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B O O L E A N  A L G E B R A

Boolean algebra was developed in the 19th 
century by an English mathematician, 

George Boole, who was working on ways to 
use mathematical rigor to solve logic problems. 

He formalized a mathematical system for manipulating 
logical values in which the only possible values for the 
variables are true and false, usually designated 1 and 0, 
respectively. The basic operations in Boolean algebra 
are conjunction (AND), disjunction (OR), and negation 
(NOT). This distinguishes it from elementary algebra, 
which includes the infinite set of real numbers and uses the arithmetic opera-
tions addition, subtraction, multiplication, and division. (Exponentiation is a 
simplified notation for repeated multiplication.)
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58   Chapter 4

As mathematicians and logicians were expanding the field of Boolean 
algebra in increasingly complex and abstract ways, engineers were learn-
ing to harness electrical flows using switches in circuits to perform logic 
operations. The two fields developed in parallel until the mid-1930s, when 
a graduate student named Claude Shannon proved that electrical switches 
could be used to implement the full range of Boolean algebraic expressions. 
(When used to describe switching circuits, Boolean algebra is sometimes 
called switching algebra.) With Shannon’s discovery a world of possibilities was 
opened, and Boolean algebra became the mathematical foundation of the 
computer.

This chapter will start with descriptions of the basic Boolean operators. 
Then you’ll learn about their logical rules, which form the basis of Boolean 
algebra. Next, I’ll explain ways to combine Boolean variables and opera-
tors into algebraic expressions to form Boolean logic functions. Finally, I’ll 
discuss techniques for simplifying Boolean functions. In subsequent chap-
ters, you’ll learn how electronic on/off switches can be used to implement 
logic functions that can be connected together in logic circuits to perform 
the primary functions of a computer—arithmetic and logic operations and 
memory storage.

Basic Boolean Operators
There are several symbols used to denote each Boolean operator, which I’ll 
include in the description of each of the operators. In this book, I’ll present 
the symbols used by logicians. A Boolean operator acts on a value, or pair 
of values, called the operands.

I’ll use truth tables to show the results of each operation. A truth table 
shows the results for all possible combinations of the operands. For example, 
consider the addition of two bits, x and y. There are four possible combina-
tions of the values. Addition will give a sum and a possible carry. Table 4-1 
shows how to express this in a truth table.

Table 4-1: Truth Table  
Showing Addition of  
Two Bits

x y Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

I’ll also provide the electronic circuit representations for the gates, the 
electronic devices that implement the Boolean operators. You’ll learn more 
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Boolean Algebra   59

about these devices in Chapters 5 through 8, where you’ll also see that the 
real-world behavior of the physical devices varies slightly from the ideal 
mathematical behavior shown in the truth tables.

As with elementary algebra, you can combine these basic operators to 
define secondary operators. You’ll see an example of this when we define 
the XOR operator near the end of this chapter.

AND

AND is a binary operator, meaning it acts on two operands. The result  
of AND is 1 if and only if both operands are 1; otherwise, the result is 0. 
In logic, the operation is known as conjunction. I’ll use ∧ to designate 
the AND operation. It’s also common to use the ⋅ symbol or simply 
AND. Figure 4-1 shows the circuit symbol for an AND gate and a truth 
table defining the output, with operands x and y.

x y x ⋀ y

0 0 0

0 1 0

1 0 0

1 1 1

As you can see from the truth table, the AND operator has properties 
similar to multiplication in elementary algebra, which is why some use 
the ⋅ symbol to represent it.

OR

OR is also a binary operator. The result of OR is 1 if at least one of 
the operands is 1; otherwise, the result is 0. In logic, the operation is 
known as disjunction. I’ll use ∨ to designate the OR operation. It’s also 
common to use the + symbol or simply OR. Figure 4-2 shows the cir-
cuit symbol for an OR gate and a truth table defining the output, with 
operands x and y.

x y x ⋁ y

0 0 0

0 1 1

1 0 1

1 1 1

The truth table shows that the OR operator follows rules somewhat 
similar to addition in elementary algebra, which is why some use the + 
symbol to represent it.

x
y x ∧ y 

Figure 4-1: The 
AND gate acting 
on two variables,  
x and y 

x
y x ∨ y 

Figure 4-2: The OR 
gate acting on two 
variables, x and y 
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NOT

NOT is a unary operator, which acts on only one operand. The result 
of NOT is 1 if the operand is 0, and it is 0 if the operand is 1. Other 
names for the NOT operation are complement and invert. I’ll use ¬ to 
designate the NOT operation. It’s also common to use the ’ symbol, 
an overscore above the variable, or simply NOT. Figure 4-3 shows the 
circuit symbol for a NOT gate, and a truth table defining the output, 
with the operand x.

x ¬x

0 1

1 0

As you’ll see, NOT has some properties of the arithmetic negation used 
in elementary algebra, but there are some significant differences.

It’s no accident that AND is multiplicative and OR additive. When 
George Boole was developing his algebra, he was looking for a way to apply 
mathematical rigor to logic and use addition and multiplication to manipu-
late logical statements. Boole developed the rules for his algebra based on 
using AND for multiplication and OR for addition. In the next section, 
you’ll see how to use these operators, together with NOT, to represent logical 
statements.

Boolean Expressions
Just as you can use elementary algebra operators to combine variables into 
expressions like (x + y), you can use Boolean operators to combine variables 
into expressions. 

There is a significant difference, though. A Boolean expression is 
created from values (0 and 1) and literals. In Boolean algebra, a literal is 
a single instance of a variable or its complement that’s being used in an 
expression. In the expression

x∧y∨¬x∧z∨¬x∧¬y∧¬z

there are three variables (x, y, and z) and seven literals. In a Boolean 
expression, you can see a variable in both its complemented form and  
its uncomplemented form because each form is a separate literal.

We can combine literals using either the ∧ or ∨ operator. Like in elemen-
tary algebra, Boolean algebra expressions are made up of terms, groups of 
literals that are acted upon by operators, like (x ∨ y) or (a ∧ b). And just like 
elementary algebra, operation precedence (or order of operations) specifies how 
these operators are applied when evaluating the expression. Table 4-2 lists 
the precedence rules for the Boolean operators. As with elementary algebra, 
expressions in parentheses are evaluated first, following the precedence rules.

x ¬x

Figure 4-3: 
The NOT gate 
acting on one 
variable, x 
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Table 4-2: Precedence Rules of Boolean  
Algebra Operators

Operation Notation Precedence

NOT ¬x Highest

AND x ∧ y Middle

OR x ∨ y Lowest

Now that you know how the three fundamental Boolean operators 
work, we’ll look at some of the rules they obey when used in algebraic 
expressions. As you’ll see later in the chapter, we can use the rules to sim-
plify Boolean expressions, which will allow us, in turn, to simplify the way 
we implement those expressions in the hardware.

Knowing how to simplify Boolean expressions is an important tool for 
both those making hardware and those writing software. A computer is 
just a physical manifestation of Boolean logic. Even if your only interest is 
in programming, every programming statement you write is ultimately car-
ried out by hardware that is completely described by the system of Boolean 
algebra. Our programming languages tend to hide much of this through 
abstraction, but they still use Boolean expressions to implement program-
ming logic. 

