
M A N N I N G

SECOND EDITION

IN ACTION
Understanding data with graphs

Covers gnuplot version 5

Philipp K. Janert

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

Gnuplot in Action
by Philipp K. Janert

Chapter 2

 Copyright 2016 Manning Publications

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

vii

brief contents
PART 1 GETTING STARTED.. 1

1 ■ Prelude: understanding data with gnuplot 3
2 ■ Tutorial: essential gnuplot 16
3 ■ The heart of the matter: the plot command 31

PART 2 CREATING GRAPHS ... 53
4 ■ Managing data sets and files 55
5 ■ Practical matters: strings, loops, and history 78
6 ■ A catalog of styles 100
7 ■ Decorations: labels, arrows, and explanations 125
8 ■ All about axes 146

PART 3 MASTERING TECHNICALITIES... 179
9 ■ Color, style, and appearance 181

10 ■ Terminals and output formats 209
11 ■ Automation, scripting, and animation 236
12 ■ Beyond the defaults: workflow and styles 262

PART 4 UNDERSTANDING DATA ... 287
13 ■ Basic techniques of graphical analysis 289
14 ■ Topics in graphical analysis 314
15 ■ Coda: understanding data with graphs 344

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

181

Color, style, and appearance

Whereas the previous few chapters dealt with very local aspects of a graph (such as
an individual curve, a single text label, or the details of tic mark formatting), the
present chapter addresses global issues. We begin with a long and important sec-
tion on color. Color is an exciting topic, and it opens a range of options for data
visualization; I’ll explain gnuplot’s support for color handling in detail.

 Next, we discuss a few details that matter if you want to modify the default
appearance of point types, dash patterns, and the automatic selection of visual
styles. The overall size and aspect ratio of the graph are the subjects of the closing
section of this chapter.

9.1 Color
Color is an important element in visualization. At the base level, colors are often
easier to distinguish than dash patterns or different symbol shapes. But colors open

This chapter covers
 Global appearance options

 Color

 Lines and points

 Size and aspect ratio

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

182 CHAPTER 9 Color, style, and appearance

many more options for visualization—in fact, colors by themselves are sufficient to
represent semantic information (we’ll come back to this in appendix D). And finally,
color is just plain fun!

 At the same time, color adds complexity: what colors look good, and which are
suitable for representing information? And then there’s the problem of representing
color in computer systems. In appendix D, we’ll have more to say about choosing col-
ors for visualization; here we’re only interested in the technicalities of specifying color
in gnuplot.1

 There are three fundamentally different ways to select a color in gnuplot:

 Through explicit specification , either by using a known color name (such as
"red") or by giving its red-green-blue (RGB) components (like "#FF0000"). An
explicit color specification is indicated by the keyword rgb.

 By indexed lookup from a selection menu of discrete colors. (For example, lc 1
picks the first color from an existing list of color styles.) Indexed lookup is the
default and doesn’t use a special keyword.

 By mapping a value into a continuous color gradient. Color gradients are called pal-
ettes in gnuplot terminology (with keyword palette) and are the principal topic
of appendix D. In this chapter, we’ll give only a brief preview.

Each one of these methods can be used in two ways:

 Fixed—A specific color is selected for a given data set, to distinguish this data set
from any other.

 Variable or data-dependent—The color is determined by the value of the data plot-
ted so that the curve changes its color depending on location. Data-dependent
coloring is switched on with the keyword variable in place of an explicit color
name or index, and with palette z for gradient-mapped colors.

Keeping all these possibilities straight is one of our primary goals in this section!
 No matter which way you use color, a color specification always requires the line-

color keyword for graph elements (not just lines, but all graph elements, like points
or boxes) and the textcolor keyword for all forms of text labels.

TIP Remember: all color specifications are preceded either by the keyword
linecolor (or lc) for graph elements or by textcolor (or tc) for text labels.

9.1.1 Explicit colors

The most fundamental way to indicate a color is to specify it explicitly. You can do so
by giving its name or by spelling out its components.

1 To find the pertinent information in the standard gnuplot reference documentation, use the command
help colorspec.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

183Color

COLOR NAMES

Several colors can be referred to by their name. Gnuplot knows 111 predefined color
names (corresponding to only 95 distinct colors; the duplications are mostly due to
both grey and gray being valid spellings). You can see all the color names and their cor-
responding RGB values using the show colornames command. Note that gnuplot’s list
of color names isn’t identical to the list of X11 colors.2

RGB COMPONENTS

The most common way in computer graphics to indicate an arbitrary color is through
its RGB (red-green-blue) values: a triple of numbers giving the relative intensities of
the red, green, and blue components that make up the desired color. By convention,
each component is represented through a single byte, so that each RGB component
lies between 0 and 255. Conventionally, the components are written as two-digit hexa-
decimal numbers (from 00 to FF), and an entire triple can be represented through a
string of the following format:

rgb "#RRGGBB"

This is the X11 format. You can also write the string explicitly as a hexadecimal constant
in the format "0xRRGGBB". Here are three equivalent ways to specify the same color:

rgb "red"
rgb "#FF0000"
rgb "0xFF0000"

Instead of representing the RGB triple as a string, you can also use the integer value
corresponding to the value of the three bytes making up the triple. It may be conve-
nient to use the hexadecimal representation of the integer, instead of the representa-
tion to base 10. The following are equivalent:

rgb 0xff0000
rgb 16711680

Here’s a function that takes the three components (as integers between 0 and 255)
and packs them into an equivalent integer value:

pack(r, g, b) = 2**16*r + 2**8*g + b

This gives you an additional way to obtain the color red:

rgb pack(255, 0, 0)

2 The Wikipedia pages for “X11 color names” and “Web colors” contain more information about commonly
used color names. The amusing history of color names used in graphical user interfaces can be found in the
article “‘Tomato’ versus ‘#FF6347’—the Tragicomic History of CSS Color Names” by Julianne Tveten (Ars
Technica, October 11, 2015); http://mng.bz/R56B.

www.itbook.store/books/9781633430181

http://mng.bz/R56B
https://itbook.store/books/9781633430181

184 CHAPTER 9 Color, style, and appearance

HSV COLOR MODEL

The RGB color model has the advantage of corresponding directly to the way a com-
puter display operates, but it’s not particularly intuitive for a human to use. (Quickly,
what does #2e8b57 look like?)

 The HSV (hue-saturation-value) scheme is an alternative to the RGB color descrip-
tion and the most popular intuitive color model. The hue describes the shade of the
color (by convention, a hue value of 0 corresponds to red followed by yellow, green,
cyan, blue, and magenta at equal intervals). The saturation measures the richness of
the color, from pale pastel shades to full saturation. Finally, the value element of the
HSV triple describes the lightness of the color, from very dark to very bright. All HSV
values vary from 0 to 1.3

 Gnuplot’s built-in function hsv2rgb(h, s, v) takes a triple of HSV values, per-
forms the conversion to RGB, and returns an integer-packed representation of the cor-
responding RGB triple. This gives you yet another way to specify the color red
(remember that red corresponds to a hue value of 0):

rgb hsv2rgb(0, 1, 1)

Table 9.1 shows all these forms together, this time for the color magenta, which is a
mixture of full red and full blue components. (Its hue value in the HSV model is 5/6.)

TIP The input values to the hsv2rgb() function must all lie in the interval
[0:1]. The function silently replaces values outside this interval with the near-
est legal value (so, 1.1 becomes 1.0, and -0.1 becomes 0). In particular, the
hue parameter does not wrap around for values greater than 1.0—you must
map it into the unit interval yourself!

