
M A N N I N G

Jeff Nickoloff
FOREWORD BY Ahmet Alp Balkan

SAMPLE CHAPTER

IN ACTION

www.itbook.store/books/9781633430235

https://itbook.store/books/9781633430235

Docker in Action
by Jeff Nickoloff

Sample Chapter 2

Copyright 2016 Manning Publications

www.itbook.store/books/9781633430235

https://itbook.store/books/9781633430235

brief contents
PART 1 KEEPING A TIDY COMPUTER .. 1

1 ■ Welcome to Docker 3
2 ■ Running software in containers 15
3 ■ Software installation simplified 41
4 ■ Persistent storage and shared state with volumes 56
5 ■ Network exposure 77
6 ■ Limiting risk with isolation 104

PART 2 PACKAGING SOFTWARE FOR DISTRIBUTION 125

7 ■ Packaging software in images 127
8 ■ Build automation and advanced image considerations 145
9 ■ Public and private software distribution 168

10 ■ Running customized registries 192

PART 3 MULTI-CONTAINER AND MULTI-HOST
 ENVIRONMENTS .. 229

11 ■ Declarative environments with Docker Compose 231
12 ■ Clusters with Machine and Swarm 248

www.itbook.store/books/9781633430235

https://itbook.store/books/9781633430235

www.itbook.store
Running software
in containers
Before the end of this chapter you’ll understand all the basics for working with
containers and how Docker helps solve clutter and conflict problems. You’re going
to work through examples that introduce Docker features as you might encounter
them in daily use.

2.1 Getting help with the Docker command line
You’ll use the docker command-line program throughout the rest of this book. To
get you started with that, I want to show you how to get information about

This chapter covers
■ Running interactive and daemon terminal

programs with containers
■ Containers and the PID namespace
■ Container configuration and output
■ Running multiple programs in a container
■ Injecting configuration into containers
■ Durable containers and the container life cycle
■ Cleaning up
15

/books/9781633430235

https://itbook.store/books/9781633430235

16 CHAPTER 2 Running software in containers

www.itbook
commands from the docker program itself. This way you’ll understand how to use the
exact version of Docker on your computer. Open a terminal, or command prompt,
and run the following command:

docker help

Running docker help will display information about the basic syntax for using the
docker command-line program as well as a complete list of commands for your version
of the program. Give it a try and take a moment to admire all the neat things you can do.

 docker help gives you only high-level information about what commands are avail-
able. To get detailed information about a specific command, include the command in
the <COMMAND> argument. For example, you might enter the following command to
find out how to copy files from a location inside a container to a location on the host
machine:

docker help cp

That will display a usage pattern for docker cp, a general description of what the com-
mand does, and a detailed breakdown of its arguments. I’m confident that you’ll have
a great time working through the commands introduced in the rest of this book now
that you know how to find help if you need it.

2.2 Controlling containers: building a website monitor
Most examples in this book will use real software. Practical examples will help intro-
duce Docker features and illustrate how you will use them in daily activities. In this
first example, you’re going to install a web server called NGINX. Web servers are
programs that make website files and programs accessible to web browsers over a net-
work. You’re not going to build a website, but you are going to install and start a web
server with Docker. If you follow the instructions in this example, the web server will
be available only to other programs on your computer.

 Suppose a new client walks into your office and makes you an outrageous offer to
build them a new website. They want a website that’s closely monitored. This particu-
lar client wants to run their own operations, so they’ll want the solution you provide to
email their team when the server is down. They’ve also heard about this popular web
server software called NGINX and have specifically requested that you use it. Having
read about the merits of working with Docker, you’ve decided to use it for this project.
Figure 2.1 shows your planned architecture for the project.

 This example uses three containers. The first will run NGINX; the second will run a
program called a mailer. Both of these will run as detached containers. Detached means
that the container will run in the background, without being attached to any input or
output stream. A third program, called an agent, will run in an interactive container.
Both the mailer and agent are small scripts created for this example. In this section
you’ll learn how to do the following:

■ Create detached and interactive containers
■ List containers on your system
.store/books/9781633430235

https://itbook.store/books/9781633430235

17Controlling containers: building a website monitor

www.itbook.st
■ View container logs
■ Stop and restart containers
■ Reattach a terminal to a container
■ Detach from an attached container

Without further delay, let’s get started filling your client’s order.

2.2.1 Creating and starting a new container

When installing software with Docker, we say that we’re installing an image. There are
different ways to install an image and several sources for images. Images are covered
in depth in chapter 3. In this example we’re going to download and install an image
for NGINX from Docker Hub. Remember, Docker Hub is the public registry provided
by Docker Inc. The NGINX image is from what Docker Inc. calls a trusted repository.
Generally, the person or foundation that publishes the software controls the trusted
repositories for that software. Running the following command will download, install,
and start a container running NGINX:

docker run --detach \
 --name web nginx:latest

When you run this command, Docker will install nginx:latest from the NGINX
repository hosted on Docker Hub (covered in chapter 3) and run the software. After
Docker has installed and started running NGINX, one line of seemingly random char-
acters will be written to the terminal. It will look something like this:

7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5

That blob of characters is the unique identifier of the container that was just created
to run NGINX. Every time you run docker run and create a new container, that con-
tainer will get a similar unique identifier. It’s common for users to capture this output

nginx

Port 80

A container created
from the nginx image,

which depends on
network port 80

watcher

A container created from the watcher
image, which depends on the

nginx container and the mailer container

mailer

Port 33333

A container created
from the mailer image,

which depends on
network port 33333

Figure 2.1 The three containers that you’ll build in this example

Note the detach flag
ore/books/9781633430235

https://itbook.store/books/9781633430235

18 CHAPTER 2 Running software in containers

www.itbook
with a variable for use with other commands. You don’t need to do so for the purposes
of this example. After the identifier is displayed, it might not seem like anything has
happened. That's because you used the --detach option and started the program in
the background. This means that the program started but isn’t attached to your termi-
nal. It makes sense to start NGINX this way because we’re going to run a few different
programs.

 Running detached containers is a perfect fit for programs that sit quietly in the
background. That type of program is called a daemon. A daemon generally interacts
with other programs or humans over a network or some other communication tool.
When you launch a daemon or other program in a container that you want to run in
the background, remember to use either the --detach flag or its short form, -d.

 Another daemon that your client needs is a mailer. A mailer waits for connections
from a caller and then sends an email. The following command will install and run a
mailer that will work for this example:

docker run -d \
 --name mailer \

This command uses the short form of the --detach flag to start a new container
named mailer in the background. At this point you’ve run two commands and deliv-
ered two-thirds of the system that your client wants. The last component, called the
agent, is a good fit for an interactive container.

