
M A N N I N G

SECOND EDITION

IN ACTION
Understanding data with graphs

Covers gnuplot version 5

Philipp K. Janert

www.itbook.store/books/9781633430181

Dottie
Text Box
SAMPLE CHAPTER

https://itbook.store/books/9781633430181

Gnuplot in Action
by Philipp K. Janert

Chapter 2

 Copyright 2016 Manning Publications

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

vii

brief contents
PART 1 GETTING STARTED.. 1

1 ■ Prelude: understanding data with gnuplot 3
2 ■ Tutorial: essential gnuplot 16
3 ■ The heart of the matter: the plot command 31

PART 2 CREATING GRAPHS ... 53
4 ■ Managing data sets and files 55
5 ■ Practical matters: strings, loops, and history 78
6 ■ A catalog of styles 100
7 ■ Decorations: labels, arrows, and explanations 125
8 ■ All about axes 146

PART 3 MASTERING TECHNICALITIES... 179
9 ■ Color, style, and appearance 181

10 ■ Terminals and output formats 209
11 ■ Automation, scripting, and animation 236
12 ■ Beyond the defaults: workflow and styles 262

PART 4 UNDERSTANDING DATA ... 287
13 ■ Basic techniques of graphical analysis 289
14 ■ Topics in graphical analysis 314
15 ■ Coda: understanding data with graphs 344

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

16

Tutorial: essential gnuplot

This chapter introduces gnuplot’s most important features: generating plots, saving
them to a file, and exporting graphs to common graphics file formats. I’ll also
explain briefly how to set options and how to access gnuplot’s built-in documenta-
tion. This chapter covers those commands that you’ll find yourself using almost
every time you start up gnuplot. In the next couple of chapters, you’ll learn about
further features for graphical analysis and how to manage data sets and files. By the
end of chapter 4, you’ll know most of the commands you’ll use on a day-to-day basis.

 Are you surprised that just a few chapters are sufficient to get you this far? Con-
gratulations! You just discovered why gnuplot is cool: it makes easy things easy, and
hard things possible. This chapter and the next two cover the easy parts. As to the
hard parts … well, that’s what the rest of this book is about.

This chapter covers
 Invoking gnuplot

 Plotting functions and data

 Saving and exporting

 Managing options

 Getting help

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

17Simple plots

2.1 Simple plots
Because gnuplot is a plotting program, it should come as no surprise that the most
important gnuplot command is plot. It can be used to plot both functions (such as
sin(x)) and data (typically from a file). The plot command has a variety of options
and subcommands, through which you can control the appearance of the graph as
well as the interpretation of the data in the file. The plot command can even perform
arbitrary transformations on the data as you plot it.

2.1.1 Invoking gnuplot and first plots

Gnuplot is a text-based plotting program: you interact with it through command-line-
like syntax, as opposed to manipulating graphs using the mouse in a WYSIWYG fash-
ion.2 Gnuplot is also interactive : it provides a prompt at which you type commands.
When you enter a complete command, the resulting graph immediately pops up in a
separate window. This is in contrast to a graphics programming language (such as PIC),
where writing the command, generating the graph, and viewing the result are sepa-
rate activities, requiring separate tools. Gnuplot has a history feature, making it easy to
recall, modify, and reissue previous commands. The entire setup encourages you to
play with the data: making a simple plot, changing some parameters to hone in on the
interesting sections, eventually adding decorations and labels for final presentation,
and in the end exporting the finished graph in a standard graphics format.

 If gnuplot is installed on your system, it can usually be invoked by issuing the
command

shell> gnuplot

at the shell prompt. (Check appendix A for instructions on obtaining and installing
gnuplot, if your system doesn’t have it already.) Once launched, gnuplot displays a
welcome message and then replaces the shell prompt with a gnuplot> prompt. Any-
thing entered at this prompt is interpreted as gnuplot commands until you issue an
exit or quit command, or type an end-of-file (EOF) character, usually by pressing
Ctrl-D on Unix.