Boolean Algebra Rules
When comparing AND and OR in Boolean algebra to multiplication and 
addition in elementary algebra, you’ll find that some of the rules of Boolean 
algebra are familiar, but some are significantly different. Let’s start with the 
rules that are the same, followed by the rules that differ.

Boolean Algebra Rules That Are the Same as Elementary Algebra

AND and OR are associative. 
We say that an operator is associative if when there are two or more 
occurrences of the operator in an expression, the order of applying the 
operator does not change the value of the expression. Mathematically:

x∧(y∧z)=(x∧y)∧z

x∨(y∨z)=(x∨y)∨z

To prove the associative rule for AND and OR, let’s use exhaustive 
truth tables, as shown in Tables 4-3 and 4-4. Table 4-3 lists all possible 
values of the three variables x, y, and z, as well as the intermediate com-
putations of the terms (y ∧ z) and (x ∧ y). In the last two columns, we 
can compute the values of each expression on both sides of the previ-
ous equations, which shows that the two equalities hold.
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Table 4-3: Associativity of the AND Operation

x y z (y ∧ z) (x ∧ y) x ∧ (y ∧ z) (x ∧ y) ∧ z

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 1 0 0 1 0 0

1 1 1 1 1 1 1

Table 4-4 lists all possible values of the three variables x, y, and z, as well 
as the intermediate computations of the terms (y ∨ z) and (x ∨ y). In 
the last two columns, we can compute the values of each expression on 
both sides of the previous equations, which shows that the two equali-
ties hold.

Table 4-4: Associativity of the OR Operation

x y z (y ∨ z) (x ∨ y) x ∨ (y ∨ z) (x ∨ y) ∨ z

0 0 0 0 0 0 0

0 0 1 1 0 1 1

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 0 1 1 1

1 0 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

This strategy will work for each of the rules shown in this section, but 
I’ll only go through the truth table for the associative rule here. You’ll 
get to do this for the other rules when it’s Your Turn at the end of this 
section.

AND and OR have identity values. 

An identity value is a value specific to an operation such that using that 
operation on a quantity with the identity value yields the value of the 
original quantity. For AND and OR, the identity values are 1 and 0, 
respectively:

x∧1=x

x∨0=x
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AND and OR are commutative. 

We can say that an operator is commutative if we can reverse the order of 
its operands: 

x∧y=y∧x

x∨y=y∨x

AND is distributive over OR. 

The AND operator applied to quantities OR-ed together can be distrib-
uted to apply to each of the OR-ed quantities, like so:

x∧(y∨z)=(x∧y)∨(x∧z)

Unlike in elementary algebra, the additive OR is distributive over the 
multiplicative AND. You’ll see this in the next section.

AND has an annulment (also called annihilation) value. 

Operating on a value with the operator’s annulment value yields the 
annulment value. The annulment value for AND is 0: 

x∧0=0

We’re used to 0 being the annulment value for multiplication in ele-
mentary algebra, but addition has no concept of annulsment. You’ll learn 
about the annulment value for OR in the next section.

NOT shows involution. 

An operator shows involution if applying it to a quantity twice yields the 
original quantity: 

¬(¬x)=x

Involution is simply the application of a double complement: NOT(NOT 
true) = true. This is similar to double negation in elementary algebra. 

Boolean Algebra Rules That Differ from Elementary Algebra
Although AND is multiplicative and OR is additive, there are significant 
differences between these logical operations and the arithmetic ones. The 
differences stem from the fact that Boolean algebra deals with logic expres-
sions that evaluate to either true or false, while elementary algebra deals 
with the infinite set of real numbers. In this section, you’ll see expressions 
that might remind you of elementary algebra, but the Boolean algebra rules 
are different.
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OR is distributive over AND. 

The OR operator applied to quantities AND-ed together can be distrib-
uted to apply to each of the AND-ed quantities:

x∨(y∧z)=(x∨y)∧(x∨z)

Because addition is not distributive over multiplication in elementary 
algebra, you may miss this way of manipulating Boolean expressions.

First, let’s look at elementary algebra. Using addition for OR and multi-
plication for AND in the previous equation, we have this:

x+(y⋅z)≠(x+y)⋅(x+z)

We can see this by plugging in the numbers x = 1, y = 2, and z = 3. The 
left-hand side gives

1+(2⋅3)=7

 and the right-hand side gives

(1+2)⋅(1+3)=12

Thus, addition is not distributive over multiplication in elementary 
algebra.

The best way to show that OR is distributive over AND in Boolean alge-
bra is to use a truth table, as shown in Table 4-5.

Table 4-5: OR Distributes over AND

x y z x ∨ (y ∧ z) (x ∨ y) ∧ (x ∨ z)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Comparing the two right-hand columns, you can see that the variable 
that is common to the two OR terms, x, can be factored out, and thus 
the distributive property holds.
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OR has an annulment (also called annihilation) value. 

An annulment value is a value such that operating on a quantity with the 
annulment value yields the annulment value. There is no annulment 
value for addition in elementary algebra, but in Boolean algebra, the 
annulment value for OR is 1: 

x∨1=1

AND and OR both have a complement value. 

The complement value is the diminished radix complement of the vari-
able. You saw in Chapter 3 that the sum of a quantity and that quantity’s 
diminished radix complement is equal to (radix – 1). Since the radix in 
Boolean algebra is 2, the complement of 0 is 1, and the complement of 
1 is 0. So, the complement of a Boolean quantity is simply the NOT of 
that quantity, which gives 

x∧¬x=0

x∨¬x=1

The complement value illustrates one of the differences between the 
AND and OR logical operations and the multiplication and addition 
arithmetic operations. In elementary algebra:

x⋅(-x)  =-x2 
x+(-x)  =0

Even if we restrict x to be 0 or 1, in elementary algebra 1 ⋅ (-1) = -1, and 
1 + (-1) = 0.

AND and OR are idempotent. 

If an operator is idempotent, applying it to two of the same operands 
results in that operand. In other words:

x∧x=x

x∨x=x

This looks different than in elementary algebra, where repeatedly mul-
tiplying a number by itself is exponentiation, and repeatedly adding a 
number to itself is equivalent to multiplication.

De Morgan’s law applies. 

In Boolean algebra, the special relationship between the AND and OR 
operations is captured by De Morgan’s law, which states

¬(x∧y)=¬x∨¬y

¬(x∨y)=¬x∧¬y
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The first equation states that the NOT of the AND of two Boolean 
quantities is equal to the OR of the NOT of the two quantities. 
Likewise, the second equation states that the NOT of the OR of 
two Boolean quantities is equal to the AND of the NOT of the two 
quantities. 

This relationship is an example of the principle of duality, which in 
Boolean algebra states that if you replace every 0 with a 1, every 1 with 
a 0, every AND with an OR, and every OR with an AND, the equation 
is still true. Look back over the rules just given and you’ll see that all of 
them except involution have dual operations. De Morgan’s law is one 
of the best examples of duality. Please, when it’s Your Turn, prove De 
Morgan’s law so you can see the principle of duality in play.

