
M A N N I N G

Jeff Nickoloff
FOREWORD BY Ahmet Alp Balkan

SAMPLE CHAPTER

IN ACTION

www.itbook.store/books/9781633430235

https://itbook.store/books/9781633430235

Docker in Action
by Jeff Nickoloff

Sample Chapter 9

Copyright 2016 Manning Publications

www.itbook.store/books/9781633430235

https://itbook.store/books/9781633430235

brief contents
PART 1 KEEPING A TIDY COMPUTER .. 1

1 ■ Welcome to Docker 3
2 ■ Running software in containers 15
3 ■ Software installation simplified 41
4 ■ Persistent storage and shared state with volumes 56
5 ■ Network exposure 77
6 ■ Limiting risk with isolation 104

PART 2 PACKAGING SOFTWARE FOR DISTRIBUTION 125

7 ■ Packaging software in images 127
8 ■ Build automation and advanced image considerations 145
9 ■ Public and private software distribution 168

10 ■ Running customized registries 192

PART 3 MULTI-CONTAINER AND MULTI-HOST
 ENVIRONMENTS .. 229

11 ■ Declarative environments with Docker Compose 231
12 ■ Clusters with Machine and Swarm 248

www.itbook.store/books/9781633430235

https://itbook.store/books/9781633430235

www.itbook.st
Public and private
software distribution
You have your own images from software you’ve written, customized, or just pulled
from the internet. But what good is an image if nobody can install it? Docker is
different from other container management tools because it provides image distri-
bution features.

 There are several ways to get your images out to the world. This chapter
explores those distribution paradigms and provides a framework for making or
choosing one or more for your own projects.

 Hosted registries offer both public and private repositories with automated
build tools. Running a private registry lets you hide and customize your image
distribution infrastructure. Heavier customization of a distribution workflow might

This chapter covers
■ Choosing a project distribution method
■ Using hosted infrastructure
■ Running and using your own registry
■ Understanding manual image distribution

workflows
■ Distributing image sources
168

ore/books/9781633430235

https://itbook.store/books/9781633430235

169Choosing a distribution method

www.itbook.st
require you to abandon the Docker image distribution facilities and build your own.
Some systems might abandon the image as the distribution unit altogether and dis-
tribute image sources.

 This chapter will teach you how to select and use a method for distributing your
images to the world or just at work.

9.1 Choosing a distribution method
The most difficult thing about choosing a distribution method is choosing the appro-
priate method for your situation. To help with this problem, each method presented
in this chapter is examined on the same set of selection criteria.

 The first thing to recognize about distributing software with Docker is that there’s
no universal solution. Distribution requirements vary for many reasons, and several
methods are available. Every method has Docker tools at its core, so it’s always possible
to migrate from one to another with minimal effort. The best way to start is by examin-
ing the full spectrum of options at a high level.

9.1.1 A distribution spectrum

The image distribution spectrum is a balance between flexibility and complexity. The
methods that provide the most flexibility can be the most complicated to use, whereas
those that are the simplest to use are generally the most restrictive. Figure 9.1 shows
the full spectrum.

 The methods included in the spectrum range from hosted registries like Docker
Hub to totally custom distribution architectures or source-distribution methods. Some
of these subjects will be covered in more detail than others. Particular focus is placed
on private registries because they provide the most balance between the two concerns.

 Having a spectrum of choices illustrates your range of options, but you need a con-
sistent set of selection criteria in order to determine which you should use.

Distribution spectrum

Complicated/flexibleSimple/restrictive

Hosted registry
with public
repositories

Examples:
- Docker Hub
- Quay.io

Hosted registry
with private
repositories

Examples:
- Docker Hub
- Quay.io
- Tutum.co
- gcr.io

Private registries

Using registry software:
- Local private network
- Corporate network
- Private cloud
 infrastructure

Custom image
distribution

infrastructure

Examples:
- SFTP
- HTTP downloads
- Configuration
 management tools

Image source
distributions

Example:
- Include a Dockerfile
 with your project
 source

Figure 9.1 The image distribution spectrum
ore/books/9781633430235

https://itbook.store/books/9781633430235

170 CHAPTER 9 Public and private software distribution

www.itbook
9.1.2 Selection criteria

Choosing the best distribution method for your needs may seem daunting with this
many options. In situations like these you should take the time to understand the
options, identify criteria for making a selection, and avoid the urge to make a quick
decision or settle.

 The following identified selection criteria are based on differences across the spec-
trum and on common business concerns. When making a decision, consider how
important each of these is in your situation:

■ Cost
■ Visibility
■ Transport speed or bandwidth overhead
■ Longevity control
■ Availability control
■ Access control
■ Artifact integrity
■ Artifact confidentiality
■ Requisite expertise

How each distribution method stacks up against these criteria is covered in the rele-
vant sections over the rest of this chapter.

COST

Cost is the most obvious criterion, and the distribution spectrum ranges in cost from
free to very expensive and “it’s complicated.” Lower cost is generally better, but cost is
typically the most flexible criterion. For example, most people will trade cost for arti-
fact confidentiality if the situation calls for it.

VISIBILITY

Visibility is the next most obvious criterion for a distribution method. Secret projects
or internal tools should be difficult if not impossible for unauthorized people to dis-
cover. In another case, public works or open source projects should be as visible as
possible to promote adoption.

TRANSPORTATION

Transportation speed and bandwidth overhead are the next most flexible criteria. File
sizes and image installation speed will vary between methods that leverage image lay-
ers, concurrent downloads, and prebuilt images and those that use flat image files or
rely on deployment time image builds. High transportation speeds or low installation
latency is critical for systems that use just-in-time deployment to service synchronous
requests. The opposite is true in development environments or asynchronous process-
ing systems.

LONGEVITY

Longevity control is a business concern more than a technical concern. Hosted distri-
bution methods are subject to other people’s or companies’ business concerns. An
executive faced with the option of using a hosted registry might ask, “What happens if
.store/books/9781633430235

https://itbook.store/books/9781633430235

171Choosing a distribution method

www.itbook.st
they go out of business or pivot away from repository hosting?” The question reduces
to, “Will the business needs of the third party change before ours?” If this is a concern
for you, then longevity control is important. Docker makes it simple to switch between
methods, and other criteria like requisite expertise or cost may actually trump this
concern. For those reasons, longevity control is another of the more flexible criteria.

