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F O U N D A T I O N S

As you dive into the more advanced cor-
ners of Rust, it’s important that you ensure 

you have a solid understanding of the fun-
damentals. In Rust, as in any programming 

language, the precise meaning of various keywords 
and concepts becomes important as you begin to 
use the language in more sophisticated ways. In this 
chapter, we’ll walk through many of Rust’s primitives  
and try to define more clearly what they mean, how they work, and why 
they are exactly the way that they are. Specifically, we’ll look at how vari-
ables and values differ, how they are represented in memory, and the 
different memory regions a program has. We’ll then discuss some of the 
subtleties of ownership, borrowing, and lifetimes that you’ll need to have a 
handle on before you continue with the book.

You can read this chapter from top to bottom if you wish, or you can 
use it as a reference to brush up on the concepts that you feel less sure 
about. I recommend that you move on only when you feel completely 
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2   Chapter 1

comfortable with the content of this chapter, as misconceptions about how 
these primitives work will quickly get in the way of understanding the more 
advanced topics, or lead to you using them incorrectly.

Talking About Memory
Not all memory is created equal. In most programming environments, 
your programs have access to a stack, a heap, registers, text segments, 
memory-mapped registers, memory-mapped files, and perhaps nonvolatile 
RAM. Which one you choose to use in a particular situation has implica-
tions for what you can store there, how long it remains accessible, and what 
mechanisms you use to access it. The exact details of these memory regions 
vary between platforms and are beyond the scope of this book, but some 
are so important to how you reason about Rust code that they are worth 
covering here.

Memory Terminology
Before we dive into regions of memory, you first need to know about the dif-
ference between values, variables, and pointers. A value in Rust is the combi-
nation of a type and an element of that type’s domain of values. A value can 
be turned into a sequence of bytes using its type’s representation, but on its 
own you can think of a value more like what you, the programmer, meant. 
For example, the number 6 in the type u8 is an instance of the mathematical 
integer 6, and its in-memory representation is the byte 0x06. Similarly, the 
str "Hello world" is a value in the domain of all strings whose representation 
is its UTF-8 encoding. A value’s meaning is independent of the location 
where those bytes are stored.

A value is stored in a place, which is the Rust terminology for “a location 
that can hold a value.” This place can be on the stack, on the heap, or in 
a number of other locations. The most common place to store a value is a 
variable, which is a named value slot on the stack.

A pointer is a value that holds the address of a region of memory, so the 
pointer points to a place. A pointer can be dereferenced to access the value 
stored in the memory location it points to. We can store the same pointer 
in more than one variable and therefore have multiple variables that indi-
rectly refer to the same location in memory and thus the same underlying 
value.

Consider the code in Listing 1-1, which illustrates these three elements.

let x = 42;
let y = 43;
let var1 = &x;
let mut var2 = &x;
1 var2 = &y;

Listing 1-1: Values, variables, and pointers
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Here, there are four distinct values: 42 (an i32), 43 (an i32), the address of 
x (a pointer), and the address of y (a pointer). There are also four variables: x, 
y, var1, and var2. The latter two variables both hold values of the pointer type, 
because references are pointers. While var1 and var2 store the same value ini-
tially, they store separate, independent copies of that value; when we change 
the value stored in var2 1, the value in var1 does not change. In particular, 
the = operator stores the value of the right-hand side expression in the place 
named by the left-hand side.

An interesting example of where the distinction between variables, val-
ues, and pointers becomes important is in a statement such as:

let string = "Hello world";

Even though we assign a string value to the variable string, the actual 
value of the variable is a pointer to the first character in the string value 
"Hello world", and not the string value itself. At this point you might say, 
“But hang on, where is the string value stored, then? Where does the 
pointer point?” If so, you have a keen eye—we’ll get to that in a second.

N O T E 	 Technically, the value of string also includes the string’s length. We’ll talk about that 
in Chapter 2 when we discuss wide pointer types.

Variables in Depth
The definition of a variable I gave earlier is broad and unlikely to be all 
that useful in and of itself. As you encounter more complex code, you’ll 
need a more accurate mental model to help you reason through what 
the programs are really doing. There are many such models that we can 
make use of. Describing them all in detail would take up several chap-
ters and is beyond the scope of this book, but broadly speaking, they can 
be divided into two categories: high-level models and low-level models. 
High-level models are useful when thinking about code at the level of 
lifetimes and borrows, while low-level models are good for when you are 
reasoning about unsafe code and raw pointers. The models for variables 
described in the following two sections will suffice for most of the mate-
rial in this book.