YOUR T UR N

Use truth tables to prove the Boolean algebra rules given in this section.
Prove De Morgan’s law.

Boolean Functions
The functionality of a computer is based on Boolean logic, which means 
the various operations of a computer are specified by Boolean functions. 
A Boolean function looks somewhat like a function in elementary algebra, 
but the variables can appear in either uncomplemented or complemented 
form. The variables and constants are connected by Boolean operators. A 
Boolean function evaluates to either 1 or 0 (true or false).

In the section “Adding in the Binary Number System” in Chapter 3, 
you saw that when adding two bits, x and y, in a binary number, we have to 
include a possible carry into their bit position in the number. The condi-
tions that cause carry to be 1 are

x = 1, y = 1, and there’s no carry into the current bit position,
or
x = 0, y = 1, and there’s carry into the current bit position,
or
x = 1, y = 0, and there’s carry into the current bit position, 
or
x = 1, y = 1, and there’s carry into the current bit position.
We can express this more concisely with this Boolean function:

C out(cin,x ,y)=(¬cin∧x∧y)∨(cin∧¬x∧y)∨(cin∧x∧¬y)∨(cin∧x∧y)
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where x is one bit, y is the other bit, cin is the carry in from the next-
lower-order bit position, and Cout(cin,x,y) is the carry resulting from the 
addition in the current bit position. We’ll use this equation throughout this 
section, but first, let’s think a bit about the differences between Boolean 
and elementary functions.

Like an elementary algebra function, a Boolean algebra function can 
be manipulated mathematically, but the mathematical operations are dif-
ferent. Operations in elementary algebra are performed on the infinite set 
of real numbers, but Boolean functions work on only two possible values, 
0 or 1. Elementary algebra functions can evaluate to any real number, but 
Boolean functions can evaluate only to 0 or 1.

This difference means we have to think differently about Boolean func-
tions. For example, if you look at the elementary algebra function

F(x ,y)=x⋅(-y)

you probably read it as “if I multiply the value of x by the negative of the 
value of y, I’ll get the value of F(x, y).” However, if you look at the Boolean 
function

F(x ,y)=x∧(¬y)

there are only four possibilities. If x = 1 and y = 0, then F(x, y) = 1. For the 
other three possibilities, F(x, y) = 0. Whereas you can plug in any numbers 
in an elementary algebra function, a Boolean algebra function shows you 
what the values of the variables are that cause the function to evaluate to 
1. I think of elementary algebra functions as asking me to plug in values for 
the variables for evaluation, while Boolean algebra functions tell me what 
values of the variables cause the function to evaluate to 1.

There are simpler ways to express the conditions for carry. And those 
simplifications lead to being able to implement this function with fewer 
logic gates, thus lowering the cost and power usage. In this and the follow-
ing sections, you’ll learn how the mathematical nature of Boolean algebra 
makes function simplification easier and more concise.

Canonical Sum or Sum of Minterms
A canonical form of a Boolean function explicitly shows whether each vari-
able in the problem is complemented or not in each term that defines the 
function, just as we did with our English statement of the conditions that 
produce a carry of 1 earlier. This ensures that you have taken all possible 
combinations into account in the function definition. The truth table, 
shown in Table 4-6, for carry equation we saw earlier

C out(cin,x ,y)=(¬cin∧x∧y)∨(cin∧¬x∧y)∨(cin∧x∧¬y)∨(cin∧x∧y)

should help to clarify this.
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Table 4-6: Conditions That Cause Carry to Be 1

Minterm cin x y (¬cin ∧ x ∧ y) (cin ∧ ¬x ∧ y) (cin ∧ x ∧ ¬y) (cin ∧ x ∧ y) Cout(cin, x, y)

m0 0 0 0 0 0 0 0 0

m1 0 0 1 0 0 0 0 0

m2 0 1 0 0 0 0 0 0

m3 0 1 1 1 0 0 0 1

m4 1 0 0 0 0 0 0 0

m5 1 0 1 0 1 0 0 1

m6 1 1 0 0 0 1 0 1

m7 1 1 1 0 0 0 1 1

Although the parentheses in the equation are not required, I’ve added 
them to help you see the form of the equation. The parentheses show four 
product terms, terms where all the literals are operated on only by AND. The 
four product terms are then OR-ed together. Since the OR operation is like 
addition, the right-hand side is called a sum of products. It’s also said to be in 
disjunctive normal form. 

Now let’s look more closely at the product terms. Each of them 
includes all the variables in this equation in the form of a literal (uncom-
plemented or complemented). An equation that has n variables has 2n 
permutations of the values for the variables; a minterm is a product term 
that specifies exactly one of the permutations. Since there are four com-
binations of values for cin, x, and y that produce a carry of 1, the previous 
equation has four out of the possible eight minterms. A Boolean function 
that is defined by summing (OR-ing) all the minterms that evaluate to 1 
is said to be a canonical sum, a sum of minterms, or in full disjunctive normal 
form. A function defined by a sum of minterms evaluates to 1 when at least 
one of the minterms evaluates to 1.

For every minterm, exactly one set of values for the variables makes the 
minterm evaluate to 1. For example, the minterm (cin∧x∧¬y) in the previ-
ous equation evaluates to 1 only when cin = 1, x = 1, y = 0. A product term 
that does not contain all the variables in the problem, either in uncomple-
mented or in complemented form, will always evaluate to 1 for more sets of 
values for the variables than a minterm. For example, (cin∧x) evaluates to 1 
for cin = 1, x = 1, y = 0, and cin = 1, x = 1, y = 1. Because they minimize the num-
ber of cases that evaluate to 1, we call them minterms.

Rather than write out all the literals in a function, logic designers com-
monly use the notation mi to specify the ith minterm, where i is the integer 
represented by the values of the literals in the problem if the values are 
placed in order and treated as binary numbers. For example, cin = 1, x = 1, 
y = 0 gives 110, which is the (base 10) number 6; thus, that minterm is m6. 
Table 4-6 shows all eight possible minterms for a three-variable equation, 
and the minterm, m6 (cin∧x∧¬y), in the four-term equation shown earlier 
evaluates to 1 when cin = 1, x = 1, y = 0.
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Using this notation to write Boolean equations as a canonical sum 
and using the ∑ symbol to denote summation, we can restate the function 
for carry:

C out(cin,x ,y)   =(¬cin∧x∧y)∨(cin∧¬x∧y)∨(cin∧x∧¬y)∨(cin∧x∧y) 
   = m3∨m5∨m6∨m7 
   = ∑(3,5,6,7)

We are looking at a simple example here. For more complicated func-
tions, writing all the minterms out is error-prone. The simplified notation is 
easier to work with and helps to avoid making errors.