2.2.2 Running interactive containers

Programs that interact with users tend to feel more interactive. A terminal-based text
editor is a great example. The docker command-line tool is a perfect example of an
interactive terminal program. These types of programs might take input from the user
or display output on the terminal. Running interactive programs in Docker requires
that you bind parts of your terminal to the input or output of a running container.

 To get started working with interactive containers, run the following command:

docker run --interactive --tty \
 --link web:web \
 --name web_test \
 busybox:latest /bin/sh

The command uses two flags on the run command: --interactive (or -i) and –-tty
(or –t). First, the --interactive option tells Docker to keep the standard input
stream (stdin) open for the container even if no terminal is attached. Second, the
--tty option tells Docker to allocate a virtual terminal for the container, which will
allow you to pass signals to the container. This is usually what you want from an inter-
active command-line program. You’ll usually use both of these when you’re running
an interactive program like a shell in an interactive container.

Start detached

Create a virtual terminal
and bind stdin
.store/books/9781633430235

https://itbook.store/books/9781633430235

19Controlling containers: building a website monitor

www.itbook.st
 Just as important as the interactive flags, when you started this container you speci-
fied the program to run inside the container. In this case you ran a shell program
called sh. You can run any program that’s available inside the container.

 The command in the interactive container example creates a container, starts a
UNIX shell, and is linked to the container that’s running NGINX (linking is covered in
chapter 5). From this shell you can run a command to verify that your web server is
running correctly:

wget -O - http://web:80/

This uses a program called wget to make an HTTP request to the web server (the
NGINX server you started earlier in a container) and then display the contents of the
web page on your terminal. Among the other lines, there should be a message like
“Welcome to NGINX!” If you see that message, then everything is working correctly
and you can go ahead and shut down this interactive container by typing exit. This
will terminate the shell program and stop the container.

 It’s possible to create an interactive container, manually start a process inside that
container, and then detach your terminal. You can do so by holding down the Crtl (or
Control) key and pressing P and then Q. This will work only when you’ve used the
--tty option.

 To finish the work for your client, you need to start an agent. This is a monitoring
agent that will test the web server as you did in the last example and send a message
with the mailer if the web server stops. This command will start the agent in an inter-
active container using the short-form flags:

docker run -it \
 --name agent \
 --link web:insideweb \
 --link mailer:insidemailer \
 dockerinaction/ch2_agent

When running, the container will test the web container every second and print a
message like the following:

System up.

Now that you’ve seen what it does, detach your terminal from the container. Specifi-
cally, when you start the container and it begins writing “System up,” hold the Ctrl (or
Control) key and then press P and then Q. After doing so you’ll be returned to the
shell for your host computer. Do not stop the program; otherwise, the monitor will
stop checking the web server.

 Although you’ll usually use detached or daemon containers for software that you
deploy to servers on your network, interactive containers are very useful for running
software on your desktop or for manual work on a server. At this point you’ve started
all three applications in containers that your client needs. Before you can confidently
claim completion, you should test the system.

Create a virtual terminal
and bind stdin
ore/books/9781633430235

https://itbook.store/books/9781633430235

20 CHAPTER 2 Running software in containers

www.itbook
2.2.3 Listing, stopping, restarting, and viewing output of containers

The first thing you should do to test your current setup is check which containers are
currently running by using the docker ps command:

docker ps

Running the command will display the following information about each running
container:

■ The container ID
■ The image used
■ The command executed in the container
■ The time since the container was created
■ The duration that the container has been running
■ The network ports exposed by the container
■ The name of the container

At this point you should have three running containers with names: web, mailer, and
agent. If any is missing but you’ve followed the example thus far, it may have been mis-
takenly stopped. This isn’t a problem because Docker has a command to restart a con-
tainer. The next three commands will restart each container using the container
name. Choose the appropriate ones to restart the containers that were missing from
the list of running containers.

docker restart web
docker restart mailer
docker restart agent

Now that all three containers are running, you need to test that the system is operat-
ing correctly. The best way to do that is to examine the logs for each container. Start
with the web container:

docker logs web

That should display a long log with several lines that contain this substring:

"GET / HTTP/1.0" 200

This means that the web server is running and that the agent is testing the site. Each
time the agent tests the site, one of these lines will be written to the log. The docker
logs command can be helpful for these cases but is dangerous to rely on. Anything
that the program writes to the stdout or stderr output streams will be recorded in this
log. The problem with this pattern is that the log is never rotated or truncated, so the
data written to the log for a container will remain and grow as long as the container
exists. That long-term persistence can be a problem for long-lived processes. A better
way to work with log data uses volumes and is discussed in chapter 4.
.store/books/9781633430235

https://itbook.store/books/9781633430235

21Solved problems and the PID namespace

www.itbook.st
 You can tell that the agent is monitoring the web server by examining the logs for
web alone. For completeness you should examine the log output for mailer and agent
as well:

docker logs mailer
docker logs agent

The logs for mailer should look something like this:

CH2 Example Mailer has started.

The logs for agent should contain several lines like the one you watched it write when
you started the container:

System up.

TIP The docker logs command has a flag, --follow or -f, that will display
the logs and then continue watching and updating the display with changes
to the log as they occur. When you’ve finished, press Ctrl (or Command) and
the C key to interrupt the logs command.

Now that you’ve validated that the containers are running and that the agent can
reach the web server, you should test that the agent will notice when the web con-
tainer stops. When that happens, the agent should trigger a call to the mailer, and the
event should be recorded in the logs for both agent and mailer. The docker stop
command tells the program with PID #1 in the container to halt. Use it in the follow-
ing commands to test the system:

docker stop web
docker logs mailer

Look for a line at the end of the mailer logs that reads like:

“Sending email: To: admin@work Message: The service is down!”

That line means the agent successfully detected that the NGINX server in the con-
tainer named web had stopped. Congratulations! Your client will be happy, and you’ve
built your first real system with containers and Docker.

 Learning the basic Docker features is one thing, but understanding why they’re
useful and how to use them in building more comprehensive systems is another task
entirely. The best place to start learning that is with the process identifier namespace
provided by Linux.