High-Level Model

In the high-level model, we don’t think of variables as places that hold bytes. 
Instead, we think of them just as names given to values as they are instanti-
ated, moved, and used throughout a program. When you assign a value to a 
variable, that value is from then on named by that variable. When a variable 
is later accessed, you can imagine drawing a line from the previous access 
of that variable to the new access, which establishes a dependency relation-
ship between the two accesses. If the value in a variable is moved, no lines 
can be drawn from it anymore.

In this model, a variable exists only so long as it holds a legal value; you 
cannot draw lines from a variable whose value is uninitialized or has been 
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moved, so effectively it isn’t there. Using this model, your entire program 
consists of many of these dependency lines, often called flows, each one 
tracing the lifetime of a particular instance of a value. Flows can fork and 
merge when there are branches, with each split tracing a distinct lifetime 
for that value. The compiler can check that at any given point in your pro-
gram, all flows that can exist in parallel with each other are compatible. For 
example, there cannot be two parallel flows with mutable access to a value. 
Nor can there be a flow that borrows a value while there is no flow that 
owns the value. Listing 1-2 shows examples of both of these cases.

let mut x;
// this access would be illegal, nowhere to draw the flow from:
// assert_eq!(x, 42);
1 x = 42;
// this is okay, can draw a flow from the value assigned above:
2 let y = &x;
// this establishes a second, mutable flow from x:
3 x = 43;
// this continues the flow from y, which in turn draws from x.
// but that flow conflicts with the assignment to x!
4 assert_eq!(*y, 42);

Listing 1-2: Illegal flows that the borrow checker will catch

First, we cannot use x before it is initialized, because we have nowhere 
to draw the flow from. Only when we assign a value to x can we draw flows 
from it. This code has two flows: one exclusive (&mut) flow from 1 to 3, and 
one shared (&) flow from 1 through 2 to 4. The borrow checker inspects 
every vertex of every flow and checks that no other incompatible flows exist 
concurrently. In this case, when the borrow checker inspects the exclusive 
flow at 3, it sees the shared flow that terminates at 4. Since you cannot 
have an exclusive and a shared use of a value at the same time, the borrow 
checker (correctly) rejects the code. Notice that if 4 was not there, this 
code would compile fine! The shared flow would terminate at 2, and when 
the exclusive flow is checked at 3, no conflicting flows would exist.

If a new variable is declared with the same name as a previous one, they 
are still considered distinct variables. This is called shadowing—the later 
variable “shadows” the former by the same name. The two variables coexist, 
though subsequent code no longer has a way to name the earlier one. This 
model matches roughly how the compiler, and the borrow checker in par-
ticular, reasons about your program, and is actually used internally in the 
compiler to produce efficient code. 

Low-Level Model

Variables name memory locations that may or may not hold legal values. 
You can think of a variable as a “value slot.” When you assign to it, the slot 
is filled, and its old value (if it had one) is dropped and replaced. When you 
access it, the compiler checks that the slot isn’t empty, as that would mean 
the variable is uninitialized or its value has been moved. A pointer to a vari-
able refers to the variable’s backing memory and can be dereferenced to 
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get at its value. For example, in the statement let x: usize, the variable x is a 
name for a region of memory on the stack that has room for a value the size 
of a usize, though it does not have a well-defined value (its slot is empty). If 
you assign a value to that variable, such as with x = 6, that region of memory 
will then hold the bits representing the value 6. &x does not change when you 
assign to x. If you declare multiple variables with the same name, they still 
end up with different chunks of memory backing them. This model matches 
the memory model used by C and C++, and many other low-level languages, 
and is useful for when you need to reason explicitly about memory.

N O T E 	 In this example, we ignore CPU registers and treat them as an optimization. In real-
ity, the compiler may use a register to back a variable instead of a region of memory if 
no memory address is needed for that variable.

You may find that one of these matches your previous model bet-
ter than the other, but I urge you to try to wrap your head around both 
of them. They are both equally valid, and both are simplifications, like 
any useful mental model has to be. If you are able to consider a piece of 
code from both of these perspectives, you will find it much easier to work 
through complicated code segments and understand why they do or do not 
compile and work as you expect.

Memory Regions
Now that you have a grip on how we refer to memory, we need to talk about 
what memory actually is. There are many different regions of memory, and 
perhaps surprisingly, not all of them are stored in the DRAM of your com-
puter. Which part of memory you use has a significant impact on how you 
write your code. The three most important regions for the purposes of writ-
ing Rust code are the stack, the heap, and static memory.

The Stack

The stack is a segment of memory that your program uses as scratch space 
for function calls. Each time a function is called, a contiguous chunk of 
memory called a frame is allocated at the top of the stack.  Near the bottom 
of the stack is the frame for the main function, and as functions call other 
functions, additional frames are pushed onto the stack. A function’s frame 
contains all the variables within that function, along with any arguments 
the function takes. When the function returns, its stack frame is reclaimed.

