
M A N N I N G

Bruce Payette
Richard Siddaway

THIRD EDITION

S A M P L E C H A P T E R

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

Windows PowerShell in Action
Third Edition

by Bruce Payette
Richard Siddaway

 Chapter 11

 Copyright 2018 Manning Publications

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

vii

brief contents
1  ■  Welcome to PowerShell  1
2  ■  Working with types  46
3  ■  Operators and expressions  81
4  ■  Advanced operators and variables  114
5  ■  Flow control in scripts  154
6  ■  PowerShell functions  185
7  ■  Advanced functions and scripts  220
8  ■  Using and authoring modules  270
9  ■  Module manifests and metadata  314

10  ■  Metaprogramming with scriptblocks and dynamic code  351
11  ■  PowerShell remoting  405
12  ■  PowerShell workflows  458
13  ■  PowerShell Jobs  499
14  ■  Errors and exceptions  528
15  ■  Debugging  560
16  ■  Working with providers, files, and CIM  604
17  ■  Working with .NET and events  661
18  ■  Desired State Configuration  711
19  ■  Classes in PowerShell  761
20  ■  The PowerShell and runspace APIs  796

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

405

11PowerShell remoting

This chapter covers
■  ■ Commands with built-in remoting
■  ■ PowerShell remoting subsystem
■  ■ Using PowerShell remoting
■  ■ Remoting sessions, persistent connections, and

implicit remoting
■  ■ Remoting considerations and custom remoting

sessions

In a day when you don’t come across any problems, you can be sure that you are
traveling in the wrong path.

—Swami Vivekananda

PowerShell is a tool intended for enterprise and cloud management but if it can’t
manage distributed systems it isn’t useful. Fortunately, PowerShell has a compre-
hensive built-in remoting subsystem. This facility allows you to handle most remot-
ing tasks in any kind of configuration you might encounter.

In this chapter, we’re going to cover the features of remoting and how you can
apply them. We’ll use an example showing how to combine the features to solve
a nontrivial problem: monitoring multiple remote machines. We’ll then look at

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

406	 Chapter 11  PowerShell remoting

some of the configuration considerations you need to be aware of when using Power
Shell remoting.

Let’s start with a quick overview of PowerShell remoting.

11.1	 PowerShell remoting overview
The ultimate goal for remoting is to be able to execute a command on a remote com-
puter. There are two ways to approach this. First, you could have each command do its
own remoting. In this scenario, the command is still executed locally but uses system-
level networking capabilities like DCOM to perform remote operations. A number of
commands do this, which we’ll cover in the next section. The negative aspect of this
approach is that each command has to implement and manage its own remoting and
authentication mechanisms.

PowerShell includes a second, more general solution, allowing you to send a com-
mand (or pipeline of commands or even a script) to the target machine for execution
and then retrieve the results. With this approach, you only have to implement the
remoting mechanism once and then it can be used with any command. This second
solution is the one we’ll spend most of our time discussing. But first let’s look at the
commands that implement their own remoting.

11.1.1	 Commands with built-in remoting

A number of commands in PowerShell have a -ComputerName parameter, which allows
you to specify the target machine to access. You can discover (some of) these cmdlets
by running either of these commands:

PS> Get-Help * -Parameter ComputerName
PS> Get-Command -ParameterName ComputerName

CIM sessions
Common Information Model (CIM) sessions (see chapter 16) are closely related
to PowerShell remoting—they enable more efficient access to WMI classes on
remote machines. The cmdlets capable of using CIM sessions can be discovered
in a similar way:

PS> Get-Command -ParameterName Cimsession

For a new PowerShell v5.1 session on Windows 10, the majority of the cmdlets are listed
in table 11.1.

NOTE  The number of cmdlets you see will depend on the modules you have
on your machine. You won’t necessarily see identical results from the two
commands given earlier because Get-Help is dependent on analyzing the
help files.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 PowerShell remoting overview	 407

Table 11.1  Cmdlets with built-in remoting capability

Add-Computer Clear-EventLog Connect-PSSession

Enter-PSSession Get-EventLog Get-HotFix

Get-Process Get-Service Get-WmiObject

Invoke-Command Invoke-WmiMethod Limit-EventLog

New-EventLog New-PSSession Receive-Job

Receive-PSSession Register-WmiEvent Remove-Computer

Remove-EventLog Remove-PSSession Remove-WmiObject

Rename-Computer Restart-Computer Send-MailMessage

Set-DscLocalConfigurationManager Set-Service Set-WmiInstance

Show-EventLog Start-DscConfiguration Stop-Computer

Test-Connection Write-EventLog

NOTE  We’ve deliberately excluded the *WSMan* cmdlets from table 11.1. The
WSMan cmdlets are effectively deprecated and have been replaced by the
-CIM cmdlets (see chapter 16).

These commands do their own remoting because either the underlying infrastructure
already supports remoting or they address scenarios that are of particular importance
to system management. You need to supply only one or more computer names to use
them against a remote target:

PS> Get-Service -Name BITS -ComputerName W16TGT01, W16DSC02

 Status Name DisplayName
 ------ ---- -----------
Stopped BITS Background Intelligent Transfer Service
Stopped BITS Background Intelligent Transfer Service

You don’t get any indication of which result belongs to which machine by default. In
this case, you need to include the MachineName property in the output:

PS> Get-Service -Name BITS -ComputerName W16TGT01, W16DSC02 |
select Status, Name, MachineName

Status Name MachineName
 ------ ---- -----------
Stopped BITS W16DSC02
Stopped BITS W16TGT01

Self-remoting is performed using DCOM and RPC. These protocols will be blocked by
default by firewalls. Also, the set of commands that do self-remoting is quite small, so
the remaining commands must rely on the PowerShell remoting subsystem to access
remote computers. We’ll start looking at that in the next section.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

408	 Chapter 11  PowerShell remoting

11.1.2	 The PowerShell remoting subsystem

You’ve seen a few brief examples of how remoting works in previous chapters. You may
remember that all those examples used the same basic cmdlet: Invoke-Command. This
cmdlet allows you to remotely invoke a scriptblock on another computer and is the
building block for most of the features in remoting. The partial syntax for this com-
mand is shown in figure 11.1.

Invoke-Command [[-ComputerName] <string[]>] [-ScriptBlock] <scriptblock>
[-Credential <pscredential>] [-Port <int>] [-UseSSL]
[-ConfigurationName <string>] [-ApplicationName <string>]
[-ThrottleLimit <int>] [-AsJob] [-InDisconnectedSession]
[-SessionName <string[]>] [-HideComputerName] [-JobName <string>]
[-SessionOption <PSSessionOption>]
[-Authentication <AuthenticationMechanism>] [-EnableNetworkAccess]
[-InputObject <psobject>] [-ArgumentList <Object[]>]
[-CertificateThumbprint <string>] [<CommonParameters>]
[-VMId] <guid[]> -VMName <string[]> -ContainerId <string[]>
[[-ConnectionUri] <uri[]>]

Figure 11.1  Partial syntax for the Invoke-Command cmdlet, which is the core of
PowerShell’s remoting capabilities. This cmdlet is used to execute commands and
scripts on one or more computers. It can be used synchronously or asynchronously
as a job. The VMId, VMName, and ContainerId parameters were introduced with
PowerShell 5.1 and are valid only on Windows 10 and Windows Server 2016 (or later).

The Invoke-Command cmdlet is used to invoke a scriptblock on one or more computers.
You do so by specifying a computer name (or list of names) for the machines on which
you want to execute the command. For each name in the list, the remoting subsystem
will take care of all the details needed to open the connection to that computer, exe-
cute the command, retrieve the results, and then shut down the connection. If you’re
going to run the command on a large set of computers, Invoke-Command will also take
care of all resource management details, such as limiting the number of concurrent
remote connections. Our previous example becomes this:

PS> Invoke-Command -ScriptBlock {Get-Service -Name BITS} `
-ComputerName W16TGT01, W16DSC02

Status Name DisplayName PSComputerName
------ ---- ----------- --------------
Stopped BITS Background Intelligent Transfer Service W16DSC02
Stopped BITS Background Intelligent Transfer Service W16TGT01

Note that you now get the computer name that the result refers to in the output.
This is a simple but powerful model if you need to execute only a single command

or script on the target machine. But if you want to execute a series of commands on the
target, the overhead of setting up and taking down a connection for each command
becomes expensive. PowerShell remoting addresses this situation by allowing you to

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 PowerShell remoting overview	 409

create a persistent connection to the remote computer called a session. You do so by
using the New-PSSession cmdlet.

Both of the scenarios we’ve discussed so far involve what is called noninteractive remot-
ing because you’re only sending commands to the remote machines and then waiting
for the results. You don’t interact with the remote commands while they’re executing.

Another standard pattern in remoting occurs when you want to set up an interactive
session where every command you type is sent transparently to the remote computer.
This is the style of remoting implemented by tools like Remote Desktop, Telnet, or
SSH (Secure Shell).

NOTE  The PowerShell team has announced that SSH support will be built
into PowerShell. Basic terminal support will be available with Windows Server
2016. Full SSH integration with the PowerShell Remoting Protocol will be
introduced at a later date. Appendix A demonstrates SSH-based remoting
between Linux and Windows machines using PowerShell v6.

PowerShell allows you to start an interactive session using the Enter-PSSession cmdlet.
Use Exit-PSSession to close the session when you've finished working. If you enter a
remote session created by New-PSSession, then using Exit-PSSession will suspend the
session without closing the remote connection. Because the connection isn’t closed, you
can later reenter the session with all session data preserved by using Enter-PSSession
again. An example of an interactive session is given in figure 11.2.

Figure 11.2  Interactive remoting session to the computer W12R2SUS. Notice how
the PowerShell prompt changes to incorporate the remote machine name when you
enter the session.

These cmdlets—Invoke-Command, New-PSSession, and Enter-PSSession—are the basic
remoting tools you’ll be using. But before you can use them, you need to make sure
remoting is enabled, so we’ll look at that next.

11.1.3	 Enabling remoting

At this point we have some good news and some bad news for you. The good news is that
for Windows Server 2012 and later (including Windows Server 2012 R2 virtual machines
running in Azure IaaS), PowerShell remoting is enabled by default. The bad news is that

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

410	 Chapter 11  PowerShell remoting

for earlier versions of Window Server and for all versions of the Windows client operat-
ing system, PowerShell remoting is turned off by default and has to be enabled.

NOTE  You have to turn on PowerShell remoting for a machine to receive
and execute remote administration commands. You don’t need to turn on
remoting to send commands, though you will need to turn it on at least
temporarily to change client-side settings such as the TrustedHosts list on
the local machine.

You enable remoting using the Enable-PSRemoting cmdlet. To run this command, you
must have administrator privileges on the machine you’re going to enable. You need
to do the following:

■■ Start the PowerShell session with elevated privileges (Run As Administrator).
■■ Ensure that none of the network connections on the machine has a network

profile of Public. Use Get-NetConnectionProfile | Set-NetConnectionProfile
-NetworkCategory Private to set the network profile.

By default, Enable-PSRemoting runs silently with no output and no input required. You
can use the –Verbose and –Confirm parameters to see what’s happening, as shown in
figure 11.3.

Figure 11.3  Enabling PowerShell remoting on a machine

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 PowerShell remoting overview	 411

The Enable-PSRemoting command performs all the configuration steps needed to
allow users with local administrator privileges to remote to this computer in a domain
environment. In a non-domain or workgroup environment, as well as for non-admin
users, additional steps are required for remoting to work.

11.1.4	 Additional setup steps for workgroup environments

If you’re working in a workgroup environment—for example, at home—you must take
a few additional steps before you can connect to a remote machine. With no domain
controller available to handle the various aspects of security and identity, you have to
manually configure the names of the computers you trust. If you want to connect to the
computer computerItrust, then you have to add it to the list of trusted computers (or
TrustedHosts list).

You can do this via the WSMan: drive, as shown in table 11.2. Note that you need to be
running as administrator to be able to use the WSMan: provider. Once you’ve completed
these steps, you’re ready to start playing with some examples.

Table 11.2  Additional steps needed to enable remote access to a computer in a workgroup environment

Step Command Description

1 cd wsman:\localhost\client cd’ing into the client configuration node in the WSMan:
drive allows you to access the WS-MAN configuration for
this computer using the provider cmdlets.

2 $old = (Get-Item .\
TrustedHosts).Value

You’ll want to update the current value of the Trusted
Hosts item, so you get it and save the value in a
variable.

3 $old += ',computerItrust' The value of TrustedHosts is a string containing a
comma-separated list of the computers considered
trustworthy. You add the new computer name to the end
of this list, prefixed with a comma. (If you’re comfortable
with implicitly trusting any host, then set this string to *,
which matches any hostname.)

4 Set-Item .\TrustedHosts
$old

Once you’ve verified that the updated contents of
the variable are correct, you assign it back to the
TrustedHosts item, which updates the configuration.