2.3 Solved problems and the PID namespace
Every running program—or process—on a Linux machine has a unique number
called a process identifier (PID). A PID namespace is the set of possible numbers that
identify processes. Linux provides facilities to create multiple PID namespaces. Each

Stop the web server by
stopping the containerWait a couple seconds and

check the mailer logs
ore/books/9781633430235

https://itbook.store/books/9781633430235

22 CHAPTER 2 Running software in containers

www.itbook
namespace has a complete set of possible PIDs. This means that each PID namespace
will contain its own PID 1, 2, 3, and so on. From the perspective of a process in one
namespace, PID 1 might refer to an init system process like runit or supervisord. In
a different namespace, PID 1 might refer to a command shell like bash. Creating a PID
namespace for each container is a critical feature of Docker. Run the following to see
it in action:

docker run -d --name namespaceA \
 busybox:latest /bin/sh -c "sleep 30000"
docker run -d --name namespaceB \
 busybox:latest /bin/sh -c "nc -l -p 0.0.0.0:80"

docker exec namespaceA ps
docker exec namespaceB ps

Command b above should generate a process list similar to the following:

PID USER COMMAND
 1 root /bin/sh -c sleep 30000
 5 root sleep 30000
 6 root ps

Command c above should generate a slightly different process list:

PID USER COMMAND
 1 root /bin/sh -c nc -l -p 0.0.0.0:80
 7 root nc -l -p 0.0.0.0:80
 8 root ps

In this example you use the docker exec command to run additional processes in a
running container. In this case the command you use is called ps, which shows all the
running processes and their PID. From the output it’s clear to see that each container
has a process with PID 1.

 Without a PID namespace, the processes running inside a container would share
the same ID space as those in other containers or on the host. A container would be
able to determine what other processes were running on the host machine. Worse,
namespaces transform many authorization decisions into domain decisions. That
means processes in one container might be able to control processes in other con-
tainers. Docker would be much less useful without the PID namespace. The Linux
features that Docker uses, such as namespaces, help you solve whole classes of soft-
ware problems.

 Like most Docker isolation features, you can optionally create containers without
their own PID namespace. You can try this yourself by setting the --pid flag on docker
create or docker run and setting the value to host. Try it yourself with a container
running BusyBox Linux and the ps Linux command:

docker run --pid host busybox:latest ps

b
c

Should list all processes
running on the computer
.store/books/9781633430235

https://itbook.store/books/9781633430235

23Solved problems and the PID namespace

Start
sec

insta

www.itbook.st
Consider the previous web-monitoring example. Suppose you were not using Docker
and were just running NGINX directly on your computer. Now suppose you forgot that
you had already started NGINX for another project. When you start NGINX again, the
second process won’t be able to access the resources it needs because the first process
already has them. This is a basic software conflict example. You can see it in action by
trying to run two copies of NGINX in the same container:

docker run –d --name webConflict nginx:latest
docker logs webConflict
docker exec webConflict nginx -g 'daemon off;'

The last command should display output like:

2015/03/29 22:04:35 [emerg] 10#0: bind() to 0.0.0.0:80 failed (98:
Address already in use)
nginx: [emerg] bind() to 0.0.0.0:80 failed (98: Address already in use)
...

The second process fails to start properly and reports that the address it needs is
already in use. This is called a port conflict, and it’s a common issue in real-world sys-
tems where several processes are running on the same computer or multiple people
contribute to the same environment. It’s a great example of a conflict problem that
Docker simplifies and solves. Run each in a different container, like this:

docker run -d --name webA nginx:latest

docker logs webA

docker run -d --name webB nginx:latest

docker logs webB

To generalize ways that programs might conflict with each other, let’s consider a park-
ing lot metaphor. A paid parking lot has a few basic features: a payment system, a few
reserved parking spaces, and numbered spaces.

 Tying these features back to a computer system, a payment system represents some
shared resource with a specific interface. A payment system might accept cash or
credit cards or both. People who carry only cash won’t be able to use a garage with a
payment system that accepts only credit cards, and people without money to pay the
fee won’t be able to park in the garage at all.

 Similarly, programs that have a dependency on some shared component such as a
specific version of a programming language library won’t be able to run on computers
that either have a different version of that library or lack that library completely. Just
like if two people who each use a different payment method want to park in the same
garage that accepts only one method, conflict arises when you want to use two pro-
grams that require different versions of a library.

The output should
be empty

Start a second nginx process
in the same container

Start the first nginx instance

Verify that it is working,
should be empty

 the
ond
nce Verify that it is working,

should be empty
ore/books/9781633430235

https://itbook.store/books/9781633430235

24 CHAPTER 2 Running software in containers

www.itbook
 Reserved spaces in this metaphor represent scarce resources. Imagine that the park-
ing garage attendant assigns the same reserved space to two cars. As long as only one
driver wanted to use the garage at a time, there would be no issue. But if both wanted
to use the space simultaneously, the first one in would win and the second wouldn’t be
able to park. As you’ll see in the conflict example in section 2.7, this is the same type of
conflict that happens when two programs try to bind to the same network port.

 Lastly, consider what would happen if someone changed the space numbers in the
parking lot while cars were parked. When owners return and try to locate their vehicles,
they may be unable to do so. Although this is clearly a silly example, it’s a great meta-
phor for what happens to programs when shared environment variables change. Pro-
grams often use environment variables or registry entries to locate other resources that
they need. These resources might be libraries or other programs. When programs con-
flict with each other, they might modify these variables in incompatible ways.

 Here are some common conflict problems:

■ Two programs want to bind to the same network port.
■ Two programs use the same temporary filename, and file locks are preventing

that.
■ Two programs want to use different versions of some globally installed library.
■ Two copies of the same program want to use the same PID file.
■ A second program you installed modified an environment variable that another

program uses. Now the first program breaks.

All these conflicts arise when one or more programs have a common dependency but
can’t agree to share or have different needs. Like in the earlier port conflict example,
Docker solves software conflicts with such tools as Linux namespaces, file system roots,
and virtualized network components. All these tools are used to provide isolation to
each container.

2.4 Eliminating metaconflicts: building a website farm
In the last section you saw how Docker helps you avoid software conflicts with process
isolation. But if you’re not careful, you can end up building systems that create
metaconflicts, or conflicts between containers in the Docker layer.

 Consider another example where a client has asked you to build a system where
you can host a variable number of websites for their customers. They’d also like to
employ the same monitoring technology that you built earlier in this chapter. Simply
expanding the system you built earlier would be the simplest way to get this job done
without customizing the configuration for NGINX. In this example you’ll build a sys-
tem with several containers running web servers and a monitoring agent (agent) for
each web server. The system will look like the architecture described in figure 2.2.

 One’s first instinct might be to simply start more web containers. That’s not as sim-
ple as it sounds. Identifying containers gets complicated as the number of containers
increases.
.store/books/9781633430235

https://itbook.store/books/9781633430235

25Eliminating metaconflicts: building a website farm

www.itbook.st
2.4.1 Flexible container identification

The best way to find out why simply creating more copies of the NGINX container you
used in the last example is a bad idea is to try it for yourself:

docker run -d --name webid nginx

docker run -d --name webid nginx

The second command here will fail with a conflict error:

FATA[0000] Error response from daemon: Conflict. The name "webid" is
already in use by container 2b5958ba6a00. You have to delete (or rename)
that container to be able to reuse that name.