The bytes that make up the values of the function’s local variables are 
not immediately wiped, but it’s not safe to access them as they may have 
been overwritten by a subsequent function call whose frame overlaps with 
the reclaimed one. And even if they haven’t been overwritten, they may con-
tain values that are illegal to use, such as ones that were moved when the 
function returned.

Stack frames, and crucially the fact that they eventually disappear, are 
very closely tied to the notion of lifetimes in Rust. Any variable stored in a 
frame on the stack cannot be accessed after that frame goes away, so any 
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reference to it must have a lifetime that is at most as long as the lifetime of 
the frame.

The Heap

The heap is a pool of memory that isn’t tied to the current call stack of the 
program. Values in heap memory live until they are explicitly deallocated. 
This is useful when you want a value to live beyond the lifetime of the cur-
rent function’s frame. If that value is the function’s return value, the calling 
function can leave some space on its stack for the called function to write 
that value into before it returns. But if you want to, say, send that value to a 
different thread with which the current thread may share no stack frames at 
all, you can store it on the heap.

The heap allows you to explicitly allocate contiguous segments of 
memory. When you do so, you get a pointer to the start of that segment 
of memory. That memory segment is reserved for you until you later deal-
locate it; this process is often referred to as freeing, after the name of the 
corresponding function in the C standard library. Since allocations from 
the heap do not go away when a function returns, you can allocate memory 
for a value in one place, pass the pointer to it to another thread, and have 
that thread safely continue to operate on that value. Or, phrased differ-
ently, when you heap-allocate memory, the resulting pointer has an uncon-
strained lifetime—its lifetime is however long your program keeps it alive.

The primary mechanism for interacting with the heap in Rust is the Box 
type. When you write Box::new(value), the value is placed on the heap, and 
what you are given back (the Box<T>) is a pointer to that value on the heap. 
When the Box is eventually dropped, that memory is freed.

If you forget to deallocate heap memory, it will stick around forever, and 
your application will eventually eat up all the memory on your machine. This 
is called leaking memory and is usually something you want to avoid. However, 
there are some cases where you explicitly want to leak memory. For example, 
say you have a read-only configuration that the entire program should be 
able to access. You can allocate that on the heap and explicitly leak it with 
Box::leak to get a 'static reference to it.

Static Memory

Static memory is really a catch-all term for several closely related regions 
located in the file your program is compiled into. These regions are 
automatically loaded into your program’s memory when that program is 
executed. Values in static memory live for the entire execution of your pro-
gram. Your program’s static memory contains the program’s binary code, 
which is usually mapped as read-only. As your program executes, it walks 
through the binary code in the text segment instruction by instruction and 
jumps around whenever a function is called. Static memory also holds the 
memory for variables you declare with the static keyword, as well as certain 
constant values in your code, like strings.

The special lifetime 'static, which gets its name from the static memory 
region, marks a reference as being valid for “as long as static memory is 
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around,” which is until the program shuts down. Since a static variable’s 
memory is allocated when the program starts, a reference to a variable in 
static memory is, by definition, 'static, as it is not deallocated until the pro-
gram shuts down. The inverse is not true—there can be 'static references 
that do not point to static memory—but the name is still appropriate: once 
you create a reference with a static lifetime, whatever it points to might as 
well be in static memory as far as the rest of the program is concerned, as it 
can be used for however long your program wishes.

You will encounter the 'static lifetime much more often than you will 
encounter truly static memory (through the static keyword, for example) 
when working with Rust. This is because 'static often shows up in trait 
bounds on type parameters. A bound like T: 'static indicates that the type 
parameter T is able to live for however long we keep it around for, up to and 
including the remaining execution of the program. Essentially, this bound 
requires that T is owned and self-sufficient, either in that it does not bor-
row other (non-static) values or that anything it does borrow is also 'static 
and thus will stick around until the end of the program. A good example 
of 'static as a bound is the std::thread::spawn function that creates a new 
thread, which requires that the closure you pass it is 'static. Since the new 
thread may outlive the current thread, the new thread cannot refer to any-
thing stored on the old thread’s stack. The new thread can refer only to 
values that will live for its entire lifetime, which may be for the remaining 
duration of the program.

N O T E 	 You may wonder how const differs from static. The const keyword declares the fol-
lowing item as constant. Constant items can be completely computed at compile time, 
and any code that refers to them is replaced with the constant’s computed value dur-
ing compilation. A constant has no memory or other storage associated with it (it is 
not a place). You can think of constant as a convenient name for a particular value.