 Probably the simplest plotting command you can issue is

plot sin(x)

(Here and in the following, the gnuplot> prompt is suppressed to save space. Any
code shown should be understood as having been entered at the gnuplot> prompt,
unless otherwise stated.)

 On Unix running a GUI (an arbitrary window manager running on top of X11), this
command opens a new window showing the resulting graph, something like figure 2.1.
Note how gnuplot has selected a “reasonable” range for the x values automatically (by
default, from -10 to +10) and adjusted the y range according to the values of the function.

2 The Windows version of gnuplot contains a menu you can use to build up command strings using the mouse.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

18 CHAPTER 2 Tutorial: essential gnuplot

Let’s say you want to add more functions to plot together with the sine. You recall the
last command (using the up-arrow key or Ctrl-P for “previous”) and edit it to give

plot sin(x), x, x-(x**3)/6

This will plot the sine together with the linear function x and the third-order polyno-
mial x - ⅙x3, which are the first few terms in the Taylor expansion of the sine.3 (Gnu-
plot’s syntax for mathematical expressions is straightforward and similar to that found
in almost any other programming language. Note the ** exponentiation operator,
familiar from Fortran or Perl. Section 3.2 contains tables of all available operators
and their precedences.) The resulting plot (see figure 2.2) is probably not what you
expected.

 The range of y values is far too large, compared to the previous graph. You can’t
even see the wiggles of the original function (the sine wave) anymore. Gnuplot adjusts
the y range to fit in all function values, but for this plot, you’re only interested in
points with small y values. So, you recall the last command again (using the up-arrow
key) and define the plot range you’re interested in:

plot [][-2:2] sin(x), x, x-(x**3)/6

3 A Taylor expansion is a local approximation of an arbitrary, possibly complicated, function in terms of powers
of x. You won’t need this concept in the rest of this book. Check your favorite calculus book if you want to
know more.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

sin(x)

Figure 2.1 Your first plot: plot sin(x)

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

19Simple plots

The range is given in square brackets immediately after the plot command. The first
pair of brackets defines the range of x values (leave it empty, because you’re happy
with the defaults in this case); the second restricts the range of y values shown. This
results in the graph shown in figure 2.3.

-200

-150

-100

-50

 0

 50

 100

 150

 200

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.2 An unsuitable default plot range: plot sin(x), x, x-(x**3)/6

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.3 Using explicit plot ranges: plot [][-2:2] sin(x), x, x-(x**3)/6

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

20 CHAPTER 2 Tutorial: essential gnuplot

You can play much longer with function plots, zoning in on different regions of inter-
est and trying different functions (section F.4 contains a table of all built-in mathemat-
ical functions). But let’s move on and discuss what gnuplot is most useful for: plotting
data from a file.

2.1.2 Plotting data from a file

Gnuplot reads data from text files. The data is expected to be numerical and to be
stored in the file in whitespace-separated columns. Lines beginning with a hash mark (#)
are considered to be comment lines and are ignored. The following listing shows a typ-
ical data file containing the share prices of two fictitious companies, with the equally
fictitious ticker symbols PQR and XYZ, over a number of years.

Average PQR and XYZ stock price (in dollars per share) per calendar year
1975 49 162
1976 52 144
1977 67 140
1978 53 122
1979 67 125
1980 46 117
1981 60 116
1982 50 113
1983 66 96
1984 70 101
1985 91 93
1986 133 92
1987 127 95
1988 136 79
1989 154 78
1990 127 85
1991 147 71
1992 146 54
1993 133 51
1994 144 49
1995 158 43

The canonical way to think about this is that the x value is in column 1 and the y value
is in column 2. If there are additional y values corresponding to each x value, they’re
listed in subsequent columns. (You’ll see later that there’s nothing special about the
first column. In fact, any column can be plotted along either the x or the y axis.)

 This format, simple as it is, has proven to be extremely useful—so much so that
long-time gnuplot users usually generate data this way to begin with. In particular, the
ability to keep related data sets in the same file is a big help (so you don’t need to
keep PQR’s stock price in a separate file from XYZ’s—although you could if you
wanted to).