AVAILABILITY

Availability control is the ability to control the resolution of availability issues with
your repositories. Hosted solutions provide no availability control. Businesses typically
provide some service-level agreement on availability if you’re a paying customer, but
there’s nothing you can do to directly resolve an issue. On the other end of the spec-
trum, private registries or custom solutions put both the control and responsibility in
your hands.

ACCESS CONTROL

Access control protects your images from modification or access by unauthorized par-
ties. There are varying degrees of access control. Some systems provide only access
control of modifications to a specific repository, whereas others provide course con-
trol of entire registries. Still other systems may include pay walls or digital rights man-
agement controls. Projects typically have specific access control needs dictated by the
product or business. This makes access control requirements one of the least flexible
and most important to consider.

INTEGRITY

Artifact integrity and confidentiality both fall in the less-flexible and more-technical
end of the spectrum. Artifact integrity is trustworthiness and consistency of your files
and images. Violations of integrity may include man-in-the-middle attacks, where an
attacker intercepts your image downloads and replaces the content with their own.
They might also include malicious or hacked registries that lie about the payloads
they return.

CONFIDENTIALITY

Artifact confidentiality is a common requirement for companies developing trade
secrets or proprietary software. For example, if you use Docker to distribute crypto-
graphic material, then confidentiality will be a major concern. Artifact integrity and
confidentiality features vary across the spectrum. Overall, the out-of-the-box distribu-
tion security features won’t provide the tightest confidentiality or integrity. If that’s
one of your needs, an information security professional will need to implement and
review a solution.

 The last thing to consider when choosing a distribution method is the level of
expertise required. Using hosted methods can be very simple and requires little more
than a mechanical understanding of the tools. Building custom image or image
source distribution pipelines requires expertise with a suite of related technologies. If
you don’t have that expertise or don’t have access to someone who does, using more
complicated solutions will be a challenge. In that case, you may be able to reconcile
the gap at additional cost.
ore/books/9781633430235

https://itbook.store/books/9781633430235

172 CHAPTER 9 Public and private software distribution

www.itbook
 With this strong set of selection criteria, you can begin learning about and evaluat-
ing different distribution methods. The best place to start is on the far left of the spec-
trum with hosted registries.

9.2 Publishing with hosted registries
As a reminder, Docker registries are services that make repositories accessible to
Docker pull commands. A registry hosts repositories. The simplest way to distribute
your images is by using hosted registries.

 A hosted registry is a Docker registry service that’s owned and operated by a third-
party vendor. Docker Hub, Quay.io, Tutum.co, and Google Container Registry are all
examples of hosted registry providers. By default, Docker publishes to Docker Hub.
Docker Hub and most other hosted registries provide both public and private
registries, as shown in figure 9.2.

The example images used in this book are distributed with public repositories hosted
on Docker Hub and Quay.io. By the end of this section you’ll understand how to pub-
lish your own images using hosted registries and how hosted registries measure up to
the selection criteria.

9.2.1 Publishing with public repositories: Hello World via Docker Hub

The simplest way to get started with public repositories on hosted registries is to push
a repository that you own to Docker Hub. To do so, all you need is a Docker Hub
account and an image to publish. If you haven’t done so already, sign up for a Docker
Hub account now.

 Once you have your account, you need to create an image to publish. Create a new
Dockerfile named HelloWorld.df and add the following instructions:

FROM busybox:latest
CMD echo Hello World

Distribution spectrum

ComplicatedSimple

Hosted registry
with public
repositories

Examples:
- Docker Hub
- Quay.io

Hosted registry
with private
repositories

Examples:
- Docker Hub
- Quay.io
- Tutum.co
- gcr.io

Private registries

Using registry software:
- Local private network
- Corporate network
- Private cloud
 infrastructure

Custom image
distribution

infrastructure

Examples:
- SFTP
- HTTP downloads
- Configuration
 management tools

Image source
distributions

Example:
- Include a Dockerfile
 with your project
 source

Figure 9.2 The simplest side of the distribution spectrum and the topic of this section

From HelloWorld.df
.store/books/9781633430235

https://itbook.store/books/9781633430235

173Publishing with hosted registries

www.itbook.st
Chapter 8 covers Dockerfile instructions. As a reminder, the FROM instruction tells the
Docker image builder which existing image to start the new image from. The CMD
instruction sets the default command for the new image. Containers created from
this image will display “Hello World” and exit. Build your new image with the follow-
ing command:

docker build \
 -t <insert Docker Hub username>/hello-dockerfile \
 -f HelloWorld.df \
 .

Be sure to substitute your Docker Hub username in that command. Authorization to
access and modify repositories is based on the username portion of the repository
name on Docker Hub. If you create a repository with a username other than your
own, you won’t be able to publish it.

 Publishing images on Docker Hub with the docker command-line tool requires
that you establish an authenticated session with that client. You can do that with the
login command:

docker login

This command will prompt you for your username, email address, and password. Each
of those can be passed to the command as arguments using the --username, --email,
and --password flags. When you log in, the docker client maintains a map of your cre-
dentials for the different registries that you authenticate with in a file. It will specifi-
cally store your username and an authentication token, not your password.

 You will be able to push your repository to the hosted registry once you’ve logged
in. Use the docker push command to do so:

docker push <insert Docker Hub username>/hello-dockerfile

Running that command should create output like the following:

The push refers to a repository
[dockerinaction/hello-dockerfile] (len: 1)
7f6d4eb1f937: Image already exists
8c2e06607696: Image successfully pushed
6ce2e90b0bc7: Image successfully pushed
cf2616975b4a: Image successfully pushed
Digest:
 sha256:ef18de4b0ddf9ebd1cf5805fae1743181cbf3642f942cae8de7c5d4e375b1f20

The command output includes upload statuses and the resulting repository content
digest. The push operation will create the repository on the remote registry, upload
each of the new layers, and then create the appropriate tags.

 Your public repository will be available to the world as soon as the push operation
is completed. Verify that this is the case by searching for your username and your new
repository. For example, use the following command to find the example owned by
the dockerinaction user:

docker search dockerinaction/hello-dockerfile

Insert your username

Insert your username
ore/books/9781633430235

https://itbook.store/books/9781633430235

174 CHAPTER 9 Public and private software distribution

www.itbook
Replace the dockerinaction username with your own to find your new repository on
Docker Hub. You can also log in to the Docker Hub website and view your repositories
to find and modify your new repository.

 Having distributed your first image with Docker Hub, you should consider how
this method measures up to the selection criteria; see table 9.1.

