
www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Web
Application
Development
Cookbook

Over 90 hands-on recipes to architect performant
applications and implement best practices in AngularJS

Matt Frisbie

BIRMINGHAM - MUMBAI

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Web Application Development
Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1191214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-335-4

www.packtpub.com

Cover image by Suyog Gharat (yogiee@me.com)

www.itbook.store/books/9781783283354

www.packtpub.com
https://itbook.store/books/9781783283354

Credits

Author
Matt Frisbie

Reviewers
Pawel Czekaj

Patrick Gillespie

Aakash Patel

Adam Štipák

Commissioning Editor
Akram Hussain

Acquisition Editor
Sam Wood

Content Development Editor
Govindan K

Technical Editors
Taabish Khan

Parag Topre

Copy Editors
Deepa Nambiar

Neha Vyas

Project Coordinator
Shipra Chawhan

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

About the Author

Matt Frisbie is currently a full stack developer at DoorDash (YC S13), where he joined
as the first engineer. He led their adoption of AngularJS, and he also focuses on the
infrastructural, predictive, and data projects within the company.

Matt has a degree in Computer Engineering from the University of Illinois at Urbana-Champaign.
He is the author of the video series Learning AngularJS, available through O'Reilly Media.
Previously, he worked as an engineer at several educational technology start-ups.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

About the Reviewers

Pawel Czekaj has a Bachelor's degree in Computer Science. He is a web developer
with strong backend (PHP, MySQL, and Unix systems) and frontend (AngularJS, Backbone.
js, jQuery, and PhoneGap) experience. He loves JavaScript and AngularJS. Previously, he has
worked as a senior full stack web developer. Currently, he is working as a frontend developer
for Cognifide and as a web developer for SMS Air Inc. In his free time, he likes to develop
mobile games. You can contact him at http://yadue.eu.

Patrick Gillespie is a senior software engineer at PROTEUS Technologies. He has
been working in the field of web development for over 15 years and has both a Master's
and Bachelor's degree in Computer Science. In his spare time, he enjoys working on web
projects for his personal site (http://patorjk.com), spending time with his family,
and listening to music.

Aakash Patel is the cofounder and CTO of Flytenow, a ride sharing platform for small
planes. He has industry experience of client-side development using AngularJS, and he
is a student at Carnegie Mellon University (CMU).

Adam Štipák is currently a full stack developer. He has more than 8 years of professional
experience with web development. He specializes in AMP technologies (where A stands for
Apache, M for MySQL, and P for PHP). He also likes other technologies such as JavaScript,
AngularJS, and Grunt. He is also interested in functional programming in Scala. He likes
open source software in general.

www.itbook.store/books/9781783283354

http://yadue.eu
http://patorjk.com
https://itbook.store/books/9781783283354

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.itbook.store/books/9781783283354

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
https://itbook.store/books/9781783283354

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Writing about a subject as tumultuous as JavaScript frameworks
is a bit like bull riding.

To Jordan, my family, and my friends—you helped me hang on.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Table of Contents
Preface	 1
Chapter 1: Maximizing AngularJS Directives	 7

Introduction	 7
Building a simple element directive	 8
Working through the directive spectrum	 9
Manipulating the DOM	 15
Linking directives	 17
Interfacing with a directive using isolate scope	 20
Interaction between nested directives	 24
Optional nested directive controllers	 26
Directive scope inheritance	 28
Directive templating	 30
Isolate scope	 33
Directive transclusion	 35
Recursive directives	 37

Chapter 2: Expanding Your Toolkit with Filters and Service Types	 45
Introduction	 46
Using the uppercase and lowercase filters	 46
Using the number and currency filters	 48
Using the date filter	 51
Debugging using the json filter	 53
Using data filters outside the template	 55
Using built-in search filters	 56
Chaining filters	 59
Creating custom data filters	 61
Creating custom search filters	 64
Filtering with custom comparators	 65
Building a search filter from scratch	 68

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

ii

Table of Contents

Building a custom search filter expression from scratch	 71
Using service values and constants	 73
Using service factories	 75
Using services	 76
Using service providers	 78
Using service decorators	 80

Chapter 3: AngularJS Animations	 83
Introduction	 83
Creating a simple fade in/out animation	 84
Replicating jQuery's slideUp() and slideDown() methods	 89
Creating enter animations with ngIf	 92
Creating leave and concurrent animations with ngView	 98
Creating move animations with ngRepeat	 105
Creating addClass animations with ngShow	 115
Creating removeClass animations with ngClass	 120
Staggering batched animations	 125

Chapter 4: Sculpting and Organizing your Application	 131
Introduction	 131
Manually bootstrapping an application	 132
Using safe $apply	 135
Application file and module organization	 140
Hiding AngularJS from the user	 143
Managing application templates	 145
The "Controller as" syntax	 149

Chapter 5: Working with the Scope and Model	 153
Introduction	 153
Configuring and using AngularJS events	 153
Managing $scope inheritance	 157
Working with AngularJS forms	 168
Working with <select> and ngOptions	 175
Building an event bus	 182

Chapter 6: Testing in AngularJS	 189
Introduction	 189
Configuring and running your test environment in Yeoman and Grunt	 190
Understanding Protractor	 193
Incorporating E2E tests and Protractor in Grunt	 194
Writing basic unit tests	 197
Writing basic E2E tests	 204
Setting up a simple mock backend server	 209

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

iii

Table of Contents

Writing DAMP tests	 212
Using the Page Object test pattern	 214

Chapter 7: Screaming Fast AngularJS	 221
Introduction	 222
Recognizing AngularJS landmines	 222
Creating a universal watch callback	 224
Inspecting your application's watchers	 225
Deploying and managing $watch types efficiently	 228
Optimizing the application using reference $watch	 229
Optimizing the application using equality $watch	 232
Optimizing the application using $watchCollection	 234
Optimizing the application using $watch deregistration	 236
Optimizing template-binding watch expressions	 237
Optimizing the application with the compile phase in ng-repeat	 239
Optimizing the application using track by in ng-repeat	 241
Trimming down watched models	 242

Chapter 8: Promises	 245
Introduction	 245
Understanding and implementing a basic promise	 246
Chaining promises and promise handlers	 253
Implementing promise notifications	 258
Implementing promise barriers with $q.all()	 260
Creating promise wrappers with $q.when()	 263
Using promises with $http	 264
Using promises with $resource	 267
Using promises with Restangular	 268
Incorporating promises into native route resolves	 270
Implementing nested ui-router resolves	 273

Chapter 9: What's New in AngularJS 1.3	 277
Introduction	 277
Using HTML5 datetime input types	 278
Combining watchers with $watchGroup	 279
Sanity checking with ng-strict-di	 281
Controlling model input with ngModelOptions	 282
Incorporating $touched and $submitted states	 287
Cleaning up form errors with ngMessages	 289
Trimming your watch list with lazy binding	 292
Creating and integrating custom form validators	 295

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

iv

Table of Contents

Chapter 10: AngularJS Hacks	 301
Introduction	 301
Manipulating your application from the console	 302
DRYing up your controllers	 304
Using ng-bind instead of ng-cloak	 306
Commenting JSON files	 308
Creating custom AngularJS comments	 309
Referencing deep properties safely using $parse	 312
Preventing redundant parsing	 316

Index	 321

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Preface
"Make it work. Make it right. Make it fast."

Back when the world was young, Kent Beck forged this prophetic sentiment. Even today, in
the ultra-modern realm of performant single-page application JavaScript frameworks, his idea
still holds sway. This nine-word expression describes the general progression through which a
pragmatic developer creates high-quality software.

In the process of discovering how to optimally wield a technology, a developer will execute
this progression many times, and each time will be a learning experience regarding some
new understanding of the technology.

This cookbook is intended to act as a companion guide through this process. The recipes in this
book will intimately examine every major aspect of the framework in order to maximize your
comprehension. Every time you open this book, you should gain an expanded understanding of
the brilliance of the AngularJS framework.

What this book covers
Chapter 1, Maximizing AngularJS Directives, dissects the various components of directives and
demonstrates how to wield them in your applications. Directives are the bread and butter of
AngularJS, and the tools presented in this chapter will maximize your ability to take advantage
of their extensibility.

Chapter 2, Expanding Your Toolkit with Filters and Service Types, covers two major tools for
code abstraction in your application. Filters are an important pipeline between the model and
its appearance in the view, and are essential tools for managing data presentation. Services
act as broadly applicable houses for dependency-injectable modules and resource access.

Chapter 3, AngularJS Animations, offers a collection of recipes that demonstrate various ways
to effectively incorporate animations into your application. Additionally, it will dive deep down
into the internals of animations in order to give you a complete perspective on how everything
really works under the hood.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Preface

2

Chapter 4, Sculpting and Organizing Your Application, gives you strategies for controlling the
application initialization, organizing your files and modules, and managing your template delivery.

Chapter 5, Working with the Scope and Model, breaks open the various components
involving ngModel and provides details of the ways in which they can integrate into
your application flow.

Chapter 6, Testing in AngularJS, gives you all the pieces you need to jump into writing test-driven
applications. It demonstrates how to configure a fully operational testing environment, how
to organize your test files and modules, and everything involved in creating a suite of unit
and E2E tests.

Chapter 7, Screaming Fast AngularJS, is a response to anyone who has ever complained
about AngularJS being slow. The recipes in this chapter give you all the tools you need to tune
all aspects of your application's performance and take it from a steam engine to a bullet train.

Chapter 8, Promises, breaks apart the asynchronous program flow construct, exposes
its internals, then builds it all the way back up to discuss strategies for your application's
integration. This chapter also demonstrates how promises can and should integrate into
your application's routing and resource access utilities.

Chapter 9, What's New in AngularJS 1.3, goes through how your application can integrate
the slew of new features and changes that were introduced in the AngularJS 1.3 and the
later AngularJS 1.2.x releases.

Chapter 10, AngularJS Hacks, is a collection of clever and interesting strategies that you can
use to stretch the boundaries of AngularJS's organization and performance.

What you need for this book
Almost every example in this book has been added to JSFiddle, with the links provided in the
text. This allows you to merely visit a URL in order to test and modify the code with no setup of
any kind, on any major browser and on any major operating system. If you want to replicate an
example outside of JSFiddle, all the external content (AngularJS, AngularJS modules, third-party
libraries and modules) is served from https://code.angularjs.org/ and https://
cdnjs.com/.

Chapter 6, Testing in AngularJS, involves setting up a testing framework, which should be
able to be accomplished on any major Unix-based operating system (OS X and, Linux). The
test suite is built on top of Grunt, Karma, Selenium, and Protractor; all of these and their
dependencies can be installed through npm.

www.itbook.store/books/9781783283354

https://code.angularjs.org/
https://cdnjs.com/
https://cdnjs.com/
https://itbook.store/books/9781783283354

Preface

3

Who this book is for
There are already plenty of introductory resources to guide a green developer into the thick
of AngularJS. This cookbook is for developers with at least basic knowledge of JavaScript
and AngularJS, and who are looking to expand their perspective on the framework.

The goal of this text is to have you walk away from reading about an AngularJS concept armed
with a solid understanding of how it works, insight into the best ways to wield it in real-world
applications, and annotated code examples to get you started.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Preface

4

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "By cleverly using directives
and the $compile service, this exact directive functionality is possible."

A block of code is set as follows:

(index.html)

<!-- specify root element of application -->
<div ng-app="myApp">
 <!-- register 'my-template.html' with $templateCache -->
 <script type="text/ng-template" id="my-template.html">
 <div ng-repeat="num in [1,2,3,4,5]">{{ num }}</div>
 </script>

 <!-- your custom element -->
 <my-directive></my-directive>
</div>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

(app.js)

.directive('iso', function () {
 return {
 scope: {}
 };
});

Any command-line input or output is written as follows:

npm install protractor grunt-protractor-runner --save-dev

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Preface

5

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "The following directive
will display NW, NE, SW, or SE depending on where the cursor is relative to it."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

www.itbook.store/books/9781783283354

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://itbook.store/books/9781783283354

Preface

6

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.itbook.store/books/9781783283354

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
https://itbook.store/books/9781783283354

1
Maximizing AngularJS

Directives

In this chapter, we will cover the following recipes:

ff Building a simple element directive

ff Working through the directive spectrum

ff Manipulating the DOM

ff Linking directives

ff Interfacing with a directive using isolate scope

ff Interaction between nested directives

ff Optional nested directive controllers

ff Directive scope inheritance

ff Directive templating

ff Isolate scope

ff Directive transclusion

ff Recursive directives

Introduction
In this chapter, you will learn how to shape AngularJS directives in order to perform meaningful
work in your applications. Directives are perhaps the most flexible and powerful tool available
to you in this framework and utilizing them effectively is integral to architecting clean and
scalable applications. By the same token, it is very easy to fall prey to directive antipatterns,
and in this chapter, you will learn how to use the features of directives appropriately.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

8

Building a simple element directive
One of the most common use cases of directives is to create custom HTML elements that
are able to encapsulate their own template and behavior. Directive complexity increases
very quickly, so ensuring your understanding of its foundation is essential. This recipe will
demonstrate some of the most basic features of directives.

How to do it…
Creating directives in AngularJS is accomplished with a directive definition object. This object,
which is returned from the definition function, contains various properties that serve to shape
how a directive will act in your application.

You can build a simple custom element directive easily with the following code:

(app.js)

// application module definition
angular.module('myApp', [])
.directive('myDirective', function() {
 // return the directive definition object
 return {
 // only match this directive to element tags
 restrict: 'E',
 // insert the template matching 'my-template.html'
 templateUrl: 'my-template.html'
 };
});

As you might have guessed, it's bad practice to define your directive template with the
template property unless it is very small, so this example will skip right to what you will
be using in production: templateUrl and $templateCache. For this recipe, you'll use a
relatively simple template, which can be added to $templateCache using ng-template.
An example application will appear as follows:

(index.html)

<!-- specify root element of application -->
<div ng-app="myApp">
 <!-- register 'my-template.html' with $templateCache -->
 <script type="text/ng-template" id="my-template.html">
 <div ng-repeat="num in [1,2,3,4,5]">{{ num }}</div>
 </script>

 <!-- your custom element -->
 <my-directive></my-directive>
</div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 1

9

When AngularJS encounters an instance of a custom directive in the index.html template, it
will compile the directive into HTML that makes sense to the browser, which will look as follows:

<div>1</div>
<div>2</div>
<div>3</div>
<div>4</div>
<div>5</div>

JSFiddle: http://jsfiddle.net/msfrisbie/uwpdptLn/

How it works…
The restrict: 'E' statement indicates that your directive will appear as an element. It simply
instructs AngularJS to search for an element in the DOM that has the my-directive tag.

Especially in the context of directives, you should always think of AngularJS as an HTML compiler.
AngularJS traverses the DOM tree of the page to look for directives (among many other things)
that it needs to perform an action for. Here, AngularJS looks at the <my-directive> element,
locates the relevant template in $templateCache, and inserts it into the page for the browser
to handle. The provided template will be compiled in the same way, so the use of ng-repeat
and other AngularJS directives is fair game, as demonstrated here.

There's more…
A directive in this fashion, though useful, isn't really what directives are for. It provides a nice
jumping-off point and gives you a feel of how it can be used. However, the purpose that your
custom directive is serving can be better implemented with the built-in ng-include directive,
which inserts a template into the designated part of HTML. This is not to say that directives
shouldn't ever be used this way, but it's always good practice to not reinvent the wheel.
Directives can do much more than template insertion (which you will soon see), and it's
best to leave the simple tasks to the tools that AngularJS already provides to you.

Working through the directive spectrum
Directives can be incorporated into HTML in several different ways. Depending on how this
incorporation is done, the way the directive will interact with the DOM will change.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/uwpdptLn/
https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

10

How to do it…
All directives are able to define a link function, which defines how that particular directive
instance will interact with the part of the DOM it is attached to. The link functions have three
parameters by default: the directive scope (which you will learn more about later), the relevant
DOM element, and the element's attributes as key-value pairs.

A directive can exist in a template in four different ways: as an HTML pseudo-element, as an
HTML element attribute, as a class, and as a comment.

The element directive
The element directive takes the form of an HTML tag. As with any HTML tag, it can wrap
content, have attributes, and live inside other HTML elements.

The directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
 <element-directive some-attr="myvalue">
 <!-- directive's HTML contents -->
 </element-directive>
</div>

This will result in the directive template replacing the wrapped contents of the <element-
directive> tag with the template. This element directive can be defined as follows:

(app.js)

angular.module('myApp', [])
.directive('elementDirective', function ($log) {
 return {
 restrict: 'E',
 template: '<p>Ze template!</p>',
 link: function(scope, el, attrs) {
 $log.log(el.html());
 // <p>Ze template!</p>
 $log.log(attrs.someAttr);
 // myvalue
 }
 };
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 1

11

JSFiddle: http://jsfiddle.net/msfrisbie/sajhgjat/

Note that for both the tag string and the attribute string, AngularJS will match the CamelCase
for elementDirective and someAttr to their hyphenated element-directive and
some-attr counterparts in the markup.

If you want to replace the directive tag entirely with the content instead, the directive will
be defined as follows:

(index.html)

angular.module('myApp', [])
.directive('elementDirective', function ($log) {
 return {
 restrict: 'E',
 replace: true,
 template: '<p>Ze template!</p>',
 link: function(scope, el, attrs) {
 $log.log(el.html());
 // Ze template!
 $log.log(attrs.someAttr);
 // myvalue
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/oLhrm194/

This approach will operate in an identical fashion, but the directive's inner HTML will not be
wrapped with <element-directive> tags in the compiled HTML. Also, note that the logged
template is missing its <p></p> tags that have become the root directive element as they are
the top-level tags inside the template.

The attribute directive
Attribute directives are the most commonly used form of directives, and for good reason.
They have the following advantages:

ff They can be added to existing HTML as standalone attributes, which is especially
convenient if the directive's purpose doesn't require you to break up an existing
template into fragments

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/sajhgjat/
http://jsfiddle.net/msfrisbie/oLhrm194/
https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

12

ff It is possible to add an unlimited amount of attribute directives to an HTML element,
which is obviously not possible with an element directive

ff Attribute directives attached to the same HTML element are able to communicate
with each other (refer to the Interaction between nested directives recipe)

This directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
 <div attribute-directive="aval"
 some-attr="myvalue">
 </div>
</div>

A nonstandard element's attributes need the data- prefix to be
compliant with the HTML5 specification. That being said, pretty
much every modern browser will have no problem if you leave it out.

The attribute directive can be defined as follows:

(app.js)

angular.module('myApp', [])
.directive('attributeDirective', function ($log) {
 return {
 // restrict defaults to A
 restrict: 'A',
 template: '<p>An attribute directive</p>',
 link: function(scope, el, attrs) {
 $log.log(el.html());
 // <p>An attribute directive</p>
 $log.log(attrs.attributeDirective);
 // aval
 $log.log(attrs.someAttr);
 // myvalue
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/y2tsgxjt/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/y2tsgxjt/
https://itbook.store/books/9781783283354

Chapter 1

13

Other than its form in the HTML template, the attribute directive functions in pretty much
the same way as an element directive. It assumes its attribute values from the container
element's attributes, including the attribute directive and other directives (whether or not
they are assigned a value).

The class directive
Class directives are not altogether that different from attribute directives. They provide the
ability to have multiple directive assignments, unrestricted local attribute value access, and
local directive communication.

This directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
 <div class="class-directive: cval; normal-class"
 some-attr="myvalue">
 </div>
</div>

This attribute directive can be defined as follows:

(app.js)

angular.module('myApp', [])
.directive('classDirective', function ($log) {
 return {
 restrict: 'C',
 template: '<p>A class directive</p>',
 link: function(scope, el, attrs) {
 $log.log(el.html());
 // <p>A class directive</p>
 $log.log(el.hasClass('normal-class'));
 // true
 $log.log(attrs.classDirective);
 // cval
 $log.log(attrs.someAttr);
 // myvalue
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/rt1f4qxx/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/rt1f4qxx/
https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

14

It's possible to reuse class directives and assign CSS styling to them, as AngularJS leaves
them alone when compiling the directive. Additionally, a value can be directly applied to
the directive class name attribute by passing it in the CSS string.

The comment directive
Comment directives are the runt of the group. You will very infrequently find their use
necessary, but it's useful to know that they are available in your application.

This directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
 <!-- directive: comment-directive val1 val2 val3 -->
</div>

The comment directive can be defined as follows:

(app.js)

angular.module('myApp', [])
.directive('commentDirective', function ($log) {
 return {
 restrict: 'M',
 // without replace: true, the template cannot
 // be inserted into the DOM
 replace: true,
 template: '<p>A comment directive</p>',
 link: function(scope, el, attrs) {
 $log.log(el.html())
 // <p>A comment directive</p>
 $log.log(attrs.commentDirective)
 // 'val1 val2 val3'
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/thfvx275/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/thfvx275/
https://itbook.store/books/9781783283354

Chapter 1

15

Formerly, the primary use of comment directives was to handle scenarios where the DOM
API made it difficult to create directives with multiple siblings. Since the release of AngularJS
1.2 and the inclusion of ng-repeat-start and ng-repeat-end, comment directives
are considered an inferior solution to this problem, and therefore, they have largely been
relegated to obscurity. Nevertheless, they can still be employed effectively.

How it works…
AngularJS actively compiles the template, searching for matches to defined directives.
It's possible to chain directive forms together within the same definition. The mydir
directive with restrict: 'EACM' can appear as follows:

<mydir></mydir>

<div mydir></div>

<div class="mydir"></dir>

<!-- directive: mydir -->

There's more…
The $log.log() statements in this recipe should have given you some insight into the
extraordinary use that directives can have in your application.

See also
ff The Interaction between nested directives recipe demonstrates how to allow

directives attached to the same element to communicate with each other

Manipulating the DOM
In the previous recipe, you built a directive that didn't care what it was attached to, what it was
in, or what was around it. Directives exist for you to program the DOM, and the equivalent of the
last recipe is to instantiate a variable. In this recipe, you will actually implement some logic.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

16

How to do it…
The far more common use case of directives is to create them as an HTML element attribute
(this is the default behavior for restrict). As you can imagine, this allows us to decorate
existing material in the DOM, as follows:

(app.js)

angular.module('myApp', [])
.directive('counter', function () {
 return {
 restrict: 'A',
 link: function (scope, el, attrs) {
 // read element attribute if it exists
 var incr = parseInt(attrs.incr || 1)
 , val = 0;
 // define callback for vanilla DOM click event
 el.bind('click', function () {
 el.html(val += incr);
 });
 }
 };
});

This directive can then be used on a <button> element as follows:

(index.html)

<div ng-app="myApp">
 <button counter></button>
 <button counter incr="5"></button>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/knk5znke/

How it works…
AngularJS includes a subset of jQuery (dubbed jqLite) that lets you use a core toolset to
modify the DOM. Here, your directive is attached to a singular element that the directive
sees in its linking function as the element parameter. You are able to define your DOM
modification logic here, which includes initial element modification and the setup of events.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/knk5znke/
https://itbook.store/books/9781783283354

Chapter 1

17

In this recipe, you are consuming a static attribute value incr inside the link function as
well as invoking several jqLite methods on the element. The element parameter provided to
you is already packaged as a jqLite object, so you are free to inspect and modify it at your will.
In this example, you are manually increasing the integer value of a counter, the result of which
is inserted as text inside the button.

There's more…
Here, it's important to note that you will never need to modify the DOM in your controller,
whether it is a directive controller or a general application controller. Because AngularJS
and JavaScript are very flexible languages, it's possible to contort them to perform DOM
manipulation. However, managing the DOM transformation out of place causes an undesirable
dependency between the controller and the DOM (they should be totally decoupled) as well as
makes testing more difficult. Thus, a well-formed AngularJS application will never modify the
DOM in controllers. Directives are tailor-made to layer and group DOM modification tasks, and
you should have no trouble using them as such.

Additionally, it's worth mentioning that the attrs object is read-only, and you cannot set
attributes through this channel. It's still possible to modify attributes using the element
attribute, but state variables for elements can be much more elegantly implemented, which
will be discussed in a later recipe.

See also
ff In this recipe, you saw the link function used for the first time in a fairly rudimentary

fashion. The next recipe, Linking directives, goes into further detail.

ff The Isolate scope recipe goes over the writable DOM element attributes that can be
used as state variables.

Linking directives
For a large subset of the directives you will eventually build, the bulk of the heavy lifting will
be done inside the directive's link function. This function is returned from the preceding
compile function, and as seen in the previous recipe, it has the ability to manipulate the
DOM in and around it.

How to do it…
The following directive will display NW, NE, SW, or SE depending on where the cursor is
relative to it:

angular.module('myApp', [])
.directive('vectorText', function ($document) {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

18

 return {
 template: '{{ heading }}',
 link: function (scope, el, attrs) {

 // initialize the css
 el.css({
 'float': 'left',
 'padding': attrs.buffer+"px"
 });

 // initialize the scope variable
 scope.heading = '';

 // set event listener and handler
 $document.on('mousemove', function (event) {
 // mousemove event does not start $digest,
 // scope.$apply does this manually
 scope.$apply(function () {
 if (event.pageY < 300) {
 scope.heading = 'N';
 } else {
 scope.heading = 'S';
 }
 if (event.pageX < 300) {
 scope.heading += 'W';
 } else {
 scope.heading += 'E';
 }
 });
 });
 }
 };
});

This directive will appear in the template as follows:

(index.html)

<div ng-app="myApp">
 <div buffer="300"
 vector-text>
 </div>
</div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 1

19

JSFiddle: http://jsfiddle.net/msfrisbie/a0ywomq1/

How it works…
This directive has a lot more to wrap your head around. You can see that it has $document
injected into it, as you need to define event listeners relevant to this directive all across
$document. Here, a very simple template is defined, which would preferably be in its
own file, but for the sake of simplicity, it is merely incorporated as a string.

This directive first initializes the element with some basic CSS in order to have the relevant
anchor point somewhere you can move the cursor around fully. This value is taken from an
element attribute in the same fashion it was used in the previous recipe.

Here, our directive is listening to a $document mousemove event, with a handler inside
wrapped in the scope.$apply() wrapper. If you remove this scope.$apply() wrapper
and test the directive, you will notice that while the handler code does execute, the DOM does
not get updated. This is because the event that the application is listening for does not occur
in the AngularJS context—it is merely a browser DOM event, which AngularJS does not listen
for. In order to inform AngularJS that models might have been altered, you must utilize the
scope.$apply() wrapper to trigger the update of the DOM.

With all of this, your cursor movement should constantly be invoking the event handler,
and you should see a real-time description of your cursor's relative cardinal locality.

There's more…
In this directive, we have used the scope parameter for the first time. You might be
wondering, "Which scope am I using? I haven't declared any specific scope anywhere else
in the application." Recall that a directive will inherit a scope unless otherwise specified,
and this recipe is no different. If you were to inject $rootScope to the directive and log
to the $rootScope.heading console inside the event handler, you would see that this
directive is writing to the heading attribute of the $rootScope of the entire application!

See also
ff The Isolate scope recipe goes into further details on directive scope management

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/a0ywomq1/
https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

20

Interfacing with a directive using isolate
scope

Scopes and their inheritance is something you will frequently be dealing with in AngularJS
applications. This is especially true in the context of directives, as they are subject to the
scopes they are inserted into and, therefore, require careful management in order to prevent
unexpected functionalities. Fortunately, AngularJS directives afford several robust tools that
help manage visibility of and interaction with the surrounding scopes.

If a directive is not instructed to provide a new scope for itself, it will inherit the parent scope.
In the case that this is not desirable behavior, you will need to create an isolate scope for that
directive, and inside that isolate scope, you can define a whitelist of parent scope elements
that the directive will need.

Getting ready
For this recipe, assume your directive exists inside the following setup:

(index.html)

<div ng-app="myApp">
 <div ng-controller="MainCtrl">
 <div iso></div>
 </div>
</div>

(app.js)

angular.module('myApp', [])
.controller('MainCtrl', function ($log, $scope) {
 $scope.outerval = 'mydata';
 $scope.func = function () {
 $log.log('invoked!');
 };
})
.directive('iso', function () {
 return {};
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 1

21

How to do it…
To declare a directive with an isolate scope, simply pass an empty object literal as the
scope property:

(app.js)

.directive('iso', function () {
 return {
 scope: {}
 };
});

With this, there will be no inheritance from the parent scope in MainCtrl, and the directive
will be unable to use methods or variables in the parent scope.

If you want to pass a read-only value to the directive, you will use @ inside the isolate scope
declaration to indicate that a named attribute of the relevant HTML element contains a value
that should be incorporated into the directive's isolate scope. This can be done as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="MainCtrl">
 <div>Outer: {{ outerval }}</div>
 <div iso myattr="{{ outerval }}"></div>
 </div>
</div>

(app.js)

.directive('iso', function () {
 return {
 template: 'Inner: {{ innerval }}',
 scope: {
 innerval: '@myattr'
 }
 };
});

With this, the scope inside the directive now contains an innerval attribute with the value
of outerval in the parent scope. AngularJS evaluates the expression string, and the result is
provided to the directive's scope. Setting the value of the variable does nothing to the parent
scope or the attribute in the HTML; it is merely copied into the scope of the directive.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

22

JSFiddle: http://jsfiddle.net/msfrisbie/cjkq6n1n/

While this approach is useful, it doesn't involve data binding, which you have come to love in
AngularJS, and it isn't all that more convenient than passing in a static string value. What is
far more likely to be useful to you is a true whitelist of the data binding from the parent scope.
This can be accomplished with the = definition, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="MainCtrl">
 <div>Outer: {{ outerval }}</div>
 <div iso myattr="outerval"></div>
 </div>
</div>

(app.js)

.directive('iso', function () {
 return {
 template: 'Inner: {{ innerval }}',
 scope: {
 innerval: '=myattr'
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/b0g9o3xq/

Here, you are instructing the child directive scope to examine the parent controller scope,
and bind the parent outerval attribute inside the child scope, aliased as the innerval
attribute. Full data binding between scopes is supported, and all unnamed attributes and
methods in the parent scope are ignored.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/cjkq6n1n/
http://jsfiddle.net/msfrisbie/b0g9o3xq/
https://itbook.store/books/9781783283354

Chapter 1

23

Taking a step further, methods can also be pulled down from the parent scope for use in the
directive. In the same way that a model variable can be bound to the child scope, you can
alias methods that are defined in the parent scope to be invoked from the child scope but
are still in the parent scope context. This is accomplished with the & definition, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="MainCtrl">
 <div iso myattr="func()"></div>
 </div>
</div>

(app.js)

.directive('iso', function () {
 return {
 scope: {
 innerval: '&myattr'
 },
 link: function(scope) {
 scope.innerval();
 // invoked!
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/1u24c4o8/

Here, you are instructing the child directive to evaluate the expression passed to the myattr
attribute within the context of the parent controller. In this case, the expression will invoke the
func() method, but any valid AngularJS expression will also work. You can invoke it as you
would invoke any other scope method, including parameters as required.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/1u24c4o8/
https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

24

How it works…
Isolate scope is entirely managed within the scope attribute in the directive's returned
definition object. Using @, =, and &, you are instructing the directive to ignore the scopes
it would normally inherit, and only utilize data, variables, and methods that you have
provided interfaces for instead.

There's more…
If the directive is designed as a specific modifier for an aspect of your application, you might
find that using isolate scope isn't necessary. On the other hand, if you're building a reusable,
monolithic component that can be reused across multiple applications, it is unlikely that
the directive will be using the parent scope in which it is used. Hence, isolate scope will be
significantly more useful.

See also
ff The Recursive directives recipe utilizes the isolate scope to maintain inheritance and

separation in a recursive DOM tree

Interaction between nested directives
AngularJS provides a useful structure that allows you to build channels of communication
between directive siblings (within the same HTML element) or parents in the same DOM
ancestry without having to rely on AngularJS events.

Getting ready
For this recipe, suppose that your application template includes the following:

(index.html)

<div ng-app="myApp">
 <div parent-directive>
 <div child-directive
 sibling-directive>
 </div>
 </div>
</div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 1

25

How to do it…
Inter-directive communication is accomplished with the require attribute, as follows:

return {
 require: ['^parentDirective', '^siblingDirective'],
 link: function (scope, el, attrs, ctrls) {
 $log.log(ctrls);
 // logs array of in-order required controller objects
 }
};

Using the stringified directive names passed through require, AngularJS will examine the
current and parent HTML elements that match the directive names. The controller objects of
these directives will be returned in an array as the ctrls parameter in the original directive's
link function.

These directives can expose methods as follows:

(app.js)
angular.module('myApp', [])
.directive('parentDirective', function ($log) {
 return {
 controller: function () {
 this.identify = function () {
 $log.log('Parent!');
 };
 }
 };
})
.directive('siblingDirective', function ($log) {
 return {
 controller: function () {
 this.identify = function () {
 $log.log('Sibling!');
 };
 }
 };
})
.directive('childDirective', function ($log) {
 return {
 require: ['^parentDirective', '^siblingDirective'],
 link: function (scope, el, attrs, ctrls) {
 ctrls[0].identify();
 // Parent!

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

26

 ctrls[1].identify();
 // Sibling!
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/Lnxeyj60/

How it works…
The childDirective fetches the requested controllers and passes them to the link
function, which can use them as regular JavaScript objects. The order in which directives
are defined is not important, but the controller objects will be returned in the order in which
they are requested.

See also
ff The Optional nested directive controllers recipe demonstrates how to handle a

scenario where parent or sibling controllers might not be present

Optional nested directive controllers
The AngularJS construct that allows you to build channels of communication between directive
siblings or parents in the same DOM ancestry also allows you to optionally require a directive
controller of a sibling or parent.

Getting ready
Suppose that your application includes the following:

(index.html)

<div ng-app="myApp">
 <div parent-directive>
 <div child-directive
 sibling-directive>
 </div>
 </div>

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/Lnxeyj60/
https://itbook.store/books/9781783283354

Chapter 1

27

</div>

(app.js)

angular.module('myApp', [])
.directive('parentDirective', function ($log) {
 return {
 controller: function () {
 this.identify = function () {
 $log.log('Parent!');
 };
 }
 };
})
.directive('siblingDirective', function ($log) {
 return {
 controller: function () {
 this.identify = function () {
 $log.log('Sibling!');
 };
 }
 };
});

How to do it…
Note that in index.html, the missingDirective is not present. A ? prefixed to the
require array element denotes an optional controller directive. This is shown in the
following code:

(app.js)

.directive('childDirective', function ($log) {
 return {
 require: [
 '^parentDirective',
 '^siblingDirective',
 '^?missingDirective'
],
 link: function (scope, el, attrs, ctrls) {
 ctrls[0].identify();
 // Parent!
 ctrls[1].identify();

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

28

 // Sibling!
 $log.log(ctrls[2]);
 // null
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/kr6w2hvb/

If the controller exists, it will be served in the same fashion as the others. If not, the returned
array will be a null value at the corresponding index.

How it works…
An AngularJS controller is merely a JavaScript constructor function, and when
parentDirective and siblingDirective are required, each directive returns their
controller object. As you are using the controller object and not the controller scope, you must
define your public controller methods on this instead of $scope. The $scope doesn't make
sense in the context of a foreign directive—recall that the directive is in the process of being
linked when all of this happens.

Directive scope inheritance
When a directive is not instructed to create its own isolate scope, it will inherit the scope of
whatever scope it exists inside.

Getting ready
Suppose that you begin with the following skeleton application:

(index.html - uncompiled)

<div ng-app="myApp">
 <div ng-controller="MainCtrl">
 <my-directive>
 <p>HTML template</p>
 <p>Scope from {{origin}}</p>
 <p>Overwritten? {{overwrite}}</p>
 </my-directive>
 </div>

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/kr6w2hvb/
https://itbook.store/books/9781783283354

Chapter 1

29

</div>

(app.js)

angular.module('myApp', [])
.controller('MainCtrl', function ($scope) {
 $scope.overwrite = false;
 $scope.origin = 'parent controller';
});

How to do it…
The most basic setup is to have the directive scope inherit from the parent scope that will
be used by the directive within the link function. This allows the directive to manipulate
the parent scope. This can be done as follows:

(app.js)

.directive('myDirective', function () {
 return {
 restrict: 'E',
 link: function (scope) {
 scope.overwrite = !!scope.origin;
 scope.origin = 'link function';
 }
 };
});

This will compile into the following:

(index.html – compiled)

<my-directive>
 <p>HTML template</p>
 <p>Scope from link function</p>
 <p>Overwritten? true</p>
</my-directive>

JSFiddle: http://jsfiddle.net/msfrisbie/c3b3a38t/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/c3b3a38t/
https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

30

How it works…
There's nothing tricky going on here. The directive has no template, and the HTML inside it
is subject to the modifications that the link function makes to the scope. As this does not
use isolate scope and there is no transclusion, the parent scope is provided as the scope
parameter, and the link function writes to the parent scope's models. The HTML output tells
us that the template was rendered from our index.html markup, the link function was the
last to modify the scope, and the link function overwrote the original values set up in the
parent controller.

See also
ff The Directive templating recipe examines how a directive can apply an external scope

to a transplated template

ff The Isolate scope recipe gives details on how a directive can be decoupled from its
parent scope

ff The Directive transclusion recipe demonstrates how a directive handles the
application of a scope to the interpolated existing nested content

Directive templating
Directives will frequently load HTML templates from outside their definition. When using them
in an application, you will need to understand how to properly manage them, how they interact
(if at all) with the directive's parent scope, and how they interact with the content nested
inside them.

Getting ready
Suppose that you begin with the following skeleton application:

(index.html - uncompiled)

<div ng-app="myApp">
 <div ng-controller="MainCtrl">
 <my-directive>
 Stuff inside
 </my-directive>
 </div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 1

31

</div>

(app.js)

angular.module('myApp', [])
.controller('MainCtrl', function ($scope) {
 $scope.overwrite = false;
 $scope.origin = 'parent controller';
});

How to do it…
Introduce a template to the directive as follows:

(index.html – uncompiled)

<div ng-app="myApp">
 <div ng-controller="MainCtrl">
 <my-directive>
 Stuff inside
 </my-directive>
 </div>

 <script type="text/ng-template" id="my-directive.html">
 <div>
 <p>Directive template</p>
 <p>Scope from {{origin}}</p>
 <p>Overwritten? {{overwrite}}</p>
 </div>
 </script>
</div>

(app.js)

angular.module('myApp', [])
.controller('MainCtrl', function ($scope) {
 $scope.overwrite = false;
 $scope.origin = 'parent controller';
})
.directive('myDirective', function() {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

32

 return {
 restrict: 'E',
 replace: true,
 templateUrl: 'my-directive.html',
 link: function (scope) {
 scope.overwrite = !!scope.origin;
 scope.origin = 'link function';
 }
 };
});

This snippet will compile the directive element into the following:

(index.html – compiled)

<div>
 <p>Directive template</p>
 <p>Scope from link function</p>
 <p>Overwritten? true</p>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/cojb59b1/

How it works…
The parent scope from MainCtrl is inherited by the directive and is provided as the scope
parameter inside the directive's link function. The directive template is inserted to replace
the <my-directive> tag and its contents, but the supplanting template HTML is still subject
to the inherited scope. The link function is able to modify the parent scope as though it
were the directive's own. In other words, the link scope and the controller scope are the same
object in this example.

See also
ff The Directive scope inheritance recipe goes over the basics that involve carrying the

parent scope through a directive

ff The Isolate scope recipe gives details on how a directive can be decoupled from its
parent scope

ff The Directive transclusion recipe demonstrates how a directive handles the
application of a scope to the interpolated existing nested content

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/cojb59b1/
https://itbook.store/books/9781783283354

Chapter 1

33

Isolate scope
Often, you will find that the inheritance of a directive's parent scope is undesirable somewhere
in your application. To prevent inheritance and to create a blank slate scope for the directive,
isolate scope is utilized.

Getting ready
Suppose that you begin with the following skeleton application:

(index.html - uncompiled)

<div ng-app="myApp">
 <div ng-controller="MainCtrl">
 <my-directive>
 Stuff inside
 </my-directive>
 </div>

 <script type="text/ng-template" id="my-directive.html">
 <div>
 <p>Directive template</p>
 <p>Scope from {{origin}}</p>
 <p>Overwritten? {{overwrite}}</p>
 </div>
 </script>
</div>

(app.js)

angular.module('myApp', [])
.controller('MainCtrl', function ($scope) {
 $scope.overwrite = false;
 $scope.origin = 'parent controller';
});

How to do it…
Assign an isolate scope to the directive with an empty object literal, as follows:

(app.js)

.directive('myDirective', function() {
 return {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

34

 templateUrl: 'my-directive.html',
 replace: true,
 scope: {},
 link: function (scope) {
 scope.overwrite = !!scope.origin;
 scope.origin = 'link function';
 }
 };
});

This will compile into the following:

(index.html – compiled)

<div>
 <p>Directive template</p>
 <p>Scope from link function</p>
 <p>Overwritten? false</p>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/a2vmuhd3/

How it works…
The directive creates its own scope and performs the modifications on the scope instead
of performing them inside the link function. The parent scope is unchanged and obscured
from inside the directive's link function.

See also
ff The Directive scope inheritance recipe goes over the basics that involve carrying the

parent scope through a directive

ff The Directive templating recipe examines how a directive can apply an external scope
to an interpolated template

ff The Directive transclusion recipe demonstrates how a directive handles the
application of a scope to the interpolated existing nested content

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/a2vmuhd3/
https://itbook.store/books/9781783283354

Chapter 1

35

Directive transclusion
Transclusion on its own is a relatively simple construct in AngularJS. This simplicity becomes
muddied when mixed with the complexity of directives and scope inheritance. Directive
transclusion is frequently used when the directive either needs to inherit from the parent
scope, manage nested HTML, or both.

How to do it…
Assemble all the pieces required to use transclusion. This is shown here:

(index.html - uncompiled)

<div ng-app="myApp">
 <div ng-controller="MainCtrl">
 <my-directive>
 <p>HTML template</p>
 <p>Scope from {{origin}}</p>
 <p>Overwritten? {{overwrite}}</p>
 </my-directive>
 </div>

 <script type="text/ng-template" id="my-directive.html">
 <ng-transclude></ng-transclude>
 </script>
</div>

(app.js)

angular.module('myApp', [])
.controller('MainCtrl', function ($scope) {
 $scope.overwrite = false;
 $scope.origin = 'parent controller';
})
.directive('myDirective', function() {
 return {
 restrict: 'E',
 templateUrl: 'my-directive.html',
 scope: {},
 transclude: true,
 link: function (scope) {
 scope.overwrite = !!scope.origin;

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

36

 scope.origin = 'link function';
 }
 };
});

This will compile into the following:

(index.html – compiled)

<p>HTML template</p>
<p>Scope from parent controller</p>
<p>Overwritten? false</p>

In the directive's template, the location of ng-transclude informs $compile that the
directive's original HTML contents are to replace the contents of the specified element.
Furthermore, using transclusion means that the parent scope will continue to be in the
directive to be used for the interpolated HTML.