A note on security
The computers in the TrustedHosts list are implicitly trusted by the local computer
when you add their names to this list. It’s not an incoming security feature like a
firewall. The identity of these computers won’t be authenticated when you connect
to them. Because the connection process requires sending credential information to
these machines, you need to be sure that you can trust these computers. Also, be
aware that the TrustedHosts list on a machine applies to everyone who uses that
computer, not only the user who changed the setting.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

412	 Chapter 11  PowerShell remoting

(Continued)

That said, unless you allow random people to install computers on your internal net-
work, this shouldn’t introduce substantial risk most of the time. If you’re comfortable
with knowing which machines you’ll be connecting to, you can put * in the Trusted-
Hosts list, indicating that you’re implicitly trusting any computer you might be con-
necting to. As always, security is a principle tempered with pragmatics.

An alternative way of validating the identity of the target computer is to use HTTPS
when connecting to that computer. This works because, in order to establish an
HTTPS connection, the target server must have a valid certificate installed where the
name in the certificate matches the server name. As long as the certificate is signed by
a trusted certificate authority you know that the server is the one it claims to be. Unfor-
tunately, this process does require that you have a valid certificate, issued by either a
commercial or local CA. This is an entirely reasonable requirement in an enterprise
environment but may not always be practical in smaller or informal environments.

11.1.5	 Authenticating the connecting user

In the previous section, you saw how the client verifies the identity of the target com-
puter. Now we’ll explore the converse of this—how the target computer verifies the
identity of the connecting user. PowerShell remoting supports a wide variety of ways of
authenticating a user, including NTLM and Kerberos. Each mechanism has its advan-
tages and disadvantages. The authentication mechanism also has an important impact
on how data is transmitted between the client and the server. Depending on how you
authenticate to the server, the data passed between the client and server may or may
not be encrypted. Encryption is extremely important in that it protects the contents
of your communications with the server against tampering and preserves privacy. If
encryption isn’t being used, you need to ensure the physical security of your network.
No untrusted access to the network can be permitted in this scenario. The possible
types of authentication are shown in table 11.3.

Table 11.3  Possible types of authentication available for PowerShell remoting

Auth type Description Encrypted payload

Default Use the authentication method specified by the WS-
Management Protocol.

Depends on what was
specified.

Basic Use Basic Authentication, part of HTTP, where the username and
password are sent unencrypted to the target server or proxy.

No. Use HTTPS to
encrypt the connection.

Digest Use Digest Authentication, which is also part of HTTP. This
mechanism supersedes Basic Authentication and encrypts the
credentials.

Yes.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Applying PowerShell remoting	 413

Table 11.3  Possible types of authentication available for PowerShell remoting (continued)

Auth type Description Encrypted payload

Kerberos The client computer and the server mutually authenticate using
the Kerberos network authentication protocol.

Yes.

Negotiate Negotiate is a challenge-response scheme that negotiates
with the server or proxy to determine the scheme to use for
authentication. For example, negotiation is used to determine
whether the Kerberos protocol or NTLM is used.

Yes.

CredSSP Use Credential Security Service Provider (CredSSP)
authentication, which allows the user to delegate credentials.
This mechanism, introduced with Windows Vista, is designed to
support the second-hop scenario, where commands that run on
one remote computer need to hop to another computer to do
something.

Yes.

For all the authentication types except Basic, the payload of the messages you send is
encrypted directly by the remoting protocol. If Basic authentication is chosen, you have
to use encryption at a lower layer—for example, by using HTTPS instead of HTTP.

11.1.6	 Enabling remoting in the enterprise

Remote administration is most likely to be performed against the servers in your
environment. As you’ve seen, the newer versions of Windows Server have PowerShell
remoting enabled by default. If you have older servers, you don’t want to have to
enable remoting on them individually because you may be dealing with tens, hun-
dreds, or thousands of machines. Obviously, you can’t use PowerShell remoting to turn
on remoting, so you need another way to push configuration out to a collection of
machines. This is exactly what Group Policy is designed for. You can use Group Policy
to enable and configure remoting as part of the machine policy that gets pushed out.

PowerShell depends on the WinRM (Windows Remote Management) service for its
operation. Your Group Policy needs to:

■■ Ensure the WinRM service will start automatically and is started.
■■ Configure WinRM to accept remoting requests.
■■ Configure Windows Firewall to allow remoting requests.

Instructions on creating a suitable Group Policy are available at http://mng.bz/3aHW.

11.2	 Applying PowerShell remoting
With remoting services enabled, you can start to use them to get your work done.
In this section, we’re going to look at ways you can apply remoting to solve manage-
ment problems. We’ll start with some simple remoting examples. Next, we’ll work
with more complex examples where we introduce concurrent operations. Then you’ll
apply the principles you’ve learned to solve a specific problem: how to implement a

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

414	 Chapter 11  PowerShell remoting

multi-machine configuration monitor. You’ll work through this problem in a series of
steps, adding more capabilities to your solution, resulting in a simple but fairly com-
plete configuration monitor. Let’s start with the most basic examples.

11.2.1	 Basic remoting examples

Building on our “Hello world” example from chapter 1, the most basic example of
remoting is

Invoke-Command -ComputerName Servername -ScriptBlock {'Hello world'}

The first thing to notice is that Invoke-Command takes a scriptblock to specify the actions.
This pattern should be familiar by now—you’ve seen it with ForEach-Object and
Where-Object many times. The Invoke-Command does operate a bit differently, though.
It’s designed to make remote execution as transparent as possible. For example, if you
want to sort objects, the local command looks like this:

PS> 1..3 | sort -Descending

Now if you want to do the sorting on the remote machine, you’d do this:

PS> 1..3 |
Invoke-Command -ComputerName localhost -ScriptBlock {sort -Descending}

You’re splitting the pipeline across local and remote parts, and the scriptblock is used
to demarcate which part of the pipeline should be executed remotely.

NOTE  Localhost is used to set a remote session to your local machine for testing
purposes. You could use the machine name if preferred or $ENV:COMPUTERNAME.

This works the other way as well:

PS> Invoke-Command -ComputerName localhost -ScriptBlock { 1..3 } |
sort -Descending

Here you’re generating the numbers on the remote computer and sorting them locally.
Scriptblocks can contain more than one statement. This implies that the semantics
need to change a bit. Whereas in the simple pipeline case streaming input into the
remote command was transparent, when the remote command contains more than
one statement, you have to be explicit and use the $input variable to indicate where
you want the input to go. That looks like the following:

PS> 1..3 | Invoke-Command -ComputerName localhost -ScriptBlock {
 'First'
 $input | sort -Descending
 'Last'
}
First
3

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Applying PowerShell remoting	 415

2
1
Last

The scriptblock argument to Invoke-Command in this case contains three statements.
The first emits the string 'First', the second does the sort on the input, and the third
emits the string 'Last'.

What happens if you don’t specify input? Nothing is emitted between 'First' and
'Last'. Because $input wasn’t specified, the input objects were never processed. You’ll
need to keep this in mind when you start to build a monitoring solution.

Now let’s look at how concurrency—multiple operations occurring at the same
time—impacts your scripts.

11.2.2	 Adding concurrency to the examples

In chapter 1, we talked about how each object passed completely through all states of
a pipeline, one by one. This behavior changes with remoting because the local and
remote commands run in separate processes that are executing concurrently. This
means you now have two threads of execution—local and remote—and that can have
an effect on the order in which things are executed. Consider the following statement:

PS> 1..3 | foreach { Write-Host $_ -ForegroundColor green;
$_; Start-Sleep 5 } | Write-Host

1
1
2
2
3
3

This statement sends a series of numbers down the pipeline. In the body of the foreach
scriptblock, the value of the current pipeline object is written to the screen (in green)
and then passed to the next state in the pipeline. This last stage also writes the object
to the screen (in standard color). Given that you know each object is processed com-
pletely by all stages of the pipeline, the order of the output is as expected. The first
number is passed to foreach, where it’s displayed and then passed to Write-Output,
where it’s displayed again, so you see the sequence 1, 1, 2, 2, 3, 3.

NOTE  Start-Sleep is used to build sufficient pauses into the execution so that
you can see what’s happening. Run the code without Start-Sleep to see the
difference.

Now let’s run this command again using Invoke-Command in the final stage:

PS> 1..3 | foreach {
 Write-Host -ForegroundColor green $_
 $_; Start-Sleep 5 } |
 Invoke-Command -ComputerName localhost -ScriptBlock { Write-Host }

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

416	 Chapter 11  PowerShell remoting

1
2
1
3
2
3

The order has changed—you see 1 and 2 from the local process in green on a color dis-
play, then you see 1 from the remote process (in your normal foreground text color),
and so on. The local and remote pipelines are executing at the same time, which is
what’s causing the changes to the ordering. Predicting the order of the output is made
more complicated by the use of buffering and timeouts in the remoting protocol.

You used the Start-Sleep command in these examples to force these visible differ-
ences. If you take out this command, you’ll get a different pattern:

PS> 1..3 | foreach { Write-Host $_ -ForegroundColor green ; $_ } |
 Invoke-Command -ComputerName localhost -ScriptBlock { Write-Host }

1
2
3
1
2
3

This time, all the local objects are displayed (in green) and then passed to the remot-
ing layer, where they’re buffered until they can be delivered to the remote connection.
This way, the local side can process all objects before the remote side starts to operate.
Concurrent operation and buffering make it appear a bit unpredictable, but if you
didn’t have the Write-Hosts in place, it would be unnoticeable. The important thing to
understand is that objects being sent to the remote end will be processed concurrently
with the local execution. That means the remoting infrastructure doesn’t have to buf-
fer everything sent from the local end before starting execution.

Up to now, you’ve been passing only simple commands to the remote end. But
because Invoke-Command takes a scriptblock, you can, in practice, send pretty much any
valid PowerShell script. You’ll take advantage of this fact in the next section when you
start to build your multi-machine monitor.

NOTE  Why does remoting require scriptblocks? Two reasons: Scriptblocks are
always compiled locally so you’ll catch syntax errors as soon as the script is
loaded, and using scriptblocks limits vulnerability to code injection attacks by
validating the script before sending it.

11.2.3	 Solving a real problem: multi-machine monitoring

In this section, you’re going to build a solution for a real management problem: multi-
machine monitoring. With this solution, you’re going to gather some basic health

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Applying PowerShell remoting	 417

information from the remote host. The goal is to use this information to determine
when a server may have problems such as out of memory, out of disk, or reduced per-
formance due to a high faulting rate. You’ll gather the data on the remote host and
return it as a hashtable so you can look at it locally.

Your requirements are as follows:

■■ Collect the amount of free space on the C: drive from the Get-PSDrive command.
■■ Collect the page fault rate retrieved using CIM (WMI).
■■ Collect the processes consuming the most CPU from Get-Process with a pipeline.
■■ Collect the processes that have the largest working set, also from Get-Process.
■■ Ensure the list of computers you monitor aren’t hardcoded into the script; the

computers to monitor will be listed in a file.
■■ Monitor each computer on specific days with the results stored in the file.
■■ Apply a throttle limit to control how many simultaneous machines are monitored.
■■ Parameterize the script for ease of use.

This listing shows a solution to the problem using the techniques you’ve learned so far
in the book.

Listing 11.1  Parameterized monitoring script

param (
 [string] $serverFile = 'servers.txt',
 [int] $throttleLimit = 10,
 [int] $numProcesses = 5

Define
parameters

b

)

$gatherInformation ={
Create
scriptblockc

 param ([int] $procLimit = 5)
 @{
 Date = Get-Date
 FreeSpace = (Get-PSDrive c).Free
 PageFaults = (Get-WmiObject `
 Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec
 TopCPU = Get-Process |
 Sort-Object CPU -Descending |
 Select-Object -First $procLimit
 TopWS = Get-Process |
 Sort-Object WS -Descending |
 Select-Object -First $procLimit
 }
}

$servers = Import-CSV $serverfile |

Get servers
to monitor

d

 Where-Object { $_.Day -eq (Get-Date).DayOfWeek } |
 foreach { $_.Name }

Invoke-Command -ThrottleLimit $throttleLimit -ComputerName $servers `
 -ScriptBlock $gatherInformation `
 -ArgumentList $numProcesses

Perform
monitoringe

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

418	 Chapter 11  PowerShell remoting

The first two parameters b are obvious: $ServerFile is the name of the file containing
the list of servers to check, and $throttleLimit is the throttle limit (number of simul-
taneous connections the monitoring script makes to remote machines). The default
throttle limit for Invoke-Command is 32. We’re deliberately lowering that to ensure we
don’t overload the local machine.

The third parameter, $numProcesses, controls the number of process objects to
include in the TopCPU and TopWS entries in the table returned from the remote host.
Although you could in theory trim the list that gets returned locally, you can’t add to it,
so you need to evaluate this parameter on the remote end to get full control. That means
it has to be a parameter to the remote command. This is another reason scriptblocks are
useful. You can add parameters to the scriptblock that’s executed on the remote end.

The scriptblock to be passed to the remote machines is defined c. Notice the
parameter on the scriptblock that’s executed on the remote end. That’s how the num-
ber of processes to return is passed to the remote server.