Table 9.1 Performance of public hosted repositories

Criteria Rating Notes

Cost Best Public repositories on hosted registries are almost always free. That
price is difficult to beat. These are especially helpful when you’re get-
ting started with Docker or publishing open source software.

Visibility Best Hosted registries are well-known hubs for software distribution. A
public repository on a hosted registry is an obvious distribution choice
if you want your project to be well known and visible to the public.

Transport
speed/size

Better Hosted registries like Docker Hub are layer-aware and will work with
Docker clients to transfer only the layers that the client doesn’t
already have. Further, pull operations that require multiple reposito-
ries to be transferred will perform those transfers in parallel. For
those reasons, distributing an image from a hosted repository is fast,
and the payloads are minimal.

Availability control Worst You have no availability control over hosted registries.

Longevity control Good You have no longevity control over hosted registries. But registries will
all conform to the Docker registry API, and migrating from one host to
another should be a low-cost exercise.

Access control Better Public repositories are open to the public for read access. Write
access is still controlled by whatever mechanisms the host has put in
place. Write access to public repositories on Docker Hub is controlled
two ways. First, repositories owned by an individual may be written to
only by that individual account. Second, repositories owned by organi-
zations may be written to by any user who is part of that organization.

Artifact integrity Best The most recent version of the Docker registry API provides content-
addressable images. These let you request an image with a specific
cryptographic signature. The Docker client will validate the integrity of
the returned image by recalculating the signature and comparing it to
the one requested. Older versions of Docker that are unaware of the
V2 registry API don’t support this feature. In those cases and for
other cases where signatures are unknown, a high degree of trust
is put into the authorization and at-rest security features provided
by the host.

Secrecy Worst Hosted registries and public repositories are never appropriate for
storing and distributing cleartext secrets or sensitive code. Anyone
can access these secrets.

Requisite
experience

Best Using public repositories on hosted registries requires only that you
be minimally familiar with Docker and capable of setting up an
account through a website. This solution is within reach for any
Docker user.
.store/books/9781633430235

https://itbook.store/books/9781633430235

175Publishing with hosted registries

www.itbook.st
Public repositories on hosted registries are the best choice for owners of open source
projects or people who are just getting started with Docker. People should still be
skeptical of software that they download and run from the internet, and so public
repositories that don’t expose their sources can be difficult for some users to trust.
Hosted (trusted) builds solve this problem to a certain extent.

9.2.2 Publishing public projects with automated builds

A few different hosted registries offer automated builds. Automated builds are images
that are built by the registry provider using image sources that you’ve made available.
Image consumers have a higher degree of trust for these builds because the registry
owner is building the images from source that can be reviewed.

 Distributing your work with automated builds requires two components: a hosted
image repository and a hosted Git repository where your image sources are published.
Git is a popular distributed version-control system. A Git repository stores the change
history for your project. Although distributed version-control systems like Git don’t
have architectural centralization, a few popular companies provide Git repository
hosting. Docker Hub integrates with both Github.com and Bitbucket.org for auto-
mated builds.

 Both of these hosted Git repository tools provide something called webhooks. In
this context, a webhook is a way for your Git repository to notify your image repository
that a change has been made to the source. When Docker Hub receives a webhook for
your Git repository, it will start an automated build for your Docker Hub repository.
This automation is shown in figure 9.3.

 The automated build process pulls the sources for your project including a Docker-
file from your registered Git repository. The Docker Hub build fleet will use a docker
build command to build a new image from those sources, tag it in accordance with the
repository configuration, and then push it into your Docker Hub repository.

CREATING A DOCKER HUB AUTOMATED BUILD

The following example will walk you through the steps required to set up your own
Docker Hub repository as an automated build. This example uses Git. Whole books

Developer
workstation

GitHub
repository

Docker Hub
build fleet

Docker Hub
repository

1. git push ... 2. Webhook

3. Trigger build

6. docker push

5. docker build

4. git pull ...

Figure 9.3 The Docker Hub automated build workflow
ore/books/9781633430235

https://itbook.store/books/9781633430235

176 CHAPTER 9 Public and private software distribution

Use
 full n

www.itbook
have been written about Git, and so we can’t cover it in detail here. Git ships with sev-
eral operating systems today, but if it isn’t installed on your computer or you need
general help, check the website at https://git-scm.com. For the purposes of this exam-
ple, you need accounts on both Docker Hub and Github.com.

 Log in to your Github.com account and create a new repository. Name it hello-
docker and make sure that the repository is public. Don’t initialize the repository with
a license or a .gitignore file. Once the repository has been created on GitHub, go back
to your terminal and create a new working directory named hello-docker.

 Create a new file named Dockerfile and include the following lines:

FROM busybox:latest
CMD echo Hello World

This Dockerfile will produce a simple Hello World image. The first thing you need to
do to get this built into a new repository at Docker Hub is add it to your Git repository.
The following Git commands will create a local repository, add the Dockerfile to the
repository, commit the change, and push your changes to your repository on GitHub.
Be sure to replace <your username> with your GitHub username:

git init
git config --global user.email "you@example.com"
git config --global user.name "Your Name"
git remote add origin \
 https://github.com/<your username>/hello-docker.git

Don’t add or commit your files to your repository yet. Before you push your work to
GitHub, you should create a new automated build and repository on Docker Hub. You
must perform this step through the website at https://hub.docker.com. Once you log
in, click the Create button in the header and select Automated Build from the drop-
down menu. The website will walk you through setting up the automated build.

 The steps include authenticating with GitHub and granting Docker Hub limited
access to your account. That access is required so that Docker Hub can find your
repositories and register appropriate webhooks for you. Next, you’ll be prompted for
the GitHub repository that you’d like to use for the automated build. Select the hello-
docker repository that you just created. Once you complete the creation wizard, you
should be directed to your repository page. Now go back to your terminal to add and
push your work to your GitHub repository.

git add Dockerfile
git commit -m "first commit"
git push -u origin master

When you execute the last command, you may be prompted for your Github.com
login credentials. After you present them, your work will be uploaded to GitHub, and
you can view your Dockerfile online. Now that your image source is available online at
GitHub, a build should have been triggered for your Docker Hub repository. Head
back to the repository page and click the Build Details tab. You should see a build

Use your email address

 your
ame Use your GitHub

username
.store/books/9781633430235

https://git-scm.com
https://hub.docker.com
https://itbook.store/books/9781633430235

177Publishing with hosted registries

www.itbook.st
listed that was triggered from your latest push to the GitHub repository. Once that is
complete, head back to the command line to search for your repository:

docker search <your username>/hello-docker

Automated builds are preferred by image consumers and simplify image maintenance
for most cases. There will be times when you don’t want to make your source available
to the general public. The good news is that most hosted repository providers offer
private repositories.