Canonical Product or Product of Sums
Depending on factors like available components and personal choice, a 
designer may prefer to work with the cases where a function evaluates to 0 
instead of 1. In our example, that means a design that specifies when carry 
is 0. To see how this works, let’s take the complement of both sides of the 
equation for specifying carry, using De Morgan’s law:

¬C out(cin,x ,y)=(cin∨¬x∨¬y)∧(¬cin∨x∨¬y)∧(¬cin∨¬x∨y)∧(¬cin∨¬x∨¬y)

Because we complemented both sides of the equation, we now have the 
Boolean equation for ¬Cout, the complement of carry. Thus, we are looking 
for conditions that cause ¬Cout to evaluate to 0, not 1. These are shown in 
the truth table, Table 4-7.

Table 4-7: Conditions That Cause the Complement of Carry to Be 0

Maxterm cin x y (cin ∨ ¬x ∨ ¬y) (¬cin ∨ x ∨ ¬y) (¬cin ∨ ¬x ∨ y) (¬cin ∨ ¬x ∨ ¬y) ¬Cout(cin, x, y)

M0 0 0 0 1 1 1 1 1

M1 0 0 1 1 1 1 1 1

M2 0 1 0 1 1 1 1 1

M3 0 1 1 0 1 1 1 0

M4 1 0 0 1 1 1 1 1

M5 1 0 1 1 0 1 1 0

M6 1 1 0 1 1 0 1 0

M7 1 1 1 1 1 1 0 0

In this equation, the parentheses are required due to the precedence 
rules of Boolean operators. The parentheses show four sum terms, terms 
where all the literals are operated on only by OR. The four sum terms are 
then AND-ed together. Since the AND operation is like multiplication, the 
right-hand side is called a product of sums. It’s also said to be in conjunctive 
normal form. 
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Each of the sum terms includes all the variables in this equation in the 
form of literals (uncomplemented or complemented). Where a minterm 
was a product term that specified a single permutation of the 2n permuta-
tions of possible values for the variables, a maxterm is a sum term specifying 
exactly one of those permutations. A Boolean function that is defined by 
multiplying (AND-ing) all the maxterms that evaluate to 0 is said to be a 
canonical product, a product of maxterms, or in full conjunctive normal form. 

Each maxterm identifies exactly one set of values for the variables in a 
function that evaluates to 0 when OR-ed together. For example, the max-
term (¬cin∨¬x∨y) in the previous equation evaluates to 0 only when cin = 1, x 
= 1, y = 0. But a sum term that does not contain all the variables in the prob-
lem, either in uncomplemented or complemented form, will always evaluate 
to 0 for more than one set of values. For example, the sum term (¬cin∨¬x) 
evaluates to 0 for two sets of values for the three variables in this example, 
cin = 1, x = 1, y = 0 and cin = 1, x = 1, and y = 1. Because they minimize the 
number of cases that evaluate to 0 and thus maximize the number of cases 
that evaluate to 1, we call them maxterms.

Rather than write out all the literals in a function, logic designers com-
monly use the notation Mi to specify the ith maxterm, where i is the integer 
value of the base 2 number created by concatenating the values of the liter-
als in the problem. For example, stringing together cin = 1, x = 1, y = 0 gives 
110, which is the maxterm M6. The truth table, Table 4-7, shows the max-
terms that cause carry = 0. Notice that maxterm M6, (¬cin∨¬x∨y) evaluates to 0 
when cin = 1, x = 1, y = 0.

Using this notation to write Boolean equations as a canonical sum and 
using the ∏ symbol to denote multiplication, we can restate the function for 
the complement of carry as follows:

¬C out(cin,x ,y)   =(cin∨¬x∨¬y)∧(¬cin∨x∨¬y)∧(¬cin∨¬x∨y)∧(¬cin∨¬x∨¬y) 
   =M3 ∧ M5 ∧ M6 ∧ M7 
   = ∏ (3,5,6,7)

If you look back at Table 4-7, you’ll see that these are the conditions 
that cause the complement of carry to be 0 and hence carry to be 1. This 
shows that using either minterms or maxterms is equivalent. The one you 
use can depend on factors such as what hardware components you have 
available to implement the function and personal preference.

Comparison of Canonical Boolean Forms
Table 4-8 shows all the minterms and maxterms for a three-variable prob-
lem. If you compare corresponding minterms and maxterms, you can see 
the duality of minterms and maxterms: one can be formed from the other 
using De Morgan’s law by complementing each variable and interchanging 
OR and AND.
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Table 4-8: Canonical Terms for a Three-Variable Problem

Minterm = 1 x y z Maxterm = 0

m0 ¬x ∧ ¬y ∧ ¬z 0 0 0 M0 x ∨ y ∨ z

m1 ¬x ∧ ¬y ∧ z 0 0 1 M1 x ∨ y ∨ ¬z

m2 ¬x ∧ y ∧ ¬z 0 1 0 M2 x ∨ ¬y ∨ z

m3 ¬x ∧ y ∧ z 0 1 1 M3 x ∨ ¬y ∨ ¬z

m4 x ∧ ¬y ∧ ¬z 1 0 0 M4 ¬x ∨ y ∨ z

m5 x ∧ ¬y ∧ z 1 0 1 M5 ¬x ∨ y ∨ ¬z

m6 x ∧ y ∧ ¬z 1 1 0 M6 ¬x ∨ ¬y ∨ z

m7 x ∧ y ∧ z 1 1 1 M7 ¬x ∨ ¬y ∨ ¬z

…

The canonical forms give you a complete, and unique, statement of the 
function because they take all possible combinations of the values of the vari-
ables into account. However, there often are simpler solutions to the problem. 
The remainder of this chapter will be devoted to methods of simplifying 
Boolean functions.

Boolean Expression Minimization
When implementing a Boolean function in hardware, each ∧ operator 
becomes an AND gate, each ∨ operator an OR gate, and each ¬ opera-
tor a NOT gate. In general, the complexity of the hardware is related to 
the number of AND and OR gates used (NOT gates are simple and tend 
not to contribute significantly to the complexity). Simpler hardware uses 
fewer components, thus saving cost and space, and uses less power. Cost, 
space, and power savings are especially important with handheld and wear-
able devices. In this section, you’ll learn how you can manipulate Boolean 
expressions to reduce the number of ANDs and ORs, thus simplifying their 
hardware implementation.

Minimal Expressions
When simplifying a function, start with one of the canonical forms to 
ensure that you have taken all possible cases into account. To translate a 
problem into a canonical form, create a truth table that lists all possible 
combinations of the variables in the problem. From the truth table, it will 
be easy to list the minterms or maxterms that define the function. 

Armed with a canonical statement, the next step is to look for a func-
tionally equivalent minimal expression, an expression that does the same 
thing as the canonical one, but with a minimum number of literals and 
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Boolean operators. To minimize an expression, we apply the rules of Boolean 
algebra to reduce the number of terms and the number of literals in each 
term, without changing the logical meaning of the expression.

There are two types of minimal expressions, depending on whether you 
use minterms or maxterms:

Minimal Sum of Products

When starting with a minterms description of the problem, the mini-
mal expression is called a minimal sum of products, which is a sum of 
products expression where all other mathematically equivalent sum of 
products expressions have at least as many product terms, and those 
with the same number of product terms have at least as many literals.