Ownership
Rust’s memory model centers on the idea that all values have a single 
owner—that is, exactly one location (usually a scope) is responsible for 
ultimately deallocating each value. This is enforced through the borrow 
checker. If the value is moved, such as by assigning it to a new variable, 
pushing it to a vector, or placing it on the heap, the ownership of the value 
moves from the old location to the new one. At that point, you can no lon-
ger access the value through variables that flow from the original owner, 
even though the bits that make up the value are technically still there. 
Instead, you must access the moved value through variables that refer 
to its new location.

Some types are rebels and do not follow this rule. If a value’s type imple-
ments the special Copy trait, the value is not considered to have moved even 
if it is reassigned to a new memory location. Instead, the value is copied, 
and both the old and new locations remain accessible. Essentially, another 
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identical instance of that same value is constructed at the destination of the 
move. Most primitive types in Rust, such as the integer and floating-point 
types, are Copy. To be Copy, it must be possible to duplicate the type’s values 
simply by copying their bits. This eliminates all types that contain non-Copy 
types as well as any type that owns a resource it must deallocate when the 
value is dropped.

To see why, consider what would happen if a type like Box were Copy. 
If we executed box2 = box1, then box1 and box2 would both believe that 
they owned the heap memory allocated for the box, and they would both 
attempt to free it when they went out of scope. Freeing the memory twice 
could have catastrophic consequences.

When a value’s owner no longer has use for it, it is the owner’s responsi-
bility to do any necessary cleanup for that value by dropping it. In Rust, drop-
ping happens automatically when the variable that holds the value is no 
longer in scope. Types usually recursively drop values they contain, so drop-
ping a variable of a complex type may result in many values being dropped. 
Because of Rust’s discrete ownership requirement, we cannot accidentally 
drop the same value multiple times. A variable that holds a reference to 
another value does not own that other value, so the value isn’t dropped 
when the variable drops.

The code in Listing 1-3 gives a quick summary of the rules around own-
ership, move and copy semantics, and dropping.

let x1 = 42;
let y1 = Box::new(84);
{ // starts a new scope
1 let z = (x1, y1);
  // z goes out of scope, and is dropped;
  // it in turn drops the values from x1 and y1
2 }
// x1's value is Copy, so it was not moved into z
3 let x2 = x1;
// y1's value is not Copy, so it was moved into z
4 // let y2 = y1;

Listing 1-3: Moving and copying semantics

We start out with two values, the number 42 and a Box (a heap-allocated 
value) containing the number 84. The former is Copy, whereas the latter is 
not. When we place x1 and y1 into the tuple z 1, x1 is copied into z, whereas 
y1 is moved into z. At this point, x1 continues to be accessible and can be 
used again 3. On the other hand, y1 is rendered inaccessible once its value 
has been moved 4, and any attempt to access it would incur a compiler 
error. When z goes out of scope 2, the tuple value it contains is dropped, 
and this in turn drops the value copied from x1 and the one moved from y1. 
When the Box from y1 is dropped, it also deallocates the heap memory used 
to store y1’s value.
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DROP OR DER

Rust automatically drops values when they go out of scope, such as x1 and y1 
in the inner scope in Listing 1-3. The rules for the order in which to drop are 
fairly simple: variables (including function arguments) are dropped in reverse 
order, and nested values are dropped in source-code order.

This might sound weird at first—why the discrepancy? If we look at it 
closely, though, it makes a lot of sense. Say you write a function that declares 
a string and then inserts a reference to that string into a new hash table. When 
the function returns, the hash table must be dropped first; if the string were 
dropped first, the hash table would then hold an invalid reference! In general, 
later variables may contain references to earlier values, whereas the inverse 
cannot happen due to Rust’s lifetime rules. And for that reason, Rust drops vari-
ables in reverse order.

Now, we could have the same behavior for nested values, like the values 
in a tuple, array, or struct, but that would likely surprise users. If you constructed 
an array that contained two values, it’d seem odd if the last element of the array 
were dropped first. The same applies to tuples and structs, where the most intui-
tive behavior is for the first tuple element or field to be dropped first, then the 
second, and so on. Unlike for variables, there is no need to reverse the drop 
order in this case, since Rust doesn’t (currently) allow self-references in a single 
value. So, Rust goes with the intuitive option.

Borrowing and Lifetimes
Rust allows the owner of a value to lend out that value to others, without 
giving up ownership, through references. References are pointers that come 
with an additional contract for how they can be used, such as whether the 
reference provides exclusive access to the referenced value, or whether the 
referenced value may also have other references point to it.