9.2.3 Private hosted repositories

Private repositories are similar to public repositories from an operational and product
perspective. Most registry providers offer both options, and any differences in provi-
sioning through their websites will be minimal. Because the Docker registry API makes
no distinction between the two types of repositories, registry providers that offer both
generally require you to provision private registries through their website, app, or API.

 The tools for working with private repositories are identical to those for working
with public repositories, with one exception. Before you can use docker pull or
docker run to install an image from a private repository, you need to have authenti-
cated with the registry where the repository is hosted. To do so, you will use the
docker login command just as you would if you were using docker push to upload
an image.

 The following commands prompt you to authenticate with the registries provided
by Docker Hub, quay.io, and tutum.co. After creating accounts and authenticating,
you’ll have full access to your public and private repositories on all three registries.
The login subcommand takes an optional server argument:

docker login
Username: dockerinaction
Password:
Email: book@dockerinaction.com
WARNING: login credentials saved in /Users/xxx/.dockercfg.
Login Succeeded

docker login tutum.co
Username: dockerinaction
Password:
Email: book@dockerinaction.com
WARNING: login credentials saved in /Users/xxx/.dockercfg.
Login Succeeded

docker login quay.io
Username: dockerinaction
Password:
Email: book@dockerinaction.com
WARNING: login credentials saved in /Users/xxx/.dockercfg.
Login Succeeded

Insert your Docker
Hub username
ore/books/9781633430235

https://itbook.store/books/9781633430235

178 CHAPTER 9 Public and private software distribution

www.itbook
Before you decide that private hosted repositories are the distribution solution for
you, consider how they might fulfill your selection criteria; see table 9.2

Table 9.2 Performance of private hosted repositories

Criteria Rating Notes

Cost Best The cost of private repositories typically scales with the number of
repositories that you need. Plans usually range from a few dollars per
month for 5 repositories up to around $50 for 50 repositories. Price
pressure of storage and monthly virtual server hosting is a driving fac-
tor here. Users or organizations that require more than 50 repositories
may find it more appropriate to run their own private registry.

Visibility Best Private repositories are by definition private. These are typically
excluded from indexes and should require authentication before a
registry acknowledges the repository’s existence. Private repositories
are poor candidates for publicizing availability of some software or
distributing open source images. Instead they’re great tools for small
private projects or organizations that don’t want to incur the overhead
associated with running their own registry.

Transport
speed/size

Better Any hosted registry like Docker Hub will minimize the bandwidth used
to transfer an image and enable clients to transfer an image’s layers
in parallel. Ignoring potential latency introduced by transferring files
over the internet, hosted registries should always perform well against
other non-registry solutions.

Availability control Worst No hosted registry provides any availability control. Unlike public
repositories, however, using private repositories will make you a pay-
ing customer. Paying customers may have stronger SLA guarantees or
access to support personnel.

Longevity control Good You have no longevity control over hosted registries. But registries will
all conform to the Docker registry API, and migrating from one host to
another should be a low-cost exercise.

Access control Better Both read and write access to private repositories is restricted to
users with authorization.

Artifact integrity Best It’s reasonable to expect all hosted registries to support the V2 regis-
try API and content-addressable images.

Secrecy Worst Despite the privacy provided by these repositories, these are never
suitable for storing clear-text secrets or trade-secret code. Although
the registries require user authentication and authorization to
requested resources, there are several potential problems with these
mechanisms. The provider may use weak credential storage, have
weak or lost certificates, or leave your artifacts unencrypted at rest.
Finally, your secret material should not be accessible to employees of
the registry provider.

Requisite
experience

Best Just like public repositories, using private repositories on hosted
registries requires only that you be minimally familiar with Docker and
capable of setting up an account through a website. This solution is
within reach for any Docker user.
.store/books/9781633430235

https://itbook.store/books/9781633430235

179Introducing private registries

www.itbook.st
Individuals and small teams will find the most utility in private hosted repositories.
Their low cost and basic authorization features are friendly to low-budget projects or
private projects with minimal security requirements. Large companies or projects that
need a higher degree of secrecy and have a suitable budget may find their needs bet-
ter met by running their own private registry.

9.3 Introducing private registries
When you have a hard requirement on availability control, longevity control, or
secrecy, then running a private registry may be your best option. In doing so, you gain
control without sacrificing interoperability with Docker pull and push mechanisms or
adding to the learning curve for your environment. People can interact with a private
registry exactly as they would with a hosted registry.

 The Docker registry software (called Distribution) is open source software and dis-
tributed under the Apache 2 license. The availability of this software and permissive
license keep the engineering cost of running your own registry low. It’s available
through Docker Hub and is simple to use for non-production purposes. Figure 9.4
illustrates that private registries fall in the middle of the distribution spectrum.

Running a private registry is a great distribution method if you have special infrastruc-
ture use cases like the following:

■ Regional image caches
■ Team-specific image distribution for locality or visibility
■ Environment or deployment stage-specific image pools
■ Corporate processes for approving images
■ Longevity control of external images

Before deciding that this is the best choice for you, consider the costs detailed in the
selection criteria, shown in table 9.3.

Distribution spectrum

ComplicatedSimple

Hosted registry
with public
repositories

Examples:
- Docker Hub
- Quay.io

Hosted registry
with private
repositories

Examples:
- Docker Hub
- Quay.io
- Tutum.co
- gcr.io

Private registries

Using registry software:
- Local private network
- Corporate network
- Private cloud
 infrastructure

Custom image
distribution

infrastructure

Examples:
- SFTP
- HTTP downloads
- Configuration
 management tools

Image source
distributions

Example:
- Include a Dockerfile
 with your project
 source

Figure 9.4 Private registries in the image distribution spectrum
ore/books/9781633430235

https://itbook.store/books/9781633430235

www.itbook
180 CHAPTER 9 Public and private software distribution

Table 9.3 Performance of private registries

Criteria Rating Notes

Cost Good At a minimum, a private registry adds to hardware overhead (virtual or
otherwise), support expense, and risk of failure. But the community
has already invested the bulk of the engineering effort required to
deploy a private registry by building the open source software. Cost
will scale on different dimensions than hosted registries. Whereas
the cost of hosted repositories scales with raw repository count, the
cost of private registries scales with transaction rates and storage
usage. If you build a system with high transaction rates, you’ll need to
scale up the number of registry hosts so that you can handle the
demand. Likewise, registries that serve some number of small
images will have lower storage costs than those serving the same
number of large images.