The list of servers is derived from the input file d. The contents of servers.txt would
look something like this:

Name,Day
W16DSC01,Monday
W16TGT01,Tuesday
W16PWA01,Wednesday
W16DSC02,Saturday
W16CN01,Thursday
W16AS01,Friday

When you load the servers, you’ll do some processing on this list to determine the cur-
rent day of the week and decide which servers need monitoring.

The final step e is to use Invoke-Command to send the scriptblock to the appropriate
servers. Figure 11.4 shows the script in action.

Figure 11.4  Listing 11.1 in action

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 PowerShell remoting sessions and persistent connections	 419

Listing 11.1 was saved as serverhealth.ps1. We decided we needed only the top three
processes rather than the default five. The data is returned as a hashtable. Notice that
the process data is embedded as objects. You’d need to perform further processing
locally if you wanted to drill down into the process objects.

The result is that, with a small amount of code, you’ve created a flexible framework
for an agentless distributed health monitoring system. With this system, you can run
this health model on any machine without having to worry about whether the script
is installed on that machine or whether the machine has the correct version of the
script. It’s always available and always the right version because the infrastructure is
pushing it out to the target machines. You can even have different files of server names
if required.

NOTE  What we’re doing here isn’t what most people would call monitoring,
which usually implies a continual semi-real-time mechanism for noticing
a problem and then generating an alert. This system is certainly not real
time, and it’s a pull model, not a push. This solution is more appropriate for
configuration analysis.

You now have an idea of how to use remoting to execute a command on a remote
server. This is a powerful mechanism, but sometimes you need to send more than one
command to a server; for example, you might want to run multiple data-gathering
scripts, one after the other, on the same machine. Because there’s a significant over-
head in setting up each remote connection, you don’t want to create a new connection
for every script you execute. Instead, you want to be able to establish a persistent con-
nection to a machine, run all the scripts, and then shut down the connection.

11.3	 PowerShell remoting sessions and persistent connections
In the previous section, you learned how to run individual scriptblocks on remote
machines. From the user’s point of view, the Invoke-Command operation is simple, but
under the covers the system has to do a lot of work creating, using, and deleting the
connection, which makes creating a new connection each time a costly proposition.
Also, you can’t maintain any state—things like variable settings or function defini-
tions—on the remote host.

To address these issues, in this section we’ll show you how to create persistent con-
nections called sessions that will give you much better performance when you want to
perform a series of interactions with the remote host as well as allow you to maintain
remote state. In the simplest terms, a session is the environment where PowerShell com-
mands are executed. This is true even when you run the console host, PowerShell.exe.
The console host program creates a local session that it uses to execute the commands
you type. This session remains alive until you exit the program. When you use remot-
ing to connect to another computer, you’re also creating one remote session for every
local session you remote from until explicitly closed. An instance of wsmprovhost.exe
per connecting session will run on the remote host as long as that session is open.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

420	 Chapter 11  PowerShell remoting

Each session contains all the things you work with in PowerShell—all the variables,
all the functions that are defined, and the history of the commands you typed—and
each session is independent of any other session. If you want to work with these ses-
sions, you need a way to manipulate them. You do this in the usual way: through objects
and cmdlets. PowerShell represents sessions as objects that are of type PSSession.

By default, every time you connect to a remote computer by name with Invoke
-Command, a new PSSession object is created to represent the connection to that remote
machine. If you’re going to run more than one command on a computer, you need
a way to create persistent connections to that computer. You can do this with New
-PSSession; the syntax for this cmdlet is shown in figure 11.5.

New-PSSession [[-ComputerName] <string[]>] [-Credential <pscredential>]
[-Name <string[]>] [-EnableNetworkAccess] [-Port <int>] [-UseSSL]
[-ConfigurationName <string>] [-ApplicationName <string>]
[-ThrottleLimit <int>] [-SessionOption <PSSessionOption>]
[-Authentication <AuthenticationMechanism>]
[-CertificateThumbprint <string>] [<CommonParameters>]

Figure 11.5  The syntax for the New-PSSession cmdlet. This cmdlet is used to create
persistent connections to a remote computer.

This command has many of the same parameters that you saw in Invoke-Command.
The difference is that, for New-PSSession, these parameters are used to configure the
persistent session instead of the transient sessions you saw being created by Invoke
-Command. The PSSession object returned from New-PSSession can then be used to
specify the destination for the remote command instead of the computer name.

The lifetime of the session begins with the call to New-PSSession and persists until
it’s explicitly destroyed by the call to Remove-PSSession. Let’s look at an example that
illustrates how much of a performance difference sessions can make. You’ll run Get
-Date five times using Invoke-Command and see how long it takes using Measure-Command
(which measures command execution time).

First, execute the test without sessions:

PS> Measure-Command { 1..5 |
foreach { Invoke-Command W16TGT01 {Get-Date} } } |
Format-Table -AutoSize TotalSeconds

TotalSeconds

 4.7129865

The result from Measure-Command shows that each operation appears to be taking a
little under one second. Modify the example to create a session at the beginning and
then reuse it in each call to Invoke-Command:

PS> Measure-Command {
 $s = New-PSSession W16TGT01
 1..5 |

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 PowerShell remoting sessions and persistent connections	 421

 foreach { Invoke-Command $s {Get-Date} }
 Remove-PSSession $s
} |
Format-Table -AutoSize TotalSeconds

TotalSeconds

 0.8096949

This output shows that it’s taking about one-sixth the time as the first command.
Increasing the number of remote invocations from 5 to 50 results in an execution
time of 1.4997587 seconds. Clearly, for this simple example, the time to set up and
break down the connection totally dominates the execution time. Other factors affect
real scenarios, such as network performance, the size of the script, and the amount of
information being transmitted. Still, it’s obvious that when multiple interactions are
required, using a session will result in substantially better performance.

The downside is that persistent sessions will monopolize your machine’s limited
resources, so if you forget to close a session, you may soon hit the limits set (max user
connections, max connections per server). Cleaning up unrequired sessions is defi-
nitely in your best interest. The two most expensive penalties with remoting are setting
up the session and serializing the return data. Filtering on the remote machine to
reduce the amount of data to be returned can also significantly improve performance.

11.3.1	 Additional session attributes

This section describes some PSSession attributes that can have an impact on the way
you write your scripts.

Sessions and hosts

The host application running your scripts can impact the portability of your scripts if
you become dependent on specific features of that host. (This is why PowerShell mod-
ule manifests include the PowerShellHostName and PowerShellHostVersion elements.)
Dependency on specific host functionality is a consideration with remote execution
because the remote host implementation is used instead of the normal interactive
host. This is necessary to manage the extra characteristics of the remote or job envi-
ronments. This host shows up as a process named wsmprovhost corresponding to the
executable wsmprovhost.exe. This host supports only a subset of the features available
in the normal interactive PowerShell hosts.

Session isolation

Another point is the fact that each session is configured independently when it’s cre-
ated, and once it’s constructed, it has its own copy of the engine properties, execu-
tion policy, function definitions, and so on. This independent session environment
exists for the duration of the session and isn’t affected by changes made in other ses-
sions. This principle is called isolation—each session is isolated from, and therefore not
affected by, any other session.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

422	 Chapter 11  PowerShell remoting

Only one command runs at a time

A final characteristic of a session instance is that you can run only one command (or
command pipeline) in a session at one time. If you try to run more than one command
at a time, a “session busy” error will be raised. But there’s some limited command
queuing: if there’s a request to run a second command synchronously (one at a time),
the command will wait up to four minutes for the first command to be completed
before generating the “session busy” error. But if a second command is requested to
run asynchronously—without waiting—the busy error will be generated immediately.

With some knowledge of the characteristics and limitations of PowerShell sessions,
you can start to look at how to use them.

11.3.2	 Using the New-PSSession cmdlet

In this section, you’ll learn how to use the New-PSSession cmdlet. Let’s start with an
example. First, you’ll create a PSSession on the local machine by specifying localhost
as the target computer:

PS> $s = New-PSSession -ComputerName localhost

NOTE  By default a user must be running with elevated privileges to create a
session on the local machine. You’ll see how to change the default setting later.

You now have a PSSession object in the $s variable that you can use to execute remote
commands. Earlier we said each session runs in its own process. You can confirm this
by using the $PID session variable to see what the process ID of the session process is.
First, run this code in the remote session

PS> Invoke-Command -Session $s -ScriptBlock {$PID}
9436

and you see that the process ID is 9436. When you get the value in the local session by
typing $PID at the command line, as shown here

PS> $PID
8528

you see that the local process ID is 8528.

NOTE  The numbers you see may well be different than those shown here. The
important point is that the $PID values are different when running locally and
through a remoting session.

Now define a variable in the remote session:

PS> Invoke-Command -Session $s -ScriptBlock {$x=1234}

With this command, you’ve set the variable $x in the remote session to 1234. This works
in much the same way as it does in the local case—changes to the remote environment

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 PowerShell remoting sessions and persistent connections	 423

are persisted across the invocations. You can define a function and make it reference
the $x variable you defined earlier:

PS> Invoke-Command -Session $s -ScriptBlock {
 function hi {"Hello there, x is $x"}
}
PS> Invoke-Command -Session $s -ScriptBlock {hi}
Hello there, x is 1234

You get the preserved value.

NOTE  We’ve had people ask whether other users on the computer can see
the sessions we’re creating. As mentioned earlier, this isn’t the case. Users
have access only to the remote sessions they create and only from the
sessions they were created from. There’s no way for one session to connect
to another session that it didn’t itself create. The only aspect of a session that
may be visible to another user is the existence of the wsmprovhost process
hosting the session.

As you’ve seen, remote execution is like the local case . . . well, almost. You have to
type Invoke-Command every time. If you’re executing a lot of interactive commands on
a specific machine, this task quickly becomes annoying. PowerShell provides a much
better way to accomplish this type of task, as you’ll see in the next section.

11.3.3	 Interactive sessions

In the previous sections, you learned how to issue commands to remote machines
using Invoke-Command. This approach is effective but gets annoying for more interac-
tive types of work. To make this scenario easier, you can start an interactive session using
the Enter-PSSession cmdlet. Once you’re in an interactive session, the commands you
type are automatically passed to the remote computer and executed without having to
use Invoke-Command. Let’s try this out. You’ll reuse the session you created in the previ-
ous section. In that session, you defined the variable $x and the function hi. To enter
interactive mode during this session, you’ll call Enter-PSSession, passing in the session
object, as shown in figure 11.6.

NOTE  Only interactive commands are transmitted when you use Enter
-PSSession. You can’t use it in a script and pass commands to the session.

As soon as you enter interactive mode, you see that the prompt changes: it now displays
the name of the machine you’re connected to and the current directory.

NOTE  The default prompt can be changed in the remote session in the same
way it can be changed in the local session. If you have a prompt definition
in your profile, you may be wondering why that wasn’t used. We’ll get to that
later when we look at some of the things you need to keep in mind when
using remoting.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

424	 Chapter 11  PowerShell remoting

Figure 11.6  Using a PSSession for interactive remoting

You can see from the code being run in the figure that the value of $x is preserved
(1234) and the hi function you defined is also available. Changing the value of $x and
then rerunning the hi function shows the new value displayed in the output.

You can exit an interactive remote session either by using the exit keyword or by
using the Exit-PSSession cmdlet. You see that the prompt changed back and the ses-
sion still exists. It will persist until explicitly removed with Remove-PSSession or the
PowerShell instance is closed. You can enter and exit a session as often as you need to
as long as it’s not removed in the interim.

Another useful feature to consider is the fact that you can have more than one ses-
sion open at a time. This means you can pop back and forth between multiple comput-
ers as needed, which makes dealing with multiple machines convenient.

More differences exist between the pattern where you used Invoke-Command for
each command and the interactive mode. In the non-interactive Invoke-Command
case, the remote commands send objects back, where they’re formatted on the local
machine. In the interactive remoting case, the objects are formatted on the remote
machine, and simple strings are sent to the local machine to be displayed. Usually
this won’t matter, but cultural information such as dates and object formatting may
be impacted.

Finally, as with the non-interactive remoting case, you can run an interactive ses-
sion in a temporary session by passing the name of the computer instead of an exist-
ing PSSession. Using the PSSession has the advantage that you can enter and exit the
remote session and have the remote state preserved between activities. If the name
of the computer is passed in, the connection will be torn down when you exit the
session. Because a remote session involves creating a remote host process, forgetting
to close your sessions can waste resources. At any point, you can use Get-PSSession to
get a list of the open sessions you currently have and use Remove-PSSession to close
them as appropriate.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 PowerShell remoting sessions and persistent connections	 425

By now, you should be comfortable with creating and using persistent remote ses-
sions. What we haven’t spent much time on yet is how to manage all these connections
you’re creating.