 Although whitespace-separated numerical data is what gnuplot expects natively,
gnuplot can parse and interpret significant deviations from this norm, including text

Listing 2.1 A typical data file: stock prices over time (file: prices)

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

21Simple plots

columns (with embedded whitespace if enclosed in double quotes), missing data, and
a variety of textual representations for calendar dates, as well as binary data. (See
chapter 4 for a more detailed discussion of input file formats, chapter 5 for strings,
and chapter 8 for the special case when one of the columns represents date/time
information.)

 Plotting data from a file is simple. Assuming that the file shown in listing 2.1 is
called prices and is in the current working directory (typically, the directory from
which gnuplot was started), you can type

plot "prices"

Because data files typically contain many different data sets, you’ll usually want to select
the columns to be used as x and y values. This is done through the using directive to the
plot command:

plot "prices" using 1:2

This plots the price of PQR shares as a function of time: the first argument to the
using directive specifies the column in the input file to be plotted along the horizon-
tal (x) axis, and the second argument specifies the column for the vertical (y) axis. If
you want to plot the price of XYZ shares in the same plot, you can do so easily (as
shown in figure 2.4):

plot "prices" using 1:2, "prices" using 1:3

 40

 60

 80

100

120

140

160

180

 1975 1980 1985 1990 1995

"prices" u 1:2
"prices" u 1:3

Figure 2.4 Plotting from a file: plot "prices" using 1:2, "prices" using 1:3

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

22 CHAPTER 2 Tutorial: essential gnuplot

TIP The using directive tells the plot command which columns to use. plot
"data" using 1:2 selects the first column for the x axis and the second col-
umn for the y axis.

By default, data points from a file are plotted using unconnected symbols. Often this
isn’t what you want, so you need to tell gnuplot what style to use for the data. You do so
using the with directive. Many different styles are available. Among the most useful
are with linespoints, which plots each data point as a symbol and also connects sub-
sequent points, and with lines, which just plots the connecting lines, omitting the
individual symbols:

plot "prices" using 1:2 with lines,

➥ "prices" using 1:3 with linespoints

TIP The with directive to the plot command selects the plotting style. The
most frequently used styles include with points, with lines, and with
linespoints.

This looks good, but it’s not clear from the graph which line is which. Gnuplot auto-
matically provides a key, which shows a sample of the line or symbol type used for each
data set together with a text description, but the default description isn’t very mean-
ingful in this case. You can do much better by including a title for each data set as
part of the plot command:

plot "prices" using 1:2 title "PQR" with lines,

➥ "prices" using 1:3 title "XYZ" with linespoints

This changes the text in the key to the string given as the title (see figure 2.5). The
title has to come after the using directive in the plot command. A good way to
memorize this order is to remember that you must specify the data set to plot first and
provide the description second : define it first, then describe what you defined.

TIP You can use the title directive to place a descriptive string in the
graph’s legend.

Want to see how PQR’s price correlates with XYZ’s? No problem; plot one against the
other, using PQR’s share price for x values and XYZ’s for y values, like so:

plot "prices" using 2:3 with points

You see here that there’s nothing special about the first column. Any column can be
plotted against either the x or the y axis; you pick whichever combination you need
through the using directive. Because it makes no sense to connect the data points in
the last plot, I chose the style with points, which plots a symbol for each data point
but no connecting lines (see figure 2.6).

 A graph like figure 2.6 is known as a scatter plot and can show correlations between
two data sets. In this graph, you can see a clear negative correlation: as the stock price
of PQR is going up, the price of XYZ is going down. We’ll revisit scatter plots and their
uses in chapter 13.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

23Simple plots

 40

 60

 80

100

120

140

160

180

 1975 1980 1985 1990 1995

PQR
XYZ

Figure 2.5 Introducing styles and the title keyword: plot "prices" using 1:2 title
"PQR" with lines, "prices" using 1:3 title "XYZ" with linespoints

 40

 60

 80

100

120

140

160

180

 40 60 80 100 120 140 160

"prices" u 2:3

Figure 2.6 Any column can be used for either the x or y axis: plot "prices" using 2:3
with points.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

24 CHAPTER 2 Tutorial: essential gnuplot

Now that you’ve seen the most important basic commands, let’s step back for a
moment and quickly introduce some creature comforts that gnuplot provides to the
more experienced user.