Visibility Good Private registries are as visible as you decide to make them. But even
a registry that you own and open up to the world will be less visible
than advertised popular registries like Docker Hub.

Transport
speed/size

Best Latency between any client and any registry will vary based on the dis-
tance between those two nodes on the network, the speed of the net-
work, and the congestion on the registry. Private registries may be
faster or slower than hosted registries due to variance in any of those
variables. But private registries will appeal most to people and organi-
zations that are doing so for internal infrastructure. Eliminating a
dependency on the internet or inter-datacenter networking will have a
proportional improvement on latency. Because this solution is using a
Docker registry, it will share the same parallelism gains as hosted
registry solutions.

Availability control Best You have full control over availability as the registry owner.

Longevity control Best You have full control over solution longevity as the registry owner.

Access control Good The registry software doesn’t include any authentication or authoriza-
tion features out of the box. But implementing those features can be
achieved with a minimal engineering exercise.

Artifact integrity Best Version 2 of the registry API supports content-addressable images,
and the open source software supports a pluggable storage back
end. For additional integrity protections, you can force the use of TLS
over the network and use back-end storage with encryption at rest.

Secrecy Good Private registries are the first solution on the spectrum appropriate
for storage of trade secrets or secret material. You control the authen-
tication and authorization mechanisms. You also control the network
and in-transit security mechanisms. Most importantly, you control
the at-rest storage. It’s in your power to ensure that the system is
configured in such a way that your secrets stay secret.

Requisite
experience

Good Getting started and running a local registry requires only basic Docker
experience. But running and maintaining a highly available production
private registry requires experience with several technologies. The
specific set depends on what features you want to take advantage of.
Generally, you’ll want to be familiar with NGINX to build a proxy, LDAP
or Kerberos to provide authentication, and Redis for caching.
.store/books/9781633430235

https://itbook.store/books/9781633430235

181Introducing private registries

www.itbook.st
The biggest trade-off going from hosted registries to private registries is gaining flexi-
bility and control while requiring greater depth and breadth of engineering experi-
ence to build and maintain the solution. The remainder of this section covers what
you need to implement all but the most complicated registry deployment designs and
highlights opportunities for customization in your environment.

9.3.1 Using the registry image

Whatever your reasons for doing so, getting started with the Docker registry software
is easy. The Distribution software is available on Docker Hub in a repository named
registry. Starting a local registry in a container can be done with a single command:

docker run -d -p 5000:5000 \
 -v "$(pwd)"/data:/tmp/registry-dev \
 --restart=always --name local-registry registry:2

The image that’s distributed through Docker Hub is configured for insecure access
from the machine running a client’s Docker daemon. When you’ve started the regis-
try, you can use it like any other registry with docker pull, run, tag, and push com-
mands. In this case, the registry location is localhost:5000. The architecture of your
system should now match that described in figure 9.5.

 Companies that want tight version control on their external image dependencies
will pull images from external sources like Docker Hub and copy them into their own

Docker
client

Local Docker
daemon

Registry
container

Local
hard disk

Docker
client

Local Docker
daemon

Virtual
machine

OR

The local Docker client communicates
with the Docker daemon that runs
inside of a local virtual machine.

The local Docker client
communicates with the
local Docker daemon.

All push/pull actions occur
between the Docker daemon
and the network API of the
registry container.

All push/pull actions
occur between the
Docker daemon and
the network API of the
registry container.

The registry uses a file
system storage backend.
The particular location that
the registry is configured to
use has been replaced by a
bind-mount volume.

The registry uses a file
system storage backend.
The particular location
that the registry is
configured to use has
been replaced by a
bind-mount volume.

Registry
container

Local
hard disk

Figure 9.5 Interactions between the docker client, daemon, local registry container, and local storage
ore/books/9781633430235

https://itbook.store/books/9781633430235

182 CHAPTER 9 Public and private software distribution

Pull d
image
Docker

erable

Pull
reg

www.itbook
registry. To get an idea of what it’s like working with your registry, consider a workflow
for copying images from Docker Hub into your new registry:

docker pull dockerinaction/ch9_registry_bound

docker images -f "label=dia_excercise=ch9_registry_bound"

docker tag dockerinaction/ch9_registry_bound \
 localhost:5000/dockerinaction/ch9_registry_bound
docker push localhost:5000/dockerinaction/ch9_registry_bound

In running these four commands, you copy an example repository from Docker Hub
into your local repository. If you execute these commands from the same location as
where you started the registry, you’ll find that the newly created data subdirectory con-
tains new registry data.

9.3.2 Consuming images from your registry

The tight integration you get with the Docker ecosystem can make it feel like you’re
working with software that’s already installed on your computer. When internet
latency has been eliminated, such as when you’re working with a local registry, it can
feel even less like you’re working with distributed components. For that reason, the
exercise of pushing data into a local repository isn’t very exciting on its own.

 The next set of commands should impress on you that you’re working with a real
registry. These commands will remove the example repositories from the local cache
for your Docker daemon, demonstrate that they’re gone, and then reinstall them
from your personal registry:

docker rmi \
 dockerinaction/ch9_registry_bound \
 localhost:5000/dockerinaction/ch9_registry_bound

docker images -f "label=dia_excercise=ch9_registry_bound"

docker pull localhost:5000/dockerinaction/ch9_registry_bound

docker images -f "label=dia_excercise=ch9_registry_bound"

docker rm -vf local-registry

You can work with this registry locally as much as you want, but the insecure default
configuration will prevent remote Docker clients from using your registry (unless they
specifically allow insecure access). This is one of the few issues that you’ll need to
address before deploying a registry in a production environment. Chapter 10 covers
the registry software in depth.

 This is the most flexible distribution method that involves Docker registries. If you
need greater control over the transport, storage, and artifact management, you
should consider working directly with images in a manual distribution system.

emo
 from
 Hub

Verify image is discov
with label filter

Push demo image into
your private registry

Remove tagged
reference

 from
istry

again
Demonstrate that
image is back

Clean up local registry
.store/books/9781633430235

https://itbook.store/books/9781633430235

183Manual image publishing and distribution

www.itbook.st
9.4 Manual image publishing and distribution
Images are files, and you can distribute them as you would any other file. It’s common
to see software available for download on websites, File Transport Protocol (FTP) serv-
ers, corporate storage networks, or via peer-to-peer networks. You could use any of
these distribution channels for image distribution. You can even use email or USB keys
in cases where you know your image recipients.

