1 Defining a new tweets action

import play.api.mvc._

class Application extends Controller {

def tweets = Action {

Ok

}

}

This action won’t do anything other than return a 200 Ok response when accessed. To
access it, we first need to make it accessible in Play’s routes. Open the conf/routes file
and add a new route to the newly created action, so you get the following result.

Listing 2.2 Route to the newly created tweets action

Routes

This file defines all application routes

(Higher priority routes first)

~~~~

Home page

GET / controllers.Application.index

GET /tweets controllers.Application.tweets

Map static resources from the /public folder to the /assets URL path

GET /assets/*file controllers.Assets.at(path="/public", file)

Now when you run the application and access the /tweets file, you should get an
empty page in your browser. This is great, but not very useful. Let’s go one step further
by retrieving the credentials from the configuration file.

 Go back to the app/controllers/Application.scala controller and extend the
tweets action as follows.

Uses
Action.async

to return a
Future of a

result for
 the next step

Listing 2.3 Retrieving the configuration

import play.api.libs.oauth.{ConsumerKey, RequestToken}

import play.api.Play.current
 Retrieves the Twitter
import scala.concurrent.Future
 credentials from
import play.api.libs.concurrent.Execution.Implicits._
 application.conf

def tweets = Action.async {

val credentials: Option[(ConsumerKey, RequestToken)] = for {

apiKey <- Play.configuration.getString("twitter.apiKey")

apiSecret <- Play.configuration.getString("twitter.apiSecret")

token <- Play.configuration.getString("twitter.token")

tokenSecret <- Play.configuration.getString("twitter.tokenSecret")

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

32 CHAPTER 2 Your first reactive web application

Wraps the
result in a
successful

Future block
until the

next step

Wraps the
result in a
successful

Future block
 to comply with
the return type

} yield (

ConsumerKey(apiKey, apiSecret),

RequestToken(token, tokenSecret)

)

credentials.map { case (consumerKey, requestToken) =>

Future.successful {

Ok
 Returns a 500 Internal
}
 Server Error if no

} getOrElse { credentials are available
Future.successful {

InternalServerError("Twitter credentials missing")
}

}
}

Now that we have access to our Twitter API credentials, we’ll see whether we can get
anything back from Twitter. Replace the simple Ok result in app/controllers/
Application.scala with the following bit of code to connect to Twitter.

Listing 2.4 First attempt at connecting to the Twitter API

// ...

import play.api.libs.ws._

def tweets = Action.async {

credentials.map { case (consumerKey, requestToken) =>
 The API URLOAuth WS

signature of .url("https://stream.twitter.com/1.1/statuses/filter.json")

the request .sign(OAuthCalculator(consumerKey, requestToken))

Executes an
HTTP GET

request

.withQueryString("track" -> "reactive")

.get()

.map { response =>
Ok(response.body)

}

Specifies a
query string
parameter

} getOrElse {
Future.successful {

InternalServerError("Twitter credentials missing")
}

}
}

def credentials: Option[(ConsumerKey, RequestToken)] = for {
apiKey <- Play.configuration.getString("twitter.apiKey")
apiSecret <- Play.configuration.getString("twitter.apiSecret")

token <- Play.configuration.getString("twitter.token")

tokenSecret <- Play.configuration.getString("twitter.tokenSecret")

} yield (

ConsumerKey(apiKey, apiSecret),

RequestToken(token, tokenSecret)

)

www.itbook.store/books/9781633430099

http:play.api.libs.ws
https://itbook.store/books/9781633430099

33 Connecting to Twitter’s streaming API

Play’s WS library lets you easily access the API by signing the request appropriately
following the OAuth standard. You’re currently tracking all the tweets that contain
the word “reactive,” and for the moment you only log the status of the response
from Twitter to see if you can connect with these credentials. This may look fine at
first sight, but there’s a catch: if you were to execute the preceding code, you
wouldn’t get any useful results. The streaming API, as its name indicates, returns a
(possibly infinite) stream of tweets, which means that the request would never end.
The WS library would time out after a few seconds, and you’d get an exception in
the console.

 What you need to do, therefore, is consume the stream of data you get. Let’s
rewrite the previous call to WS and use an iteratee (discussed in a moment) to simply
print the results you get back.

Listing 2.5 Printing out the stream of data from Twitter

Sends a GET
request to the

server and
retrieves the

response as a
(possibly

infinite) stream

Feeds the stream
directly into the

consuming
loggingIteratee;

the contents aren’t
loaded in memory

first but are
directly passed to

the iteratee

// ...
import play.api.libs.iteratee._ Defines a logging iteratee that consumes
import play.api.Logger a stream asynchronously and logs the

contents when data is available
def tweets = Action.async {

val loggingIteratee = Iteratee.foreach[Array[Byte]] { array =>

Logger.info(array.map(_.toChar).mkString)

}

credentials.map { case (consumerKey, requestToken) =>

WS

.url("https://stream.twitter.com/1.1/statuses/filter.json")

.sign(OAuthCalculator(consumerKey, requestToken))

.withQueryString("track" -> "reactive")

.get { response =>

Logger.info("Status: " + response.status)

loggingIteratee

}.map { _ =>

Ok("Stream closed")
 Returns a 200 Ok result

}
 when the stream is entirely
}
 consumed or closed

def credentials = ...