Using fixed container names like web is useful for experimentation and documenta-
tion, but in a system with multiple containers, using fixed names like that can create
conflicts. By default Docker assigns a unique (human-friendly) name to each con-
tainer it creates. The --name flag simply overrides that process with a known value. If a
situation arises where the name of a container needs to change, you can always
rename the container with the docker rename command:

docker rename webid webid-old

docker run -d --name webid nginx

Renaming containers can help alleviate one-off naming conflicts but does little to
help avoid the problem in the first place. In addition to the name, Docker assigns a
unique identifier that was mentioned in the first example. These are hex-encoded
1024-bit numbers and look something like this:

7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5

nginx

Port 80

watcher

nginx

Port 80

mailer

Port 33333

watcher

...
nginx

Port 80

watcher

Figure 2.2 A fleet of web server containers
and related monitoring agents

Create a container
named "webid"

Create another container
named "webid"

Rename the current web
container to "webid-old"

Create another container
named "webid"
ore/books/9781633430235

https://itbook.store/books/9781633430235

26 CHAPTER 2 Running software in containers

www.itbook
When containers are started in detached mode, their identifier will be printed to the
terminal. You can use these identifiers in place of the container name with any com-
mand that needs to identify a specific container. For example, you could use the previ-
ous ID with a stop or exec command:

docker exec \
 7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5 \
ps

docker stop \
 7cb5d2b9a7eab87f07182b5bf58936c9947890995b1b94f412912fa822a9ecb5

The high probability of uniqueness of the IDs that are generated means that it is
unlikely that there will ever be a collision with this ID. To a lesser degree it is also
unlikely that there would even be a collision of the first 12 characters of this ID on the
same computer. So in most Docker interfaces, you’ll see container IDs truncated to
their first 12 characters. This makes generated IDs a bit more user friendly. You can
use them wherever a container identifier is required. So the previous two commands
could be written like this:

docker exec 7cb5d2b9a7ea ps
docker stop 7cb5d2b9a7ea

Neither of these IDs is particularly well suited for human use. But they work very well
with scripts and automation techniques. Docker has several means of acquiring the ID
of a container to make automation possible. In these cases the full or truncated
numeric ID will be used.

 The first way to get the numeric ID of a container is to simply start or create a new
one and assign the result of the command to a shell variable. As you saw earlier, when
a new container is started in detached mode, the container ID will be written to the
terminal (stdout). You’d be unable to use this with interactive containers if this were
the only way to get the container ID at creation time. Luckily you can use another
command to create a container without starting it. The docker create command is
very similar to docker run, the primary difference being that the container is created
in a stopped state:

docker create nginx

The result should be a line like:

b26a631e536d3caae348e9fd36e7661254a11511eb2274fb55f9f7c788721b0d

If you’re using a Linux command shell like sh or bash, you can simply assign that
result to a shell variable and use it again later:

CID=$(docker create nginx:latest)
echo $CID

This will work on POSIX-
compliant shells
.store/books/9781633430235

https://itbook.store/books/9781633430235

27Eliminating metaconflicts: building a website farm

www.itbook.st
Shell variables create a new opportunity for conflict, but the scope of that conflict is
limited to the terminal session or current processing environment that the script was
launched in. Those conflicts should be easily avoidable because one use or program is
managing that environment. The problem with this approach is that it won’t help if
multiple users or automated processes need to share that information. In those cases
you can use a container ID (CID) file.

 Both the docker run and docker create commands provide another flag to write
the ID of a new container to a known file:

docker create --cidfile /tmp/web.cid nginx

cat /tmp/web.cid

Like the use of shell variables, this feature increases the opportunity for conflict. The
name of the CID file (provided after --cidfile) must be known or have some known
structure. Just like manual container naming, this approach uses known names in a
global (Docker-wide) namespace. The good news is that Docker won’t create a new
container using the provided CID file if that file already exists. The command will fail
just as it does when you create two containers with the same name.

 One reason to use CID files instead of names is that CID files can be shared with
containers easily and renamed for that container. This uses a Docker feature called
volumes, which is covered in chapter 4.

TIP One strategy for dealing with CID file-naming collisions is to partition the
namespace by using known or predictable path conventions. For example, in
this scenario you might use a path that contains all web containers under a
known directory and further partition that directory by the customer ID. This
would result in a path like /containers/web/customer1/web.cid or /contain-
ers/web/customer8/web.cid.

In other cases, you can use other commands like docker ps to get the ID of a con-
tainer. For example, if you want to get the truncated ID of the last created container,
you can use this:

CID=$(docker ps --latest --quiet)
echo $CID

CID=$(docker ps -l –q)
echo $CID

TIP If you want to get the full container ID, you can use the --no-trunc
option on the docker ps command.

Automation cases are covered by the features you’ve seen so far. But even though
truncation helps, these container IDs are rarely easy to read or remember. For this rea-
son, Docker also generates human-readable names for each container.

Create a new stopped
container

Inspect the file

This will work on POSIX-
compliant shells

Run again with the
short-form flags
ore/books/9781633430235

https://itbook.store/books/9781633430235

28 CHAPTER 2 Running software in containers

www.itbook
 The naming convention uses a personal adjective, an underscore, and the last
name of an influential scientist, engineer, inventor, or other such thought leader.
Examples of generated names are compassionate_swartz, hungry_goodall, and
distracted_turing. These seem to hit a sweet spot for readability and memory. When
you’re working with the docker tool directly, you can always use docker ps to look up
the human-friendly names.

 Container identification can be tricky, but you can manage the issue by using the
ID and name-generation features of Docker.

2.4.2 Container state and dependencies

With this new knowledge, the new system might looks something like this:

MAILER_CID=$(docker run -d dockerinaction/ch2_mailer)
WEB_CID=$(docker create nginx)

AGENT_CID=$(docker create --link $WEB_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

This snippet could be used to seed a new script that launches a new NGINX and agent
instance for each of your client’s customers. You can use docker ps to see that they’ve
been created:

docker ps

The reason neither the NGINX nor the agent was included with the output has to do
with container state. Docker containers will always be in one of four states and transi-
tion via command according to the diagram in figure 2.3.