11.3.4	 Managing PowerShell sessions

Each PSSession is associated with an underlying Windows process. As such, it consumes
significant resources even when no commands are being executed in it. You should
delete PSSessions that are no longer needed. This reduces the memory usage and
similar drains on the remote system. At the same time, creating new PSSessions also
puts a load on the system, consuming additional CPU resources to create each new
process. When managing your resource consumption, you need to balance the cost of
creating new sessions against the overhead of maintaining multiple sessions. There’s
no hard-and-fast rule for deciding what this balance should be. In the end, you should
decide on an application-by-application basis.

To get a list of the existing PSSessions, you use the Get-PSSession command, and
to remove sessions that are no longer needed, you use the Remove-PSSession cmdlet.
The Remove-PSSession cmdlet closes the PSSession, which causes the remote process
to exit and frees up all the resources it held. Removing the session also frees up local
resources like the network connection used to connect to the remote session.

With PowerShell v2 you can view the sessions on the local machine, whereas Power-
Shell v3 and later enable you to see the sessions on remote as well as local machines.
On a local machine, you’ll see something like this:

PS> Get-PSSession |
Format-List Id, Name, ComputerName, ComputerType, State,
ConfigurationName, Availability

Id : 1
Name : Session1
ComputerName : W16TGT01
ComputerType : RemoteMachine
State : Opened
ConfigurationName : Microsoft.PowerShell
Availability : Available

The remote machine (use the –ComputerName parameter) may give you results like this:

PS> Get-PSSession -ComputerName W16TGT01 |
Format-List Id, Name, ComputerName, ComputerType, State,
ConfigurationName, Availability

Id : 1
Name : Session1
ComputerName : W16TGT01
ComputerType : RemoteMachine
State : Opened
ConfigurationName : Microsoft.PowerShell
Availability : Available

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

426	 Chapter 11  PowerShell remoting

Id : 3
Name : Session1
ComputerName : W16TGT01
ComputerType : RemoteMachine
State : Disconnected
ConfigurationName : Microsoft.PowerShell
Availability : Busy

In this case, the session with an Id of 1 (state is Opened) is the session created from your
local machine. The session with an Id of 3 is another session to the remote machine—
in this case, created from a third machine. We know this because we created them.
Unfortunately, there’s no way to tell who created a session connected to a remote
machine or from which machine it was created. Notice that session Id 3 is shown with
a state of Disconnected. This means you aren’t connected to it.

TIP  The ID number will change every time you access the sessions on the
remote machine created by a PowerShell session other than your own. It’s
worth giving your session distinctive names so that you can easily distinguish
between sessions.

On the client end, if you don’t explicitly remove the sessions or set timeouts, local
sessions will remain open until you end your PowerShell session. But what happens
if the client fails for some reason without closing its sessions? If the PowerShell ses-
sion is closed or the local machine crashes, the remote session will be terminated. If
network connectivity is lost or the session times out (the default is two hours), the
session may be put into a disconnected state. You can also put a session into a discon-
nected state manually.

NOTE  Commands continue to run in a disconnected session. You can even
deliberately create a disconnected session using the –InDisconnectedSession
parameter of Invoke-Command.

The sessions shown earlier in this section have been re-created with distinctive names:

PS> Get-PSSession -ComputerName W16TGT01 |
Format-Table Id, Name, ComputerName, State,
Availability -AutoSize

Id Name ComputerName State Availability
-- ---- ------------ ----- ------------
 4 FromW16AS01 W16TGT01 Opened Available
 5 FromW16DSC01 W16TGT01 Disconnected Busy

FromW16AS01 is the one from our local machine. That session can be disconnected:

PS> Disconnect-PSSession -Name FromW16AS01

Id Name ComputerName State Availability
-- ---- ------------ ----- ------------
 4 FromW16AS01 W16TGT01 Disconnected None

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 PowerShell remoting sessions and persistent connections	 427

Notice that state changes to Disconnected and availability changes to None. After clos-
ing the PowerShell session that created the session FromW16AS01 and opening a new
PowerShell session, using Get-PSSession to test for a session will return nothing as
expected—we haven’t created any remoting sessions in that PowerShell session.

Now try getting the sessions on the remote server we were working with:

PS> Get-PSSession -ComputerName W16TGT01 |
Format-Table Id, Name, ComputerName, State,
Availability -AutoSize

Id Name ComputerName State Availability
-- ---- ------------ ----- ------------
 1 FromW16AS01 W16TGT01 Disconnected None
 2 FromW16DSC01 W16TGT01 Disconnected Busy

You can reconnect to the session—in this case session FromW16AS01:

PS> Connect-PSSession -ComputerName W16TGT01
Connect-PSSession : Cannot connect PSSession "FromW16DSC01",
either because it is not in the Disconnected state, or it
is not available for connection.
At line:1 char:1
+ Connect-PSSession -ComputerName W16TGT01
+ ~~
 + CategoryInfo : InvalidOperation: ([PSSession]

W16TGT01:PSSession) [Connect-PSSession],
RuntimeExcept ion
 + FullyQualifiedErrorId : PSSessionConnectFailed,Microsoft.PowerShell.

Commands.ConnectPSSessionCommand

Id Name ComputerName ComputerType State Availability
-- ---- ------------ ------------ ----- ------------
 3 FromW16AS01 W16TGT01 RemoteMachine Opened Available

You can connect to the session FromW16AS01, but you can’t connect to the session from
the third machine because it already has an open connection (hold that thought).
Once connected, your session is available for use again:

PS> $s = Get-PSSession -Name FromW16AS01
PS> Invoke-Command -Session $s -ScriptBlock `
{Get-CimInstance Win32_OperatingSystem}

SystemDirectory BuildNumber Version PSComputerName
--------------- ----------- ------- --------------
C:\Windows\system32 14393 10.0.14393 W16TGT01
<output truncated for brevity>

If a session is disconnected from its original host, you can connect to it from either the
original host or another machine. After disconnecting the session FromW16DSC01 from
its original host and testing available sessions on the local machine,

PS> Get-PSSession -ComputerName W16TGT01 |
Format-Table Id, Name, ComputerName, State,
Availability -AutoSize

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

428	 Chapter 11  PowerShell remoting

Id Name ComputerName State Availability
-- ---- ------------ ----- ------------
 3 FromW16AS01 W16TGT01 Opened Available
 6 FromW16DSC01 W16TGT01 Disconnected None

you can see that the session FromW16DSC01 is disconnected and availability is shown as
None. Connect to it in a similar way as before:

PS> Connect-PSSession -Name FromW16DSC01 -ComputerName W16TGT01
PS> Get-PSSession -ComputerName W16TGT01 |
Format-Table Id, Name, ComputerName, State,
Availability -AutoSize

Id Name ComputerName State Availability
-- ---- ------------ ----- ------------
 3 FromW16AS01 W16TGT01 Opened Available
 7 FromW16DSC01 W16TGT01 Opened Available

Disconnected sessions created by you on the local or other machine can be recon-
nected and used as shown. You can even connect to disconnected sessions created
by other people as long as you have the credential details they used to create the
session originally.

You can also use a PowerShell remoting session for copying files to and from a
remote machine.

11.3.5	 Copying files across a PowerShell remoting session

PowerShell remoting is used to run commands on remote machines, as you saw in
earlier sections, and have the results returned to you. In PowerShell v2–v4 you couldn’t
copy files using a PowerShell remoting session. This changed in PowerShell v5 with the
introduction of the -FromSession and -ToSession parameters on the Copy-Item cmd-
let. Both of these new parameters take a single PSSession object as input.

This concept is best described by an example. Start by creating remoting sessions
to two machines:

PS> $s1 = New-PSSession -ComputerName W16TGT01
PS> $s2 = New-PSSession -ComputerName W16DSC02

Now create a file on a remote machine:

PS> Invoke-Command -Session $s1 -ScriptBlock {
Get-Process | Out-File -FilePath c:\scripts\proc.txt}

You can copy the file from the remote machine to the local machine:

PS> Copy-Item -Path c:\scripts\proc.txt -FromSession $s1

Check that it arrived and then copy it to the second machine:

PS> Copy-Item -Path proc.txt -Destination C:\Scripts\ -ToSession $s2

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Implicit remoting	 429

A simple check confirms that the copy occurred:

PS> Invoke-Command -Session $s2 `
-ScriptBlock {Get-ChildItem -Path C:\Scripts\}

Everyone looks at the sequence of commands and thinks we can combine the copy steps:

PS> Copy-Item -Path c:\scripts\proc.txt -Destination C:\Scripts\ `
-FromSession $s1 -ToSession $s2
Copy-Item : '-FromSession' and '-ToSession' are mutually exclusive and cannot

