
3
2 D G R A P H I C S A N D A N I M A T I O N

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

58 Part 3

Sketch 27: Saving an Image and Adjusting Transparency
We are going to write a sketch that will allow the user to select a color in an image that
will become transparent, and then save the image as a GIF. We can save any PImage in a
file, just as most image files can be read into a PImage. If img is a PImage variable, we can
save it as a file using this function call:

img.save ("image.jpg");

The parameter is the name of the file to be created. In the situation above, it will
create a file named image.jpg and save the pixels of the PImage in JPEG format. The
format is conveniently determined by the last three letters of the filename: .jpg for a
JPEG file, .gif for a GIF file, .png for a PNG file, and so on. If no PImage variable is given,
Processing saves the image that appears in the sketch window.

For this sketch, the first step is to read and display the image. Next, we position the
mouse over a pixel with the color we want to make transparent, and click the button.
Finally, we save the image in a format that allows transparency (GIF).

In Sketch 2 I mentioned transparent colors. We can set a fourth color component,
referred to as alpha, to a value between 0 (completely transparent) and 255 (completely
opaque), as long as the PImage color format allows transparency; the format that does
this is ARGB. In this sketch, when the image is read in, we make a copy as in the previous
sketch, but using ARGB as the color format. When we click the mouse button, the pro-
gram looks at the pixel at the cursor’s coordinates and adds an alpha value of 0 to the
color coordinates. Then the color in the PImage is updated with the new alpha value.

The original image that we read from the file is a variable named img1; the copy
that includes alpha values is img2. Processing makes a copy of the image using the fol-
lowing statement, as we do at 2:

img2 = createImage (img1.width, img1.height, ARGB);

This creates an empty image of the correct size, and now we must copy all of the
pixels from img1 into img2. When we do so, the pixels in img2 have the alpha component,
because it was specified in the createImage() call. When a mouse click specifies a back-
ground color, all pixels of that color are given an alpha value of 0 1. Then img2 is saved
in a file named out.gif.

The program ends with a call to exit(), because otherwise it would continue to save
the same file again and again.

Why is it important to set a transparent background for an image? Computer games!

N O T E The string parameter in img.save ("image.jpg"); can include a full path name, so the file can be
saved in any directory on your PC.

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

2D Graphics and Animation 59

PImage img1, img2;
color c=color(0,0,0);
void setup ()
{
 size(100,100);
 surface.setResizable(true);
 img1 = loadImage ("image.bmp");
 surface.setSize (img1.width, img1.height);
 img2 = duplicate (img1);
}
void draw ()
{
 color c1;
 background (255);
 image (img1, 0, 0);
 if (mousePressed)
 {
 c = get(mouseX, mouseY);
 for (int i=0; i<width; i++)
 for (int j=0; j<height; j++)
 {
 c1 = img1.get(i,j);
 if (c1 == c)
 {
 1 c1 = color(red(c1), green(c1), blue(c1), 0);
 img2.set (i,j,c1);
 }
 }
 img2.save ("out.gif");
 exit();
 }
}
PImage duplicate (PImage from)
{
 PImage newImage;
 color pixel;
 if (from == null) return from;
2 newImage = createImage (from.width, from.height, ARGB);
 for (int i=0; i<from.width; i++)
 for (int j=0; j<from.height; j++)
 {
 pixel = from.get (i,j);
 newImage.set(i,j,pixel);
 }
 return newImage;
}

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

60 Part 3

Sketch 28: Bouncing an Object in a Window
This sketch illustrates a good way to check whether an object is within a sketch window
(though it is only completely accurate when the object is circular). The object here is a
circle, or a ball if you prefer. The program moves the ball, and when the ball reaches
the window boundary (the “wall”), it bounces, or reverses direction.

A simple test establishes whether the ball has exceeded the boundary. In the case
of the right boundary wall, for example, it’s whether x + radius > width 2, where x is
the ball’s center position, radius is the ball’s radius, and width is the width of the win-
dow. If the ball is moving slowly enough, we can simply reverse the direction of motion
when the ball passes this test by changing dx (the amount the ball moves horizontally
between each frame) to -dx. However, this approach isn’t completely accurate, and
it gets worse when the ball moves at high speeds. Why? Because the ball will move
past the boundary before the program determines that it has reached the boundary.
Consider the situation in Figure 28-1.

The ball moves dx pixels each
iteration. If that places the ball past
an edge of the window, we place it
the same number of pixels before
the edge that it moved past, and
change its direction. This keeps the
pixels-per-second velocity constant.

point of
collision

x+radius–width

width

Δ

Δ

dx dx

x–2 x–1 x

Figure 28-1: A fast-moving ball might overshoot a boundary before
you can tell it to bounce back.