2.1.3 Abbreviations and defaults

Gnuplot is good at encouraging iterative, exploratory data analysis. Whenever you
complete a command, the resulting graph is shown immediately, and all changes take
effect at once. Writing commands isn’t a different activity from generating graphs,
and there’s no need for a separate viewer program. (Graphs are also created almost
instantaneously; only for data sets including millions of points is there any noticeable
delay.) Previous commands can be recalled, modified, and reissued, making it easy to
keep playing with the data.

 Gnuplot offers two more features to the more proficient user: abbreviations and sen-
sible defaults. Any command and subcommand or option can be abbreviated to the
shortest, non-ambiguous form. So the command

plot "prices" using 1:2 with lines,

➥ "prices" using 1:3 with linespoints

is more likely to be issued as

plot "prices" u 1:2 w l, "prices" u 1:3 w linesp

You can shorten the linespoints style description even further to lp, so the com-
mand becomes

plot "prices" u 1:2 w l, "prices" u 1:3 w lp

This compact style is useful when you’re doing interactive work, and you should mas-
ter it. From here on, I’ll increasingly use it. (You can find a table with the most fre-
quently used abbreviations at the beginning of this book in the “About this book”
section.)

 But this is still not the most compact form possible. Whenever part of a command
isn’t given explicitly, gnuplot first tries to interpolate the missing values with values the
user has provided; failing that, it falls back to sensible defaults. You’ve already seen
how gnuplot defaults the range of x values to [-10:10] but adjusts the y range to
include all data points.

TIP Abbreviations for common keywords facilitate quick, interactive, itera-
tive work. You can find a table of common abbreviations in the “About this
book” section at the start of the book.

Whenever a filename is missing, the most recent filename is interpolated. You can use
this to abbreviate the previous command even further:

plot "prices" u 1:2 w l, "" u 1:3 w lp

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

25Saving commands and exporting graphics

Note that the second set of quotation marks must be there.
 In general, any user input (or part of user input) remains unaffected until explic-

itly overridden by subsequent input. The way the filename is interpolated in the pre-
ceding example is a good example of this behavior. In later chapters, you’ll see how
options can be built up step by step, by subsequently providing values for different
suboptions. Gnuplot helps to keep commands short by remembering previous com-
mands as much as possible.

 One last example concerns the using directive. If it’s missing entirely and the data
file contains multiple columns, gnuplot plots the second column versus the first (this
is equivalent to using 1:2). If a using directive is given but lists only a single column,
gnuplot uses this column for y values and provides x values as integers starting at zero.
This is also what happens when no using is given and the data file contains only a sin-
gle column.

2.2 Saving commands and exporting graphics
There are two ways to save your work in gnuplot: you can save the gnuplot commands
used to generate a plot, so that you can regenerate the plot at a later time. Or you can
export the graph to a file in a standard graphics file format, so that you can print it or
include it in web pages, documents, or presentations.

TIP Saving a graph is the act of storing the gnuplot commands used to create
the graph. Exporting a graph means creating a version of the graph in a com-
monly used graphics file format (such as PNG, PDF, or SVG).

2.2.1 Saving and loading commands

If you save to a file the commands you used to generate a plot, you can later load them
again and regenerate the plot where you left off. Gnuplot commands can be saved to
a file using the save command:

save "graph.gp"

This saves the current values of all options, as well as the most recent plot command,
to the specified file. This file can later be loaded again using the load command:

load "graph.gp"

The effect of loading a file is the same as issuing all the contained commands (includ-
ing the plot command) at the gnuplot prompt.

TIP Never forget to save your commands using save so that you can re-create
your graph later using load.