Shared References
A shared reference, &T, is, as the name implies, a pointer that may be 
shared. Any number of other references may exist to the same value, and 
each shared reference is Copy, so you can trivially make more of them. 
Values behind shared references are not mutable; you cannot modify or 
reassign the value a shared reference points to, nor can you cast a shared 
reference to a mutable one.

The Rust compiler is allowed to assume that the value a shared refer-
ence points to will not change while that reference lives. For example, if the 
Rust compiler sees that the value behind a shared reference is read multiple 
times in a function, it is within its rights to read it only once and reuse that 
value. More concretely, the assertion in Listing 1-4 should never fail.
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fn cache(input: &i32, sum: &mut i32) {
  *sum = *input + *input;
  assert_eq!(*sum, 2 * *input);
}

Listing 1-4: Rust assumes that shared references are immutable.

Whether or not the compiler chooses to apply a given optimization is 
more or less irrelevant. The compiler heuristics change over time, so you 
generally want to code against what the compiler is allowed to do rather 
than what it actually does in a particular case at a particular moment 
in time.

Mutable References
The alternative to a shared reference is a mutable reference: &mut T. With 
mutable references, the Rust compiler is again allowed to make full use of 
the contract that the reference comes with: the compiler assumes that there 
are no other threads accessing the target value, whether through a shared 
reference or a mutable one. In other words, it assumes that the mutable 
reference is exclusive. This enables some interesting optimizations that are 
not readily available in other languages. Take, for example, the code in 
Listing 1-5.

fn noalias(input: &i32, output: &mut i32) {
  if *input == 1 {
   1 *output = 2;
  }
2 if *input != 1 {
     *output = 3;
  }
}

Listing 1-5: Rust assumes that mutable references are exclusive.

In Rust, the compiler can assume that input and output do not point to 
the same memory. Therefore, the reassignment of output at 1 cannot affect 
the check at 2, and the entire function can be compiled as a single if-else 
block. If the compiler could not rely on the exclusive mutability contract, 
that optimization would be invalid, since an input of 1 could then result in 
an output of 3 in a case like noalias(&x, &mut x).

A mutable reference lets you mutate only the memory location that 
the reference points to. Whether you can mutate values that lie beyond the 
immediate reference depends on the methods provided by the type that lies 
between. This may be easier to understand with an example, so consider 
Listing 1-6.

let x = 42;
let mut y = &x; // y is of type &i32
let z = &mut y; // z is of type &mut &i32

Listing 1-6: Mutability applies only to the immediately referenced memory.
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In this example, you are able to change the value of the pointer y to a 
different value (that is, a different pointer) by making it reference a differ-
ent variable, but you cannot change the value that is pointed to (that is, the 
value of x). Similarly, you can change the pointer value of y through z, but 
you cannot change z itself to hold a different reference.

The primary difference between owning a value and having a mutable 
reference to it is that the owner is responsible for dropping the value when 
it is no longer necessary. Apart from that, you can do anything through a 
mutable reference that you can if you own the value, with one caveat: if you 
move the value behind the mutable reference, then you must leave another 
value in its place. If you did not, the owner would still think it needed to 
drop the value, but there would be no value for it to drop!

Listing 1-7 gives an example of the ways in which you can move the 
value behind a mutable reference.

fn replace_with_84(s: &mut Box<i32>) {
  // this is not okay, as *s would be empty:
1 // let was = *s;
  // but this is:
2 let was = std::mem::take(s);
  // so is this:
3 *s = was;
  // we can exchange values behind &mut:
  let mut r = Box::new(84);
4 std::mem::swap(s, &mut r);
  assert_ne!(*r, 84);
}
let mut s = Box::new(42);
replace_with_84(&mut s);
5

Listing 1-7: Access through a mutable reference must leave a value behind.

I’ve added commented-out lines that represent illegal operations. You 
cannot simply move the value out 1 since the caller would still think they 
owned that value and would free it again at 5, leading to a double free. If 
you just want to leave some valid value behind, std::mem::take 2 is a good can-
didate. It is equivalent to std::mem::replace(&mut value, Default::default()); it 
moves value out from behind the mutable reference but leaves a new, default 
value for the type in its place. The default is a separate, owned value, so it is 
safe for the caller to drop it when the scope ends at 5.

Alternatively, if you don’t need the old value behind the reference, you 
can overwrite it with a value that you already own 3, leaving it to the caller 
to drop the value later. When you do this, the value that used to be behind 
the mutable reference is dropped immediately.