QUICK INTRODUCTION TO ITERATEES

An iteratee is a construct that allows you to consume streams of data asynchronously;
it’s one of the cornerstones of the Play Framework. Iteratees are typed with input and
output types: an Iteratee[E, A] consumes chunks of E to produce one or more A’s.

 In the case of the loggingIteratee in listing 2.5, the input is an Array[Byte]
(because you retrieve a raw stream of data from Twitter), and the output is of type

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

34 CHAPTER 2 Your first reactive web application

Unit, which means you don’t produce any result other than the data logged out on
the console.

 The counterpart of an iteratee is an enumerator. Just as the iteratee is an asynchro
nous consumer of data, the enumerator is an asynchro-

Enumerator
nous producer of data: an Enumerator[E] produces
chunks of E. Enumeratee

 Finally, there’s another piece of machinery that lets
you transform streaming data on the fly, called an enu
meratee. An Enumeratee[From, To] takes chunks of type
From from an enumerator and transforms them into
chunks of type To.

On a conceptual level, you can think of an enumera- Iteratee

tor as being a faucet, an enumeratee as being a filter,
and an iteratee as being a glass, as in figure 2.2. Figure 2.2 Enumerators, enu

 Let’s go back to our loggingIteratee for a second, meratees, and iteratees

defined as follows:

val loggingIteratee = Iteratee.foreach[Array[Byte]] { array =>

Logger.info(array.map(_.toChar).mkString)

}

The Iteratee.foreach[E] method creates a new iteratee that consumes each input it
receives by performing a side-effecting action (of result type Unit). It’s important to
understand here that foreach isn’t a method of an iteratee, but rather a method of
the Iteratee library used to create a “foreach” iteratee. The Iteratee library offers many
other methods for building iteratees, and we’ll look at some of them later on.

 At this point, you may wonder how this is any different from using other streaming
mechanisms, such as java.io.InputStream and java.io.OutputStream. As men
tioned earlier, iteratees let you manipulate streams of data asynchronously. In prac
tice, this means that these streams won’t hold on to a thread in the absence of new
data. Instead, the thread that they use will be freed for use by other tasks, and only
when there’s a signal that new data is arriving will the streaming continue. In contrast,
a java.io.OutputStream blocks the thread it’s using until new data is available.

THE FUTURE OF ITERATEES IN PLAY At the time of writing, Play is largely built
on top of iteratees, enumerators, and enumeratees. Reactive Streams is a new
standard for nonblocking stream manipulation with backward pressure on
the JVM that we’ll talk about in chapter 9. Although we use iteratees in this
chapter and later in the book, the roadmap for the next major release of Play
is to gradually replace iteratees with Akka Streams, which implement the Reac
tive Streams standard. Chapter 9 will cover this toolset as well as how to con
vert from iteratees to Akka Streams and vice versa.

Let’s now get back to our application. Our approach to turning the Array[Byte] into
a String is very crude (and, as you’ll see later, problematic), but if someone were to

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

35 Connecting to Twitter’s streaming API

tweet about “reactive,” we’d be able to see something. If you want to check that things
are going well, you can write a tweet yourself, as I just did:

[info] application - Status: 200

[info] application - {"created_at":"Fri Sep 19 15:08:07 +0000 2014","id

":512981466662592512,"id_str":"512981466662592512","text":"Writing the

second chapter of my book about #reactive web-applications with #PlayFr

amework. I need a tweet with \"reactive\" for an example.","source":"<a

href=\"http:\/\/itunes.apple.com\/us\/app\/twitter\/id409789998?mt=12\

" rel=\"nofollow\">Twitter for Mac<\/a>","truncated":false,"in_reply_to

_status_id":null,"in_reply_to_status_id_str":null,"in_reply_to_user_id"

:null,"in_reply_to_user_id_str":null,"in_reply_to_screen_name":null,"us

er":{"id":12876952,"id_str":"12876952","name":"Manuel Bernhardt","scree

n_name":"elmanu","location":"Vienna" ...

GETTING MORE TWEETS For all the advantages of reactive applications, the
keyword “reactive” is slightly less popular than more common topics on Twit
ter, so you may want to use another term to get faster-paced data. (One key
word that always works well, and not only on Twitter, is “cat.”)

2.2.4 Asynchronously transforming the Twitter stream

Great, you just managed to connect to the Twitter streaming API and display some
results! But to do something a bit more advanced with the data, you’ll need to parse
the JSON representation to manipulate it more easily, as shown in figure 2.3.