 As an example of a minimal sum of products, consider these equations:

S(x ,y,z)  =(¬x∧¬y∧¬z)∨(x∧¬y∧¬z)∨(x∧¬y∧z) 
S1(x ,y,z)=(¬x∧¬y∧¬z)∨(x∧¬y) 
S2(x ,y,z)=(x∧¬y∧z)∨(¬y∧¬z) 

S3(x ,y,z)=(x∧¬y)∨(¬y∧¬z)

S is in canonical form as each of the product terms explicitly shows the 
contribution of all three variables. The other three functions are sim-
plifications of S. Although all three have the same number of product 
terms, S3 is a minimal sum of products for S because it has fewer literals 
in its product terms than S1 and S2.

Minimal Product of Sums

When starting with a maxterms description of the problem, the mini-
mal expression is called a minimal product of sums, which is a product of 
sums expression where all other mathematically equivalent product  
of sums expressions have at least as many sum terms, and those with 
the same number of sum terms have at least as many literals.

For an example of a minimal product of sums, consider these 
equations:

P(x ,y,z)  =(¬x∨¬y∨z)∧(¬x∨y∨z)∧(x∨¬y∨z) 
P1(x ,y,z)=(x∨¬y∨z)∧(¬x∨z) 
P2(x ,y,z)=(¬x∨y∨z)∧(¬y∨z) 

P3(x ,y,z)=(¬x∨z)∧(¬y∨z)

P is in canonical form, and the other three functions are simplifications 
of P. Although all three have the same number of sum terms as P, P3 is a 
minimal product of sums for P because it has fewer literals in its product 
terms than P1 and P2.

A problem may have more than one minimal solution. Good hard-
ware design typically involves finding several minimal solutions and then 
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assessing each one within the context of the available hardware. This means 
more than using fewer gates. For example, as you’ll learn when we discuss 
the actual hardware implementations, adding judiciously placed NOT gates 
can actually reduce hardware complexity.

In the following two sections, you’ll see two ways to find minimal 
expressions.

Minimization Using Algebraic Manipulations
To illustrate the importance of reducing the complexity of a Boolean func-
tion, let’s return to the function for carry:

C out(cin,x ,y)=(¬cin∧x∧y)∨(cin∧¬x∧y)∨(cin∧x∧¬y)∨(cin∧x∧y)

The expression on the right-hand side of the equation is a sum of min-
terms. Figure 4-4 shows the circuit to implement this function. It requires 
four AND gates and one OR gate. The small circles at the inputs to the AND 
gates indicate a NOT gate at that input. 

cin

x
y

Cout(cin, x, y)

Figure 4-4: Hardware implementation of a function to generate  
the value of carry when adding two numbers

Now let’s try to simplify the Boolean expression implemented in 
Figure 4-4 to see whether we can reduce the hardware requirements. Note 
that there may not be a single path to a solution, and there may be more 
than one correct solution. I’m presenting only one way here. 

First, we’ll do something that might look strange. We’ll use the idempo-
tency rule to duplicate the fourth term twice:

C out(cin,x ,y)=(¬cin∧x∧y)∨(cin∧¬x∧y)∨(cin∧x∧¬y)∨(cin∧x∧y)∨(cin∧x∧y) ∨(cin∧x∧y)

Next, rearrange the product terms a bit to OR each of the three origi-
nal terms with (cin∧x∧y):

C out(cin,x ,y)=((¬cin∧x∧y)∨(cin∧x∧y))∨((cin∧x∧¬y)∨(cin∧x∧y))∨((cin∧¬x∧y)∨(cin∧x∧y))
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Now we can use the rule for distribution of AND over OR to factor out 
terms that OR to 1:

C out(cin,x ,y)   =(x∧y∧(¬cin∨cin))∨(cin∧x∧(¬y∨y))∨(cin∧y∧(¬x∨x)) 
   = (x∧y∧1)∨(cin∧x∧1)∨(cin∧y∧1) 
   = (x∧y)∨(cin∧x)∨(cin∧y)

Figure 4-5 shows the circuit for this function. Not only have we elimi-
nated an AND gate, all the AND gates and the OR gate have one fewer 
input.

x
y

cin
Cout(cin, x, y)

Figure 4-5: Simplified hardware implementation generating carry when adding two 
numbers

Comparing the circuits in Figures 4-5 and 4-4, Boolean algebra has 
helped you to simplify the hardware implementation. You can see this sim-
plification from stating the conditions that result in a carry of 1 in English: 
the original, canonical form of the equation stated that carry, Cout(cin,x,y), 
will be 1 in any of these four cases:

if cin = 0, x = 1, and y = 1,

if cin = 1, x = 0, and y = 1,

if cin = 1, x = 1, and y = 0,

if cin = 0 x = 1, and y = 1. 

The minimization can be stated much simpler: carry is 1 if at least two 
of cin, x, and y are 1.

We arrived at the solution in Figure 4-5 by starting with the sum of 
minterms; in other words, we were working with the values of cin, x, and y 
that generate a 1 for carry. As you saw in the section “Canonical Product or 
Product of Sums” (page XX), since carry must be either 1 or 0, it’s equally as 
valid to start with the values of cin, x, and y that generate a 0 for the comple-
ment of carry and to write the equation as a product of maxterms:

¬C out(cin,x ,y)=(cin∨¬x∨¬y)∧(¬cin∨x∨¬y)∧(¬cin∨¬x∨y)∧(¬cin∨¬x∨¬y)

To simplify this equation, we’ll take the same approach we took with 
the sum of minterms and start by duplicating the last term twice to give:

¬C out(cin,x ,y)=(cin∨¬x∨¬y)∧(¬cin∨x ∨ ¬y)∧(¬cin∨ ¬x∨ y)∧(¬cin∨¬x∨¬y)∧(¬cin∨¬x∨¬y)∧(¬
cin∨¬x∨¬y)
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Adding some parentheses helps to clarify the simplification process:

¬C out(cin,x ,y)=((cin∨¬x∨¬y)∧(¬cin∨¬x∨¬y))∧((¬cin∨x∨¬y)∧(¬cin∨¬x∨¬y))∧((
¬cin∨¬x∨y)∧(¬cin∨¬x∨¬y))

Next, use the distribution of OR over AND. Because this is tricky, I’ll 
go over the steps to simplify the first grouping of product terms in this 
equation—the steps for the other two groupings are similar to this one. 
Distribution of OR over AND has this generic form:

(X∨Y )∧(X∨Z)=X∨(Y∧Z)

Looking at the sum terms in our first grouping, you can see they both 
share a (¬x ∨¬y). So, we’ll make the following substitutions into the generic 
form:

X=(¬x∨¬y) 
Y = cin 

Z = ¬cin

Making the substitutions and using the complement rule for AND, we get

(cin∨¬x∨¬y)∧(¬cin∨¬x∨¬y)   =(¬x∨¬y)∨(cin∧¬cin) 
   = (¬x∨¬y)

Applying these same manipulations to other two groupings, we get

¬C out(cin,x ,y)=(¬x∨¬y)∧(¬cin∨¬x)∧(¬cin∨¬y)

Figure 4-6 shows the circuit implementation of this function. This cir-
cuit produces the complement of carry. We would need to complement the 
output, ¬Cout(cin,x,y), to get the value of carry.

x
y

cin
¬Cout(cin, x, y)

Figure 4-6: Simplified hardware implementation generating the  
complement of carry when adding two numbers

Compare Figure 4-6 with Figure 4-5, and you can graphically see De 
Morgan’s law: the ORs have become ANDs with complemented values as 
inputs.