An alternative to load is the call command, which is similar to load but takes up to
nine additional parameters after the filename to load. The parameters are available in
the loaded file in the variables ARG1 through ARG9. The special variable ARG0 is set to

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

26 CHAPTER 2 Tutorial: essential gnuplot

the filename, and the variable ARGC holds the number of parameters supplied to
call.4 You can use call to write simple scripts for gnuplot.

 Command files are plain text files, usually containing exactly one command per
line. Several commands can be combined on a single line by separating them with a
semicolon (;)—this also works at the interactive command line. The hash mark (#) is
interpreted as a comment character: the rest of the line following a hash mark is
ignored. The hash mark isn’t interpreted as a comment character when it appears
inside quoted strings.

 The recommended file extension for gnuplot command files is .gp, but you may
also find people using .plt instead. Because command files are plain text files, they can
be edited using a regular text editor. It’s sometimes useful to author them manually
and load them into gnuplot (see section 12.2 for further discussion of that point), and
they’re also used for batch operations (chapter 11) and configurations (chapter 12).

2.2.2 Exporting graphs

The save command I just introduced saves the commands required to generate (or
regenerate) the graph into a text file, but it doesn’t save the graph itself. How do you
get the graph that you see in the plot window into a file? It turns out there are three
ways to do it: easy, roundabout, and complicated.

USING THE GUI BUTTON

In recent gnuplot versions, most contemporary terminals (including the wxt and qt
terminals) include a GUI button you can use to export a graph to a file. The button
opens a standard file-selection dialog where you select the desired name of the target
file and the file format (PNG, PDF, or SVG). Easy.

USING THE CLIPBOARD

A roundabout way to save the graph to a file is to take a screenshot of the graph, using
your favorite screenshot utility, and save the result as a GIF or PNG file. After all, the
graphics window on the screen is nothing more than a bitmap image, and a screen-
shot saves it to a file.

 Gnuplot facilitates this process by offering a GUI button that copies the current
content of the plot window to the window manager’s clipboard, from which the graph
can be pasted into a paint program (such as the Gimp or Microsoft Paint) or saved
directly to a file. Only the canvas is copied, without the tool and title bars, and without
any of the decorations put on the window by the window manager. Don’t be disturbed
if nothing appears to be happening if you click the GUI button: there is no visual feed-
back, but the window’s content is copied to the clipboard, from which it can be pasted
into other applications. (The details of how to do that depend on your choice of win-
dow manager and the way the clipboard is configured on your local computer.) This
method may appear a bit unsophisticated, but it has two significant advantages: the

4 Earlier versions of gnuplot used the special tokens $0 through $9. That syntax is now deprecated.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

27Saving commands and exporting graphics

workflow is simple, and the resulting graph corresponds exactly to the graph that was
on the screen.

USING TERMINALS

Both the GUI button and the clipboard are relatively new methods for exporting a
graph. They’re easy to use but don’t allow for much flexibility in the appearance of
the generated graph. To get full control over the export process, you need to become
familiar with gnuplot’s terminal facility.

 In gnuplot parlance, a terminal is a graphics-capable output device. Traditionally,
this may have been a specific piece of hardware (such as a pen-and-ink plotter), but
today a gnuplot terminal is merely a reference to the underlying graphics library.

TIP A terminal is gnuplot’s abstraction for a graphics-capable end point.
Terminals can be interactive (screen oriented) or file-based. All graphics out-
put must be directed to a terminal.

Contemporary terminals come in two flavors: interactive and file-based. Interactive
terminals create the graphs that you see on the screen. On Linux, you have a choice
among three interactive terminals, each built using a different widget set: the qt ter-
minal uses Qt, the wxt terminal uses wxWidgets, and the old x11 terminal is a pure
Xlib application. (Both the qt and the wxt terminals also exist on Windows and Mac
OS X, together with platform-specific terminals.)

 But to export a graph to a file, you need to employ a file-based terminal that can
generate output in the desired output format (PNG, PDF, SVG, and so on). Most file-
based terminals accept a large number of options through which you can control vari-
ous aspects (such as the size) of the resulting graph. These options are covered in
detail in chapter 10.