Twitter client

Twitter stream transformer

Tweet broadcaster

WebSocket client #2

n#tneilctekcoSbeW1#tneilctekcoSbeW

Twitter

Figure 2.3 Twitter
stream transformation
step

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

36	 CHAPTER 2 Your first reactive web application

Play has a built-in JSON library that can take care of parsing textual JSON files into a
structured representation that can easily be manipulated. But you first need to pay a
little more attention to the data you’re receiving, because there are a few things that
can go wrong:

■	 Tweets are encoded in UTF-8, so you need to decode them appropriately, taking
into account variable-length encoding.

■	 In some cases, a tweet is split over several chunks of Array[Byte], so you can’t
just assume that each chunk can be parsed right away.

These issues are rather complex to solve, and they may take quite some time to get
right. Instead of doing it ourselves, let’s use the play-extra-iteratees library. Add the
following lines to the build.sbt file.

Listing 2.6 Including the play-extra-iteratees library in the project

resolvers += "Typesafe private" at

"https://private-repo.typesafe.com/typesafe/maven-releases"

libraryDependencies +=

"com.typesafe.play.extras" %% "iteratees-extras" % "1.5.0"

To make the changes visible to the project in the console, you need to run the reload
command (or exit and restart, but reload is faster).

 Armed with this library, you now have the necessary tools to handle this stream of
JSON objects properly:

■	 play.extras.iteratees.Encoding.decode will decode the stream of bytes as a
UTF-8 string.

■	 play.extras.iteratees.JsonIteratees.jsSimpleObject will parse a single
JSON object.

■	 play.api.libs.iteratee.Enumeratee.grouped will apply the jsSimpleObject
iteratee over and over again until the stream is finished.

We’ll start with a stream of Array[Byte], decode it into a stream of CharString, and
finally parse it into JSON objects of kind play.api.libs.JsObject by continuously
parsing one JSON object out of the incoming stream of CharString. Enumeratee
.grouped continuously applies the same iteratee over and over to the stream until
it’s finished.

 You can set up the necessary plumbing by evolving your code in app/controllers/
Application.conf as follows.

Listing 2.7 Reactive plumbing for the data from Twitter

// ...

import play.api.libs.json._

import play.extras.iteratees._

www.itbook.store/books/9781633430099

https://private-repo.typesafe.com/typesafe/maven-releases
https://itbook.store/books/9781633430099

37 Connecting to Twitter’s streaming API

Sets up a joined def tweets = Action.async {

iteratee and credentials.map { case (consumerKey, requestToken) =>

enumerator val (iteratee, enumerator) = Concurrent.joined[Array[Byte]]

Defines the
stream

transformation
pipeline; each

stage of the pipe
is connected using
the &> operation

val jsonStream: Enumerator[JsObject] =

enumerator &>

Encoding.decode() &>

Enumeratee.grouped(JsonIteratees.jsSimpleObject)

val loggingIteratee = Iteratee.foreach[JsObject] { value =>

Logger.info(value.toString)

Plugs the transformed}
 JSON stream into the
logging iteratee to

jsonStream run loggingIteratee
 print out its results
to the console

WS

.url("https://stream.twitter.com/1.1/statuses/filter.json")

.sign(OAuthCalculator(consumerKey, requestToken))

.withQueryString("track" -> "reactive")

.get { response =>

Logger.info("Status: " + response.status)

iteratee

}.map { _ =>

Ok("Stream closed")

}

}

}

def credentials = ...

Provides the iteratee as the entry point of
the data streamed through the HTTP
connection. The stream consumed by the
iteratee will be passed on to the
enumerator, which itself is the data source
of the jsonStream. All the data streaming
takes place in a nonblocking fashion.

The first thing you have to do in this setup is get an enumerator to work with. Iteratees
are used to consume streams, whereas enumeratees produce them, and you need a
producing pipe so you can add adapters to it. The Concurrent.joined method pro
vides you with a connected pair of iteratee and enumerator: whatever data is con
sumed by the iteratee will be immediately available to the enumerator.

 Next, you want to turn the raw Array[Byte] into a proper stream of parsed JsObject
objects. To this end, start off with your enumerator and pipe the results to two trans
forming enumeratees:

■	 Encoding.decode() to turn the Array[Byte] into a UTF-8 representation of
type CharString (an optimized version of a String proper for stream manipula
tion, and part of the play-extra-iteratees library)

■	 Enumeratee.grouped(JsonIteratees.jsSimpleObject) to have the stream
consumed over and over again by the JsonIteratees.jsSimpleObject iteratee

The jsSimpleObject iteratee ignores whitespace and line breaks, which is convenient
in this case because the tweets coming from Twitter are separated by a line break.

 Set up a logging iteratee to print out the parsed JSON object stream, and connect it
to the transformation pipeline you just set up using the run method of the enumerator.

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

38 CHAPTER 2 Your first reactive web application

This method tells the enumerator to start feeding data to the iteratee as soon as some
is available.