If the chosen dx value has the ball moving several diameters per frame, it can easily
be on the left of the wall in one frame and on the right of the wall in the next. At some
time in between, it must have collided with the wall. In that case, the amount the ball
has overshot the wall should be found, and the ball should be placed an equivalent
distance to the left of the wall, to simulate a bounce. We calculate that distance as
delta (Δ), and it equals (x + radius) - width 1 for a circle. Given this distance, the
ball’s new, post-bounce x position is width - delta - radius 3, as shown at the bottom
of Figure 28-1.

At the left side of the window, we know the ball has overshot the boundary when
x < radius 4. In this case, we reposition the ball by setting x to (2 * radius) - x 5,
and we reverse the ball’s direction of motion.

The vertical (y) situation is symmetrical 6.

N O T E Most objects are not circular but can have a (virtual, invisible) circle drawn around them, and we
can use this circle to detect collisions against the boundary.

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

2D Graphics and Animation 61

int x=320, y=240; // Coordinates of the circle (ball)
int radius=20; // Size of the circle (ball)
int dx=42, dy=22; // Speed of the circle (ball)

void setup ()
{
 size (640, 480); // Typical window size
 fill (255, 0, 255); // Magenta fill
 noStroke(); // Don't draw outlines
}

void draw ()
{
 background (255); // White background
 ellipse (x, y, radius*2, radius*2); // Draw the ball
 x = x + dx; y = y + dy; // Move
 xbounce();
 ybounce();
}

void xbounce ()
{
 int delta = 0;
1 delta = (x+radius) - width;
2 if (x+radius > width) // right side
 {
 3 x = width-delta-radius;
 dx = -dx;
4 } else if (x < radius) // left side
 {
 5 x = (2*radius)-x;
 dx = -dx; // Reverse x-direction
 }
}
6 void ybounce ()
{
 int delta = 0;
 delta = (y+radius) - height;
 if (y < radius) // top side
 {
 y = (2*radius)-y;
 dy = -dy;
 } else if (y+radius > height) // bottom side
 {
 y = height-delta-radius;
 dy = -dy; // Reverse y-direction
 }
}

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

62 Part 3

Sketch 29: Basic Sprite Graphics
We can combine the previous two sketches to show how programmers move sprites
about in computer games. A sprite is a relatively low-resolution graphic that represents
an object in a game. Sprites are usually primitive shapes or imported images. If the lat-
ter, the sprite image must have a transparent color so that we can see the background
behind the sprite; otherwise the sprite would look like a rectangle of solid color with an
image within it.

This sketch uses the rocket of Sketch 27 as the sprite and the code of Sketch 28 to
move it about in the window. The rocket will move over a background image of stars to
complete the game-like appearance.

The test to see whether the rocket has reached a side differs from the circle example
because the sprite is a rectangular image drawn from the upper-left corner, and the dis-
tance to the boundary differs between left/right and up/down. The test against the left
edge is nearly the same as before, but the offset by the radius is missing because the
x-coordinate is on the left side of the sprite and not at its center 2:

if (px < 0) // left side
{
 px = -px;
 dx = -dx; // Reverse x-direction
}

The test on the right is different because the entire width of the sprite is also to the
right of the coordinate px 1:

delta = (px+sprite.width) - width;
if (delta > 0) // right side
{
 px = width-delta-sprite.width;
 dx = -dx;
}

So px+sprite.width is the coordinate for the right side of the sprite.
The checks are symmetrical for the y-coordinate 3.

N O T E Most games allow the player to move one or more of the sprites. The convention is to do this using
key presses: W for up, A for left, D for right, and S for down. You’d put the code to move the sprite
in the function keyPressed():

void keyPressed()
{
 if (key == 'w') py = py - 1;
 if (key == 's') py = py + 1;
 if (key == 'd') px = px + 1;
 if (key == 'a') px = px - 1;
}