The circuit in Figure 4-5 might look simpler to you because the cir-
cuit in Figure 4-6 requires NOT gates at the six inputs to the OR gates. 
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But as you will see in the next chapter, this may not be the case due to the 
inherent electronic properties of the devices used to construct logic gates. 
The important point to understand here is that there is more than one way 
to solve the problem. One of the jobs of the hardware engineer is to decide 
which solution is best, based on things such as cost, availability of compo-
nents, and so on.

Minimization Using Karnaugh Maps
The algebraic manipulations used to minimize Boolean functions may not 
always be obvious. You may find it easier to work with a graphic representa-
tion of the logical statements.

A commonly used graphic tool for working with Boolean functions 
is the Karnaugh map, also called a K-map. Invented in 1953 by Maurice 
Karnaugh, a telecommunications engineer at Bell Labs, the Karnaugh 
map gives a way to visually find the same simplifications you can find alge-
braically. They can be used either with a sum of products, using minterms, 
or a product of sums, using maxterms. To illustrate how they work, we’ll 
start with minterms.

Simplifying Sums of Products Using Karnaugh Maps

The Karnaugh map is a rectangular grid with a cell for each minterm. 
There are 2n cells for n variables. Figure 4-7 is a Karnaugh map showing all 
four possible minterms for two variables, x and y. The vertical axis is used 
for plotting x and the horizontal for y. The value of x for each row is shown 
by the number (0 or 1) immediately to the left of the row, and the value of y 
for each column appears at the top of the column.

F(x, y)

x

y

m0 m1

m2 m3

0 1

1

0

Figure 4-7: Mapping  
of two-variable  
minterms on a  
Karnaugh map

To illustrate how to use a Karnaugh map, let’s look at an arbitrary func-
tion of two variables:

F(x ,y)=(x∧¬y)∨(¬x∧y)∨(x∧y)

Start by placing a 1 in each cell corresponding to a minterm that appears 
in the equation, as shown in Figure 4-8. 
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F(x, y)

x

y
0 1

1

0

1 1

1

Figure 4-8: Karnaugh  
map of the arbitrary  
function, F(x, y)

By placing a 1 in the cell corresponding to each minterm that evaluates 
to 1, we can see graphically when the equation evaluates to 1. The two cells 
on the right side correspond to the minterms m1 and m3, (¬x ∧ y) and (x ∧ y). 
Since these terms are OR-ed together, F(x, y) evaluates to 1 if either of 
these minterms evaluates to 1. Using the distributive and complement rules, 
we can see that

(¬x∧y)∨(x∧y)   =(¬x∨x)∧y 
   = y

This shows algebraically that F(x, y) evaluates to 1 whenever y is 1, which 
you’ll see next by simplifying this Karnaugh map.

The only difference between the two minterms, (¬x ∧ y) and (x ∧ y), is 
the change from x to ¬x. Karnaugh maps are arranged such that only one 
variable changes between two cells that share an edge, a requirement called 
the adjacency rule. 

To use a Karnaugh map to perform simplification, you group two adja-
cent cells in a sum of products Karnaugh map that have 1s in them. Then 
you eliminate the variable that differs between them and coalesce the two 
product terms. Repeating this process allows you to simplify the equation. 
Each grouping eliminates a product term in the final sum of products. This 
can be extended to equations with more than two variables, but the num-
ber of cells that are grouped together must be a multiple of 2, and you can 
only group adjacent cells. The adjacency wraps around from side to side 
and from top to bottom. You’ll see an example of that in a few pages.

To see how all this works, consider the grouping in the Karnaugh map 
in Figure 4-9. 

F(x, y)

x

y
0 1

1

0

1 1

1

Figure 4-9: Two of  
the minterms in F(x, y)  
grouped

This grouping is a graphical representation of the algebraic manipula-
tion we did earlier. You can see that F(x, y) evaluates to 1 whenever y = 1, 
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regardless of the value of x. Thus, the grouping coalesces two minterms 
into one product term by eliminating x. 

From the last grouping, we know our final simplified function will have 
a y term. Let’s do another grouping to find the next term. First, we’ll sim-
plify the equation algebraically. Returning to the original equation for  
F(x, y), we can use idempotency to duplicate one of the minterms:

F(x ,y)=(x∧¬y)∨(¬x∧y)∨(x∧y)∨(x∧y)

Now we’ll do some algebraic manipulation on the first product term 
and the one we just added:

(x∧¬y)∨(x∧y)   =(¬y∨y)∧x 
   = x

Instead of using algebraic manipulations, we can do this directly on 
our Karnaugh map, as shown in Figure 4-10. This map shows that separate 
groups can include the same cell (minterm).

F(x, y)

x

y
0 1

1

0

1 1

1

Figure 4-10: A Karnaugh  
map grouping showing  
that (x ∧ ¬y) ∨ (¬x ∧ y)  
∨ (x ∧ y) = (x ∨ y)

The group in the bottom row represents the product term x, and 
the one in the right-hand column represents y, giving us the following 
minimization:

F(x ,y)=x∨y

Note that the cell that is included in both groupings, (x ∧ y), is the term 
that we duplicated using the idempotent rule in our algebraic solution pre-
viously. You can think of including a cell in more than one group as adding 
a duplicate copy of the cell, like using the idempotent rule in our algebraic 
manipulation earlier, and then coalescing it with the other cell(s) in the 
group, thus removing it.

The adjacency rule is automatically satisfied when there are only two 
variables in the function. But when we add another variable, we need to 
think about how to order the cells of a Karnaugh map such that we can use 
the adjacency rule to simplify Boolean expressions.

Karnaugh Map Cell Order

One of the problems with both the binary and BCD codes is that the dif-
ference between two adjacent values often involves more than one bit being 
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changed. In 1943 Frank Gray introduced a code, the Gray code, in which 
adjacent values differ by only one bit. The Gray code was invented because 
the switching technology of that time was more prone to errors. If one bit 
was in error, the value represented by a group of bits was off by only one in 
the Gray code. That’s seldom a problem these days, but this property shows 
us how to order the cells in a Karnaugh map.

Constructing the Gray code is quite easy. Start with one bit:

Decimal Gray Code

0 0

1 1

To add a bit, first write the mirror image of the existing pattern:

Gray Code

0

1

1

0

Then add a 0 to the beginning of each of the original bit patterns and 
add a 1 to the beginning of each of the mirror image set to give the Gray 
code for two bits, as shown in Table 4-9.