 When you work with images as files, you use Docker only to manage local images
and create files. All other concerns are left for you to implement. That void of func-
tionality makes manual image publishing and distribution the second-most flexible
but complicated distribution method. This section covers custom image distribution
infrastructure, shown on the spectrum in figure 9.6.

We’ve already covered all the methods for working with images as files. Chapter 3 covers
loading images into Docker and saving images to your hard drive. Chapter 7 covers
exporting and importing full file systems as flattened images. These techniques are the
foundation for building distribution workflows like the one shown in figure 9.7.

Distribution spectrum

ComplicatedSimple

Hosted registry
with public
repositories

Examples:
- Docker Hub
- Quay.io

Hosted registry
with private
repositories

Examples:
- Docker Hub
- Quay.io
- Tutum.co
- gcr.io

Private registries

Using registry software:
- Local private network
- Corporate network
- Private cloud
 infrastructure

Custom image
distribution

infrastructure

Examples:
- SFTP
- HTTP downloads
- Configuration
 management tools

Image source
distributions

Example:
- Include a Dockerfile
 with your project
 source

Figure 9.6 Docker image distribution over custom infrastructure

SFTP server /
Blob storage /
Web server /
Email server /

USB key

Local
image
cache

Upload Download

docker save
docker export

docker load
docker import

Image origin computer
Consuming computers

docker
build

Dockerfile

.tar

docker
runLocal

image
cache

.tar

Container

Figure 9.7 A typical manual distribution workflow with producer, transport, and consumers
ore/books/9781633430235

https://itbook.store/books/9781633430235

184 CHAPTER 9 Public and private software distribution

www.itbook
The workflow illustrated in figure 9.7 is a generalization of how you’d use Docker to
create an image and prepare it for distribution. You should be familiar with using
docker build to create an image and docker save or docker export to create an
image file. You can perform each of these operations with a single command.

 You can use any file transport once you have an image in file form. One custom
component not show in figure 9.7 is the mechanism that uploads an image to the
transport. That mechanism may be a folder that is watched by a file-sharing tool like
Dropbox. It could also be a piece of custom code that runs periodically, or in response
to a new file, and uses FTP or HTTP to push the file to a remote server. Whatever the
mechanism, this general component will require some effort to integrate.

 The figure also shows how a client would ingest the image and use it to build a con-
tainer after the image has been distributed. Similar to image origins, clients require
some process or mechanism to acquire the image from a remote source. Once clients
have the image file, they can use the docker load or import commands to complete
the transfer.

 It doesn’t make sense to measure manual image distribution against individual
selection criteria. Using a non-Docker distribution channel gives you full control. It
will be up to you to determine how your options measure against the criteria shown in
table 9.4.

Table 9.4 Performance of custom image distribution infrastructure.

Criteria Rating Notes

Cost Good Distribution costs are driven by bandwidth, storage, and hardware needs.
Hosted distribution solutions like cloud storage will bundle these costs
and generally scale down price per unit as your usage increases. But
hosted solutions bundle in the cost of personnel and several other
benefits that you may not need, driving up the price compared to a
mechanism that you own.

Visibility Good Like private registries, most manual distribution methods are special and
take more effort to advertise than well-known registries. Examples might
include using popular websites or other well-known file distribution hubs.

Transport
speed/size

Good Whereas transport speed depends on the transport, file sizes are depen-
dent on your choice of using layered images or flattened images. Remem-
ber, layered images maintain the history of the image, container-creation
metadata, and old files that might have been deleted or overridden. Flat-
tened images contain only the current set of files on the file system.

Availability control Best If availability control is an important factor for your case, you can use a
transport mechanism that you own.

Longevity control Bad Using proprietary protocols, tools, or other technology that is neither
open nor under your control will impact longevity control. For example,
distributing image files with a hosted file-sharing service like Dropbox
will give you no longevity control. On the other hand, swapping USB
drives with your friend will last as long as the two of you decide to use
USB drives.
.store/books/9781633430235

https://itbook.store/books/9781633430235

185Manual image publishing and distribution

www.itbook.st
All the same criteria apply to manual distribution, but it’s difficult to discuss them
without the context of a specific transportation method.

9.4.1 A sample distribution infrastructure using the File
Transfer Protocol

Building a fully functioning example will help you understand exactly what goes into a
manual distribution infrastructure. This section will help you build an infrastructure
with the File Transfer Protocol.

 FTP is less popular than it used to be. The protocol provides no secrecy and
requires credentials to be transmitted over the wire for authentication. But the soft-
ware is freely available and clients have been written for most platforms. That makes
FTP a great tool for building your own distribution infrastructure. Figure 9.8 illustrates
what you’ll build.

 The example in this section uses two existing images. The first, dockerinaction/
ch9_ftpd, is a specialization of the centos:6 image where vsftpd (an FTP daemon)
has been installed and configured for anonymous write access. The second image,
dockerinaction/ch9_ftp_client, is a specialization of a popular minimal Alpine
Linux image. An FTP client named LFTP has been installed and set as the entrypoint
for the image.

Access control Bad You could use a transport with the access control features you need or
use file encryption. If you built a system that encrypted your image files
with a specific key, you could be sure that only a person or people with
the correct key could access the image.

Artifact integrity Bad Integrity validation is a more expensive feature to implement for broad
distribution. At a minimum, you’d need a trusted communication channel
for advertising cryptographic file signatures.

Secrecy Good You can implement content secrecy with cheap encryption tools. If you
need meta-secrecy (where the exchange itself is secret) as well as con-
tent secrecy, then you should avoid hosted tools and make sure that the
transport that you use provides secrecy (HTTPS, SFTP, SSH, or offline).

Requisite
experience

Good Hosted tools will typically be designed for ease of use and require a
lesser degree of experience to integrate with your workflow. But you can
use simple tools that you own as easily in most cases.

Table 9.4 Performance of custom image distribution infrastructure.