 Finally, by providing the iteratee reference to the get() method of the WS
library, you effectively put the whole mechanism into motion.

 If you run this example, you’ll now get a stream of tweets printed out, ready to be
manipulated for further use.

FASTER JSON PARSING Although the play-extra-iteratees library is very conve
nient, the JSON tooling it offers isn’t optimized for speed; it serves as more of
a showcase of what can be done with iteratees. If I wanted to build a pipeline
for production use, or where performance matters a lot more than low mem
ory consumption, I’d probably create my own enumeratee and make use of a
fast JSON parsing library such as Jackson.

2.3 Streaming tweets to clients using a WebSocket
Now that we have streaming data being sent by Twitter, let’s make it available to users
of our web application using WebSockets. Figure 2.4 provides an overview of what we
want to achieve.

Transforming enumerator

WebSocket client #1

WebSocket client #2

WebSocket client #n

Iteratee

Actor

Actor

Actor

Broadcast enumerator

IterateeIteratee

Twitter

WS.get()

Figure 2.4 Reactive pipeline from Twitter to the client’s browser

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

39 Streaming tweets to clients using a WebSocket

We want to connect once to Twitter and broadcast the stream we receive to the user’s
browser using the WebSocket protocol. We’ll use an actor to establish the WebSocket
connection for each client and connect it to the same broadcasted stream.

 We’ll proceed in two steps: first, we’ll move the logic responsible for retrieving the
stream from Twitter to an Akka actor, and then we’ll set up a WebSocket connection
that makes use of this actor.

2.3.1 Creating an actor

An actor is a lightweight object that’s capable of sending and receiving messages. Each
actor has a mailbox that keeps messages until they can be dealt with, in the order of
reception. Actors can communicate with each other by sending messages. In most
cases, messages are sent asynchronously, which means that an actor doesn’t wait for a
reply to its message, but will instead eventually receive a message with the answer to its
question or request. This is all you need to know about actors for now—we’ll talk
about them more thoroughly in chapter 6.

 To see an actor in action, start by creating a new file in the actors package, app/
actors/TwitterStreamer.scala, with the following content.

Listing 2.8 Setting up a new actor

The receive
method handles

messages sent
to this actor.

package actors

import akka.actor.{Actor, ActorRef, Props}

import play.api.Logger

import play.api.libs.json.Json

class TwitterStreamer(out: ActorRef) extends Actor {

def receive = {

case "subscribe" =>

Logger.info("Received subscription from a client")

Handles the
case of receiving
a “subscribe”
message

Sends out a out ! Json.obj("text" -> "Hello, world!")

simple Hello
World message

as a JSON object
}

}

Helper method that initializes
a new Props object

object TwitterStreamer {

def props(out: ActorRef) = Props(new TwitterStreamer(out))

}

You want to use your actor to represent a WebSocket connection with a client, man
aged by Play. You need to be able to receive messages, but also to send them, so you
pass the out actor reference in the constructor of the actor. Play will take care of initializ
ing the actor using the akka.actor.Props object, which you provide in the props
method of the companion object TwitterStreamer. It will do so every time a new
WebSocket connection is requested by a client.

An actor can send and receive messages of any kind using the receive method,
which is a so-called partial function that uses Scala’s pattern matching to figure out

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

40 CHAPTER 2 Your first reactive web application

which case statement will deal with the incoming message. In this example, you’re
only concerned with messages of type String that have the value “subscribe” (other
messages will be ignored).

 When you receive a subscription, you first log it on the console, and then (for the
moment) send back the JSON object { “message”: “Hello, world!” }. The exclama
tion mark (!) is an alias for the tell method, which means that you “fire and forget” a
message without waiting for a reply or a delivery confirmation.

SCALA TIP: PARTIAL FUNCTIONS In Scala, a partial function p(x) is a function
that’s defined only for some values of x. An actor’s receive method won’t be
able to handle every type of message, which is why this kind of function is a
good fit for this method. Partial functions are often implemented using pat
tern matching with case statements, wherein the value is matched against sev
eral case definitions (like a switch expression in Java).

2.3.2 Setting up the WebSocket connection and interacting with it

To make use of your freshly baked actor, you need to create a WebSocket endpoint on
the server side and a view on the client side that will initialize a WebSocket connection.

SERVER-SIDE ENDPOINT

We’ll start by rewriting the tweets method of the Application controller (you may
want to keep the existing method as a backup somewhere, because we’ll reuse most of
its parts later on). You’ll notice that we’re not creating a Play Action this time,
because actions only deal with the HTTP protocol, and WebSockets are a different
kind of protocol. Play makes initializing WebSockets really easy.

Listing 2.9 Setting up the WebSocket endpoint in app/controllers/Application.scala

// ...

import actors.TwitterStreamer

// ...

def tweets = WebSocket.acceptWithActor[String, JsValue] {

request => out => TwitterStreamer.props(out)

}

That’s it! You don’t need to adjust the route in the routes file either, because you’re
essentially reusing the existing mapping to the /tweets route.