Table 4-9: Gray Code for  
Two Bits

Decimal Gray Code

0 00

1 01

2 11

3 10

This is the reason the Gray code is sometimes called reflected binary code 
(RBC). Table 4-10 shows the Gray code for four bits. 

Table 4-10: Gray Code for Four Bits

Decimal Gray Code Binary

0 0000 0000

1 0001 0001

2 0011 0010

(continued)
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Decimal Gray Code Binary

3 0010 0011

4 0110 0100

5 0111 0101

6 0101 0110

7 0100 0111

8 1100 1000

9 1101 1001

10 1111 1010

11 1110 1011

12 1010 1100

13 1011 1101

14 1001 1110

15 1000 1111

Let’s compare the binary codes with the Gray codes for the decimal 
values 7 and 8 in Table 4-10. The binary codes for 7 and 8 are 0111 and 1000, 
respectively; all four bits change when stepping only 1 in decimal value. But 
comparing the Gray codes for 7 and 8, 0100 and 1100, respectively, only one 
bit changes, thus satisfying the adjacency rule for a Karnaugh map.

Notice that the pattern of changing only one bit between adjacent values 
also holds when the bit pattern wraps around. That is, only one bit is changed 
when going from the highest value (15 for four bits) to the lowest (0).

Karnaugh Map for Three Variables

To see how the adjacency property is important, let’s consider a more com-
plicated function. We’ll use a Karnaugh map to simplify our function for 
carry, which has three variables. Adding another variable means that we 
need to double the number of cells to hold the minterms. To keep the map 
two-dimensional, we add the new variable to an existing variable on one side 
of the map. We need a total of eight cells (23), so we’ll draw it four cells wide 
and two high. We’ll add z to the y-axis and draw our Karnaugh map with y 
and z on the horizontal axis, and x on the vertical, as shown in Figure 4-11.

F(x, y, z) yz

x
m0 m1 m3 m2

m4 m5 m7 m6

0

1

00 01 11 10

Figure 4-11: Mapping of three-variable  
minterms on a Karnaugh map
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The order of the bit patterns along the top of the three-variable 
Karnaugh map is 00, 01, 11, 10, as opposed to 00, 01, 10, 11, which is the Gray 
code order in Table 4-9. The adjacency rule also holds when wrapping 
around the edges of the Karnaugh map—that is, going from m2 to m0 or 
going from m6 to m4—which means that groups can wrap around the edges 
of the map. (Other axis labeling schemes will also work, as you’ll see when  
it’s Your Turn at the end of this section.)

You saw earlier in this chapter that carry can be expressed as the sum of 
four minterms:

C out(cin,x ,y)   =(¬cin∧x∧y)∨(cin∧¬x∧y)∨(cin∧x∧¬y)∨(cin∧x∧y) 
   = m3 ∨ m5 ∨ m6 ∨ m7 
   = ∑ (3,5,6,7)

Figure 4-12 shows these four minterms on the Karnaugh map.

yz
00 01 11 10

0

1
cin

Cout(cin, x, y)

1

11 1

Figure 4-12: Karnaugh map of the  
function for carry

We look for adjacent cells that can be grouped together to eliminate 
one variable from the product term. As noted, the groups can overlap, giv-
ing the three groups shown in Figure 4-13.

yz
00 01 11 10

0

1
cin

Cout(cin, x, y)

1

11 1

Figure 4-13: A minimum sum of products  
of the function for carry = 1

Using the three groups in the Karnaugh map in Figure 4-13, we end up 
with the same equation we got through algebraic manipulations:

C out(cin,x ,y)=(x∧y)∨(cin∧x)∨(cin∧y)

Simplifying Products of Sums Using Karnaugh Maps

It’s equally valid to work with a function that shows when the complement 
of carry is 0. We did that using maxterms:

¬C max(cin,x ,y)   =(cin∨¬x∨¬y)∧(¬cin∨x∨¬y)∧(¬cin∨¬x∨y)∧(¬cin∨¬
x∨¬y) 
   = M7∧M6∧M5∧M3 
   = ∏(3,5,6,7)

Introduction to Computer Organization (Sample Chapter) © 7/24/21 by Robert Plantz
I N T R O D U C T I O N 
T O  C O M P U T E R 

O R G A N I Z A T I O N
R O B E R T  P L A N T Z

7/24/21

www.itbook.store

https://itbook.store


82   Chapter 4

Figure 4-14 shows the arrangement of maxterms on a three-variable 
Karnaugh map.

¬F(x, y, z) yz

x
0

1

00 01 11 10

M0 M1 M3 M2

M4 M5 M7 M6

Figure 4-14: Mapping of three-variable  
maxterms on a Karnaugh map

When working with a maxterm statement of the solution, you mark the 
cells that evaluate to 0. The minimization process is the same as when work-
ing with minterms, except that you group the cells with 0s in them.

Figure 4-15 shows a minimization of ¬Cout(cin,x,y) , the complement of 
carry.

yz
00 01 11 10

0

1
cin

¬Cout(cin, x, y)

0

00 0

Figure 4-15: A minimum product of sums  
of the function for NOT carry = 0

The Karnaugh map in Figure 4-15 leads to the same product of sums 
we got algebraically for the complement of carry = 0:

¬C out(cin,x ,y)=(¬x∨¬y)∧(¬cin∨¬x)∧(¬cin∨¬y)

If you compare Figures 4-13 and 4-15, you can see a graphic view of  
De Morgan’s law. When making this comparison, keep in mind that 
Figure 4-13 shows the product terms that get added, and Figure 4-15 
shows the sum terms that get multiplied, and the result is complemented. 
Thus, we exchange 0 and 1 and exchange AND and OR to go from one 
Karnaugh map to the other.

To further emphasize the duality of minterm and maxterm, compare 
Figure 4-16(a) and Figure 4-16(b). 

F(x, y, z) ¬F(x, y, z)
yz

x

00 01 11 10

(a) (b)

01

000

0

0

0 00

1

1

1

1 1

11 1
x

yz

0

1

00 01 11 10

Figure 4-16: Comparison of (a) one minterm and (b) one maxterm
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Boolean Algebra   83

Figure 4-16(a) shows the function:

F(x ,y,z)=¬x∧¬y∧¬z

Although it’s not necessary and usually not done, we have placed a 0 in 
each of the cells representing minterms not included in this function.

Similarly, in Figure 4-16(b), we have placed a 0 for the maxterm and a 1 
in each of the cells representing the maxterms that are not included in the 
function:

¬F=x∨y∨z

This comparison graphically shows how a minterm specifies the mini-
mum number of 1s in a Karnaugh map, while a maxterm specifies the 
maximum number of 1s.

Larger Groupings on a Karnaugh Map

Thus far, we have grouped only two cells together on our Karnaugh maps. 
Let’s look at an example of larger groups. Consider a function that outputs 
1 when a three-bit number is even. Table 4-11 shows the truth table. It uses 1 
to indicate that the number is even and uses 0 to indicate odd.