Finally, if you have two mutable references, you can swap their values 
without owning either of them 4, since both references will end up with a 
legal owned value for their owners to eventually free.
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Interior Mutability
Some types provide interior mutability, meaning they allow you to mutate a 
value through a shared reference. These types usually rely on additional 
mechanisms (like atomic CPU instructions) or invariants to provide safe 
mutability without relying on the semantics of exclusive references. These 
normally fall into two categories: those that let you get a mutable reference 
through a shared reference, and those that let you replace a value given 
only a shared reference.

The first category consists of types like Mutex and RefCell, which con-
tain safety mechanisms to ensure that, for any value they give a mutable 
reference to, only one mutable reference (and no shared references) can 
exist at a time. Under the hood, these types (and those like them) all rely 
on a type called UnsafeCell, whose name should immediately make you 
hesitate to use it. We will cover UnsafeCell in more detail in Chapter 9, but 
for now you should know that it is the only correct way to mutate through 
a shared reference.

Other categories of types that provide interior mutability are those that 
do not give out a mutable reference to the inner value but instead just give 
you methods for manipulating that value in place. The atomic integer types 
in std::sync::atomic and the std::cell::Cell type fall into this category. You 
cannot get a reference directly to the usize or i32 behind such a type, but 
you can read and replace its value at a given point in time.

N O T E 	 The Cell type in the standard library is an interesting example of safe interior muta-
bility through invariants. It is not shareable across threads and never gives out a 
reference to the value contained in the Cell. Instead, the methods all either replace the 
value entirely or return a copy of the contained value. Since no references can exist 
to the inner value, it is always okay to move it. And since Cell isn’t shareable across 
threads, the inner value will never be concurrently mutated even though mutation 
happens through a shared reference.

Lifetimes
If you’re reading this book, you’re probably already familiar with the con-
cept of lifetimes, likely through repeated notices from the compiler about 
lifetime rules violations. That level of understanding will serve you well 
for the majority of Rust code you will write, but as we dive deeper into the 
more complex parts of Rust, you will need a more rigorous mental model to 
work with.

Newer Rust developers are often taught to think of lifetimes as cor-
responding to scopes: a lifetime begins when you take a reference to some 
variable and ends when that variable is moved or goes out of scope. That’s 
often correct, and usually useful, but the reality is a little more complex. 
A lifetime is really a name for a region of code that some reference must be 
valid for. While a lifetime will frequently coincide with a scope, it does not 
have to, as we will see later in this section.
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Lifetimes and the Borrow Checker

At the heart of Rust lifetimes is the borrow checker. Whenever a reference 
with some lifetime 'a is used, the borrow checker checks that 'a is still alive. 
It does this by tracing the path back to where 'a starts—where the reference 
was taken—from the point of use and checking that there are no conflict-
ing uses along that path. This ensures that the reference still points to a 
value that it is safe to access. This is similar to the high-level “data flow” 
mental model we discussed earlier in the chapter; the compiler checks that 
the flow of the reference we are accessing does not conflict with any other 
parallel flows.

Listing 1-8 shows a simple code example with lifetime annotations for 
the reference to x.

let mut x = Box::new(42);
1 let r = &x;           // 'a
if rand() > 0.5 {
2 *x = 84;
} else {
3 println!("{}", r);  // 'a
}
4

Listing 1-8: Lifetimes do not need to be contiguous.

The lifetime starts at 1 when we take a reference to x. In the first 
branch 2, we then immediately try to modify x by changing its value to 84, 
which requires a &mut x. The borrow checker takes out a mutable reference 
to x and immediately checks its use. It finds no conflicting uses between 
when the reference was taken and when it was used, so it accepts the code. 
This may come as a surprise if you are used to thinking about lifetimes 
as scopes, since r is still in scope at 2 (it goes out of scope at 4). But the 
borrow checker is smart enough to realize that r is never used later if this 
branch is taken, and therefore it is fine for x to be mutably accessed here. 
Or, phrased differently, the lifetime created at 1 does not extend into this 
branch: there is no flow from r beyond 2, and therefore there are no con-
flicting flows. The borrow checker then finds the use of r in the print state-
ment at 3. It walks the path back to 1 and finds no conflicting uses (2 is 
not on that path), so it accepts this use as well.

If we were to add another use of r at 4 in Listing 1-8, the code would 
no longer compile. The lifetime 'a would then last from 1 all the way 
until 4 (the last use of r), and when the borrow checker checked our new 
use of r, it would discover a conflicting use at 2.

Lifetimes can get quite convoluted. In Listing 1-9 you can see an example 
of a lifetime that has holes, where it’s intermittently invalid between where it 
starts and where it ultimately ends.
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let mut x = Box::new(42);
1 let mut z = &x;          // 'a
for i in 0..100 {
2 println!("{}", z);     // 'a
3 x = Box::new(i);
4 z = &x;                // 'a
}
println!("{}", z);       // 'a

Listing 1-9: Lifetimes can have holes.