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

2D Graphics and Animation 63

PImage img1, sprite;
color c=color(0,0,0);
int px=100, py=100, dx=2, dy=1;

void setup ()
{
 size(100,100);
 surface.setResizable(true);
 img1 = loadImage ("background.bmp");
 surface.setSize (img1.width, img1.height);
 sprite = loadImage("image.gif");
 sprite.resize (90, 50);
}

void draw ()
{
 background (255);
 image (img1, 0, 0);
 image (sprite, px, py);
 px = px + dx; py = py + dy;
 xbounce(); ybounce();
}

void xbounce ()
{
 int delta;
 delta = (px+sprite.width) - width;
1 if (delta > 0) // right side
 {
 px = width-delta-sprite.width;
 dx = -dx;
2 } else if (px < 0) // left side
 {
 px = -px;
 dx = -dx; // Reverse x-direction
 }
}
void ybounce ()
{
 int delta;
 delta = (py+sprite.height) - height;
3 if (py < 0) // top side
 {
 py = -py;
 dy = -dy;
 } else if (delta > 0) // bottom side
 {
 py = height-delta-sprite.height;
 dy = -dy; // Reverse y-direction
 }
}

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

64 Part 3

Sketch 30: Detecting Sprite-Sprite Collisions
It is a relatively simple matter to decide whether a sprite is still within a window, because
the size of the window remains fixed and the window doesn’t move. But what if there
were many sprites moving at the same time? How would we determine if any two had
collided when both were moving? The situation of circular objects is the simplest and
is a general solution, so this sketch will handle an arbitrary number of circular objects
(balls) that will bounce off the boundaries and each other.

The coordinates of each ball will be stored in the xpos[] and ypos[] arrays 1. Drawing
object i is simple 2:

ellipse (xpos[i], ypos[i], 10, 10);

Any two objects collide if they get nearer to each other than twice the radius, or in
this case 10 pixels. These are the steps in the sketch:

1. Define positions and speeds (dx, dy) for each of nballs objects.

2. Each step (frame) is defined by a call to draw(). First, draw a circle at each location
xpos[i], ypos[i] 2.

3. Change the position: xpos[i] = xpos[i] + dx[i], and the same for y 3.

4. Check for a collision with the boundary (bounce), and if there is one, implement
the reaction to the collision. A bounce? An explosion? 4.

For each ball, check the distance between it and every other ball. If the distance is
less than twice the radius, then change the direction of both balls (implementing a
collision as a bounce) 5.

And that’s it. The bounce() function 6 is a little different from the previous one,
but it effectively does the same thing. The distance() function calculates the Euclidean
distance between the two balls, as you saw in Sketch 24. If two balls overlap after bounc-
ing, they could stick together until they collide with another ball.

N O T E A rectangular object N×M pixels in size (N > M) has a circle that surrounds it that can be used to
check collisions. The center is (N/2, M/2) and the width is N. Using a bounding circle is not pre-
cise, but it is quick. The enclosing circle for the spaceship in Sketch 29 is shown in Figure 30-1.

Figure 30-1: The enclosing circle for a rectangular object

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

2D Graphics and Animation 65

int MAXBALLS = 100;
1 int []xpos = new int[MAXBALLS];
int []ypos = new int[MAXBALLS];
int nballs = 30;
int []dx= new int[MAXBALLS];
int []dy = new int[MAXBALLS];
void setup ()
{
 size (400, 400);
 for (int i=0; i<nballs; i=i+1)
 {
 xpos[i] = (int)random(width-10)+5;
 ypos[i] = (int)random(height-10)+5;
 dx[i] = (int)random(10)-5;
 dy[i] = (int)random(10)-5;
 }
}

void draw ()
{
 background (255);
 for (int i = 0; i<nballs; i++)
 {
 2 ellipse (xpos[i], ypos[i], 10, 10); xpos[i] = xpos[i] + dx[i];
 3 ypos[i] = ypos[i] + dy[i];
 4 bounce(i);
 }
 for (int i=0; i<nballs; i++)
 for (int j=i+1; j<nballs; j++)
 5 if (distance (xpos[i], ypos[i], xpos[j], ypos[j]) < 10)
 {
 dx[i] = -dx[i]; dy[i] = -dy[i];
 dx[j] = -dx[j]; dy[j] = -dy[j];
 }
}

float distance (int x0, int y0, int x1, int y1)
{ return sqrt ((x0-x1)*(x0-x1) + (y0-y1)*(y0-y1)); }

6 void bounce (int i)
{
 if (xpos[i] < 10) dx[i] = -dx[i];
 if (xpos[i] > width-10) dx[i] = -dx[i];
 if (ypos[i] < 10) dy[i] = -dy[i];
 if (ypos[i] > height-10) dy[i] = -dy[i];
 xpos[i] = xpos[i] + dx[i]; ypos[i] = ypos[i] + dy[i];
}

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

66 Part 3

Sketch 31: Animation—Generating TV Static
We have used random numbers before, in Sketches 8 and 30. Random numbers serve a
few important functions in games, simulations, and other software:

•	 Nature uses unpredictable forms and shapes. Placing trees in a forest in a two-
dimensional grid is a giveaway that there was a mind at work in the planting. This
does not happen in nature. Instead, trees in a forest have an average distance from
each other and seem otherwise to form a random collection.