 The acceptWithActor[In, Out] method lets you create a WebSocket endpoint
using an actor. You specify the type of the input and output data (in this case, you
want to send strings from the client and receive JSON objects) and provide the Props
of the actor, given the out actor reference that you’re using to communicate with
the client.

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

41 Streaming tweets to clients using a WebSocket

SIGNATURE OF THE ACCEPTWITHACTOR METHOD The acceptWithActor method
has a slightly uncommon signature of type f: RequestHeader => ActorRef =>
Props. This is a function that, given a RequestHeader, returns another function
that, given an ActorRef, returns a Props object. This construct allows you to
access the HTTP request header information for purposes such as performing
security checks before establishing the WebSocket connection.

CLIENT-SIDE VIEW

We’ll now create a client-side view that will establish the WebSocket connection using
JavaScript. Instead of creating a new view template, we’ll simply reuse the existing view
template, app/views/index.scala.html, as follows.

Listing 2.10 Client-side connection to the WebSocket using JavaScript

Initializes the
WebSocket

connection using
a URL generated

by Play

@(message: String)(implicit request: RequestHeader)

The container in which the@main(message) {

tweets will be displayed

<div id="tweets"></div>

<script type="text/javascript">

var url = "@routes.Application.tweets().webSocketURL()";

var tweetSocket = new WebSocket(url);

The handler called
tweetSocket.onmessage = function (event) {
 when a message is

receivedconsole.log(event);

var data = JSON.parse(event.data);

var tweet = document.createElement("p");

var text = document.createTextNode(data.text);

tweet.appendChild(text);

The handler document.getElementById("tweets").appendChild(tweet);

called when the

connection is
};

opened tweetSocket.onopen = function() {
tweetSocket.send("subscribe");

Sends a subscription
request to the server

};
</script>

}

You start by opening a WebSocket connection to the tweets handler. The URL is
obtained using Play’s built-in reverse routing and resolves to ws://localhost:9000/
tweets. Then you add two handlers: one for handling new messages that you receive,
and one for handling the new WebSocket connection once a connection with the
server is established.

USING URLS IN VIEWS It’s also possible to make use of reverse routing natively
in JavaScript. We’ll look into that in chapter 10.

When a new connection is established, you immediately send a subscribe message
using the send method, which is matched in the receive method of the Twitter-
Streamer on the server side.

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

42 CHAPTER 2 Your first reactive web application

 Upon receiving a message on the client side, you append it to the page as a new
paragraph tag. To do this, you need to parse the event.data field, as it’s the string
representation of the JSON object. You can then access the text field, in which the
tweet’s text is stored.

 There’s one change you need to make for your project to compile, which is to pass
the RequestHeader to the view from the controller. In app/controllers/Application
.scala, replace the index method with the following code.

Listing 2.11 Declaring the implicit RequestHeader to make it available in the view

def index = Action { implicit request =>

Ok(views.html.index("Tweets"))

}

You need to take this step because in the index.scala.html view you’ve declared two
parameter lists: a first one taking a message, and a second implicit one that expects a
RequestHeader. In order for the RequestHeader to be available in the implicit scope,
you need to prepend it with the implicit keyword.

Upon running this page, you should see “Hello, world!” displayed. If you look at
the developer console of your browser, you should also see the details of the event that
was received.

Scala tip: implicit parameters
Implicit parameters are a language feature of Scala that allows you to omit one or
more arguments when calling a method. Implicit parameters are declared in the last
parameter list of a function. For example, the index.scala.html template will be com
piled to a Scala function that has a signature close to the following:

def indexTemplate(message: String)(implicit request: RequestHeader)

When the Scala compiler tries to compile this method, it will look for a value of the
correct type in the implicit scope. This scope is defined by prepending the implicit
keyword when declaring anonymous functions, as here with Action:

def index = Action { implicit request: RequestHeader =>
// request is now available in the implicit scope

}

You don’t need to explicitly declare the type of request; the Scala compiler is smart
enough to do so on its own and to infer the type.

2.3.3 Sending tweets to the WebSocket

Play will create one new TwitterStreamer actor for each WebSocket connection, so it
makes sense to only connect to Twitter once, and to broadcast our stream to all con
nections. To this end, we’ll set up a special kind of broadcasting enumerator and pro
vide a method to the actor to make use of this broadcast channel.

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

43 Streaming tweets to clients using a WebSocket

 We first need an initialization mechanism to establish the connection to Twitter.
To keep things simple, let’s set up a new method in the companion object of the
TwitterStreamer actor in app/actors/TwitterStreamer.scala.