The lifetime starts at 1 when we take a reference to x. We then move 
out of x at 3, which ends the lifetime 'a because it is no longer valid. The 
borrow checker accepts this move by considering 'a ended at 2, which 
leaves no conflicting flows from x at 3. Then, we restart the lifetime by 
updating the reference in z 4. Regardless of whether the code now loops 
back around to 2 or continues to the final print statement, both of those 
uses now have a valid value to flow from, and there are no conflicting flows, 
so the borrow checker accepts the code!

Again, this aligns perfectly with the data-flow model of memory we dis-
cussed earlier. When x is moved, z stops existing. When we reassign z later, 
we are creating an entirely new variable that exists only from that point 
forward. It just so happens that that new variable is also named z. With that 
model in mind, this example is not weird.

N O T E 	 The borrow checker is, and has to be, conservative. If it’s unsure whether a borrow is 
valid, it rejects it, as the consequences of allowing an invalid borrow could be disas-
trous. The borrow checker keeps getting smarter, but there are times when it needs help 
to understand why a borrow is legal. This is part of why we have unsafe Rust.

Generic Lifetimes

Occasionally you need to store references within your own types. Those ref-
erences need to have a lifetime so that the borrow checker can check their 
validity when they are used in the various methods on that type. This is 
especially true if you want a method on your type to return a reference that 
outlives the reference to self.

Rust lets you make a type definition generic over one or more lifetimes, 
just as it allows you to make it generic over types. The Rust Programming 
Language by Steve Klabnik and Carol Nichols (No Starch Press, 2018) covers 
this topic in some detail, so I won’t reiterate the basics here. But as you write 
more complex types of this nature, there are two subtleties around the 
interaction between such types and lifetimes that you should be aware of.

First, if your type also implements Drop, then dropping your type counts 
as a use of any lifetime or type your type is generic over. Essentially, when 
an instance of your type is dropped, the borrow checker will check that it’s 
still legal to use any of your type’s generic lifetimes before dropping it. This 
is necessary in case your drop code does use any of those references. If your 
type does not implement Drop, dropping the type does not count as a use, 
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and users are free to ignore any references stored in your type as long as 
they do not use it anymore, like we saw in Listing 1-7. We’ll talk more about 
these rules around dropping in Chapter 9.

Second, while a type can be generic over multiple lifetimes, making 
it so often only serves to unnecessarily complicate your type signature. 
Usually, a type being generic over a single lifetime is fine, and the compiler 
will use the shorter of the lifetimes for any references inserted into your 
type as that one lifetime. You should only really use multiple generic life-
time parameters if you have a type that contains multiple references, and its 
methods return references that should be tied to the lifetime of only one of 
those references. 

Consider the type in Listing 1-10, which gives you an iterator over parts 
of a string separated by a particular other string.

struct StrSplit<'s, 'p> {
  delimiter: &'p str,
  document: &'s str,
}
impl<'s, 'p> Iterator for StrSplit<'s, 'p> {
  type Item = &'s str;
  fn next(&self) -> Option<Self::Item> {
    todo!()
  }
}
fn str_before(s: &str, c: char) -> Option<&str> {
  StrSplit { document: s, delimiter: &c.to_string() }.next()
}

Listing 1-10: A type that needs to be generic over multiple lifetimes

When you construct this type, you have to give the delimiter and docu-
ment to search, both of which are references to string values. When you ask 
for the next string, you get a reference into the document. Consider what 
would happen if you used a single lifetime in this type. The values yielded 
by the iterator would be tied to the lifetime of the document and the delimiter. 
This would make str_before impossible to write: the return type would have 
a lifetime associated with a variable local to the function—the String pro-
duced by to_string—and the borrow checker would reject the code.

Lifetime Variance

Variance is a concept that programmers are often exposed to but rarely 
know the name of because it’s mostly invisible. At a glance, variance 
describes what types are subtypes of other types and when a subtype can be 
used in place of a supertype (and vice versa). Broadly speaking, a type A is 
a subtype of another type B if A is at least as useful as B. Variance is the rea-
son why, in Java, you can pass a Turtle to a function that accepts an Animal if 
Turtle is a subtype of Animal, or why, in Rust, you can pass a &'static str to a 
function that accepts a &'a str. 