 Neither of the new containers you started appears in the list of containers because
docker ps shows only running containers by default. Those containers were specifi-
cally created with docker create and never started (the exited state). To see all the
containers (including those in the exited state), use the -a option:

docker ps -a

Make sure mailer from
first example is running

pausedrunning

restarting
stop

restart
restart | start stop | kill

create

run

remove

unpause

pause

exited
Figure 2.3 The state
transition diagram for Docker
containers as reported by the
status column
.store/books/9781633430235

https://itbook.store/books/9781633430235

29Eliminating metaconflicts: building a website farm

www.itbook.st
Now that you’ve verified that both of the containers were created, you need to start
them. For that you can use the docker start command:

docker start $AGENT_CID
docker start $WEB_CID

Running those commands will result in an error. The containers need to be started in
reverse order of their dependency chain. Because you tried to start the agent con-
tainer before the web container, Docker reported a message like this one:

Error response from daemon: Cannot start container
03e65e3c6ee34e714665a8dc4e33fb19257d11402b151380ed4c0a5e38779d0a: Cannot
link to a non running container: /clever_wright AS /modest_hopper/
insideweb

FATA[0000] Error: failed to start one or more containers

In this example, the agent container has a dependency on the web container. You
need to start the web container first:

docker start $WEB_CID
docker start $AGENT_CID

This makes sense when you consider the mechanics at work. The link mechanism
injects IP addresses into dependent containers, and containers that aren’t running
don’t have IP addresses. If you tried to start a container that has a dependency on a
container that isn’t running, Docker wouldn’t have an IP address to inject. Container
linking is covered in chapter 5, but it’s useful to demonstrate this important point in
starting containers.

 Whether you’re using docker run or docker create, the resulting containers
need to be started in the reverse order of their dependency chain. This means that cir-
cular dependencies are impossible to build using Docker container relationships.

 At this point you can put everything together into one concise script that looks like
the following:

MAILER_CID=$(docker run -d dockerinaction/ch2_mailer)

WEB_CID=$(docker run -d nginx)

AGENT_CID=$(docker run -d \
 --link $WEB_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

Now you’re confident that this script can be run without exception each time your cli-
ent needs to provision a new site. Your client has come back and thanked you for the
web and monitoring work you’ve completed so far, but things have changed.

 They’ve decided to focus on building their websites with WordPress (a popular
open source content-management and blogging program). Luckily, WordPress is pub-
lished through Docker Hub in a repository named wordpress:4. All you’ll need to
ore/books/9781633430235

https://itbook.store/books/9781633430235

30 CHAPTER 2 Running software in containers

www.itbook
deliver is a set of commands to provision a new WordPress website that has the same
monitoring and alerting features that you’ve already delivered.

 The interesting thing about content-management systems and other stateful sys-
tems is that the data they work with makes each running program specialized. Adam’s
WordPress blog is different from Betty’s WordPress blog, even if they’re running the
same software. Only the content is different. Even if the content is the same, they’re
different because they’re running on different sites.

 If you build systems or software that know too much about their environment—
like addresses or fixed locations of dependency services—it’s difficult to change that
environment or reuse the software. You need to deliver a system that minimizes envi-
ronment dependence before the contract is complete.

2.5 Building environment-agnostic systems
Much of the work associated with installing software or maintaining a fleet of comput-
ers lies in dealing with specializations of the computing environment. These special-
izations come as global-scoped dependencies (like known host file system locations),
hard-coded deployment architectures (environment checks in code or configura-
tion), or data locality (data stored on a particular computer outside the deployment
architecture). Knowing this, if your goal is to build low-maintenance systems, you
should strive to minimize these things.

 Docker has three specific features to help build environment-agnostic systems:

■ Read-only file systems
■ Environment variable injection
■ Volumes

Working with volumes is a big subject and the topic of chapter 4. In order to learn the
first two features, consider a requirements change for the example situation used in
the rest of this chapter.

 WordPress uses a database program called MySQL to store most of its data, so it’s a
good idea to start with making sure that a container running WordPress has a read-
only file system.

2.5.1 Read-only file systems

Using read-only file systems accomplishes two positive things. First, you can have con-
fidence that the container won’t be specialized from changes to the files it contains.
Second, you have increased confidence that an attacker can’t compromise files in the
container.

 To get started working on your client’s system, create and start a container from
the WordPress image using the --read-only flag:

docker run -d --name wp --read-only wordpress:4

When this is finished, check that the container is running. You can do so using any of
the methods introduced previously, or you can inspect the container metadata
.store/books/9781633430235

https://itbook.store/books/9781633430235

31Building environment-agnostic systems

www.itbook.st
directly. The following command will print true if the container named wp is running
and false otherwise.

docker inspect --format "{{.State.Running}}" wp

The docker inspect command will display all the metadata (a JSON document) that
Docker maintains for a container. The format option transforms that metadata, and in
this case it filters everything except for the field indicating the running state of the
container. This command should simply output false.

 In this case, the container isn’t running. To determine why, examine the logs for
the container:

docker logs wp

That should output something like:

error: missing WORDPRESS_DB_HOST and MYSQL_PORT_3306_TCP environment
variables
Did you forget to --link some_mysql_container:mysql or set an external db
with -e WORDPRESS_DB_HOST=hostname:port?

It appears that WordPress has a dependency on a MySQL database. A database is a pro-
gram that stores data in such a way that it’s retrievable and searchable later. The good
news is that you can install MySQL using Docker just like WordPress:

docker run -d --name wpdb \
 -e MYSQL_ROOT_PASSWORD=ch2demo \
 mysql:5

Once that is started, create a different WordPress container that’s linked to this new
database container (linking is covered in depth in chapter 5):

docker run -d --name wp2 \
 --link wpdb:mysql \
 -p 80 --read-only \
 wordpress:4

Check one more time that WordPress is running correctly:

docker inspect --format "{{.State.Running}}" wp2

You can tell that WordPress failed to start again. Examine the logs to determine the
cause:

docker logs wp2

There should be a line in the logs that is similar to the following:

... Read-only file system: AH00023: Couldn't create the rewrite-map mutex
(file /var/lock/apache2/rewrite-map.1)

You can tell that WordPress failed to start again, but this time the problem is that it’s
trying to write a lock file to a specific location. This is a required part of the startup

Use a unique name
Create a link
to the database
ore/books/9781633430235

https://itbook.store/books/9781633430235

32 CHAPTER 2 Running software in containers

www.itbook
process and is not a specialization. It’s appropriate to make an exception to the read-
only file system in this case. You need to use a volume to make that exception. Use the
following to start WordPress without any issues:

Start the container with specific volumes for read only exceptions
docker run -d --name wp3 --link wpdb:mysql -p 80 \
 -v /run/lock/apache2/ \
 -v /run/apache2/ \
 --read-only wordpress:4

An updated version of the script you’ve been working on should look like this:

SQL_CID=$(docker create -e MYSQL_ROOT_PASSWORD=ch2demo mysql:5)

docker start $SQL_CID

MAILER_CID=$(docker create dockerinaction/ch2_mailer)
docker start $MAILER_CID

WP_CID=$(docker create --link $SQL_CID:mysql -p 80 \
 -v /run/lock/apache2/ -v /run/apache2/ \
 --read-only wordpress:4)

docker start $WP_CID

AGENT_CID=$(docker create --link $WP_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

docker start $AGENT_CID

Congratulations, at this point you should have a running WordPress container! By
using a read-only file system and linking WordPress to another container running a
database, you can be sure that the container running the WordPress image will never
change. This means that if there is ever something wrong with the computer running
a client’s WordPress blog, you should be able to start up another copy of that con-
tainer elsewhere with no problems.