be specified at the same time.
At line:1 char:1
+ Copy-Item -Path c:\scripts\proc.txt -Destination C:\Scripts\ -FromSe ...
+ ~~~
 + CategoryInfo : InvalidArgument: (Microsoft.Power...namicParame

ters:CopyItemDynamicParameters) [Copy-Item],
 ArgumentException
 + FullyQualifiedErrorId : InvalidInput,Microsoft.PowerShell.Commands.

CopyItemCommand

Unfortunately, we can’t. The -FromSession and -ToSession parameters are mutually
exclusive.

NOTE  This isn’t obvious from the help file because the parameters are shown in
the same parameter set and their mutual exclusivity isn’t mentioned in the text.

You can copy multiple files across a PowerShell remoting session using wildcards to
define the files.

11.4	 Implicit remoting
When doing non-interactive remoting, you have to call Invoke-Command every time you
want to execute a remote operation. You can avoid this task by using Enter-PSSession
to set up a remote interactive session. This approach makes remote execution easy but
at the cost of making local operations difficult. In this section, we’ll look at a mecha-
nism that makes both local and remote command execution easy. This mechanism is
called implicit remoting.

NOTE  For implicit remoting to work, the execution policy on the client machine
has to be configured to allow scripts to run, typically by setting it to RemoteSigned.
This is necessary because implicit remoting generates a temporary module, and
PowerShell must be allowed to execute scripts in order to load this module. If
execution policy is set to Restricted or AllSigned, it won’t be able to do this.
This requirement applies only to the local client machine. A remote server can
still use a more restrictive policy. See section 7.1.1 for more information about
execution policy.

The goals of implicit remoting are to make the fact that remote operations are occur-
ring invisible to the user and to have all operations look as much like local operations
as possible. You can accomplish this goal by generating local proxy functions that run the

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

430	 Chapter 11  PowerShell remoting

remote commands under the covers. The user calls the local proxy, which takes care of
the details involved in making the remote command invocation.

The net effect is that everything looks like a local operation because everything is a
local operation.

11.4.1	 Using implicit remoting

To set up the remote proxy functions mentioned in the previous section, use the
Import-PSSession cmdlet. The syntax for this cmdlet is shown in figure 11.7.

Import-PSSession [-Session] <PSSession> [[-CommandName] <string[]>]
[[-FormatTypeName] <string[]>] [-Prefix <string>] [-DisableNameChecking]
[-AllowClobber] [-ArgumentList <Object[]>]
[-CommandType <CommandTypes>] [-Module <string[]>]
[-FullyQualifiedModule <ModuleSpecification[]>]
[-Certificate <X509Certificate2>] [<CommonParameters>]

Figure 11.7  The syntax for the Import-PSSession cmdlet. This cmdlet is used to
create local proxy commands that invoke the corresponding remote command on the
target computer.

Let’s explore how this cmdlet works by walking through an example. You’ll create a
PSSession and then define a function in that session. The goal is to be able to execute
this remote function as though it were defined locally. You want to implicitly remote
the function. To do that, you call Import-PSSession, which generates a function that
you can call locally. This local function does the remote call on your behalf—it acts as
your proxy.

You’ll begin by creating the connection to a remote machine. You may need to get
credentials for the remote host.

NOTE  In a domain environment, this step is unnecessary as long as your user
account has sufficient privileges to access the remote endpoint. But if you
want to log on as a different user, credentials will be required.

Establish a session on the remote machine, using credentials if necessary, as shown in
figure 11.8.

Next, you’ll use Invoke-Command to define a new function on the remote machine.
This is the command you’ll import:

PS> Invoke-Command -Session $s -ScriptBlock {
function Get-Bios {Get-WmiObject Win32_Bios}}

The new remote function, called Get-Bios, uses Windows Management Instrumenta-
tion (WMI) to retrieve information about the BIOS on the remote machine. Invoke
this function through explicit remoting using Invoke-Command so you can see that it

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Implicit remoting	 431

Figure 11.8  Example of implicit remoting

returns a set of information about the BIOS on the remote machine. Now use Import-
PSSession to create a local proxy for this command:

PS> Import-PSSession -Session $s -CommandName Get-Bios

ModuleType Version Name ExportedCommands
---------- ------- ---- ----------------
Script 1.0 tmp_4qxsxsjw.5m2 Get-Bios

You might recognize the output from this command—it’s the same thing you see when
you do Get-Module. You now have a local Get-Bios command. Try running it:

PS> Get-Bios

SMBIOSBIOSVersion : Hyper-V UEFI Release v1.0
Manufacturer : Microsoft Corporation
Name : Hyper-V UEFI Release v1.0
SerialNumber : 8265-3792-6973-7306-2850-7895-37
Version : VRTUAL - 1

You get the same result you saw when you did the explicit remote invocation but with-
out having to do any extra work to access the remote machine. The proxy command

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

432	 Chapter 11  PowerShell remoting

did that for you. This is the goal of implicit remoting: to make the fact that the com-
mand is being executed remotely invisible.

NOTE  This is a useful technique because you need to import the Exchange
management module into your session if you’re administering an Exchange
server over a PowerShell remoting session.

Let’s see how it all works.

11.4.2	 How implicit remoting works

When the user requests that a command be imported, a message is sent to the remote
computer for processing. The import request processor looks up the command and
retrieves the metadata (the CommandInfo object) for that command. That metadata is
processed to simplify it, removing things like complex type attributes. Only the core
remoting types are passed along. This metadata is received by the local machine’s
proxy function generator. It uses this metadata to generate a function that will implic-
itly call the remote command.

Let’s take a closer look at what the generated proxy looks like. You can see the
imported Get-Bios command using Get-Command:

PS> Get-Command Get-Bios

CommandType Name Version Source
----------- ---- ------- ------
Function Get-Bios 1.0 tmp_4qxsxsjw.5m2

The output shows that you have a local function called Get-Bios. You can look at the
definition of that function by using the Definition property on the CommandInfo object
returned by Get-Command.

Listing 11.2  Definition of the Get-Bios proxy function

param(
 [switch]${AsJob}
)

Begin {
 try {
 $positionalArguments =
 & $script:NewObject collections.arraylist
 foreach ($parameterName in
 $PSBoundParameters.BoundPositionally)
 {
 $null = $positionalArguments.Add(
 $PSBoundParameters[$parameterName])
 $null = $PSBoundParameters.Remove($parameterName)
 }
 $positionalArguments.AddRange($args)

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Implicit remoting	 433

 $clientSideParameters =
 Get-PSImplicitRemotingClientSideParameters`
 $PSBoundParameters $False

 $scriptCmd = { & $script:InvokeCommand `
 @clientSideParameters `
 -HideComputerName `
 -Session (Get-PSImplicitRemotingSession `
 -CommandName 'Get-Bios') `
 -Arg ('Get-Bios', $PSBoundParameters,
 $positionalArguments) `
 -Script { param($name, $boundParams,
 $unboundParams) & $name @boundParams
 @unboundParams }`
 }

 $steppablePipeline =
 $scriptCmd.GetSteppablePipeline($myInvocation.CommandOrigin)
 $steppablePipeline.Begin($myInvocation.ExpectingInput,
 $ExecutionContext)
 } catch {
 throw
 }
 }
 Process {
 try {
 $steppablePipeline.Process($_)
 } catch {
 throw
 }
 }
 End {
 try {
 $steppablePipeline.End()
 } catch {
 throw
 }
 }

 # .ForwardHelpTargetName Get-Bios
 # .ForwardHelpCategory Function
 # .RemoteHelpRunspace PSSession

Even though this output has been reformatted a bit to make it more readable, it’s a
pretty complex function and uses many of the more sophisticated features covered in
previous chapters. It uses advanced functions, splatting, scriptblocks, and steppable
pipelines. Fortunately, you never have to write these functions yourself.

NOTE  You don’t have to create proxy functions for this particular scenario,
but in section 11.5.2 you saw how this technique can be powerful in extending
the PowerShell environment.

The Import-PSSession cmdlet does this for you. It will create a proxy function for
each command it’s importing, which could lead to many commands. As well as

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

434	 Chapter 11  PowerShell remoting

generating proxy functions on your behalf, Import-PSSession creates a module to
contain these functions.

The module name and path are temporary generated names. This module also
defines an OnRemove handler (see chapter 9) to clean up when the module is removed.
To see the contents of the module, you can look at the temporary file that was created
by using the module’s Path property:

PS> Get-Content (Get-Command Get-Bios).Module.Path

Alternatively, you can save the session to an explicitly named module for reuse with
Export-PSSession. You’ll save this session as a module called bios:

PS> Export-PSSession -OutputModule bios -Session $s `
-type function -CommandName Get-Bios -AllowClobber

 Directory: C:\Users\Richard\Documents\WindowsPowerShell\Modules\bios

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 08/05/2017 11:51 99 bios.format.ps1xml
-a---- 08/05/2017 11:51 528 bios.psd1
-a---- 08/05/2017 11:51 11627 bios.psm1

Executing this command creates a new module in your user module directory. It cre-
ates the script module file (.psm1), the module manifest (.psd1), and a file contain-
ing formatting information for the command. You use the -AllowClobber parameter
because the export is using the remote session to gather the data. If it finds a command
being exported that already exists in the caller’s environment, that would be an error.
Because Get-Bios already exists, you have to use -AllowClobber.

Import the module into a new PowerShell session—remember to open it with ele-
vated privileges:

PS> Import-Module bios

It returns right away. It can do this because it hasn’t set up the remote connection yet.
This will happen the first time you access one of the functions in the module. Run
Get-Bios:

PS> Get-Bios
Creating a new session for implicit remoting of "Get-Bios" command...
The term 'Get-Bios' is not recognized as the name of a cmdlet, function,

script file, or operable program. Check the spelling of the name, or if
a path was included, verify that the path is correct and try again.
 + CategoryInfo : ObjectNotFound: (Get-Bios:String) [],

CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException
 + PSComputerName : W16TGT01

When you run this command, you see a message indicating that a new connection is
being created. But then you get an error saying the command Get-Bios isn’t found.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Considerations when running commands remotely	 435

That’s because you’re dynamically adding the function to the remote session. When
you establish a new session, because you’re not adding the function, it isn’t there. In
the next section, we’ll describe how to create remote endpoints that always contain
your custom functions. There are a few other issues you need to be aware of when run-
ning commands remotely. We’ll look at those next.

11.5	 Considerations when running commands remotely
When you run commands on multiple computers, you need to be aware, at least to
some extent, of how the execution environment can differ on the target machines.
For example, the target machine may be running a different version of the operating
system or it may have a different processor. There may also be differences in which
applications are installed, how files are arranged, or where things are placed in the
registry. In this section, we’ll look at a number of these issues. Don’t be put off by these
issues—they’re not meant to scare you. They’re edge cases you need to be aware of to
get the most out of PowerShell remoting.

11.5.1	 Remote session startup directory

When a user connects to a remote computer, the system sets the startup directory for the
remote session to a specific value. This value will change depending on the version of
the operating system on the target machine. If the machine is running Windows Vista,
Windows Server 2003 R2, or a later version of Windows, the default starting location
for the session is the user’s home directory, which is typically C:\Users\<UserName>.

On Windows Server 2003, the user’s home directory is also used: C:\Documents\
Settings\<UserName>. For Windows XP, the default user’s home directory is used: C:\
Documents\Settings\Default User.

NOTE  Windows Server 2003 and Windows XP are no longer supported by
Microsoft and so should be less likely to be found in use with time. But from
experience we can say that unsupported operating systems can easily linger
for 10 years or more because of a special application that has to run on a
particular version of Windows.

The default starting location can be obtained from either the $ENV:HOMEPATH environ-
ment or the PowerShell $HOME variable. By using these variables instead of hardcoded
paths in your scripts, you can avoid problems related to these differences.

11.5.2	 Profiles and remoting

Most PowerShell users eventually create a custom startup script or profile that they
use to customize their environment. These customizations typically include defin-
ing convenience functions and aliases. Although profiles are a great feature for cus-
tomizing local interactive sessions, if the convenience commands they define are
used in scripts that you want to run remotely, you’ll encounter problems. That’s
because your profiles aren’t run automatically in remote sessions, and that means the

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

436	 Chapter 11  PowerShell remoting

convenience commands defined in the profile aren’t available in the remote session.
In fact, the $PROFILE variable, which points to the profile file, isn’t even populated
for remote sessions.

As a best practice, for production scripting you should make sure your scripts never
become contaminated with elements defined by your profiles. One way to test this is to
run the script from PowerShell.exe with the -NoProfile option, which looks like this:

powershell -NoProfile -File myscript.ps1

This command will run the script without loading your profile. If the script depends
on anything defined in the profile, it will generate errors.

But for remote interactive sessions, it’d be nice to have the same environment every-
where. You can accomplish this by using Invoke-Command with the -FilePath parameter
to send your profile file to the remote machine and execute it there. The set of com-
mands you need to accomplish this are:

PS> $c = Get-Credential
PS> $s = New-PSSession -Credential $c -ComputerName targetComputer
PS> Invoke-Command -Session $s -FilePath $PROFILE
PS> Enter-PSSession $s

First, you get the credential for the target machine (this typically won’t be needed in
the domain environment). Next, you create a persistent session to the remote com-
puter. Then you use -FilePath on Invoke-Command to execute the profile file in the
remote session. With the session properly configured, you can call Enter-PSSession to
start your remote interactive session with all your normal customizations.

Alternatively, sometimes you may want to run a profile on the remote machine
instead of your local profile. Because $PROFILE isn’t populated in your remote session,
you’ll need to be clever to make this work. The key is that although $PROFILE isn’t set,
$HOME is. You can use this to compose a path to your profile on the remote computer.
The revised list of commands looks like this:

PS> $c = Get-Credential
PS> $s = New-PSSession -Credential $ -ComputerName targetComputer

PS> Invoke-Command -Session $s {
 . "$home\Documents\WindowsPowerShell\profile.ps1" }
PS> Enter-PSSession $s

This command dot-sources (see section 7.1.4) the profile file in the user’s directory on
the remote machine into the session.

NOTE  This script won’t work on XP or Windows Server 2003. Change the
script to use "$home\Documents and Setting\WindowsPowerShell\profile.ps1"
as the profile path.

In this section, you learned how to cause your profile to be used to configure the
remote session environment. Next, we’ll examine another area where these variations
can cause problems.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Considerations when running commands remotely	 437

11.5.3	 Issues running executables remotely

PowerShell remoting allows you to execute the same types of commands remotely as
you can locally, including external applications or executables. The ability to remotely
execute commands like shutdown to restart a remote host or ipconfig to get network
settings is critical for system management.

For the most part, console-based commands will work properly because they read
and write only to the standard input, output, and error pipes. Commands that won’t
work are ones that directly call the Windows Console APIs, like console-based editors
or text-based menu programs. The reason is that no console object is available in the
remote session. Because these applications are rarely used any longer, this fact typically
won’t have a big impact. But there are some surprises. For example, the net command
will work fine most of the time, but if you do something like this (which prompts for
a password)

PS> net use p: '\\machine1\c$' /user:machine1\user1 *
Type the password for \\machine1\c$:

in a remote session, you’ll get an error:

[machine1]: > net use p: '\\machine1\c$' /user:machine1\user1 *
net.exe : System error 86 has occurred.
 + CategoryInfo : NotSpecified: (System error 86 has
 occurred.:String) [], RemoteException
 + FullyQualifiedErrorId : NativeCommandError

The specified network password is not correct.
Type the password for \\machine1\c$:
[machine1]: >

This command prompts for a password and returns an empty string.
The other kind of program that won’t work properly is commands that try to open a

user interface (also known as “try to pop GUI”) on the remote computer. The program
starts, but no window will appear. If the command eventually completes, control will be
returned to the caller and things will be more or less fine. But if the process is blocked
while waiting for the user to provide some input to the invisible GUI, the command
will hang and you must stop it manually by pressing Ctrl-C. If the keypress doesn’t
work, you’ll have to use some other mechanism to terminate the process.

One thing we can guarantee is that you’ll need to access files—but when you’re
working remotely, how do you know which files you’re using?

11.5.4	 Using files and scripts

When you enter an interactive PowerShell session and access a file, such as a script
or text file, you’re obviously using the file on the remote machine. Remember that
an interactive session is effectively like running a PowerShell session directly on the
machine. But what about when you use Invoke-Command either directly or through a
remoting session?

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

438	 Chapter 11  PowerShell remoting

We’re going to be running a number of commands to the remote computer (W16TGT01),
so we’ll create a remoting session:

PS> $s = New-PSSession -ComputerName W16TGT01

On the W16TGT01 machine, a file exists with these two lines:

Write-Host 'Run from W16TGT01'
Write-Host $env:COMPUTERNAME

You know that Invoke-Command is used to run commands through a remoting session:

PS> Invoke-Command -Session $s -ScriptBlock {C:\Scripts\PiA3e\FileTest.ps1}
Run from W16TGT01
W16TGT01

Sometimes you may have a script on your local machine that you need to run on
remote machines. One solution would be to copy the script to the remote machines
and run it as in the previous example. That would be inefficient if you’re dealing with
hundreds or thousands of machines.

You can run a local script through a remoting session. Given a script on the local
machine

Write-Host 'Run from W16AS01'
Write-Host $env:COMPUTERNAME

the –FilePath parameter is used to invoke a local script:

PS> Invoke-Command -Session $s -FilePath C:\Scripts\PiA3e\FileTest.ps1
Run from W16AS01
W16TGT01

Notice that the computer name that’s reported is the remote machine rather than the
local machine, even though you’re running the script from your local disk.

One of the tenets of PowerShell remoting is isolation, but you can access local vari-
ables as well as local scripts.

11.5.5	 Using local variables in remote sessions

When you use a variable in the scriptblock of a command sent to a remote machine, the
assumption is that the variable is defined only in the session for the remote machine.
For example, define a variable locally:

PS> $myvar = 123

Now, using the remoting session from the previous section (re-create a session if you
closed that session), invoke a command using a variable with the same name:

PS> Invoke-Command -Session $s -ScriptBlock {"myvar is $myvar"}
myvar is

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Considerations when running commands remotely	 439

In the output of the command, you can see that the variable value was not made
available in the remote session. In chapters 6 and 7 we discussed scope modifiers
and, for instance, how you can use variables from the global scope in your functions
by prefixing them with $global:. PowerShell remoting provides a similar (but not
identical) mechanism to allow you to use local variables in remote sessions, by using
the $using: prefix. Let’s try the previous example again, but this time we’ll prefix the
variable with $using:

PS> Invoke-Command -Session $s -ScriptBlock {"myvar is $using:myvar"}
Myvar is 123

Here’s what’s happening: By prefixing the variable name with $using (introduced in
PowerShell v3), you’re telling PowerShell to copy the local value of the variable into the
remote session. You’re using the local variable in the remote session. Where this differs
from scope modifiers is that it’s one-way only. Changing the variable in the remote ses-
sion won’t change the value of the local value. In fact, if you try to change the value of
the $using variable in the remote session, you’ll get an error:

PS> Invoke-Command -Session $s { $using:myvar = 13 }
At line:1 char:30
+ invoke-command -localhost { $using:myvar = 13 }
+ ~~~~~~~~~~~~
The assignment expression is not valid. The input to an assignment operator

must be an object that is able to accept assignments, such as a variable
or a property.