Listing 2.12 Initializing the Twitter feed

Initializes an
empty variable

to hold the
broadcast

enumerator

object TwitterStreamer {

def props(out: ActorRef) = Props(new TwitterStreamer(out))

private var broadcastEnumerator: Option[Enumerator[JsObject]] = None

def connect(): Unit = {

credentials.map { case (consumerKey, requestToken) =>

val (iteratee, enumerator) = Concurrent.joined[Array[Byte]]

Sets up the
stream

transformation
pipeline, taking

data from the
joined enumerator

val jsonStream: Enumerator[JsObject] = enumerator &>
Encoding.decode() &> Sets up a joined
Enumeratee.grouped(JsonIteratees.jsSimpleObject) set of iteratee

and enumerator
val (be, _) = Concurrent.broadcast(jsonStream)

broadcastEnumerator = Some(be)

val url = "https://stream.twitter.com/1.1/statuses/filter.json"

WS

.url(url)

.sign(OAuthCalculator(consumerKey, requestToken))

Initializes the

.withQueryString("track" -> "reactive")
 broadcast enumerator

.get { response =>
 using the transformed
Logger.info("Status: " + response.status)
 stream as a source

Consumes the
stream from

Twitter with the
joined iteratee,

which will pass it
on to the joined

enumerator

iteratee

}.map { _ =>

Logger.info("Twitter stream closed")

}

} getOrElse {

Logger.error("Twitter credentials missing")

}

}

}

With the help of the broadcasting enumerator, the stream is now available to more
than just one client.

A WORD ON THE CONNECT METHOD Instead of encapsulating the connect()
method in the TwitterStreamer companion object, it would be better prac
tice to establish the connection in a related actor. The methods exposed in
the TwitterStreamer connection are publicly available, and misuse of them
may seriously impact your ability to correctly display streams. To keep this
example short, we’ll use the companion object; we’ll look at a better way of
handling this case in chapter 6.

www.itbook.store/books/9781633430099

https://stream.twitter.com/1.1/statuses/filter.json
https://itbook.store/books/9781633430099

44 CHAPTER 2 Your first reactive web application

You can now create a subscribe method that lets your actors subscribe their Web-
Socket clients to the stream. Append it to the TwitterStreamer object as follows.

Listing 2.13 Subscribing actors to the Twitter feed

object TwitterStreamer {

// ...

def subscribe(out: ActorRef): Unit = {

if (broadcastEnumerator.isEmpty) {

connect()

}

val twitterClient = Iteratee.foreach[JsObject] { t => out ! t }

broadcastEnumerator.foreach { enumerator =>

enumerator run twitterClient

}

}

In the subscribe method, you first check if you have an initialized broadcast-
Enumerator at your disposal, and if not, establish a connection. Then you create a
twitterClient iteratee, which sends each JSON object to the browser using the
actor reference.

 Finally, you can make use of this method in your actor when a client subscribes.

Listing 2.14 TwitterStreamer actor subscribing to the Twitter stream

class TwitterStreamer(out: ActorRef) extends Actor {

def receive = {

case "subscribe" =>

Logger.info("Received subscription from a client")

TwitterStreamer.subscribe(out)

}

}

When running the chain, you should now see tweets appearing on the screen, one
after another. You can open multiple browsers or tabs to see more client connections
being established.

 This setup is very resource-friendly given that you only make use of asynchronous
and lightweight components that don’t block threads: when no data is sent from
Twitter, you don’t unnecessarily block threads waiting or polling. Instead, each time
new data comes in, the parsing and subsequent communication with clients happen
asynchronously.

PROPER DISCONNECTION HANDLING One thing we haven’t done here is
properly handle client disconnections. When you close the browser tab or
otherwise disconnect the client, your twitterClient iteratee will continue
trying to send new messages to the out actor reference, but Play will have

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

45 Making the application resilient and scaling out

closed the WebSocket connection and stopped the actor, which means that
messages will be sent to the void. You can observe this behavior by seeing
Akka complain in the log about “dead letters” (actors sending messages to
no-longer-existing endpoints). To properly handle this situation, you’d need
to keep track of subscribers and check if each actor is still in the list of
subscribers prior to sending each message. You can find an example of how
this is done in the source code for this chapter, available on GitHub.

2.4 Making the application resilient and scaling out
We’ve built a pretty slick and resource-efficient application to stream tweets from our
server to many clients. But to meet the failure-resilience criterion of a reactive web appli
cation, we need to do a bit more work: we need a good mechanism to detect and deal
with failure, and we need to be able to scale out to respond to higher demand.

2.4.1 Making the client resilient

To be completely resilient, our application would need to be able to deal with a multi
tude of failure scenarios, ranging from Twitter becoming unavailable to our server
crashing. We’ll look into a first level of failure handling on the client side here, in
order to alleviate the pain inflicted on our users if the stream of tweets were to be
interrupted. We’ll cover the topic of responsive clients in depth in chapter 8.

 If the connection with the server is lost, we should alert the user and attempt to
reconnect. This can be achieved by rewriting the <script> section of our index.scala
.html view, as follows.