To see the main reason to use transclusion more clearly, modify the my-directive.html
directive template slightly in order to see the results side by side. This can be done as follows:

(index.html - uncompiled)

<script type="text/ng-template" id="my-directive.html">
 <ng-transclude></ng-transclude>
 <hr />
 <p>Directive template</p>
 <p>Scope from {{origin}}</p>
 <p>Overwritten? {{overwrite}}</p>
</script>

This will compile into the following:

(index.html - compiled)

<p>HTML template</p>
<p>Scope from parent controller</p>
<p>Overwritten? false</p>
<hr />
<p>Directive template</p>
<p>Scope from link function</p>
<p>Overwritten? false</p>

JSFiddle: http://jsfiddle.net/msfrisbie/1a11d3mk/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/1a11d3mk/
https://itbook.store/books/9781783283354

Chapter 1

37

How it works…
It should now be apparent exactly what is going on inside the directive that uses transclusion.
The directive's template is subject to the link function (which necessarily uses the isolate
scope), and the original wrapped HTML template maintains its relationship with the parent
scope without the directive interfering.

See also
ff The Directive scope inheritance recipe goes over the basics that involve carrying the

parent scope through a directive

ff The Directive templating recipe examines how a directive can apply external scope to
an interpolated template

ff The Isolate scope recipe details how a directive can be decoupled from its parent scope

Recursive directives
The power of directives can also be effectively applied when consuming data in a more
unwieldy format. Consider the case in which you have a JavaScript object that exists in some
sort of recursive tree structure. The view that you will generate for this object will also reflect its
recursive nature and will have nested HTML elements that match the underlying data structure.

Getting ready
Suppose you had a recursive data object in your controller as follows:

(app.js)

angular.module('myApp', [])
.controller('MainCtrl', function($scope) {
 $scope.data = {
 text: 'Primates',
 items: [
 {
 text: 'Anthropoidea',
 items: [
 {
 text: 'New World Anthropoids'
 },
 {
 text: 'Old World Anthropoids',

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

38

 items: [
 {
 text: 'Apes',
 items: [
 {
 text: 'Lesser Apes'
 },
 {
 text: 'Greater Apes'
 }
]
 },
 {
 text: 'Monkeys'
 }
]
 }
]
 },
 {
 text: 'Prosimii'
 }
]
 };
});

How to do it…
As you might imagine, iteratively constructing a view or only partially using directives to
accomplish this will become extremely messy very quickly. Instead, it would be better if
you were able to create a directive that would seamlessly break apart the data recursively,
and define and render the sub-HTML fragments cleanly. By cleverly using directives and the
$compile service, this exact directive functionality is possible.

The ideal directive in this scenario will be able to handle the recursive object without any
additional parameters or outside assistance in parsing and rendering the object. So, in the
main view, your directive will look something like this:

<recursive value="nestedObject"></recursive>

The directive is accepting an isolate scope = binding to the parent scope object, which will
remain structurally identical as the directive descends through the recursive object.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 1

39

The $compile service
You will need to inject the $compile service in order to make the recursive directive work.
The reason for this is that each level of the directive can instantiate directives inside it and
convert them from an uncompiled template to real DOM material.

The angular.element() method
The angular.element() method can be thought of as the jQuery $() equivalent. It
accepts a string template or DOM fragment and returns a jqLite object that can be modified,
inserted, or compiled for your purposes. If the jQuery library is present when the application is
initialized, AngularJS will use that instead of jqLite. If you use the AngularJS template cache,
retrieved templates will already exist as if you had called the angular.element() method
on the template text.

The $templateCache
Inside a directive, it's possible to create a template using angular.element() and a string
of HTML similar to an underscore.js template. However, it's completely unnecessary and
quite unwieldy to use compared to AngularJS templates. When you declare a template and
register it with AngularJS, it can be accessed through the injected $templateCache, which
acts as a key-value store for your templates.

The recursive template is as follows:

<script type="text/ng-template" id="recursive.html">
 {{ val.text }}
 <button ng-click="delSubtree()">delete</button>
 <ul ng-if="isParent" style="margin-left:30px">
 <li ng-repeat="item in val.items">
 <tree val="item" parent-data="val.items"></tree>

</script>

The and <button> elements are present at each instance of a node, and they
present the data at that node as well as an interface to the click event (which we will
define in a moment) that will destroy it and all its children.

Following these, the conditional element renders only if the isParent flag is set in
the scope, and it repeats through the items array, recursing the child data and creating new
instances of the directive. Here, you can see the full template definition of the directive:

<tree val="item" parent-data="val.items"></tree>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

40

Not only does the directive take a val attribute for the local node data, but you can also
see its parent-data attribute, which is the point of scope indirection that allows the
tree structure. To make more sense of this, examine the following directive code:

(app.js)

.directive('tree', function($compile, $templateCache) {
 return {
 restrict: 'E',
 scope: {
 val: '=',
 parentData: '='
 },
 link: function(scope, el, attrs) {
 scope.isParent = angular.isArray(scope.val.items)
 scope.delSubtree = function() {
 if(scope.parentData) {
 scope.parentData.splice(
 scope.parentData.indexOf(scope.val),
 1
);
 }
 scope.val={};
 }
 el.replaceWith(
 $compile(
 $templateCache.get('recursive.html')
)(scope)
);
 }
 };
});

With all of this, if you provide the recursive directive with the data object provided at
the beginning of this recipe, it will result in the following (presented here without the
auto-added AngularJS comments and directives):

(index.html – uncompiled)

<div ng-app="myApp">
 <div ng-controller="MainCtrl">
 <tree val="data"></tree>
 </div>

 <script type="text/ng-template" id="recursive.html">

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 1

41

 {{ val.text }}
 <button ng-click="deleteSubtree()">delete</button>
 <ul ng-if="isParent" style="margin-left:30px">
 <li ng-repeat="item in val.items">
 <tree val="item" parent-data="val.items"></tree>

 </script>
</div>

The recursive nature of the directive templates enables nesting, and when compiled using the
recursive data object located in the wrapping controller, it will compile into the following HTML:

(index.html - compiled)

<div ng-controller="MainController"> Primates
 <button ng-click="delSubtree()">delete</button>
 <ul ng-if="isParent" style="margin-left:30px">
 <li ng-repeat="item in val.items">
 Anthropoidea
 <button ng-click="delSubtree()">delete</button>
 <ul ng-if="isParent" style="margin-left:30px">
 <li ng-repeat="item in val.items">
 New World Anthropoids
 <button ng-click="delSubtree()">delete</button>

 <li ng-repeat="item in val.items">
 Old World Anthropoids
 <button ng-click="delSubtree()">delete</button>
 <ul ng-if="isParent" style="margin-left:30px">
 <li ng-repeat="item in val.items">
 Apes
 <button ng-click="delSubtree()">delete</button>
 <ul ng-if="isParent" style="margin-left:30px">
 <li ng-repeat="item in val.items">
 Lesser Apes
 <button ng-click="delSubtree()">delete</button>

 <li ng-repeat="item in val.items">
 Greater Apes
 <button ng-click="delSubtree()">delete</button>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Maximizing AngularJS Directives

42

 <li ng-repeat="item in val.items">
 Monkeys
 <button ng-click="delSubtree()">delete</button>

 <li ng-repeat="item in val.items">
 Prosimii
 <button ng-click="delSubtree()">delete</button>

</div>

JSFiddle: http://jsfiddle.net/msfrisbie/ka46yx4u/

How it works…
The definition of the isolate scope through the nested directives described in the previous
section allows all or part of the recursive objects to be bound through parentData to the
appropriate directive instance, all the while maintaining the nested connectedness afforded
by the directive hierarchy. When a parent node is deleted, the lower directives are still bound
to the data object and the removal propagates through cleanly.

The meatiest and most important part of this directive is, of course, the link function. Here,
the link function determines whether the node has any children (which simply checks for the
existence of an array in the local data node) and declares the deleting method, which simply
removes the relevant portion from the recursive object and cleans up the local node. Up
until this point, there haven't been any recursive calls, and there shouldn't need to be. If your
directive is constructed correctly, AngularJS data binding and inherent template management
will take care of the template cleanup for you. This, of course, leads into the final line of the
link function, which is broken up here for readability:

el.replaceWith(
 $compile(
 $templateCache.get('recursive.html')
)(scope)
);

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/ka46yx4u/
https://itbook.store/books/9781783283354

Chapter 1

43

Recall that in a link function, the second parameter is the jqLite-wrapped DOM object that
the directive is linking—here, the <tree> element. This exposes to you a subset of jQuery
object methods, including replaceWith(), which you will use here. The top-level instance
of the directive will be replaced by the recursively-defined template, and this will carry down
through the tree.

At this point, you should have an idea of how the recursive structure is coming together. The
element parameter needs to be replaced with a recursively-compiled template, and for this, you
will employ the $compile service. This service accepts a template as a parameter and returns
a function that you will invoke with the current scope inside the directive's link function. The
template is retrieved from $templateCache by the recursive.html key, and then it's
compiled. When the compiler reaches the nested <tree> directive, the recursive directive is
realized all the way down through the data in the recursive object.

There's more…
This recipe demonstrates the power of constructing a directive to convert a complex data
object into a large DOM object. Relevant portions can be broken into individual templates,
handled with distributed directive logic, and combined together in an elegant fashion to
maximize modularity and reusability.

See also
ff The Optional nested directive controllers recipe covers vertical communication

between directives through their controller objects

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

2
Expanding Your

Toolkit with Filters
and Service Types

In this chapter, we will cover the following recipes:

ff Using the uppercase and lowercase filters

ff Using the number and currency filters

ff Using the date filter

ff Debugging using the json filter

ff Using data filters outside the template

ff Using built-in search filters

ff Chaining filters

ff Creating custom data filters

ff Creating custom search filters

ff Filtering with custom comparators

ff Building a search filter from scratch

ff Building a custom search filter expression from scratch

ff Using service values and constants

ff Using service factories

ff Using services

ff Using service providers

ff Using service decorators

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

46

Introduction
In this chapter, you will learn how to effectively utilize AngularJS filters and services in your
applications. Service types are essential tools required for code reuse, abstraction, and
resource consumption in your application. Filters, however, are frequently glazed over in
introductory courses as they are not considered integral to learning the framework basics.
This is a pity as filters let you afford the ability to abstract and compartmentalize large
chunks of application functionality cleanly.

All AngularJS filters perform the same class of operations on the data they are passed,
but it is easier to think about filters in the context of a pseudo-dichotomy in which there
are two kinds: data filters and search filters.

At a very high level, AngularJS data filters are merely tools that modulate JavaScript objects
cleanly in the template. On the other half of the spectrum, search filters have the ability to
select elements of an enumerable collection that match some of the criteria you have defined.
They should be thought of as black box modifiers in your template—well-defined layers of
indirection that keep your scopes free of messy data-parsing functions. They both enable your
HTML code to be more declarative, and your code to be DRY.

Service types can be thought of as injectable singleton classes to be used throughout your
application in order to house the utility functionality and maintain states. The AngularJS
service types can appear as values, constants, factories, services, or providers.

Although filters and services are used very differently, a cunning developer can use them both
as powerful tools for code abstraction.

Using the uppercase and lowercase filters
Two of the most basic built-in filters are uppercase and lowercase filters, and they can be
used in the following fashion.

How to do it…
Suppose that you define the following controller in your application:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function ($scope) {
 $scope.data = {
 text: 'The QUICK brown Fox JUMPS over The LAZY dog',
 nums: '0123456789',

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 2

47

 specialChars: '!@#$%^&*()',
 whitespace: ' '
 };
});

You will then be able to use the filters in the template by passing them via the pipe operator,
as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <p>{{ data.text | uppercase }}</p>
 <p>{{ data.nums | uppercase }}</p>
 <p>{{ data.specialChars | uppercase }}</p>
 <p>_{{ data.whitespace | uppercase }}_</p>
 </div>
</div>

The output rendered will be as follows:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
0123456789
!@#$%^&*()
_ _

Similarly, the lowercase filter can be used with predictable results:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <p>{{ data.text | lowercase }}</p>
 <p>{{ data.nums | lowercase }}</p>
 <p>{{ data.specialChars | lowercase }}</p>
 <p>_{{ data.whitespace | lowercase }}_</p>
 </div>
</div>

The output rendered will be as follows:

the quick brown fox jumps over the lazy dog
0123456789
!@#$%^&*()
_ _

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

48

JSFiddle: http://jsfiddle.net/msfrisbie/vcuvxrom/

How it works…
The uppercase and lowercase filters are essentially simple AngularJS wrappers used
for native string methods toUpperCase() and toLowerCase() available in JavaScript.
These filters ignore number characters, special characters, and whitespace when performing
appropriate substitutions.

There's more…
As these filters are merely wrappers for native JavaScript methods, you almost certainly
won't ever have a need to use them anywhere outside the template. Their primary utility is
in their ability to be invoked in the template and their ability to chain themselves alongside
other filters that might require them. For example, if you had created a search filter that only
matched identical string matches in its results, you might want to pass a search string through
a lowercase filter before passing it through the search comparator.

See also
ff The Chaining filters recipe demonstrates how you would go about using lowercase

filters in conjunction with other filters

Using the number and currency filters
AngularJS has some built-in filters that are less simple, such as number and currency; they
can be used to format numbers into normalized strings. They also accept optional arguments
that can further customize how the filters work.

Getting ready…
Suppose that you define the following controller in your application:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function ($scope) {
 $scope.data = {
 bignum: 1000000,
 num: 1.0,

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/vcuvxrom/
https://itbook.store/books/9781783283354

Chapter 2

49

 smallnum: 0.9999,
 tinynum: 0.0000001
 };
});

How to do it…
You can apply the number filter in your template, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <p>{{ data.bignum | number }}</p>
 <p>{{ data.num | number }}</p>
 <p>{{ data.smallnum | number }}</p>
 <p>{{ data.tinynum | number }}</p>
 </div>
</div>

The output rendered will be as follows:

1,000,000
1
1.000
1e-7

This outcome might seem a bit arbitrary, but it demonstrates the next facet of filters examined
here, which are arguments. Filters can take arguments to further customize the output. The
number filter takes a fractionSize argument, which defines how many decimal places it
will round to, defaulting to 3. This is shown in the following code:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <!—- data | number : fractionSize(optional) -->
 <p>{{ data.smallnum | number : 4 }}</p>
 <p>{{ data.tinynum | number: 7 }}</p>
 <p>{{ 012345.6789 | number : 2 }}</p>
 </div>
</div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

50

The output rendered will be as follows:

0.9999
0.0000001
12,345.68

The currency filter is another AngularJS filter that takes an optional argument, symbol:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <!—- data | currency : symbol(optional) -->
 <p>{{ 1234.56 | currency }}</p>
 <p>{{ 0.02 | currency }}</p>
 <p>{{ 45682.78 | currency : "€" }}</p>
 </div>
</div>

The output rendered will be as follows:

$1,234.56
$0.02
€45,682.78

JSFiddle: http://jsfiddle.net/msfrisbie/Lcb33vnz/

How it works…
JavaScript has a single format in which it stores numbers as 64-bit double precision floating
point numbers. These AngularJS filters exist to neatly format this raw number format by
examining the values passed to it and by deciding how to appropriately format it as a string.
The number filter handles rounding, truncation, and compression in negative exponents.
It optionally accepts the fractionSize argument, in order to allow you to customize the
filter to your needs, something that greatly increases the utility of filters. The currency filter
handles rounding and appending of the designated currency symbol. It optionally accepts the
symbol argument, which will insert the provided symbol in front of the formatted number.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/Lcb33vnz/
https://itbook.store/books/9781783283354

Chapter 2

51

There's more…
Both of these filters inherently utilize the $locale service, which acts as a fallback for default
arguments (for example, providing a $ character for the currency filter in regions that use
dollar, ordering of dates, and more). This service exists as a part of AngularJS's mission to act
as a region agnostic framework.

See also…
ff The Chaining filters recipe demonstrates how you will go about using these filters in

conjunction with other filters

Using the date filter
The date filter is an extremely robust and customizable filter that can handle many different
kinds of raw date strings and convert them into human readable versions. This is useful in
situations when you want to let your server defer datetime processing to the client and just
be able to pass it a Unix timestamp or an ISO date.

Getting ready…
Suppose, you have your controller set up in the following fashion:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function ($scope) {
 $scope.data = {
 unix: 1394787566535,
 iso: '2014-03-14T08:59:26Z',
 date: new Date(2014, 2, 14, 1, 59, 26, 535)
 };
});

How to do it…
All the date formats can be used seamlessly with the date filter inside the template, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <p>{{ data.unix | date }}</p>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

52

 <p>{{ data.iso | date }}</p>
 <p>{{ data.date | date }}</p>
 </div>
</div>

The output rendered will be as follows:

Mar 14, 2014
Mar 14, 2014
Mar 14, 2014

The date filter is heavily customizable, giving you the ability to generate a date and time
representation using any piece of the datetime passed to it:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <!—- AngularJS matches the expression components
 to datetime components, then stringifies as specified -->
 <p>{{ data.unix | date : "EEEE 'at' H:mma" }}</p>
 <p>{{ data.iso | date : "longDate" }}</p>
 <p>{{ data.date | date : "M/d H:m:s.sss" }}</p>
 </div>
</div>

This code uses various pieces of the date filter syntax to pull out elements from the datetime
generated inside the filter, and assemble them together in the output string, the template for
which is provided in the optional format argument. The output rendered will be as follows:

Friday at 1:59AM
March 14, 2014
3/14 1:59:26.535

JSFiddle: http://jsfiddle.net/msfrisbie/mvdqfv5z/

How it works…
The date filter wraps a robust set of complex regular expressions inside the framework, which
exists to parse the string passed to it into a normalized JavaScript date object. This date
object is then broken apart and molded into the desired string format specified by the filter's
argument syntax.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/mvdqfv5z/
https://itbook.store/books/9781783283354

Chapter 2

53

The AngularJS documentation at https://docs.angularjs.org/
api/ng/filter/date provides the details of all the possible input
and output formats required for date filters.

There's more…
The date filter provides you with two levels of indirection: normalized conversion from various
datetime formats and normalized conversion into almost any human readable format. Note
that in the absence of a provided time zone, the time zone assumed is the local time zone,
which in this example is Pacific Daylight Time (UTC - 7), which is accommodated through the
$locale service.

Debugging using the json filter
AngularJS provides you with a JSON conversion tool, the json filter, to serialize JavaScript
objects into prettified JSON code. This filter isn't so much in use for production applications
as it is used for real-time inspection of your scope objects.

Getting ready…
Suppose your controller is set up as follows with a prefilled user data object:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function ($scope) {
 $scope.user = {
 id: 123,
 name: {
 first: 'Jake',
 last: 'Hsu'
 },
 username: 'papatango',
 friendIds: [5, 13, 3, 1, 2, 8, 21],
 // properties prefixed with $$ will be excluded
 $$no_show: 'Hide me!'
 };
});

www.itbook.store/books/9781783283354

https://docs.angularjs.org/api/ng/filter/date
https://docs.angularjs.org/api/ng/filter/date
https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

54

How to do it…
Your user object can be serialized in the template, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <pre>{{ user | json }}</pre>
 </div>
</div>

The output will be rendered in HTML, as follows:

{
 "id": 123,
 "name": {
 "first": "Jake",
 "last": "Hsu"
 },
 "username": "papatango",
 "friendIds": [
 5,
 13,
 3,
 1,
 2,
 8,
 21
]
}

JSFiddle: http://jsfiddle.net/msfrisbie/yk0zxc9b/

How it works…
The json filter simply wraps the JSON.stringify() method in JavaScript in order to
provide you with an easy way to spit out formatted objects for inspection. When the filtered
object is fed into a <pre> tag, the JSON string will be properly indented in the rendered
template. Properties prefixed with $$ will be skipped by the serializer as this notation is
used internally in AngularJS as a private identifier.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/yk0zxc9b/
https://itbook.store/books/9781783283354

Chapter 2

55

There's more…
As AngularJS lets you afford two-way data binding in the template, you can see the filtered
object update in real time in your template, as various interactions with your application
change it; this is extremely useful for debugging.

Using data filters outside the template
Filters are built to perform template data processing, so their utilization outside the template
will be infrequent. Nonetheless, AngularJS provides you with the ability to use filter functions
via an injection of $filter.

Getting ready
Suppose that you have an application, as follows:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function ($scope) {
 $scope.val = 1234.56789;
});

How to do it…
In the view templates, the argument order is scrambled with the following format:

data | filter : optionalArgument

For this example, it would take the form in the template as follows:

<p>{{ val | number : 4 }}</p>

This will give the following result:

1,234.5679

In this example, it's cleanest to apply the filter in the view template, as the purpose of
formatting the number is merely for readability. If, however, the number filter is needed
to be used in a controller, $filter can be injected and used as follows:

(app.js)

angular.module('myApp', [])

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

56

.controller('Ctrl', function ($scope, $filter) {
 $scope.val = 1234.56789;
 $scope.filteredVal = $filter('number')($scope.val, 4);
});

With this, the values of $scope.val and $scope.filteredVal will be identical.

JSFiddle: http://jsfiddle.net/msfrisbie/9bzu85uu/

How it works…
Although the syntax is very different compared to what is found in a template, using
a dependency injected filter is functionally the same as applying it in the view template.
The same filter method is invoked for both formats and both generate the same output.

There's more…
Although there are no cardinal sins committed by injecting $filter and using your filters
that way, the syntax is awkward and verbose. Filters aren't really designed for that sort of
use anyway. AngularJS is meant for building declarative templates, and that is exactly what
data filters provide when used in templates—lightweight and flexible modulation functions
for cleaning and organizing your data.

One of the primary use cases for using filters outside the template is when you are building
a custom filter that uses one or more existing filters inside it. For example, you might want to
use the currency filter inside a custom filter, which decides whether to use a $ or a ¢ prefix
based on whether or not the amount is greater or less than $1.00.

Using built-in search filters
Search filters serve to evaluate individual elements in an enumerable object and return
whether or not they belong in the resultant set. The returned value from the filter will also be
an enumerable set with none, some, or all of the original values that were removed. AngularJS
provides a rich suite of ways to filter an enumerable object.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/9bzu85uu/
https://itbook.store/books/9781783283354

Chapter 2

57

Getting ready
Search filters return a subset of an enumerable object, so prepare a controller as follows,
with a simple array of strings:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function ($scope) {
 $scope.users = [
 'Albert Pai',
 'Jake Hsu',
 'Jack Hanford',
 'Scott Robinson',
 'Diwank Singh'
];
});

How to do it…
The default search filter is used in the template in the same fashion as a data filter, but
invoked with the pipe operator. It takes a mandatory argument, that is, the object that the
filter will compare against.

The easiest way to test a search filter is by tying an input field to a model and using that model
as the search filter argument, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <input type="text" ng-model="search.val" />
 </div>
</div>

This model can then be applied in a search filter on an enumerable data object. The filter is
most commonly applied inside an ng-repeat expression:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <input type="text" ng-model="search.val" />
 <p ng-repeat="user in users | filter : search.val">

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

58

 {{ user }}
 </p>
 </div>
</div>

Entering ja will return the following output:

Jake Hsu
Jack Hanford

Entering s will return the following output:

Jake Hsu
Scott Robinson
Diwank Singh

Entering a will return the following output:

Albert Pai
Jake Hsu
Jack Hanford
Diwank Singh

JSFiddle: http://jsfiddle.net/msfrisbie/h1dbover/

How it works…
With this setup, the string in the search.val model will be matched (case insensitive)
against each element in the enumerable object and will only return the matches for the
repeater to iterate through. This transformation occurs before the object is passed to the
repeater, so the filter combined with AngularJS data binding results in a very impressive
real-time, in-browser filtering system with minimal overhead.

See also
ff The Chaining filters recipe demonstrates how to utilize a string search filter in

conjunction with existing AngularJS string modulation filters

ff The Filtering with custom comparators recipe demonstrates how to further customize
the way an enumerable collection is compared to the reference object

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/h1dbover/
https://itbook.store/books/9781783283354

Chapter 2

59

Chaining filters
As AngularJS search filters simply reduce the modulation functions that return a subset of the
object that is passed to it, it is possible to chain multiple filters together.

When filtering enumerable objects, AngularJS provides two built-in enumeration filters that are
commonly used in conjunction with the search filters: limitTo and orderBy.

Getting ready
Suppose that your application contains a controller as follows with a simple array of objects
containing a name string property:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function ($scope) {
 $scope.users = [
 {name: 'Albert Pai'},
 {name: 'Jake Hsu'},
 {name: 'Jack Hanford'},
 {name: 'Scott Robinson'},
 {name: 'Diwank Singh'}
];
});

In addition, suppose that the application template is set up as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <input type="text" ng-model="search.val" />
 <!—- simple repeater filtering against search.val -->
 <p ng-repeat="user in users | filter : search.val">
 {{ user.name }}
 </p>
 </div>
</div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

60

How to do it…
You can chain another filter following your first with an identical syntax by merely adding
another pipe operator and the filter name with arguments. Here, you can see the setup
to apply the limitTo filter to the matching results:

(index.html)

<p ng-repeat="user in users | filter : search.val | limitTo: 2">
 {{ user.name }}
</p>

Searching for h will result in the following output:

Jake Hsu
Jack Hanford

You can chain another filter, orderBy, which will sort the array, as follows:

(index.html)

<p ng-repeat="user in users | filter : search.val | orderBy: 'name' |
limitTo : 2">
 {{ user.name }}
</p>

Searching for h will result in the following output:

Diwank Singh
Jack Hanford

JSFiddle: http://jsfiddle.net/msfrisbie/ht3hfLrt/

How it works…
AngularJS search filters are functions that return a Boolean, representing whether or not the
particular element of the enumerable object belongs to the resultant set. For the array of
string primitives in the preceding code, the filter performs a simple case-insensitive substring
match operation against the provided matching string taken from the model bound to the
<input> tag.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/ht3hfLrt/
https://itbook.store/books/9781783283354

Chapter 2

61

The subsequent chained filters orderBy and limitTo also take an enumerable object as an
argument and perform an additional operation on it. In the preceding example, the filter first
reduces the string array to a subset string array, which is first passed to the orderBy filter.
This filter sorts the subset string array by the expression provided, which here is alphabetical
order, as the argument is a string. This sorted array is then passed to the limitTo filter which
truncates the sorted substring subset string array to the number of characters specified in the
argument. This final array is then fed into the repeater in the template for rendering.

There's more…
It's worth mentioning that chained AngularJS filters are not necessarily commutative; the order
in which filters are chained matters, as they are evaluated sequentially. In the last example,
reversing the order of the chained filters (limitTo followed by orderBy) will truncate the
subset string array and then sort only the truncated results. The proper way to think about this
is to compare them to nested functions—similar to how foo(bar(x)) is obviously not the
same as bar(foo(x)), and x | foo | bar is not the same as x | bar | foo.

Creating custom data filters
At some point, the provided AngularJS data filters will not be enough to fill your needs, and you
will need to create your own data filters. For example, assume that in an application that you
are building, you have a region of the page that is limited in physical dimensions, but contains
an arbitrary amount of text. You would like to truncate that text to a length which is guaranteed
to fit in the limited space. A custom filter, as you might imagine, is perfect for this task.

How to do it…
The filter you wish to build accepts a string argument and returns another string. For now, the
filter will truncate the string to 100 characters and append an ellipsis at the point of truncation:

(app.js)

angular.module('myApp', [])
.filter('simpletruncate', function () {
 // the text parameter
 return function (text) {
 var truncated = text.slice(0, 100);
 if (text.length > 100) {
 truncated += '...';
 }
 return truncated;
 };
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

62

This will be used in the template, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <p>{{ myText | simpletruncate }}</p>
 </div>
</div>

This filter works well, but it feels a bit brittle. Instead of just defaulting to 100 characters
and an ellipsis, the filter should also accept parameters that allow undefined input and
optional definition of how many characters to truncate to and what the stop character(s)
should be. It would be even better if the filter only cut off the text at a set of whitespace
characters if possible:

(app.js)

angular.module('myApp', [])
.filter('regextruncate',function() {
 return function(text,limit,stoptext) {
 var regex = /\s/;
 if (!angular.isDefined(limit)) {
 limit = 100;
 }
 if (!angular.isDefined(stoptext)) {
 stoptext = '...';
 }
 limit = Math.min(limit,text.length);
 for(var i=0;i<limit;i++) {
 if(regex.exec(text[limit-i])
 && !regex.exec(text[(limit-i)-1])) {
 limit = limit-i;
 break;
 }
 }
 var truncated = text.slice(0, limit);
 if (text.length>limit) {
 truncated += stoptext;
 }
 return truncated;
 };
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 2

63

This will be used in the template as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <p>{{ myText | regextruncate : 150 : '???' }}</p>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/a4ez926f/

How it works…
The final version of the filter uses a simple whitespace-detecting regular expression to find
the first point in the string that it can truncate. After setting the default values of limit and
stoptext, the data filter iterates backwards through the relevant string values, watching for
the first point at which it sees a non whitespace character followed by a whitespace character.
This is the point at which it sets the truncation, and the string is broken apart, and then the
relevant segment is returned with the appended stoptext statement.

These filter examples don't modify the model in any way, they are merely context-free data
wrappers that package your model data neatly into a format that your template can easily
digest. Each model change causes the filter to be invoked in order to keep the data in the
template up-to-date, so the filter processing must be lightweight as it is assumed that the
filter will be frequently invoked.

There's more…
A rich suite of data filters in your application will allow a cleaner decoupling of the
presentation layer and model. The demonstration in this recipe was limited to the string
primitive, but there is no reason you could not extend your filter logic to encompass and
handle complex data objects in your application's models.

The entire purpose of filters is to improve readability and reusability, so if the construction
and application of a custom filter enables you to do that, you are encouraged to do so.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/a4ez926f/
https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

64

Creating custom search filters
AngularJS search filters work exceedingly well out of the box, but you will quickly develop the
desire to introduce some customization of how the filter actually relates the search object to
the enumerable collection. This collection is frequently composed of complex data objects;
a simple string comparison will not suffice, especially when you want to modify the rules by
which matches are governed.

Searching against data objects is simply a matter of building the search object in the same
mould as the enumerable collection objects.

Getting ready
Suppose, for example, your controller looks as follows:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.users = [
 {
 firstName: 'John',
 lastName: 'Stockton'
 },
 {
 firstName: 'Michael',
 lastName: 'Jordan'
 }
];
});

How to do it…
When searching against this collection, in the case where the search filter is passed a string
primitive, it will perform a wildcard search, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <input ng-model="search" />
 <p ng-repeat="user in users | filter:search">
 {{ user.firstName}} {{ user.lastName }}
 </p>
 </div>
</div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 2

65

JSFiddle: http://jsfiddle.net/msfrisbie/ghsa3nym/

With this, if you were to enter jo in the input field, both John Stockton and Michael
Jordan will be returned. When asked to compare a string primitive to an object, AngularJS
has no choice but to compare the string to every field it can, and any objects that match are
declared to be a part of the match-positive resultant set.

If instead you only want to compare against specific attributes of the enumerable collection,
you can set the search object to have correlating attributes that should be matched against
the collection attributes, as shown here:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <input ng-model="search.firstName" />
 <p ng-repeat="user in users | filter:search">
 {{ user.firstName}} {{ user.lastName }}
 </p>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/72qucbhp/

Now, if you were to enter jo in the input field, only John Stockton will be returned.

Filtering with custom comparators
If you want to search only for exact matches, vanilla wildcard filtering becomes problematic
as the default comparator uses the search object to match against substrings in the collection
object. Instead, you might want a way to specify exactly what constitutes a match between the
reference object and enumerable collection.

Getting ready
Suppose that your controller contains the following data object:

(app.js)

angular.module('myApp', [])

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/ghsa3nym/
http://jsfiddle.net/msfrisbie/72qucbhp/
https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

66

.controller('Ctrl', function($scope) {
 $scope.users = [
 {
 firstName: 'John',
 lastName: 'Stockton',
 number: '12'
 },
 {
 firstName: 'Michael',
 lastName: 'Jordan',
 number: '23'
 },
 {
 firstName: 'Allen',
 lastName: 'Iverson',
 number: '3'
 }
];
});

How to do it…
Instead of using just a single search box, the application will use two search fields, one for the
name and one for the number. Having a wildcard search for the first name and last name is
more useful, but searching for wildcard numbers is not useful in this situation.

The search fields are constructed as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <input ng-model="search.$" />
 <input ng-model="search.number" />
 <p ng-repeat="user in users | filter:search">
 {{ user.firstName}} {{ user.lastName }}
 </p>
 </div>
</div>

The first input field appears with $; this is done merely to assign the wildcard search to the
entire search object so that it does not interfere with other assigned search attributes. The
second input field specifies that the application should only search against the collection's
number attribute.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 2

67

As expected, testing this code reveals that the number search field is performing a wildcard
search, which is not desirable. To specify exact matches when searching, the filter takes an
optional comparator argument that mandates how matches will be ascertained. A true
value passed will enable exact matches:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <input ng-model="search.$" required />
 <input ng-model="search.number" required />
 <p ng-repeat="user in users | filter:search:true">
 {{ user.firstName}} {{ user.lastName }}
 </p>
 </div>
</div>

With this setup, both inputs will create an AND filter to select data from the array with one
or multiple criteria. The required statement will cause the model bound to it to reset to
undefined, when the input is an empty string.

JSFiddle: http://jsfiddle.net/msfrisbie/on394so2/

How it works…
The comparator argument will be resolved to a function in all cases. When passing in true,
AngularJS will treat it as an alias for the following code:

function(actual, expected) {
 return angular.equals(expected, actual);
}

This will function as a strict comparison of the element in the enumerable collection and the
reference object.

More generally, you can also pass in your own comparator function, which will return true or
false based on whether or not actual matches expected. This will take the following form:

function(actual, expected) {
 // logic to determine if actual
 // should count as a match for expected
}

The functions from the comparator argument are the ones used to determine whether each
piece of the enumerable collection belongs in the resultant subset.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/on394so2/
https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

68

See also
ff The Building a search filter from scratch and Building a custom search filter

expression from scratch recipes demonstrate alternate methods of architecting
search filters to match your application's needs

Building a search filter from scratch
The provided search filters can serve your application's purposes only to a point. Eventually,
you will need to construct a complete solution in order to filter an enumerable collection.

Getting ready
Suppose that your controller contains the following data object:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.users = [
 {
 firstName: 'John',
 lastName: 'Stockton',
 number: '12'
 },
 {
 firstName: 'Michael',
 lastName: 'Jordan',
 number: '23'
 },
 {
 firstName: 'Allen',
 lastName: 'Iverson',
 number: '3'
 }
];
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 2

69

How to do it…
Suppose you wanted to create an OR filter for the name and number values. The brute force
way to do this is to create an entirely new filter in order to replace the AngularJS filter. The filter
takes an enumerable object and returns a subset of the object. Adding the following will do
exactly that:

(app.js)

.filter('userSearch', function () {
 return function (users, search) {
 var matches = [];
 angular.forEach(users, function (user) {
 if (!angular.isDefined(users) ||
 !angular.isDefined(search)) {
 return false;
 }
 // initialize match conditions
 var nameMatch = false,
 numberMatch = false;
 if (angular.isDefined(search.name) &&
 search.name.length > 0) {
 // substring of first or last name will match
 if (angular.isDefined(user.firstName)) {
 nameMatch = nameMatch ||
 user.firstName.indexOf(search.name) > -1;
 }
 if (angular.isDefined(user.lastName)) {
 nameMatch = nameMatch ||
 user.lastName.indexOf(search.name) > -1;
 }
 }
 if (angular.isDefined(user.number) &&
 angular.isDefined(search.number)) {
 // only match if number is exact match
 numberMatch = user.number === search.number;
 }
 // either match should populate the results with user
 if (nameMatch || numberMatch) {
 matches.push(user);
 }
 });
 // this is the array that will be fed to the repeater
 return matches;
 };
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

70

This would then be used as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <input ng-model="search.name"
 required />
 <input ng-model="search.number"
 required />
 <p ng-repeat="user in users | userSearch : search">
 {{ user.firstName }} {{ user.lastName }}
 </p>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/k4umoj3p/

How it works…
Since this filter is built from scratch, it's constructed to handle all the edge cases of missing
attributes and objects in the parameters. The filter performs substring lookups on the first and
last name attributes and exact matches on number attributes. Once this is done, it performs
the actual OR operation on the two results. However, having entirely rebuilt the search filter,
it must return the entire collection subset.

There's more…
Rebuilding the filtering mechanism from top to bottom, as shown in this recipe, only makes
sense if you need to significantly diverge from the existing filtering mechanism functionality.

See also
ff The Building a custom search filter expression from scratch recipe shows you how to

perform custom filtering while working within the existing search filter mechanisms

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/k4umoj3p/
https://itbook.store/books/9781783283354

Chapter 2

71

Building a custom search filter expression
from scratch

Instead of reinventing the wheel, you can create a search filter expression that evaluates to
true or false for each iteration in the enumerable collection.

How to do it…
The simplest way to do this is to define a function on your scope, as follows:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function ($scope) {
 $scope.users = [
 ...
];
 $scope.usermatch = function (user) {
 if (!angular.isDefined(user) ||
 !angular.isDefined($scope.search)) {
 return false;
 }
 var nameMatch = false,
 numberMatch = false;
 if (angular.isDefined($scope.search.name) &&
 $scope.search.name.length > 0) {
 if (angular.isDefined(user.firstName)) {
 nameMatch = nameMatch ||
 user.firstName.indexOf($scope.search.name) > -1;
 }
 if (angular.isDefined(user.lastName)) {
 nameMatch = nameMatch ||
 user.lastName.indexOf($scope.search.name) > -1;
 }
 }
 if (angular.isDefined(user.number) &&
 angular.isDefined($scope.search.number)) {
 numberMatch = user.number === $scope.search.number;
 }
 return nameMatch || numberMatch;
 };
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

72

Now, this can be passed to the built-in filter as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <input ng-model="search.name" required />
 <input ng-model="search.number" required />
 <p ng-repeat="user in users | filter:usermatch">
 {{ user.firstName }} {{ user.lastName }}
 </p>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/76874ygr/

In the Name search box, typing Jo now returns Michael Jordan and John Stockton
and in the Number search box, typing 3 only returns Allen Iverson. Searching for both Mi
and 3 will return Michael Jordan and Allen Iverson, as the filter constructed here is
an OR filter. If you want to change it to an AND filter, you can simply change the return line to
the following:

return nameMatch && numberMatch;

How it works…
All of these search filter techniques can be framed through a perspective that pays attention
to what you are filtering. Search filters merely apply the question: "Does this fit my definition
of a match?", over and over again. AngularJS's data binding causes this question to be asked
to each member of the enumerable collection each time the object changes in content or
population. The preceding recipes merely define how this question gets asked.

There's more…
Filters are merely applied JavaScript functions and the mechanisms by which they can
be configured are flexible. Rarely in production applications will the built-in search filter
infrastructure be sufficient, so it is advantageous to instead be able to mould exactly how
the filter interprets a match.

Furthermore, as you begin to examine performance limitations, you will begin to consider
ways to optimize repeaters and filters. If kept lightweight, filters are inexpensive and can be
run hundreds of times in rapid succession without consequence. As complexity and data
magnitude scale, filters can allow you to maintain a performant and responsive application.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/76874ygr/
https://itbook.store/books/9781783283354

Chapter 2

73

Using service values and constants
AngularJS service types, at their core, are singleton containers used for unified resource access
across your application. Sometimes, the resource access will just be a single JS object. For this,
AngularJS offers service values and service constants.

How to do it…
Service values and service constants both act in a very similar way, but with one
important difference.

Service value
The service value is the simplest of all service types. The value service acts as a key-value
pair and can be injected and used as follows:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope, MyValue) {
 $scope.data = MyValue;
 $scope.update = function() {
 MyValue.name = 'Brandon Marshall';
 };
})
.value('MyValue', {
 name: 'Tim Tebow',
 number: 15
});

An example of template use is as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="update()">Update</button>
 {{ data.name }} #{{ data.number }}
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/hs7uL1y0/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/hs7uL1y0/
https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

74

You'll notice that AngularJS has no problem with you updating the service value. Since it is a
singleton, any part of your application that injects the value service and reads/writes to it will
be accessing the same data. Service values act like service factories (discussed in the Using
service factories recipe) and cannot be injected into the providers or the config() phase of
your application.

Service constant
Like service values, service constants also act as singleton key-value pairs. The important
difference is that service constants act like service providers and can be injected into the
config() phase and service providers. They can be used as follows:

(app.js)

angular.module('myApp', [])
.config(function(MyConstant) {
 // can't inject $log into config()
 console.log(MyConstant);
})
.controller('Ctrl', function($scope, MyConstant) {
 $scope.data = MyConstant;
 $scope.update = function() {
 MyConstant.name = 'Brandon Marshall';
 };
})
.constant('MyConstant', {
 name: 'Tim Tebow',
 number: 15
});

The template remains unchanged from the service value example.

JSFiddle: http://jsfiddle.net/msfrisbie/whaea0y1/

How it works…
Service values and service constants act as read/write key-value pairs. The main difference
is that you can choose one over the other based on whether you will need to have the data
available to you when the application is being initialized.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/whaea0y1/
https://itbook.store/books/9781783283354

Chapter 2

75

See also
ff The Using service providers recipe provides details of the ancestor service type and

how it relates to the service type life cycle

ff The Using service decorators recipe demonstrates how a service type initialization
can be intercepted for a just in time modification

Using service factories
A service factory is the simplest general purpose service type that allows you to use the
singleton nature of AngularJS services with encapsulation.

How to do it…
The service factory's return value is what will be injected when the factory is listed as a
dependency. A common and useful pattern is to define private data and functions outside this
object, and define an API to them through a returned object. This is shown in the following code:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope, MyFactory) {
 $scope.data = MyFactory.getPlayer();
 $scope.update = MyFactory.swapPlayer;
})
.factory('MyFactory', function() {
 // private variables and functions
 var player = {
 name: 'Peyton Manning',
 number: 18
 }, swap = function() {
 player.name = 'A.J. Green';
 };
 // public API
 return {
 getPlayer: function() {
 return player;
 },
 swapPlayer: function() {
 swap();
 }
 };
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

76

Since the service factory values are now bound to $scope, they can be used in the template
normally, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="update()">Update</button>
 {{ data.name }} #{{ data.number }}
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/5gydkrjw/

How it works…
This example might feel a bit contrived, but it demonstrates the basic usage pattern that
can be used with service factories for great effect. As with all service types, this is a singleton,
so any modifications done by a component of the application will be reflected anywhere the
factory is injected.

See also
ff The Using services recipe shows how the sibling type of service factories is

incorporated into applications

ff The Using service providers recipe provides you with the details of the ancestor
service type and how it relates to the service type life cycle

ff The Using service decorators recipe demonstrates how service type initialization can
be intercepted for a just in time modification

Using services
Services act in much the same way as service factories. Private data and methods can be
defined and an API can be implemented on the service object through it.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/5gydkrjw/
https://itbook.store/books/9781783283354

Chapter 2

77

How to do it…
A service is consumed in the same way as a factory. It differs in that the object to be injected
is the controller itself. It can be used in the following way:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope, MyService) {
 $scope.data = MyService.getPlayer();
 $scope.update = MyService.swapPlayer;
})
.service('MyService', function() {
 var player = {
 name: 'Philip Rivers',
 number: 17
 }, swap = function() {
 player.name = 'Alshon Jeffery';
 };
 this.getPlayer = function() {
 return player;
 };
 this.swapPlayer = function() {
 swap();
 };
});

When bound to $scope, the service interface is indistinguishable from a factory.
This is shown here:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="update()">Update</button>
 {{ data.name }} #{{ data.number }}
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/5wn16dyk/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/5wn16dyk/
https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

78

How it works…
Services invoke a constructor with the new operator, and the instantiated service object is the
delivered injectable. Like a factory, it still exists as a singleton and the instantiation is deferred
until the service is actually injected.