 + CategoryInfo : ParserError: (:) [],
ParentContainsErrorRecordException

 + FullyQualifiedErrorId : InvalidLeftHandSide

Now let’s look at more areas where accessing the console can cause problems and how
to avoid these problems.

11.5.6	 Reading and writing to the console

As you saw in the previous section, executables that read and write directly to the console
won’t work properly. The same considerations apply to scripts that do things like call the
System.Console APIs directly themselves. For example, call the [Console]::WriteLine()
and [Console]::ReadLine() APIs in a remote session:

[machine1]: > [Console]::WriteLine('hi')
[machine1]: >
[machine1]: > [Console]::ReadLine()
[machine1]: >

Neither of these calls works properly. When you call the [Console]::WriteLine() API,
nothing is displayed, and when you call the [Console]::ReadLine() API, it returns
immediately instead of waiting for input.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

440	 Chapter 11  PowerShell remoting

It’s still possible to write interactive scripts, but you have to use the PowerShell host
cmdlets and APIs:

[machine1]: > Write-Host Hi
Hi
[machine1]: >
[machine1]: > Read-Host "Input"
Input: some input
some input

If you use these cmdlets as shown in the example, you can read and write to and from
the host, and the remoting subsystem will take care of making everything work.

With console and GUI issues out of the way, let’s explore how remoting affects the
objects you’re passing back and forth.

11.5.7	 Remote output vs. local output

Much of the power in PowerShell comes from the fact that it passes around objects
instead of strings. In this section, you’ll learn how remoting affects these objects.

When PowerShell commands are run locally, you’re working directly with the live
.NET objects, which means that you can use the properties and methods on these
objects to manipulate the underlying system state. The same isn’t true when you’re
working with remote objects. Remote objects are serialized—converted into a form that
can be passed over the remote connection—when they’re transmitted between the cli-
ent and the server, and deserialized when received by the client machine.

NOTE  The biggest difference you’ll find is that the objects returned from a
remoting session don’t have any of the methods you’d have available from the
same object generated locally.

Typically, you can use deserialized objects as you’d use live objects, but you must be
aware of their limitations. Another thing to be aware of is that the objects that are
returned through remoting will have had properties added that allow you to deter-
mine the origin of the command.

PowerShell serialization

Because you can’t guarantee that every computer has the same set of types, the Power
Shell team chose to limit the number of types that serialize with fidelity, where the
remote type is the same type as the local type and the object is fully re-created at the
receiving end. To address the restrictions of a bounded set of types, types that aren’t
serialized with fidelity are serialized as a collection of properties, also called a property
bag. This property bag has a special property, TypeNames, which records the name of the
original type. The serialization code takes each object and adds all its properties to the
property bag. Recursively, it looks at values of each the members. If the member value
isn’t one of the ones supported with fidelity, a new property bag is created, with mem-
bers of the member’s values added to it, and so on. This approach preserves structure
if not the type and allows remoting to work uniformly everywhere.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Considerations when running commands remotely	 441

Default serialization depth

The approach we have described allows any object to be encoded and transferred
to another system. But there’s another thing to consider: objects have members
that contain objects that contain members, and so on. The full tree of objects and
members can be complex. Transferring all the data makes the system unmanageably
slow. This is addressed by introducing the idea of serialization depth. The recursive
encoding of members stops when this serialization depth is reached. The default for
objects is 1.

The final source of issues when writing portable, remotable scripts has to do with
processor architectures and the operating system differences they entail. We’ll work
through this final set of issues in the next section of this chapter.

11.5.8	 Processor architecture issues

The last potential source of problems we’ll explore is the fact that the target machine
may be running on a different processor architecture (64-bit versus 32-bit) than the local
machine. If the remote computer is running a 64-bit version of Windows and the
remote command is targeting a 32-bit session configuration, such as Microsoft.Power
Shell32, the remoting infrastructure loads a Windows 32-bit process on a Windows
64-bit (WOW64) process, and Windows automatically redirects all references to the
$ENV:Windir\System32 directory to the $ENV:WINDIR\SysWOW64 directory. For
the most part, everything will still work (that’s the point of the redirection), unless you
try to invoke an executable in the System32 directory that doesn’t have a correspond-
ing equivalent in the SysWOW64 directory.

To find the processor architecture for the session, you can check the value of the
$ENV:PROCESSOR_ARCHITECTURE variable. The following command finds the processor
architecture of the session in the $s variable. Try this first with the 32-bit configuration:

PS> Invoke-Command -ConfigurationName microsoft.powershell32 `
-ComputerName localhost { $ENV:PROCESSOR_ARCHITECTURE }
x86

You get the expected x86 result, indicating a 32-bit session, and on the 64-bit configuration

PS> Invoke-Command -ConfigurationName microsoft.powershell `
-ComputerName localhost { $ENV:PROCESSOR_ARCHITECTURE }
AMD64

you get AMD64, indicating a 64-bit configuration.
This is the last remoting consideration we’re going to look at in this chapter. Don’t

let these issues scare you—remember, they’re mostly edge cases. With some attention
to detail, the typical script should have no problems working as well remotely as it does
locally. The PowerShell remoting system goes to great lengths to facilitate a seamless
remote execution experience. But it’s always better to have a heads-up on some of the
issues so you’ll know where to start looking if you run into a problem.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

442	 Chapter 11  PowerShell remoting

Up to now we’ve been using the default remoting configuration. In the next sec-
tion, we’ll look at how you can create and configure your own specialized remoting
configuration.

11.6	 Building custom remoting services
So far, we’ve looked at remoting from the service consumer perspective. It’s time for
you to take on the role of service creator instead.

The most common remoting scenario for administrators is the one-to-many con-
figuration, in which one client computer connects to a number of remote machines
in order to execute remote commands on those machines. This is called the fan-out
scenario because the connections fan out from a single point, and this is what you’ve
been using in the previous sections.

In enterprises and hosted solution scenarios, you’ll find the opposite configura-
tion, where many client computers connect to a single remote computer, such as a file
server or a kiosk. This many-to-one arrangement is known as the fan-in configuration.
This mechanism is used when remote connecting to Exchange servers or Active Direc-
tory domain controllers.

Windows PowerShell remoting supports both fan-out and fan-in configurations.
In the fan-out configuration, PowerShell remoting connects to the remote machine
using the WinRM service running on the target machine. When the client connects to
the remote computer, the WS-MAN protocol is used to establish a connection to the
WinRM service. The WinRM service then launches a new process (wsmprovhost.exe)
that loads a plug-in that hosts the PowerShell engine.

PowerShell remoting protocols
The transport mechanism used in PowerShell remoting consists of a five-layer stack.
The stack (from top to bottom) consists of the following:

■■ The PowerShell Remoting Protocol (MS-PSRP)—https://msdn.microsoft.com/
en-us/library/dd357801.aspx

■■ WS-MAN (implemented by the WinRM service)—http://mng.bz/DB74 and
https://msdn.microsoft.com/en-us/library/cc251395.aspx.

■■ Simple Object Access Protocol (SOAP)—Provides an XML-based messaging
framework

■■ HTTP and HTTPS
■■ TCP/IP

Creating a new process for each session is fine if there aren’t many users connect-
ing to the service. But if several connections are expected, as is the case for a high-
volume service, the one-process-per-user model won’t scale well. To address this
issue, an alternate hosting model, targeted at developers, is available for building

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Building custom remoting services	 443

custom fan-in applications on top of PowerShell remoting. Instead of using the
WinRM service to host WS-MAN and the PowerShell plug-in, Internet Information
Services (IIS) is used. In this model, instead of starting each user session in a sepa-
rate process, all the PowerShell sessions are run in the same process along with the
WS-MAN protocol engine.

Having all the sessions running in the same process has certain implications.
Because PowerShell lets you get at pretty much everything in a process, multiple users
running unrestricted in the same process could interfere with one another. On the
other hand, because the host process persists across multiple connections, it’s possible
to share process-wide resources like database connections between sessions.

Given the lack of session isolation, this approach isn’t intended for full-featured
general-purpose PowerShell remoting. Instead, it’s designed for use with constrained,
special-purpose applications using PowerShell remoting. To build these applications,
you need two things:

■■ A way to create a constrained application environment
■■ A way to connect to PowerShell remoting so the user gets the environment

you’ve created instead of the default PowerShell configuration

We’ll start with the second one first and look at how you specify custom remoting
endpoints.

11.6.1	 Working with custom configurations

When connecting to a computer by name through PowerShell remoting, the remoting
infrastructure will always connect to the default PowerShell remoting service. In the
non-default connection case, you also have to specify the configuration on the target
computer to connect to. A configuration is made up of three elements:

■■ The name you use to connect to the endpoint
■■ A script that will be run to configure the sessions that will run in the endpoint
■■ An ACL used to control who has access to the endpoint

When using the Invoke-Command, New-PSSession, or Enter-PSSession cmdlets, you can
use the -ConfigurationName parameter to specify the name of the session configura-
tion you want to connect to. Alternatively, you can override the normal default configu-
ration by setting the $PSSessionConfigurationName preference variable to the name of
the endpoint you want to connect to.

When you connect to the named endpoint, a PowerShell session will be created,
and then the configuration script associated with the endpoint will be executed. This
configuration script should define the set of capabilities available when connecting to
that endpoint. For example, there may be different endpoints for different types of
management tasks—managing a mail server, managing a database server, or manag-
ing a web server. For each task, a specific endpoint would be configured to expose the
appropriate commands (and constraints) required for performing that task.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

444	 Chapter 11  PowerShell remoting

11.6.2	 Creating a custom configuration

Continuing our theme of remote monitoring from section 11.2.3, let’s create a con-
figuration that exposes a single custom command, Get-PageFaultRate. This command
will return the page fault rate from the target computer.

Session configuration

Every remoting connection will use one of the named configurations on the remote
computer. These configurations set up the environment for the session and determine
the set of commands visible to users of that session.

When remoting is initially enabled, a default configuration is created on the
system called Microsoft.PowerShell (on 64-bit operating systems, there’s also the
Microsoft.PowerShell32 endpoint). This endpoint is configured to load the default
PowerShell configuration with all commands enabled. The security descriptor for
this configuration is set so that only members of the local Administrators group can
access the endpoint.

You can use the session configuration cmdlets to modify these default session con-
figurations, to create new session configurations, and to change the security descrip-
tors of all the session configurations. These cmdlets are shown in table 11.4.

Table 11.4  The cmdlets for managing the remoting endpoint configurations

Cmdlet Description

Disable-PSSessionConfiguration Denies access to the specified session configuration
on the local computer by adding an “Everyone
AccessDenied” entry to the access control list (ACL) on
the configuration

Enable-PSSessionConfiguration Enables existing session configurations on the local
computer to be accessed remotely

Get-PSSessionConfiguration Gets a list of the existing, registered session
configurations on the computer

Register-PSSessionConfiguration Creates and registers a new session configuration

Set-PSSessionConfiguration Changes the properties of an existing session
configuration

Unregister-PSSessionConfiguration Deletes the specified registered session configurations
from the computer

New-PSSessionConfigurationFile Creates a PowerShell data language file (see module
manifests) with a .pssc extension that defines a
session configuration

Test-PSSessionConfigurationFile Validates the contents of a session configuration file,
verifying that the keys and values in the file are all valid
(introduced in PowerShell v4).