You can use the expression x - floor(x) to reduce an arbitrary hue value to the unit
interval. You may want to define a more general version of the hsv2rgb() function
that removes the restriction on the hue value:

hsv(h, s, v) = hsv2rgb(h - floor(h), s, v)

3 The Wikipedia page for the HSL and HSV color models provides more detail.

Table 9.1 Equivalent ways to specify a color explicitly (here, magenta)

Description Example

Color name rgb "magenta"

X11 RGB string rgb "#FF00FF"

String with hex constant rgb "0xFF00FF"

Integer in hex format rgb 0xff00ff

Packed integer rgb 2**16*255 + 2**8*0 + 255 or rgb 16711935

Conversion from HSV rgb hsv2rgb(5/6., 1, 1)

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

184a

Color figure 1 Alpha shading and transparency. When a partially transparent color is added to
an existing background, the added (foreground) color tends to prevail; adding it to a background
of the same hue just increases the intensity. In the left panel, this effect is used to visualize
point density in a dense data set. All data points are drawn with both blue disks and red rims.
Because contributions from overlapping points add visually, regions of high point density show
up as areas of high color intensity. Regions where the density is high enough for the rims to
contribute significantly appear red. The right panel demonstrates what kinds of color mixtures
you can expect when several colors are added together. (See chapter 9 for details.)

Color figure 2 Using color gradients to visualize data values. In the left panel, color is used to
indicate the order in which particles were added to the cluster. The right panel shows a section
of the complex plane, including part of the Mandelbrot set (black) and its fractal boundary. Color
is used to visualize the number of iteration steps before the Mandelbrot iteration diverged. (See
chapter 9 and appendix D.)

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

184b

linetype 1

linetype 8

Default linetype 1

linetype 8

Classic

linetype 1

linetype 8

Podo linetype 1

linetype 8

Custom

Color figure 3 The three built-in color sequences that can be selected using set colorsequence,
and the custom sequence that was used for the color illustrations in this book. (See chapters 9 and
12 for details.)

A
0.0

0.2

0.4

0.6

0.8

1.0

B C D E F G H J K L M N O P Q

Color figure 4 Several color gradients (or palettes) for visualization purposes, as discussed in
appendix D. Each panel in the figure displays a different palette.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

184c

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e

Input

Sparse 1
Sparse 2

Smooth
Dense 1
Dense 2
Dense 3

Color figure 5 Using stylesheets to change the appearance of a plot. The plot in this
figure has been prepared with a stylesheet that uses relatively bright colors, but thin lines.
(Compare color figure 6. Also see listing 12.7 in chapter 12 for details.)

Color figure 6 Using stylesheets to change the appearance of a plot. The plot in this
figure has been prepared with a stylesheet that uses soft pastel colors, but relatively thick
lines. (Compare color figure 5. Also see listing 12.8 in chapter 12 for details.)

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

184d

Color figure 7 Using a combination of several graphical techniques to represent a complicated,
multivariate data set. The figure shows a parallel-coordinates plot of the entire glass data set. Because
of the relatively large number of records, all lines are drawn partially transparent so they don’t obscure
each other. A subset of records has been highlighted in a different color: records with a Calcium (Ca)
content between 9 and 10 have been selected for highlighting. (See chapter 14 for details.)

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30

M
ac

hi
ne

Day

 0

 1

 2

 3

 4

 5

 6

 7

D
ef

ec
ts

Color figure 8 A false-color plot prepared using a color gradient. The color of each square represents
the number of defects produced by each machine on each day of the month. Missing squares indicate
that the corresponding machine wasn’t used on that day. Many different aspects of the operation are
visible in this graph. You should be able to recognize weekends and two clusters of machines that seem
more error-prone than the others. This data set contains a handful of outliers (that is, isolated instances
with an excessive number of defects), which are drawn in black. (See appendix D for details.)

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

185Color

9.1.2 Alpha shading and transparency

So far, we’ve assumed that colors are fully opaque, so that an object drawn on top of
another completely hides its background. But gnuplot can do more: several terminals
allow for transparent colors.4

MAKING COLORS TRANSPARENT

Indicating that a pixel should be transparent requires additional information. In prac-
tice, you add a fourth byte to the RGB components; this is often called the alpha chan-
nel. In gnuplot’s string representation, it precedes the RGB value:

rgb "#ααRRGGBB"
rgb "0xααRRGGBB"

Transparency information is encoded in the highest-order bit, as follows:

 α = 0 : fully opaque
 α = 255 : fully transparent

This convention has the advantage that a fully opaque color rgb "#00RRGGBB" has
the same numerical value as rgb "#RRGGBB", so opaque colors don’t require special
treatment.

ALPHA BLENDING

So, what happens when two transparent colors are overlaid? Obviously, the color
“underneath” is still visible—but how? It turns out that there is no obvious answer to
this question—the cairo graphics library defines 29 (!) different operators to combine
two pixels containing alpha-channel information!5

 Even in gnuplot, the answer isn’t unique: lines and similar graph elements are
combined using cairo’s OVER operator (the library’s default), but filled objects use the
SATURATE operator. (You can’t specify an operator explicitly.)

 To make the behavior of these two operators concrete, let’s assume that you want
to add a new object of color α1X1 to an existing color α0X0, resulting in color α2X2.
(Here X stands for any one of the three RGB components.) The new color is then cal-
culated separately for each RGB component according to the following formulas:

4 All cairo-based terminals support transparency, but several of the older terminals don’t. In particular, neither
the PostScript terminal nor the GD-based bitmap terminals can handle transparency.

5 See http://cairographics.org/operators.

α2 α1 α 0 1 α1–()+=

X2 α1X1 α 0X0 1 α1–()+() α2⁄=

α2 min 1 α1, α 0+()=SATURATE

OVER

X2 min α1 1, α 0–()X1 α0X0+() α2⁄=

www.itbook.store/books/9781633430181

http://cairographics.org/operators
https://itbook.store/books/9781633430181

186 CHAPTER 9 Color, style, and appearance

These formulas aren’t so helpful to predict the outcome, but you can use them retro-
spectively to understand what happened. Two general observations hold (see figure 9.1):

 The two source colors don’t commute: it matters which color is in the back-
ground and which is newly added. The color that is added on top of an existing
background tends to prevail.

 When all pixels are of the same hue, things are simpler: the hue basically stays,
and only the intensity increases (in a roughly additive way).

USES FOR TRANSPARENT COLORS AND ALPHA BLENDING

Transparent colors can be useful when you’re visualizing large data sets consisting of
many points. If such data is plotted in a scatter plot, points frequently overlap. With
fully opaque colors, overlapping points completely obscure each other, making the
local density of points indistinguishable. But with partially transparent colors, overlap-
ping points contribute additively, so that a higher color intensity reveals a higher point
density.

 Figure 9.2 shows such a scatter plot. The plot command is as follows:

plot [-0.4:1.2][-0.2:1.2] "alpha" u 2:1 w p pt 7 ps 1 lc rgb "#cc0000ff",

➥ "" u 2:1 w p pt 6 ps 1 lc rgb "#ddff0000"

Figure 9.1 Alpha blending in action. The color that is added to an existing
background tends to prevail; adding it to a background of the same hue just
increases the intensity.

BBlue filled circles

CRed unfilled circles

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

187Color

All points are first drawn as filled circles (pt 7) in blue B and then again as unfilled
circles (pt 6) in red C. Adding an outline to the circles significantly improves the
appearance of the graph; giving the outline a different color sets off areas of truly
high point density even more strikingly.