See also
ff The Using service factories recipe shows how the sibling type of service is

incorporated in applications

ff The Using service providers recipe provides the details of the ancestor service type
and how it relates to the service type life cycle

ff The Using service decorators recipe demonstrates how service type initialization can
be intercepted for a just in time modification

Using service providers
Service providers are the parent service type used for factories and services. They are the
most configurable and extensible of the service types, and allow you to inspect and modify
other service types during the application's initialization.

How to do it…
Service providers take a function parameter that returns an object that has a $get method.
This method is what AngularJS will use to produce the injected value after the application has
been initialized. The object wrapping the $get method is what will be supplied if the service
provider is injected into the config phase. This can be implemented as follows:

(app.js)

angular.module('myApp', [])
.config(function(PlayerProvider) {
 // appending 'Provider' to the injectable
 // is an Angular config() provider convention
 PlayerProvider.configSwapPlayer();
 console.log(PlayerProvider.configGetPlayer());
})
.controller('Ctrl', function($scope, Player) {
 $scope.data = Player.getPlayer();
 $scope.update = Player.swapPlayer;
})
.provider('Player', function() {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 2

79

 var player = {
 name: 'Aaron Rodgers',
 number: 12
 }, swap = function() {
 player.name = 'Tom Brady';
 };

 return {
 configSwapPlayer: function() {
 player.name = 'Andrew Luck';
 },
 configGetPlayer: function() {
 return player;
 },
 $get: function() {
 return {
 getPlayer: function() {
 return player;
 },
 swapPlayer: function() {
 swap();
 }
 };
 }
 };
});

When used this way, the provider appears to the controller as a normal service type,
as follows:

(app.js)

 .controller('Ctrl', function($scope, Player) {
 $scope.data = Player.getPlayer();
 $scope.update = Player.swapPlayer;
 })

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="update()">Update</button>
 {{ data.name }} #{{ data.number }}
 </div>
</div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

80

JSFiddle: http://jsfiddle.net/msfrisbie/49wjk54L/

How it works…
Providers is the only service type that can be passed into a config function. Injecting a
provider into the config function gives access to the wrapper object, and injecting a provider
into an initialized application component will give you access to the return value of the $get
method. This is useful when you need to configure aspects of a service type before it is used
throughout the application.

There's more…
Providers can only be injected as their configured services in an initialized application. Similarly,
types like service factories and services cannot be injected in a provider, as they will not yet exist
during the config phase.

See also
ff The Using service decorators recipe demonstrates how a service type initialization

can be intercepted for a just in time modification

Using service decorators
An often overlooked aspect of AngularJS services is their ability to decorate service types in
the initialization logic. This allows you to add or modify how factories or services will behave
in the config phase before they are injected in the application.

How to do it…
In the config phase, the $provide service offers a decorator method that allows you to
inject a service and modify its definition before it is formally instantiated. This is shown here:

(app.js)

angular.module('myApp', [])
.config(function($provide) {
 $provide.decorator('Player', function($delegate) {
 // $delegate is the Player service instance

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/49wjk54L/
https://itbook.store/books/9781783283354

Chapter 2

81

 $delegate.setPlayer('Eli Manning');
 return $delegate;
 });
})
.controller('Ctrl', function($scope, Player) {
 $scope.data = Player.getPlayer();
 $scope.update = Player.swapPlayer;
})
.factory('Player', function() {
 var player = {
 number: 10
 }, swap = function() {
 player.name = 'DeSean Jackson';
 };

 return {
 setPlayer: function(newName) {
 player.name = newName;
 },
 getPlayer: function() {
 return player;
 },
 swapPlayer: function() {
 swap();
 }
 };
});

As you have merely modified a regular factory, it can be used in the template normally,
as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="update()">Update</button>
 {{ data.name }} #{{ data.number }}
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/cd3286rt/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/cd3286rt/
https://itbook.store/books/9781783283354

Expanding Your Toolkit with Filters and Service Types

82

How it works…
The decorator acts to intercept the creation of a service upon instantiation that allows you to
modify or replace the service type as desired. This is especially useful when you are looking
to cleanly monkeypatch a third-party library.

Constants cannot be decorated.

See also
ff The Using service providers recipe provides details of the ancestor service type and

how it relates to the service type life cycle

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

3
AngularJS Animations

In this chapter, we will cover the following recipes:

ff Creating a simple fade in/out animation

ff Replicating jQuery's slideUp() and slideDown() methods

ff Creating enter animations with ngIf

ff Creating leave and concurrent animations with ngView

ff Creating move animations with ngRepeat

ff Creating addClass animations with ngShow

ff Creating removeClass animations with ngClass

ff Staggering batched animations

Introduction
AngularJS incorporates its animation infrastructure as a separate module, ngAnimate.
With this, you are able to tackle animating your application in several different ways,
which are as follows:

ff CSS3 transitions

ff CSS3 animations

ff JavaScript animations

Using any one of these three, you are able to fully animate your application in an extremely
clean and modular fashion. In many cases, you will find that it is possible to add robust
animations to your existing application using only the AngularJS class event progression
and CSS definitions—no extra HTML or JS code is needed.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

84

This chapter assumes that you are at least broadly familiar with the major topics involved in
browser animations. We will focus more on how to integrate these animations into an AngularJS
application without having to rely on jQuery or other animation libraries. As you will see in this
chapter, there are a multitude of reasons why utilizing AngularJS/CSS animations is preferred to
their respective counterparts in libraries such as jQuery.

For the sake of brevity, the recipes in this chapter will not include any
vendor prefixes in the CSS class or animation definitions. Production
applications should obviously include them for cross-browser compatibility,
but in the context of this chapter, they are merely a distraction as AngularJS
is unconcerned with the content of CSS definitions.
The ngAnimate module comes separately packaged in angular-
animate.js. This file must be included alongside angular.js for the
recipes in this chapter to work.

Creating a simple fade in/out animation
AngularJS animations work by integrating CSS animations into a directive class-based finite state
machine. In other words, elements in AngularJS that serve to manipulate the DOM have defined
class states that can be used to take full advantage of CSS animations, and the system moves
between these states on well-defined events. This recipe will demonstrate how to make use of
the directive finite state machine in order to create a simple fade in/out animation.

A finite state machine (FSM) is a computational system model defined by
the states and transition conditions between them. The system can only
exist in one state at any given time, and the system changes state when
triggered by certain events. In the context of AngularJS animations, states are
represented by the presence of CSS classes associated with the progress of
a certain animation, and the events that trigger the state transformations are
controlled by data binding and the directives controlling the classes.

Getting ready
As of AngularJS 1.2, animation comes as a completely separate module in AngularJS—
ngAnimate. Your initial files should appear as follows:

(style.css)

.animated-container {
 padding: 20px;

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

85

 border: 5px solid black;
}

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <label>
 <button ng-click="boxHidden=!boxHidden">
 Toggle Visibility
 </button>
 </label>
 <div class="animated-container" ng-hide="boxHidden">
 Awesome text!
 </div>
 </div>
</div>

(app.js)

angular.module('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope) {
 $scope.boxHidden = true;
});

You can see that the given code simply provides a button that instantly toggles the visibility of
the styled <div> element.

How to do it…
There are several ways to accomplish a fade in/out animation, but the simplest is to use CSS
transitions as they integrate very nicely into the AngularJS animation class state machine.

The animation CSS classes need to cover both cases, where the element is hidden and needs
to fade in, and where the element is shown and needs to fade out. As is the case with CSS
transitions, you need to define the initial state, the final state, and the transition parameters.
This can be done as follows:

(style.css)

.animated-container {
 padding: 20px;
 border: 5px solid black;
}

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

86

.animated-container.ng-hide-add,

.animated-container.ng-hide-remove {
 transition: all linear 1s;
}
.animated-container.ng-hide-remove,
.animated-container.ng-hide-add.ng-hide-add-active {
 opacity: 0;
}
.animated-container.ng-hide-add,
.animated-container.ng-hide-remove.ng-hide-remove-active {
 opacity: 1;
}

JSFiddle: http://jsfiddle.net/msfrisbie/fqxwvyvj/

These CSS classes cover the bi-directional transition to fade between opacity: 0 and
opacity: 1 in 1 second. Clicking on the <button> element to toggle the visibility will
work to trigger the fade in and fade out of the styled <div> element.

How it works…
Since CSS transitions are triggered by the change of relevant CSS classes, using the
AngularJS class state machine allows you to animate when a directive manipulates
the DOM. The show/hide state machine is cyclical and operates as shown in the following
table (this is a simplified version of the full ng-show/ng-hide state machine, which is
provided in detail in the Creating addClass animations with ngShow recipe):

Event Directive state Styled element classes Element state
Initial state ng-

hide=true
animated-
container

ng-hide

display:none

boxHidden=false ng-
hide=false

animated-
container

ng-animate

ng-hide-remove

opacity:0

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/fqxwvyvj/
https://itbook.store/books/9781783283354

Chapter 3

87

Event Directive state Styled element classes Element state
Time quanta elapses ng-

hide=false
animated-
container

ng-animate

ng-hide-remove

ng-hide-remove-
active

The animation is
triggered; transition to
opacity:1 occurs

Animation completes ng-
hide=false

animated-
container

display:block

boxHidden=true ng-
hide=true

animated-
container

ng-animate

ng-hide

ng-hide-add

opacity:1

Time quanta elapses ng-
hide=true

animated-
container

ng-animate

ng-hide

ng-hide-add

ng-hide-add-
active

The animation is
triggered; transition to
opacity:0 occurs

Animation completes ng-
hide=true

animated-
container

ng-hide

display:none

The state machine shown in the preceding table is a
simplified version of the actual animation state machine.

You can now see how the CSS classes utilize the animation class state machine to trigger
the animation. When the directive state changes (in this case, the Boolean is negated),
AngularJS applies sequential CSS classes to the element, intending them to be used as
anchors for a CSS animation. Here, Time quanta elapses refers to the separate addition of
ng-hide-add or ng-hide-remove followed by the ng-hide-add-active or ng-hide-
remove-active classes. These classes are added sequentially and separately (this appears
to be instantaneous, you will be unable to see the separation when watching the classes in
a browser inspector), but the nature of the offset addition causes the CSS transition to be
triggered properly.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

88

In the case of moving from hidden to visible, the CSS styling defines a transition between the
.animated-container.ng-hide-add selector and the .animated-container.ng-
hide-add.ng-hide-add-active selector, with the transition definition attached under
the .animated-container.ng-hide-remove selector.

In the case of moving from visible to hidden, the styling defines the opposite transition between
the .animated-container.ng-hide-add selector and the .animated-container.ng-
hide-add.ng-hide-add-active selector, with the transition definition attached under the
.animated-container.ng-hide-add selector.

There's more…
As the class state machine is controlled entirely by the ng-hide directive, if you want to
invert the animation (initially start as shown and then make the transition to hidden), all that
is needed is the use of ng-show on the HTML element instead of ng-hide. These opposing
directives will implement the class state machine appropriately for their definition, but will
always use the ng-hide class as the default reference. In other words, using the ng-show
directive will not utilize ng-show-add or ng-show-remove or anything of the sort; it will
still be ng-hide, ng-hide-add or ng-hide-remove, and ng-hide-add-active or
ng-hide-remove-active.

Keeping things clean
Since the animation starts as hidden, and you are loading the JS files at the bottom of the
body, this is the perfect opportunity to utilize ng-cloak in order to prevent the styled div
element from flashing before compilation. Modify your CSS and HTML as follows:

(style.css)

[ng\:cloak], [ng-cloak], [data-ng-cloak], [x-ng-cloak], .ng-cloak,
.x-ng-cloak {
 display: none !important;
}

(index.html)
...
<div class="animated-container" ng-show="boxHidden" ng-cloak>
 Awesome text!
</div>

No more boilerplate animation styling
Formerly, when animating ng-hide or ng-show, the display property needed to incorporate
display:block!important during the animation states. As of AngularJS 1.3, this is no
longer necessary; the ngAnimate module will handle this for you.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

89

See also
ff The Creating addClass animations with ngShow and Creating removeClass

animations with ngClass recipes go into further depth with the state machines
that drive the directive animations

Replicating jQuery's slideUp() and
slideDown() methods

jQuery provides a very useful pair of animation methods, slideUp() and slideDown(),
which use JavaScript in order to accomplish the desired results. With the animation hooks
provided for you by AngularJS, these animations can be accomplished with CSS.

Getting ready
Suppose that you want to slide a <div> element up and down in the following setup:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="displayToggle=!displayToggle">
 Toggle Visibility
 </button>
 <div>Slide me up and down!</div>
 </div>
</div>

(app.js)
angular.module('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope) {
 $scope.displayToggle = true;
});

How to do it…
A sliding animation requires truncation of the overflowing element and a transition involving
the height of the element. The following implementation utilizes ng-class:

(style.css)

.container {
 overflow: hidden;

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

90

}
.slide-tile {
 transition: all 0.5s ease-in-out;
 width: 300px;
 line-height: 300px;
 text-align: center;
 border: 1px solid black;
 transform: translateY(0);
}
.slide-up {
 transform: translateY(-100%);
}

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="displayToggle=!displayToggle">
 Toggle Visibility
 </button>
 <div class="container">
 <div class="slide-tile"
 ng-class="{'slide-up': !displayToggle}">
 Slide me up and down!
 </div>
 </div>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/eqcs1dzr/

A slightly more lightweight implementation is to tie the class definitions into the ng-show
state machine:

(style.css)

.container {
 overflow: hidden;
}
.slide-tile {
 transition: all 0.5s ease-in-out;
 width: 300px;
 line-height: 300px;

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/eqcs1dzr/
https://itbook.store/books/9781783283354

Chapter 3

91

 text-align: center;
 border: 1px solid black;
 transform: translateY(0);
}
.slide-tile.ng-hide {
 transform: translateY(-100%);
}

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="displayToggle=!displayToggle">
 Toggle Visibility
 </button>
 <div class="container">
 <div class="slide-tile" ng-show="displayToggle">
 Slide me up and down!
 </div>
 </div>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/bx01muha/

How it works…
CSS transitions afford the convenience of a bi-directional animation as long as the endpoints
and transitions are defined. For both of these implementations, the translateY CSS
property is used to implement the sliding, and the hidden state (slide up for the ng-class
implementation, and ng-hide for the ng-show implementation) is used as the concealed
transition state endpoint.

See also
ff The Creating addClass animations with ngShow and Creating removeClass

animations with ngClass recipes go into further depth with the state machines
that drive the directive animations

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/bx01muha/
https://itbook.store/books/9781783283354

AngularJS Animations

92

Creating enter animations with ngIf
AngularJS provides hooks to define a custom animation when a directive fires an enter
event. The following directives will generate enter events:

ff ngIf: This fires the enter event just after the ngIf contents change, and a new
DOM element is created and injected into the ngIf container

ff ngInclude: This fires the enter event when new content needs to be brought into
the browser

ff ngRepeat: This fires the enter event when a new item is added to the list or when
an item is revealed after a filter

ff ngSwitch: This fires the enter event after the ngSwitch contents change, and the
matched child element is placed inside the container

ff ngView: This fires the enter event when new content needs to be brought into
the browser

ff ngMessage: This fires the enter event when an inner message is attached

Getting ready
Suppose that you want to attach a fade-in animation to a piece of the DOM that has a ng-if
directive attached to it. When the ng-if expression evaluates to true, the enter animation
will trigger, as the template is brought into the page.

The ngIf directive also has a complementary set of leave
animation hooks, but those are not needed in this recipe and
can be safely ignored if they are not being used.

The initial setup, before animation is implemented, can be structured as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="visible=!visible">Toggle</button>
 Bring me in!
 </div>
</div>

(app.js)

angular.module('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope) {
 $scope.visible = true;
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

93

The example in this recipe only uses ngIf, but it could have just as
easily been performed with ngInclude, ngRepeat, ngSwitch,
or ngView. All of the enter events fired for these directives involve
content being introduced to the DOM in some way, so the animation
hooks and procedures surrounding the animation definition can be
handled in a more or less identical fashion.

How to do it…
When the button is clicked, this code instantaneously brings the <div> element with a ngIf
expression attached to it into view as soon as the expression evaluates to true. However, with
the inclusion of the ngAnimate module, AngularJS will add in animation hooks, upon which you
can define an animation when the <div> element enters the page.

An animation can be defined by a CSS transition, CSS animation, or by JavaScript.
The animation definition can be constructed in different ways. CSS transitions and
CSS animations will use the ng-enter CSS class hooks to define the animation,
whereas JavaScript animations will use the ngAnimate module's enter() method.

CSS3 transition
To animate with transitions, only the beginning and end state class styles need to be defined.
This is shown here:

(style.css)

.target.ng-enter
{
 transition: all linear 1s;
 opacity: 0;
}
.target.ng-enter.ng-enter-active {
 opacity: 1;
}

JSFiddle: http://jsfiddle.net/msfrisbie/zhuffnfj/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/zhuffnfj/
https://itbook.store/books/9781783283354

AngularJS Animations

94

CSS3 animation
Similar to CSS3 transition, it is relatively simple to accomplish the same animation with CSS
keyframes. Since the animation is defined entirely within the keyframes, only a single class
reference is needed in order to trigger the animation. This can be done as follows:

(style.css)

.target.ng-enter {
 animation: 1s target-enter;
}
@keyframes target-enter {
 from {
 opacity: 0;
 }
 to {
 opacity: 1;
 }
}

JSFiddle: http://jsfiddle.net/msfrisbie/rp4mjgkL/

JavaScript animation
Animating with JavaScript requires that you manually add and remove the relevant CSS
classes, as well as explicitly call the animations. Since AngularJS and jqLite objects don't
have an animation method, you will need to use the jQuery object's animate() method:

(app.js)

angular.module('myApp', ['ngAnimate'])
.controller('Ctrl', function ($scope) {
 $scope.visible = false;
})
.animation('.target', function () {
 return {
 enter: function (element, done) {
 $(element)
 .css({
 'opacity': 0
 });
 $(element)
 .animate({
 'opacity': 1

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/rp4mjgkL/
https://itbook.store/books/9781783283354

Chapter 3

95

 },
 1000,
 done);
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/2jt853no/

How it works…
The enter animation behaves as a state machine. It cannot assume that either CSS
transitions/animations or JavaScript animations are defined upon the <div> DOM element,
and it must be able to apply all of them without creating conflicts. As a result, AngularJS will
trigger the JavaScript animations and immediately begin the progression of the animation
class sequence, which will trigger any CSS transitions/animations that might be defined
upon them. In this way, both JavaScript and CSS animations can be used on the same DOM
element simultaneously.

AngularJS uses a standard class naming convention for different states, which allows you to
uniquely define each set of animations for the component being animated. The following set
of tables define how the enter animation state machine operates.

The initial state of the animation components is defined as follows:

element [
 Bring me in!
,
<!-- end ngIf: visible -->]

parentElement [<div>
 ...
</div>]

afterElement [<!-- ngIf: visible -->]

The following table represents a full enter animation transition:

Event DOM
The $animate.enter() method is
called after the directive detects that
ng-if evaluates to true

<div>
 <!-- ngIf: visible -->
</div>

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/2jt853no/
https://itbook.store/books/9781783283354

AngularJS Animations

96

Event DOM
The element is inserted into
parentElement or beside
afterElement

<div>
 <!-- ngIf: visible -->
 <span class="target"
 ng-if="visible">
 Bring me in!

 <!-- end ngIf: visible -->
</div>

The $animate service waits for a new
digest cycle to begin animating; the
ng-animate class is added

<div>
 <!-- ngIf: visible -->
 <span class="target ng-animate"
 ng-if="visible">
 Bring me in!

 <!-- end ngIf: visible -->
</div>

The $animate service runs the
JavaScript-defined animations detected
on the element

No change in DOM

The ng-enter class is added to the
element

<div>
 <!-- ngIf: visible -->
 <span class="target ng-animate ng-
enter"
 ng-if="visible">
 Bring me in!

 <!-- end ngIf: visible -->
</div>

The $animate service reads the
element styles in order to get the CSS
transition or CSS animation definition

No change in DOM

The $animate service blocks CSS
transitions involving the element in
order to ensure the ng-enter class
styling is correctly applied without
interference

No change in DOM

The $animate service waits for a
single animation frame, which performs
a reflow

No change in DOM

The $animate service removes the
CSS transition block placed on the
element

No change in DOM

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

97

Event DOM
The ng-enter-active class
is added; CSS transitions or CSS
animations are triggered

<div>
 <!-- ngIf: visible -->
 <span class="target ng-animate
ng-enter ng-enter-active"
 ng-if="visible">
 Bring me in!

 <!-- end ngIf: visible -->
</div>

The $animate service waits for the
animation to complete

No change in DOM

Animation completes; animation
classes are stripped from the element

<div>
 <!-- ngIf: visible -->
 <span class="target"
 ng-if="visible">
 Bring me in!

 <!-- end ngIf: visible -->
</div>

The doneCallback() method is fired
(if provided)

No change in DOM

Since it does not affect animation proceedings, this recipe intentionally
ignores the presence of the ng-scope class, which in reality would be
present on the DOM elements.

There's more…
JavaScript and CSS transitions/animations are executed in a parallel. Since they are defined
independently, they can be run independently even though they can modify the same DOM
element(s) entering the page.

See also
ff The Creating leave and concurrent animations with ngView recipe provides the

details of the complementary leave event

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

98

Creating leave and concurrent animations
with ngView

AngularJS provides hooks used to define a custom animation when a directive fires a leave
event. The following directives will generate leave events:

ff ngIf: This fires the leave event just before the ngIf contents are removed from
the DOM

ff ngInclude: This fires the leave event when the existing included content needs to
be animated away

ff ngRepeat: This fires the leave event when an item is removed from the list or when
an item is filtered out

ff ngSwitch: This fires the leave event just after the ngSwitch contents change and
just before the former contents are removed from the DOM

ff ngView: This fires the leave event when the existing ngView content needs to be
animated away

ff ngMessage: This fires the leave event when an inner message is removed

Getting ready
Suppose that you want to attach a slide-in or slide-out animation to a piece of the DOM that
exists inside the ng-view directive. Route changes that cause the content of ng-view to be
altered will trigger an enter animation for the content about to be brought into the page, as
well as trigger a leave animation for the content about to leave the page.

The initial setup, before animation is implemented, can be structured as follows:

(style.css)

.link-container {
 position: absolute;
 top: 320px;
}
.animate-container {
 position: absolute;
}
.animate-container div {
 width: 300px;
 text-align: center;
 line-height: 300px;

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

99

 border: 1px solid black;
}

(index.html)

<div ng-app="myApp">
 <ng-view class="animate-container"></ng-view>
 <div class="link-container">
 Foo
 Bar
 </div>

 <script type="text/ng-template" id="foo.html">
 <div>
 Foo
 </div>
 </script>
 <script type="text/ng-template" id="bar.html">
 <div>
 Bar
 </div>
 </script>
</div>

(app.js)

angular.module('myApp', ['ngAnimate', 'ngRoute'])
.config(function ($routeProvider) {
 $routeProvider
 .when('/bar', {
 templateUrl: 'bar.html'
 })
 .otherwise({
 templateUrl: 'foo.html'
 });
});

The example in this recipe only uses ngView, but it could have just as
easily been performed with ngInclude, ngRepeat, ngSwitch, or
ngIf. All the leave events fired for these directives involve content
being removed from the DOM in some way, so the animation's hooks
and procedures surrounding the animation definition can be handled
in a more or less identical fashion. However, not all of these directives
trigger enter and leave events concurrently.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

100

How to do it…
When the route changes, AngularJS instantaneously injects the appropriate template into the
ng-view directive. However, with the inclusion of the ngAnimate module, AngularJS will add
in animation hooks, upon which you can define animations for how the templates will enter
and leave the page.

An animation can be defined by a CSS transition, CSS animation, or by JavaScript. The animation
definition can be constructed in different ways. CSS transitions and CSS animations will use the
ng-leave CSS class hooks to define the animation, whereas JavaScript animations will use the
ngAnimate directive's leave() method.

It is important to note here that ng-view triggers the leave and enter animations
simultaneously. Therefore, your animation definitions must take this into account
in order to prevent animation conflicts.

CSS3 transition
To animate with transitions, only the beginning and end state class styles need to be defined.
Remember that the enter and leave animations begin at the same instant, so you must
either define an animation that gracefully accounts for any overlap that might occur, or
introduce a delay in animations in order to serialize them.

CSS transitions accept a transition-delay value, so serializing the animations is the easiest
way to accomplish the desired animation here. Adding the following to the style sheet is all
that is needed in order to define the slide-in or slide-out animation:

(style.css)

.animate-container.ng-enter {
 /* final value is the transition delay */
 transition: all 0.5s 0.5s;
}
.animate-container.ng-leave {
 transition: all 0.5s;
}
.animate-container.ng-enter,
.animate-container.ng-leave.ng-leave-active {
 top: -300px;
}
.animate-container.ng-leave,
.animate-container.ng-enter.ng-enter-active {
 top: 0px;
}

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

101

JSFiddle: http://jsfiddle.net/msfrisbie/y9de80ga/

CSS3 animation
Building this animation with CSS keyframes is also easy to accomplish. Keyframe percentages
allow you to effectively delay the enter animation by a set length of time until the leave animation
finishes. This can be done as follows:

(style.css)

.animate-container.ng-enter {
 animation: 1s view-enter;
}
.animate-container.ng-leave {
 animation: 0.5s view-leave;
}
@keyframes view-enter {
 0%, 50% {
 top: -300px;
 }
 100% {
 top: 0px;
 }
}
@keyframes view-leave {
 0% {
 top: 0px;
 }
 100% {
 top: -300px;
 }
}

JSFiddle: http://jsfiddle.net/msfrisbie/penaakxy/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/y9de80ga/
http://jsfiddle.net/msfrisbie/penaakxy/
https://itbook.store/books/9781783283354

AngularJS Animations

102

JavaScript animation
Animating with JavaScript requires that you manually add and remove the relevant CSS
classes, as well as explicitly call the animations. Since AngularJS and jqLite objects don't
have an animation method, you will need to use the jQuery object's animate() method.
The delay between the serialized animations can be accomplished with the jQuery delay()
method. The animation can be defined as follows:

(app.js)

angular.module('myApp', ['ngAnimate', 'ngRoute'])
.config(function ($routeProvider) {
 $routeProvider
 .when('/bar', {
 templateUrl: 'bar.html'
 })
 .otherwise({
 templateUrl: 'foo.html'
 });
})
.animation('.animate-container', function() {
 return {
 enter: function(element, done) {
 $(element)
 .css({
 'top': '-300px'
 });
 $(element)
 .delay(500)
 .animate({
 'top': '0px'
 }, 500, done);
 },
 leave: function(element, done) {
 $(element)
 .css({
 'top': '0px'
 });
 $(element)
 .animate({
 'top': '-300px'
 }, 500, done);
 }
 };
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

103

JSFiddle: http://jsfiddle.net/msfrisbie/b4L35nrt/

How it works…
The leave animation state machine has a good deal of parity with the enter animation. State
machine class progressions work in a very similar way; sequentially adding the beginning and
final animation hook classes in order to match the element coming in and out of existence.
AngularJS uses the same standard class naming convention used by the enter animation for
the different animation states. The following set of tables define how the leave animation state
machine operates.

The initial state of the animation components is defined as follows:

element [<ng-view class="animate-container">
 <div>
 Bar
 </div>
</ng-view>]

The following table represents a full leave animation transition:

Event DOM
The $animate.leave() method is
called when a new view needs to be
introduced

<ng-view class="animate-container">
 <div>
 Bar
 </div>
</ng-view>

The $animate service runs the
JavaScript-defined animations detected
on the element; the ng-animate
class is added

<ng-view class="animate-container ng-
animate">
 <div>
 Bar
 </div>
</ng-view>

The $animate service waits for a new
digest cycle to begin animating

No change in DOM

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/b4L35nrt/
https://itbook.store/books/9781783283354

AngularJS Animations

104

Event DOM
The ng-leave class is added to the
element

<ng-view class="animate-container ng-
animate ng-leave">
 <div>
 Bar
 </div>
</ng-view>

The $animate service reads the
element styles in order to get the CSS
transition or CSS animation definition

No change in DOM

The $animate service blocks CSS
transitions that involve the element in
order to ensure that the ng-leave
class styling is correctly applied without
interference

No change in DOM

The $animate service waits for a
single animation frame, which performs
a reflow

No change in DOM

The $animate service removes the
CSS transition block placed on the
element

No change in DOM

The ng-leave-active class
is added; CSS transitions or CSS
animations are triggered

<ng-view class="animate-container ng-
animate ng-leave ng-leave-active">
 <div>
 Bar
 </div>
</ng-view>

The $animate service waits for the
animation to get completed

No change in DOM

The animation is complete; animation
classes are stripped from the element

<ng-view class="animate-container">
 <div>
 Bar
 </div>
</ng-view>

The element is removed from DOM <ng-view class="animate-container">
</ng-view>

The doneCallback() method is fired
(if provided)

No change in DOM

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

105

Since it does not affect the animation proceedings, this recipe
intentionally ignores the presence of the ng-scope class, which
in reality would be present in the DOM elements.

See also
ff The Creating enter animations with ngIf recipe provides the details of the

complementary enter event

Creating move animations with ngRepeat
AngularJS provides hooks to define a custom animation when a directive fires a move event.
The only AngularJS directive that fires a move event by default is ngRepeat; it fires a move
event when an adjacent item is filtered out causing a reorder or when the item contents
are reordered.

Getting ready
Suppose that you want to attach a slide-in or slide-out animation to a piece of the DOM that
exists inside the ng-view directive. Route changes that cause the content of ng-view to be
altered will trigger an enter animation for the content about to be brought into the page, as
well as trigger a leave animation for the content about to leave the page.

Suppose that you want to animate individual pieces of a list when they are initially added,
moved, or removed. Additions and removals should slide in and out from the left-hand side,
and move events should slide up and down.

The initial setup, before animation is implemented, can be structured as follows:

(style.css)

.animate-container {
 position: relative;
 margin-bottom: -1px;
 width: 300px;
 text-align: center;
 border: 1px solid black;
 line-height: 40px;
}
.repeat-container {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

106

 position: absolute;
}

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <div style="repeat-container">
 <input ng-model="search.val" />
 <button ng-click="shuffle()">Shuffle</button>
 <div ng-repeat="el in arr | filter:search.val"
 class="animate-container">
 {{ el }}
 </div>
 </div>
 </div>
</div>

(app.js)

angular.module('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope) {
 $scope.arr = [10,15,25,40,45];

 // implementation of Knuth in-place shuffle
 function knuthShuffle(a) {
 for(var i = a.length, j, k; i;
 j = Math.floor(Math.random() * i),
 k = a[--i],
 a[i] = a[j],
 a[j] = k);
 return a;
 }

 $scope.shuffle = function() {
 $scope.arr = knuthShuffle($scope.arr);
 };
});

In this recipe, the ng-repeat search filter is implemented merely to
provide the ability to add and remove elements from the list. As search
filtering does not reorder the elements as defined by AngularJS (this
will be explored later in this recipe), it will never generate move events.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

107

How to do it…
When the order of the displayed iterable collection changes, AngularJS injects the appropriate
template into the corresponding location in the list, and sibling elements whose indices have
changed will instantaneously shift. However, with the inclusion of the ngAnimate module,
AngularJS will add in animation hooks, upon which you can define animations for how the
templates will move within the list.

The animation can be defined by a CSS transition, CSS animation, or by JavaScript. The
animation definition can be constructed in different ways. CSS transitions and CSS animations
will use the ng-move CSS class hooks in order to define the animation, whereas JavaScript
animations will use the ngAnimate module's move() method.

It is important to note here that ng-repeat triggers enter, leave, and move animations
simultaneously. Therefore, your animation definitions must take this into account to prevent
animation conflicts.

CSS3 transition
To animate with transitions, you can utilize the animation hook class states to define the
set of endpoints for each type of animation. Animations on each individual element in the
collection will begin simultaneously, so you must define animations that gracefully account
for any overlap that might occur.

Adding the following to the style sheet is all that is needed in order to define the slide-in or
slide-out animation for the enter and leave events and a fade in for the move event:

(style.css)

.animate-container.ng-move {
 transition: all 1s;
 opacity: 0;
 max-height: 0;
}
.animate-container.ng-move-active {
 opacity: 1;
 max-height: 40px;
}
.animate-container.ng-enter {
 transition: left 0.5s, max-height 1s;
 left: -300px;
 max-height: 0;
}
.animate-container.ng-enter-active {
 left: 0px;
 max-height: 40px;

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

108

}
.animate-container.ng-leave {
 transition: left 0.5s, max-height 1s;
 left: 0px;
 max-height: 40px;
}
.animate-container.ng-leave-active {
 left: -300px;
 max-height: 0;
}

JSFiddle: http://jsfiddle.net/msfrisbie/f4puyv58/

CSS3 animation
Building this animation with CSS keyframes allows you to have the advantage of being
able to explicitly define the offset between animation segments, which allows you a cleaner
enter/leave animation without tiles sweeping over each other. The enter and leave animations
can take advantage of this by animating to full height before sliding into view. Add the
following to the style sheet in order to define the desired animations:

(style.css)

.animate-container.ng-enter {
 animation: 0.5s item-enter;
}
.animate-container.ng-leave {
 animation: 0.5s item-leave;
}
.animate-container.ng-move {
 animation: 0.5s item-move;
}
@keyframes item-enter {
 0% {
 max-height: 0;
 left: -300px;
 }
 50% {
 max-height: 40px;
 left: -300px;
 }
 100% {
 max-height: 40px;

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/f4puyv58/
https://itbook.store/books/9781783283354

Chapter 3

109

 left: 0px;
 }
}
@keyframes item-leave {
 0% {
 left: 0px;
 max-height: 40px;
 }
 50% {
 left: -300px;
 max-height: 40px;
 }
 100% {
 left: -300px;
 max-height: 0;
 }
}
@keyframes item-move {
 0% {
 opacity: 0;
 max-height: 0px;
 }
 100% {
 opacity: 1;
 max-height: 40px;
 }
}

JSFiddle: http://jsfiddle.net/msfrisbie/1632jm5g/

JavaScript animation
JavaScript animations are also relatively easy to define here, even though the desired effect
has both serialized and parallel animation effects. This can be done as follows:

(app.js)

angular.module('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope) {
 ...
})
.animation('.animate-container', function() {
 return {

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/1632jm5g/
https://itbook.store/books/9781783283354

AngularJS Animations

110

 enter: function(element, done) {
 $(element)
 .css({
 'left': '-300px',
 'max-height': '0'
 });
 $(element)
 .animate({
 'max-height': '40px'
 }, 250)
 .animate({
 'left': '0px'
 }, 250, done);
 },
 leave: function(element, done) {
 $(element)
 .css({
 'left': '0px',
 'max-height': '40px'
 });
 $(element)
 .animate({
 'left': '-300px'
 }, 250)
 .animate({
 'max-height': '0'
 }, 250, done);
 },
 move: function(element, done) {
 $(element)
 .css({
 'opacity': '0',
 'max-height': '0'
 });
 $(element)
 .animate({
 'opacity': '1',
 'max-height': '40px'
 }, 500, done);
 }
 };
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

111

JSFiddle: http://jsfiddle.net/msfrisbie/rjaq5tqc/

How it works…
The move animation state machine is very similar to the enter animation. State machine class
progressions sequentially add the beginning and final animation hook classes in order to match
the element that is being reintroduced into the list at its new index. AngularJS uses the same
standard class naming convention used by the enter animation for different animation states.

For the purpose of simplification, the following modifications and
assumptions affect the content of the following state machine:

ff The ng-repeat directive is assumed to be passed an array
of [1,2]. The move event is triggered by the array's order being
reversed to [2,1].

ff The ng-repeat filter has been removed; a search filter
cannot fire move events.

ff The ng-scope and ng-binding directive classes have been
removed from where they would normally occur, as they do not
affect the state machine.

The following set of tables define how the move animation state machine operates.

The initial state of the animation components is defined as follows:

element [<div ng-repeat="el in arr"
 class="animate-container">
 1
</div>,
<!-- end ngRepeat: el in arr -->]

parentElement null

afterElement [<!-- ngRepeat: el in arr -->]

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/rjaq5tqc/
https://itbook.store/books/9781783283354

AngularJS Animations

112

The following table represents a full move animation transition:

Event DOM
The $animate.move() method is
invoked

<!-- ngRepeat: el in arr -->
<div ng-repeat="el in arr"
 class="animate-container">
 1
</div>
<!-- end ngRepeat: el in arr -->
<div ng-repeat="el in arr "
 class="animate-container">
 2
</div>
<!-- end ngRepeat: el in arr -->

The element is moved into
parentElement or beside
afterElement

<!-- ngRepeat: el in arr -->
<div ng-repeat="el in arr"
 class="animate-container">
 2
</div>
<!-- end ngRepeat: el in arr -->
<div ng-repeat="el in arr "
 class="animate-container">
 1
</div>
<!-- end ngRepeat: el in arr -->

The $animate service waits for a
new digest cycle to begin animation;
ng-animate is added

<!-- ngRepeat: el in arr -->
<div ng-repeat="el in arr "
 class="animate-container ng-
animate">
 2
</div>
<!-- end ngRepeat: el in arr -->
<div ng-repeat="el in arr "
 class="animate-container">
 1
</div>
<!-- end ngRepeat: el in arr -->

The $animate service runs the
JavaScript-defined animations
detected in the element

No change in DOM

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

113

Event DOM
The ng-move directive is added to
the element's classes

<!-- ngRepeat: el in arr -->
<div ng-repeat="el in arr"
 class="animate-container ng-
animate ng-move">
 2
</div>
<!-- end ngRepeat: el in arr -->
<div ng-repeat="el in arr "
 class="animate-container">
 1
</div>
<!-- end ngRepeat: el in arr -->

The $animate service reads the
element styles in order to get the CSS
transition or CSS animation definition

No change in DOM

The $animate service blocks CSS
transitions that involve the element
to ensure that the ng-move class
styling is correctly applied without
interference

No change in DOM

The $animate service waits for
a single animation frame, which
performs a reflow

No change in DOM

The $animate service removes the
CSS transition block placed on the
element

No change in DOM

The ng-move-active directive
is added; CSS transitions or CSS
animations are triggered

<!-- ngRepeat: el in arr -->
<div ng-repeat="el in arr"
 class="animate-container ng-
animate ng-move ng-move-active">
 2
</div>
<!-- end ngRepeat: el in arr -->
<div ng-repeat="el in arr "
 class="animate-container">
 1
</div>
<!-- end ngRepeat: el in arr -->

The $animate service waits for the
animation to get completed

No change in DOM

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

114

Event DOM
Animation is complete; animation
classes are stripped from the
element

<!-- ngRepeat: el in arr -->
<div ng-repeat="el in arr"
 class="animate-container">
 2
</div>
<!-- end ngRepeat: el in arr -->
<div ng-repeat="el in arr "
 class="animate-container">
 1
</div>
<!-- end ngRepeat: el in arr -->

The doneCallback() method is
fired (if provided)

No change in DOM

There's more…
The move animation's name can be a bit confusing as move implies a starting and ending
location. A better way to think of it is as a secondary entrance animation used in order to
demonstrate when new content is not being added to the list. You will notice that the move
animation is triggered simultaneously for all the elements whose relative order in the list has
changed, and that the animation triggers when it is in its new position.

Also note that even though the index of both elements changed, only one move animation was
triggered. This is due to the way the movement within an enumerable collection is defined.
AngularJS preserves the old ordering of the collection and compares its values in order to the
entire new ordering, and all mismatches will fire move events. For example, if the old order is
1, 2, 3, 4, 5 and the new order is 5, 4, 2, 1, 3, then the comparison strategy works as follows:

Comparison Evaluation
old[0] == new[0] False, fire the move event
old[0] == new[1] False, fire the move event
old[0] == new[2] False, fire the move event
old[0] == new[3] True, increment the old order comparison index until an element,

which was not yet seen, is reached (2 was already seen in the new
order; skip to 3)

old[2] == new[4] True

Astute developers will note that, with this order comparison
implementation, a simple order shuffling will never mark the
last element as "moved".

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

115

See also
ff The Staggering batched animations recipe demonstrates how to introduce an

animation delay between batched events in an ngRepeat context

Creating addClass animations with ngShow
AngularJS provides hooks used to define a custom animation when a directive fires an
addClass event. The following directives will generate addClass events:

ff ngShow: This fires the addClass event after the ngShow expression evaluates to a
truthy value, and just before the contents are set to visible

ff ngHide: This fires the addClass event after the ngHide expression evaluates to a
non-truthy value, and just before the contents are set to visible

ff ngClass: This fires the addClass event just before the class is applied to the element

ff ngForm: This fires the addClass event to add validation classes

ff ngModel: This fires the addClass event to add validation classes

ff ngMessages: This is fired to add the ng-active class when one or more messages
are visible, or to add the ng-inactive class when there are no messages

Getting ready
Suppose that you want to attach a fade-out animation to a piece of the DOM that has an
ng-show directive. Remember that ng-show does not add or remove anything from the
DOM; it merely toggles the CSS display property to set the visibility.

The initial setup, before animation is implemented, can be structured as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="displayToggle=!displayToggle">
 Toggle Visibility
 </button>
 <div class="animate-container" ng-show="displayToggle">
 Fade me out!
 </div>
 </div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

116

</div>

(app.js)

angular.module('myApp', ['ngAnimate'])
.controller('Ctrl',function($scope) {
 $scope.displayToggle = true;
});

How to do it…
When the ng-show expression evaluates to false, the DOM element is immediately hidden.
However, with the inclusion of the ngAnimate module, AngularJS will add in animation hooks,
upon which you can define animations for how the element will be removed from the page.

The animation can be defined by a CSS transition, CSS animation, or by JavaScript.
The animation definition can be constructed in different ways. CSS transitions and CSS
animations will use the addClass CSS class hooks to define the animation, whereas
JavaScript animations will use the ngAnimate directive's addClass() method.