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Building custom remoting services	 445

Registering the endpoint configuration

Endpoints are created using the Register-PSSessionConfiguration cmdlet and are
customized by registering a startup script. In this example, you’ll use a simple startup
script that defines a single function, Get-PageFaultRate. The script looks like this:

PS> @'
function Get-PageFaultRate {
 (Get-WmiObject Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec
}
'@ > Initialize-HMConfiguration.ps1

Before you can use this function, you need to register the configuration, specifying
the full path to the startup script. Call this new configuration wpia1. From an elevated
PowerShell session, run the following command to create the endpoint:

PS> Register-PSSessionConfiguration -Name wpia1 `
-StartupScript $pwd/Initialize-HMConfiguration.ps1 -Force

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Type Keys Name
---- ---- ----
Container {Name=wpia1} wpia1

The output of the command shows that you’ve created an endpoint in the WSMan
plug-in folder. To confirm this use (see figure 11.9), run the following:

PS> dir wsman:\localhost\plugin

Figure 11.9  Remoting endpoints including the newly created wpia1

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

446	 Chapter 11  PowerShell remoting

This shows a list of all the existing endpoints, including the one you created, wpia1.
Now test this endpoint with Invoke-Command and run the function defined by the
startup script:

PS> Invoke-Command localhost -ConfigurationName wpia1 {
Get-PageFaultRate }
68200956

This code verifies that the endpoint exists and is properly configured. Now clean up by
unregistering the endpoint:

PS> Unregister-PSSessionConfiguration -Name wpia1 -Force

Rerun the dir command in figure 11.9 to verify that the endpoint has been removed.
This covers the basic tasks needed to create a custom PowerShell remoting end-

point using a configuration script to add additional functionality to the session
defaults. Our ultimate goal, though, is to create a custom endpoint with reduced func-
tionality, exposing a restricted set of commands to qualified users, so clearly, we
aren’t finished yet. There are two remaining pieces to look at: controlling individual
command visibility, which we’ll get to in a while, and controlling overall access to the
endpoint, our next topic.

11.6.3	 Access controls and endpoints

By default, only members of the Administrators group on a computer have permis-
sion to use the default session configurations. To allow users who aren’t part of the
Administrators group to connect to the local computer, you have to give those users
Execute permissions on the session configurations for the desired endpoint on the
target computer. For example, if you want to enable non-administrators to connect to
the default remoting Microsoft.PowerShell endpoint, you can do so by running the
following command:

PS> Set-PSSessionConfiguration Microsoft.PowerShell `
-ShowSecurityDescriptorUI

This code launches the dialog box shown in figure 11.10.
You add the name of a user or a group you want to enable to the list, then select

the Execute (Invoke) check box. Then dismiss the dialog box by clicking OK. At this
point, you’ll get a prompt telling you that you need to restart the WinRM service for
the change to take effect. Do so by running Restart-Service winrm as shown here:

PS> Restart-Service winrm

Once the service is restarted, the user or group you’ve enabled can connect to the
machine using remoting.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Building custom remoting services	 447

Figure 11.10  This dialog box is used to enable the Execute permission on the default remoting
configuration. Use this dialog box to allow a user who isn’t a member of the Administrators group
to connect to this computer using PowerShell remoting.

Setting security descriptors on configurations

When Enable-PSRemoting creates the default session configuration, it doesn’t create
explicit security descriptors for the configurations. Instead, the configurations inherit
the security descriptor of the RootSDDL. The RootSDDL is the security descriptor that
controls remote access to the listener, which is secure by default. To see the RootSDDL
security descriptor, run the Get-Item command as shown:

PS> Get-Item wsman:\localhost\Service\RootSDDL

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Service

Type Name SourceOfValue Value
---- ---- ------------- -----
System.String RootSDDL O:NSG:BAD:P(A;;GA;;;BA)

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

448	 Chapter 11  PowerShell remoting

 (A;;GR;;;IU)
 S:P(AU;FA;GA;;;WD)
 AU;SA;GXGW;;;WD)

The string format shown in the Value output in the example uses the syntax defined
by the Security Descriptor Definition Language (SDDL), which is documented in the
Windows Data Types specification MS-DTYP in section 2.5.1 at http://mng.bz/QpKC.

To change the RootSDDL, use the Set-Item cmdlet in the WSMan: drive. To change
the security descriptor for an existing session configuration, use the Set-PSSession-
Configuration cmdlet with the -SecurityDescriptorSDDL or -ShowSecurityDescriptorUI
parameter.

At this point, you know how to create and configure an endpoint and how to con-
trol who has access to that endpoint. But in your configuration, all you’ve done is add
new commands to the set of commands you got by default. You haven’t addressed the
requirement to constrain the environment.

11.6.4	 Constraining a PowerShell session

In section 11.6.2 you saw how to create a new remoting endpoint using Register
-PSSessionConfiguration, and in the previous section you saw how to control who can
access a particular endpoint. In this section, you’ll learn how to control, or constrain,
what can be done through a particular endpoint. This involves limiting the variables
and commands available to the user of the session. You accomplish this by controlling
command and variable visibility. You’re creating a constrained endpoint.

The idea behind a constrained endpoint is that it allows you to provide controlled
access to services on a server in a secure manner. This is the mechanism that the hosted
Exchange product Outlook.com uses to constrain who gets to manage which sets of
mailboxes. The mechanism can also be used in PowerShell Web Access to control
access to a server and the commands that can be run on that server.

In PowerShell v2 you had to create a complex script to configure a new endpoint.
The script involved manipulating the visibility of cmdlets and variables plus the defini-
tion of any new functionality you required.

In PowerShell v3 and later this task became much simpler thanks to the introduction
of the New-PSSessionConfigurationFile cmdlet; the syntax is shown in figure 11.11.

The only required parameter is the path to the new configuration file:

PS> New-PSSessionConfigurationFile -Path .\Defaults.pssc

Configuration files are given a .pssc extension. The .pssc file structure is similar to a
module manifest; it’s a big PowerShell hashtable with name-value pairs. If you examine
defaults.pssc (see download) produced by the example, you’ll see that you can control
a large number of configuration items, including these:

■■ Execution policy (controls which, if any, scripts can be run)
■■ Language mode

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Building custom remoting services	 449

New-PSSessionConfigurationFile [-Path] <string> [-SchemaVersion <version>]
[-Guid <guid>] [-Author <string>] [-CompanyName <string>]
[-Copyright <string>] [-Description <string>]
[-PowerShellVersion <version>] [-SessionType<SessionType>]
[-ModulesToImport <Object[]>] [-Toolkits <string[]>]
[-AssembliesToLoad <string[]>] [-VisibleAliases<string[]>]
[-VisibleCmdlets <Object[]>] [-VisibleFunctions <Object[]>]
[-VisibleProviders <string[]>] [-AliasDefinitions <IDictionary[]>]
[-FunctionDefinitions <IDictionary[]>] [-VariableDefinitions <Object>]
[-RoleDefinitions <IDictionary>] [-EnvironmentVariables <IDictionary>]
[-TypesToProcess <string[]>] [-FormatsToProcess<string[]>]
[-LanguageMode <PSLanguageMode>] [-ExecutionPolicy <ExecutionPolicy>]
[-ScriptsToProcess <string[]>] [<CommonParameters>]

Figure 11.11  New-PSSessionConfigurationFile syntax

■■ Session type
■■ PowerShell version
■■ Existing aliases, cmdlets, functions, and providers that are visible in the endpoint
■■ New aliases, functions, and variables to create for the endpoint
■■ Format and type files to load and scripts to process

Language mode for a session configuration controls the types of things that can be
executed in a session. The more secure you need the session to be, the more restrictive
the language mode session should be. The options are shown in table 11.5.

Table 11.5  Remoting endpoint language options

Option Meaning

FullLanguage All PowerShell language elements are permitted.

ConstrainedLanguage Commands that contain scripts to be evaluated are not allowed. User
access is restricted to .NET framework types, objects, or methods.
(This is the mode that PowerShell runs in on WinRT devices.)

RestrictedLanguage Users may run cmdlets and functions. Scriptblocks aren’t allowed. Only
the following variables are allowed: $PSCulture, $PSUICulture,
$True, $False, and $Null. Basic comparison operators are allowed.
Assignment statements, property references, and method calls aren’t
permitted. (This is the language mode used in module manifests,
sometimes also called data language mode because it can only
describe data.)

NoLanguage Users may run simple pipelines containing cmdlets and functions. No
language elements such as scriptblocks, variables, or operators are
permitted in the pipeline.

As you progress down the table, the things you can do in the endpoint become more
limited until Nolanguage, when you’re only allowed to run basic pipelines containing
cmdlets and functions. The session capabilities are also controllable by restricting the

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

450	 Chapter 11  PowerShell remoting

list of cmdlets and functions available to a user. For example, you can restrict the func-
tionality of an endpoint so that a user can only reset their password in Active Directory!

The session type works in conjunction with the language mode. The session type
options are listed in table 11.6.

Table 11.6  Session options for remoting endpoints

Option Meaning Default
language mode

Default Adds the Microsoft.PowerShell.Core snap-in
to the session. This includes the Import
-Module and Add-PSSnapin cmdlets so
users can import other modules and snap-
ins unless you explicitly prohibit the use of
the cmdlets.

FullLanguage

RestrictedRemoteServer Includes only the following proxy functions:
Exit-PSSession, Get-Command,
Get-FormatData, Get-Help,
Measure-Object, Out-Default,
and Select-Object. Use New
-PSSessionConfigurationFile
to add modules, functions, scripts, and
other features to the session.

NoLanguage

Empty No modules or snap-ins are added
to the session by default. Use New
-PSSessionConfigurationFile to
add modules, functions, scripts, and other
features to the session. This option is
designed for you to create custom sessions
by adding selected commands. If you don’t
add commands to an empty session, the
session is limited to expressions and might
not be usable.

NoLanguage

You can explicitly control the visibility of PowerShell elements using the –Visible*
parameters shown in figure 11.11. This is a “white list” action. If a cmdlet or other ele-
ment isn’t on the list, you won’t see it and therefore you won’t be able to use it directly.

TIP  When using the –Visible* parameters, if you don’t want to make
anything visible for a particular type of command, don’t use the parameter. A
commented-out default value will be written to the .pssc file.

An example of an extremely constrained endpoint is provided in the following listing.

Listing 11.3  ComplexConstrainedConfiguration.ps1

New-PSSessionConfigurationFile `
-Path .\ComplexConstrainedConfiguration.pssc `
-Schema '1.0.0.0' `

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Building custom remoting services	 451

-Author 'Richard' `
-Copyright '(c) PowerShell in Action Third Edition. All rights reserved.' `
-CompanyName 'PowerShell in Action' `
-Description 'Complex Constrained Configuration.' `
-ExecutionPolicy RemoteSigned `
-PowerShellVersion '5.0' `
-LanguageMode NoLanguage `
-SessionType RestrictedRemoteServer `
-FunctionDefinitions @{Name='Get-HealthModel';ScriptBlock={@{
 Date = Get-Date
 FreeSpace = (Get-PSDrive c).Free
 PageFaults = (Get-WmiObject `
 Win32_PerfRawData_PerfOS_Memory).PageFaultsPersec
 TopCPU = Get-Process | Sort-Object -Descending CPU
 TopWS = Get-Process | Sort-Object -Descending WS
 }};Options='None'} `
-VisibleProviders 'FileSystem','Function','Variable'

The execution policy is set to RemoteSigned, but in reality, you won’t be able to run
scripts, as you’ll see in a while. Language mode is set to NoLanguage (see table 11.5) and
session type to RestrictedRemoteServer (table 11.6). Three providers are made visible,
but no modules, cmdlets, aliases, or variables are made available in the session.

A function to get the health of the system is defined and will be created when the
endpoint is created. Run the script in listing 11.3 to create a configuration file. The
fidelity of a configuration file can be tested:

PS> Test-PSSessionConfigurationFile -Path `
.\ComplexConstrainedConfiguration.pssc -Verbose
True

In the event of an error in the file, you will see the error only if you use the –Verbose
parameter:

PS> Test-PSSessionConfigurationFile -Path .\ErrorConfiguration.pssc `
-Verbose

VERBOSE: The member 'LanguageMode' must be a valid enumeration type "System.
Management.Automation.PSLanguageMode".