 You may want to experiment further with this—for example, I’ve obtained good
results when using the same color (say, blue) for both disk and outline, but making
the outline slightly larger than the disk itself (for example, ps 1.5 for the outline, but
ps 1 for the disk).

9.1.3 Selecting a color through indexed lookup

The methods explained so far in this section let you select individual colors. When
that’s what you want, these techniques are convenient: plot sin(x) lc rgb "red" does
exactly that—it plots the sine in red.

 It gets trickier if you want to plot several curves at once. To distinguish them, each
should be plotted in a different color, and it would be convenient if gnuplot would do
so automatically. In other words, now you want colors to be chosen from a discrete
selection (rather than specified individually).

 This is exactly what gnuplot does: as I explained in section 6.2, gnuplot maintains a
set of distinct colors and (by default) uses the next one for each new function or data

Figure 9.2 Using alpha blending to visualize point density in a dense
data set. All data points are drawn both with blue disks and red rims.
Because contributions from overlapping points add visually, regions of
high point density show up as areas of high color intensity. Regions
where the density is high enough for the rims to contribute significantly
appear red.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

188 CHAPTER 9 Color, style, and appearance

set. (Later in this chapter, you’ll learn how to customize the overall selection of colors
available in this way.)

 Colors (and line types and styles more generally) are identified by a positive inte-
ger. If you want to override gnuplot’s automatic choice of color, or if you want to pick
a particular color from the predefined set, you do so by supplying the appropriate
integer value:

plot "data" u 1:2 w l lc 2, "" u 1:3 w l lc 2

This plots both the second and third columns against the first using the second color
from the predefined set of colors for both data sets.

 All of this is straightforward. There’s only one possible glitch: don’t confuse lc 1
with lc rgb 1. The former specifies the first color from the selection of predefined col-
ors (whatever color this may be!). The latter selects a specific color by giving its RGB
components as an integer-packed value. (The value 1 corresponds to "#000001",
which is almost black.)

SPECIAL COLOR INDICES

Gnuplot knows about two special color indices: black and bgnd. The first is a short-
hand to obtain a black line through indexed lookup (that is, without having to iden-
tify a color explicitly). It’s mostly convenient for drawing graph elements like arrows,
borders, and labels: set arrow 1 from 0,0 to 1,1 lc black. (Note the absence of
either quotes or the rgb keyword.)

 All contemporary terminals allow an explicit background color to be set using the
background keyword: set terminal pdfcairo background rgb "grey" (see chapter
10). This color is then available through the bgnd index for all graphs sent to this ter-
minal. This is mostly useful to rub out or erase parts of the graph:

set object 1 circle at 0,0 radius 1 fill solid fc bgnd front

This clears a circular area of radius 1, centered at the origin, by filling it with the back-
ground color.

9.1.4 Mapping a value into a continuous gradient

Continuous color gradients (called palettes in gnuplot) are the topic of appendix D.
But a discussion of color in gnuplot would be incomplete without mentioning them,
so I’ll give a brief preview here.

 First, you need to define a gradient, for example like this:

set palette defined (0 'blue', 0.5 'white', 1 'red')

This defines a color gradient from blue over white to red; white is centrally located in
the mapped interval. You can now use any of the colors from this gradient in a plot
like this:

plot sin(x) lc palette frac 0.25

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

189Color

This plots the curve in the color that is halfway between blue and white. (The keyword
palette can be abbreviated to pal.)

 When you select a color from a palette using the frac keyword, the numeric argu-
ment must lie in the interval [0:1]. You can also map the gradient to a different interval
using set cbrange. (The identifier cb stands for color box.) For example, set cbrange
[-5:5] maps the color gradient into that interval. You can now specify a color by pro-
viding a value from this interval together with the cb keyword. The following plot com-
mand produces the same curve as the previous listing, because -2.5 lies at the same
relative position within the interval [-5:5] as 0.25 lies within the interval [0:1]:

set cbrange [-5:5]
plot sin(x) lc pal cb -2.5

Remapping a gradient to a specific numeric range makes sense when you want to indi-
cate a specific numeric value with a color. That’s the topic of the next section and—in
much more detail—of appendix D.

9.1.5 Using data-dependent colors

Gnuplot can change the color of a line or point based on the values of the data. As
usual, there are three ways to do this: explicitly (using the rgb keyword), by indexed
lookup (using an integer index), and using a gradient (with the palette keyword).
In any case, you must supply an additional column with the using specification of the
plot command; the color information is always taken from the last (rightmost) col-
umn in the using specification. (Value-dependent color is only available for data—if
you want to use it with functions, you have to fake it using the "+" pseudofile—see
section 4.4.)

EXPLICIT AND INDEXED DATA-DEPENDENT COLORS

Let’s consider an example. Here’s a very short data file:

x y color
1 2.0 1
2 2.1 2
3 1.9 3
4 2.0 4
5 2.0 5

Either of the following two commands will work:

plot "data" u 1:2:3 w lp lc rgb variable

plot "data" u 1:2:3 w lp lc variable

The first thing to notice is that although the plot style is linespoints, three columns
are specified: the last (rightmost) is used for color information. Next, notice the key-
word variable in the color specification: that’s what turns on data-dependent color-
ing. If variable follows the rgb keyword, the value in the third (color) column is
taken as an integer-packed RGB (or αRGB) tuple; if variable is used by itself, the
entry in the color column is taken as the index of the color to use. (It’s not possible to
use color names or RGB strings together with variable.)

Explicit
Indexed

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

190 CHAPTER 9 Color, style, and appearance

A WORKED EXAMPLE USING EXPLICIT DATA-DEPENDENT COLORS

In practice, you’ll almost never read either the color value or the color index from a
file. Instead, think of the third column in the using specification as a place to perform
some creative inline transformation (see section 3.3) to calculate a data-dependent
color. Let’s consider a few examples.

 Remember DLA clusters, like the one in figure 1.2? For each particle, the data set
contains not only the particle’s coordinates but also the sequence order in which it
was added to the cluster. If you map the latter information onto a color spectrum, you
can generate “tree rings” that indicate how the cluster grew (see figure 9.3).

 An easy way to turn sequence numbers into colors is to map them onto the hue
value in the HSV model. Using the hsv2rgb() built-in function, you can do this on the
fly (on a 100,000 particle cluster, in this case):

plot "dla" u 2:3:(hsv2rgb($1/100000.,1,1)) w d lc rgb var

This graph shows clearly that a DLA cluster tends to grow mostly at the rim. Despite
the tenuous structure, it’s rare for a particle to penetrate deeply into an existing clus-
ter; it’s much more likely to get caught by one of the branches extending outward.

 Although it worked reasonably well in this example, in general you should use cau-
tion when mapping a quantity to the rainbow spectrum of the HSV color model. One
problem is that this particular color spectrum doesn’t have any inherent sense of
ordering: is yellow larger than blue, or vice versa? Another problem is that the spec-
trum closes in on itself: red represents both very small and very large values. In this

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

Figure 9.3 A DLA cluster (see section 1.1.2) using the HSV color model to indicate
the order in which particles were added to the cluster

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

191Color

example, it doesn’t matter, because the geometric structure of the cluster provides the
required sense of ordering; but in more general cases, a rainbow plot like this can be
highly confusing. Carefully designed color gradients are almost always a better idea. For-
tunately, gnuplot makes this easy—a topic we’ll come back to in appendix D.