CSS transitions
Animating a fade-in effect with CSS transitions simply requires attaching opposite opacity
values when the ng-hide class is added. Remember that ng-show and ng-hide are
merely toggling the presence of this ng-hide class through the use of the addClass
and removeClass animation events. This can be done as follows:

(style.css)

.animate-container.ng-hide-add {
 transition: all linear 1s;
 opacity: 1;
}
.animate-container.ng-hide-add.ng-hide-add-active {
 opacity: 0;
}

JSFiddle: http://jsfiddle.net/msfrisbie/bewso5sd/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/bewso5sd/
https://itbook.store/books/9781783283354

Chapter 3

117

CSS animation
Animating with a CSS animation is just as simple as CSS transitions, as follows:

(style.css)

.animate-container.ng-hide-add {
 animation: 1s fade-out;
}
@keyframes fade-out {
 0% {
 opacity: 1;
 }
 100% {
 opacity: 0;
 }
}

JSFiddle: http://jsfiddle.net/msfrisbie/aez97r46/

JavaScript animation
Animating with JavaScript requires that you manually add and remove the relevant CSS
classes, as well as explicitly call the animations. Since AngularJS and jqLite objects don't
have an animation method, you will need to use the jQuery object's animate() method.
This can be done as follows:

(app.js)

angular.module('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope) {
 $scope.displayToggle = true;
})
.animation('.animate-container', function() {
 return {
 addClass: function(element, className, done) {
 if (className==='ng-hide') {
 $(element)
 .removeClass('ng-hide')
 .css('opacity', 1)
 .animate(
 {'opacity': 0},
 1000,
 function() {

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/aez97r46/
https://itbook.store/books/9781783283354

AngularJS Animations

118

 $(element)
 .addClass('ng-hide')
 .css('opacity', 1);
 done();
 }
);
 } else {
 done();
 }
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/4taoda1e/
Note that here, the opacity value is used for the animation, but is not the
active class that hides the element. After its use in the animation, it must be
reset to 1 in order to not interfere with the subsequent display toggling.

How it works…
Independent of what is defined in the actual class that is being added, ngAnimate provides
animation hooks for the class that is being added to define animations. In the context of
the ng-show directive, the ng-hide CSS class is defined implicitly within AngularJS, but
the animation hooks are completely decoupled from the original class in order to provide a
fresh animation definition interface. The following set of tables defines how the addClass
animation state machine operates.

The initial state of the animation components is defined as follows:

element <div class="animate-container"
 ng-show="displayToggle">
 Fade me out!
</div>

className 'ng-hide'

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/4taoda1e/
https://itbook.store/books/9781783283354

Chapter 3

119

The following table represents a full addClass animation transition:

Event DOM
The $animate.
addClass(element, 'ng-
hide') method is called

<div class="animate-container"
 ng-show="displayToggle">
 Fade me out!
</div>

The $animate service runs the
JavaScript-defined animations detected
on the element; ng-animate is added

<div class="animate-container ng-
animate"
 ng-show="displayToggle">
 Fade me out!
</div>

The .ng-hide-add class is added to
the element

<div class="animate-container ng-
animate ng-hide-add"
 ng-show="displayToggle">
 Fade me out!
</div>

The $animate service waits for a
single animation frame (this performs
a reflow)

No change in DOM

The .ng-hide and .ng-hide-
add-active classes are added (this
triggers the CSS transition/animation)

<div class="animate-container ng-
animate ng-hide ng-hide-add ng-hide-
add-active"
 ng-show="displayToggle">
 Fade me out!
</div>

The $animate service scans
the element styles to get the CSS
transition/animation duration and
delay

No change in DOM

The $animate service waits for the
animation to get completed (via events
and timeout)

No change in DOM

The animation ends and all the
generated CSS classes are removed
from the element

<div class="animate-container ng-
hide"
 ng-show="displayToggle">
 Fade me out!
</div>

The ng-hide class is kept on the
element

No change in DOM

The doneCallback() callback is
fired (if provided)

No change in DOM

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

120

See also
ff The Creating removeClass animations with ngClass recipe provides the details of the

complementary removeClass event

Creating removeClass animations with
ngClass

AngularJS provides hooks that can be used to define a custom animation when a directive
fires a removeClass event. The following directives will generate removeClass events:

ff ngShow: This fires the removeClass event after the ngShow expression evaluates
to a non-truthy value, and just before the contents are set to hidden

ff ngHide: This fires the removeClass event after the ngHide expression evaluates
to a truthy value, and just before the contents are set to hidden

ff ngClass: This fires the removeClass event just before the class is removed from
the element

ff ngForm: This fires the removeClass event to remove validation classes

ff ngModel: This fires the removeClass event to remove validation classes

ff ngMessages: This fires the removeClass event to remove the ng-active class
when there are no messages, or to remove the ng-inactive class when one or
more messages are visible

Getting ready
Suppose that you want to have a div element slide out of the view when a class is removed.
Remember that ng-class does not add or remove any elements from the DOM; it merely
adds or removes the classes defined within the directive expression.

The initial setup, before animation is implemented, can be structured as follows:

(style.css)

.container {
 background-color: black;
 width: 200px;

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

121

 height: 200px;
 overflow: hidden;
}
.prompt {
 position: absolute;
 margin: 10px;
 font-family: courier;
 color: lime;
}
.cover {
 position: relative;
 width: 200px;
 height: 200px;
 left: 200px;
 background-color: black;
}
.blackout {
 left: 0;
}

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="displayToggle=!displayToggle">
 Toggle Visibility
 </button>
 <div class="container">
 Wake up, Neo...
 <div class="cover"
 ng-class="{blackout: displayToggle}">
 </div>
 </div>
 </div>
</div>

(app.js)

angular.module('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope) {
 $scope.displayToggle = true;
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

122

How to do it…
When the ng-class value for blackout evaluates to false, it will immediately be stripped
out. However, with the inclusion of the ngAnimate module, AngularJS will add in animation
hooks, upon which you can define animations for how the class will be removed.

The animation can be defined by a CSS transition, CSS animation, or by JavaScript. The
animation definition can be constructed in different ways. CSS transitions and CSS animations
will use the removeClass CSS class hooks to define the animation, whereas JavaScript
animations will use the ngAnimate directive's removeClass() method.

CSS transitions
Animating a slide-out effect with CSS transitions simply requires a transition that defines the
left positioning distance. Remember that ng-class is merely toggling the presence of the
blackout class through the use of the addClass and removeClass animation events.
This can be done as follows:

(style.css)

.blackout-remove {
 left: 0;
}
.blackout-remove {
 transition: all 3s;
}
.blackout-remove-active {
 left: 200px;
}

JSFiddle: http://jsfiddle.net/msfrisbie/L6u4nzv7/

CSS animation
Animating with a CSS animation is just as simple as CSS transitions, as follows:

(style.css)

.blackout-remove {
 animation: 1s slide-out;
}
@keyframes slide-out {
 0% {
 left: 0;

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/L6u4nzv7/
https://itbook.store/books/9781783283354

Chapter 3

123

 }
 100% {
 left: 200px;
 }
}

JSFiddle: http://jsfiddle.net/msfrisbie/oq5ha3zq/

JavaScript animation
Animating with JavaScript requires that you manually add and remove the relevant CSS
classes, as well as explicitly call the animations. Since AngularJS and jqLite objects don't
have an animation method, you will need to use the jQuery object's animate() method.
This can be done as follows:

(app.js)

angular.module('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope) {
 $scope.displayToggle = true;
})
.animation('.blackout', function() {
 return {
 removeClass: function(element, className, done){
 if (className==='blackout') {
 $(element)
 .removeClass('blackout')
 .css('left', 0)
 .animate(
 {'left': '200px'},
 3000,
 function() {
 $(element).css('left','');
 done();
 }
);
 } else {
 done();
 }
 }
 };
});

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/oq5ha3zq/
https://itbook.store/books/9781783283354

AngularJS Animations

124

JSFiddle: http://jsfiddle.net/msfrisbie/4dnokg2o/

How it works…
The ngAnimate directive provides animation hooks for the class that is being removed in order
to define animations independent of the actual class. In the context of this ng-class directive
implementation, the blackout CSS class is defined explicitly, and the animation hooks build
on top of this class name. The following set of tables defines how the removeClass animation
state machine operates.

The animation components are defined as follows:

element <div class="cover blackout"
 ng-class="{blackout: displayToggle}">
</div>

className 'blackout'

The following table represents a full removeClass animation transition:

Event DOM
The $animate.
removeClass(element,
'blackout') method is called

<div class="cover blackout"
 ng-class="{blackout:
displayToggle}">
</div>

The $animate service runs the
JavaScript-defined animations detected
in the element; ng-animate is added

<div class="cover blackout ng-
animate"
 ng-class="{blackout:
displayToggle}">
</div>

The .blackout-remove class is
added to the element

<div class="cover blackout ng-
animate blackout-remove"
 ng-class="{blackout:
displayToggle}">
</div>

The $animate service waits for a single
animation frame (this performs a reflow)

No change in DOM

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/4dnokg2o/
https://itbook.store/books/9781783283354

Chapter 3

125

Event DOM
The .blackout-remove-active
class is added and .blackout is
removed (this triggers the CSS transition/
animation)

<div class="cover ng-animate
 blackout-remove blackout-remove-
active"
 ng-class="{blackout:
displayToggle}">
</div>

The $animate service scans
the element styles to get the CSS
transition/animation duration and delay

No change in DOM

The $animate service waits for the
animation to get completed (via events
and timeout)

No change in DOM

The animation ends and all the
generated CSS classes are removed from
the element

<div class="cover"
 ng-class="{blackout:
displayToggle}">
</div>

The doneCallback() callback is fired
(if provided)

No change in DOM

See also
ff The Creating addClass animations with ngShow recipe provides the details of the

complementary addClass event

Staggering batched animations
AngularJS incorporates native support for staggering animations that happen as a batch.
This will almost exclusively occur in the context of ng-repeat.

Getting ready
Suppose that you have an animated ng-repeat implementation, as follows:

(style.css)

.container {
 line-height: 30px;
}
.container.ng-enter,
.container.ng-leave,
.container.ng-move {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Animations

126

 transition: all linear 0.2s;

}
.container.ng-enter,
.container.ng-leave.ng-leave-active,
.container.ng-move {
 opacity: 0;
 max-height: 0;
}
.container.ng-enter.ng-enter-active,
.container.ng-leave,
.container.ng-move.ng-move-active {
 opacity: 1;
 max-height: 30px;
}

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <input ng-model="search" />
 <div ng-repeat="name in names | filter:search"
 class="container">
 {{ name }}
 </div>
 </div>
</div>

(app.js)

angular.module('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope) {
 $scope.names = [
 'Jake',
 'Henry',
 'Roger',
 'Joe',
 'Robert',
 'John'
];
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 3

127

How to do it…
Since the animation is accomplished through the use of CSS transitions, you can tap into the
CSS class staggering that is afforded to you by adding the following to the style sheet:

(style.css)

.container.ng-enter-stagger,

.container.ng-leave-stagger,

.container.ng-move-stagger {
 transition-delay: 0.2s;
 transition-duration: 0;
}

JSFiddle: http://jsfiddle.net/msfrisbie/emxsze4q/

How it works…
For the example dataset, filtering with J will cause multiple elements to be removed, as well
as multiple elements to change their index. All of these changes correspond to an animation
event. Since these animations occur simultaneously, AngularJS can take advantage of the fact
that animations are queued up and executed in batches within a single reflow to compensate
for the fact that reflows are computationally expensive.

The -stagger classes essentially act as shims for successive animations. Instead of running
all the animations in parallel, they are run serially, delimited by the additional stagger transition.

There's more…
It is also possible to stagger animations using keyframes. This can be accomplished as follows:

(style.css)

.container.ng-enter-stagger,

.container.ng-leave-stagger,

.container.ng-move-stagger {
 animation-delay: 0.2s;
 animation-duration: 0;
}
.container.ng-leave {
 animation: 0.5s repeat-leave;

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/emxsze4q/
https://itbook.store/books/9781783283354

AngularJS Animations

128

}
.container.ng-enter {
 animation: 0.5s repeat-enter;
}
.container.ng-move {
 animation: 0.5s repeat-move;
}
@keyframes repeat-enter {
 from {
 opacity: 0;
 max-height: 0;
 }
 to {
 opacity: 1;
 max-height: 30px;
 }
}
@keyframes repeat-leave {
 from {
 opacity: 1;
 max-height: 30px;
 }
 to {
 opacity: 0;
 max-height: 0;
 }
}
@keyframes repeat-move {
 from {
 opacity: 0;
 max-height: 0;
 }
 to {
 opacity: 1;
 max-height: 30px;
 }
}

JSFiddle: http://jsfiddle.net/msfrisbie/bbetcp1m/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/bbetcp1m/
https://itbook.store/books/9781783283354

Chapter 3

129

See also
ff The Creating move animations with ngRepeat recipe goes through all the intricacies

of animating an ngRepeat directive's events

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

4
Sculpting and

Organizing your
Application

In this chapter, we will cover the following recipes:

ff Manually bootstrapping an application

ff Using safe $apply

ff Application file and module organization

ff Hiding AngularJS from the user

ff Managing application templates

ff The "Controller as" syntax

Introduction
In this chapter, you will discover strategies to keep your application clean—visually, structurally,
and organizationally.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Sculpting and Organizing your Application

132

Manually bootstrapping an application
When initializing an AngularJS application, very frequently you will allow the framework to
do it transparently with the ng-app directive. When attached to a DOM node, the application
will be automatically initialized upon the DOMContentLoaded event, or when the framework
script is evaluated and the document.readyState === 'complete ' statement
becomes true. The application parses the DOM for the ng-app directive, which becomes
the root element of the application. It will then begin initializing itself and compiling the
application template. However, in some scenarios, you will want more control over when this
initialization occurs, and AngularJS provides you with the ability to do this with angular.
bootstrap(). Some examples of this include the following:

ff Your application uses script loaders

ff You want to modify the template before AngularJS begins compilation

ff You want to use multiple AngularJS applications on the same page

Getting ready
When manually bootstrapping, the application will no longer use the ng-app directive.
Suppose that this is your application template:

(index.html)

<!doctype html>
<html>
 <body>
 <div ng-controller="Ctrl">
 {{ mydata }}
 </div>
 <script src="angular.js"></script>
 <script src="app.js"></script>
 </body>
</html>

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.mydata = 'Some scope data';
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 4

133

How to do it…
The AngularJS initialization needs to be triggered by an event after the angular.js file is
loaded, and it must be directed to a DOM element to be used as the root of the application.
This can be accomplished in the following way:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.mydata = 'Some scope data';
});

angular.element(document).ready(function() {
 angular.bootstrap(document, ['myApp']);
});

JSFiddle: http://jsfiddle.net/msfrisbie/5nfgyxsz/

How it works…
The angular.bootstrap() method is used to link an existing application module to the
designated DOM root node. In this example, the jqLite ready() method is passed a callback,
which indicates that the browser's document object should be used as the root node of the
myApp application module. If you were to use ng-app to auto-bootstrap, the following would
roughly be the equivalent:

(index.html)

<!doctype html>
<html ng-app="myApp">
 <body>
 <div ng-controller="Ctrl">
 {{ mydata }}
 </div>
 <script src="angular.js"></script>
 <script src="app.js"></script>
 </body>
</html>

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/5nfgyxsz/
https://itbook.store/books/9781783283354

Sculpting and Organizing your Application

134

There's more…
By no means are you required to use the <html> element as the root of your application.
You can just as easily attach the application to an inner DOM element if your application
only needed to manage a subset of the DOM. This can be done as follows:

(index.html)

<!doctype html>
<html ng-app="myApp">
 <body>
 <div id="child">
 <div ng-controller="Ctrl">
 {{ mydata }}
 </div>
 </div>
 <script src="angular.js"></script>
 <script src="app.js"></script>
 </body>
</html>

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.mydata = 'Some scope data';
});

angular.element(document).ready(function() {
 angular.bootstrap(document.getElementById('child'), ['myApp']);
});

JSFiddle: http://jsfiddle.net/msfrisbie/k4nn5Lha/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/k4nn5Lha/
https://itbook.store/books/9781783283354

Chapter 4

135

Using safe $apply
In the course of developing AngularJS applications, you will become very familiar with
$apply() and its implications. The $apply() function cannot be invoked while the
$apply() phase is already in progress without causing AngularJS to raise an exception.
While in simpler applications, this problem can be solved by being careful and methodical
about where you invoke $apply(); however, this becomes increasingly more difficult when
applications incorporate third-party extensions with high DOM event density. The resulting
problem is one where the necessity of invoking $apply is indeterminate.

As it is entirely possible to ascertain the state of the application when $apply() might
need to be invoked, you can create a wrapper for $apply() to ascertain the state of
the application, and conditionally invoke $apply() only when not in the $apply phase,
essentially creating an idempotent $apply() method.

This recipe contains content that the AngularJS wiki considers
an anti-pattern, but it proffers an interesting discussion on the
application life cycle as well as architecting scope utilities. As
consolation, it includes a solution that is more idiomatic.

Getting ready
Suppose that this is your application:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="increment()">Increment</button>
 {{ val }}
 </div>
</div>

(app.js)

angular.module('myApp',[])
.controller('MainController', function($scope) {
 $scope.val = 0;

 $scope.increment = function() {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Sculpting and Organizing your Application

136

 $scope.val++;
 };

 setInterval(function() {
 $scope.increment();
 }, 1000);
});

AngularJS has its own $interval service that would ameliorate
the problem with this code, but this recipe is trying to demonstrate
a scenario where safeApply() might come in handy.

How to do it…
In this example, the use of setInterval() means that a DOM event is occurring and
AngularJS is not paying attention to it or what it does. The model is correctly being modified,
but AngularJS's data binding is not propagating that change to the view. The button click,
however, is using a directive that starts the $apply phase. This would be fine; however, as it
presently exists, clicking the button will update the DOM, but the setInterval() callback
will not.

Worse yet, incorporating a call to $scope.$apply() inside the increment() method does
not solve the problem. This is because when the button is clicked, the method will attempt to
invoke $apply() while already in the $apply phase, which as mentioned before, will cause
an exception to be raised. The setInterval() callback, however, will function properly.

The ideal solution is one where you are able to reuse the same method for both events,
but $apply() will be conditionally invoked only when it is needed. The most trivial and
straightforward method of achieving this is to attach a safeApply() method to the
parent controller scope of the application and let inheritance propagate it throughout
your application. This can be done as follows:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function ($scope) {
 $scope.safeApply = function (func) {
 var currentPhase = this.$root.$$phase;

 // determine if already in $apply/$digest phase
 if (currentPhase === '$apply' ||
 currentPhase === '$digest') {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 4

137

 // already inside $apply/$digest phase

 // if safeApply() was passed a function, invoke it
 if (typeof func === 'function') {
 func();
 }
 } else {
 // not inside $apply/$digest phase, safe to invoke $apply
 this.$apply(func);
 }
 };

 $scope.val = 0;

 // method that may or may not be called from somewhere
 // that will not trigger a $digest
 $scope.increment = function () {
 $scope.val++;
 $scope.safeApply();
 };

 // application component that modifies the model without
 // triggering a $digest
 setInterval(function () {
 $scope.increment();
 }, 1000);
});

JSFiddle: http://jsfiddle.net/msfrisbie/pnhmo2gx/

How it works…
The current phase of the application can be determined by reading the $$phase attribute
of the root scope of the application. If it is either in the $apply or $digest phase, it should
not invoke $apply(). The reason for this is that $scope.$digest() is the actual method
that will check to see whether any binding values have changed, but this should only be called
after the non-AngularJS events have occurred. The $scope.$apply() method does this for
you, and it will invoke $digest() only after evaluating any function passed to it. Thus, inside
the safeApply() method, it should only invoke $apply() if the application is not in either
of these phases.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/pnhmo2gx/
https://itbook.store/books/9781783283354

Sculpting and Organizing your Application

138

There's more…
The preceding example will work fine as long as all scopes that want to use safeApply()
inherit from the controller scope on which it is defined. Even so, controllers are initialized
relatively late in the application's bootstrap process, so safeApply() cannot be invoked until
this point. On top of this, defining something like safeApply() inside a controller introduces a
bit of code smell, as you would ideally like a method of this persuasion to be implicitly available
throughout the entire application without relegating it to a specific controller.

A much more robust way of doing this is to decorate $rootScope of the application with
the method during the config phase. This ensures that it will be available to any services,
controllers, or directives that try to use it. This can be accomplished in the following fashion:

(app.js)

angular.module('myApp', [])
.config(function($provide) {
 // define decorator for $rootScope service
 return $provide.decorator('$rootScope', function($delegate) {
 // $delegate acts as the $rootScope instance
 $delegate.safeApply = function(func) {
 var currentPhase = $delegate.$$phase;

 // determine if already in $apply/$digest phase
 if (currentPhase === "$apply" ||
 currentPhase === "$digest") {
 // already inside $apply/$digest phase

 // if safeApply() was passed a function, invoke it
 if (typeof func === 'function') {
 func();
 }
 }
 else {
 // not inside $apply/$digest phase,
 // safe to invoke $apply
 $delegate.$apply(func);
 }
 };
 return $delegate;
 });
})
.controller('Ctrl', function ($scope) {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 4

139

 $scope.val = 0;

 // method that may or may not be called from somewhere
 // that will not trigger a $digest
 $scope.increment = function () {
 $scope.val++;
 $scope.safeApply();
 };

 // application component that modifies the model without
 // triggering a $digest
 setInterval(function () {
 $scope.increment();
 }, 1000);
});

JSFiddle: http://jsfiddle.net/msfrisbie/a0xcn9y4/

Anti-pattern awareness
The AngularJS wiki notes that if your application needs to use a construct such as
safeApply(), then the location where you are invoking $scope.$apply() isn't high
enough in the call stack. This is true, and if you can avoid using safeApply(), you should
do so. That being said, it is easy to think up a number of scenarios similar to this recipe's
example where using safeApply() allows your code to remain DRY and concise, and for
smaller applications, perhaps this is acceptable.

By the same token, the rigorous developer will not be satisfied with this and will desire an
idiomatic solution to this problem aside from laborious code refactoring. One solution is to
use $timeout, as shown here:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function ($scope, $timeout) {
 $scope.val = 0;

 // method that may or may not be called from somewhere
 // that will not trigger a $digest
 $scope.increment = function () {
 // wraps model modification in $timeout promise
 $timeout(function() {
 $scope.val++;

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/a0xcn9y4/
https://itbook.store/books/9781783283354

Sculpting and Organizing your Application

140

 });
 };

 // application component that modifies the model without
 // triggering a $digest
 setInterval(function () {
 $scope.increment();
 }, 1000);
});

JSFiddle: http://jsfiddle.net/msfrisbie/sagmbkft/

The $timeout wrapper is the AngularJS wrapper for window.setTimeout. What this does
is effectively schedule the model modification inside a promise that will be resolved as soon
as possible and when $apply can be invoked without consequence. In most cases, this
solution is acceptable as long as the deferred $apply phase does not affect other portions
of the application.

Application file and module organization
Few things are less enjoyable than working on a project where the organization of the
application files and modules is garbage, especially if the application is written by people
other than you. Keeping your application file tree and module hierarchy clean and tidy will
save you and whoever is reading and using your code lots of time in the long run.

Getting ready
Assume that an application you are working on is a generic e-commerce site, with many users
who can view and purchase products, leave reviews, and so on.

How to do it…
There are several guidelines that can be followed to yield extremely tight and clean
applications that are able to scale without bloating.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/sagmbkft/
https://itbook.store/books/9781783283354

Chapter 4

141

One module, one file, and one name
This might seem obvious, but the benefits of following the one module, one file, and one name
approach are plentiful:

ff Keep only one module per file. A module can be extended in other files in the subfiles
and subdirectories as necessary, but angular.module('my-module') should only
ever appear once. A file should not contain all or part of the two different modules.

ff Name your files after your modules. It should be easy to figure out what to expect
when opening inventory-controller.js.

ff Module names should reflect the hierarchy in which it exists. The module in
/inventory/inventory-controller.js should reflect its location in the
hierarchy by being named something along the lines of inventory.controller.

Keep your related files close, keep your unit tests closer
Proper locality and organization of test files is not always obvious. Rigorously following this
style guide is not mandatory, but choosing a unified naming and organization convention
will save you a lot of headaches later on. This approach entails the following:

ff Name your unit test files by appending _test to whatever module file it is testing.
The inventory-controller.js module will have its unit tests located in
inventory-controller_test.js.

ff Keep unit tests in the same folder as the JS file they are testing. This will encourage
you to write your tests as you develop the application. Additionally, you won't need to
spend time mirroring your test directory structure to that of your application directory
(see Chapter 6, Testing in AngularJS, for more information on testing procedures).

Group by feature, not by component type
Applications that group by component type (all directives in one place and all controllers in
another) will scale poorly. The file and module locality should reflect that which appears in
AngularJS dependencies. This includes the following:

ff Grouping by feature allows your file and module structure to imitate how the
application code is connected. As the application begins to scale, it is cleaner
and makes more sense for code that is more closely related in execution to have
matching spatial locality.

ff Feature grouping also allows nested directories of functionality within larger features.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Sculpting and Organizing your Application

142

Don't fight reusability
Some parts of your application will be used almost everywhere and some parts will only be
used once. Your application structure should reflect this. This approach includes the following:

ff Keep common unspecialized components that are used throughout the application
inside a components/ directory. This directory can also hold common asset files
and other shared application pieces.

ff Directives, services, and filters are all application components that can potentially
see a lot of reuse. Don't hesitate to house them in the components/ directory if it
makes sense to do so.

An example directory structure
With the tips mentioned in the preceding section, the e-commerce application will look
something like this:

ng-commerce/
 index.html
 app.js
 app-controller.js
 app-controller_test.js
 components/
 login/
 login.js
 login-controller.js
 login-controller_test.js
 login-directive.js
 login-directive_test.js
 login.css
 login.tpl.html
 search/
 search.js
 search-directive.js
 search-directive_test.js
 search-filter.js
 search-filter_test.js
 search.css
 search.tpl.html
 shopping-cart/
 checkout/
 checkout.js
 checkout-conroller.js
 checkout-controller_test.js
 checkout-directive.js
 checkout-directive_test.js

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 4

143

 checkout.tpl.html
 checkout.css
 shopping-cart.js
 shopping-cart-controller.js
 shopping-cart-controller_test.js
 shopping-cart.tpl.html
 shopping-cart.css

The app.js file is the top-level configuration file, complete with route definitions and
initialization logic. JS files matching their directory names are the combinatorial files
that bind all the directory modules together.

CSS files provide styling that is only used by that component in that directory. Templates also
follow this convention.

Hiding AngularJS from the user
As unique and elegant as AngularJS is, the reality of the situation is that it is a framework that
lives inside asynchronously executed client-side code, and this requires some considerations.
One of these considerations is the first-time delivery initialization latency. Especially when your
application JS files are located at the end of the page, you might experience a phenomenon
called "template flashing," where the uncompiled template is presented to the user before
AngularJS bootstraps and compiles the page. This can be elegantly prevented using ng-cloak.

Getting ready
Suppose that this is your application:

(index.html)

<body>
 {{ youShouldntSeeThisBecauseItIsUndefined }}
</body>

How to do it…
The solution is to simply declare sections of the DOM that the browser should treat as
hidden until AngularJS tells it otherwise. This can be accomplished with the ng-cloak
directive, as follows:

(app.css)

/* this css rule is provided in the angular.js file, but
if AngularJS is not included in <head>, you must

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Sculpting and Organizing your Application

144

define this style yourself */

[ng\:cloak], [ng-cloak], [data-ng-cloak], [x-ng-cloak], .ng-cloak,
.x-ng-cloak {
 display: none !important;
}

(index.html)

<body ng-cloak>
 {{ youShouldntSeeThisBecauseItIsUndefined }}
</body>

JSFiddle: http://jsfiddle.net/msfrisbie/6tnxoozn/

How it works…
Any section with ng-cloak initially applied to it will be hidden by the browser. AngularJS will
delete the ng-cloak directive when it begins to compile the application template, so the
page will only be revealed once compilation is complete, effectively shielding the user from
the uncompiled template. In this case, as the entire <body> element has the ng-cloak
directive, the user will be presented with a blank page until AngularJS is initialized and
compiles the page.

There's more…
It might not behoove you to cloak the entire application until it's ready. First, if you only
need to compile a subset or subsets of a page, you should take advantage of that by
compartmentalizing ng-cloak to those sections. Often, it's better to present the user with
something while the page is being assembled than with a blank screen. Second, breaking
ng-cloak apart into multiple locations will allow the page to progressively render each
component it must compile. This will probably give the feeling of a faster load as you are
presenting compiled pieces of the view as they become available instead of waiting for
everything to be ready.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/6tnxoozn/
https://itbook.store/books/9781783283354

Chapter 4

145

Managing application templates
As is to be expected with a single-page application, you will be managing a large number of
templates in your application. AngularJS has several template management solutions baked
into it, which offer a range of ways for your application to handle template delivery.

Getting ready
Suppose you are using the following template in your application:

<div class="btn-group">
 #{{ player.number }} {{ player.name }}
</div>

The content of the template is unimportant; it is merely to demonstrate that this template has
HTML and uncompiled AngularJS content inside it.

Additionally, assume you have the following directive that is trying to use the preceding template:

(app.js)

angular.module('myApp', [])
.directive('playerBox', function() {
 return {
 link: function(scope) {
 scope.player = {
 name: 'Jimmy Butler',
 number: 21
 };
 }
 };
});

The top-level template will look as follows:

(index.html)

<div ng-app="myApp">
 <player-box></player-box>
</div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Sculpting and Organizing your Application

146

How to do it…
There are four primary ways to provide the directive with the template's HTML. All of these will
feed the template into $templateCache, which is where the directive and other components
tasked with locating a template will search first.

The string template
AngularJS is capable of generating a template from a string of uncompiled HTML. This can be
accomplished as follows:

(app.js)

angular.module('myApp', [])
.directive('playerBox', function() {
 return {
 template: '<div>' +
 ' #{{ player.number }} {{ player.name }}' +
 '</div>',
 link: function(scope) {
 scope.player = {
 name: 'Jimmy Butler',
 number: 21
 };
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/8ct0u33z/

Remote server templates
When the component cannot find a template in $templateCache, it will make a request
to the corresponding location on the server. This template will then receive an entry in
$templateCache, which can be used as follows:

(app.js)

angular.module('myApp', [])
.directive('playerBox', function() {
 return {
 // will attempt to acquire the template at this relative URL
 templateUrl: '/static/js/templates/player-box.html',
 link: function(scope) {

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/8ct0u33z/
https://itbook.store/books/9781783283354

Chapter 4

147

 scope.player = {
 name: 'Jimmy Butler',
 number: 21
 };
 }
 };
});

On the server, your file directory structure will look something like the following:

yourApp/
 static/
 js/
 templates/
 player-box.html

Inline templates using ng-template
It is also possible to serve and register the templates along with another template. HTML
inside <script> tags with type="text/ng-template" and the id attribute set to the
key for $templateCache will be registered and available in your application. This can be
done as follows:

(app.js)

angular.module('myApp', [])
.directive('playerBox', function() {
 return {
 templateUrl: 'player-box.html',
 link: function(scope) {
 scope.player = {
 name: 'Jimmy Butler',
 number: 21
 };
 }
 };
});

(index.html)

<div ng-app="myApp">
 <player-box></player-box>

 <script type="text/ng-template" id="player-box.html">
 <div>
 #{{ player.number }} {{ player.name }}
 </div>
 </script>
</div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Sculpting and Organizing your Application

148

JSFiddle: http://jsfiddle.net/msfrisbie/kg95bn9g/

Pre-defined templates in the cache
Even cleaner is the ability to directly insert your templates into $templateCache on
application startup. This can be done as follows:

(app.js)

angular.module('myApp', [])
.run(function($templateCache) {
 $templateCache.put(
 // the template key
 'player-box.html',
 // the template markup
 '<div>' +
 ' #{{ player.number }} {{ player.name }}' +
 '</div>'
);
})
.directive('playerBox', function() {
 return {
 templateUrl: 'player-box.html',
 link: function(scope) {
 scope.player = {
 name: 'Jimmy Butler',
 number: 21
 };
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/mp79srjf/

How it works…
All these denominations of template definitions are different flavors of the same thing:
uncompiled templates are accumulated and served from within $templateCache.
The only real decision to be made is how you want it to affect your development flow
and where you want to expose the latency.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/kg95bn9g/
http://jsfiddle.net/msfrisbie/mp79srjf/
https://itbook.store/books/9781783283354

Chapter 4

149

Accessing the templates from a remote server ensures that you aren't delivering content to
the user that they won't need, but when different pieces of the application are rendering,
they will all need to generate requests for templates from the server. This can make your
application sluggish at times. On the other hand, delivering all the templates with the initial
application load can slow things down quite a bit, so it's important to make informed decisions
on which part of your application flow is more latency-tolerant.

There's more…
The last method of defining templates is provided in a popular Grunt extension, called
grunt-angular-templates. During the application build, this extension will automatically
locate your templates and interpolate them into your index.html file as JavaScript string
templates, registering them in $templateCache. Managing your application with build tools
such as Grunt has huge and obvious benefits, and this recipe is no exception.

The "Controller as" syntax
AngularJS 1.2 introduced the ability to namespace your controller methods using the
"controller as" syntax. This allows you to abstract $scope in controllers and provide
more contextual information in the template.

Getting ready
Suppose you had a simple application set up as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 {{ data }}
 </div>
</div>

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.data = "This is string data";
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Sculpting and Organizing your Application

150

How to do it…
The simplest way to take advantage of the "controller as" syntax is inside the ng-controller
directive in a template. This allows you to namespace pieces of data in the view, which should
feel good to you as more declarative views are the AngularJS way. The initial example can be
refactored to appear as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl as MyCtrl">
 {{ MyCtrl.data }}
 </div>
</div>

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function() {
 this.data = "This is string data";
});

JSFiddle: http://jsfiddle.net/msfrisbie/yh3r2t6r/

Note that there is no longer a need to inject $scope, as you are instead attaching the string
attribute to the controller object.

This syntax can also be extended for use in directives. Suppose the application was retooled
to exist as follows:

(index.html)

<div ng-app="myApp">
 <foo-directive></foo-directive>
</div>

(app.js)

angular.module('myApp', [])

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/yh3r2t6r/
https://itbook.store/books/9781783283354

Chapter 4

151

.directive('fooDirective', function() {
 return {
 restrict: 'E',
 template: '<div>{{ data }}</div>',
 controller: function($scope) {
 $scope.data = 'This is controller scope data';
 }
 };
});

This works, but the "controller as" syntactic sugar can be applied here to make the content of
the directive template a little less ambiguous:

(app.js)

angular.module('myApp', [])
.directive('fooDirective', function() {
 return {
 restrict: 'E',
 template: '<div>{{ fooController.data }}</div>',
 controller: function() {
 this.data = 'This is controller data';
 },
 controllerAs: 'fooController'
 }
});

JSFiddle: http://jsfiddle.net/msfrisbie/7uobd20v/

How it works…
Using the "controller as" syntax allows you to directly reference the controller object within the
template. By doing this, you are able to assign attributes to the controller object itself rather
than to $scope.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/7uobd20v/
https://itbook.store/books/9781783283354

Sculpting and Organizing your Application

152

There's more…
There are a couple of main benefits of using this style, which are as follows:

ff You get more information in the view. By using this syntax, you are able to directly
infer the source of the object from only the template, which is something you could
not do before.

ff You are able to define directive controllers anonymously and define them where you
choose. Being able to rebrand a function object in a directive allows a lot of flexibility
in the application structure and locality of definition.

ff Testing is easier. Controllers defined in this way by nature are easier to set up, as injecting
$scope into controllers means that unit tests need some boilerplate initialization.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

5
Working with the Scope

and Model

In this chapter, we will cover the following recipes:

ff Configuring and using AngularJS events

ff Managing $scope inheritance

ff Working with AngularJS forms

ff Working with <select> and ngOptions

ff Building an event bus

Introduction
AngularJS provides faculties to manage data alteration throughout the application, largely based
around the model modification architecture. AngularJS' powerful data binding affords you the
ability to build robust tools on top of the architecture as well as channels of communication that
can efficiently reach throughout the application.

Configuring and using AngularJS events
AngularJS offers a powerful event infrastructure that affords you the ability to control the
application in scenarios where data binding might not be suitable or pragmatic. Even with a
rigorously organized application topology, there are lots of applications for events in AngularJS.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Working with the Scope and Model

154

How to do it…
AngularJS events are identified by strings and carry with them a payload that can take the
form of an object, a function, or a primitive. The event can either be delivered via a parent
scope that invokes $scope.$broadcast(), or a child scope (or the same scope) that
invokes $scope.$emit().

The $scope.$on() method can be used anywhere a scope object can be used, as shown here:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope, $log) {
 $scope.$on('myEvent', function(event, data) {
 $log.log(event.name + ' observed with payload ', data);
 });
});

Broadcasting an event
The $scope.$broadcast() method triggers the event in itself and all child scopes. The
1.2.7 release of AngularJS introduced an optimization for $scope.$broadcast(), but
since this action will still bubble down through the scope hierarchy to reach the listening child
scopes, it is possible to introduce performance problems if this is overused. Broadcasting can
be implemented as follows:

(app.js)

angular.module('myApp', [])
.directive('myListener', function($log) {
 return {
 restrict: 'E',
 // each directive should be given its own scope
 scope: true,
 link: function(scope, el, attrs) {
 // method to generate event
 scope.sendDown = function() {
 scope.$broadcast('myEvent', {origin: attrs.local});
 };
 // method to listen for event
 scope.$on('myEvent', function(event, data) {
 $log.log(
 event.name +
 ' observed in ' +
 attrs.local +

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 5

155

 ', originated from ' +
 data.origin
);
 });
 }
 };
});

(index.html)

<div ng-app="myApp">
 <my-listener local="outer">
 <button ng-click="sendDown()">Send Down</button>
 <my-listener local="middle">
 <my-listener local="first inner"></my-listener>
 <my-listener local="second inner"></my-listener>
 </my-listener>
 </my-listener>
</div>

In this setup, clicking on the Send Down button will log the following in the browser console:

myEvent observed in outer, originated from outer
myEvent observed in middle, originated from outer
myEvent observed in first inner, originated from outer
myEvent observed in second inner, originated from outer

JSFiddle: http://jsfiddle.net/msfrisbie/dn0zjep9/

Emitting an event
As you might expect, $scope.$emit() does the opposite of $scope.$broadcast().
It will trigger all listeners of the event that exist within that same scope, or any of the parent
scopes along the prototype chain, all the way up to $rootScope. This can be implemented
as follows:

(app.js)

angular.module('myApp', [])
.directive('myListener', function($log) {
 return {
 restrict: 'E',
 // each directive should be given its own scope
 scope: true,

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/dn0zjep9/
https://itbook.store/books/9781783283354

Working with the Scope and Model

156

 link: function(scope, el, attrs) {
 // method to generate event
 scope.sendUp = function() {
 scope.$emit('myEvent', {origin: attrs.local});
 };
 // method to listen for event
 scope.$on('myEvent', function(event, data) {
 $log.log(
 event.name +
 ' observed in ' +
 attrs.local +
 ', originated from ' +
 data.origin
);
 });
 }
 };
});

(index.html)

<div ng-app="myApp">
 <my-listener local="outer">
 <my-listener local="middle">
 <my-listener local="first inner">
 <button ng-click="sendUp()">
 Send First Up
 </button>
 </my-listener>
 <my-listener local="second inner">
 <button ng-click="sendUp()">
 Send Second Up
 </button>
 </my-listener>
 </my-listener>
 </my-listener>
</div>

In this example, clicking on the Send First Up button will log the following to the browser console:

myEvent observed in first inner, originated from first inner
myEvent observed in middle, originated from first inner
myEvent observed in outer, originated from first inner

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 5

157

Clicking on the Send Second Up button will log the following to the browser console:

myEvent observed in second inner, originated from second inner
myEvent observed in middle, originated from second inner
myEvent observed in outer, originated from second inner

JSFiddle: http://jsfiddle.net/msfrisbie/a344o7vo/

Deregistering an event listener
Similar to $scope.$watch(), once an event listener is created, it will last the lifetime of
the scope object they are added in. The $scope.$on() method returns the deregistration
function, which must be captured upon declaration. Invoking this deregistration function will
prevent the scope from evaluating the callback function for this event. This can be toggled
with a setup/teardown pattern, as follows:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope, $log) {
 $scope.setup = function() {
 $scope.teardown = $scope.$on('myEvent',function(event, data) {
 $log.log(event.name + ' observed with payload ', data);
 });
 };
});

Invoking $scope.setup() will initialize the event binding, and invoking $scope.
teardown() will destroy that binding.

Managing $scope inheritance
Scopes in AngularJS are bound to the same rules of prototypical inheritance as plain
old JavaScript objects. When wielded properly, they can be used very effectively in your
application, but there are some "gotchas" to be aware of that can be avoided by adhering
to best practices.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/a344o7vo/
https://itbook.store/books/9781783283354

Working with the Scope and Model

158

Getting ready
Suppose that your application contained the following:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function() {})

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl" ng-init="data=123">
 <input ng-model="data" />
 <div ng-controller="Ctrl">
 <input ng-model="data" />
 </div>
 <div ng-controller="Ctrl">
 <input ng-model="data" />
 </div>
 </div>
</div>

How to do it…
In the current setup, the $scope instances in the nested Ctrl instances will prototypically
inherit from the parent Ctrl $scope. When the page is loaded, all three inputs will be filled
with 123, and when you change the value of the parent Ctrl <input>, both inputs bound
to the child $scope instances will update in turn, as all three are bound to the same object.
However, when you change the values of either input bound to a child $scope object, the
other inputs will not reflect that value, and the data binding from that input is broken until
the application is reloaded.

To fix this, simply add an object that is nested to any primitive types on your scope. This can
be accomplished in the following fashion:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl" ng-init="data.value=123">
 <input ng-model="data.value" />
 <div ng-controller="Ctrl">
 <input ng-model="data.value" />
 </div>
 <div ng-controller="Ctrl">

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 5

159

 <input ng-model="data.value" />
 </div>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/obe24zet/

Now, any of the three inputs can be altered, and the change will reflect in the other two.
All three remain bound to the same $scope object in the parent Ctrl $scope object.

The rule of thumb is to always maintain one layer of object indirection for anything (especially
primitive types) in your scope if you are relying on the $scope inheritance in any way. This is
colloquially referred to as "always using a dot."

How it works…
When the value of a $scope property is altered from an input, this performs an assignment on
the $scope property to which it is bound. As is the case with prototypical inheritance, assignment
to an object property will follow the prototype chain all the way up to the original instance,
but assignment to a primitive will create a new instance of the primitive in the local $scope
property. In the preceding example, before the .value fix was added, the new local instance was
detached from the ancestral value, which resulted in the dual $scope property values.

There's more…
The following two examples are considered to be bad practice (for hopefully obvious reasons),
and it is much easier to just maintain at least one level of object indirection for any data that
needs to be inherited down through the application's $scope tree.

It's possible to reestablish this inheritance by removing the primitive property from the
local $scope object:

(app.js)

angular.module('myApp', [])
.controller('outerCtrl', function($scope) {
 $scope.data = 123;
})
.controller('innerCtrl', function($scope) {
 $scope.reattach = function() {
 delete($scope.data);
 };

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/obe24zet/
https://itbook.store/books/9781783283354

Working with the Scope and Model

160

});

(index.html)

<div ng-app="myApp">
 <div ng-controller="outerCtrl">
 <input ng-model="data" />
 <div ng-controller="innerCtrl">
 <input ng-model="data" />
 </div>
 <div ng-controller="innerCtrl">
 <input ng-model="data" />
 <button ng-click="reattach()">Reattach</button>
 </div>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/r33nekbg/

It is also possible to directly access the parent $scope object using $scope.$parent and
ignore the inheritance completely. This can be done as follows:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function() {});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl" ng-init="data=123">
 <input ng-model="data" />
 <div ng-controller="Ctrl">
 <input ng-model="$parent.data" />
 </div>
 <div ng-controller="Ctrl">
 <input ng-model="$parent.data" />
 </div>
 </div>
</div>

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/r33nekbg/
https://itbook.store/books/9781783283354

Chapter 5

161

Troublemaker built-in directives
The preceding examples explicitly demonstrate nested scopes that prototypically inherit from
the parent $scope object. In a real application, this would likely be very easy to detect and
debug. However, AngularJS comes bundled with a number of built-in directives that silently
create their own scopes, and if prototypical scope inheritance is not heeded, this can cause
problems. There are six built-in directives that create their own scope: ngController,
ngInclude, ngView, ngRepeat, ngIf, and ngSwitch.