Table 4-11: Even Values of an Eight-Bit Number

Minterm X y z Number Even(x, y, z)

m0 0 0 0 0 1

m1 0 0 1 1 0

m2 0 1 0 2 1

m3 0 1 1 3 0

m4 1 0 0 4 1

m5 1 0 1 5 0

m6 1 1 0 6 1

m7 1 1 1 7 0

The canonical sum of products for this function is

Even(x ,y,z)=∑(0,2,4,6)

Figure 4-17 shows these minterms on a Karnaugh map with these four 
terms grouped together. You can group all four together because they all 
have adjacent edges.

From the Karnaugh map in Figure 4-17, we can write the equation for 
showing when a three-bit number is even:

Even(x ,y,z)=¬z
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Even(x, y, z)
00 01 11 10

10

1
x

yz

1 1

1

Figure 4-17: Karnaugh map showing  
even values of three-bit number

The Karnaugh map shows that it does not matter what the values of x 
and y are, only that z = 0. 

Adding More Variables to a Karnaugh Map

Each time you add another variable to a Karnaugh map, you need to double 
the number of cells. The only requirement for the Karnaugh map to work 
is that you arrange the minterms, or maxterms, according to the adjacency 
rule. Figure 4-18 shows a four-variable Karnaugh map for minterms. The y 
and z variables are on the horizontal axis, and w and x are on the vertical. 

00 01 11 10
F(w, x, y, z) yz

wx

m000

01

11

10

m1 m3

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

m2

Figure 4-18: Mapping of four-variable  
minterms on a Karnaugh map

So far we have assumed that every minterm (or maxterm) is accounted 
for in our functions. But design does not take place in a vacuum. We might 
have knowledge about other components of the overall design telling us 
that some combinations of variable values can never occur. Next, we’ll see 
how to take this knowledge into account in your function simplification 
process. The Karnaugh map provides an especially clear way to visualize 
the situation. 

Don’t Care Cells

Sometimes, you have information about the values that the variables can 
have. If you know which combinations of values will never occur, then the 
minterms (or maxterms) that represent those combination are irrelevant. 
For example, you may want a function that indicates whether one of two 
possible events has occurred or not, but you know that the two events can-
not occur simultaneously. Let’s name the events x and y, and let 0 indicate 
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Boolean Algebra   85

that the event has not occurred and 1 indicate that it has. Table 4-12 shows 
the truth table for our function, F(x, y).

Table 4-12: Truth Table  
for x or y Occurring,  
but not Both

x y F(x, y)

0 0 0

0 1 1

1 0 1

1 1 X

We can show that both events cannot occur simultaneously by placing an 
× in that row. We can draw a Karnaugh map with an × for the minterm that 
can’t exist in the system, as shown in Figure 4-19. The × represents a don’t care 
cell—we don’t care whether this cell is grouped with other cells or not.

F(x, y) y

x
0

1 X

0 1

1

1

Figure 4-19: Karnaugh  
map for F(x, y), showing  
a “don’t care” cell

Since the cell that represents the minterm (x ∧ y) is a “don’t care” cell, 
we can include it, or not, in our minimization groupings, leading to the 
two groupings shown. The Karnaugh map in Figure 4-19 leads us to the 
solution:

F(x ,y)=x∨y

which is a simple OR gate. You probably guessed this solution without 
having to use a Karnaugh map. You’ll see a more interesting use of “don’t 
care” cells when you learn about the design of two digital logic circuits at 
the end of Chapter 7. 

Combining Basic Boolean Operators
As mentioned earlier in this chapter, we can combine basic Boolean opera-
tors to implement more complex Boolean operators. Now that you know 
how to work with Boolean functions, we’ll design one of the more common 
operators, the exclusive or, often called XOR, using the three basic operators, 
AND, OR, and NOT. It’s so commonly used that it has its own circuit symbol.
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86   Chapter 4

XOR

The XOR is a binary operator. The result is 1 if one, and only one, of 
the two operands is 1; otherwise, the result is 0. We’ll use ⊻ to designate 
the XOR operation. It’s also common to use the ⊕ symbol. Figure 4-20 
shows the XOR gate operation with inputs x and y.

x y x ⊻ y

0 0 0

0 1 1

1 0 1

1 1 0

The minterm implementation of this operation is

x⊻y=(x∧¬y)∨(¬x∧y)

The XOR operator can be implemented with two AND gates, two NOT 
gates, and one OR gate, as shown in Figure 4-21.

x ⊻ y

x

y

Figure 4-21: XOR gate made from AND, OR, and  
NOT gates

We can, of course, design many more Boolean operators. But we’re 
going to move on in the next few chapters and see how these operators can 
be implemented in hardware. It’s all done with simple on/off switches.

YOUR T UR N

Design a function that will detect all the four-bit integers that are even.
Find a minimal sum of products expression for this function:

F(x,y,z)=(¬x∧¬y∧¬z)∨(¬x∧¬y∧z)∨(¬x∧y∧¬z)∨(x∧¬y∧¬z)∨(x∧y∧¬z)∨(x∧y∧z)

Find a minimal product of sums expression for this function:

F(x,y,z)=(x∨y∨z)∧(x∨y∨¬z)∧(x∨¬y∨¬z)∧(¬x∨y∨z)∧(¬x∨¬y∨¬z)

x
y x ⊻ y

Figure 4-20: The XOR 
gate acting on two 
variables, x and y
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Boolean Algebra   87

The arrangement of the variables for a Karnaugh map is arbitrary, but 
the minterms (or maxterms) need to be consistent with the labeling. Show 
where each minterm is located with this Karnaugh map axis labeling using 
the notation of Figure 4-11.

F(x, y, z) xy

z
0

1

00 01 11 10

The arrangement of the variables for a Karnaugh map is arbitrary, but 
the minterms (or maxterms) need to be consistent with the labeling. Show 
where each minterm is located with this Karnaugh map axis labeling using 
the notation of Figure 4-11.

F(x, y, z) xz

y
0

1

00 01 11 10

Create a Karnaugh map for five variables. You’ll probably need to review 
the Gray code in Table 4-10 and increase it to five bits.
Design a logic function that detects the single-digit prime numbers. Assume 
that the numbers are coded in four-bit BCD (see Table 2-7 in Chapter 2. 
The function is 1 for each prime number.

What You’ve Learned

Boolean operators  The basic Boolean operators are AND, OR, and 
NOT.

Rules of Boolean algebra  Boolean algebra provides a mathematical 
way to work with the rules of logic. AND works like multiplication and 
OR is similar to addition in elementary algebra.

Simplifying Boolean algebra expressions  Boolean functions specify 
the functionality of a computer. Simplifying these functions leads to a 
simpler hardware implementation.

Karnaugh maps  These provide a graphical way to simplify Boolean 
expressions.
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88   Chapter 4

Gray code  This shows how to order the cells in a Karnaugh map.

Combining basic Boolean operators  XOR can be created from AND, 
OR, and NOT.

The next chapter starts with an introduction to basic electronics that 
will provide a basis for understanding how transistors can be used to imple-
ment switches. From there, we’ll look at how transistor switches are used to 
implement logic gates.
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