•	 Intelligent creatures do not behave predictably. Cars on a freeway that all behave in
the same manner look very odd. Cars have random distances from each other, ran-
dom speeds, and random behaviors within a possible range.

•	 When playing poker or craps, the cards and dice ought to display random values,
or the game is simply no fun.

This sketch draws a television set that looks as if it were tuned to a vacant channel.
What is seen on the screen used to be called snow, and it is really pixels created by ran-
dom voltages from signals received from space and various local electronic and electrical
devices. We cannot predict what the TV will receive at any particular moment, so we draw
a 2D set of random grey pixel values. This set of values changes every time the screen
updates. There is an impression of random motion, rapid flashing of spots on the screen,
but no organized images.

First, we display a background image of a TV set 1 and then set the pixels within
the screen section to random black/white values each time draw() is called 3:

if (random(3)<1) set (i, j, BLACK);
 else set (i, j, WHITE);

To make it appear as though a channel were poorly tuned in, we could display an
image faintly over the static by setting the alpha for the image to a low value, perhaps
30 or so. The static would be visible through the image. The tint() function changes
the color and transparency of whatever is drawn from then on, so we could use it to
change the transparency of the channel image, as follows:

tint (255, 255, 255, 127);
image (back, 49, 49);

The parameters to tint() are color coordinates, the first three being RGB and the
fourth transparency (alpha). In the preceding example, the color is white (no actual
tint) but the transparency is 127, which is half transparent.

In the code for this sketch, the tint and TV image are commented out. To see the
image, remove the comment characters from those two lines 2.

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

2D Graphics and Animation 67

PImage tv;
PImage back;
int x0=250, y0=445;
color WHITE = color (255, 255, 255, 90);
color BLACK = color (0,0,0, 90);

void setup ()
{
 size(350, 250);
 tv = loadImage("tv.jpg"); // Load TV set image
 back = loadImage ("screen.jpg");
}

void draw ()
{
 background (90, 90, 200); // Blue background
1 image (tv, 20, 20); // Display the TV
 snow (20, 20); // Display random pixels on the screen
2 // tint (255, 60);
// image (back, 49, 49);
}

// Display random black/white pixels
void snow(int x, int y)
{
 for (int i=x+29; i<x+160; i++) // TV screen coordinate offsets fixed
 for (int j=y+29; j<y+115; j++) // at UL = 29,29 and LR = 152,115
 3 if (random(3)<1) set (i, j, color(0,0,0,4));
 else set (i,j, WHITE);
}

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

68 Part 3

Sketch 32: Frame Animation
Animation involves displaying a sequence of still images on the screen at such a rate that
the human visual system interpolates changes in position in the images and perceives
motion. It is an illusion, in much the same way that any motion picture is an illusion.
The previous sketch animated a display in a very basic manner, creating the illusion
of random TV images by generating them with code. Most animations require that an
image sequence be created by an artist and then displayed as a sequence.

For a Processing sketch to display an animation, the program has to read in the
images (frames) to be displayed and then display them one after the other. The set of
frames can be stored in an array of PImage values, one per frame.

The two examples in this sketch use an image sequence that represents the gait of
a human; the 11 images compose one entire cycle of a single step, and repeating them
makes it appear as if the character is walking.

Example A
Eleven images, named a000.bmp through a010.bmp, represent the animation. The
program reads the images into consecutive elements of the frames array 1. The draw()
function displays the next image in sequence each time it’s called, increasing an index
variable n from 0 to 10 and decreasing it to 0 again repeatedly 2.

Example B
In Example A we needed to know in advance how many images belonged to the anima-
tion. In Example B we only require that the names of the files begin with a000.bmp and
that the number increases by one for consecutive images. When the program fails to
read an image file, as indicated by the fact that loadImage() returns null, the program
presumes that all of the images have been loaded 1. The program counts the images
as they are read and then displays them as before.

The loop within which the images are loaded has a break 2 statement in it to escape
the loop when null is detected.