The following examples will interpolate the $scope $id into the template to demonstrate the
creation of a new scope.

ngController
The use of ngController should be obvious, as your controller logic relies on attaching
functions and data to the new child scope created by the ngController directive.

ngInclude
Irrespective of the HTML content of whatever is being included, ng-include will wrap
it inside a new scope. As ng-include is normally used to insert monolithic application
components that do not depend on their surroundings, it is less likely that you would run
into the $scope inheritance problems using it.

The following is an incorrect solution:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.data = 123;
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 Scope id: {{ $id }}
 <input ng-model="data " />
 <ng-include src="'innerTemplate.html'"></ng-include>
 </div>

 <script type="text/ng-template" id="innerTemplate.html">
 <div>
 Scope id: {{ $id }}
 <input ng-model="data " />
 </div>
 </script>
</div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Working with the Scope and Model

162

The new scope inside the compiled ng-include directive inherits from the controller
$scope, but binding to its primitive value sets up the same problem.

The following is the correct solution:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.data = {
 val: 123
 };
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 Scope id: {{ $id }}
 <input ng-model="data.val" />
 <ng-include src="'innerTemplate.html'"></ng-include>
 </div>

 <script type="text/ng-template" id="innerTemplate.html">
 <div>
 Scope id: {{ $id }}
 <input ng-model="data.val" />
 </div>
 </script>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/c8nLk676/

ngView
With respect to prototypal inheritance, ng-view operates identically to ng-include. The
inserted compiled template is provided its own new child $scope, and correctly inheriting
from the parent $scope can be accomplished in the exact same fashion.

ngRepeat
The ngRepeat directive is the most problematic directive when it comes to incorrectly
managing the $scope inheritance. Each element that the repeater creates is given its own
scope, and modifications to these child scopes (such as inline editing of data in a list) will
not affect the original object if it is bound to primitives.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/c8nLk676/
https://itbook.store/books/9781783283354

Chapter 5

163

The following is an incorrect solution:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.names = [
 'Alshon Jeffrey',
 'Brandon Marshall',
 'Matt Forte',
 'Martellus Bennett',
 'Jay Cutler'
];
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 Scope id: {{ $id }}
 <pre>{{ names | json }}</pre>
 <div ng-repeat="name in names">
 Scope id: {{ $id }}
 <input ng-model="name" />
 </div>
 </div>
</div>

As described earlier, changing the value of the input fields only serves to modify the instance
of the primitive in the child scope, not the original object. One way to fix this is to restructure
the data object so that instead of iterating through primitive types, it iterates through objects
wrapping the primitive types.

The following is the correct solution:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.players = [
 { name: 'Alshon Jeffrey' },
 { name: 'Brandon Marshall' },
 { name: 'Matt Forte' },
 { name: 'Martellus Bennett' },
 { name: 'Jay Cutler' }

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Working with the Scope and Model

164

];
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 Scope id: {{ $id }}
 <pre>{{ players | json }}</pre>
 <div ng-repeat="player in players">
 Scope id: {{ $id }}
 <input ng-model="player.name" />
 </div>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/zesj1gb6/

With this, the original array is being modified properly, and all is right with the world. However,
sometimes restructuring an object is not a feasible solution for an application. In this case,
changing an array of strings to an array of objects seems like an odd workaround. Ideally,
you would prefer to be able to iterate through the string array without modifying it first.
Using track by as part of the ng-repeat expression, this is possible.

The following is also a correct solution:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.players = [
 'Alshon Jeffrey',
 'Brandon Marshall',
 'Matt Forte',
 'Martellus Bennett',
 'Jay Cutler'
];
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/zesj1gb6/
https://itbook.store/books/9781783283354

Chapter 5

165

 Scope id: {{ $id }}
 <pre>{{ players | json }}</pre>
 <div ng-repeat="player in players track by $index">
 Scope id: {{ $id }}
 <input ng-model="players[$index]" />
 </div>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/ovas398h/

Now, even though the repeater is iterating through the players array elements, as the child
$scope objects created for each element will still prototypically inherit the players array, it
simply binds to the respective element in the array using the $index repeater.

As primitive types are immutable in JavaScript, altering a primitive element in the array will
replace it entirely. When this replacement occurs, as a vanilla utilization of ng-repeat
identifies array elements by their string value, ng-repeat thinks a new element has been
added, and the entire array will re-render—a functionality which is obviously undesirable
for usability and performance reasons. The track by $index clause in the ng-repeat
expression solves this problem by identifying array elements by their index rather than their
string value, which prevents constant re-rendering.

ngIf
As the ng-if directive destroys the DOM content nested inside it every time its expression
evaluates as false, it will re-inherit the parent $scope object every time the inner content
is compiled. If anything inside the ng-if element directive inherits incorrectly from the parent
$scope object, the child $scope data will be wiped out every time recompilation occurs.

The following is an incorrect solution:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.data 123;
 $scope.show = false;
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 Scope id: {{ $id }}

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/ovas398h/
https://itbook.store/books/9781783283354

Working with the Scope and Model

166

 <input ng-model="data " />
 <input type="checkbox" ng-model="show" />
 <div ng-if="show">
 Scope id: {{ $id }}
 <input ng-model="data " />
 </div>
 </div>
</div>

Every time the checkbox is toggled, the newly created child $scope object will re-inherit from
the parent $scope object and wipe out the existing data. This is obviously undesirable in many
scenarios. Instead, the simple utilization of one level of object indirection solves this problem.

The following is the correct solution:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.data = {
 val: 123
 };
 $scope.show = false;
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 Scope id: {{ $id }}
 <input ng-model="data.val" />
 <input type="checkbox" ng-model="show" />
 <div ng-if="show">
 Scope id: {{ $id }}
 <input ng-model="data.val" />
 </div>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/hq7r5frm/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/hq7r5frm/
https://itbook.store/books/9781783283354

Chapter 5

167

ngSwitch
The ngSwitch directive acts much in the same way as if you were to combine several ngIf
statements together. If anything inside the active ng-switch $scope inherits incorrectly
from the parent $scope object, the child $scope data will be wiped out every time
recompilation occurs when the watched switch value is altered.

The following is an incorrect solution:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.data = 123;
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 Scope id: {{ $id }}
 <input ng-model="data " />
 <div ng-switch on="data ">
 <div ng-switch-when="123">
 Scope id: {{ $id }}
 <input ng-model="data " />
 </div>
 <div ng-switch-default>
 Scope id: {{ $id }}
 Default
 </div>
 </div>
 </div>
</div>

In this example, when the outer <input> tag is set to the matching value 123, the inner
<input> tag nested in ng-switch will inherit that value, as expected. However, when
altering the inner input, it doesn't modify the inherited value as the prototypical inheritance
chain is broken.

The following is the correct solution:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.data = {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Working with the Scope and Model

168

 val: 123
 };
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 Scope id: {{ $id }}
 <input ng-model="data.val" />
 <div ng-switch on="data.val">
 <div ng-switch-when="123">
 Scope id: {{ $id }}
 <input ng-model="data.val" />
 </div>
 <div ng-switch-default>
 Scope id: {{ $id }}
 Default
 </div>
 </div>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/8kh41wdm/

Working with AngularJS forms
AngularJS offers close integration with HTML form elements in the form of directives to
afford you the ability to build animated and styled form pages, complete with validation,
quickly and easily.

How to do it…
AngularJS forms exist inside the <form> tag, which corresponds to a native AngularJS
directive, as shown in the following code. The novalidate attribute instructs the browser
to ignore its native form validation:

<form novalidate>
 <!-- form inputs -->
</form>

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/8kh41wdm/
https://itbook.store/books/9781783283354

Chapter 5

169

Your HTML input elements will reside inside the <form> tags. Each instance of the <form>
tag creates a FormController, which keeps track of all its controls and nested forms. The
entire AngularJS form infrastructure is built on top of this.

As browsers don't allow nested form tags, ng-form
should be used to nest forms.

What the form offers you
Suppose you have a controller; a form in your application is as follows:

<div ng-controller="Ctrl">
 <form novalidate name="myform">
 <input name="myinput" ng-model="formdata.myinput" />
 </form>
</div>

With this, Ctrl $scope is provided a constructor for the FormController as
$scope.myform, which contains a lot of useful attributes and functions. The individual
form entries for each input can be accessed as child FormController objects on the parent
FormController object; for example, $scope.myform.myinput is the FormController
object for the text input.

The inputs must be coupled with an ng-model directive
for the state and validation bindings to work.

Tracking the form state
Inputs and forms are provided with their own controllers, and AngularJS tracks the state of
both the individual inputs and the entire form using a pristine/dirty dichotomy. "Pristine" refers
to the state in which inputs are set to their default values, and "dirty" refers to any modifying
action taken on the model corresponding to the inputs. The "pristine" state of the entire form
is a logical AND result of all the input pristine states or a NOR result of all the dirty states; by
its inverted definition, the "dirty" state of the entire form represents an OR result of all the
dirty states or a NAND result of all the pristine states.

JSFiddle: http://jsfiddle.net/msfrisbie/trjfzdwc/

These states can be used in several different ways.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/trjfzdwc/
https://itbook.store/books/9781783283354

Working with the Scope and Model

170

Both the <form> and <input> elements have the CSS classes, ng-pristine and
ng-dirty, automatically applied to them based on the state the form is in. These
CSS classes can be used to style the inputs based on their state, as follows:

form.ng-pristine {
}
input.ng-pristine {
}
form.ng-dirty {
}
input.ng-dirty {
}

All instances of the FormController and the ngModelController instances inside it
have the $pristine and $dirty Boolean properties available. These can be used in the
controller business logic or to control the user flow through the form.

The following example shows Enter a value until the input has been modified:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.$watch('myform.myinput.$pristine', function(newval) {
 $scope.isPristine = newval;
 });
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <form novalidate name="myform">
 <input name="myinput" ng-model="formdata.myinput" />
 </form>
 <div ng-show="isPristine">
 Enter a value
 </div>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/unxbyun2/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/unxbyun2/
https://itbook.store/books/9781783283354

Chapter 5

171

Alternately, as the form object is attached to the scope, it is possible to directly detect whether
the input is pristine in the view:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <form novalidate name="myform">
 <input name="myinput" ng-model="formdata.myinput" />
 <div ng-show="myform.myinput.$pristine">
 Enter a value
 </div>
 </form>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/pr3L1e2b/

It's also possible to force a form or input into a pristine or dirty state using the $setDirty()
or $setPristine() methods. This has no bearing on what exists inside the inputs at that
point in time; it simply overrides the Booleans values, $pristine and $dirty, and sets
the corresponding CSS class, ng-pristine or ng-dirty. Invoking these methods will
propagate to any parent forms.

Validating the form
Similar to the pristine/dirty dichotomy, AngularJS forms also have a valid/invalid dichotomy.
Input fields in a form can be assigned validation rules that must be satisfied for the form to
be valid. AngularJS tracks the validity of both the individual inputs and the entire form using
the valid/invalid dichotomy. "Valid" refers to the state in which the inputs satisfy all validation
requirements assigned to it, and "invalid" refers to an input that fails one or more validation
requirements. The "valid" state of the entire form is a logical AND result of all the input valid
states or a NOR result of all the invalid states; by its inverted definition, the "invalid" state of
the entire form represents an OR result of all the invalid states or a NAND result of all the
valid states.

JSFiddle: http://jsfiddle.net/msfrisbie/ejpsrfgz/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/pr3L1e2b/
http://jsfiddle.net/msfrisbie/ejpsrfgz/
https://itbook.store/books/9781783283354

Working with the Scope and Model

172

Similar to pristine and dirty, both the <form> and <input> elements have the CSS classes,
ng-valid and ng-invalid, automatically applied to them based on the state the form is in.
These CSS classes can be used to style the inputs based on their state, as follows:

form.ng-valid {
}
input.ng-valid {
}
form.ng-invalid {
}
input.ng-invalid {
}

All instances of FormController and the ngModelController instances inside it have
the $valid and $invalid Boolean attributes available. These can be used in the controller
business logic or to control the user flow through the form.

The following example shows Input field cannot be blank while the input field is empty:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.$watch('myform.myinput.$invalid', function(newval) {
 $scope.isInvalid = newval;
 });
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <form novalidate name="myform">
 <input name="myinput"
 ng-model="formdata.myinput"
 required />
 </form>
 <div ng-show="isInvalid">
 Input field cannot be blank
 </div>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/40bdaey4/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/40bdaey4/
https://itbook.store/books/9781783283354

Chapter 5

173

Alternately, as the form object is attached to the scope, it is possible to directly detect whether
the input is valid in the view:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function() {});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <form novalidate name="myform">
 <input name="myinput"
 ng-model="formdata.myinput"
 required />
 <div ng-show="myform.myinput.$invalid">
 Input field cannot be blank
 </div>
 </form>
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/bc2hn05p/

Built-in and custom validators
AngularJS comes bundled with the following basic validators:

ff email

ff max

ff maxlength

ff min

ff minlength

ff number

ff pattern

ff required

ff url

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/bc2hn05p/
https://itbook.store/books/9781783283354

Working with the Scope and Model

174

While they are useful and largely self-explanatory, you'll likely want to build a custom
validator. To do this, you'll need to construct a directive that will watch the model value
of that input field, perform some analysis of it, and manually set the validity of that field
using the $setValidity() method.

As part of the 1.3 release, there is now an alternate method of creating
custom form validators. See the Creating and integrating custom form
validators recipe in Chapter 9, What's New in AngularJS 1.3.

The following example creates a custom validator that checks whether an input field is a
prime number:

(app.js)

angular.module('myApp', [])
.directive('ensurePrime', function() {
 return {
 require: 'ngModel',
 link: function(scope, element, attrs, ctrl) {
 function isPrime(n) {
 if (n<2) {
 return false;
 }

 var m = Math.sqrt(n);

 for (var i=2; i<=m; i++) {
 if (n%i === 0) {
 return false;
 }
 }
 return true;
 }

 scope.$watch(attrs.ngModel, function(newval) {
 if (isPrime(newval)) {
 ctrl.$setValidity('prime', true);
 }
 else {
 ctrl.$setValidity('prime', false);
 }
 });
 }
 };

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 5

175

});

(index.html)

<div ng-app="myApp">
 <form novalidate name="myform">
 <input type="number"
 ensure-prime name="myinput"
 ng-model="formdata.myinput"
 required />
 </form>
 <div ng-show="myform.myinput.$invalid">
 Input field must be a prime number
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/7mhqvgcp/

How it works…
AngularJS forms tap into the existing data binding architecture to determine the form state
and validation state. The FormController instances tied to the form and the input inside
it provide a very pleasant, modular way of managing the form flow.

Working with <select> and ngOptions
AngularJS provides an ngOptions directive to populate the <select> elements in your
application. Although this is at first glance a trivial matter, ngOptions utilizes a convoluted
comprehension_expression that can populate the dropdown from a data object in a
variety of ways.

Getting ready
Assume that your application is as follows:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 $scope.players = [
 {

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/7mhqvgcp/
https://itbook.store/books/9781783283354

Working with the Scope and Model

176

 number: 17,
 name: 'Alshon',
 position: 'WR'
 },
 {
 number: 15,
 name: 'Brandon',
 position: 'WR'
 },
 {
 number: 22,
 name: 'Matt',
 position: 'RB'
 },
 {
 number: 83,
 name: 'Martellus',
 position: 'TE'
 },
 {
 number: 6,
 name: 'Jay',
 position: 'QB'
 }
];

 $scope.team = {
 '3B': {
 number: 9,
 name: 'Brandon'
 },
 '2B': {
 number: 19,
 name: 'Marco'
 },
 '3B': {
 number: 48,
 name: 'Pablo'
 },
 'C': {
 number: 28,
 name: 'Buster'
 },
 'SS': {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 5

177

 number: 35,
 name: 'Brandon'
 }
 };
});

How to do it…
The ngOptions directive allows you to populate a <select> element with both an array and
an object's attributes.

Populating with an array
The comprehension expression lets you define how you want to map the data array to a set of
<option> tags and its string label and corresponding values. The easier implementation is
to only define the label string, in which case the application will default to set the <option>
value to the entire array element, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <!—- label for value in array -—>
 <select ng-model="player"
 ng-options="p.name for p in players">
 </select>
 </div>
</div>

This will compile into the following (with the form CSS classes stripped):

<select ng-model="player"
 ng-options="player.name for player in players">
 <option value="?" selected="selected"></option>
 <option value="0">Alshon</option>
 <option value="1">Brandon</option>
 <option value="2">Matt</option>
 <option value="3">Martellus</option>
 <option value="4">Jay</option>
</select>

JSFiddle: http://jsfiddle.net/msfrisbie/vy62c575/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/vy62c575/
https://itbook.store/books/9781783283354

Working with the Scope and Model

178

Here, the values of each option are the array indices of the corresponding element. As the
model it is attached to is not initialized to any of the present elements, AngularJS inserts a
temporary null value into the list until a selection is made, at which point the empty value
will be stripped out. When a selection is made, the player model will be assigned to the
entire object at that array index.

Explicitly defining the option values
If you don't want to have the <option> HTML value assigned the array index, you can
override this with a track by clause, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <!—- label for value in array -—>
 <select ng-model="player"
 ng-options="p.name for p in players track by p.number">
 </select>
 </div>
</div>

This will compile into the following:

<select ng-model="player"
 ng-options="p.name for p in players track by p.number">
 <option value="?" selected="selected"></option>
 <option value="17">Alshon</option>
 <option value="15">Brandon</option>
 <option value="22">Matt</option>
 <option value="83">Martellus</option>
 <option value="6">Jay</option>
</select>

JSFiddle: http://jsfiddle.net/msfrisbie/umehb407/

Making a selection will still assign the corresponding object in the array to the player model.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/umehb407/
https://itbook.store/books/9781783283354

Chapter 5

179

Explicitly defining the option model assignment
If instead you wanted to explicitly control the value of each <option> element and force it to
be the number attribute of each array element, you can do the following:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <!—- label for value in array -—>
 <select ng-model="player"
 ng-options="p.number as p.name for p in players">
 </select>
 </div>
</div>

This will compile into the following (with the form CSS classes stripped):

<select ng-model="player"
 ng-options="p.number as p.name for p in players">
 <option value="?" selected="selected"></option>
 <option value="17">Alshon</option>
 <option value="15">Brandon</option>
 <option value="22">Matt</option>
 <option value="83">Martellus</option>
 <option value="6">Jay</option>
</select>

JSFiddle: http://jsfiddle.net/msfrisbie/jtsz46cp/

However, now when an <option> element is selected, the player model will only be
assigned the number attribute of the corresponding object.

Implementing option groups
If you want to take advantage of the grouping abilities for the <select> elements, you can
add a group by clause, as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <!—- label for value in array -—>
 <select ng-model="player"

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/jtsz46cp/
https://itbook.store/books/9781783283354

Working with the Scope and Model

180

 ng-options="p.name group by p.position for p in
 players">
 </select>
 </div>
</div>

This will compile to the following:

<select ng-model="player"
 ng-options="p.name group by p.position for p in players">
 <option value="?" selected="selected"></option>
 <optgroup label="WR">
 <option value="0">Alshon</option>
 <option value="1">Brandon</option>
 </optgroup>
 <optgroup label="RB">
 <option value="2">Matt</option>
 </optgroup>
 <optgroup label="TE">
 <option value="3">Martellus</option>
 </optgroup>
 <optgroup label="QB">
 <option value="4">Jay</option>
 </optgroup>
</select>

JSFiddle: http://jsfiddle.net/msfrisbie/2d6mdt9m/

Null options
If you want to allow a null option, you can explicitly define one inside your <select> tag,
as follows:

(index.html)

<select ng-model="player" ng-options="comprehension_expression">
 <option value="">Choose a player</option>
</select>

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/2d6mdt9m/
https://itbook.store/books/9781783283354

Chapter 5

181

Populating with an object
The <select> elements that use ngOptions can also be populated from an object's
attributes. It functions similarly to how you would process a data array; the only difference
being that you must define how the key-value pairs in the object will be used to generate the
list of <option> elements. For a simple utilization to map the value object's number property
to the entire value object, you can do the following:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <!—- label for value in array -—>
 <select ng-model="player"
 ng-options="p.number for (pos, p) in team">
 </select>
 </div>
</div>

This will compile into the following:

<select ng-model="player"
 ng-options="p.number for (pos, p) in team">
 <option value="?" selected="selected"></option>
 <option value="1B">9</option>
 <option value="2B">19</option>
 <option value="3B">48</option>
 <option value="C">28</option>
 <option value="SS">35</option>
</select>

JSFiddle: http://jsfiddle.net/msfrisbie/zofojs7n/

The <option> values default to the key string, but the player model assignment will still be
assigned the entire object that the key refers to.

Explicitly defining option values
If you don't want to have the <option> HTML value assigned the property key, you can
override this with a select as clause:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <!—- label for value in array -—>

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/zofojs7n/
https://itbook.store/books/9781783283354

Working with the Scope and Model

182

 <select ng-model="player"
 ng-options="p.number as p.name for (pos, p) in team">
 </select>
 </div>
</div>

This will compile into the following:

<select ng-model="player"
 ng-options="p.number as p.name for (pos, p) in team">
 <option value="?" selected="selected"></option>
 <option value="1B">Brandon</option>
 <option value="2B">Marco</option>
 <option value="3B">Pablo</option>
 <option value="C">Buster</option>
 <option value="SS">Brandon</option>
</select>

JSFiddle: http://jsfiddle.net/msfrisbie/ssLzvtaf/

Now, when an <option> element is selected, the player model will only be assigned the
number property of the corresponding object.

How it works…
The ngOptions directive simply breaks apart the enumerable entity it is passed, into digestible
pieces that can be converted into <option> tags.

There's more…
Inside a <select> tag, ngOptions is heavily preferred to ngRepeat for performance
reasons. Data binding isn't as necessary in the case of dropdown values, so an ngRepeat
implementation for a dropdown that must watch many values in the collection adds
unnecessary data binding overhead to the application.

Building an event bus
Depending on the purpose of your application, you might find yourself with the need to utilize
a publish-subscribe (pub-sub) architecture to accomplish certain features. AngularJS provides
the proper toolkit to accomplish this, but there are considerations that need to be made to
prevent performance degradation and keep the application organized.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/ssLzvtaf/
https://itbook.store/books/9781783283354

Chapter 5

183

Formerly, using the $broadcast service from a scope with a large number of descendant
scopes incurred a significant performance hit due to the large number of potential listeners
that needed to be handled. In the AngularJS 1.2.7 release, an optimization was introduced
to $broadcast that limits the reach of the event to only the scopes that are listening for it.
With this, $broadcast can be used more freely throughout your application, but there is
still a void to be filled to service applications that demand a pub-sub architecture. Simply put,
your application should be able to broadcast an event to subscribers throughout the entire
application without utilizing $rootScope.$broadcast().

Getting ready
Suppose you have an application that has multiple disparate scopes existing throughout it
that need to react to a singular event, as shown here:

(app.js)

angular.module('pubSubApp',[])
.controller('Ctrl',function($scope) {})
.directive('myDir',function() {
 return {
 scope: {},
 link: function(scope, el, attrs) {}
 };
});

Only a single controller and directive are shown here, but an unlimited
number of application components that have access to a scope object
can tap into the event bus.

How to do it…
In order to avoid using $rootScope.$broadcast(), the $rootScope will instead be used
as a unification point for application-wide messaging. Utilizing $rootScope.$on() and
$rootScope.$emit() allows you to compartmentalize the actual message broadcasting to
a single scope and have child scopes inject $rootScope and tap into the event bus within it.

Basic implementation
The most basic and naive implementation is to inject $rootScope into every location where
you need to access the event bus and configure the events locally, as shown here:

(index.html)

<div ng-app="myApp">

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Working with the Scope and Model

184

 <div ng-controller="Ctrl">
 <button ng-click="generateEvent()">Generate event</button>
 </div>
 <div my-dir></div>
</div>

(app.js)

angular.module('myApp',[])
.controller('Ctrl', function($scope, $rootScope, $log) {
 $scope.generateEvent = function() {
 $rootScope.$emit('busEvent');
 };
 $rootScope.$on('busEvent', function() {
 $log.log('Handler called!');
 });
})
.directive('myDir', function($rootScope, $log) {
 return {
 scope: {},
 link: function(scope, el, attrs) {
 $rootScope.$on('busEvent', function() {
 $log.log('Handler called!');
 });
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/5ot5scja/

With this setup, even a directive with an isolate scope can utilize the event bus to communicate
with a controller that it otherwise would not be able to.

Cleanup
If you're paying close attention, you might have noticed that using this pattern introduces a
small problem. Controllers in AngularJS are not singletons, and therefore they require more
careful memory management when using this type of cross-application architecture.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/5ot5scja/
https://itbook.store/books/9781783283354

Chapter 5

185

Specifically, when a controller in your application is destroyed, the event listener attached to a
foreign scope that was declared inside it will not be garbage collected, which will lead to memory
leaks. To prevent this, registering an event listener with $on() will return a deregistration
function that must be called on the $destroy event. This can be done as follows:

(app.js)

angular.module('myApp',[])
.controller('Ctrl', function($scope, $rootScope, $log) {
 $scope.generateEvent = function() {
 $rootScope.$emit('busEvent');
 };

 var unbind = $rootScope.$on('busEvent', function() {
 $log.log('Handler called!');
 });

 $scope.$on('$destroy', unbind);

})
.directive('myDir', function($rootScope, $log) {
 return {
 scope: {},
 link: function(scope, el, attrs) {
 var unbind = $rootScope.$on('busEvent', function() {
 $log.log('Handler called!');
 });

 scope.$on('$destroy', unbind);
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/xq05p9dt/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/xq05p9dt/
https://itbook.store/books/9781783283354

Working with the Scope and Model

186

Event bus as a service
The event bus logic can be delegated to a service factory. This service can then be
dependency-injected anywhere to communicate application-wide events to wherever
else listeners exist. This can be done as follows:

(app.js)

angular.module('myApp',[])
.controller('Ctrl',function($scope, EventBus, $log) {
 $scope.generateEvent = function() {
 EventBus.emitMsg('busEvent');
 };

 EventBus.onMsg(
 'busEvent',
 function() {
 $log.log('Handler called!');
 },
 $scope
);
})
.directive('myDir',function($log, EventBus) {
 return {
 scope: {},
 link: function(scope, el, attrs) {
 EventBus.onMsg(
 'busEvent',
 function() {
 $log.log('Handler called!');
 },
 scope
);
 }
 };
})
.factory('EventBus', function($rootScope) {
 var eventBus = {};
 eventBus.emitMsg = function(msg, data) {
 data = data || {};
 $rootScope.$emit(msg, data);
 };
 eventBus.onMsg = function(msg, func, scope) {
 var unbind = $rootScope.$on(msg, func);
 if (scope) {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 5

187

 scope.$on('$destroy', unbind);
 }
 return unbind;
 };
 return eventBus;
});

JSFiddle: http://jsfiddle.net/msfrisbie/m88ruycx/

Event bus as a decorator
The best and cleanest implementation of an event bus is to implicitly add the publish and
subscribe utility methods to all scopes by decorating the $rootScope object during the
application's initialization, specifically, the config phase:

(app.js)

angular.module('myApp',[])
.config(function($provide){
 $provide.decorator('$rootScope', function($delegate){
 // adds to the constructor prototype to allow
 // use in isolate scopes
 var proto = $delegate.constructor.prototype;

 proto.subscribe = function(event, listener) {
 var unsubscribe = $delegate.$on(event, listener);
 this.$on('$destroy', unsubscribe);
 };

 proto.publish = function(event, data) {
 $delegate.$emit(event, data);
 };

 return $delegate;
 });
})
.controller('Ctrl',function($scope, $log) {
 $scope.generateEvent = function() {
 $scope.publish('busEvent');
 };

 $scope.subscribe('busEvent', function() {
 $log.log('Handler called!');

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/m88ruycx/
https://itbook.store/books/9781783283354

Working with the Scope and Model

188

 });
})
.directive('myDir', function($log) {
 return {
 scope: {},
 link: function(scope, el, attrs) {
 scope.subscribe('busEvent', function() {
 $log.log('Handler called!');
 });
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/5madmyzt/

How it works…
The event bus acts as a single target of indirection between the disparate entities in the
application. As the events do not escape the $rootScope object, and $rootScope can
be dependency-injected, you are creating an application-wide messaging network.

There's more…
Performance is always a consideration when it comes to events. It is cleaner and more efficient
to delegate as much of your application as possible to the data binding/model layer, but when
there are global events that require you to propagate events (such as a login/logout), events can
be an extremely useful tool.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/5madmyzt/
https://itbook.store/books/9781783283354

6
Testing in AngularJS

In this chapter, we will cover the following recipes:

ff Configuring and running your test environment in Yeoman and Grunt

ff Understanding Protractor

ff Incorporating E2E tests and Protractor in Grunt

ff Writing basic unit tests

ff Writing basic E2E tests

ff Setting up a simple mock backend server

ff Writing DAMP tests

ff Using the Page Object test pattern

Introduction
Since its inception, AngularJS has always been a framework built with maximum testability in
mind. Developers are often averse to devoting substantial time towards creating a test suite
for their application, yet we all know only too well how wrong things can go when untested
or partially tested code is shipped to production.

One could fill an entire book with the various tools and methodologies available for
testing AngularJS applications, but a pragmatic developer likely desires a solution that
is uncomplicated and gets out of the way of the application's development. This chapter
will focus on the most commonly used components and practices that are at the core of
the majority of test suites, as well as the best practices that yield the most useful and
maintainable tests.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

190

Furthermore, preferred testing utilities have evolved substantially over the AngularJS releases
spanning the past year. This chapter will only cover the most up-to-date strategies used for
AngularJS testing.

The AngularJS testing ecosystem is incredibly dynamic in nature. It would be
futile to attempt to describe the exact methods by which you can set up an
entire testing infrastructure as their components and relationships constantly
evolve, and will certainly differ as the core team continues to churn out new
releases. Instead, this chapter will describe the supporting test software
setup from a high level and the test syntax at the code level of detail. I will
add errata and updates to this chapter at https://gist.github.com/
msfrisbie/b0c6eceb11adfbcbf482.

Configuring and running your test
environment in Yeoman and Grunt

The Yeoman project is an extremely popular scaffolding tool that allows the quick startup and
growth of an AngularJS codebase. Bundled in it is Grunt, which is the JavaScript task runner
that you will use in order to automate your application's environment, including running and
managing your test utilities. Yeoman will provide much of your project structure for you out of
the box, including but not limited to the npm and Bower dependencies and also the Gruntfile,
which is the file used for the definition of the Grunt automation.

How to do it…
There is some disagreement over the taxonomy of test types, but with AngularJS, the tests
will fall into two types: unit tests and end-to-end tests. Unit tests are the black-box-style
tests where a piece of the application is isolated, has external components mocked out for
simulation, is fed controlled input, and has its functionality/output verified. End-to-end tests
simulate proper application-level behavior by simulating a user interacting with components
of the application and making sure that they operate properly by creating an actual browser
instance that loads and executes your application code.

Using the right tools for the job
AngularJS unit tests utilize the Karma test runner to run unit tests. Karma has long been the
gold standard for AngularJS tests, and it integrates well with Yeoman and Grunt for automatic
test file generation and test running. Much of the setup for Karma unit testing is already done
for you with Yeoman.

www.itbook.store/books/9781783283354

https://gist.github.com/msfrisbie/b0c6eceb11adfbcbf482
https://gist.github.com/msfrisbie/b0c6eceb11adfbcbf482
https://itbook.store/books/9781783283354

Chapter 6

191

Formerly, AngularJS provided a tool called the Angular Scenario Runner to run end-to-end
tests. This is no longer the case; a modern test suite will now utilize Protractor, which is a
new end-to-end testing framework built specifically for AngularJS. Protractor currently does
not come configured by default when bootstrapping AngularJS project files, so a manual
integration of it into your Gruntfile will be necessary.

Conveniently, both Karma unit tests and Protractor end-to-end tests utilize the Jasmine
test syntax.

Both Karma and Protractor will require *.conf.js files, which will act as the test suite
directors when invoked by Grunt. Protractor installation requires manual work, which is
provided in detail in the Incorporating E2E tests and Protractor in Grunt recipe.

How it works…
Once the testing is set up, running and evaluating your test suite is simple. Karma and
Protractor will run separately, one after the other (depending on which comes first in the
grunt test task). Each of them will spawn some form of browser in which they will perform
the tests. Karma will generally utilize PhantomJS to run the unit tests in a headless browser,
and Protractor will utilize Selenium WebDriver to spawn an actual browser instance (or
instances, depending on how it is configured) and run the end-to-end tests on your actual
application that is running in the browser, which you will be able to see happening if it is
running on your local environment.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

There's more…
After running the test suite, the console output of Grunt will inform you of any test failures and
other metadata about the test run. The output of a successfully run test suite, both unit tests
and end-to-end tests with no errors, will include something similar to the following:

Running "karma:unit" (karma) task
INFO [karma]: Karma v0.12.23 server started at http://localhost:8080/
INFO [launcher]: Starting browser PhantomJS
INFO [PhantomJS 1.9.7 (Mac OS X)]: Connected on socket
sYgu4c8ZxNFs73zBe_xq with id 75044421

www.itbook.store/books/9781783283354

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://itbook.store/books/9781783283354

Testing in AngularJS

192

PhantomJS 1.9.7 (Mac OS X): Executed 3 of 3 SUCCESS (0.017 secs /
0.015 secs)

Running "protractor:run" (protractor) task
Starting selenium standalone server...
Selenium standalone server started at http://192.168.1.120:59539/wd/
hub
.....

Finished in 7.965 seconds
5 tests, 19 assertions, 0 failures

Shutting down selenium standalone server.

Done, without errors.
Total 19.3s

Error messages in AngularJS are always getting better, and the AngularJS team is actively
working to make failures easier to diagnose by providing detailed error messages and
better stack traces. When a test fails, the string identifiers that Jasmine allows you to
provide while writing the tests will quickly allow the developer who is running the tests
to identify the problem. This is shown in the following error output:

Running "karma:unit" (karma) task
INFO [karma]: Karma v0.12.23 server started at http://localhost:8080/
INFO [launcher]: Starting browser PhantomJS
INFO [PhantomJS 1.9.7 (Mac OS X)]: Connected on socket
HVy4JBfIMACzUGR8gPFY with id 29687037
PhantomJS 1.9.7 (Mac OS X) Controller: HandleCtrl Should mark handles
which are too short as invalid FAILED
 Expected false to be true.
PhantomJS 1.9.7 (Mac OS X): Executed 3 of 3 (1 FAILED) (0.018 secs /
0.014 secs)
Warning: Task "karma:unit" failed. Use --force to continue.

Aborted due to warnings.

See also
ff The Understanding Protractor recipe provides greater insight into what the Protractor

test runner really is

ff The Incorporating E2E tests and Protractor in Grunt recipe gives a thorough
explanation of how to set up your test suite in order to use Protractor as its
end-to-end test runner

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

193

Understanding Protractor
Protractor is new to the scene in AngularJS and is intended to fully supplant the now
deprecated Angular Scenario Runner.

How it works…
Selenium WebDriver (also referred to as just "WebDriver") is a browser automation tool that
provides faculties to script the control of web browsers and the applications that run within
them. For the purposes of end-to-end testing, the test runner manifests as three interacting
components, as follows:

ff The formal Selenium WebDriver process, which takes the form of a standalone server
with the ability to spawn a browser instance and pipe native events into the page

ff The test process, which is a Node.js script that runs and checks all the test files

ff The actual browser instance, which runs the application

Protractor is built on top of WebDriver. It acts as both an extension of WebDriver and also
provides supporting software utilities to make end-to-end testing easier. Protractor includes
the webdriver-manager binary, which exists to make the management of WebDriver easier.

There's more…
Within the tests themselves, Protractor exports a couple of global variables for you to use,
which are as follows:

ff browser: This exists to enable you to interact with the URL of the page and the page
source. It acts as a WebDriver wrapper, so anything that WebDriver does, Protractor
can do too.

ff element: This enables you to interact with specific elements in the DOM using
selectors. Besides standard CSS selectors, this also allows you to select the
elements with a specific ng-model directive or binding.

See also
ff The Incorporating E2E tests and Protractor in Grunt recipe gives a thorough

explanation of how to set up your test suite in order to use Protractor as its
end-to-end test runner

ff The Writing basic E2E tests recipe demonstrates how to build an end-to-end test
foundation for a simple application

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

194

Incorporating E2E tests and Protractor in
Grunt

Out of the box, Yeoman does not integrate Protractor into its test suite; doing so requires
manual work. The Grunt Protractor setup is extremely similar to that of Karma, as they both
use the Jasmine syntax and *.conf.js files.

This recipe demonstrates the process of installing and configuring
Protractor, but much of this can be generalized to incorporate any
new package into Grunt.

Getting ready
The following is a checklist of things to do in order to ensure that your test suite will run correctly:

ff Ensure that the grunt-karma extension is installed using the npm install
grunt-karma --save-dev command

ff Save yourself the trouble of having to list out all the needed Grunt tasks in your
Gruntfile by automatically loading them, as follows:

�� Install the load-grunt-tasks module using the npm install load-
grunt-tasks --save-dev command

�� Add require('load-grunt-tasks')(grunt); inside the module.
exports function in your Gruntfile

How to do it…
Adding Protractor to your application's test configuration requires you to follow a number of
steps in order to get it installed, configured, and automated.

Installation
Incorporating Protractor into Grunt requires the following two npm packages to be installed:

ff protractor

ff grunt-protractor-runner

They can be installed by being added to the package.json file and by running npm
install. Alternately, they can be installed from the command line as follows:

npm install protractor grunt-protractor-runner --save-dev

The --save-dev flag will automatically add the packages to the devDependencies object
in package.json if it is present.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

195

Selenium's WebDriver manager
Protractor requires Selenium, a web browser automation tool, to operate. The previous
commands will have already incorporated the needed dependencies into your package.json
file. As a convenience, you should bind the Selenium WebDriver update command to run when
you invoke npm install. This can be accomplished by adding the highlighted line of the
following code snippet (the path to the webdriver-manager binary might differ in your
local environment):

(package.json)

{
 "devDependencies": {
 // long list of node package dependencies
 },
 "scripts": {
 // additional existing script additions may be listed here
 "install": "node node_modules/protractor/bin/webdriver-manager
update"
 }
}

The order in which the dependencies are listed is not important.

JSON does not support comments; they are shown in the preceding
code only to provide you context within the file. Attempting to provide
a JSON file with JavaScript-style comments in it to the npm installer
will cause the installer to fail.

Modifying your Gruntfile
Grunt needs to be informed of where to look for the Protractor configuration file as well as
how to use it now that the npm module has been installed. Modify your Gruntfile.js file
as follows:

(Gruntfile.js)

module.exports = function (grunt) {

 ...

 // Define the configuration for all the tasks
 grunt.initConfig({

 // long list of configuration options for

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

196

 // grunt tasks like minification, JS linting, etc.

 protractor: {
 options: {
 keepAlive: true,
 configFile: "protractor.conf.js"
 },
 run: {}
 }
 }

If this is done correctly, it should enable you to call protractor:run within a Grunt task.

In order to run Protractor and the E2E test suite when you invoke the grunt test command,
you must extend the relevant Grunt task, as follows:

(Gruntfile.js)

grunt.registerTask('test', [
 // list of subtasks to run during `grunt test`
 'karma',
 'protractor:run'
]);

The order of these tasks is not set in stone, but karma and protractor:run must be
ordered to follow any tasks that are involved with the setup of the test servers; so it is
prudent to list them last.

Setting your Protractor configuration
Obviously, the Protractor configuration you just set in the Gruntfile refers to a file that doesn't
exist yet. Create the protractor.conf.js file and add the following:

(protractor.conf.js)

exports.config = {
 specs: ['test/e2e/*_test.js'],
 baseUrl: 'http://localhost:9001',
 // your filenames, versions, and paths may differ
 seleniumServerJar: 'node_modules/protractor/selenium/selenium-
server-standalone-2.42.2.jar',
 chromeDriver: 'node_modules/protractor/selenium/chromedriver'
}

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

197

This points Protractor to your test directory(ies), the Yeoman baseUrl that acts as the
default test port (9001), and the Selenium server and browser setup files. This Protractor
configuration will boot a new instance of a Selenium server every time you run tests, run the
E2E tests in the Chrome browser, and strip it down when the tests have finished running.

Running the test suite
If all of these steps were successfully accomplished, running grunt test should pound out
your entire test suite.

How it works…
Much of the power and utility that Grunt has to offer stems from its modular automation
topology. The setup you just configured works roughly as follows:

1.	 The grunt test command is run from the command line.

2.	 Grunt matches the test to its corresponding task definition in the Gruntfile.js file.

3.	 The tasks defined within the test are run sequentially, eventually coming to the
protractor:run entry.

4.	 Grunt runs protractor:run and matches this to the Protractor configuration
definition, which resides in the protractor.conf.js file.

5.	 Protractor locates protractor.conf.js, which at a minimum tells Grunt how to
boot a Selenium server, where to find the test files, and the location of the test server.

6.	 All found tests are run.

See also
ff The Understanding Protractor recipe provides greater insight into what the Protractor

test runner really is

ff The Writing basic E2E tests recipe demonstrates how to build an end-to-end test
foundation for a simple application

Writing basic unit tests
Unit tests should be the foundation of your test suite. Compared to end-to-end tests, they
are generally faster, easier to write, easier to maintain, require less overhead while setting up,
more readily scale with the application, and provide a more obvious path to the problem area
of the application when you debug a failed test run.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

198

There is a surplus of extremely simplistic testing examples available online and rarely do they
present a component or test case that is applicable in a real-world application. Instead, this
recipe will jump directly to an understandable application component and show you how to
write a full set of tests for it.

Getting ready
For this recipe, it is assumed that you have correctly configured your local setup so that Grunt
will be able to find your test file(s) and run them on the Karma test runner.