 But there are two problems with this design. First, the database is running in a con-
tainer on the same computer as the WordPress container. Second, WordPress is using
several default values for important settings like database name, administrative user,
administrative password, database salt, and so on. To deal with this problem, you
could create several versions of the WordPress software, each with a special configura-
tion for the client. Doing so would turn your simple provisioning script into a monster
that creates images and writes files. A better way to inject that configuration would be
through the use of environment variables.

2.5.2 Environment variable injection

Environment variables are key-value pairs that are made available to programs
through their execution context. They let you change a program’s configuration
without modifying any files or changing the command used to start the program.

Create specific volumes
for writeable space
.store/books/9781633430235

https://itbook.store/books/9781633430235

33Building environment-agnostic systems

Inje
environ

var

www.itbook.st
 Docker uses environment variables to communicate information about dependent
containers, the host name of the container, and other convenient information for pro-
grams running in containers. Docker also provides a mechanism for a user to inject
environment variables into a new container. Programs that know to expect important
information through environment variables can be configured at container-creation
time. Luckily for you and your client, WordPress is one such program.

 Before diving into WordPress specifics, try injecting and viewing environment vari-
ables on your own. The UNIX command env displays all the environment variables in
the current execution context (your terminal). To see environment variable injection
in action, use the following command:

docker run --env MY_ENVIRONMENT_VAR="this is a test" \
 busybox:latest \
 env

The --env flag—or -e for short—can be used to inject any environment variable. If
the variable is already set by the image or Docker, then the value will be overridden.
This way programs running inside containers can rely on the variables always being
set. WordPress observes the following environment variables:

■ WORDPRESS_DB_HOST

■ WORDPRESS_DB_USER

■ WORDPRESS_DB_PASSWORD

■ WORDPRESS_DB_NAME

■ WORDPRESS_AUTH_KEY

■ WORDPRESS_SECURE_AUTH_KEY

■ WORDPRESS_LOGGED_IN_KEY

■ WORDPRESS_NONCE_KEY

■ WORDPRESS_AUTH_SALT

■ WORDPRESS_SECURE_AUTH_SALT

■ WORDPRESS_LOGGED_IN_SALT

■ WORDPRESS_NONCE_SALT

TIP This example neglects the KEY and SALT variables, but any real produc-
tion system should absolutely set these values.

To get started, you should address the problem that the database is running in a con-
tainer on the same computer as the WordPress container. Rather than using linking to
satisfy WordPress’s database dependency, inject a value for the WORDPRESS_DB_HOST
variable:

docker create --env WORDPRESS_DB_HOST=<my database hostname> wordpress:4

This example would create (not start) a container for WordPress that will try to con-
nect to a MySQL database at whatever you specify at <my database hostname>.

ct an
ment
iable

Execute the env command
inside the container
ore/books/9781633430235

https://itbook.store/books/9781633430235

34 CHAPTER 2 Running software in containers

www.itbook
Because the remote database isn’t likely using any default user name or password,
you’ll have to inject values for those settings as well. Suppose the database administra-
tor is a cat lover and hates strong passwords:

docker create \
 --env WORDPRESS_DB_HOST=<my database hostname> \
 --env WORDPRESS_DB_USER=site_admin \
 --env WORDPRESS_DB_PASSWORD=MeowMix42 \
 wordpress:4

Using environment variable injection this way will help you separate the physical ties
between a WordPress container and a MySQL container. Even in the case where you
want to host the database and your customer WordPress sites all on the same machine,
you’ll still need to fix the second problem mentioned earlier. All the sites are using
the same default database name. You’ll need to use environment variable injection to
set the database name for each independent site:

docker create --link wpdb:mysql \
 -e WORDPRESS_DB_NAME=client_a_wp wordpress:4

docker create --link wpdb:mysql \
 -e WORDPRESS_DB_NAME=client_b_wp wordpress:4

Now that you’ve solved these problems, you can revise the provisioning script. First,
set the computer to run only a single MySQL container:

DB_CID=$(docker run -d -e MYSQL_ROOT_PASSWORD=ch2demo mysql:5)

MAILER_CID=$(docker run -d dockerinaction/ch2_mailer)

Then the site provisioning script would be this:

if [! -n "$CLIENT_ID"]; then
 echo "Client ID not set”
 exit 1
fi

WP_CID=$(docker create \
 --link $DB_CID:mysql \
 --name wp_$CLIENT_ID \
 -p 80 \
 -v /run/lock/apache2/ -v /run/apache2/ \
 -e WORDPRESS_DB_NAME=$CLIENT_ID \
 --read-only wordpress:4)

docker start $WP_CID

AGENT_CID=$(docker create \
 --name agent_$CLIENT_ID \
 --link $WP_CID:insideweb \
 --link $MAILER_CID:insidemailer \
 dockerinaction/ch2_agent)

docker start $AGENT_CID

For client A

For client B

Assume $CLIENT_ID variable
is set as input to script

Create link using DB_CID
.store/books/9781633430235

https://itbook.store/books/9781633430235

35Building durable containers

www.itbook.st
This new script will start an instance of WordPress and the monitoring agent for each
customer and connect those containers to each other as well as a single mailer pro-
gram and MySQL database. The WordPress containers can be destroyed, restarted,
and upgraded without any worry about loss of data. Figure 2.4 shows this architecture.

 The client should be pleased with what is being delivered. But one thing might be
bothering you. In earlier testing you found that the monitoring agent correctly noti-
fied the mailer when the site was unavailable, but restarting the site and agent
required manual work. It would be better if the system tried to automatically recover
when a failure was detected. Docker provides restart policies to help deal with that,
but you might want something more robust.