 All of this is straightforward. But there is one stumbling block: exporting a graph
via a file-based terminal requires multiple steps. In order to export a graph with a gnuplot
terminal, several commands must be executed in proper sequence. This may come as a
surprise, because “exporting to a file” is a single, atomic operation in most other appli-
cations these days. Gnuplot is different.

 The full sequence of steps is shown in listing 2.2. Let’s step through it:

1 Begin with an arbitrary plot command.
2 Select the desired file-based terminal, using the set terminal command.
3 Specify the name of the output file, using the set output command.
4 Regenerate the last plot, this time sending it to the file-based terminal and the

named file.
5 Restore the interactive terminal again, using both set terminal and the set

output command.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

28 CHAPTER 2 Tutorial: essential gnuplot

plot exp(-x**2)

set terminal pngcairo

set output "graph.png"

replot

set terminal wxt

set output

This is the first time you’ve encountered gnuplot’s set command—I’ll talk about it in
more detail in the next section (and subsequently in almost every chapter of this
book!). For now, it’s enough to understand that it sets a parameter (such as terminal)
to a value. But—and this is often forgotten—it does not generate a plot! The only com-
mands that do so are plot, splot (which is used for three-dimensional graphs, dis-
cussed in appendix C), and replot and refresh (both of which repeat the most
recent plot or splot command).

 I’d like to emphasize three things about listing 2.2:

 The file format and the output filename must be specified separately, using set
terminal and set output, respectively.

 The graph must be sent to the newly created file in a separate command, using
plot, replot, or an equivalent command.

 Afterward, the interactive terminal must be restored explicitly. (This is easy to
forget.)

As long as you keep these three items in mind, creating files via terminals won’t pose
any difficulties. (In chapter 11, you’ll see how to use scripts and macros to facilitate
this process.)

TIP Be sure to complete all the required steps, and in the proper order. Typ-
ical mistakes are forgetting to issue a replot command (resulting in an empty
file) and forgetting to restore the original terminal at the end.

Before leaving this section, one last word of advice: always save the commands used to
generate a plot to a command file before exporting to a printable format. Always. It’s
almost guaranteed that you’ll want to regenerate the plot to make a minor modification
later (such as fixing a typo in a label, adding one more data set, or adjusting the plot
range slightly). This can only be done from the commands saved to file using save, not
from plots exported to a graphics file. We’ll come back to this topic several times.

TIP Don’t just store the finished graph. Always save the commands required
to generate it as well, so you can come back and modify it later.

Listing 2.2 Complete workflow to export to file

A plot command

Selects the file format

Specifies the output filename

Repeats the most recent plot command, with
the output now going to the specified fileRestores

the
terminal
settings

Sends output to the screen again by
using an empty filename

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

29Managing options with set and show

2.3 Managing options with set and show
Gnuplot has relatively few commands (such as the plot, save, and load commands
you’ve already encountered) but a large number of options. These options are used to
control everything from the format of the decimal point to the name of the output
file. More than 100 such options are available, along with countless sub-options for
each. Check the entries for set and show in the gnuplot standard reference manual
for the complete list.

TIP Many aspects of gnuplot’s behavior can be controlled through options.
Use the set command to change their value; use show to see their current
value.

The three commands used to manipulate individual options are as follows:

 show—Displays the current value of an option
 set—Changes the value of an option
 unset—Disables a specific option or returns it to its default value

There’s also a fourth command, reset, which returns all options to their default val-
ues. The only options not affected by reset are those directly influencing output gen-
eration: terminal and output.

 The syntax of all three commands is straightforward. To assign a new value to an
option, use the set keyword followed by the name of the option and the new value.
The show command takes only a single argument: the name of the option you want to
inspect.

 The show command is also used more generally to display all kinds of information
about gnuplot’s internal state, not just options that can be changed using set. For
example, show variables displays all variables that are defined in the current session
together with their values, and show functions lists all user-defined functions.