Criteria Rating Notes

Local
image
cache

FTP server.tar
docker save... Upload

Figure 9.8 An FTP publishing infrastructure
ore/books/9781633430235

https://itbook.store/books/9781633430235

186 CHAPTER 9 Public and private software distribution

www.itbook
To prepare for the experiment, pull a known image from Docker Hub that you want
to distribute. In the example, the registry:2 image is used:

docker pull registry:2

Once you have an image to distribute, you can begin. The first step is building your
image distribution infrastructure. In this case, that means running an FTP server:

docker run -d --name ftp-transport -p 21:12 dockerinaction/ch9_ftpd

This command will start an FTP server that accepts FTP connections on TCP port 21
(the default port). Don’t use this image in any production capacity. The server is con-
figured to allow anonymous connections write access under the pub/incoming folder.
Your distribution infrastructure will use that folder as an image distribution point.

 The next thing you need to do is export an image to the file format. You can use
the following command to do so:

docker save -o ./registry.2.tar registry:2

Running this command will export the registry:2 image as a structured image file in
your current directory. The file will retain all the metadata and history associated with
the image. At this point, you could inject all sorts of phases like checksum generation
or file encryption. This infrastructure has no such requirements, and you should
move along to distribution.

 The dockerinaction/ch9_ftp_client image has an FTP client installed and can
be used to upload your new image file to your FTP server. Remember, you started the
FTP server in a container named ftp-transport. If you’re running the container on
your computer, you can use container linking to reference the FTP server from the cli-
ent; otherwise, you’ll want to use host name injection (see chapter 5), a DNS name of
the server, or an IP address:

docker run --rm --link ftp-transport:ftp_server \
 -v "$(pwd)":/data \
 dockerinaction/ch9_ftp_client \
 -e 'cd pub/incoming; put registry.2.tar; exit' ftp_server

This command creates a container with a volume bound to your local directory and
linked with your FTP server container. The command will use LFTP to upload a file
named registry.2.tar to the server located at ftp_server. You can verify that you
uploaded the image by listing the contents of the FTP server’s folder:

docker run --rm --link ftp-transport:ftp_server \
 -v "$(pwd)":/data \
 dockerinaction/ch9_ftp_client \
 -e "cd pub/incoming; ls; exit" ftp_server

The registry image is now available for download to any FTP client that knows about
the server and can access it over the network. But that file may never be overridden in
the current FTP server configuration. You’d need to come up with your own version-
ing scheme if you were going to use a similar tool in production.
.store/books/9781633430235

https://itbook.store/books/9781633430235

187Manual image publishing and distribution

www.itbook.st
 Advertising the availability of the image in this scenario requires clients to periodi-
cally poll the server using the last command you ran. You could alternatively build
some website or send an email notifying clients about the image, but that all happens
outside the standard FTP transfer workflow.

 Before moving on to evaluating this distribution method against the selection cri-
teria, consume the registry image from your FTP server to get an idea of how clients
would need to integrate.

 First, eliminate the registry image from your local image cache and the file from
your local directory:

rm registry.2.tar
docker rmi registry:2

Then download the image file from your FTP server:

docker run --rm --link ftp-transport:ftp_server \
 -v "$(pwd)":/data \
 dockerinaction/ch9_ftp_client \
 -e 'cd pub/incoming; get registry.2.tar; exit' ftp_server

At this point you should once again have the registry.2.tar file in your local directory.
You can reload that image into your local cache with the docker load command:

docker load -i registry.2.tar

This is a minimal example of how a manual image publishing and distribution infra-
structure might be built. With just a bit of extension you could build a production-
quality, FTP-based distribution hub. In its current configuration this example matches
against the selection criteria, as shown in table 9.5.

Table 9.5 Performance of a sample FTP-based distribution infrastructure

Criteria Rating Notes

Cost Good This is a low-cost transport. All the related software is free. Band-
width and storage costs should scale linearly with the number of
images hosted and the number of clients.

Visibility Worst The FTP server is running in an unadvertised location with a
non-standard integration workflow. The visibility of this configura-
tion is very low.

Transport
speed/size

Bad In this example, all the transport happened between containers on
the same computer, so all the commands finished quickly. If a
client connects to your FTP service over the network, then speeds
are directly impacted by your upload speeds. This distribution
method will download redundant artifacts and won’t download
components of the image in parallel. Overall, this method isn’t
bandwidth-efficient.

Availability control Best You have full availability control of the FTP server. If it becomes
unavailable, you’re the only person who can restore service.

Need to remove any
registry containers first
ore/books/9781633430235

https://itbook.store/books/9781633430235

188 CHAPTER 9 Public and private software distribution

www.itbook
In short, there’s almost no real scenario where this transport configuration is appro-
priate. But it helps illustrate the different concerns and basic workflows that you can
create when you work with image as files. The only more flexible and potentially com-
plicated image publishing and distribution method involves distributing image
sources.

9.5 Image source distribution workflows
When you distribute image sources instead of images, you cut out all the Docker distri-
bution workflow and rely solely on the Docker image builder. As with manual image
publishing and distribution, source-distribution workflows should be evaluated
against the selection criteria in the context of a particular implementation.

 Using a hosted source control system like Git on GitHub will have very different
traits from using a file backup tool like rsync. In a way, source-distribution workflows
have a superset of the concerns of manual image publishing and distribution work-
flows. You’ll have to build your workflow but without the help of the docker save,
load, export, or import commands. Producers need to determine how they will pack-
age their sources, and consumers need to understand how those sources are packaged
as well as how to build an image from them. That expanded interface makes source-
distribution workflows the most flexible and potentially complicated distribution
method. Figure 9.9 shows image source distribution on the most complicated end of
the spectrum.

 Image source distribution is one of the most common methods, despite having the
most potential for complication. The reason is that the expanded interface has been
standardized by popular version-control software.

Longevity control Best You can use the FTP server created for this example as long as
you want.

Access control Worst This configuration provides no access control.

Artifact integrity Worst The network transportation layer does provide file integrity between
endpoints. But it’s susceptible to interception attacks, and there
are no integrity protections between file creation and upload or
between download and import.

Secrecy Worst This configuration provides no secrecy.

Requisite
experience

Good All requisite experience for implementing this solution has been
provided here. If you’re interested in extending the example for pro-
duction, you’ll need to familiarize yourself with vsftpd configura-
tion options and SFTP.

Table 9.5 Performance of a sample FTP-based distribution infrastructure

Criteria Rating Notes
.store/books/9781633430235

https://itbook.store/books/9781633430235

189Image source distribution workflows

www.itbook.st
9.5.1 Distributing a project with Dockerfile on GitHub

Using Dockerfile and GitHub to distribute image sources is almost identical to setting
up automated builds on hosted Docker image repositories. All the steps for using Git
to integrate your local Git repository with a repository on GitHub are the same. The
only difference comes in that you don’t create a Docker Hub account or repository.
Instead, your image consumers will clone your GitHub repository directly and use
docker build to build your image locally.