Suppose that you have the following controller within your application:

(app.js)

angular.module('myApp')
.controller('HandleCtrl', function($scope, $http) {
 $scope.handle = '';
 $scope.$watch('handle', function(value) {
 if (value.length < 6) {
 $scope.valid = false;
 } else {
 $http({
 method: 'GET',
 url: '/api/handle/' + value
 }).success(function(data, status) {
 if (status == 200 &&
 data.handle == $scope.handle &&
 data.id === null) {
 $scope.valid = true;
 } else {
 $scope.valid = false;
 }
 });
 }
 });
});

In this example application, a user named Jake Hsu will go through a signup flow and attempt
to select a unique handle. In order to guarantee the selection of a unique handle while still
in the signup flow, a scope watcher is set up against the server to check whether that handle
already exists. Through a mechanism outside the controller (and presumably in the view),
the value of $scope.handle will be manipulated, and each time its value changes, the
application will send a request to the backend server and set $scope.valid based on
what the server returns.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

199

How to do it…
An exhaustive set of unit tests for something like the situation mentioned in the previous
section can become quite lengthy. When writing tests for a production application, rarely is it
prudent to spend time to create an exhaustive set of unit tests for a component, unless it is
critical to the application (payments and authentication come to mind).

Here, it is probably sufficient to create a set of tests that attempts to cover scenarios that
mark a handle as invalid on the client side, invalid on the server side, and valid on the
server side.

Initializing the unit tests
Before writing the actual tests, it is necessary to create and mock the external components
that the test component will interact with. This can be done as follows:

(handle_controller_test.js)

// monolithic test suite for HandleCtrl
describe('Controller: HandleCtrl', function() {
 // the components to be tested reside in the myApp module
 // therefore it must be injected
 beforeEach(module('myApp'));

 // values which will be used in multiple closures
 var HandleCtrl, scope, httpBackend, createEndpointExpectation;

 // this will be run before each it(function() {}) clause
 // to create or refresh the involved components
 beforeEach(inject(function($controller, $rootScope, $httpBackend) {

 // creates the mock backend server
 httpBackend = $httpBackend;

 // creates a fresh scope
 scope = $rootScope.$new();

 // creates a new controller instance and inserts
 // the created scope into it
 HandleCtrl = $controller('HandleCtrl', {
 $scope: scope
 });

 // configures the httpBackend to match outgoing requests
 // that are expected to be generated by the controller

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

200

 // and return payloads based on what the request contained;
 // this will only be invoked when needed
 createEndpointExpectation = function() {
 // URL matching utilizes a simple regex here
 // expectGET requires that a request be created
 httpBackend.expectGET(/\/api\/handle\/\w+/i).respond(
 function(method, url, data, headers){
 var urlComponents = url.split("/")
 , handle = urlComponents[urlComponents.length - 1]
 , payload = {handle: handle};

 if (handle == 'jakehsu') {
 // handle exists in database, return ID
 payload.id = 1;
 } else {
 // handle does not exist in database
 payload.id = null;
 };

 // AngularJS allows for this return format;
 // [status code, data, configuration]
 return [200, payload, {}];
 }
);
 };
 }));

 // configures the httpBackend to check that the mock
 // server did not receive extra requests or did not
 // see a request when it should have expected one
 afterEach(function() {
 // verify that all expect<HTTPverb>() expectations were filled
 httpBackend.verifyNoOutstandingExpectation();
 // verify that the mock server did not receive requests it
 // was not expecting
 httpBackend.verifyNoOutstandingRequest();
 });

 // unit tests go here

});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

201

Creating the unit tests
With the unit test initialization complete, you will now be able to formally create the unit tests.
Each it(function() {}) clause will count as one unit test towards the counted total,
which can be found in the grunt test readout. The unit test is as follows:

(handle_controller_test.js)

// describe() serves to annotate what the module will test
describe('Controller: HandleCtrl', function() {

 // unit test initialization
 beforeEach(...);
 afterEach(...);

 // client invalidation unit test
 it('Should mark handles which are too short as invalid',
 function() {
 // attempt test handle beneath the character count floor
 scope.handle = 'jake';
 // $watch will not be run until you force a digest loop
 scope.$apply();
 // this clause must be fulfilled for the test to pass
 expect(scope.valid).toBe(false);
 }
);

 // client validation, server invalidation unit test
 it('Should mark handles which exist on the server as invalid',
 function() {
 // server is set up to expect a specific request
 createEndpointExpectation();
 // attempt test handle above character count floor,
 // but which is defined in the mock server to have already
 // been taken
 scope.handle = 'jakehsu';
 // force a digest loop
 scope.$apply();
 // the mock server will not return a response until
 // flush() is invoked
 httpBackend.flush();
 // this clause must be fulfilled for the test to pass
 expect(scope.valid).toBe(false);
 }

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

202

);

 // client validation, server invalidation unit test
 it('Should mark handles available on the server as valid',
 function() {
 // server is set up to expect a specific request
 createEndpointExpectation();
 // attempt handle above character floor and
 // which is defined to be available on the mock server
 scope.handle = 'jakehsu123';
 // force a digest loop
 scope.$apply();
 // return a response
 httpBackend.flush();
 // this clause must be fulfilled for the test to pass
 expect(scope.valid).toBe(true);
 }
);

How it works…
Each unit test describes the sequential components that describe a scenario that the
application is supposed to handle. Though the JavaScript that is natively executed in the
browser is heavily asynchronous, the unit test faculties provide a great deal of control over these
operations such that you can control the completion of asynchronous operations, and therefore
test your application's handling of it in different ways. The $http and $digest cycles are both
components of AngularJS that are expected to take indeterminate amounts of time to complete.
Here though, you are given fine-grained control over their execution, and it is to your advantage
to incorporate that ability into the test suite for more extensive test coverage.

Initializing the controller
To test the controller, it and the components it uses must be created or mocked. Creating the
controller instance can be easily accomplished with $controller(), but in order to test
how it handles scope transformations, it must be provided with a scope instance. Since all
scopes prototypically inherit from $rootScope, it is sufficient here to create an instance of
$rootScope and provide that as the created controller's scope.

Initializing the HTTP backend
Mocking a backend server can at times seem to be tedious and verbose, but it allows
you to very precisely define how your single-page application is expected to interact with
remote components.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

203

Here, you invoke expectGET() with a URL regex in order to match an outgoing request
generated by the controller. You are able to define exactly what happens when that URL sees
a request come through, much in the same way that you would when you build a server API.

Here, it is prudent to encapsulate all the backend endpoint initialization within a
function because its definition specifies how the application controller must behave
for the test to pass. The $httpBackend service offers expect<HTTPverb>() and
when<HTTPverb>() for use, and together they allow powerful unit test definition. The
expect() methods require that they see a matching request to the endpoint during the
unit test, whereas the when() methods merely enable the mock backend to appropriately
handle that request. At the conclusion of each unit test, the afterEach() clause verifies
that the mock backend has seen all the requests that it was expected to, using the
verifyNoOutstandingExpectation() method, and that it didn't see any requests it
wasn't expected to, using the verifyNoOutstandingRequest() method.

Formally running the unit tests
When running the unit tests, AngularJS makes no assumptions about how your application
should or might behave with regard to interfacing with components that involve variable
latent periods and asynchronous callbacks. The $watch expressions and $httpBackend
will behave exactly as instructed and exactly when instructed.

By their nature, the $watch expressions can take a variable amount of time depending on
how long it takes the model changes to propagate throughout the scope, and how many
digest loops are required for the model to reach equilibrium. When you run a unit test, a scope
change (as demonstrated here) will not trigger a $watch expression callback until $apply()
is explicitly invoked. This allows you to use the intermediate logic and other modifications to
be made in different ways to fully exercise the conditions under which a $watch expression
might occur.

Furthermore, it should be obvious that a remote server cannot be relied upon to respond
in a timely fashion, or even at all. When you run a unit test, requests can be dispatched to
the mock server normally, but the server will delay sending a response and triggering the
asynchronous callbacks until it is explicitly instructed to with flush(). In a similar fashion,
the $watch expressions allow you to test the handling of requests that return normally or
slowly, as malformed or failed, or time out altogether.

There's more…
Unit tests should be the core of your test suite as they provide the best assurance that the
components of your application are behaving as expected. The rule of thumb is: if it's possible
to effectively test a component with a unit test, then you should use a unit test.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

204

Writing basic E2E tests
End-to-end tests effectively complement unit tests. Unit tests make no assumptions about the
state of the encompassing systems (and thereby require manual work to mock or fabricate
that state for the sake of simulation). Unit tests are also intended to test extremely small
and often irreducible pieces of functionality. End-to-end tests take an orthogonal approach
by creating and manipulating the system state via the means that are usually available to
the client or end user and make sure that a complete user interface flow can be successfully
executed. End-to-end test failures often cannot pinpoint the exact coordinate from which the
error originated. However, they are absolutely a necessity in a testing suite since they ensure
cooperation between the interacting application components and provide a safety net to catch
the application's misbehavior that results from the complexities of a software interconnection.

Getting ready
This recipe will use the same application controller setup from the preceding recipe, Writing
basic unit tests. Please refer to the setup instructions and code explained there.

In order to provide an interface to utilize the controller, the application will also incorporate
the following:

(app.js)

angular.module('myApp', [
 'ngRoute'
])
 .config([
 '$routeProvider',
 function($routeProvider){
 $routeProvider
 .when('/signup', {
 templateUrl: 'views/main.html'
 })
 .otherwise({
 redirectTo: '/',
 template: 'Go to signup page'
 });
 }
]);

(views/main.html)

<div ng-controller="HandleCtrl">
 <input type="text" ng-model="handle" />

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

205

 <h2 id="success-msg" ng-show="valid">
 That handle is available!
 </h2>
 <h2 id="failure-msg" ng-hide="valid">
 Sorry, that handle cannot be used.
 </h2>
</div>

(index.html)
<body ng-app="myApp">
 <div ng-view=""></div>
</body>

Take note that here, these files are only the notable pieces required
for a working application that the Protractor test runner will use. You
will need to incorporate these into a full AngularJS application for
Protractor to be able to use them.

How to do it…
Your end-to-end test suite should cover all user flows as best as you can. Ideally, you will
optimize for a balance between modularity, independence, and redundancy avoidance when
you write tests. For example, each individual test probably doesn't need you to log out at the
end of the test since this would only serve to slow down the completion of the tests. However,
if you are writing E2E tests to verify that your application's authentication scheme prevents
unwanted navigation after authentication credentials have been revoked. Then, an array of
tests that test actions after logout would be very appropriate. The focus of your tests will vary
depending on the style and purpose of your application, and also the bulk and complexity of
the codebase behind it.

Since the protractor.conf.js file has been instructed to look for test files in the
test/e2e/ directory, the following would be an appropriate test suite in that location:

(test/e2e/signup_flow_test.js)

describe('signup flow tests', function() {

 it('should link to /signup if not already there', function() {
 // direct browser to relative url,
 // page will load synchronously
 browser.get('/');

 // locate and grab <a> from page

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

206

 var link = element(by.css('a'));

 // check that the correct <a> is selected
 // by matching contained text
 expect(link.getText()).toEqual('Go to signup page');

 // direct browser to nonsense url
 browser.get('/#/hooplah');

 // simulated click
 link.click();

 // protractor waits for the page to render,
 // then checks the url
 expect(browser.getCurrentUrl()).toMatch('/signup');
 });
});

describe('routing tests', function() {

 var handleInput,
 successMessage,
 failureMessage;

 function verifyInvalid() {
 expect(successMessage.isDisplayed()).toBe(false);
 expect(failureMessage.isDisplayed()).toBe(true);
 }

 function verifyValid() {
 expect(successMessage.isDisplayed()).toBe(true);
 expect(failureMessage.isDisplayed()).toBe(false);
 }

 beforeEach(function() {
 browser.get('/#/signup');

 var messages = element.all(by.css('h2'));

 expect(messages.count()).toEqual(2);

 successMessage = messages.get(0);

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

207

 failureMessage = messages.get(1);

 handleInput = element(by.model('handle'));

 expect(handleInput.getText()).toEqual('');

 })

 it('should display invalid handle on pageload', function() {

 verifyInvalid();

 expect(failureMessage.getText()).
 toEqual('Sorry, that handle cannot be used.');
 });

 it('should display invalid handle for insufficient characters',
function() {

 // type to modify model and trigger $watch expression
 handleInput.sendKeys('jake');

 verifyInvalid();
 })

 it('should display invalid handle for a taken handle', function() {

 // type to modify model and trigger $watch expression
 handleInput.sendKeys('jakehsu');

 verifyInvalid();
 })

 it('should display valid handle for an untaken handle', function() {

 // type to modify model and trigger $watch expression
 handleInput.sendKeys('jakehsu123');

 verifyValid();
 })
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

208

How it works…
Protractor utilizes a Selenium server and WebDriver to fully render your application in the
browser and to simulate a user interacting with it. The end-to-end test suite provides faculties
for you to simulate native browser events in the context of an actual running instance of your
application. The end-to-end tests verify correctness not by the JavaScript object state of the
application, but rather by inspecting the state of either the browser or the DOM.

Since end-to-end tests are interacting with an actual browser instance, they must be able
to manage asynchronicity and uncertainty during execution. To do this, each of the element
selectors and assertions in these end-to-end tests return promises. Protractor automatically
waits for each promise to get completed before continuing to the next test statement.

There's more…
AngularJS provides the ngMockE2E module, which allows you to mock a backend server.
Incorporating the module gives you the ability to prevent the application from making actual
requests to a server, and instead simulates request handling in a fashion similar to that
of the unit tests. However, incorporating this module into your application is actually not
recommended in many cases, for the following reasons:

ff Currently, integrating ngMockE2E correctly into your end-to-end test runner involves a
lot of red tape and can cause problems involving synchronization with Protractor.

ff Mocking out the spectrum of end-to-end backend server responses in the ngMock
syntax can become very tedious and verbose, as larger applications will demand
more complexity in the mock server's response logic.

ff Mocking out the backend endpoints for end-to-end tests defeats much of the
purpose of the tests in the first place. The end-to-end tests you write are intended to
simulate all components of the application that bind and perform together properly
in the context of the user interface. Creating fake responses from the server might
ameliorate edge cases that involve backend communication that would otherwise be
caught by tests that send requests to a real server.

Therefore, it is encouraged to structure your end-to-end tests in order to send requests
to a legitimate backend in order to effectively and more realistically simulate client-server
HTTP conversations.

See also
ff The Setting up a simple mock backend server recipe demonstrates a clever method

that will allow you to iterate quickly with your test suite and application

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

209

ff The Writing DAMP tests recipe demonstrates even more best practices for writing
AngularJS tests effectively

ff The Using the Page Object test pattern recipe demonstrates even more best practices
for writing AngularJS tests effectively

Setting up a simple mock backend server
It isn't hard to realize why having end-to-end tests that communicate with a real server
that returns mock responses can be useful. Outside of the testing complexity that involves
the business logic your application uses to handle the data returned from the server, the
spectrum of possible outcomes when relying upon HTTP communication (timeouts, server
errors, and more) should be included in a robust end-to-end test suite. It's no stretch of
the imagination then that a superb way of testing these corner cases is to actually create a
mock server that your application can hit. You can then configure the mock server to support
different endpoints that will have predetermined behavior, such as failing, slow response
times, and different response data payloads to name a few.

You are fully able to have your end-to-end tests communicate with the API as they normally
would, as the end-to-end test runner does not mock the backend server by default. If this
is suitable for your testing purposes, then setting up a mock backend server is probably
unnecessary. However, if you wish for your tests to cover operations that are not idempotent
or will irreversibly change the state of the backend server, then setting up a mock server
makes a good deal of sense.

How to do it…
Selecting a mock server style has essentially no limitations as the only requirement is for it
to allow you to manually configure responses upon expected HTTP requests. As you might
imagine, this can get as simple or as complex as you want, but the nature of end-to-end
testing tends to lead to frequent overhaul and repair of large pieces of the mock HTTP
endpoints if they try and replicate large amounts of the production application logic.

If you are able to (and in most cases, you absolutely should be able to design or refactor
your tests in such a way) have your end-to-end tests perform more concise application user
flows and mock out the API that it communicates with as simply as possible, you should do
it—usually, this mostly means hardcoding the responses. Enter the file-based API server!

(httpMockBackend.js)

// Define some initial variables.
var applicationRoot = __dirname.replace(/\\/g,'/')
 , ipaddress = process.env.OPENSHIFT_NODEJS_IP || '127.0.0.1'
 , port = process.env.OPENSHIFT_NODEJS_PORT || 5001
 , mockRoot = applicationRoot + '/test/mocks/api'

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

210

 , mockFilePattern = '.json'
 , mockRootPattern = mockRoot + '/**/*' + mockFilePattern
 , apiRoot = '/api'
 , fs = require("fs")
 , glob = require("glob");

// Create Express application
var express = require('express');
var app = express();

// Read the directory tree according to the pattern specified above.
var files = glob.sync(mockRootPattern);

// Register mappings for each file found in the directory tree.
if(files && files.length > 0) {
 files.forEach(function(filePath) {

 var mapping = apiRoot + filePath.replace(mockRoot, '').
replace(mockFilePattern,'')
 , fileName = filePath.replace(/^.*[\\\/]/, '');

 // set CORS headers so this can be used with local AJAX
 app.all('*', function(req, res, next) {
 res.header("Access-Control-Allow-Origin", "*");
 res.header(
 'Access-Control-Allow-Headers',
 'X-Requested-With'
);
 next();
 });

 // any HTTP verbs you might need
 [/^GET/, /^POST/, /^PUT/, /^PATCH/, /^DELETE/].forEach(
 function(httpVerbRegex) {

 // perform the initial regex of the HTTP verb
 // against the filename
 var match = fileName.match(httpVerbRegex);

 if (match != null) {
 // remove the HTTP verb prefix from the filename
 mapping = mapping.replace(match[0] + '_', '');

 // create the endpoint

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

211

 app[match[0].toLowerCase()](mapping, function(req,res) {

 // handle the request by responding
 // with the JSON contents of the file
 var data = fs.readFileSync(filePath, 'utf8');
 res.writeHead(200, {
 'Content-Type': 'application/json'
 });
 res.write(data);
 res.end();
 });
 }
 }
);

 console.log('Registered mapping: %s -> %s', mapping,
 filePath);
 });
} else {
 console.log('No mappings found! Please check the
 configuration.');
}

// Start the API mock server.
console.log('Application root directory: [' + applicationRoot
 +']');
console.log('Mock Api Server listening: [http://' + ipaddress +
 ':' + port + ']');
app.listen(port, ipaddress);

This is a simple node program that can be run using the following command:

$ node httpMockServer.js

This Node.js program is dependent on several npm packages,
which can be installed using the npm install glob fs
express command.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

212

How it works…
This simple express.js server conveniently matches the incoming request URLs to the
corresponding JSON file in the test/mocks/api/ child directory, and it matches the HTTP
verb of the request to the file prefixed with that verb. So, a GET request to localhost:5001/
api/user will return the JSON contents of /test/mocks/api/GET_user.json, a PATCH
request to localhost:5001/api/user/1 will return the JSON contents of /test/mocks/
api/user/PATCH_1.json, and so on. Since files are automatically discovered and added
to the express routing, this allows you to easily simulate a backend server with very different
request types, quickly.

There's more…
This setup is obviously extremely limited in a number of ways, including conditional request
handling and authentication, to name a few. This is not intended as a full replacement for a
backend by any means, but if you are trying to quickly build a test suite or build a piece of
your application that sits atop an HTTP API, you will find this tool very useful.

See also
ff The Writing E2E tests recipe demonstrates the core strategies that should be

incorporated into your end-to-end test suite

Writing DAMP tests
Any seasoned developer will almost certainly be familiar with the Don't Repeat Yourself
(DRY) programming principle. When architecting production applications, the DRY principle
promotes improved code maintainability by ensuring that there is no logic duplication (or as
little as feasibly possible) in order to allow efficient system additions and modifications.

Descriptive And Meaningful Phrases (DAMP) on the other hand promotes improved code
readability by ensuring that there is not too much abstraction to cause the code to be difficult
to understand, even if it is at the expense of introducing redundancy. Jasmine encourages
this by providing a Domain Specific Language (DSL) syntax, which approximates how humans
would linguistically declare and reason about how the program should work.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

213

How to do it…
The following tests are a sample of unit tests from the Writing basic unit tests recipe,
presented here unchanged:

 it('should display invalid handle for insufficient characters',
function() {

 // type to modify model and trigger $watch expression
 handleInput.sendKeys('jake');

 verifyInvalid();
 })

 it('should display invalid handle for a taken handle', function() {

 // type to modify model and trigger $watch expression
 handleInput.sendKeys('jakehsu');

 verifyInvalid();
 })

As is, this would be considered a set of DAMP tests. A developer running these tests would
have little trouble quickly piecing together what is supposed to happen, where in the code
it's happening, and why the tests might be failing.

However, a DRY-minded developer would examine these tests, identify the redundancy
between them, and refactor them into something like the following:

 it('should reject invalid handles', function() {
 // type to modify model and trigger $watch expression
 ['jake', 'jakehsu'].forEach(function(handle){
 handleInput.clear();
 handleInput.sendKeys(handle);
 verifyInvalid();
 });
 });

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

214

This code is definitely more in line with the DRY principle than the previous one, and the
tests will still pass and still test the proper behavior, but there is already a measurable loss of
information that hurts the quality of the tests. The initial version of the unit tests presented
two test cases that were both supposed to be marked as invalid, but for different reasons—one
because of a minimum handle length, one because the request to the mock server reveals that
the handle is already taken. If one of those tests were to fail, the developer running them would
be directed to the exact test case that was failing, would have good insight into which aspect
of the validation was failing, and would be able to quickly act accordingly. In the DRY version of
the unit tests, the developer running them would see a failed test, but since the two unit tests
were condensed, it isn't immediately obvious which one of them is causing the failure or why it
is failing. In this scenario, the DAMP tests are more conducive to rapidly locate and repair bugs
that might crop up in the application.

There's more…
The example in this recipe is a relatively simple one, but it demonstrates the fundamental
difference between the DAMP and DRY practices. In general, the rule of thumb is for
production code to be as DRY as possible, and for test suites to be as DAMP as possible.
Production code should be optimized for maintainability, and tests for understandability.

Perhaps counterintuitively, the DAMP principle is not necessarily mutually exclusive with the
DRY principle—they are merely suited for different purposes. Unit and end-to-end tests should
be DRYed wherever it will make the code more maintainable as long as it doesn't hurt the
readability of the tests. Generally, this will fall under the setup and teardown routines for
tests—use the DRY principle for these routines as much as possible, since they infrequently
contain information or procedures that are relevant to the application component(s) that the
test is covering. Authentication and navigation are both good examples of test setup/teardown
that respond well to DRY refactoring.

See also
ff The Writing basic E2E tests recipe demonstrates the core strategies that should be

incorporated into your end-to-end test suite

ff The Using the Page Object test pattern recipe demonstrates even more best practices
for writing AngularJS tests effectively

Using the Page Object test pattern
Creating and maintaining a test suite for an application is a considerable amount of overhead,
and a prudent developer will mold a test suite such that the normal evolution of a software
application will not force developers to spend an unduly long amount of time to maintain the
test code.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

215

A surprisingly sensible design pattern called the Page Object pattern encapsulates segments
of the page-specific user experience and abstracts it away from the logic of the actual tests.

How to do it…
The test/e2e/signup_flow_test.js file presented in the Writing basic E2E tests recipe
can be refactored into the following files using the Page Object pattern.

The test/pages/main.js file can be refactored as follows:

(test/pages/main.js)

var MainPage = function () {
 // direct the browser when the page object is initialized
 browser.get('/');
};

MainPage.prototype = Object.create({},
 {
 // getter for element in page
 signupLink: {
 get: function() {
 return element(by.css('a'));
 }
 }
 }
);

module.exports = MainPage;

The test/pages/signup.js file can be refactored as follows:

(test/pages/signup.js)

var SignupPage = function () {
 // direct the browser when the page object is initialized
 browser.get('/#/signup');
};

SignupPage.prototype = Object.create({},
 {
 // getters for elements in the page
 messages: {
 get: function() {
 return element.all(by.css('h2'));

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

216

 }
 },
 successMessage: {
 get: function() {
 return this.messages.get(0);
 }
 },
 failureMessage: {
 get: function() {
 return this.messages.get(1);
 }
 },
 handleInput: {
 get: function() {
 return element(by.model('handle'));
 }
 },
 // getters for page validation
 successMessageVisibility: {
 get: function() {
 return this.successMessage.isDisplayed();
 }
 },
 failureMessageVisibility: {
 get: function() {
 return this.failureMessage.isDisplayed();
 }
 },
 // interface for page element
 typeHandle: {
 value: function(handle) {
 this.handleInput.sendKeys(handle);
 }
 }
 }
);

module.exports = SignupPage;

The test/e2e/signup_flow_test.js file can be refactored as follows:

(test/e2e/signup_flow_test.js)

var SignupPage = require('../pages/signup.js')

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

217

 , MainPage = require('../pages/main.js');

describe('signup flow tests', function() {

 var page;

 beforeEach(function() {
 // initialize the page object
 page = new MainPage();
 });

 it('should link to /signup if not already there', function() {

 // check that the correct <a> is selected
 // by matching contained text
 // expect(link.getText()).toEqual('Go to signup page');
 expect(page.signupLink.getText()).toEqual('Go to signup page');

 // direct browser to nonsense url
 browser.get('/#/hooplah');

 // simulated click
 page.signupLink.click();

 // protractor waits for the page to render,
 // then checks the url
 expect(browser.getCurrentUrl()).toMatch('/signup');
 });
});

describe('routing tests', function() {

 var page;

 function verifyInvalid() {
 expect(page.successMessageVisibility).toBe(false);
 expect(page.failureMessageVisibility).toBe(true);
 }

 function verifyValid() {
 expect(page.successMessageVisibility).toBe(true);

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Testing in AngularJS

218

 expect(page.failureMessageVisibility).toBe(false);
 }

 beforeEach(function() {

 // initialize the page object
 page = new SignupPage();

 // check that there are two messages on the page
 expect(page.messages.count()).toEqual(2);

 // check that the handle input text is empty
 expect(page.handleInput.getText()).toEqual('');

 });

 it('should display invalid handle on pageload', function() {

 // check that initial page state is invalid
 verifyInvalid();

 expect(page.failureMessage.getText()).
 toEqual('Sorry, that handle cannot be used.');
 });

 it('should display invalid handle for insufficient characters',
function() {

 // type to modify model and trigger $watch expression
 page.typeHandle('jake');

 verifyInvalid();
 })

 it('should display invalid handle for a taken handle', function() {

 // type to modify model and trigger $watch expression
 page.typeHandle('jakehsu');

 verifyInvalid();
 })

 it('should display valid handle for an untaken handle', function() {

 // type to modify model and trigger $watch expression

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 6

219

 page.typeHandle('jakehsu123');

 verifyValid();
 })
})

How it works…
It should be immediately obvious as to why this test pattern is desirable. Looking through the
actual tests, you now do not need to know any information about the specifics of the page
contents to understand how the test is manipulating the application.

The page objects take advantage of the second and optional objectProperties argument
of Object.create() to build a very pleasant interface to the page. By using these page
objects, you are able to avoid all of the nastiness of creating a sea of local variables to store
references to the pieces of the page. They also offer a great deal of flexibility in terms of
where the bulk of your test logic lies. These tests could potentially be refactored even more
to move the validation logic into the page objects. Decisions like these are ultimately up to
the developer, and it boils down to their preference in terms of how dense the page objects
should be.

There's more…
In this example, the page object getter interface is especially useful since the nature of
end-to-end tests implies that you will need to evaluate the page state at several checkpoints
in the lifetime of the test, and a defined getter that performs this evaluation while appearing
as a page object property yields an extremely clean test syntax.

Also note the multiple layers of indirection within the SignupPage object. Layering in
this fashion is absolutely to your advantage, and the page object is a prime place in your
end-to-end tests where it really does pay to be DRY. Repetitious location of elements on
the page is not the place for verbosity!

See also
ff The Writing basic E2E tests recipe demonstrates the core strategies that should be

incorporated into your end-to-end test suite

ff The Writing DAMP tests recipe demonstrates even more best practices for writing
AngularJS tests effectively

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

7
Screaming Fast

AngularJS

In this chapter, we will cover the following recipes:

ff Recognizing AngularJS landmines

ff Creating a universal watch callback

ff Inspecting your application's watchers

ff Deploying and managing $watch types efficiently

ff Optimizing the application using reference $watch

ff Optimizing the application using equality $watch

ff Optimizing the application using $watchCollection

ff Optimizing the application using $watch deregistration

ff Optimizing template-binding watch expressions

ff Optimizing the application with the compile phase in ng-repeat

ff Optimizing the application using track by in ng-repeat

ff Trimming down watched models

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Screaming Fast AngularJS

222

Introduction
As with most technologies, in AngularJS, the devil is in the details.

In general, the lion's share of encounters with AngularJS's sluggishness is a result of overloading
the application's data-binding bandwidth. Doing so is quite easy, and a normative production
application contains a substantial amount of data binding, which makes architecting a snappy
application all the more difficult. Thankfully, for all the difficulties and snags that one can
encounter involving scaled data binding, the use of regimented best practices and gaining an
appreciation of the underlying framework structure will allow you to effectively circumnavigate
performance pitfalls.

Recognizing AngularJS landmines
Implementation of configurations and combinations that lead to severe performance
degradation is often difficult to pinpoint as the contributing components by themselves
often appear to be totally innocuous.

How to do it…
The following scenarios are just a handful of the commonly encountered scenarios that
degrade the application's performance and responsiveness.

Expensive filters in ng-repeat
Filters will be executed every single time the enumerable collection detects a change,
as shown here:

<div ng-repeat="val in values | filter:slowFilter"></div>

Building and using filters that require a great deal of processing is not advisable as you must
assume that filters will be called a huge number of times throughout the life of the application.

Deep watching a large object
You might find it tempting to create a scope watcher that evaluates the entirety of a model
object; this is accomplished by passing in true as the final argument, as shown here:

$scope.$watch(giganticObject, function() { ... }, true);

This is a poor design decision as AngularJS needs to be able to determine whether or not the
object has changed between $digest cycles, which of course means storing a history of the
object's exact value, as well as exhaustively comparing it each time.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 7

223

Using $watchCollection when the index of change is needed
Although it is extremely convenient in a number of scenarios, $watchCollection can trap
you if you try to locate the index of change within it. Consider the following code:

$scope.$watchCollection(giganticArray, function(newVal, oldVal, scope)
{
 var count = 0;
 // iterate through newVal array
 angular.forEach(newVal, function(oldVal) {
 // if the array snapshot index doesn't match,
 // this implies a change in model value
 if (newVal[count] !== oldVal[count]) {
 // logic for matched object delta
 }
 count++;
 });
});

In every $digest cycle, the watcher will iterate through each watched array in order to find
the index/indices that have changed. Since this watcher is expected to be invoked quite often,
this approach has the potential to introduce performance-related problems as the watched
collection grows.

Keeping template watchers under control
Each bound expression in a template will register its own watch list entry in order to keep the
data fully bound to the view. Suppose that you were working with data in a 2D grid, as follows:

<div ng-repeat="row in rows">
 <div ng-repeat="val in row">
 {{ val }}
 </div>
</div>

Assuming that rows is an array of arrays, this template fragment creates a watcher for every
individual element in the 2D array. Since watch lists are processed linearly, this approach
obviously has the potential to severely degrade the application's performance.

There's more…
These are only a handful of scenarios that can cause problems for your application. There
is a virtually unlimited number of possible configurations that can cause an unexpected
slowdown in your application, but being vigilant and watching out for common performance
anti-patterns will ameliorate much of the headache that comes along with debugging the
slowness of an application.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Screaming Fast AngularJS

224

See also
ff The Creating a universal watch callback recipe provides the details of how to keep

track of how often your application's watchers are being invoked

ff The Inspecting your application's watchers recipe shows you how to inspect the
internals of your application in order to find where your watchers are concentrated

ff The Deploying and managing $watch types efficiently recipe describes the methods
for keeping your application's watch bloat under control

Creating a universal watch callback
Since a multiplicity of AngularJS watchers is so commonly the root cause of performance
problems, it is quite valuable to be able to monitor your application's watch list and activity.
Few beginner level AngularJS developers realize just how often the framework is doing
the dirty checking for them, and having a tool that gives them direct insight into when the
framework is spending time to perform model history comparisons can be extremely useful.

How to do it…
The $scope.$watch(), $scope.$watchGroup(), and $scope.$watchCollection()
methods are normally keyed with a stringified object path, which becomes the target of the
change listener. However, if you wish to register a callback for any watch callback irrespective
of the change listener target, you can decline to provide a change listener target, as follows:

// invoked once every time $scope.foo is modified
$scope.$watch('foo', function(newVal, oldVal, scope) {
 // newVal is the current value of $scope.foo
 // oldVal is the previous value of $scope.foo
 // scope === $scope
});

// invoked once every time $scope.bar is modified
$scope.$watch('bar', function(newVal, oldVal, scope) {
 // newVal is the current value of $scope.bar
 // oldVal is the previous value of $scope.bar
 // scope === $scope
});

// invoked once every $digest cycle
$scope.$watch(function(scope) {
 // scope === $scope
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 7

225

JSFiddle: http://jsfiddle.net/msfrisbie/r36ak6my/

How it works…
There's no trickery here; the universal watcher is a feature that is explicitly provided by
AngularJS. Although it invokes $watch() on a scope object, the callback will be executed
for every model's modification, independent of the scope upon which it is defined.

There's more…
Although the watch callback will occur for model modifications anywhere, the lone scope
parameter for the callback will always be the scope upon which the watcher was defined,
not the scope in which the modification occurred.

Since using a universal watcher attaches additional logic to
every $digest cycle, it will severely degrade the application's
performance and should only be used for debugging purposes.

See also
ff The Inspecting your application's watchers recipe shows you how to inspect the

internals of your application in order to find where your watchers are concentrated

ff The Deploying and managing $watch types efficiently recipe describes the methods
to keep your application's watch bloat under control

Inspecting your application's watchers
The Batarang browser plugin allows you to inspect the application's watch tree, but there are
many scenarios where dynamically inspecting the watch list within the console or application
code can be more helpful when debugging or making design decisions.

How to do it…
The following function can be used to inspect all or part of the DOM for watchers. It accepts
an optional DOM element as an argument.

var getWatchers = function (element) {
 // convert to a jqLite/jQuery element
 // angular.element is idempotent

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/r36ak6my/
https://itbook.store/books/9781783283354

Screaming Fast AngularJS

226

 var el = angular.element(
 // defaults to the body element
 element || document.getElementsByTagName('body')
)
 // extract the DOM element data
 , elData = el.data()
 // initalize returned watchers array
 , watchers = [];

 // AngularJS lists watches in 3 categories
 // each contains an independent watch list
 angular.forEach([
 // general inherited scope
 elData.$scope,
 // isolate scope attached to templated directive
 elData.$isolateScope,
 // isolate scope attached to templateless directive
 elData.$isolateScopeNoTemplate
],
 function (scope) {
 // each element may not have a scope class attached
 if (scope) {
 // attach the watch list
 watchers = watchers.concat(scope.$$watchers || []);
 }
 }
);

 // recurse through DOM tree
 angular.forEach(el.children(), function (childEl) {
 watchers = watchers.concat(getWatchers(childEl));
 });

 return watchers;
};

JSFiddle: http://jsfiddle.net/msfrisbie/d58g77m1/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/d58g77m1/
https://itbook.store/books/9781783283354

Chapter 7

227

With this, you are able to call the function with a DOM node and ascertain which watchers
exist inside it, as follows:

// all watchers in the document
getWatchers(document);

// all watchers in the signup form with a selector
getWatchers(document.getElementById('signup-form'));

// all watchers in <div class="container"></div>
getWatchers($('div.container'));

How it works…
It is possible to access a DOM element's $scope object (without injecting it) through the
jQuery/jqLite element object's data() method. The $scope object has a $$watchers
property that lists how many watchers are actively defined upon that $scope object.

The preceding function exhaustively recurses through the DOM tree and inspects each node
in order to determine whether it has a scope attached to it. If it does, any watchers defined on
that scope are read and entered into the master watch list.

There's more…
This is only a single, general implementation of watcher inspection. Since watchers are
localized to a single scope, it might behoove you to utilize components of this function
in order to inspect single scope instances instead of the child DOM subtree.

See also
ff The Recognizing AngularJS landmines recipe demonstrates common

performance-leeching scenarios

ff The Creating a universal watch callback recipe provides the details of how to keep
track of how often your application's watchers are being invoked

ff The Deploying and managing $watch types efficiently recipe describes the methods
for keeping your application's watch bloat under control

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Screaming Fast AngularJS

228

Deploying and managing $watch types
efficiently

The beast behind AngularJS's data binding is its dirty checking and the overhead that
comes along with it. As you tease apart your application's innards, you will find that even
the most elegantly architected applications incur a substantial amount of dirty checking.
This, of course, is normal, and the framework is architected as to be able to handle the
hugely variable loads of dirty checking that different sorts of applications might throw at it.
Nevertheless, the nature of object comparison performance at scale (hint—it is slow) requires
that dirty checking is minimally deployed, efficiently organized, and appropriately targeted.
Even with the rigorous engineering and optimization behind AngularJS's dirty checking, it
remains the case that it is still deceptively easy to bog down an application's performance
with superfluous data comparison. In the same way that a single uncooperative person
backpaddling in a canoe can bring a vessel to a halt, a single careless watch statement can
bring an AngularJS application's responsiveness to its knees.

How to do it…
Strategies to deploy watchers efficiently can be summed up as follows.

Watch as little of the model as possible
Watchers check the portion of the model they are bound to extremely frequently. If a
change in a piece of the model does not affect what the watch callback does, then the
watcher shouldn't need to worry about it.

Keep watch expressions as lightweight as possible
The watch expression $scope.$watch('myWatchExpression', function() {});
will be evaluated in every digest cycle in order to determine the output. You'll be able to put
expressions such as 3 + 6 or myFunc() as the expression, but these will be evaluated
in every single digest cycle in an effort to obtain a fresh return value in order to compare
it against the last recorded return value. Very rarely is this necessary, so stick to binding
watchers to model properties.

Use the fewest number of watchers possible
It stands to reason that, as the entire watch list must be evaluated in every $digest cycle,
fewer watchers in that list will yield a speedier $digest cycle.

Keep the watch callbacks small and light
The watch callbacks get called as often as the watch expression changes, which can be quite
a lot depending on the application. As a result, it is unwise to keep high-latency calculations or
requests in the callback.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 7

229

Create DRY watchers
Though unrelated to performance, maintaining huge groups of watchers can become
extremely tedious. The $watchCollection and $watchGroup utilities provided by
AngularJS greatly assist in watcher consolidation.

See also
ff The Recognizing AngularJS landmines recipe demonstrates common

performance-leeching scenarios

ff The Optimizing the application using reference $watch recipe demonstrates how to
effectively deploy the basic watch type

ff The Optimizing the application using equality $watch recipe demonstrates how to
effectively deploy the deep watch type

ff The Optimizing the application using $watchCollection recipe demonstrates how to
utilize the intermediate depth watcher in your application

ff The Optimizing the application using $watch deregistration recipe shows how your
application can evict watch list entries when they are no longer required

ff The Optimizing template-binding watch expressions recipe explains how AngularJS
manages your implicitly-created watchers for template data binding

Optimizing the application using reference
$watch

Reference watches register a listener that uses strict equality (===) as the comparator,
which verifies the congruent object identity or primitive equality. The implication of this
is that a change will only be registered if the model the watcher is listening to is assigned
to a new object.

How to do it…
The reference watcher should be used when the object's properties are unimportant. It is the
most efficient of the $watch types as it only demands top-level object comparison.

The watcher can be created as follows:

$scope.myObj = {
 myPrim: 'Go Bears!',
 myArr: [3,1,4,1,5,9]
};

// watch myObj by reference

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Screaming Fast AngularJS

230

$scope.$watch('myObj', function(newVal, oldVal, scope) {
 // callback logic
});

// watch only the myPrim property of myObj by reference
$scope.$watch('myObj.myPrim', function(newVal, oldVal, scope) {
 // callback logic
});

// watch only the second element of myObj.myArr by reference
$scope.$watch('myObj.myArr[1]', function(newVal, oldVal, scope) {
 // callback logic
});

An observant reader will note that some of these examples are
technically redundant in what they demonstrate; this will be
explained further in the How it works… section.

How it works…
The reference comparator will only invoke the watch callback upon object reassignment.

Suppose that a $scope object was initialized as follows:

$scope.myObj = {
 myPrim: 'Go Bears!'
};
$scope.myArr = [3,1,4,1,5,9];

// watch myObj by reference
$scope.$watch('myObj', function() {
 // callback logic
});
// watch myArr by reference
$scope.$watch('myArr', function() {
 // callback logic
});

Any assignment of the watched object to a different primitive or object will register as dirty.
The following examples will cause a callback to execute:

$scope.myArr = [];
$scope.myObj = 1;
$scope.myObj = {};

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 7

231

Beneath the top-level reference watching, any changes that affect the inside of the object will
not register as changes. This includes modification, creation, and deletion. The following will
not cause the callback to execute:

// replace existing property
$scope.myObj.myPrim = 'Go Giants!';

// add new property
$scope.myObj.newProp = {};

// push onto array
$scope.myArr.push(2);

// modify element of array
$scope.myArr[0] = 6;

// delete property
delete myObj.myPrim;

JSFiddle: http://jsfiddle.net/msfrisbie/h7hvbfkg/

There's more…
The long and short of it is that reference watchers are the most efficient type of watchers,
so when you are looking to set up a watcher, reach for this one first.

See also
ff The Optimizing the application using equality $watch recipe demonstrates how to

effectively deploy the deep watch type

ff The Optimizing the application using $watchCollection recipe demonstrates how to
utilize the intermediate depth watcher in your application

ff The Optimizing the application using $watch deregistration recipe shows how your
application can evict watch list entries when no longer required

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/h7hvbfkg/
https://itbook.store/books/9781783283354

Screaming Fast AngularJS

232

Optimizing the application using equality
$watch

Equality watches register a listener that uses angular.equals() as the comparator,
which exhaustively examines the entirety of all objects to ensure that their respective
object hierarchies are identical. Both a new object assignment and property modification
will register as a change and invoke the watch callback.

This watcher should be used when any modification to an object is considered as a change
event, such as a user object having its properties at various depths modified.

How to do it…
The equality comparator is used when the optional Boolean third argument is set to true.
Other than that, these watchers are syntactically identical to reference comparator watchers,
as shown here:

$scope.myObj = {
 myPrim: 'Go Bears!',
 myArr: [3,1,4,1,5,9]
};

// watch myObj by equality
$scope.$watch('myObj', function(newVal, oldVal, scope) {
 // callback logic
}, true);

How it works…
The equality comparator will invoke the watch callback on every modification anywhere on or
inside the watched object.

Suppose that a $scope object is initialized as follows:

$scope.myObj = {
 myPrim: 'Go Bears!'
};
$scope.myArr = [3,1,4,1,5,9];

// watch myObj by equality
$scope.$watch('myObj', function() {
 // callback logic
}, true);
// watch myArr by equality

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 7

233

$scope.$watch('myArr', function() {
 // callback logic
}, true);

All of the following examples will cause a callback to be executed:

$scope.myArr = [];
$scope.myObj = 1;
$scope.myObj = {};
$scope.myObj.myPrim = 'Go Giants!';
$scope.myObj.newProp = {};
$scope.myArr.push(2);
$scope.myArr[0] = 6;
delete myObj.myPrim;

JSFiddle: http://jsfiddle.net/msfrisbie/w24mrkfm/

There's more…
Since a watcher must store the past version of the watched object to compare against it
and perform the actual comparison, equality watchers utilize both the angular.copy()
method to store the object and the angular.equals() method to test the equality. For
large objects, it is not difficult to discern that these operations will introduce latency into the
application. Equality comparator watchers should not be used unless absolutely necessary.