Listing 2.15 Resilient version of the JavaScript

Encapsulates
the WebSocket

connection logic
in a reusable

function

Attempts
up to three
connection

retries

function appendTweet(text) {

var tweet = document.createElement("p");

var message = document.createTextNode(text);

tweet.appendChild(message);

document.getElementById("tweets").appendChild(tweet);

}

function connect(attempt) {

var connectionAttempt = attempt;

var url = "@routes.Application.tweets().webSocketURL()";

var tweetSocket = new WebSocket(url);

tweetSocket.onmessage = function (event) {

console.log(event);

var data = JSON.parse(event.data);

appendTweet(data.text);

};

tweetSocket.onopen = function() {

connectionAttempt = 1;

The onclose handler, called tweetSocket.send("subscribe");

when the WebSocket };

connection is closedtweetSocket.onclose = function() {

if (connectionAttempt <= 3) {

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

46 CHAPTER 2 Your first reactive web application

Executes the
wrapped function
call after a delay

of 5000
milliseconds

setTimeout(function() {

connect(connectionAttempt + 1);

}, 5000);

} else {

appendTweet("WARNING: Lost server connection,

attempting to reconnect. Attempt number " + connectionAttempt);

Attempts reconnection
and increments the
number of retries

In case of alert("The connection with the server was lost.");

failure, alerts
the user with a };

}

more prominent
alert

}
Initiates the first
connection attempt

connect(1);

To avoid repeating the same code twice, you start by moving the logic for displaying a
new message into the appendTweet method and the logic for establishing a new Web-
Socket connection into the connect method. The latter now takes as its argument the
connection attempt count, so you know when to give up trying and can then inform
the user about the progress.

The onclose handler of the WebSocket API is invoked whenever the connection
with the server is lost (or can’t be established). This is where you plug in your failure-
handling mechanism: when the connection is lost, you inform the user in an unobtru
sive manner (by appending a warning message to the existing tweet stream) and then
attempt to reconnect after a waiting period of five seconds. If you haven’t succeeded
after three reconnection attempts, you alert the user in a more direct fashion (in this
example, by using a native browser alert). If you succeed at reconnecting, you reset
the connection attempt count to 1.

FURTHER COPING MECHANISMS It’s not uncommon for a web application to
lose connection with the server. One popular mechanism implemented in
many clients, such as Gmail, is to wait for increasing amounts of time between
two reconnection attempts (first a few seconds, then a minute, and so on),
while still informing the user and also giving them a means to reestablish the
connection manually by clicking a link or button. This disconnection sce
nario is quite frequent with mobile devices and laptops, so it’s good for an
application to have an automated reconnection mechanism in place to opti
mize the user experience.

SERVER-SIDE FAILURE HANDLING So far we’ve only handled failures on the cli
ent side; we haven’t looked into mechanisms to deal with failure handling on
the server side. This is not, unfortunately, because there are no failures on the
server side, but rather because this topic is too big to cover in this chapter’s
example application. Don’t worry, though. We’ll revisit this aspect of the
application in detail in chapters 5 and 6.

2.4.2 Scaling out

We now have a pretty slick and resource-efficient application that can stream tweets to
many clients. But what if we were to build a fairly popular application, and we wanted

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

47 Making the application resilient and scaling out

Master node

Replica 1 Replica 2

Client Client Client Client Client Client

Twitter

Figure 2.5 Scaling out using replica nodes

to handle more connections than a single node could manage? One mechanism we’ll
consider is replica nodes that could replicate our initial connection, as shown in figure 2.5.

 Let’s say we wanted to reuse the same connection to Twitter (because Twitter doesn’t
let us reuse the same credentials many times, and we don’t want to create a new user and
get new API credentials for each node). We already have a mechanism in place that lets
clients view the stream using WebSockets, and we also have a mechanism to broadcast
an incoming Twitter stream to WebSocket clients. The only thing we need in order to
have working replica nodes that connect to a master node is a means to configure them
and get them to connect to our master node instead of Twitter.

 To achieve this, we’ll set up a new subscription mechanism that allows other nodes
to consume data from the initial stream (the one coming from Twitter). We’ll set up a
new controller action to stream out the content and make the necessary modifications
to run the application in replica mode.

 First, you need to set up a means for the controllermethod to subscribe to the stream.

Listing 2.16 Subscribing other nodes to the broadcast Twitter feed

def subscribeNode: Enumerator[JsObject] = {

if (broadcastEnumerator.isEmpty) {

connect()

}

broadcastEnumerator.getOrElse {

Enumerator.empty[JsObject]

}

}

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

48 CHAPTER 2 Your first reactive web application

This method, like the existing subscribe method, first makes sure that the connection
to Twitter is initialized, and then simply returns the broadcasting enumeratee. You can
now use the enumeratee in a controller method in your Application controller.

Listing 2.17 Streaming the replicated Twitter feed in the controller

class Application extends Controller {

// ...