 Another useful command is

show version long

This prints the current version of gnuplot, together with a copyright notice and point-
ers to the online documentation. More important, it also shows the compile-time flags
that gnuplot was compiled with. This is particularly relevant because some features have
only recently been added to gnuplot and may not be enabled on all platforms. You can
use show version long to see which flags your version of gnuplot was built with.

 Finally, you can use show all to see a listing of all possible options and their val-
ues. Be prepared for a long listing!

TIP You can use the show command to learn about your gnuplot installation
and to inspect the current state of a gnuplot session.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

30 CHAPTER 2 Tutorial: essential gnuplot

2.4 Getting help
Gnuplot has an extensive built-in, online help system (online in the sense that it’s
accessible from within the gnuplot session; it has nothing to do with network connec-
tivity to the internet). To get started, enter help at the gnuplot prompt. Alternatively,
you can go directly to the reference page for a specific command or option by enter-
ing the name of the command or option as an argument to the help command. For
example, to learn about the plot command, you’d use

help plot

The online help is detailed and comprehensive, so you should become familiar with
it. But keep in mind that it’s a reference, not a tutorial. If you know the name of the
command or option you’re looking for, it’s great. But if you want to find all relevant
options for a specific task, navigating the online help can be frustrating.

TIP Type help, followed by a command or option name, to access gnuplot’s
built-in reference documentation.

2.5 Summary
In this chapter, you learned how to do the most important things with gnuplot: plot-
ting, saving, and exporting. You also learned how to set and inspect options and how
to access the built-in reference documentation.

 This means you can already do the three most important things for day-to-day
work: generate a plot, save it to file, and export it. In the next chapter, you’ll begin to
learn how to use gnuplot to analyze data and understand what it’s telling you.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

Philipp K. Janert

G
nuplot is an open-source graphics program that helps
you analyze, interpret, and present numerical data.
Available for Unix, Mac, and Windows, it is well-

maintained, mature, and totally free.

gnuplot in Action, Second Edition is a major revision of this
authoritative guide for developers, engineers, and scientists.
The book starts with a tutorial introduction, followed by a
systematic overview of gnuplot’s core features and full coverage
of gnuplot’s advanced capabilities. Experienced readers will
appreciate the discussion of gnuplot 5’s features, including
new plot types, improved text and color handling, and sup-
port for interactive, web-based display formats. The book
concludes with chapters on graphical effects and general
techniques for understanding data with graphs. It includes
four pages of color illustrations. 3D graphics, false-color plots,
heatmaps, and multivariate visualizations are covered
in chapter-length appendixes available in the eBook.

What’s Inside
● Creating different types of graphs in detail
● Animations, scripting, batch operations
● Extensive discussion of terminals
● Updated to cover gnuplot version 5

No prior experience with gnuplot is required. This book con-
centrates on practical applications of gnuplot relevant to users
of all levels.

Philipp K. Janert, PhD, is a programmer and scientist. He is the
author of several books on data analysis and applied math and
has been a gnuplot power user and developer for over 20 years.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/gnuplot-in-action-second-edition

$44.99 / Can $51.99 [INCLUDING eBOOK]

gnuplot IN ACTION Second Edition

OPEN SOURCE/DATA VISUALIZATION

M A N N I N G

“The highly anticipated,
updated version of my
go-to-for-everything
 book on gnuplot.”

—Ryan Balfanz, Shift Medical, Inc.

“The essential guide
for newcomers and the
defi nitive handbook for

advanced users.”
—Zoltán Vörös

University of Innsbruck

“Learn how to use gnuplot
to convert meaningful data

into attention-grabbing
visualizations that

communicate your message
quickly and accurately.”—David Kerns
Rincon Research Corporation

“An accessible guide to
gnuplot and best practices of
everyday data visualization.”—Wesley R. Elsberry, PhD

RealPage, Inc.

SEE INSERT

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

	CoverFront
	CopyrightSamplePages
	BriefContents
	SampleChapter02
	CoverBack