WORKED EXAMPLES USING INDEXED DATA-DEPENDENT COLORS

Indexed data-dependent colors make sense when the data contains an attribute that
assumes only a discrete set of values (or levels). In listing 9.2, some attributes (such as
the physical dimensions, the year of presentation, and the available horsepower) are
numeric and can have essentially any value. But others, such as the number of cylin-
ders and the country of manufacture, assume only a finite number of discrete values.
Those can be represented through distinct, indexed colors. (See listing 9.1 for the
commands and figure 9.4 for the resulting plot.)

unset key

set xlabel "Year"; set ylabel "Horsepower"

set for[k=1:3] label k sprintf("% d Cylinders", 4*(k+1))

➥ at 2003.75,1200+k*50 point pt 7 lc k offset 11,-0.175 right

plot [2003:2014][500:1400] "supercars" u 1:2:($3/4-1) pt 7 ps 1.0 lc var,

➥ "" u 1:2:8 w labels offset 1,-1

Year PS Cyl Len Height Weight Country Name
2005 1014 16 4462 1159 1888 France "Bugatti Veyron"
2006 1061 8 4475 1092 1270 USA "SSC Aero"
2012 1261 8 4655 1079.5 1244 UK "Hennessey Venom GT"
2011 940 8 4293 1120 1435 Sweden "Koenigsegg Agera"
2005 806 8 4293 1120 1456 Sweden "Koenigsegg CCX"
2009 1104 8 4665 1198 1688 Denmark "Zenvo ST1"
2005 650 8 4460 1114 1100 Germany "Gumpert Apollo"
2009 750 12 4601 1222 1630 UK "Aston Martin 0ne-77"
2011 700 12 4780 1136 1575 Italy "Lamborghini Aventador"

But data-dependent indexed colors can also be used to represent metadata. Here’s a
clever trick:6 consider a data file containing several data sets, separated by double
blank lines. The index of each data set is available in the pseudocolumn -2 (see sec-
tion 4.4). You can use this information to let gnuplot select a different color for each
data set, by using the value of the pseudocolumn as an index into the set of pre-
defined colors:

plot "data" u 1:2:(1+column(-2)) w lp lc var

Listing 9.1 Command for figure 9.4 using data from listing 9.2 (file: supercars.gp)

Listing 9.2 Data for figure 9.4 (file: supercars)

6 The idea for this application was taken from the standard gnuplot reference documentation.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

192 CHAPTER 9 Color, style, and appearance

Because this example uses indexed lookup, the keyword rgb is absent. You need to use
the column() function, because the dollar-sign shorthand doesn’t work for a negative
column number. And finally, you need to add 1 to the return value, because data sets
in a file are counted starting at 0, whereas line colors are counted starting at 1.

COLOR GRADIENTS

Indexed and explicit colors work well for discrete colors, but if you want a curve
that changes color continuously, then color gradients are the way to go. Using data-
dependent color with a continuous gradient is similar to what you’ve seen so far,
except the keyword is z instead of variable. Assuming an appropriate color gradient
has been defined, the following command will color the curve according to the gradi-
ent. Again, you need to specify a third column for the color information:

plot "data" u 1:2:3 w l lc palette z

Figure 9.5 shows a way that a color gradient can be used with a regular curve. The idea
is that this curve monitors an important quantity that must not exceed some thresh-
old. The graph uses a color gradient to change the appearance of the curve depend-
ing on the value of the monitored quantity. It’s easy to set up the gradient and create
the plot (more details in appendix D):

set palette defined (0 'green', 3 'green', 4 'red', 5 'red')
plot [][0:5] "monitoring" u 1:2:2 w l palette z lw 2

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 2004 2006 2008 2010 2012 2014

 8 Cylinders
 12 Cylinders
 16 Cylinders

H
or

se
po

w
er

Year

Bugatti Veyron
SSC Aero

Hennessey Venom GT

Koenigsegg Agera

Koenigsegg CCX

Zenvo ST1

Gumpert Apollo

Aston Martin One-77
Lamborghini Aventador

Figure 9.4 Using indexed color to visualize discrete values or levels in a data set. For a
set of current “supercars,” the date of presentation and the available horsepower are
visualized through the location on the graph, and the number of cylinders is represented via
color. Compare listing 9.2 for the data and listing 9.1 for the commands.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

193Color

9.1.6 The built-in color sequences

For many years, the default color sequence for the most common terminals consisted
of full-intensity red, green, and blue, followed by magenta, cyan, and yellow, because
these are the three basic colors of computer graphics and their binary combinations.
It’s a simple sequence, but not a very good one: the colors are bright and garish, and
yellow is exceptionally difficult to see against a white background. Moreover, this
sequence of colors (with its emphasis on red and green) is particularly challenging for
people who are color-blind! There are also more subtle problems, having to do with
color perception: the blue line, for example, always seems “heavier” than any of the
other colors and tends to dominate a graph.

 In gnuplot 5, you can choose from three different color sequences, using the set
colorsequence command (see figure 9.6):

set colorsequence [default | classic | podo]

 The three color schemes are identified using keywords:

 default—A terminal-independent sequence of eight colors
 classic—The original behavior, which differs from terminal to terminal but

usually produces the red/green/blue sequence mentioned earlier
 podo—A terminal-independent sequence of eight colors, intended to be easy

for color-blind people to distinguish7

7 Bang Wong, “Points of View: Color Blindness,” Nature Methods 8 (2001): 441.

0

1

2

3

4

5

 0 50 100 150 200 250 300

"monitoring" u 1:2:2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Figure 9.5 Gradient-mapped color. The control curve changes its color if the
monitored quantity exceeds its safe value.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

194 CHAPTER 9 Color, style, and appearance

Unfortunately, none of these three options constitutes a particularly good choice, in
my opinion: the new default scheme, for instance, may be much less garish than the
classic scheme, but its colors are so muted that I now find it difficult to distinguish dif-
ferent lines! The set colorsequence facility is also strangely limited (for example, you
can’t extend or modify the provided color choices), so you’ll probably want to con-
struct your own sequence of colors (and other line properties) from scratch. That’s
what I do, and that’s the topic of section 9.3.

TIP Because the three built-in color sequences aren’t very good, you should
consider defining and using a custom sequence.

9.1.7 Tips and tricks

Color specifications tend to be clumsy: they’re both lengthy and obscure. It may there-
fore be a good idea to introduce shorthands. Here are some ideas to get you started.

 Instead of using a hex string, you can assign its value to a semantically named
variable:

gold = "#FFD700"

gold = pack(0xff, 0xd7, 0)

plot "data" u 1:2 w l lc rgb gold

linetype 1

linetype 8

Default linetype 1

linetype 8

Classic

linetype 1

linetype 8

Podo linetype 1

linetype 8

Custom

Figure 9.6 The three built-in color sequences that can be selected using set colorsequence,
and the custom sequence used for the color illustrations in this book. (See section 12.6 for details.)

Hex string
Equivalent: integer value

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

195Lines and points

This isn’t ideal, because you still have to type the keyword rgb every time. You can
absorb it into the variable if you use gnuplot’s macro facility (see section 5.2):

blue = "rgb '#0000ff'"
plot "data" u 1:2 w l lc @blue

You can even include the lc keyword in the macro:

green = "lc rgb 'green'"
plot "data" u 1:2 w l @green

Rather than use color names, you may also want to consider semantic names for colors:

alarm = "red"
normal = "#00cd00"

The options are endless—adapt them to your needs.