def replicateFeed = Action { implicit request =>

Ok.feed(TwitterStreamer.subscribeNode)

}

}

The feed method simply feeds the stream provided by the enumerator as an HTTP
request.

 You now need to provide a new route for this action in conf/routes:

GET /replicatedFeed controllers.Application.replicateFeed

If you now visit http://localhost:9000/replicatedFeed, you’ll see the stream of JSON
documents displayed with continuous additions to the page.

 You now have almost everything in place to set up a replica node. The last thing
you need to do is connect to the master node instead of the original Twitter API. You
can do this very easily by replacing the URL used in a replica node with the master
node’s URL. In a production setup, you’d use the application configuration for this.
To keep things simple for this example, we’ll use a JVM property that can easily be
passed along. Add the following logic in the connect() method of the Twitter-
Streamer companion object, replacing the existing URL declaration:

val maybeMasterNodeUrl = Option(System.getProperty("masterNodeUrl"))

val url = maybeMasterNodeUrl.getOrElse {

"https://stream.twitter.com/1.1/statuses/filter.json"

}

Now, start a new terminal window and start another Activator console (don’t close the
existing running application):

activator -DmasterNodeUrl=http://localhost:9000/replicatedFeed

Then run the application on another port:

[twitter-stream] $ run 9001

Upon visiting http://localhost:9001, you’ll see the stream from the other node. You
can start more of those nodes on different ports to check if the replication works as
expected. Given how the setup works, you can also chain more replicating nodes by
passing the URL of a replicating node as masterNodeUrl to another node.

www.itbook.store/books/9781633430099

http://localhost:9001
https://stream.twitter.com/1.1/statuses/filter.json
http://localhost:9000/replicatedFeed
https://itbook.store/books/9781633430099

Summary	 49

FAILURE HANDLING IN A REPLICATED SETUP Although scaling out makes your
application capable of handling a higher demand in terms of connections, it
also makes failure handling quite a bit more complicated. Given the limita
tion of only one node being able to connect to Twitter, you’re in a situation
where there is a single point of failure—if this node were to go down, you’d
be in trouble. In a real system, you’d seek to avoid having a single point of fail
ure, and instead have a number of master nodes. You’d also need to devise a
mechanism to cope with the loss of a master server.

2.5 Summary
In this chapter, we built a reactive web application using Play and Akka. We used a few
key techniques for reactive applications:

■	 Using asynchronous actions for handling incoming HTTP requests
■	 Streaming and transforming tweets asynchronously using iteratees, enumera

tees, and enumerators
■	 Establishing WebSocket connections using an Akka actor and connecting it to

the stream
■	 Dealing with failure on the client side
■	 Scaling out using a simple replication model

Throughout the remainder of the book, we’ll explore these topics in more depth. In
the next chapter, we’ll visit one building block of reactive web applications by looking
into functional programming concepts.

www.itbook.store/books/9781633430099

https://itbook.store/books/9781633430099

WEB DEVELOPMENT/SCALA

Reactive Web Applications

Manuel Bernhardt

R eactive applications build on top of components that
communicate asynchronously as they react to user and
system events. As a result, they become scalable, respon

sive, and fault-tolerant. Java and Scala developers can use the
Play Framework and the Akka concurrency toolkit to easily
implement reactive applications without building everything
from scratch.

Reactive Web Applications teaches web developers how to
benefit from the reactive application architecture and pre
sents hands-on examples using Play, Akka, Scala, and Reac
tive Streams. This book starts by laying out the fundamentals
required for writing functional and asynchronous applications
and quickly introduces Play as a framework to handle the
plumbing of your application. The book alternates between
chapters that introduce reactive ideas (asynchronous program
ming with futures and actors, managing distributed state with
CQRS) and practical examples that show you how to build
these ideas into your applications.

What’s Inside
● Reactive application architecture
● Basics of Play and Akka
● Examples in Scala
● Functional and asynchronous programming

For readers comfortable programming with a higher-level
language such as Java or C#, and who can read Scala code. No
experience with Play or Akka needed.

Manuel Bernhardt is a passionate engineer, author, and speaker.
As a consultant, he guides companies through the technological
and organizational transformation to distributed computing.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/reactive-web-applications

M A N N I N G $44.99 / Can $51.99 [INCLUDING eBOOK]

“You‘ll come away with a

solid understanding of how

reactive web applications

are architected, developed,

tested, and deployed.”
 —From the Foreword by

James Roper, lead developer

of the Play Framework

“Good theory and
good practice, with

 powerful examples.” —Steve Chaloner
Objectify

“How to be reactive in your

application development…

Eye-opening.”
 —David Torrubia Íñigo

Fon Wireless, Ltd

“A complete and exhaustive

source of best practices

for large-scale, real-world

 reactive platforms.”
 —Antonio Magnaghi, PhD

OpenMail

SEE INSERT

www.itbook.store/books/9781633430099

www.manning.com/books/reactive-web-applications
https://itbook.store/books/9781633430099