See also
ff The Optimizing the application using reference $watch recipe demonstrates how to

effectively deploy the basic watch type

ff The Optimizing the application using $watchCollection recipe demonstrates how to
utilize the intermediate depth watcher in your application

ff The Optimizing the application using $watch deregistration recipe shows how your
application can evict watch list entries when they are no longer required

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/w24mrkfm/
https://itbook.store/books/9781783283354

Screaming Fast AngularJS

234

Optimizing the application using
$watchCollection

AngularJS offers the $watchCollection intermediate watch type to register a listener that
utilizes a shallow watch depth for comparison. The $watchCollection type will register
a change event when any of the object's properties are modified, but it is unconcerned with
what those properties refer to.

How to do it…
This watcher is best used with arrays or flat objects that undergo frequent top-level property
modifications or reassignments. Currently, it does not provide the modified property(s)
responsible for the callback, only the entire objects, so the callback is responsible for
determining which properties or indices are incongruent. This can be done as follows:

$scope.myObj = {
 myPrimitive: 'Go Bears!',
 myArray: [3,1,4,1,5,9]
};

// watch myObj and all top-level properties by reference
$scope.$watchCollection('myObj', function(newVal, oldVal, scope) {
 // callback logic
});

// watch myObj.myArr and all its elements by reference
$scope.$watchCollection('myObj.myArr', function(newVal, oldVal, scope)
{
 // callback logic
});

How it works…
The $watchCollection utility will set up reference watchers on the model object and all
its existing properties. This will invoke the watch callback upon object reassignment or upon
top-level property reassignment.

Suppose that a $scope object is initialized as follows:

$scope.myObj = {
 myPrim: 'Go Bears!',
 innerObj: {
 innerProp: 'Go Bulls!'
 }

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 7

235

};
$scope.myArr = [3,1,4,1,5,9];

// watch myObj as a collection
$scope.$watchCollection('myObj', function() {
 // callback logic
});
// watch myArr as a collection
$scope.$watchCollection('myArr', function() {
 // callback logic
});

The following examples will cause a callback to be executed:

// object reassignment
$scope.myArr = [];
$scope.myObj = 1;
$scope.myObj = {};

// top-level property reassignment
$scope.myObj.myPrim = 'Go Giants!';

// array element reassignment
$scope.myArr[0] = 6;

// deletion of top level property
delete myObj.myPrim;

The following will not cause the callback to be executed:

// add new property
$scope.myObj.newProp = {};

// push new element onto array
$scope.myArr.push(2);

// modify, create, or delete nested property
$scope.myObj.innerObj.innerProp = 'Go Blackhawks!';
$scope.myObj.innerObj.otherProp = 'Go Sox!';
delete $scope.myObj.innerObj.innerProp;

JSFiddle: http://jsfiddle.net/msfrisbie/jnL12sck/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/jnL12sck/
https://itbook.store/books/9781783283354

Screaming Fast AngularJS

236

There's more…
The name $watchCollection is a bit deceptive (depending on how you think about
enumerable collections in JavaScript) as it might not perform how you would expect—
especially since it doesn't watch for elements that are being added to the collection. Since
explicitly-defined properties and array indices are effectively identical at the object property
level, $watchCollection is really more of a single-depth reference watcher.

See also
ff The Deploying and managing $watch types efficiently recipe describes methods to

keep your application's watch bloat under control

ff The Optimizing the application using reference $watch recipe demonstrates how to
effectively deploy the basic watch type

ff The Optimizing the application using equality $watch recipe demonstrates how to
effectively deploy the deep watch type

ff The Optimizing the application using $watch deregistration recipe shows how your
application can evict watch list entries when they are no longer required

Optimizing the application using $watch
deregistration

Nothing boosts watcher performance quite like destroying the watcher altogether. Should you
encounter a scenario where you no longer have a need to watch a model component, invoking
watch creation returns a deregistration function that will unbind that watcher when called.

How to do it…
When a watcher is initialized, it will return its deregistration function. You must store this
deregistration function until it needs to be invoked. This can be done as follows:

$scope.myObj = {}

// watch myObj by reference
var deregister = $scope.$watch('myObj', function(newVal, oldVal,
 scope) {
 // callback logic
});

// prevent additional modifications from invoking the callback
deregister();

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 7

237

JSFiddle: http://jsfiddle.net/msfrisbie/yLhwfvwL/

How it works…
The $watch destruction will normally be needed when a change in application state causes a
watch to no longer be useful while the scope that it is defined inside still exists. When a scope
is destroyed—either manually or automatically—the watchers defined upon it will be flagged as
eligible for garbage collection, and therefore, manual teardown is not required.

However, this is contingent upon the scope on which the watcher is destroyed. If your
application has watchers defined on a parent scope or $rootScope, they will not be
flagged for garbage collection and must be destroyed manually upon scope destruction
(usually accomplished with $scope.$on('$destroy', function() {})), or else your
application is subject to potential memory leaks in the form of orphaned watchers.

See also
ff The Deploying and managing $watch types efficiently recipe describes methods to

keep your application's watch bloat under control

ff The Optimizing the application using reference $watch recipe demonstrates how to
effectively deploy the basic watch type

ff The Optimizing the application using equality $watch recipe demonstrates how to
effectively deploy the deep watch type

ff The Optimizing the application using $watchCollection recipe demonstrates how to
utilize the intermediate depth watcher in your application

Optimizing template-binding watch
expressions

Any AngularJS template expression inside double braces ({{ }}) will register an equality
watcher using the enclosed AngularJS expression upon compilation.

How to do it…
Curly braces are easily recognized as the AngularJS syntax for template data binding. The
following is an example:

<div ng-show="{{myFunc()}}">
 {{ myObj }}
</div>

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/yLhwfvwL/
https://itbook.store/books/9781783283354

Screaming Fast AngularJS

238

On a high level, even to a beginner level AngularJS developer, this is painfully obvious.

Interpolating the two preceding expressions into the view implicitly creates two watchers for
each of these expressions. The corresponding watchers will be approximately equivalent to
the following:

$scope.$watch('myFunc()', function() { ... }, true);
$scope.$watch('myObj', function() { ... }, true);

How it works…
The AngularJS expression contained within {{ }} in the template will be the exact entry
registered in the watch list. Any method or logic within that expression will necessarily be
evaluated for its return value every time dirty checking is performed. An observant developer
will note that any logic contained in myFunc() will be evaluated on every single digest
cycle, which can degrade the performance extremely rapidly. Therefore, it will benefit your
application greatly to have the value of the watch entry calculable as quickly as possible. An
easy way to accomplish this is to not provide methods or logic as expressions at all, but to
calculate the output of the method and store it in a model property, which can then be passed
to the template.

There's more…
Template watch entries have setup and teardown processes automatically taken care of for
you. You must be careful though, as using {{ }} in your template will sneakily cause your
watch count to balloon. AngularJS 1.3 introduces bind once capabilities, which allow you to
interpolate model data into the view upon compilation, but not to bring along the overhead
of data binding, if it will not be necessary.

See also
ff The Inspecting your application's watchers recipe shows you how to inspect the

internals of your application to find where your watchers are concentrated

ff The Deploying and managing $watch types efficiently recipe describes methods to
keep your application's watch bloat under control

ff The Optimizing the application with the compile phase in ng-repeat recipe
demonstrates how to reduce redundant processing inside repeaters

ff The Optimizing the application using track by in ng-repeat recipe demonstrates how
to configure your application to prevent unnecessary rendering inside a repeater

ff The Trimming down watched models recipe provides the details of how you can
consolidate deep-watched models to reduce comparison and copy latency

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 7

239

Optimizing the application with the compile
phase in ng-repeat

An extremely common pattern in an AngularJS application is to have an ng-repeat
directive instance spit out a list of child directives corresponding to an enumerable collection.
This pattern can obviously lead to performance problems at scale, especially as directive
complexity increases. One of the best ways to curb directive processing bloat is to eliminate
any processing redundancy by migrating it to the compile phase.

Getting ready
Suppose that your application contains the following pseudo-setup. This is what we need for
the next section:

(index.html)

<div ng-repeat="element in largeCollection">

</div>

(app.js)

angular.module('myApp', [])
.directive('myDirective', function() {
 return {
 link: function(scope, el, attrs) {
 // general directive logic and initialization
 // instance-specific logic and initialization
 }
 };
});

How to do it…
A clever developer will note that since a directive's link function executes once for each
instance of the directive in the repeater, the current implementation is wasting time performing
the same actions for each instance.

Since the compile phase will only occur once for all directives inside an ng-repeat directive,
it makes sense to perform all generalized logic and initialization within that phase, and share
the results with the returned link function. This can be done as follows:

(app.js)

angular.module('myApp', [])
.directive('myDirective', function() {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Screaming Fast AngularJS

240

 return {
 compile: function(el, attrs) {
 // general directive logic and initialization
 return function link(scope, el, attrs) {
 // instance-specific logic and initialization
 // link function closure can access compile vars
 };
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/mopuxn8h/

How it works…
The ng-repeat directive will implicitly reuse the same compile function for all the directive
instances it creates. Therefore, it's a no-brainer that any redundant processing done inside
link functions should be moved to the compile function as far as possible.

There's more…
This is by no means a fix all for the sluggishness of ng-repeat, as high latency can stem
from a large number of common problems when iterating through huge amounts of bound
data. However, using the compile phase effectively is an often overlooked strategy that has
the potential to yield huge performance gains from a relatively simple refactoring.

Furthermore, even though this condenses logic into a single compile phase per ng-repeat,
the compile logic will still get executed once for every instance of the directive in the template.
If you truly want the logic to only get executed once for the entire application, use the fact that
service types are singletons to your advantage, and migrate the logic inside one of them.

See also
ff The Recognizing AngularJS landmines recipe demonstrates common

performance-leeching scenarios

ff The Deploying and managing $watch types efficiently recipe describes methods to
keep your application's watch bloat under control

ff The Optimizing the application using track by in ng-repeat recipe demonstrates how
to configure your application to prevent unnecessary rendering inside a repeater

ff The Trimming down watched models recipe provides the details of how you can
consolidate deep-watched models to reduce comparison and copy latency

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/mopuxn8h/
https://itbook.store/books/9781783283354

Chapter 7

241

Optimizing the application using track by in
ng-repeat

By default, ng-repeat creates a DOM node for each item in the collection and destroys
that DOM node when the item is removed. It is often the case that this is suboptimal for your
application's performance, as a constant stream of re-rendering a sizeable collection will
rarely be necessary at the repeater level and will tax your application's performance heavily.
The solution is to utilize the track by expression, which allows you to define how AngularJS
associates DOM nodes with the elements of the collection.

How to do it…
When track by $index is used as an addendum to the repeat expression, AngularJS will
reuse any existing DOM nodes instead of re-rendering them.

The original, suboptimal version is as follows:

<div ng-repeat="element in largeCollection">
 <!-- element repeater content -->
</div>

The optimized version is as follows:

<div ng-repeat="element in largeCollection track by $index">
 <!-- element repeater content -->
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/0dbj5rgt/

How it works…
By default, ng-repeat associates each collection element by reference to a DOM node.
Using the track by expression allows you to customize what that association is referencing
instead of the collection element itself. If the element is an object with a unique ID, that is
suitable. Otherwise, each repeated element is provided with $index on its scope, which can
be used to uniquely identify that element to the repeater. By doing this, the repeater will not
destroy the DOM node unless the index changes.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/0dbj5rgt/
https://itbook.store/books/9781783283354

Screaming Fast AngularJS

242

See also
ff The Recognizing AngularJS landmines recipe demonstrates common performance-

leeching scenarios

ff The Inspecting your application's watchers recipe shows you how to inspect the
internals of your application to find where your watchers are concentrated

ff The Deploying and managing $watch types efficiently recipe describes methods to
keep your application's watch bloat under control

ff The Optimizing the application with the compile phase in ng-repeat recipe
demonstrates how to reduce redundant processing inside repeaters

ff The Trimming down watched models recipe provide the details of how you can
consolidate deep-watched models to reduce comparison and copy latency

Trimming down watched models
The equality comparator watcher can be a fickle beast when tuning the application for better
performance. It's always best to avoid it when possible, but of course, that holds true until you
actually need to deep watch a collection of large objects. The overhead of watching a large
object is so cumbersome that sometimes distilling objects down to a subset for the purposes
of comparison can actually yield performance gains.

How to do it…
The following is the naïve method of an exhaustive equality comparator watch:

$scope.$watch('bigObjectArray', function() {
 // watch callback
}, true);

Instead of watching the entire object, it is possible to call map() on a collection of large
objects in order to extract only the components of the objects that actually need to be
watched. This can be done as follows:

$scope.$watch(
 // function that returns object to be watched
 function($scope) {
 // map the array to distill the relevant properties
 // this return value is what will be compared against
 return $scope.bigObjectArray.map(function(bigObject) {
 // return only the property we want

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 7

243

 return bigObject.relevantProperty;
 });
 },
 function(newVal, oldVal, scope) {
 // watch callback
 },
 // equality comparator
 true
);

JSFiddle: http://jsfiddle.net/msfrisbie/p45jb4dh/

How it works…
The $watch expression can be passed anything that it can compare to a past value; it does
not have to be an AngularJS string expression. The outer function is evaluated for its return
value, which is used as the value to compare against. For each cycle, the dirty checking
mechanism will map the array, test it against the old value, and record the new value.

There's more…
If the time it takes to copy and compare the entire object array is greater than the time it
takes to use map() on the array and compare the subsets, then using the watcher in this
way will yield a performance boost.

See also
ff The Recognizing AngularJS landmines recipe demonstrates common

performance-leeching scenarios

ff The Deploying and managing $watch types efficiently recipe describes the methods
to keep your application's watch bloat under control

ff The Optimizing the application with the compile phase in ng-repeat recipe
demonstrates how to reduce redundant processing inside repeaters

ff The Optimizing the application using track-by in ng-repeat recipe demonstrates how
to configure your application to prevent unnecessary rendering inside a repeater

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/p45jb4dh/
https://itbook.store/books/9781783283354

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

8
Promises

In this chapter, we will cover the following recipes:

ff Understanding and implementing a basic promise

ff Chaining promises and promise handlers

ff Implementing promise notifications

ff Implementing promise barriers with $q.all()

ff Creating promise wrappers with $q.when()

ff Using promises with $http

ff Using promises with $resource

ff Using promises with Restangular

ff Incorporating promises into native route resolves

ff Implementing nested ui-router resolves

Introduction
AngularJS promises are an odd and fascinating component of the framework. They are integral
to a large number of core components, and yet many references only mention them in passing.
They offer an extremely robust and advanced mechanism of application control, and as
application complexity begins to scale up, you as an AngularJS developer will find that promises
are nearly impossible to ignore. This, however, is a good thing; promises are extraordinarily
powerful, and they will make your life much simpler once they are fully understood.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Promises

246

AngularJS promises will soon be subjected to a good deal of modification
with the upcoming ES6 promise implementation. Currently, they are a bit of a
hybrid implementation, with the CommonJS promise proposal as the primary
influence. As ES6 becomes more widely disseminated, the AngularJS promise
implementation will begin to converge with that of native ES6 promises.

Understanding and implementing a basic
promise

Promises are absolutely essential to many of the core aspects of AngularJS. When learning
about promises for the first time, the formal terms can be an impediment to their complete
understanding as their literal definitions convey very little about how the actual promise
components act.

How to do it…
A promise implementation in one of its simplest forms is as follows:

// create deferred object through $q api
var deferred = $q.defer();

// deferred objects are created with a promise attached
var promise = deferred.promise;

// define handlers to execute once promise state becomes definite
promise.then(function success(data) {
 // deferred.resolve() handler
 // in this implementation, data === 'resolved'
}, function error(data) {
 // deferred.reject() handler
 // in this implementation, data === 'rejected'
});

// this function can be called anywhere to resolve the promise
function asyncResolve() {
 deferred.resolve('resolved');
};

// this function can be called anywhere to reject the promise
function asyncReject() {
 deferred.reject('rejected');
};

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 8

247

To a person seeing promises for the first time, what makes them difficult to comprehend is
quite plain: much of what is going on here is not intuitive.

How it works…
The promise ecosystem can be more readily decoded by gaining a better understanding of the
nomenclature behind it, and what problems it intends to solve.

Promises are by no means a new concept in AngularJS, or even in JavaScript; part of the
inspiration for $q was taken from Kris Kowal's Q library, and for a long time, jQuery has
had key promise concepts incorporated into many of its features.

Promises in JavaScript confer to the developer the ability to write asynchronous code in
parallel with synchronous code more easily. In JavaScript, this was formerly solved with
nested callbacks, colloquially referred to as callback hell. A single callback-oriented
function might be written as follows:

// a prototypical asynchronous callback function
function asyncFunction(data, successCallback, errorCallback) {
 // this will perform some operation that may succeed,
 // may fail, or may not return at all, any of which
 // occurs in an unknown amount of time

 // this pseudo-response contains a success boolean,
 // and the returned data if successful
 var response = asyncOperation(data);

 if (response.success === true) {
 successCallback(response.data);
 } else {
 errorCallback();
 }
};

If your application does not demand any semblance of in-order or collective completion,
then the following will suffice:

function successCallback(data) {
 // asyncFunction succeeded, handle data appropriately
};
function errorCallback() {
 // asyncFunction failed, handle appropriately
};

asyncFunction(data1, successCallback, errorCallback);
asyncFunction(data2, successCallback, errorCallback);
asyncFunction(data3, successCallback, errorCallback);

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Promises

248

This is almost never the case though, since your application will often demand either that
the data should be acquired in a sequence or that an operation that requires multiple
asynchronously-acquired pieces of data should only be executed once all the pieces have
been successfully acquired. In this case, without access to promises, the callback hell
emerges, as follows:

asyncFunction(data1, function(foo) {
 asyncFunction(data2, function(bar) {
 asyncFunction(data3, function(baz){
 // foo, bar, baz can now all be used together
 combinatoricFunction(foo, bar, baz);
 }, errorCallback);
 }, errorCallback);
}, errorCallback);

This so-called callback hell is really just attempting to serialize three asynchronous calls,
but the parametric topology of these asynchronous functions forces the developer to subject
their application to this ugliness. Promises to the rescue!

From this point forward in this recipe, promises will be discussed
pertaining to how they are implemented within AngularJS, rather than
the conceptual definition of a promise API. There is a substantial overlap
between the two, but for your benefit, the discussion in this recipe will lean
towards the side of implementation rather than theory.

Basic components and behavior of a promise
The AngularJS promise architecture exposed by the $q service decomposes into a
dichotomy: deferreds and promises.

Deferreds
A deferred is the interface through which the application will set and alter the state of
the promise.

An AngularJS deferred object has exactly one promise attached to it by default, which is
accessible through the promise property, as follows:

var deferred = $q.defer()
 , promise = deferred.promise;

In the same way that a single promise can have multiple handlers bound to a single state, a
single deferred can be resolved or rejected in multiple places in the application, as shown here:

var deferred = $q.defer()
 , promise = deferred.promise;

// the following are pseudo-methods, each of which can be called

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 8

249

// independently and asynchronously, or not at all
function canHappenFirst() { deferred.resolve(); }
function mayHappenFirst() { deferred.resolve(); }
function mightHappenFirst() { deferred.reject(); }

Once a deferred's state is set to resolved or rejected anywhere in the application, attempts to
reject or resolve that deferred further will be silently ignored. A promise state transition occurs
only once, and it cannot be altered or reversed. Refer to the following code:

var deferred = $q.defer()
 , promise = deferred.promise;

// define handlers on the promise to gain visibility
// into their execution
promise.then(function resolved() {
 $log.log('success');
}, function rejected() {
 $log.log('rejected');
});

// verify initial state
$log.log(promise.$$state.status); // 0

// resolve the promise
deferred.resolve();
// >> "resolved"

$log.log(promise.$$state.status); // 1
// output and state check verify state transition

// attempt to reject the already resolved promise
deferred.reject();

$log.log(promise.$$state.status); // 1
// output and state check verify no state transition

JSFiddle: http://jsfiddle.net/msfrisbie/e4saopyr/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/e4saopyr/
https://itbook.store/books/9781783283354

Promises

250

Promises
A promise represents an unknown state that could transition into a known state at some point
in the future.

A promise can only exist in one of three states. AngularJS represents these states within the
promises with an integer status:

ff 0: This is the pending state that represents an unfulfilled promise waiting for
evaluation. This is the initial state. An example is as follows:
var deferred = $q.defer()
 , promise = deferred.promise;

$log.log(promise.$$state.status); // 0

ff 1: This is the resolved state that represents a successful and fulfilled promise.
A transition to this state cannot be altered or reversed. An example is as follows:
var deferred = $q.defer()
 , promise = deferred.promise;

$log.log(promise.$$state.status); // 0

deferred.resolve('resolved');

$log.log(promise.$$state.status); // 1
$log.log(promise.$$state.value); // "resolved"

ff 2: This is the rejected state that represents an unsuccessful and rejected
promise caused by an error. A transition to this state cannot be altered
or reversed. An example is as follows:
var deferred = $q.defer()
 , promise = deferred.promise;

$log.log(promise.$$state.status); // 0

deferred.reject('rejected');

$log.log(promise.$$state.status); // 2
$log.log(promise.$$state.value); // "rejected"

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 8

251

States do not necessarily have a data value associated with them—they only confer to the
promise a defined state of evaluation. Take a look at the following code:

var deferred = $q.defer()
 , promise = deferred.promise;

promise.then(successHandler, failureHandler);

// state can be defined with any of the following:
// deferred.resolve();
// deferred.reject();
// deferred.resolve(myData);
// deferred.reject(myData);

An evaluated promise (resolved or rejected) is associated with a handler for each of the
states. This handler is invoked upon the promise's transition into that respective state.
These handlers can access data returned by the resolution or rejection, as shown here:

var deferred = $q.defer()
 , promise = deferred.promise;

// $log.info is the resolve handler,
// $log.error is the reject handler
promise.then($log.info, $log.error);

deferred.resolve(123);
// (info) 123

// reset to demonstrate reject()
deferred = $q.defer();
promise = deferred.promise;

promise.then($log.log, $log.error);

deferred.reject(123);
// (error) 123

JSFiddle: http://jsfiddle.net/msfrisbie/rz2s9uaq/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/rz2s9uaq/
https://itbook.store/books/9781783283354

Promises

252

Unlike callbacks, handlers can be defined at any point in the promise life cycle, including after
the promise state has been defined, as shown here:

var deferred = $q.defer()
 , promise = deferred.promise;

// immediately resolve the promise
deferred.resolve(123);

// subsequently define a handler, will be immediately
// invoked since promise is already resolved
promise.then($log.log);
// 123

In the same way that a single deferred can be resolved or rejected in multiple places in the
application, a single promise can have multiple handlers bound to a single state. For example, a
single promise with multiple resolved handlers attached to it will invoke all of the handlers if the
resolved state is reached; the same is true for rejected handlers as well. This is shown here:

var deferred = $q.defer()
 , promise = deferred.promise
 , cb = function() { $log.log('called'); };

promise.then(cb);
promise.then(cb);

deferred.resolve();
// called
// called

Variables, object properties, or methods preceded with $$ denote
that they are private, and while they are very handy for inspection
and debugging purposes, they shouldn't be touched in production
applications without good reason.

See also
ff The Chaining promises and promise handlers recipe provides the details of

combinatorial strategies involving promises in order to create an advanced
application flow

ff The Implementing promise notifications recipe demonstrates how to use notifications
for intermediate communication when a promise takes a long time to get resolved

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 8

253

ff The Implementing promise barriers with $q.all() recipe shows how to combine a
group of promises into a single, all-or-nothing promise

ff The Creating promise wrappers with $q.when() recipe shows how to normalize
JavaScript objects into promises

Chaining promises and promise handlers
Much of the purpose of promises is to allow the developer to serialize and reason
about independent asynchronous actions. This can be accomplished by utilizing
promise chaining in AngularJS.

Getting ready
Assume that all the examples in this recipe have been set up in the following manner:

var deferred = $q.defer()
 , promise = deferred.promise;

Also, assume that $q and other built-in AngularJS services have already been injected into the
current lexical scope.

How to do it…
The promise handler definition method then() returns another promise, which can further
have handlers defined upon it in a chain handler, as shown here:

var successHandler = function() { $log.log('called'); };

promise
 .then(successHandler)
 .then(successHandler)
 .then(successHandler);

deferred.resolve();
// called
// called
// called

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Promises

254

Data handoff for chained handlers
Chained handlers can pass data to their subsequent handlers, as follows:

var successHandler = function(val) {
 $log.log(val);
 return val+1;
};

promise
 .then(successHandler)
 .then(successHandler)
 .then(successHandler);

deferred.resolve(0);
// 0
// 1
// 2

JSFiddle: http://jsfiddle.net/msfrisbie/n03ncuby/

Rejecting a chained handler
Returning normally from a promise handler will, by default, signal child promise states to
become resolved. If you want to signal child promises to get rejected, you can do so by
returning $q.reject(). This can be done as follows:

promise
.then(function () {
 // initial promise resolved handler instructs handlers
 // child promise(s) to be rejected
 return $q.reject(123);
})
.then(
 // child promise resolved handler
 function(data) {
 $log.log("resolved", data);
 },
 // child promise rejected handler
 function(data) {
 $log.log("rejected", data);
 }

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/n03ncuby/
https://itbook.store/books/9781783283354

Chapter 8

255

);

deferred.resolve();
// "rejected", 123

JSFiddle: http://jsfiddle.net/msfrisbie/h5au7j2f/

How it works…
A promise reaching a final state will trigger child promises to follow it in turn. This simple but
powerful concept allows you to build broad and fault-tolerant promise structures that elegantly
mesh collections of dependent asynchronous actions.

There's more…
The topology of AngularJS promises lends itself to some interesting utilization patterns,
as follows.

Promise handler trees
Promise handlers will be executed in the order that the promises are defined. If a promise has
multiple handlers attached to a single state, then that state will execute all its handlers before
resolving the following chained promise. This is shown here:

var incr = function(val) {
 $log.log(val);
 return val+1;
}

// define the top level promise handler
promise.then(incr);
// append another handler for the first promise, and collect
// the returned promise in secondPromise
var secondPromise = promise.then(incr);
// append another handler for the second promise, and collect
// the returned promise in thirdPromise
var thirdPromise = secondPromise.then(incr);

// at this point, deferred.resolve() will:
// resolve promise; promise's handlers executes
// resolve secondPromise; secondPromises's handler executes

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/h5au7j2f/
https://itbook.store/books/9781783283354

Promises

256

// resolve thirdPromise; no handlers defined yet

// additional promise handler definition order is
// unimportant; they will be resolved as the promises
// sequentially have their states defined
secondPromise.then(incr);
promise.then(incr);
thirdPromise.then(incr);

// the setup currently defined is as follows:
// promise -> secondPromise -> thirdPromise
// incr() incr() incr()
// incr() incr()
// incr()

deferred.resolve(0);
// 0
// 0
// 0
// 1
// 1
// 2

JSFiddle: http://jsfiddle.net/msfrisbie/4msybmc9/
Since the return value of a handler decides whether or not the promise
state is resolved or rejected, any of the handlers associated with a
promise are able to set the state—which, as you may recall, can only be
set once. The defining of the parent promise state will trigger the child
promise handlers to execute.

It should now be apparent how trees of the promise functionality can be derived from the
combinations of promise chaining and handler chaining. When used properly, they can
yield extremely elegant solutions to difficult and ugly asynchronous action serialization.

The catch() method
The catch() method is a shorthand for promise.then(null, errorCallback).
Using it can lead to slightly cleaner promise definitions, but it is no more than syntactical
sugar. It can be used as follows:

promise
.then(function () {
 return $q.reject();
})
.catch(function(data) {

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/4msybmc9/
https://itbook.store/books/9781783283354

Chapter 8

257

 $log.log("rejected");
});

deferred.resolve();
// "rejected"

JSFiddle: http://jsfiddle.net/msfrisbie/rLg79m29/

The finally() method
The finally() method will execute irrespective of whether the promise was rejected
or resolved. It is convenient for applications that need to perform some sort of cleanup,
independent of what the final state of the promise becomes. It can be used as follows:

var deferred1 = $q.defer();
 , promise1 = deferred1.promise
 , deferred2 = $q.defer()
 , promise2 = deferred2.promise
 , cb = $log.log("called");

promise1.finally(cb);
promise2.finally(cb);

deferred1.resolve();
// "called"
deferred2.reject();
// "called"

JSFiddle: http://jsfiddle.net/msfrisbie/owucqmea/

See also
ff The Understanding and implementing a basic promise recipe goes into more detail

about how AngularJS promises work

ff The Implementing promise notifications recipe demonstrates how to use notifications
for intermediate communication when a promise takes a long time to get resolved

ff The Implementing promise barriers with $q.all() recipe shows how to combine a
group of promises into a single, all-or-nothing promise

ff The Creating promise wrappers with $q.when() recipe shows how to normalize
JavaScript objects into promises

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/rLg79m29/
http://jsfiddle.net/msfrisbie/owucqmea/
https://itbook.store/books/9781783283354

Promises

258

Implementing promise notifications
AngularJS also offers the ability to provide notifications about promises before a final state
has been reached. This is especially useful when promises have long latencies and updates
on their progress is desirable, such as progress bars.

How to do it…
The promise.then() method accepts a third argument, a notification handler, which can be
accessed through the deferred an unlimited number of times until the promise state has been
resolved. This is shown here:

promise
.then(
 // resolved handler
 function() {
 $log.log('success');
 },
 // empty rejected handler
 null,
 // notification handler
 $log.log
);

function resolveWithProgressNotifications() {
 for (var i=0; i<=100; i+=20) {
 // pass the data to the notification handler
 deferred.notify(i);
 if (i>=100) { deferred.resolve() };
 };
}

resolveWithProgressNotifications();
// 0
// 20
// 40
// 60
// 80
// 100
// "success"

JSFiddle: http://jsfiddle.net/msfrisbie/5798q0ru/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/5798q0ru/
https://itbook.store/books/9781783283354

Chapter 8

259

How it works…
The notification handler allows the notifications to be enqueued upon the promise, and they are
sequentially executed at the conclusion of the $digest cycle. Another example is as follows:

promise
.then(
 function() {
 $log.log('success');
 },
 null,
 $log.log
);

function asyncNotification() {
 deferred.notify('Hello, ');
 $log.log('world!');
 deferred.resolve();
};

// this function is invoked by some non-AngularJS entity
asyncNotification();
// world!
// Hello,
// success

JSFiddle: http://jsfiddle.net/msfrisbie/cn4pLbcw/

The order of the console log statements might surprise you. Since the notifications often arrive
from an event that is not bound to the AngularJS $digest cycle, a call to $scope.$apply()
will push through the execution of the notification handler(s) immediately. This is shown here:

promise
.then(
 function() {
 $log.log('success');
 },
 null,
 $log.log
);

function newAsyncNotification() {
 deferred.notify('Hello, ');

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/cn4pLbcw/
https://itbook.store/books/9781783283354

Promises

260

 $scope.$apply();
 $log.log('world!');
 deferred.resolve();
};

// this function is invoked by some non-AngularJS entity
newAsyncNotification();
// Hello,
// world!
// success

JSFiddle: http://jsfiddle.net/msfrisbie/0rpbu07z/

There's more…
The notification handler cannot transit the promise into a final state with its return value,
although it can use the deferred object to cause a state transition, as demonstrated earlier
in this recipe.

Notifications will not be executed after the promise has transitioned to a final state,
as shown here:

// resolve or reject handlers not needed in this example
promise.then(null, null, $log.log);

deferred.notify('Hello, ');
deferred.resolve();
deferred.notify('world!');

// Hello,

Implementing promise barriers with $q.all()
You might find that your application requires the use of promises in an all-or-nothing type of
situation. That is, it will need to collectively evaluate a group of promises, and that collection
will be resolved as a single promise if and only if all of the contained promises are resolved;
if any one of them is rejected, the aggregate promise will be rejected.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/0rpbu07z/
https://itbook.store/books/9781783283354

Chapter 8

261

How to do it…
The $q.all() method accepts an enumerable collection of promises, either an array of
promise objects or an object with a number of promise properties, and will attempt to resolve
all of them as a single aggregate promise. The parameter of the aggregate resolved handler
will be an array or object that matches the resolved values of the contained promises. This is
shown here:

var deferred1 = $q.defer()
 , promise1 = deferred1.promise
 , deferred2 = $q.defer()
 , promise2 = deferred2.promise;

$q.all([promise1, promise2]).then($log.log);

deferred1.resolve(456);
deferred2.resolve(123);
// [456, 123]

JSFiddle: http://jsfiddle.net/msfrisbie/L8Lxf1ho/

If any of the promises in the collection are rejected, the aggregate promise will be rejected.
The parameter of the aggregate rejected handler will be the returned value of the rejected
promise. This is shown here:

var deferred1 = $q.defer()
 , promise1 = deferred1.promise
 , deferred2 = $q.defer()
 , promise2 = deferred2.promise;

$q.all([promise1, promise2]).then($log.log, $log.error);

// resolve a collection promise, no handler execution
deferred1.resolve(456);

// reject a collection promise, rejection handler executes
deferred2.reject(123);
// (error) 123

JSFiddle: http://jsfiddle.net/msfrisbie/0mjbn62L/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/L8Lxf1ho/
http://jsfiddle.net/msfrisbie/0mjbn62L/
https://itbook.store/books/9781783283354

Promises

262

How it works…
As demonstrated, the aggregate promise will reach a final state only when all of the enclosed
promises are resolved, or when a single enclosed promise is rejected. Using this type of
promise is useful when the promises in a collection do not need to reason about one another,
but their collective completion is the only metric of success for the group.

In the case of a contained rejection, the aggregate promise will not wait for the remaining
promises to get completed, but those promises will not be prevented from reaching their
final state. Only the first promise to be rejected will be able to pass the rejection data to the
aggregate promise rejection handler.

There's more…
The $q.all() method is in many ways extremely similar to an operating-system-level process
synchronization barrier. A process barrier is a common point in a thread instruction execution,
which a collection of processes will reach independently and at different times, and none can
proceed until all have reached this point. In the same way, $q.all() will not proceed unless
either all of the contained promises have been resolved (reached the barrier) or a single
contained rejection has prevented that state from ever being achieved, in which case the
failover handler logic will take over.

Since $q.all() allows the recombination of promises, this also allows your application's
promise chains to become a directed acyclic graph (DAG). The following diagram is an
example of a promise progression graph that has diverged and later converged:

$q.all (promiseB. promiseD)

promiseA

promiseB promiseC

promiseD

promiseE

This level of complexity is uncommon, but it is available for use should your application
require it.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 8

263

See also
ff The Understanding and implementing a basic promise recipe goes into more detail

about how AngularJS promises work

ff The Chaining promises and promise handlers recipe provides the details of
combinatorial strategies that involve promises to create an advanced application flow

ff The Implementing promise barriers with $q.all() recipe shows how to combine a
group of promises into a single, all-or-nothing promise

ff The Creating promise wrappers with $q.when() recipe shows how to normalize
JavaScript objects into promises

Creating promise wrappers with $q.when()
AngularJS includes the $q.when() method that allows you to normalize JavaScript objects
into promise objects.

How to do it…
The $q.when() method accepts promise and non-promise objects, as follows:

var deferred = $q.defer()
 , promise = deferred.promise;

$q.when(123);
$q.when(promise);
// both create new promise objects

If $q.when() is passed a non-promise object, it is effectively the same as creating an
immediately resolved promise object, as shown here:

var newPromise = $q.when(123);

// promise will wait for a $digest cycle to update $$state.status,
// this forces it to update for inspection
$scope.$apply();

// inspecting the status reveals it has already resolved
$log.log(newPromise.$$state.status);
// 1

// since it is resolved, the handler will execute immediately
newPromise.then($log.log);
// 123

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Promises

264

JSFiddle: http://jsfiddle.net/msfrisbie/ftgydnqn/

How it works…
The $q.when() method wraps whatever is passed to it with a new promise. If it is passed
a promise, the new promise will retain the state of that promise. Otherwise, if it is passed
a non-promise value, the new promise created will get resolved and pass that value to the
resolved handler.

Keep in mind that the $q.reject() method returns a rejected
promise, so $q.when($q.reject()) is simply wrapping an
already rejected promise.

There's more…
Since $q.when() will return an identical promise when passed a promise, this method
is effectively idempotent. However, the promise argument and the returned promise are
different promise objects, as shown here:

$log.log($q.when(promise)===promise);
// false

See also
ff The Understanding and implementing a basic promise recipe goes into more detail

about how AngularJS promises work

ff The Chaining promises and promise handlers recipe provides the details of
combinatorial strategies that involve promises to create an advanced application flow

ff The Implementing promise notifications recipe demonstrates how to use notifications
for intermediate communication when a promise takes a long time to get resolved

ff The Implementing promise barriers with $q.all() recipe shows how to combine a
group of promises into a single, all-or-nothing promise

Using promises with $http
HTTP requests are the quintessential variable latency operations that demand a promise
construct. Since it would appear that developers are stuck with the uncertainty stemming
from TCP/IP for the foreseeable future, it behooves you to architect your applications to
account for this.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/ftgydnqn/
https://itbook.store/books/9781783283354

Chapter 8

265

How to do it…
The $http service methods return an AngularJS promise with some extra methods,
success() and error(). These extra methods will return the same promise returned by
the $http service, as opposed to .then(), which returns a new promise. This allows you
to chain the methods as $http().success().then() and have the .success() and
.then() promises attempt to resolve simultaneously.

The following two implementations are more or less identical, as everything is being chained
upon the $http promise:

// Implementation #1
// $http.get() returns a promise
$http.get('/myUrl')
// .success() is an alias for the resolved handler
.success(function(data, status, headers, config, statusText) {
 // resolved handler
})
// .error() is an alias for the rejected handler
.error(function(data, status, headers, config, statusText) {
 // rejected handler
});

// Implementation #2
$http.get('/myUrl')
.then(
 // resolved handler
 function(response) {
 // response object has the properties
 // data, status, headers, config, statusText
 },
 // rejected handler
 function(response) {
 // response object has the properties
 // data, status, headers, config, statusText
 }
);

However, the following two implementations are not identical:

// Implementation #3
// $http.get() returns a promise
$http.get('/myUrl')
// .success() is an alias for the resolved handler
.success(function(data, status, headers, config, statusText) {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Promises

266

 // resolved handler
})
// .error() is an alias for the rejected handler
.error(function(data, status, headers, config, statusText) {
 // rejected handler
})
.then(...);

// Implementation #4
$http.get('/myUrl')
.then(
 // resolved handler
 function(response) {
 // response object has the properties
 // data, status, headers, config, statusText
 },
 // rejected handler
 function(response) {
 // response object has the properties
 // data, status, headers, config, statusText
 }
)
.then(...);

The differences are explained in the following example:

// these are split into variables to be able to inspect
// the returned promises
var a = $http.get('/')
 , b = a.success(function() {})
 , c = b.error(function() {})
 , d = c.then(function() {});

$log.log(a===b, a===c, a===d, b===c, b===d, c===d);
// true true false true false false

var e = $http.get('/')
 , f = e.then(function() {})
 , g = e.then(function() {});

$log.log(e===f, e===g, f===g);
// false false false

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 8

267

JSFiddle: http://jsfiddle.net/msfrisbie/sh60bhc8/
For the sake of this example, the $http.get() requests are only
accessing routes from the same domain that served the page. Keep in
mind that using a foreign origin URL in the context of this example will
bring about Cross-origin resource sharing (CORS) errors unless you
properly modify the request headers to allow CORS requests.

How it works…
The success/error dichotomy for an HTTP request is decided by the response status code,
as follows:

ff Any code between 200 and 299 will register as a successful request and the resolved
handler will be executed

ff Any code between 300 and 399 will indicate a redirect, and XMLHttpRequest will
follow the redirect to acquire a concrete status code

ff Any code between 400 and 599 will register as an error and the rejected handler will
be executed

See also
ff The Using promises with $resource recipe discusses how ngRoute can be used as a

promise-centric resource manager

ff The Using promises with Restangular recipe demonstrates how the popular third-party
resource manager is extensively integrated with AngularJS promise conventions

Using promises with $resource
As part of the ngResource module, $resource provides a service to manage connections
with RESTful resources. As far as vanilla AngularJS goes, this is in some ways the closest you'll
get to a formal data object model infrastructure. The $resource tool is highly extensible
and is an excellent standalone tool upon which to build applications if third-party libraries like
Restangular aren't your cup of tea.

As the API-focused wrapper for $http, $resource also provides an interface for using
promises in conjunction with the HTTP requests that it generates.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/sh60bhc8/
https://itbook.store/books/9781783283354

Promises

268

How to do it…
Although it wraps $http, $resource actually does not use promises in its default
implementation. The $promise property can be used to access the promise object
of the HTTP request, as follows:

// creates the resource object, which exposes get(), post(), etc.
var Widget = $resource('/widgets/:widgetId', {widgetId: '@id'});

// resource object must be coaxed into returning its promise
// this can be done with the $promise property
Widget.get({id: 8})
.$promise
.then(function(widget) {
 // widget is the returned object with id=8
});

JSFiddle: http://jsfiddle.net/msfrisbie/upzh1f97/

How it works…
A $resource object accepts success and error function callbacks as its second and third
arguments, which can be utilized if the developer desires a callback-driven request pattern
instead of promises. Since it does use $http, promises are still very much integrated and
available to the developer.

See also
ff The Using promises with $http recipe demonstrates how AngularJS promises are

integrated with AJAX requests

ff The Using promises with Restangular recipe demonstrates how the popular third-party
resource manager is extensively integrated with AngularJS promise conventions

Using promises with Restangular
Restangular, the extremely popular REST API extension to AngularJS, takes a much more
promise-centric approach compared to $resource.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/upzh1f97/
https://itbook.store/books/9781783283354

Chapter 8

269

How to do it…
The Restangular REST API mapping will always return a promise. This is shown here:

(app.js)

angular.module('myApp', ['restangular'])
.controller('Ctrl', function($scope, Restangular) {
 Restangular
 .one('widget', 4)
 // get() will return a promise for the GET request
 .get()
 .then(
 function(data) {
 // consume response data in success handler
 $scope.status = 'One widget success!';
 },
 function(response) {
 // consume response message in error handler
 $scope.status = 'One widget failure!';
 }
);

 // generally, the API mapping is stored in a variable,
 // and the promise-returning method will be invoked as needed
 var widgets = Restangular.all('widgets');

 // create the request promise
 widgets.getList()
 .then(function(widgets) {
 // success handler
 $scope.status = 'Many widgets success!';
 }, function() {
 // error handler
 $scope.status = 'Many widgets failure!';
 });
});

JSFiddle: http://jsfiddle.net/msfrisbie/5ud5210n/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/5ud5210n/
https://itbook.store/books/9781783283354

Promises

270

Since Restangular objects don't create promises until the request method is invoked, it is
possible to chain Restangular route methods before creating the request promise, in order
to match the nested URL structure. This can be done as follows:

// GET request to /widgets/6/features/11
Restangular
.one('widgets', 6)
.one('features', 11)
.get()
.then(function(feature) {
 // success handler
});

JSFiddle: http://jsfiddle.net/msfrisbie/8qrkkyyv/

How it works…
Every Restangular object method can be chained to develop nested URL objects, and every
request to a remote API through Restangular returns a promise. In conjunction with its flexible
and extensible resource CRUD methods, it creates a powerful toolkit to communicate with
REST APIs.