9.2 Lines and points
Gnuplot graphs are constructed from lines and points: these are the fundamental
building blocks. (In keeping with the usage in the gnuplot documentation, the term
point here and in the following refers to the symbol used to represent a single data
point.) All aspects of lines and points can be customized: the width, color, and dash
pattern of lines, and the shape, size, and color of points.

 This isn’t news—I introduced all these concepts at the beginning of chapter 6 and
have been using them ever since. (Table 6.1 provides a handy summary.) Most of these
properties are straightforward and won’t need explanation beyond what you can find
in the table. But there are a few exceptions: the selection of available point types
deserves a few words, and so do user-defined dash patterns.

9.2.1 Point types and shapes

Each terminal provides a set of shapes or points that can be used to represent a single
data point. Because these shapes are relatively low-level graph elements, they’re hard-
coded into the implementation of each terminal driver. In general, a gnuplot user
can’t change the existing shapes or add new ones.8 All commonly used terminals pro-
vide at least a dozen (or so) different shapes, but some terminals define many more
(the old PostScript terminal defined 75 distinct point types!). In practice, fewer than
about 10 point types are sufficiently different that they can be distinguished visually.

 The sequence of shapes has been unified across all (contemporary) terminals, at
least for the first few point types (see figure 9.7). Although you can’t change the shape
of the symbol, you can modify its size, line width, and color using the pointsize (or
ps), linewidth (or lw), and linecolor (or lc) properties.

8 You may be able to use symbols beyond those provided by gnuplot by using a single character from a suitable
font as a point symbol—see section 6.3.1. Some terminals, such as tikz, permit user-defined point shapes.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

196 CHAPTER 9 Color, style, and appearance

Point shapes are usually indicated using their index: plot ... w p pt 7 represents
each data point with a filled circle. You may want to define symbolic names for point
types:

frame = 4

box = 5

circ = 6

disk = 7

plot "data" u 1:2 w p pt frame

9.2.2 Dash pattern

The ability to customize dash patterns is a new feature in gnuplot 5; support in older
terminals may be spotty. A dash pattern can be specified inline or defined separately
using set dashtype. Once a dash pattern has been defined this way, you can reference
it by its (integer) index. There are two ways to specify a dash pattern: using a symbolic
string or using a tuple that gives the relative lengths of solid and empty line segments.

SYMBOLIC STRINGS

A dash pattern can be defined using a symbolic string consisting of the symbols shown
in table 9.2. The dash pattern can consist of up to four non-whitespace characters;
leading whitespace and any further characters are ignored. Figure 9.8 shows some
examples.

 Symbolic strings can conveniently be used inline in a plot command. The follow-
ing two commands are equivalent:

plot sin(x) dt '-'

set dashtype 1 '-'

plot sin(x) dt 1

1 : Cross

2 : Saltire

3 : Cross and Saltire

4 : Square, empty

5 : Square, filled

6 : Circle, empty

7 : Circle, filled

 8 : Up Triangle, empty

 9 : Up Triangle, filled

10 : Down Triangle, empty

11 : Down Triangle, filled

12 : Diamond, empty

13 : Diamond, filled

14 : Pentagon, empty

15 : Pentagon, filled

0 : no symbol

Figure 9.7 Available
point symbols

Square, empty
Square, filled
Circle, empty
Circle, filled

Uses empty squares

Inline specification

Separate definition …
… and indexed lookup

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

197Lines and points

EXPLICIT TUPLES

The most general way to specify a dash pattern is to supply a tuple of numeric values.
These values represent the length of subsequent solid and empty line segments.
There can be at most eight elements in the tuple (so that a dash pattern can have at
most four solid parts); the first entry in the tuple is interpreted as solid. Here are two
examples (compare figure 9.8):

set dashtype 1 (2,2)

set dashtype 2 (20,10,2,4,2,10)

Lengths of line segments are measured in units of the line width. A tuple entry of 2
(not 1!) results in a line segment that is as long as it is wide.

 Or so it may appear. If you’re using very short line segments, you’re likely to run into
an obscure subtlety: line caps. The cairo library defines three types of line ends: butt,

Table 9.2 Symbols for dash patterns

Symbol Numeric Description

. (dot) (2,5) A dot followed by a short space

- (dash) (10,10) A dash followed by a space

_ (underscore) (20,10) A long dash followed by a space

␣ (whitespace) (...,10) A space

Dotted line
Long dash followed by a double dot

'.'

'-'

'_'

'... '

'- ..'

(20,10,2,4,2,10)

square round butt

Figure 9.8 Top: Dashed lines resulting from various combinations of the standard
dash symbols or given by an explicit numeric tuple (as shown on the left—the pattern
for the bottom line is given by an explicit numeric tuple). Bottom: Effect of the
different line-cap styles. The line end and the added cap are shown in different colors.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

198 CHAPTER 9 Color, style, and appearance

round, and square (see figure 9.8, bottom),9 which can be selected when choosing a
cairo-based gnuplot terminal (see section 10.2.3). Unless the chosen style is butt, the
line extends by half a line width past its actual end point. But the default style for the
cairo-based terminals in gnuplot is square, meaning all solid line segments in a dash
pattern appear longer by half the line width at both ends—and the empty segments
appear that much shorter. You now have two options: select the butt option when set-
ting the terminal (for example, set terminal wxt butt) or take the extent of the line
caps into account when setting up the dash pattern. (You may find it amusing to work
out why the dash pattern (2,2) using butt line caps is equivalent to the dash pattern
(0,4) when using square.)

9.3 Customizing color, dash, and point sequences
Let’s first establish when a predefined sequence of colors (and possibly of other line
properties, such as dash patterns) is relevant: it comes into play only if you’re plotting
many functions (or data sets) and you want to let gnuplot automatically choose a dif-
ferent line color (or pattern) for each new curve. If you don’t use gnuplot’s automatic
style selection, because you specify the plotting style explicitly for each curve instead,
the existence of a predefined color sequence is immaterial. The topic of this section
therefore applies only to a very limited purpose.

 That being said, letting gnuplot choose line styles automatically is such a huge con-
venience (in particular when you’re doing casual and exploratory work) that it can’t
be ignored. (It matters less when you’re preparing presentation graphics, because in
that case you naturally want to have full control over all aspects of the plot.)

 Gnuplot’s automatic style selector chooses from a sequence of line types. Line types
are gnuplot’s original method for specifying appearance options, and nowadays they
sit rather awkwardly next to the more modern paradigm (based on the set style
facility; see section 9.4). Line types are still essential for gnuplot’s automatic assign-
ment of visual styles to different curves but otherwise have lost much of their previous
importance; in particular, line types are no longer used as containers for general
appearance options.

 A line type is a combination of all graphic line attributes together with a point type
and the other point attributes. By construction, every terminal provides an (in princi-
ple) infinite sequence of different line types. This guarantees that gnuplot never runs
out of different styles, no matter how many curves you plot. In practice, not all of
these line types look different, of course—gnuplot uses only about a dozen different
colors and dash patterns before it repeats itself. But every new line gets its own line
type, with a unique numerical index.

9 See http://cairographics.org/samples/set_line_cap.

www.itbook.store/books/9781633430181

http://cairographics.org/samples/set_line_cap
https://itbook.store/books/9781633430181

199Customizing color, dash, and point sequences

9.3.1 Customizing line types

You can customize the default sequence of colors and other properties using the set
linetype command:

set linetype {int:idx} [lineoptions]

Here, the first argument is the index of the line type that you wish to modify; it’s fol-
lowed by specifications of graphical attributes (line color and width, point type and size,
and so on—see the tip at the end of section 6.2.3 for an explanation of lineoptions).
The terminal-specific default values prevail for attributes that aren’t changed explicitly.