While variance usually hides out of sight, it comes up often enough 
that we need to have a working knowledge of it. Turtle is a subtype of Animal 
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because a Turtle is more “useful” than some unspecified Animal—a Turtle 
can do anything an Animal can do, and likely more. Similarly, 'static is a 
subtype of 'a because a 'static lives at least as long as any 'a and so is more 
useful. Or, more generally, if 'b: 'a ('b outlives 'a), then 'b is a subtype of 
'a. This is obviously not the formal definition, but it gets close enough to be 
of practical use.

All types have a variance, which defines what other similar types can 
be used in that type’s place. There are three kinds of variance: covariant, 
invariant, and contravariant. A type is covariant if you can just use a subtype 
in place of the type. For example, if a variable is of type &'a T, you can pro-
vide a value of type &'static T to it, because &'a T is covariant in 'a. &'a T is 
also covariant in T, so you can pass a &Vec<&'static str> to a function that 
takes &Vec<&'a str>.

Some types are invariant, which means that you must provide exactly 
the given type. &mut T is an example of this—if a function takes a &mut 
Vec<&'a str>, you cannot pass it a &mut Vec<&'static str>. That is, &mut T is 
invariant in T. If you could, the function could put a short-lived string inside 
the Vec, which the caller would then continue using, thinking that it were a 
Vec<&'static str> and thus that the contained string were 'static! Any type 
that provides mutability is generally invariant for the same reason—for 
example, Cell<T> is invariant in T.

The last category, contravariance, comes up for function arguments. 
Function types are more useful if they’re okay with their arguments being 
less useful. This is clearer if you contrast the variance of the argument types 
on their own with their variance when used as function arguments:

let x: &'static str; // more useful, lives longer
let x: &'a      str; // less useful, lives shorter

fn take_func1(&'static str) // stricter, so less useful
fn take_func2(&'a str)      // less strict, more useful

This flipped relationship indicates that Fn(T) is contravariant in T.
So why do you need to learn about variance when it comes to lifetimes? 

Variance becomes relevant when you consider how generic lifetime param-
eters interact with the borrow checker. Consider a type like the one shown 
in Listing 1-11, which uses multiple lifetimes in a single field.

struct MutStr<'a, 'b> {
  s: &'a mut &'b str
}
let mut s = "hello";
1 *MutStr { s: &mut s }.s = "world";
println!("{}", s);

Listing 1-11: A type that needs to be generic over multiple lifetimes

At first glance, using two lifetimes here seems unnecessary—we have no 
methods that need to differentiate between a borrow of different parts of 
the structure, as we did with StrSplit in Listing 1-10. But if you replace the 
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two lifetimes here with a single 'a, the code no longer compiles! And it’s all 
because of variance.

N O T E 	 The syntax at 1 may seem alien. It’s equivalent to defining a variable x holding 
a MutStr and then writing *x.s = "world", except that there’s no variable and so the 
MutStr is dropped immediately.

At 1, the compiler must determine what lifetime the lifetime para
meter(s) should be set to. If there are two lifetimes, 'a is set to the to-be-
determined lifetime of the borrow of s, and 'b is set to 'static since that’s 
the lifetime of the provided string "hello". If there is just one lifetime 'a, the 
compiler infers that that lifetime must be 'static. 

When we later attempt to access the string reference s through a shared 
reference to print it, the compiler tries to shorten the mutable borrow of s 
used by MutStr to allow the shared borrow of s.

In the two-lifetime case, 'a simply ends just before the println, and 'b 
stays the same. In the single-lifetime case, on the other hand, we run into 
issues. The compiler wants to shorten the borrow of s, but to do so, it would 
also have to shorten the borrow of the str. While &'static str can in general 
be shortened to any &'a str (&'a T is covariant in 'a), here it’s behind a &mut 
T, which is invariant in T. Invariance requires that the relevant type is never 
replaced with a sub- or supertype, so the compiler’s attempt to shorten the 
borrow fails, and it reports that the list is still mutably borrowed. Ouch!

Because of the reduced flexibility imposed by invariance, you want to 
ensure that your types remain covariant (or contravariant where appropri-
ate) over as many of their generic parameters as possible. If that requires 
introducing additional lifetime arguments, you need to carefully weigh the 
cognitive cost of adding another parameter against the ergonomic cost of 
invariance.

Summary
The aim of this chapter has been to establish a solid, shared foundation 
that we can build on in the chapters to come. By now, I hope you feel that 
you have a firm grasp on Rust’s memory and ownership model, and that 
those errors you may have gotten from the borrow checker seem less mys-
terious. You might have known bits and pieces of what we covered here 
already, but hopefully the chapter has given you a more holistic image of 
how it all fits together. In the next chapter, we will do something similar for 
types. We’ll go over how types are represented in memory, see how gener-
ics and traits produce running code, and take a look at some of the special 
type and trait constructs Rust offers for more advanced use cases.
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