2.6 Building durable containers
There are cases where software fails in rare conditions that are temporary in nature.
Although it’s important to be made aware when these conditions arise, it’s usually at
least as important to restore the service as quickly as possible. The monitoring system
that you built in this chapter is a fine start for keeping system owners aware of prob-
lems with a system, but it does nothing to help restore service.

 When all the processes in a container have exited, that container will enter the
exited state. Remember, a Docker container can be in one of four states:

■ Running
■ Paused
■ Restarting
■ Exited (also used if the container has never been started)

A basic strategy for recovering from temporary failures is automatically restarting a
process when it exits or fails. Docker provides a few options for monitoring and
restarting containers.

wp_$CLIENT_ID agent_$CLIENT_ID

DB_CID MAILER_CID
Figure 2.4 Each WordPress and
agent container uses the same
database and mailer.
ore/books/9781633430235

https://itbook.store/books/9781633430235

36 CHAPTER 2 Running software in containers

www.itbook
2.6.1 Automatically restarting containers

Docker provides this functionality with a restart policy. Using the --restart flag at
container-creation time, you can tell Docker to do any of the following:

■ Never restart (default)
■ Attempt to restart when a failure is detected
■ Attempt for some predetermined time to restart when a failure is detected
■ Always restart the container regardless of the condition

Docker doesn’t always attempt to immediately restart a container. If it did, that would
cause more problems than it solved. Imagine a container that does nothing but print
the time and exit. If that container was configured to always restart and Docker always
immediately restarted it, the system would do nothing but restart that container.
Instead, Docker uses an exponential backoff strategy for timing restart attempts.

 A backoff strategy determines how much time should pass between successive
restart attempts. An exponential backoff strategy will do something like double the
previous time spent waiting on each successive attempt. For example, if the first time
the container needs to be restarted Docker waits 1 second, then on the second
attempt it would wait 2 seconds, 4 seconds on the third attempt, 8 on the fourth, and
so on. Exponential backoff strategies with low initial wait times are a common service-
restoration technique. You can see Docker employ this strategy yourself by building a
container that always restarts and simply prints the time:

docker run -d --name backoff-detector --restart always busybox date

Then after a few seconds use the trailing logs feature to watch it back off and restart:

docker logs -f backoff-detector

The logs will show all the times it has already been restarted and will wait until the
next time it is restarted, print the current time, and then exit. Adding this single flag
to the monitoring system and the WordPress containers you’ve been working on
would solve the recovery issue.

 The only reason you might not want to adopt this directly is that during backoff
periods, the container isn’t running. Containers waiting to be restarted are in the
restarting state. To demonstrate, try to run another process in the backoff-detector
container:

docker exec backoff-detector echo Just a Test

Running that command should result in an error message:

Cannot run exec command ... in container ...: No active container exists
with ID ...

That means you can’t do anything that requires the container to be in a running state,
like execute additional commands in the container. That could be a problem if you
need to run diagnostic programs in a broken container. A more complete strategy is
to use containers that run init or supervisor processes.
.store/books/9781633430235

https://itbook.store/books/9781633430235

37Building durable containers

www.itbook.st
2.6.2 Keeping containers running with supervisor and startup processes

A supervisor process, or init process, is a program that’s used to launch and maintain
the state of other programs. On a Linux system, PID #1 is an init process. It starts all
the other system processes and restarts them in the event that they fail unexpectedly.
It’s a common practice to use a similar pattern inside containers to start and manage
processes.

 Using a supervisor process inside your container will keep the container running
in the event that the target process—a web server, for example—fails and is restarted.
There are several programs that might be used inside a container. The most popular
include init, systemd, runit, upstart, and supervisord. Publishing software that
uses these programs is covered in chapter 8. For now, take a look at a container that
uses supervisord.

 A company named Tutum provides software that produces a full LAMP (Linux,
Apache, MySQL PHP) stack inside a single container. Containers created this way use
supervisord to make sure that all the related processes are kept running. Start an
example container:

docker run -d -p 80:80 --name lamp-test tutum/lamp

You can see what processes are running inside this container by using the docker top
command:

docker top lamp-test

The top subcommand will show the host PID for each of the processes in the con-
tainer. You’ll see supervisord, mysql, and apache included in the list of running pro-
grams. Now that the container is running, you can test the supervisord restart
functionality by manually stopping one of the processes inside the container.

 The problem is that to kill a process inside of a container from within that con-
tainer, you need to know the PID in the container’s PID namespace. To get that list,
run the following exec subcommand:

docker exec lamp-test ps

The process list generated will have listed apache2 in the CMD column:

PID TTY TIME CMD
 1 ? 00:00:00 supervisord
433 ? 00:00:00 mysqld_safe
835 ? 00:00:00 apache2
842 ? 00:00:00 ps

The values in the PID column will be different when you run the command. Find the
PID on the row for apache2 and then insert that for <PID> in the following command:

docker exec lamp-test kill <PID>

Running this command will run the Linux kill program inside the lamp-test container
and tell the apache2 process to shut down. When apache2 stops, the supervisord
ore/books/9781633430235

https://itbook.store/books/9781633430235

38 CHAPTER 2 Running software in containers

www.itbook
process will log the event and restart the process. The container logs will clearly show
these events:

...

... exited: apache2 (exit status 0; expected)

... spawned: 'apache2' with pid 820

... success: apache2 entered RUNNING state, process has stayed up for >
 than 1 seconds (startsecs)

A common alternative to the use of init or supervisor programs is using a startup
script that at least checks the preconditions for successfully starting the contained soft-
ware. These are sometimes used as the default command for the container. For exam-
ple, the WordPress containers that you’ve created start by running a script to validate
and set default environment variables before starting the WordPress process. You can
view this script by overriding the default command and using a command to view the
contents of the startup script:

docker run wordpress:4 cat /entrypoint.sh

Running that command will result in an error messages like:

error: missing WORDPRESS_DB_HOST and MYSQL_PORT_3306_TCP environment
variables
...

This failed because even though you set the command to run as cat /entrypoint.sh,
Docker containers run something called an entrypoint before executing the command.
Entrypoints are perfect places to put code that validates the preconditions of a con-
tainer. Although this is discussed in depth in part 2 of this book, you need to know how
to override or specifically set the entrypoint of a container on the command line. Try
running the last command again but this time using the --entrypoint flag to specify
the program to run and using the command section to pass arguments:

docker run --entrypoint="cat" \
 wordpress:4 /entrypoint.sh

If you run through the displayed script, you’ll see how it validates the environment
variables against the dependencies of the software and sets default values. Once the
script has validated that WordPress can execute, it will start the requested or default
command.