TIP Line types are persistent: they prevail until changed explicitly. In partic-
ular, line types aren’t affected by calls to reset. (They’re reinitialized by
reset session.)

In practice, you’ll only want to redefine a few (the first few) line types and have
gnuplot cycle through them repeatedly when plotting many curves. But because
the number of available line types is always infinite, gnuplot has no way of knowing
when to begin cycling: you have to tell it explicitly. You do so with the command set
linetype cycle:

set linetype cycle {int:period}

Let’s consider an example. You want curves to be drawn with alternating thin red and
wide black lines (only two styles, in other words); the red line should use an empty
square as point symbol and the black line a filled circle (pt 4 and pt 7, respectively—
see figure 9.7). The following commands achieve this behavior. Because there are odd
precedence rules between explicit customizations and set linetype cycle, it’s neces-
sary to wipe out previous settings first:

unset for [i=1:32] linetype i

set linetype 1 lw 1 lc rgb "red" pt 4

set linetype 2 lw 2 lc rgb "black" pt 7

set linetype cycle 2

Unfortunately, the set linetype cycle facility applies only to line properties, but not
to point types! It also obeys non-obvious precedence rules, which make its behavior
surprising and hard to predict.10 My recommendation, therefore, is to avoid it and
instead set all line types explicitly:

set for [i=1:64:2] linetype i lw 1 lc rgb "red" pt 4
set for [i=2:64:2] linetype i lw 2 lc rgb "black" pt 7

This will give you the desired behavior for the first 64 curves you include in a graph
(and, of course, you can always increase the upper limit in the loop as far as necessary).

10 At the time of this writing, this entire area appeared to be somewhat in flux. Check the gnuplot standard ref-
erence documentation for up-to-date details.

Erases any existing customizations
Defines the first line style
Defines the second line style

Tells gnuplot to alternate between two styles

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

200 CHAPTER 9 Color, style, and appearance

The same method can be used, even if you want more than two distinct line types—just
increase the step size in the loop accordingly!

9.3.2 Special line types

Every terminal defines two special line types that can’t be modified by the user; see
table 9.3. Line type 0 is frequently useful to add reference or grid lines to a plot. Line
type -1 can be used to add arrows or other decorations, with the guarantee that they
appear solid black.

9.4 Global styles
You can control all graphical aspects of plot elements inline by spelling out the desired
appearance options as part of the plot (or set arrow or set object) command. But
you can also define global styles. There are three primary reasons to do so:

 Convenience—Instead of listing all the desired options explicitly (possibly more
than once, if you plot more than one data set or have more than one arrow or
other decoration), you can refer to a style with just its identifier.

 Semantics—You can set up and refer to styles based on their function (such as
“important” in bright red or “reference” as a dotted hairline).

 Display targeting—Imagine that you need graphs that look good in different con-
texts: clear and crisp on the screen, bold and bright in a presentation, and
black-and-white in a print publication! Using collections of styles (stylesheets) for
each intended use, this becomes much easier than having to redo all the graphs
by hand.

You create styles using the set style command and can define them for lines and
points, arrows, objects, and so on. In addition to defining global styles, set style is
also used to fix the options on some special-purpose plots—we won’t discuss these
applications here but in their proper context (appendix E).

9.4.1 Data and function styles

By default, functions are plotted with lines (with lines), and data from files is plotted
using both lines and points (with linespoints). These defaults can be changed using
these commands:

set style data ...
set style function ...

For example, to plot data using with lines, you say set style data lines.

Table 9.3 Special line types defined by all terminals

Line type Description

linetype 0 A minimally visible line; often a thin dotted line in black or gray

linetype -1 A solid black line

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

201Global styles

9.4.2 Line styles

You define line styles using set style line. This command takes an integer index of
the style you want to create or change, followed by a combination of line options that
define the desired appearance of the style (see the tip at the end of section 6.2.3 for
the lineoptions shorthand):

set style line {int:index} [lineoptions]

set style line {int:index} default

Unless explicitly overridden, all aspects of a line style default to the corresponding
value of the line type of the same index. The keyword default restores a line style to
the equivalent line type.

 This begs the question: what’s the difference between line styles and line types? In
brief:

 Line types are persistent: all of their properties prevail until explicitly changed.
Every terminal provides an infinite number of line types and their properties.
When assigning lines to curves automatically, gnuplot chooses from the avail-
able line types only.

 Line styles aren’t persistent: they’re deleted by calls to reset. The properties of
line styles default to those of the line type with the same index, unless explicitly
redefined. Line styles aren’t available for automatic assignment to data sets and
functions.

I use the following little mnemonic to remember which is which:

Line-T-ypes are sys-T-em settings.
Line-S-tyles are u-S-er preferences.

My recommendation is to prefer line styles over line types whenever possible and to
restrict the use of line types to the automatic selection feature (where line types are
required).

 Here are some examples that give you an idea how line styles can be used:

solid = 100
dotted = 101
important = 102
reference = 103
strut = 104

set style line solid lw 1 lc rgb "green" pt 5
set style line dotted lw 1 lc rgb "blue" dt '.'

set style line important lw 2 lc rgb "red" pt 0
set style line reference lw 0.5 lc rgb "grey" dt (2,4)

set style line strut lw 2 lc black

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

202 CHAPTER 9 Color, style, and appearance

9.4.3 Arrow styles

You can predefine arrow styles using set style arrow. The available appearance options
are summarized here—they should all be familiar from section 7.3.2:

set style arrow {idx:index} default

set style arrow [{idx:tag}] [nohead | head | heads | backhead]
 [size {flt:length} [,{flt:angle}]
 [,{flt:backangle}]
 [fixed]]
 [nofilled | empty | filled | noborder]
 [front | back]
 [lineoptions]

Given all the different appearance options for arrows (in particular with regard to
arrow heads), it may make sense to define common arrow types, for example like so:

nohead = 100
filled = 101
outline = 102
bold = 103

set style arrow nohead nohead
set style arrow filled size screen 0.025, 30, 45 filled
set style arrow outline size screen 0.025, 30, 45 empty
set style arrow bold lw 2 lc rgb "red"

Of course, using symbolic names for the arrow styles is entirely optional. You can now
create an arrow by referencing one of these styles:

set arrow 1 from 0,0 to 1,1 as filled

set arrow 1 from 0,0 to -1,0 as 103

Remember that it’s a good idea to use the screen coordinate system to define the
arrow head: this way, the head size won’t change if the plot range changes!

9.4.4 Fill styles

Several plot styles and decorations can be filled with a color or pattern. This section
introduces the syntax of fill specifications. The three pertinent keywords are fill-
color (or fc), fillstyle (or fs), and border (or bo).

 Two of these don’t present surprises: fillcolor must be followed by a color speci-
fication (see section 9.1), and border must be followed by any combination of line
options (see the tip at the end of section 6.2.3). The keyword noborder suppresses the
border. That leaves fillstyle, which does warrant some discussion.11

11 At the time of this writing, the border and noborder keywords are permissible only if they follow immedi-
ately after the fillstyle or fs directive on the command line.