Valid enumeration values are "FullLanguage,RestrictedLanguage,NoLanguage,
ConstrainedLanguage". Change the member to the correct type in the file C:\

MyData\PowerShellinAction3e\Code\Chapter11\ErrorConfiguration.pssc.
False

Creating the endpoint is performed with Register-PSSessionConfiguration. In the
following example, any existing instances of the endpoint are removed—a useful tech-
nique when testing:

PS> Unregister-PSSessionConfiguration -Name wpiaccs -Force
PS> Register-PSSessionConfiguration –Path ` .\

ComplexConstrainedConfiguration.pssc -Name wpiaccs -Force

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

452	 Chapter 11  PowerShell remoting

Type Keys Name
---- ---- ----
Container {Name=wpiaccs} wpiaccs

You can see the new endpoint:

PS> dir WSMan:\localhost\Plugin\

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Type Keys Name
---- ---- ----
Container {Name=Event Forwarding Plugin} Event Forwarding Plugin
Container {Name=microsoft.powershell} microsoft.powershell
Container {Name=microsoft.powershell.w... microsoft.powershell.workflow
Container {Name=microsoft.powershell32} microsoft.powershell32
Container {Name=microsoft.windows.serv... microsoft.windows.server...
Container {Name=SEL Plugin} SEL Plugin
Container {Name=WMI Provider} WMI Provider
Container {Name=wpiaccs} wpiaccs

A remoting session can be created to the new endpoint. Notice that you have to
give the name of the configuration (endpoint) that you used when performing the
registration:

PS> $s = New-PSSession -ComputerName localhost -ConfigurationName wpiaccs

The session can now be used as normal. Let’s start by checking the commands available:

PS> Invoke-Command -Session $s -ScriptBlock {Get-Command | select Name}

Name PSComputerName RunspaceId
---- -------------- ----------
Clear-Host localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147
Exit-PSSession localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147
Get-Command localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147
Get-FormatData localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147
Get-HealthModel localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147
Get-Help localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147
Measure-Object localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147
Out-Default localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147
Select-Object localhost 0377a4f9-5924-4cb0-83f9-a87f8a335147

NOTE  When you look at this list of commands, you may wonder why some of
them are included. For example, Measure-Object seems like a strange thing
to have on the list. The reason these commands are included is that they’re
needed to implement some of the elements of the PowerShell Remoting
Protocol. In particular, they’re used to help with the command-discovery
component described in the PowerShell Remoting Protocol Specification
(MS-PSRP) section 3.1.4.5, “Getting Command Metadata.”

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Building custom remoting services	 453

Compare that with the results on the machine we’re using to test the code for this book:

PS> Get-Command | Measure-Object | select Count

Count

 2658

Our session is constrained! You’ll notice that the function we defined, Get-HealthModel,
is in the list of commands. Let’s check that it works:

PS> Invoke-Command -Session $s -ScriptBlock {get-healthmodel}

Name Value
---- -----
Date 08/05/2017 12:57:29
TopWS {System.Diagnostics.Proces…
PageFaults 146394771
FreeSpace 67302338560
TopCPU {System.Diagnostics…

The observant reader will have noticed that we used Get-Date in the function, but it
isn’t in the list of commands we obtained from Get-Command. Does this mean we can
use it directly even though we didn’t explicitly make it visible in our configuration
definition?

PS> Invoke-Command -Session $s -ScriptBlock {Get-Date}
The term 'Get-Date' is not recognized as the name of a cmdlet, function,
script file, or operable program. Check the spelling of the name, or if a
path was included, verify that the path is correct and try again.

And the answer is no! This is an important point to understand because it’s the key
to creating a restricted special-purpose endpoint: an external call can only access visible
commands, but these commands, because they’re defined as part of the configuration,
can see all the other commands in the configuration. This means that an externally vis-
ible command can call any internal commands in the session. If the user makes an exter-
nal call to a visible command, that visible command is able to call the private commands.

NOTE  All the error messages in this section will be truncated to show only the
error text for brevity.

What about using it in a script block or function?

PS> Invoke-Command -Session $s -ScriptBlock { & {Get-Date}}
The syntax is not supported by this runspace. This can occur if the runspace
is in no-language mode.

PS> Invoke-Command -Session $s -ScriptBlock {function MyGetDate { [string]
(Get-Date) }; MyGetDate}

The syntax is not supported by this runspace. This can occur if the runspace
is in no-language mode.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

454	 Chapter 11  PowerShell remoting

If you want to be able to create functions and scriptblocks, you need to be using Full-
Language mode in your endpoint. What about adding extra modules into the end-
point—modules provide extra functionality? Let’s see what modules you have available:

PS> Invoke-Command -Session $s -ScriptBlock {Get-Module -ListAvailable}
The term 'Get-Module' is not recognized as the name of a cmdlet, function,
script file, or operable program. Check thespelling of the name, or if a path
was included, verify that the path is correct and try again.

You can’t see any modules so you can’t load them because you don’t know what’s on
the system. You might think about trying to import modules that you know are present,
but it will fail. The endpoint is locked down to prevent any further functionality being
imported. The function we defined as part of our configuration used variables. Can
you use variables in your endpoint?

PS> Invoke-Command -Session $s -ScriptBlock {$x = 123; $x}
The syntax is not supported by this runspace. This can occur if the runspace
is in no-language mode.

No, they’re not allowed. There’s still a lot of functionality in legacy commands that you
may think to use:

PS> Invoke-Command -Session $s -ScriptBlock {ping 127.0.0.1}
The term 'PING.EXE' is not recognized as the name of a cmdlet, function,
script file, or operable program. Check the spelling of the name, or if a
path was included, verify that the path is correct and try again.

Notice that the full name of the executable was recognized—but you’re not allowed to
run it. The final piece of functionality you may try is to run a script. You can try a simple
script testch11.ps1 consisting of

Get-Service | Sort-Object Status

Try this:

PS> Invoke-Command -Session $s -ScriptBlock {C:\TestScripts\testch11.ps1}
The term 'C:\TestScripts\testch11.ps1' is not recognized as the name of a
cmdlet, function, script file, or operable program. Check the spelling of the
name, or if a path was included, verify that the path is correct and try again.

Again, the endpoint won’t allow you to run anything beyond what it’s been told is
allowed. You do have a constrained remoting session.

NOTE  The example we’ve used is extreme but was designed to illustrate that
you can create an endpoint and control exactly what functionality is exposed.

Step back and think about what you’ve accomplished here. With a few lines of code,
you’ve defined a secure remote service. From the users’ perspective, by using Import
-PSSession they’re able to install the contents of the session to use the services you
expose—by connecting to the service.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 PowerShell Direct	 455

Constrained sessions combined with implicit remoting results in an extremely flex-
ible system, allowing you to create precise service boundaries with little server-side
code and no client code. Consider how much code would be required to create an
equivalent service using alternate technologies!

We’ll close the chapter with a new remoting feature introduced with PowerShell v5.

11.7	 PowerShell Direct
You normally use the computer name to define the remote machine for PowerShell
remoting, whether you’re using an interactive session, a persistent session, or Invoke
-Command in standalone mode (no persistent session). PowerShell v5.1 supplies some
new options. You can use a Hyper-V virtual machine name (not necessarily the same as
the computer name) or the virtual machine ID (a GUID).

The options to use a virtual machine name or ID apply only under these circumstances:

■■ The virtual machine must be running on the local host.
■■ You must be logged on to the Hyper-V host as a Hyper-V administrator.
■■ You must supply valid credentials for the virtual machine—not domain credentials.
■■ The host operating system must be Windows 10, Windows Server 2016, or later.
■■ The virtual machine operating system must be Windows 10, Windows Server

2016, or later.

You can use the virtual machine name or ID to connect, but it’s usually easier to use
the name:

PS> Get-VM | where State -eq 'Running' |
select Name, Id

Name Id
---- --
W16AS01 2a1eabc2-e3cd-495c-a91f-51a1ad43104c
W16DSC01 867c8460-a4fb-4785-9b7c-f27c9351db3c
W16TGT01 be4a5a3f-fc20-49f9-bb0f-b575c85e5734

Create a credential for the administrator account on the remote machine and then use
the virtual machine name to connect:

PS> $cred = Get-Credential -Credential W16TGT01\Administrator
PS> Invoke-Command -VMName W16TGT01 -ScriptBlock {Get-Process} `
-Credential $cred

Either of these options will also work:

PS> Invoke-Command -VMId be4a5a3f-fc20-49f9-bb0f-b575c85e5734 `
-ScriptBlock {Get-Process} -Credential $cred

PS> Invoke-Command -VMGuid be4a5a3f-fc20-49f9-bb0f-b575c85e5734 `
-ScriptBlock {Get-Process} -Credential $cred

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

456	 Chapter 11  PowerShell remoting

NOTE  VMGuid is an alias for VMId.

You can create a persistent remoting session:

PS> $s = New-PSSession -VMName W16TGT01 -Credential $cred
PS> Invoke-Command -Session $s -ScriptBlock {Get-Process}

Or you can work interactively:

PS> Enter-PSSession -VMName W16TGT01 -Credential $cred
[W16TGT01]: PS C:\Users\Administrator\Documents>
Use Exit-PSSession to close the interactive session.

There are a few things you need to remember when using PowerShell Direct:

■■ It’s only for Hyper-V virtual machines.
■■ You can ignore network and firewall configurations; you’re connecting over the

VM bus rather than the network.
■■ PowerShell must be run with elevated privileges.

And with this, we’ve come to end of our coverage of the remoting features in PowerShell.

11.8	 Summary
■■ Many PowerShell commands have built-in remoting using a -ComputerName

parameter.
■■ Cmdlets with built-in remoting use a variety of connectivity mechanisms includ-

ing DCOM and RPC.
■■ Invoke-Command uses WS-MAN for remote connectivity.
■■ You can create an interactive remoting session with Enter-PSSession.
■■ Interactive remoting sessions are closed with Exit-PSSession.
■■ Windows Server 2012 and later enable remoting by default. Azure IAAS virtual

machines running Server 2012 R2 or higher also enable PowerShell remoting
by default.

■■ All client operating systems and Windows Server 2008 R2 and earlier need remot-
ing enabled by running Enable-PSRemoting.

■■ Additional configuration may be required in a non-domain environment.
■■ Users are authenticated using Kerberos in a domain environment when creating

remoting sessions.
■■ Other authentication mechanisms are available for non-domain scenarios.
■■ New-PSSession is used to create a persistent remoting session.
■■ Invoke-Command and interactive sessions can use an existing session created with
New-PSSession.

■■ PowerShell sessions can be disconnected and later reconnected. The reconnec-
tion can happen on the machine on which the session was created or another
machine.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

	 Summary	 457

■■ You can connect to a disconnected session created by another user if you have
the correct credential information.

■■ Copy-Item has -FromSession and -ToSession parameters that enable you to copy
files across PowerShell remoting sessions.

■■ Implicit remoting enables you to import functionality from the remote system
into your session. You can save the imported commands as a module.

■■ Profiles don’t run by default in remoting sessions.
■■ Scripts on the local or remote machine can be run through a remoting session.
■■ Local variables can be accessed in a remoting session via the $using scope

modifier.
■■ Custom endpoints can be created to constrain the functionality available to a

user through a specific remoting connection.
■■ PowerShell Direct enables remoting over the VM bus from a Hyper-V host to a

virtual machine on that host.

In the next chapter, we’ll look at a feature introduced in PowerShell v3: PowerShell
workflows.

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

Bruce Payette ● Richard Siddaway

I
n 2006, Windows PowerShell reinvented the way admin-
istrators and developers interact with Windows. Today,
PowerShell is required knowledge for Windows admins and

devs. This powerful, dynamic language provides command-
line control of the Windows OS and most Windows servers,
such as Exchange and SCCM. And because it’s a fi rst-class
.NET language, you can build amazing shell scripts and tools
without reaching for VB or C#.

Windows PowerShell in Action, Third Edition is the defi nitive
guide to PowerShell, now revised to cover PowerShell 6. Writ-
ten by language designer Bruce Payette and MVP Richard
Siddaway, this rich book offers a crystal-clear introduction
to the language along with its essential everyday use cases.
Beyond the basics, you’ll fi nd detailed examples on deep topics
like performance, module architecture, and parallel execution.

What’s Inside
● The best end-to-end coverage of PowerShell available
● Updated with coverage of PowerShell v6
● PowerShell workfl ows
● PowerShell classes
● Writing modules and scripts
● Desired State Confi guration
● Programming APIs and pipelines

Written for intermediate-level developers and administrators.

Bruce Payette is codesigner and principal author of the Power-
Shell language. Richard Siddaway is a longtime PowerShell
MVP, author, speaker, and blogger.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/windows-powershell-in-action-third-edition

$59.99 / Can $79.99 [INCLUDING eBOOK]

Windows PowerShell IN ACTION
THIRD EDITION

WINDOWS ADMINISTRATION

M A N N I N G

“This comprehensive guide
to PowerShell just gets better

with every revision!”
—Wayne Boaz, Nike

“Excellent coverage of the
new features in PowerShell.

Recommended for all
 levels of users.”

—Lincoln Bovee, Proto Labs

“Deep technical discussions
of the inner workings of
PowerShell. Many useful
examples. Up to date!”—Dr. Edgar Knapp

ISIS Papyrus Europe

“If you’re serious about
PowerShell, you need to
read this book. Seriously:

 Read this book!”
—Stephen Byrne, Dell

SEE INSERT

www.itbook.store/books/9781633430297

https://itbook.store/books/9781633430297