 Supposing a producer had an existing project, Dockerfile, and GitHub repository,
their distribution workflow would look like this:

git init
git config --global user.email "you@example.com"
git config --global user.name "Your Name"
git add Dockerfile
git add *whatever other files you need for the image*
git commit -m "first commit"
git remote add origin https://github.com/<your username>/<your repo>.git
git push -u origin master

Meanwhile, a consumer would use a general command set that looks like this:

git clone https://github.com/<your username>/<your repo>.git
cd <your-repo>
docker build -t <your username>/<your repo> .

These are all steps that a regular Git or GitHub user is familiar with, as shown in table 9.6.

Table 9.6 Performance of image source distribution via GitHub

Criteria Rating Notes

Cost Best There’s no cost if you’re using a public GitHub repository.

Visibility Best GitHub is a highly visible location for open source tools. It provides excel-
lent social and search components, making project discovery simple.

Distribution spectrum

ComplicatedSimple

Hosted registry
with public
repositories

Examples:
- Docker Hub
- Quay.io

Hosted registry
with private
repositories

Examples:
- Docker Hub
- Quay.io
- Tutum.co
- gcr.io

Private registries

Using registry software:
- Local private network
- Corporate network
- Private cloud
 infrastructure

Custom image
distribution

infrastructure

Examples:
- SFTP
- HTTP downloads
- Configuration
 management tools

Image source
distributions

Example:
- Include a Dockerfile
 with your project
 source

Figure 9.9 Using existing infrastructure to distribute image sources
ore/books/9781633430235

https://itbook.store/books/9781633430235

190 CHAPTER 9 Public and private software distribution

www.itbook
Image source distribution is divorced from all Docker distribution tools. By relying
only on the image builder, you’re free to adopt any distribution toolset available. If
you’re locked into a particular toolset for distribution or source control, this may be
the only option that meets your criteria.

9.6 Summary
This chapter covers various software distribution mechanisms and the value contrib-
uted by Docker in each. A reader that has recently implemented a distribution chan-
nel, or is currently doing so, might take away additional insights into their solution.
Others will learn more about available choices. In either case, it is important to make
sure that you have gained the following insights before moving on:

■ Having a spectrum of choices illustrates your range of options.
■ You should always use a consistent set of selection criteria in order to evaluate

your distribution options and determine which method you should use.
■ Hosted public repositories provide excellent project visibility, are free, and

require very little experience to adopt.
■ Consumers will have a higher degree of trust in images generated by automated

builds because a trusted third party builds them.

Transport
speed/size

Good By distributing image sources, you can leverage other registries for base
layers. Doing so will reduce the transportation and storage burden.
GitHub also provides a content delivery network (CDN). That CDN is
used to make sure clients around the world can access projects on
GitHub with low network latency.

Availability control Worst Relying on GitHub or other hosted version-control providers eliminates
any availability control.

Longevity control Bad Although Git is a popular tool and should be around for a while, you
forego any longevity control by integrating with GitHub or other hosted
version-control providers.

Access control Good GitHub or other hosted version-control providers do provide access con-
trol tools for private repositories.

Artifact integrity Good This solution provides no integrity for the images produced as part of
the build process, or of the sources after they have been cloned to the
client machine. But integrity is the whole point of version-control sys-
tems. Any integrity problems should be apparent and easily recoverable
through standard Git processes.

Secrecy Worst Public projects provide no source secrecy.

Requisite
Experience

Good Image producers and consumers need to be familiar with Dockerfile, the
Docker builder, and the Git tooling.

Table 9.6 Performance of image source distribution via GitHub

Criteria Rating Notes
.store/books/9781633430235

https://itbook.store/books/9781633430235

191Summary

www.itbook.st
■ Hosted private repositories are cost-effective for small teams and provide satis-
factory access control.

■ Running your own registry enables you to build infrastructure suitable for spe-
cial use cases without abandoning the Docker distribution facilities.

■ Distributing images as files can be accomplished with any file-sharing system.
■ Image source distribution is flexible but only as complicated as you make it.

Using popular source-distribution tools and patterns will keep things simple.
ore/books/9781633430235

https://itbook.store/books/9781633430235

Jeff Nickoloff

T
he idea behind Docker is simple. Create a tiny virtual
environment, called a container, that holds just your
application and its dependencies. The Docker engine

uses the host operating system to build and account for these
containers. They are easy to install, manage, and remove.
Applications running inside containers share resources,
making their footprints small.

Docker in Action teaches readers how to create, deploy, and
manage applications hosted in Docker containers. After start-
ing with a clear explanation of the Docker model, you will
learn how to package applications in containers, including
techniques for testing and distributing applications. You will
also learn how to run programs securely and how to manage
shared resources. Using carefully designed examples, the book
teaches you how to orchestrate containers and applications
from installation to removal. Along the way, you’ll discover
techniques for using Docker on systems ranging from
dev-and-test machines to full-scale cloud deployments.

What’s Inside
● Packaging containers for deployment
● Installing, managing, and removing containers
● Working with Docker images
● Distributing with DockerHub

Readers need only have a working knowledge of the Linux OS.
No prior knowledge of Docker is assumed.

A software engineer, Jeff Nickoloff has presented Docker and
its applications to hundreds of developers and administrators
at Desert Code Camp, Amazon.com, and technology meetups.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/docker-in-action

$49.99 / Can $57.99 [INCLUDING eBOOK]

Docker IN ACTION

SOFTWARE DEVELOPMENT

M A N N I N G

“All there is to know about
Docker. Clear, complete,

and precise.”
—Jean-Pol Landrain

Agile Partner Luxembourg

“A compelling narrative
for real-world Docker

 solutions. A must-read!”
—John Guthrie, Pivotal, Inc.

“An indispensable guide
to understanding Docker

and how it fi ts into
 your infrastructure.”
—Jeremy Gailor, Gracenote

“Will help you transition
quickly to effective Docker
use in complex real-world

situations.”
—Peter Sellars, Fraedom

SEE INSERT

www.itbook.store/books/9781633430235

https://itbook.store/books/9781633430235

	Nickoloff-Docker-SC
	Brief09
	SCh-09
	Nickoloff-Docker-ebook-back