Uses the symbolic name
Uses the explicit style index

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

203Overall appearance: aspect ratio and borders

 There are three forms of fill specifiers:

fillstyle empty
fillstyle [transparent] solid [{flt:density}]
fillstyle [transparent] pattern [{idx:style}]

The first one leaves the area empty. The second one fills the area with color; an
optional numerical argument between 0 and 1 is interpreted as density, with 1.0 stand-
ing for full intensity and 0.0 for an invisible fill color. If the optional transparent key-
word is present, then the density value is interpreted as the value of the α channel for
the fill color.

 It’s also possible to fill closed areas with cross-hatched patterns: that’s what the
pattern keyword does. All contemporary terminals define a set of eight different pat-
terns (use the test command to see them—this command will be formally introduced
in section 10.1.3); you select one of them through an integer argument after pattern.
If the transparent keyword is present, then the background remains visible through
the grid pattern.

TIP Areas may appear unfilled even if you set an explicit fill style using fill-
style, unless a fill color has also been selected using fillcolor.

Using set style fill, you can set a global default for many filled styles, such as with
boxes, with candlesticks, with filledcurves (all in chapter 6), and with histograms
(appendix E). It also becomes the default fill style for circles, ellipses, and polygons—
but not for rectangles: for those, you have to use their own set style rectangle com-
mand. See the standard reference documentation for details.

9.4.5 Other global styles

In addition to the applications just discussed, you can use the set style command to
express other global appearance preferences. In particular, you can create predefined
styles for objects (or shapes) in a way similar to that discussed for arrows. Check the
gnuplot standard reference documentation for set style circle, set style ellipse,
and set style rectangle.

 The other available applications of set style are more specific. The command
set style textbox applies only to boxed labels (see section 7.3.3). Again, the stan-
dard reference has the details.

 Finally, set style boxplot and set style histogram apply only to special-purpose
plotting styles that I haven’t yet introduced. I’ll do so in appendix E.

9.5 Overall appearance: aspect ratio and borders
In addition to the graph elements that go onto a plot, there are some features that
determine its general appearance: its size and aspect ratio, and the presence or
absence of borders and margins.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

204 CHAPTER 9 Color, style, and appearance

9.5.1 Size and aspect ratio

We have to distinguish between the size of the plot and the size of the canvas. The latter
determines the size of the output file (or screen), whereas the former affects the size of
the graph on the canvas. The canvas size is specified using the following command

set terminal {enum:terminaltype} size {flt:x},{flt:y}

which we’ll discuss in chapter 10 on files and output devices. Here, we’re interested
in the size of the plot on the screen or canvas, which is controlled by the set size
command:

set size [[no]square | ratio {flt:r} | noratio]
 [{flt:x} [,{flt:y}]]

The numeric values x, y scale the plot with respect to the screen. For values less than
1.0, the graph doesn’t fill the entire screen; for values greater than 1.0, only part of
the graph is shown. If y is omitted, the plot is scaled in both directions by x. For exam-
ple, set size 0.5 reduces the extent of the plot by half along both axes, while keeping
the overall canvas size fixed.

 If the size of the graph is smaller than the size of the canvas, it’s not clear where on
the canvas the graph should be located. You can fix the graph’s position on the screen
using the set origin option:

set origin {flt:x},{flt:y}

The arguments give the origin of the graph in screen coordinates (see figure 7.2 in
chapter 7 for an overview of gnuplot’s coordinate systems).

 The ratio option and its relatives (square and noratio) provide a shorthand to
control the aspect ratio of the plot: that is, the ratio of the y-axis length to the x-axis
length. Setting set size ratio 2 therefore results in a plot that’s twice as tall as wide,
and set size square is a synonym for set size ratio 1.

 Negative values for the ratio have a special meaning: set size ratio -1 scales the
graph so that the length of the x-axis unit is equal to the length of the y-axis unit. For
ratio -2, the y-axis unit has twice the length of the x-axis unit; for ratio -0.5, the
x-axis unit is twice the y-axis unit’s length. Figure 9.9 demonstrates all these settings.

 With nosquare and noratio, you reset the aspect ratio of the graph to the default
value of the terminal. Note that neither command resets the scale given by x, y.

 It’s possible to give contradictory hints to gnuplot when prescribing both scale val-
ues in addition to the aspect ratio. In such cases, gnuplot attempts to maintain the
desired aspect ratio without exceeding the minimum area given by the scale values.
You can always avoid these situations by fixing only two of the values. My recommen-
dation is to control the size of the plot on the canvas through either the x or y scale value
and to control the aspect ratio using the ratio option. The effect of both of these
options is intuitively clear, and no ambiguity is possible.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

205Overall appearance: aspect ratio and borders

9.5.2 Borders

By default, gnuplot draws borders on all four sides of the plot. This is suitable if the
graph will be used in a larger text document (because it gives the plot a “frame” sepa-
rating it from surrounding text) but can feel cluttered for a standalone diagram; but
it’s simply unsuitable for special diagrams that don’t fit neatly in a rectangular box.
For these reasons, gnuplot gives you the ability to control all parts of the border using
the set border option:

set border [{int:mask}] [front | back | behind] [lineoptions]

The only argument that isn’t familiar by now is mask (see figure 7.3 for layers, and the
tip at the end of section 6.2.3 for the meaning of lineoptions). This argument is a
bit mask in the form of an integer, each bit referring to one side of the border (see
figure 9.10). The bit positions are counted clockwise from the bottom, so that a mask
value of 1 refers to the bottom, 2 to the left, 4 to the top, and 8 to the right:
15 (=1+2+4+8) paints borders on all four sides. (Additional bits are used for three-
dimensional plots using splot—we’ll discuss them in appendix C.) To draw borders
on some but not all sides, you switch on only those you want to see:

set border 1+2

set border 3

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Default

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

set size ratio 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

set size ratio -1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

set size 0.5

Figure 9.9 Controlling overall image size and aspect ratio with set size. Clockwise from top left:
default settings, aspect ratio 10/7; set size ratio 1, full plot size, aspect ratio 1:1; set size
0.5, reduced plot on a full-size canvas, default aspect ratio; set size ratio -1, full plot size, x unit
with the same apparent length as the y unit.

Switches on the bottom and left borders
Same thing

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

206 CHAPTER 9 Color, style, and appearance

If tic marks are drawn on the border (as is the default), unsetting the border does not
unset the tic marks. They must be controlled separately using the options discussed in
chapter 8.

CREATING AN EMPTY SPACE BETWEEN AXES AND DATA

With the set offsets command, you can introduce an empty space between the data
and the borders. This can be desirable to avoid interference between the data and tic
marks and other axes decorations. The set offsets command controls the size of the
empty space on all four sides:

set offsets {flt:left}, {flt:right}, {flt:top}, {flt:bottom}

By default, the arguments are interpreted as given in the first coordinate system;
using the keyword graph, you can also specify the arguments as fractions of the size of
the overall graph. Gnuplot extends the plot ranges to make room for the empty space
as required by set offsets—keep this in mind when using this command.

CLIPPING DATA POINTS CLOSE TO THE BORDERS

The set clip option controls how gnuplot plots points that are too close to or outside
the plot area:

set clip points
set clip [one | two]

The first version, set clip points, is relevant only when you’re using a style that
shows discrete plotting symbols (with points, with linespoints, and so on). If it’s
active, symbols that would touch or overlap the borders of the plot are suppressed.
Exactly how many points are clipped depends on the symbol size: for larger symbols,
more points need to be clipped. (See chapter 6 for more detail on styles and ways to
influence the symbol size.)