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

2D Graphics and Animation 69

Example A PImage []frames = new PImage[12];
int nFrames = 11, n=0;
void setup ()
{
 size(100,100);
 surface.setResizable(true);
1 frames[0] = loadImage("a000.bmp");
 frames[1] = loadImage("a001.bmp");
 frames[2] = loadImage("a002.bmp");
 frames[3] = loadImage("a003.bmp");
 frames[4] = loadImage("a004.bmp");
 frames[5] = loadImage("a005.bmp");
 frames[6] = loadImage("a006.bmp");
 frames[7] = loadImage("a007.bmp");
 frames[8] = loadImage("a008.bmp");
 frames[9] = loadImage("a009.bmp");
 frames[10] = loadImage("a010.bmp");
 surface.setSize(frames[0].width, frames[0].height);
}
void draw ()
{
 frameRate (10);
2 image (frames[n], 0, 0); // Display the Frame
 n = (n + 1)%nFrames;
}

Example B int MAXFRAMES = 100;
PImage []frames = new PImage[MAXFRAMES];
int nFrames = 0, n=0;
void setup ()
{
 for (int i=0; i<MAXFRAMES; i++)
 {
 if (i<10)
 frames[i] = loadImage("a00"+i+".bmp");
 else
 frames[i] = loadImage("a0"+i+".bmp");
 1 if (frames[i] == null)
 {
 nFrames = i;
 2 break;
 }
 }
 size(100,100);
 surface.setResizable(true);
 surface.setSize(frames[0].width, frames[0].height);
}
void draw ()
{
 frameRate (10);
 image (frames[n], 0, 0); // Display the Frame
 n = (n + 1)%nFrames;
}

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

70 Part 3

Sketch 33: Flood Fill—Filling in Complex Shapes
Drawing a rectangle or ellipse that is filled with a particular color is easy to do in
Processing. You simply specify a fill color using the fill() function and then draw the
shape. However, there’s no function for filling an arbitrary shape or region, so let’s
make one. It has the advantage of showing you how filling is done in general.

This sketch reads an image with a white background that contains regions outlined
with black (though you can use other colors). The regions do not have to be regular
polygons, but they should be closed, in that there is an inside and an outside, with no
gaps in the edges. When the user clicks on a pixel, the region surrounding that pixel
will be filled with a random color.

The pixel that is clicked on has a color, the background color (bgcolor in the sketch).
A random color will be selected for the fill color (variable fillColor). The goal is to set
all of the pixels within the region that currently have the background color value to the
fill color. The first step is to set the selected pixel to the fill color, followed by setting all
neighboring pixels repeatedly, until no more candidates remain.

After the first pixel is changed, every background-colored pixel that is a neighbor
of it is also set to the fill color 1. A neighbor is defined as a pixel that is immediately
adjacent either vertically or horizontally. Then all of the pixels are scanned again, and
any background pixel that is a neighbor of a fill-colored pixel is set to the fill color. The
process is shown in Figure 33-1.

Neighbors of (x,y)

x,y–1

x,yx–1,y x+1,y

x,y+1

Set neighbors Set neighbors of neighborsSet “seed” pixel

Figure 33-1: Filling in neighboring pixels

The process is repeated until no change is made. The process stops at the bound-
ary because boundary pixels do not have the background color and are not changed.
This is not the only method for implementing a fill, nor is it the fastest, but it is prob-
ably the easiest to comprehend.

The mouseReleased() function sets the values of the bgColor and fillColor variables
and sets the first (seed) pixel to the fill color 3. The nay() function returns true if the
pixel indicated by the parameters is a neighbor to a fill-colored pixel 2. Each time
draw() is called (once per frame), it displays one iteration of the filling process, so the
process appears animated.

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

2D Graphics and Animation 71

PImage inputImage;
color bgColor, fillColor;

void setup ()
{
 size(100,100);
 surface.setResizable(true);
 inputImage = loadImage ("image.bmp");
 surface.setSize (inputImage.width, inputImage.height);
 bgColor = inputImage.get(0,0);
 fillColor = color (40, 200, 30);
}

void draw ()
{
 image (inputImage, 0, 0);

 for (int i=0; i<inputImage.width; i++)
 for (int j=0; j<inputImage.height; j++)
 if ((inputImage.get(i,j)==bgColor) && nay(i,j,fillColor))
 {
 1 inputImage.set(i,j,fillColor);
 }
}

2 boolean nay (int x, int y, int c)
{
 if (get(x-1, y) == c) return true;
 if (get(x+1, y) == c) return true;
 if (get(x, y-1) == c) return true;
 if (get(x, y+1) == c) return true;
 return false;
}

void mouseReleased ()
{
3 bgColor = get(mouseX, mouseY);
 fillColor = color (random(128,255),random(128,255),random(128,255));
 inputImage.set (mouseX, mouseY, fillColor);

}

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

An Artist's Guide to Programming (Sample Chapter) © 01/28/2022 by Jim Parker

www.itbook.store

https://itbook.store