 Startup scripts are an important part of building durable containers and can always
be combined with Docker restart policies to take advantage of the strengths of each.
Because both the MySQL and WordPress containers already use startup scripts, it’s
appropriate to simply set the restart policy for each in an updated version of the exam-
ple script.

 With that final modification, you’ve built a complete WordPress site-provisioning
system and learned the basics of container management with Docker. It has taken

Use "cat" as the entrypoint

Pass /entrypoint.sh as
the argument to cat
.store/books/9781633430235

https://itbook.store/books/9781633430235

39Cleaning up

www.itbook.st
considerable experimentation. Your computer is likely littered with several containers
that you no longer need. To reclaim the resources that those containers are using, you
need to stop them and remove them from your system.

2.7 Cleaning up
Ease of cleanup is one of the strongest reasons to use containers and Docker. The iso-
lation that containers provide simplifies any steps that you’d have to take to stop pro-
cesses and remove files. With Docker, the whole cleanup process is reduced to one of
a few simple commands. In any cleanup task, you must first identify the container that
you want to stop and/or remove. Remember, to list all of the containers on your com-
puter, use the docker ps command:

docker ps -a

Because the containers you created for the examples in this chapter won’t be used
again, you should be able to safely stop and remove all the listed containers. Make
sure you pay attention to the containers you’re cleaning up if there are any that you
created for your own activities.

 All containers use hard drive space to store logs, container metadata, and files that
have been written to the container file system. All containers also consume resources
in the global namespace like container names and host port mappings. In most cases,
containers that will no longer be used should be removed.

 To remove a container from your computer, use the docker rm command. For
example, to delete the stopped container named wp you’d run:

docker rm wp

You should go through all the containers in the list you generated by running docker
ps -a and remove all containers that are in the exited state. If you try to remove a con-
tainer that’s running, paused, or restarting, Docker will display a message like the fol-
lowing:

Error response from daemon: Conflict, You cannot remove a running container.
Stop the container before attempting removal or use -f

FATA[0000] Error: failed to remove one or more containers

The processes running in a container should be stopped before the files in the con-
tainer are removed. You can do this with the docker stop command or by using the
-f flag on docker rm. The key difference is that when you stop a process using the -f
flag, Docker sends a SIG_KILL signal, which immediately terminates the receiving pro-
cess. In contrast, using docker stop will send a SIG_HUP signal. Recipients of SIG_HUP
have time to perform finalization and cleanup tasks. The SIG_KILL signal makes for
no such allowances and can result in file corruption or poor network experiences. You
can issue a SIG_KILL directly to a container using the docker kill command. But you
should use docker kill or docker rm -f only if you must stop the container in less
than the standard 30-second maximum stop time.
ore/books/9781633430235

https://itbook.store/books/9781633430235

40 CHAPTER 2 Running software in containers

www.itbook
 In the future, if you’re experimenting with short-lived containers, you can avoid
the cleanup burden by specifying --rm on the command. Doing so will automatically
remove the container as soon as it enters the exited state. For example, the following
command will write a message to the screen in a new BusyBox container, and the con-
tainer will be removed as soon as it exits:

docker run --rm --name auto-exit-test busybox:latest echo Hello World
docker ps -a

In this case, you could use either docker stop or docker rm to properly clean up, or it
would be appropriate to use the single-step docker rm -f command. You should also
use the -v flag for reasons that will be covered in chapter 4. The docker CLI makes it is
easy to compose a quick cleanup command:

docker rm -vf $(docker ps -a -q)

This concludes the basics of running software in containers. Each chapter in the
remainder of part 1 will focus on a specific aspect of working with containers. The
next chapter focuses on installing and uninstalling images, how images relate to con-
tainers, and working with container file systems.

2.8 Summary
The primary focus of the Docker project is to enable users to run software in contain-
ers. This chapter shows how you can use Docker for that purpose. The ideas and
features covered include the following:

■ Containers can be run with virtual terminals attached to the user’s shell or in
detached mode.

■ By default, every Docker container has its own PID namespace, isolating process
information for each container.

■ Docker identifies every container by its generated container ID, abbreviated
container ID, or its human-friendly name.

■ All containers are in any one of four distinct states: running, paused, restarting,
or exited.

■ The docker exec command can be used to run additional processes inside a
running container.

■ A user can pass input or provide additional configuration to a process in a
container by specifying environment variables at container-creation time.

■ Using the --read-only flag at container-creation time will mount the container
file system as read-only and prevent specialization of the container.

■ A container restart policy, set with the --restart flag at container-creation
time, will help your systems automatically recover in the event of a failure.

■ Docker makes cleaning up containers with the docker rm command as simple
as creating them.
.store/books/9781633430235

https://itbook.store/books/9781633430235

Jeff Nickoloff

T
he idea behind Docker is simple. Create a tiny virtual
environment, called a container, that holds just your
application and its dependencies. The Docker engine

uses the host operating system to build and account for these
containers. They are easy to install, manage, and remove.
Applications running inside containers share resources,
making their footprints small.

Docker in Action teaches readers how to create, deploy, and
manage applications hosted in Docker containers. After start-
ing with a clear explanation of the Docker model, you will
learn how to package applications in containers, including
techniques for testing and distributing applications. You will
also learn how to run programs securely and how to manage
shared resources. Using carefully designed examples, the book
teaches you how to orchestrate containers and applications
from installation to removal. Along the way, you’ll discover
techniques for using Docker on systems ranging from
dev-and-test machines to full-scale cloud deployments.

What’s Inside
● Packaging containers for deployment
● Installing, managing, and removing containers
● Working with Docker images
● Distributing with DockerHub

Readers need only have a working knowledge of the Linux OS.
No prior knowledge of Docker is assumed.

A software engineer, Jeff Nickoloff has presented Docker and
its applications to hundreds of developers and administrators
at Desert Code Camp, Amazon.com, and technology meetups.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/docker-in-action

$49.99 / Can $57.99 [INCLUDING eBOOK]

Docker IN ACTION

SOFTWARE DEVELOPMENT

M A N N I N G

“All there is to know about
Docker. Clear, complete,

and precise.”
—Jean-Pol Landrain

Agile Partner Luxembourg

“A compelling narrative
for real-world Docker

 solutions. A must-read!”
—John Guthrie, Pivotal, Inc.

“An indispensable guide
to understanding Docker

and how it fi ts into
 your infrastructure.”
—Jeremy Gailor, Gracenote

“Will help you transition
quickly to effective Docker
use in complex real-world

situations.”
—Peter Sellars, Fraedom

SEE INSERT

www.itbook.store/books/9781633430235

https://itbook.store/books/9781633430235

	Nickoloff-Docker-SC
	Brief02
	SCh-02
	Nickoloff-Docker-ebook-back