 The second version controls how gnuplot plots line segments connecting points if
at least one of the points falls outside the currently visible plot range. If set clip one
is active, line segments are drawn if at least one of the end points falls into the visible
plot range. If set clip two is active, line segments are drawn even if both end points
are outside the current plot range but a straight line connecting them crosses the visi-
ble range. In no case are parts of the line segment drawn outside the visible range. By
default, set clip one is on, but set clip two is off.

15=1+2+4+8 3=1+2

1

2

4

8

1

2

Figure 9.10 The set border
command takes as its first argument an
integer that encodes the choice of
borders to switch on in the form of a bit
mask. The graph indicates which
borders correspond to which bit (in
decimal representation) and also gives
the overall mask value for two common
cases: borders on all sides and borders
on the bottom and left.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

207Overall appearance: aspect ratio and borders

9.5.3 Margins

The empty areas outside a plot’s borders make up the margins (see figure 7.2). By
default, gnuplot calculates the size of the margins automatically, based on the presence
or absence of tics, axis labels, a plot title, and other decorations placed outside the bor-
ders. If necessary, you can fix margins manually using the set margin command.

 Traditionally, there have been four different commands, for each of the margins
separately. Gnuplot 5 also contains a version that combines all four into one:

set bmargin [{flt:chars} | screen {flt:frac}]

set lmargin [{flt:chars} | screen {flt:frac}]

set tmargin [{flt:chars} | screen {flt:frac}]

set rmargin [{flt:chars} | screen {flt:frac}]

set margin [{left}, {right}, {bottom}, {top}]

show margin

The argument is interpreted differently depending on whether the keyword screen is
present:12

 Without screen, the argument is interpreted as the width of the margin around
the graph, measured in character widths or heights. Supplying a negative value
restores automatic calculation of an appropriate margin width.

 With screen present, the argument is interpreted as the absolute position of the
graph’s border, measured in screen coordinates. Using screen ignores and
overrides the current values of set size and set origin.

It’s important to clearly distinguish between these two modes of operation! (See fig-
ure 7.2 for the meaning of screen; see section 9.5.1 for set size and set origin.)

 The set margin command combines all four separate commands into a single
invocation. Each argument can be either a desired width (in character units) or an
absolute position (if preceded by the screen keyword). You can combine both modes
in a single invocation: a command like set margin 10, screen 0.9, -1, -1 is valid.

9.5.4 Internal variables

You can inspect gnuplot’s internal size and margin information by examining the val-
ues of several internal variables. (See section 5.5 for general information on internal
variables.) The variables that are of interest in the current context all have the prefix
GPVAL_TERM_. You can list them and their values as follows:

show variables GPVAL_TERM_

There are seven such variables; table 9.4 explains what they represent.

12 The gnuplot standard reference documentation states the syntax as at screen, but the at keyword is
optional and will be ignored henceforth.

Bottom margin
Left margin
Top margin
Right margin

Shows the current settings

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

208 CHAPTER 9 Color, style, and appearance

 Frequently, the numerical value of these variables is less useful; what really matters
are various ratios. For example, the position of the left border in screen coordinates
(see figure 7.2 for the different coordinate systems) is

GPVAL_TERM_XMIN/(1.0*GPVAL_TERM_XSIZE/GPVAL_TERM_SCALE)

In this expression, the multiplication with 1.0 is necessary to force floating-point eval-
uation of the fraction. In general, the units of the variables representing the canvas
size are different from the units representing the location of the graph borders. The
variable GPVAL_TERM_SCALE holds the conversion factor: you must always divide the
variables holding the size by this variable, as in the expression given earlier.

9.6 Summary
In this chapter, we focused less on individual graph elements and their properties and
instead discussed several topics that influence the overall appearance of a graph.
Color, and the way it’s made available in gnuplot, occupied the first part of this chap-
ter. The discussion was pretty technical; appendix D will return to the color topic, but
then we’ll emphasize how to employ color for visualization tasks.

 Next, we described how the appearance of lines and points can be controlled in
minute aspects. Gnuplot 5 gives you the ability to define custom dash patterns for
lines, and we explained how to do that.

 The last part of this chapter explained how to control the overall appearance of a
graph, such as the presence or absence of graphical borders around a plot, and how
to modify the size and aspect ratio of the entire graph. Gnuplot’s defaults for all these
properties are probably sufficient for the vast majority of your work, but there are situ-
ations where being able to go beyond the basics can give your graphs a palpable lift.

Table 9.4 Internal variables that contain information about the size of the canvas and the position of
the borders

Variable name Description

GPVAL_TERM_XSIZE,
GPVAL_TERM_YSIZE

Size of the entire canvas (or screen) in the horizontal and vertical directions.

GPVAL_TERM_XMIN,
GPVAL_TERM_YMIN

Positions of the bottom and left borders with respect to the canvas. These
are the lower limits of the graph in both directions.

GPVAL_TERM_XMAX,
GPVAL_TERM_YMAX

Positions of the top and right borders with respect to the canvas. These are
the upper limits of the graph in both directions.

GPVAL_TERM_SCALE Conversion factor between the units of the canvas size and the location of
the borders. Variables representing the size must be divided by this variable
to be comparable to the other variables in this table.

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

Philipp K. Janert

G
nuplot is an open-source graphics program that helps
you analyze, interpret, and present numerical data.
Available for Unix, Mac, and Windows, it is well-

maintained, mature, and totally free.

gnuplot in Action, Second Edition is a major revision of this
authoritative guide for developers, engineers, and scientists.
The book starts with a tutorial introduction, followed by a
systematic overview of gnuplot’s core features and full coverage
of gnuplot’s advanced capabilities. Experienced readers will
appreciate the discussion of gnuplot 5’s features, including
new plot types, improved text and color handling, and sup-
port for interactive, web-based display formats. The book
concludes with chapters on graphical effects and general
techniques for understanding data with graphs. It includes
four pages of color illustrations. 3D graphics, false-color plots,
heatmaps, and multivariate visualizations are covered
in chapter-length appendixes available in the eBook.

What’s Inside
● Creating different types of graphs in detail
● Animations, scripting, batch operations
● Extensive discussion of terminals
● Updated to cover gnuplot version 5

No prior experience with gnuplot is required. This book con-
centrates on practical applications of gnuplot relevant to users
of all levels.

Philipp K. Janert, PhD, is a programmer and scientist. He is the
author of several books on data analysis and applied math and
has been a gnuplot power user and developer for over 20 years.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/gnuplot-in-action-second-edition

$44.99 / Can $51.99 [INCLUDING eBOOK]

gnuplot IN ACTION Second Edition

OPEN SOURCE/DATA VISUALIZATION

M A N N I N G

“The highly anticipated,
updated version of my
go-to-for-everything
 book on gnuplot.”

—Ryan Balfanz, Shift Medical, Inc.

“The essential guide
for newcomers and the
defi nitive handbook for

advanced users.”
—Zoltán Vörös

University of Innsbruck

“Learn how to use gnuplot
to convert meaningful data

into attention-grabbing
visualizations that

communicate your message
quickly and accurately.”—David Kerns
Rincon Research Corporation

“An accessible guide to
gnuplot and best practices of
everyday data visualization.”—Wesley R. Elsberry, PhD

RealPage, Inc.

SEE INSERT

www.itbook.store/books/9781633430181

https://itbook.store/books/9781633430181

	CoverFront
	CopyrightSamplePages
	BriefContents
	SampleChapter09
	CoverBack