See also
ff The Using promises with $http recipe demonstrates how AngularJS promises are

integrated with AJAX requests

ff The Using promises with $resource recipe discusses how ngRoute can be used as a
promise-centric resource manager

Incorporating promises into native route
resolves

AngularJS routing supports resolves, which allow you to demand that some work should be
finished before the actual route change process begins. Routing resolves accept one or more
functions, which can either return values or promise objects that it will attempt to resolve.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/8qrkkyyv/
https://itbook.store/books/9781783283354

Chapter 8

271

How to do it…
Resolves are declared in the route definition, as follows:

(app.js)

angular.module('myApp', ['ngRoute'])
.config(function($routeProvider){
 $routeProvider
 .when('/myUrl', {
 template: '<h1>Resolved!</h1>',
 // resolved values are injected by property name
 controller: function($log, myPromise, myData) {
 $log.log(myPromise, myData);
 },
 resolve: {
 // $q injected into resolve function
 myPromise: function($q) {
 var deferred = $q.defer()
 , promise = deferred.promise;
 deferred.resolve(123);
 return promise;
 },
 myData: function() {
 return 456;
 }
 }
 });
})
.controller('Ctrl', function($scope, $location) {
 $scope.navigate = function() {
 $location.url('myUrl')
 };
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <button ng-click="navigate()">Navigate!</button>
 <div ng-view></div>
 <div>
</div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Promises

272

With this configuration, navigating to /myUrl will log 123, 456 and render the template.

JSFiddle: http://jsfiddle.net/msfrisbie/z0fymttz/

How it works…
The premise behind route resolves is that the promises gather data or perform tasks that
need to be done before the route changes and the controller is created. A resolved promise
signals the router that the page is safe to be rendered.

The object provided to the route resolve evaluates the functions provided to it and
consequently makes injectables available in the route controller.

There are several important details to keep in mind involving route resolves, which are
as follows:

ff Route resolve functions that return raw values are not guaranteed to be executed
until they are injected, but functions that return promises are guaranteed to have
those promises get resolved or rejected before the route changes and the controller
is initialized.

ff Route resolves can only be injected into controllers defined in the route definition.
Controllers named in the template via ng-controller cannot have the route
resolve dependencies injected into them.

ff Routes with a specified route controller but without a specified template will never
initialize the route controller, but the route resolve functions will still get executed.

ff Route resolves will wait for either all the promises to get resolved or one of the
promises to get rejected before proceeding to navigate to the URL.

There's more…
By definition, promises are not guaranteed to undergo a final state transition, and the
AngularJS router diligently waits for promises to get resolved unless they get rejected.
Therefore, if a promise never gets resolved, the route change will never occur and your
application will appear to hang.

See also
ff The Implementing nested ui-router resolves recipe provides the details of basic

and advanced strategies used to integrate promises into nested views and their
accompanying resources

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/z0fymttz/
https://itbook.store/books/9781783283354

Chapter 8

273

Implementing nested ui-router resolves
As you gain experience as an AngularJS developer, you will come to realize that the built-in
router faculties are quite brittle in a number of ways—mainly that there can only be a single
instance of ng-view for dynamic route templating. AngularUI provides a superb solution to
this in ui-router, which allows nested states and views, named views, piecewise routing,
and nested resolves.

How to do it…
The ui-router framework supports resolves for states in the same way that ngRoute does
for routes. Suppose your application displayed individual widget pages that list the features
each widget has, as well as individual pages for each widget's features.

State promise inheritance
Since nested states can be defined with relative state routing, you might encounter the scenario
where the URL parameters are only available within the state in which they are defined. For this
application, the child state has a need to use the widgetId and the featureId value in the
child state controller. This can be solved with nested route promises, as shown here:

(app.js)

angular.module('myApp', ['ui.router'])
.config(function($stateProvider) {
 $stateProvider
 .state('widget', {
 url: '/widgets/:widgetId',
 template: 'Widget ID: {{ widgetId }} <div ui-view></div>',
 controller: function($scope, $stateParams, widgetId){
 // the widgetId is only available in this state due to
 // the :widgetId variable definition in the state url
 $scope.widgetId = $stateParams.widgetId;
 },
 resolve:{
 // the stateParam widget property is wrapped in a property
 // to enable it to be injected in child states
 widgetId: function($stateParams){
 return $stateParams.widgetId;
 }
 }
 })
 .state('widget.feature', {

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Promises

274

 url: '/features/:featureId',
 template: 'Feature ID: {{ featureId }}',
 // widgetId can now be injected from the parent state
 controller: function($scope, $stateParams, widgetId){
 // both widgetId and featureId are made available
 // in this state controller
 $scope.featureId = $stateParams.featureId;
 $scope.widgetId = widgetId;
 }
 });
});

(index.html)

<div ng-app="myApp">
 <a ui-sref="widget({widgetId:6})">
 See Widget 6

 <a ui-sref="widget.feature({widgetId: 6, featureId:11})">
 See Feature 11 of Widget 6

 <div ui-view></div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/0kpos1xt/

Here, the child state has access to the injected widgetId value through the inherited
resolution defined in the parent state.

Single-state promise dependencies
A state's resolve promises have the ability to depend on one another, which allows you the
convenience of requesting data without explicitly defining the order or dependence. This can
be done as follows:

(app.js)

angular.module('myApp', ['ui.router'])
.config(function($stateProvider) {
 $stateProvider
 .state('widget', {
 url: '/widgets',
 template: 'Widget: {{ widget }} Features: {{ features }}',

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/0kpos1xt/
https://itbook.store/books/9781783283354

Chapter 8

275

 controller: function($scope, widget, features){
 // resolve promises are injectable in the route controller
 $scope.widget = widget;
 $scope.features = features;
 },
 resolve: {
 // standard resolve value promise definition
 widget: function() {
 return {
 name: 'myWidget'
 };
 },
 // resolve promise injects sibling promise
 features: function(widget) {
 return ['featureA', 'featureB'].map(function(feature) {
 return widget.name+':'+feature;
 });
 }
 }
 });
});

(index.html)

<div ng-app="myApp">
 <a ui-sref="widget({widgetId:6})">See Widget 6
 <div ui-view></div>
</div>

With this setup, navigating to /widgets will print the following:

Widget: {"name":"myWidget"}
Features: ["myWidget:featureA","myWidget:featureB"]

JSFiddle: http://jsfiddle.net/msfrisbie/ugsx6c1w/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/ugsx6c1w/
https://itbook.store/books/9781783283354

Promises

276

How it works…
Route resolves effectively represent an amount of work that needs to be completed before a
route change can happen. These units of work, represented in the resolve as promises, are
able to be dependency injected anywhere in the route state construct, which allows you a
great deal of flexibility. Since the route change will only occur once all promises have resolved,
you are able to effectively chain the promises within the route by chaining them using
dependency injection.

Be careful with promise dependencies within routes. It is entirely
possible to create circular dependencies with such types of
dependent declarations.

See also
ff The Incorporating promises into native route resolves recipe demonstrates how

vanilla AngularJS routing incorporates promises into the route life cycle

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

9
What's New in
AngularJS 1.3

In this chapter, we will cover the following recipes:

ff Using HTML5 datetime input types

ff Combining watchers with $watchGroup

ff Sanity checking with ng-strict-di

ff Controlling model input with ngModelOptions

ff Incorporating $touched and $submitted states

ff Cleaning up form errors with ngMessages

ff Trimming your watch list with lazy binding

ff Creating and integrating custom form validators

Introduction
The release of AngularJS 1.3 incorporates a sizeable number of additions that focus on
form usability and extensibility, maximizing an application's performance and integration with
modern browsers. These recipes aren't an exhaustive list of all the changes in AngularJS 1.3,
but here you will find all the new components that you will definitely want to start incorporating
into your applications right away.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

What's New in AngularJS 1.3

278

Using HTML5 datetime input types
Formerly, AngularJS was limited to using antiquated input field types in forms. The 1.3 AngularJS
release added the AngularJS field and model support for HTML5 date and time types, which will
gracefully degrade when used on older browsers.

How to do it…
With AngularJS 1.3, your application is now able to bind to the date and time HTML5 input
types while preserving their native data format.

The <input type="date"> type
The <input type="date"> date input type binds to a JavaScript Date object and
extracts only the date from the Date object, ignoring the time component by letting it go
unmodified (it will not be forced to midnight). The string value for the date October 31, 2014
would be 2014-10-31.

The <input type="datetime-local"> type
The <input type="datetime-local"> date input type binds to a JavaScript Date object
and associates it with a time zone (by default, the browser time zone). The string value for
10:30 P.M. on October 31, 2014 would be 2014-10-31T20:30:00.

The <input type="time"> type
This <input type="time"> date input type binds to a JavaScript Date object and extracts
only the time from the Date object. The date value of the Date object will always be January
1, 1970, the Unix epoch time. The string value for 10:30 P.M. would be 20:30:00.

The <input type="week"> type
The <input type="week"> date input type binds to a JavaScript Date object and extracts
only the week from the Date object. This is a year-aware week field, for example, the string
value of the sixth week in 2014 would be 2014-W06.

The <input type="month"> type
The <input type="month"> date input type binds to a JavaScript Date object and extracts
only the month from the Date object. This is a year-aware month field, for example, the string
value of the sixth month in 2014 would be 2014-06.

JSFiddle: http://jsfiddle.net/msfrisbie/52b93whx/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/52b93whx/
https://itbook.store/books/9781783283354

Chapter 9

279

How it works…
All of these input types offer built-in comprehension of Date objects, including their
bi-directional ISO 8601 conversion.

There's more…
If the browser does not support the HTML5 input type, the field will degrade to a simple
text field. AngularJS will then handle it as a simple ISO date string to the Date object
conversion mechanism.

All of the fields default to the browser time zone. If you wish to override the time zone, you can
specify this in ngModelOptions.

See also
ff The Controlling model input with ngModelOptions recipe provides the details

of all the ways the ngModelOptions option lets you define how and when
your input-bound models will change

Combining watchers with $watchGroup
You might find that multiple model components need to be tied to the same $watch type
callback. As of the 1.3 release, AngularJS provides the $watchGroup method that accepts a
collection of watch targets in which all the watch targets need to bind to the same callback.

How to do it…
The change event callback parameters can be an ordered array of the current values, followed
by an ordered array of the previous values. This is shown here:

(app.js)

angular.module('myApp',[])
.controller('Ctrl', function($scope, $log) {
 $scope.ping = 'pong';

 $scope.ding = {
 dong: 'ditch'
 };

 // watch ping and the ding.dong property by reference

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

What's New in AngularJS 1.3

280

 $scope.$watchGroup(['ping', 'ding.dong'], function(newVals, oldVals,
scope) {
 // callback logic
 $log.log(newVals, oldVals, scope);
 });
});

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <input ng-model="ping" />
 <input ng-model="ding.dong" />
 </div>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/80yr36qn/

How it works…
Invoking $watchGroup will create a set of reference watchers for each model component
provided in the first argument. Using $watchGroup does not reduce the number of watchers
created, as AngularJS still needs to independently check each element in the set to both
determine whether any of the watched values are dirty, and to determine what the new values
are that should be provided as arguments to the watch callback.

There's more…
Although $watchGroup() does not provide a direct performance benefit to your application,
the primary gain from using $watchGroup() is to use the DRY principle on your controllers.

See also
ff The Trimming your watch list with lazy binding recipe provides the details of how the

new bind once functionality can help you greatly streamline your application

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/80yr36qn/
https://itbook.store/books/9781783283354

Chapter 9

281

Sanity checking with ng-strict-di
The ng-strict-di directive is new and extremely simple to understand. When declaring
the parent DOM node for your application, if ng-strict-di is included in that element,
functions without the minification-safe dependency injection syntax will fail to execute.

How to do it…
Using the ng-strict-di directive is as simple as adding an extra attribute to your ng-app
node, as follows:

(app.js)

angular.module('myApp',[])
.controller('Ctrl', function($scope) {});

(index.html)

<div ng-app="myApp" ng-strict-di>
 <div ng-controller="Ctrl"></div>
</div>

If you try to load the page in your browser, you will be greeted with the following error:

Error: [$injector:strictdi] function($provide) is not using explicit
annotation and cannot be invoked in strict mode

JSFiddle: http://jsfiddle.net/msfrisbie/snqvypgL/

There's more…
The ng-strict-di directive recognizing a minification-vulnerable application and consequently
throwing on the brakes is for the developer's benefit. Utilities such as ng-annotate and
ng-min are used to avoid the verbosity of minification-safe notations, but having a safeguard
like ng-strict-di to protect against the nastiness of minification-vulnerable code is extremely
useful when checking your application's validity.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/snqvypgL/
https://itbook.store/books/9781783283354

What's New in AngularJS 1.3

282

Controlling model input with
ngModelOptions

This new helper directive introduces a new vector of control over model access and updating
to the developer. Formerly, using ng-model bound to an input meant that validation or any
verification of value change needed to happen in a controller helper method or in a scope
watcher, neither of which ever felt very clean. With ngModelOptions, you are now able to
make decisions about how and when the model will get updated.

Getting ready
The ngModelOptions directive will most directly benefit you while developing an AngularJS
form, since it implicitly provides namespaces to the inputs within the form that are used by some
of this directive's features. Suppose that for all the examples in this recipe, you begin, as follows:

<div ng-controller="PlayerCtrl">
 <form name="playerForm">
 Name:
 <input type="text"
 name="playerName"
 ng-model="player.name"
 ng-model-options="" />
 </form>
</div>

How to do it…
The ngModelOptions directive exposes several options that can be defined within its
template expression as object literals.

The updateOn option
When the updateOn option is set, the model does not change the value until a trigger event
occurs. The updateOn option accepts one or more DOM events in order to trigger the update.
In addition to normal DOM events, there is a special default event that matches the default
events belonging to the control. Using the default option allows you to incorporate extra events
on top of the standard ones. This can be done as follows:

(app.js)

angular.module('myApp', []);

(index.html)

<div ng-app="myApp">

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 9

283

 <form name="playerForm">
 Name:
 <input type="text"
 name="playerName"
 ng-model="player.name"
 ng-model-options="{updateOn: 'blur click mousemove'}" />
 </form>
 {{ player.name }}
</div>

Of course, these DOM events are silly in the context of a text input, but they demonstrate that
there are broad possibilities when using updateOn.

JSFiddle: http://jsfiddle.net/msfrisbie/tz319dpe/

The debounce option
The debounce option allows you to set a delay between when the value of the input changes
and when the model updates itself with that changed value. This can either accept an integer
millisecond value for all updateOn events, or it can accept an object with integer delay values
for each event. This can be done as follows:

<input type="text"
 name="playerName"
 ng-model="player.name"
 ng-model-options="{ updateOn: 'blur click mousemove', debounce:
500 }" />

Alternately, this can also be done as follows:

<input type="text"
 name="playerName"
 ng-model="player.name"
 ng-model-options="{ updateOn: 'blur click mousemove', debounce:
{'blur': 500, 'click': 300, 'mousemove': 0} }" />

JSFiddle: http://jsfiddle.net/msfrisbie/rjxrgv7h/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/tz319dpe/
http://jsfiddle.net/msfrisbie/rjxrgv7h/
https://itbook.store/books/9781783283354

What's New in AngularJS 1.3

284

The origin of the term debounce comes from the world of circuits. Mechanical
buttons or switches utilize metal contacts to open and close circuit
connections. When the metal contact switches are closed, they will collide
with each other and rebound before settling, causing the bounce. This bounce
is problematic in the circuit as it is often registered as a repeat toggling of the
switch or button—obviously buggy behavior. The workaround is to find a way
to ignore the expected bounce noise—debouncing! This can be accomplished
either by ignoring the bounce noise or introducing a delay before reading the
value, both of which can be done with hardware or software.

The allowInvalid option
The allowInvalid option is quite uncomplicated. The normal behavior of validated
input is to not propagate an invalid value to the model, but to set it to undefined. Setting
allowInvalid to true overrides this behavior and propagates the invalid value through to
the model. You will still be able to catch the invalid value while validating the form as normal.

JSFiddle: http://jsfiddle.net/msfrisbie/ejzpoo75/

The getterSetter option
The getterSetter option is an interesting option that allows you to inform the application
that the ng-model value should be used as a combination getter/setter instead of just a
value. This can be done as follows:

(index.html)

<div ng-app="myApp">
 <div ng-controller="Ctrl">
 <form name="playerForm">
 Name:
 <input type="text"
 name="playerName"
 ng-model="player.name"
 ng-model-options="{ getterSetter: true }" />
 </form>
 </div>
</div>

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 // private player name

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/ejzpoo75/
https://itbook.store/books/9781783283354

Chapter 9

285

 var playerName = 'Jordan Wilson';

 // public getter/setter
 $scope.player = {
 name: function (newName) {
 console.log(newName)
 if (angular.isUndefined(newName)) {
 // getter
 return playerName;
 } else {
 // setter
 playerName = newName;
 };
 }
 };
});

Behind the scenes, ngModelOptions is now transparently assigning the model value with
player.name(val) and reading the model value with player.name(). Since you have
defined your method of access within the getter/setter paradigm, this of course means that
interpolating and assigning the value manually must be done with the getters and setters as
well, as shown here:

<!-- interpolation with getter syntax -->
Name: {{ player.name() }}

<!-- assignment with setter syntax -->
<button ng-click="player.name('')">Reset Name</button>

JSFiddle: http://jsfiddle.net/msfrisbie/uqpd7xft/

The timezone option
The timezone option relates to the newly added support for HTML5 datetime input types.
The input defaults to the browser time zone. Setting this value allows you to override that
default time zone.

The $rollbackViewValue option
The updateOn and debounce options in ngModelOptions introduce a Schrödinger's
cat-esque pattern, where there are technically two simultaneous values for a single model
that might be resolved at some point in the future. Fortunately, unlike quantum superposition,
we are able to reason about which state should get priority in a scenario of uncertainty—the
model of course!

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/uqpd7xft/
https://itbook.store/books/9781783283354

What's New in AngularJS 1.3

286

The $rollbackViewValue option acts as a reset button for the model. Invoking it will reset
the input to the value that exists in the model, and will also cancel any outstanding debounce
changes that are yet to occur. This can be done as follows:

(index.html)

<div ng-app="myApp">
 <form name="playerForm">
 Name:
 <input type="text"
 name="playerName"
 ng-model="player.name"
 ng-model-options="{ updateOn: 'click', debounce: 2000 }" />
 <button ng-click="playerForm.playerName.$rollbackViewValue()">
 Revert changes
 </button>
 </form>
 {{ player.name }}
</div>

(app.js)

angular.module('myApp', []);

JSFiddle: http://jsfiddle.net/msfrisbie/tbft57zw/

How it works…
Conceptually, ngModelOptions should make a lot of sense to you in terms of how it fits
into AngularJS. The ngModelController (which existed in previous releases) acts as the
intermediary view/model arbiter by managing the parsing, validation, and transportation
of data between the model and the view. The ngModelOptions directive is simply acting
as a supplementary arbiter by giving the developer additional control over how the model
should change.

See also
ff The Using HTML5 datetime input types recipe helps you wrap your head around how

AngularJS integrates with HTML5 data types

ff The Incorporating $touched and $submitted states recipe takes you through how the
new AngularJS form states give you tighter control of the application flow

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/tbft57zw/
https://itbook.store/books/9781783283354

Chapter 9

287

ff The Cleaning up form errors with ngMessages recipe demonstrates how to use this
new module in order to radically reform how you handle form error messages

ff The Creating and integrating custom form validators recipe demonstrates how you
can now integrate forms directly with the validation pipeline

Incorporating $touched and $submitted
states

Part of what makes form implementation so difficult to get exactly right is that they are highly
stateful. DOM events, page history, user state, and countless other factors can all play a role
in deciding what should be displayed to the user.

How to do it…
AngularJS 1.3 incorporates two more state representations into forms: $touched
and $submitted.

The $touched state
Formerly, the closest thing to $touched was $pristine, which would only be unset if some
input was entered into a field, but would not change if the field was merely entered and left as
is. Now, $touched will be set if the field notices a focus event, even if the model value does
not change. This can be done as follows:

(app.js)
angular.module('myApp', []);

(index.html)

<div ng-app="myApp">
 <form name="playerForm">
 <input type="text"
 name="playerName"
 ng-model="player.name" />
 </form>
 <div ng-if="playerForm.playerName.$touched">
 You touched the playerName field
 </div>
</div>

The message in the preceding code will be displayed once the field notices a pair of
focus/blur events.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

What's New in AngularJS 1.3

288

The $submitted state
It is not hard to imagine a scenario where you would only want to display error messages to
the user after the form has seen an unsuccessful submit attempt. The $submitted flag will
be set on the form controller object once it notices an unsuccessful submit attempt. This can
be done as follows:

(app.js)
angular.module('myApp', []);

(index.html)

<div ng-app="myApp">
 <form name="playerForm">
 <input type="text"
 name="playerName"
 ng-model="player.name" />
 <button type="submit">Submit</button>
 </form>
 <div ng-if="playerForm.$submitted">
 You clicked submit
 </div>
</div>

The message in the preceding code will be displayed after a submit attempt.

JSFiddle: http://jsfiddle.net/msfrisbie/cng82hn4/

See also
ff The Controlling model input with ngModelOptions recipe provides the details of all

the ways in which the ngModelOptions option lets you define how and when your
input-bound models will change

ff The Cleaning up form errors with ngMessages recipe demonstrates how to use this
new module in order to radically reform how you handle form error messages

ff The Creating and integrating custom form validators recipe demonstrates how you
can now integrate forms directly with the validation pipeline

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/cng82hn4/
https://itbook.store/books/9781783283354

Chapter 9

289

Cleaning up form errors with ngMessages
The addition of the ngMessages directive aims to solve the problem of erratic and complicated
organization of error messages in forms. Traditionally, error messages were handled individually
and independently, and they also incorporated some semblance of meta-logic in order to decide
which messages should take priority, how many should be seen, and so on. The naïve solution is
usually accomplished by sprinkling fistfuls of ng-if directives in the page corresponding to the
error message corpus and delegating the display logic to the form controller. As you can imagine,
this can get messy very quickly in the wake of complex forms.

Getting ready
The ngMessages directive comes packaged in the ngMessage module. To use it, include it in
your application as follows:

(app.js)

angular.module('myApp', ['ngMessages']);

How to do it…
The ngMessages module exists as two separate directives: ng-messages and ng-message.
The ng-messages directive defines the error message block that will process a form $error
object. It will contain one or many instances of ng-message, which will refer to a specific
property within the $error object. This can be done as follows:

(index.html)

<div ng-app="myApp">
 <form name="playerForm">
 <input type="text"
 name="playerName"
 ng-model="player.name"
 minlength="4"
 required />
 <!-- ng-messages block will handle the field $error object -->
 <div ng-messages="playerForm.playerName.$error">
 <!-- each ng-message handles a single error condition -->
 <div ng-message="required">
 Player name is required
 </div>
 <div ng-message="minlength">
 A player name must be at least 4 characters
 </div>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

What's New in AngularJS 1.3

290

 </div>
 </form>
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/cd8ud10q/

How it works…
Only a single error message per ng-messages block is displayed at a time, and the error
message priority is defined by the order in which the ng-message entities are ordered
within the block. This lets you afford a high degree of control over how and when error
messages are displayed.

There's more…
Message blocks can be reused as templates. The preceding example can be refactored
as follows:

(index.html)

<div ng-app="myApp">
 <form name="playerForm">
 <input type="text"
 name="playerName"
 ng-model="player.name"
 minlength="4"
 required />
 <div ng-messages="playerForm.playerName.$error"
 ng-messages-include="error-messages.html">
 </div>
 </form>

 <script type="text/ng-template" id="error-messages.html">
 <div ng-message="required">
 Player name is required
 </div>
 <div ng-message="minlength">
 A player name must be at least 4 characters
 </div>
 </script>
</div>

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/cd8ud10q/
https://itbook.store/books/9781783283354

Chapter 9

291

JSFiddle: http://jsfiddle.net/msfrisbie/dz7vfd54/

This error-messages template can be reused by any ng-messages instance, and it will
match up the $error object properties to the corresponding ng-message fields within the
included template. The included error messages can be overridden if necessary by providing
an ng-message instance with the same ng-message value within the actual ng-messages
block. This can be done as follows:

(index.html)

<div ng-app="myApp">
 <form name="playerForm">
 <input type="text"
 name="playerName"
 ng-model="player.name"
 minlength="8"
 required />
 <div ng-messages="playerForm.playerName.$error"
 ng-messages-include="error-messages.html">
 <div ng-message="minlength">
 A player name must be at least 8 characters
 </div>
 </div>
 </form>

 <script type="text/ng-template" id="error-messages.html">
 <div ng-message="required">
 Player name is required
 </div>
 <div ng-message="minlength">
 A player name must be at least 4 characters
 </div>
 </script>
</div>

Any ng-message defined in the actual ng-messages block will be given priority over a
matching ng-message defined in an included ng-messages collection.

JSFiddle: http://jsfiddle.net/msfrisbie/5hd8d5hz/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/dz7vfd54/
http://jsfiddle.net/msfrisbie/5hd8d5hz/
https://itbook.store/books/9781783283354

What's New in AngularJS 1.3

292

See also
ff The Controlling model input with ngModelOptions recipe provides the details of all

the ways in which the ngModelOptions option lets you define how and when your
input-bound models will change

ff The Incorporating $touched and $submitted states recipe takes you through how the
new AngularJS form states give you tighter control of the application flow

ff The Creating and integrating custom form validators recipe demonstrates how you
can now integrate forms directly with the validation pipeline

Trimming your watch list with lazy binding
A continuing gripe with AngularJS as a framework is targeted at the perceived inefficiencies of
its data binding facilities. While it is true that it can be easy to fall into bad performance traps,
a developer who understands what is going on under the hood and is able to make decisions
accordingly can wield AngularJS against any architectural challenge.

Bind once is one of the more heralded introductions in the AngularJS 1.3 release. It offers
one-time data binding, allowing the developer to reason about the necessity of real-time data
being interpolated in the template and elect to opt out of that data binding in order to improve
the overall performance of the application.

How to do it…
One-time data binding can be signaled inside the parsed expression at the time of compilation
by prepending the expression with ::, as demonstrated here:

{{ ::user.name }}

This will maintain normal data binding for the authenticated display state, but the
user.name value will only be watched until it is assigned a definite value, in which case,
AngularJS will schedule that watcher for deletion. The heuristic in this example would be
that the application should always check whether the user is still authenticated, but the
user's name isn't anticipated to ever change over the lifetime of the application, so it is
senseless to watch a value that you know won't change.

JSFiddle: http://jsfiddle.net/msfrisbie/Lxxmcveq/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/Lxxmcveq/
https://itbook.store/books/9781783283354

Chapter 9

293

How it works…
This bind once logic, also referred to as lazy binding, occurs at the scope watcher level.
Recall that each expression in the template is registered with its own watcher. Prepending
that expression with :: signals the digest loop to store the value of the expression upon its
first evaluation. If that value is defined, AngularJS will mark that value as stabilized, and it
will schedule deregistration of that watch entry at the end of the digest loop. At the end of
the digest loop, AngularJS will check each scheduled watch removal for its value again; if the
value is still defined, the watch entry will deregister, otherwise the scheduled deregistration is
thrown out.

In short, AngularJS will watch the expression until it becomes defined. This being the case,
in some ways, the term "bind once" doesn't seem to exactly match what is going on, which
is really that AngularJS will "bind until" a defined value is assigned.

In this explanation, the quality of being defined refers to any value
that is not a JavaScript undefined value.

There's more…
Bind once will only take effect when the parsed expression (which returns a function) is
passed to a watch expression. This can be demonstrated directly using the $parse service,
as follows:

// uses lazy binding
var playerGetter = $parse('::player');
scope.$watch(playerGetter);

The preceding code is effectively what happens when an expression is bound in the view. The
parse function will communicate to the watcher that it needs to use lazy binding. Consider the
following code:

// does not use lazy binding
var playerGetter = $parse('::player');
playerGetter($scope);

The preceding code will not use lazy binding; the return value from invoking the parse function
will provide you with the up-to-date value each time.

Bind once expression universality
AngularJS does not discriminate on the basis of where the expression is coming from while
registering the watcher, so the bind once feature is available anywhere you use expressions.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

What's New in AngularJS 1.3

294

The ng-repeat directive
The ng-repeat directive's attribute string is parsed as piecewise expressions, so it is entirely
possible to target one-time binding in the enumerable collection, as follows:

<div ng-repeat="player in ::roster.players">
 {{ ::player.name }}
</div>

Also notice here that the encapsulated repeat expression has one-time binding. Even though
the collection is bound once, the repeated elements are still bound to the existing instances
and create separate watch entries unless instructed not to, as done here.

JSFiddle: http://jsfiddle.net/msfrisbie/dg45qdpu/

Isolate scope bindings
Sometimes, directives that have isolate scope attribute expressions do not expect the binding
references or content to change. This is an excellent opportunity to cut down on watchers, as
shown here:

(app.js)

angular.module('myApp', [])
.directive('playerProfile', function() {
 return {
 scope: {
 draft: '@'
 },
 template: '<div>{{player.name}}: {{draft}}</div>'
 };
});

(index.html)

<div ng-app="myApp">
 <input ng-model="draft.year" />
 <player-profile draft="Drafted in {{::draft.year}}">
 </player-profile>
 <hr />
 <pre>{{ draft | json }} </pre>
</div>

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/dg45qdpu/
https://itbook.store/books/9781783283354

Chapter 9

295

Since the bindings in the directive declaration are evaluated upon compilation, it makes
sense to push the single bind prefix to the directive definition expressions, rather than
in the directive template itself.

JSFiddle: http://jsfiddle.net/msfrisbie/ft3z53de/

Methods and expressions requiring execution
AngularJS does not discriminate between types of expressions. Declaring a one-time binding
on a method in an expression is an excellent way of preventing that method from being
invoked for an insane amount of time. This can be done as follows:

Show me maybe

It is always desirable to make expressions as lightweight as possible, and this usually means
that using methods in the view is undesirable. However, if it cannot be avoided, using bind
once to cut the method execution count makes the application more efficient.

JSFiddle: http://jsfiddle.net/msfrisbie/y3qhdhhp/

See also
ff The Combining watchers with $watchGroup recipe demonstrates how to use the nifty

new watch type to funnel multiple watchers to the same callback

Creating and integrating custom form
validators

With the addition of the validator pipeline, AngularJS's form validation is now highly extensible
and straightforward to expand.

How to do it…
Formerly, custom form validation required messiness involving parsers and formatters; this is
no longer the case. Custom validation can now be encapsulated cleanly within a directive.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/ft3z53de/
http://jsfiddle.net/msfrisbie/y3qhdhhp/
https://itbook.store/books/9781783283354

What's New in AngularJS 1.3

296

Synchronous validation
The ngModel directive now exposes the $validators property, which allows you to directly
tap into its form validation.

The following directive definition is an example of a custom validator that ensures that a
model value is not Packers:

(app.js)

angular.module('myApp', [])
.directive('validateFavoriteTeam', function() {
 return {
 require : 'ngModel',
 link : function(scope, element, attrs, ngModel) {
 // define custom validator "favoriteTeam"
 ngModel.$validators.favoriteTeam = function(team) {
 // check string inequivalency
 // a false return value indicates an error
 return team !== "Packers";
 };
 }
 };
});

You will then be able to use it as follows:

(index.html)

<div ng-app="myApp">
 <form name="fanForm">
 <input name="myTeam"
 type="text"
 ng-model="user.team"
 validate-favorite-team />
 <div ng-if="fanForm.myTeam.$error.favoriteTeam">
 Your favorite team cannot be the Packers
 </div>
 </form>
</div>

With this, the error message will only be shown if the input value is Packers.

JSFiddle: http://jsfiddle.net/msfrisbie/d2t833ag/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/d2t833ag/
https://itbook.store/books/9781783283354

Chapter 9

297

Asynchronous validation
Form values are expected to change frequently, so it makes sense that any high-latency
validation process should be treated differently from lightweight operations such as regex
matches. The most obvious validation class that would fall into this category is a validation
that requires an AJAX request to a remote entity, something that ostensibly will take a
substantially long time to get completed and should not be done ad nauseam.

The following directive definition is an example of a custom asynchronous validator that
ensures that a jersey number is not already taken on a certain team:

(app.js)

angular.module('myApp', [])
.directive('validateJerseyAvailable', function($http, $q, $timeout) {
 return {
 require : 'ngModel',
 link : function(scope, element, attrs, ngModel) {
 ngModel.$asyncValidators.jerseyAvailable = function(num) {
 if (!Number.isInteger(num)) {
 // input value is not an int, invalid
 // return rejected promise
 return $q.reject();
 } else {
 // send request to server, return promise
 return $http.get('/player/' + num)
 // assume success() means a 200 response
 .success(function() {
 // jersey number exists
 // is not available, invalid
 return $q.reject();
 })
 // assume error() means a 404 response
 .error(function() {
 // jersey number does not exist
 // is available, valid
 return true;
 });
 }
 };
 }
 };
});

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

What's New in AngularJS 1.3

298

You will then be able to use it as follows:

(index.html)

<div ng-app="myApp">
 <form name="playerForm">
 <input name="myNumber"
 type="number"
 ng-model="player.number"
 validate-jersey-available />
 <div ng-if="playerForm.myNumber.$pending">
 Checking for jersey number availability...
 </div>
 <div ng-if="playerForm.myNumber.$error.jerseyAvailable">
 That jersey number is taken.
 </div>
 </form>
</div>

If the promise is resolved, the model will validate; if the promise is rejected, the validator
error will be registered on the $error object. For the sake of efficiency, validators defined on
$asyncValidators will not be evaluated until all the validators defined on $validators
(including the default ones) pass.

Asynchronous validators, as an unevaluated promise cannot be defined as $valid
or $invalid, introduce an intermediate state, $pending. This state follows all the
conventions of valid/invalid and can be used as follows:

<div ng-if="playerForm.myNumber.$pending">
 Checking for jersey number availability...
</div>

JSFiddle: http://jsfiddle.net/msfrisbie/odL6yLn6/

How it works…
The $validators and $asyncValidators are vectors that allow you to directly integrate with
the validation flow of AngularJS forms by defining custom directives that interact with ngModel.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/odL6yLn6/
https://itbook.store/books/9781783283354

Chapter 9

299

There's more…
Since the AngularJS form ecosystem is quite broad and robust—covering error handling,
validation, CSS styling, model transformation, and propagation—it behooves you to utilize
custom validators within your own application in order to take advantage of this synergy.

See also
ff The Controlling model input with ngModelOptions recipe provides the details of all

the ways in which this option lets you define how and when your input-bound models
will change

ff The Incorporating $touched and $submitted states recipe takes you through how the
new AngularJS form states give you tighter control of the application flow

ff The Cleaning up form errors with ngMessages recipe demonstrates how to use this
new module in order to radically reform how you handle form error messages

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

10
AngularJS Hacks

In this chapter, we will cover the following recipes:

ff Manipulating your application from the console

ff DRYing up your controllers

ff Using ng-bind instead of ng-cloak

ff Commenting JSON files

ff Creating custom AngularJS comments

ff Referencing deep properties safely using $parse

ff Preventing redundant parsing

Introduction
Mastering a programming language or framework demands more than merely reading
through the documentation or cruising through one tutorial; it requires that you read a ton
of code written by other developers. For the same reason, art museums don't have works
from only one painter, or Beethoven's symphonies aren't written for one instrument, or the
best technology companies don't rely on the ideas of one engineer. Complex, analytical,
and creative thoughts are best stimulated by multitudinous, diverse, and often orthogonal
channels of input. Gleaning the inner machinations of someone else's mind by dissecting
their work is an intensely intimate and educational process, and reading their code will
provide you with an escape from the echo chamber of your own mind.

As you consume more and more code, you will be inundated with an understanding of the
idiomatic methodologies that can make a great technology just a little bit better. Often, within
that code, you will discover hacks, either of your own or someone else's, that you will become
quite fond of, for their sheer utility or clever nature. This chapter consists of a fistful of these
hacks that I have derived or encountered and enjoy using, and sincerely hope you will as well.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Hacks

302

Manipulating your application from the
console

Being able to directly manipulate components of your application manually while testing is
an extremely useful tool when debugging. It is often the case that framework abstractions
that provide you with improved application organization will, at the same time, make it more
difficult to inspect and manipulate application components at the console level. Breakpoint
debugging is more than suitable for these purposes most of the time, but being able to easily
inspect and manipulate services, scopes, and other AngularJS components at the console
level can be extremely useful.

How to do it…
The angular object is exposed in the global browser namespace, and access to the
application internals will need to be routed through there. Scopes and services can
be manipulated as shown in the following sections:

Scopes
Inspecting and manipulating scopes throughout your application will likely be one of the
most common use cases when interacting with an AngularJS application in the console.
The Batarang plugin for Google Chrome is an excellent tool available to AngularJS developers,
and it offers among other things the ability to inspect your application's scopes.

If you want a floating scope object (that is not associated with any part of your application),
using $injector will help you create a new scope instance as follows:

(browser console)

// this creates a new scope object that is not yet associated with
// any part of your application
var scope = angular.injector(['ng']).get('$rootScope')

Often, you will only need access to $rootScope, or a nonspecific application scope to change
data or emit/broadcast events. If this is the case, $rootScope is the quickest to access, and
can be done as follows:

(browser console)

// if you know which DOM node is the root, you can use a query
// selector and extract with <node>.scope()
// $rootScope typically is associated with <body>
var rs = angular.element(document.querySelector('body')).scope()

// if you don't know the DOM node, use the furthest ancestral DOM

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 10

303

// node with the ng-scope class
var rs = angular.element(
 document.querySelector('.ng-scope')).scope()

// or if you're not manually bootstrapping,
// use the only node with the ng-app attribute
var rs = angular.element(
 document.querySelector('[ng-app]')).scope()

If you're looking for a specific child scope inside the application, you can use the preceding
selector techniques to find the exact node associated with the scope.

If you're using Google Chrome, there is a built-in feature in the console that makes DOM node
selection easy. Inside the DOM inspector (the Elements tab in the inspection panel), if you
click on a DOM node to select it, it becomes available as $0 in the console. This can then be
used as normal to extract the associated scope:

(browser console)

// (user clicks <body> node to select it)

$0
// <body ng-app="playerApp" class="ng-scope">...</body>

angular.element($0).scope()
// Scope {$id: 1, $$childTail: ChildScope, ...}

Chrome keeps an in-order history of DOM nodes selected in the inspector, so the last node
you clicked is available as $1, two nodes ago is $2, and so on.

Services
Even if your application might not take full advantage of the many benefits of service
type abstraction (which it should!), manipulating service types from the console can be
an extremely useful debugging tool for testing model manipulation, remote API access,
authentication, and more. This can be done as follows:

(browser console)

// injector allows you access to dependency injected components
// 'ng' is the umbrella module dependency for built-in services
var $injector = angular.injector(['ng'])
// $http can be now accessed with its string name via
// regular AngularJS dependency injection
 , $http = $injector.get('$http');

// combined into a single line:
var $http = angular.injector(['ng']).get('$http');

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Hacks

304

Of course, you might also access your application's non-AngularJS services as well:

(browser console)

var Player = angular.injector(
 // access module in which the Player service is defined
 ['footballApp.players.services.player']
// grab Player service through dependency injection
).get('Player');

There's more…
Modification of the model, changing the page location through $location, or any other
actions that modify the application state and are performed within the console will likely force
a $digest cycle to occur due to the fact that AngularJS does not pay attention to the console.
An easy way to do it is as follows:

(browser console)

angular.element(
 document.querySelector('.ng-scope')).scope().$apply()

Alternately, if you want to avoid a potential $apply() conflict that arises due to the $digest
cycle possibly already being executed, an instantaneous $timeout callback will safely begin
a new $digest cycle if one is not already in progress. This can be done as follows:

(browser console)

angular.injector(['newApp']).get('$timeout')(function() {}, 0)

DRYing up your controllers
When defining the model data and methods in controllers, you will quickly become tired of
typing $scope repeatedly. Some developers simply take this on the chin and accept it as
a necessity of the framework, but there is a superb method that avoids this verbosity and
simultaneously makes your controllers more DRY.

Getting ready
Suppose that you have a controller in a fantasy football application, appearing as follows:

app.module('myApp', [])
.controller('Ctrl' function($scope) {
 $scope.team = {
 name: 'Bears',

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 10

305

 city: 'Chicago'
 };
 $scope.player = {
 name: 'Jake Hsu',
 team: 'Bears',
 number: 29,
 position:'RB'
 };
 $scope.trade = function(player1, player2) {
 // $scope.trade() logic
 };
 $scope.drop = function(player) {
 // $scope.drop() logic
 };
});

How to do it…
Even with two scope objects and two methods, the number of times $scope needs to be
typed here is extremely annoying. The central reason that demands this verbose syntax is
that $scope is an existing object being injected, and you are merely extending it. Therefore,
in this scenario, it makes sense to put the built-in angular.extend() method to use.

The controller can be refactored in the following way:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($scope) {
 angular.extend($scope, {
 team: {
 name: 'Bears',
 city: 'Chicago'
 },
 player: {
 name: 'Jake Hsu',
 team: 'Bears',
 number: 29,
 position:'RB'
 },
 trade: function(player1, player2) {
 // $scope.trade() logic
 },
 drop: function(player) {
 // $scope.drop() logic

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Hacks

306

 }
 });
});

JSFiddle: http://jsfiddle.net/msfrisbie/3Laxmcn9/

How it works…
Instead of a cumbersome sequence of value and method property definitions, all of them can
be defined upon a single object and that object can be merged into the $scope object. Since
this only occurs when the controller is initialized, unless this controller is being created a huge
number of times, any performance hits taken from this are outweighed by the significantly
cleaner code.

There's more…
An observant developer will note that extending $scope with a monolithic object in this
way takes away a critical component that might be needed: the ability to individually manage
the events occurring during each $scope property assignment. Since the object that will
extend $scope must be instantiated before it can be merged, a property in the merged object
that throws an exception or takes a long time to complete (for example, a HTTP request), will
cause problems.

If one-off exception handling is needed during initialization, an IIFE can be used in a pinch,
although an excessive number of these will quickly become cumbersome and the benefit of
the angular.extend() method's brevity will be lost.

If the initialization data takes a long time to calculate, then that is probably something that
you should rethink before putting it in the controller initialization anyway.

Using ng-bind instead of ng-cloak
The ng-cloak directive is a workable solution to the rendering latency problem, but to the
seasoned developer, blanking out the entire page or sprinkling ng-cloak throughout the
application's templates seems like a suboptimal solution. In many scenarios, a more elegant
fix would be to display as much of the page as possible and interpolate data as it is calculated
to make the page load seem snappier to the end user.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/3Laxmcn9/
https://itbook.store/books/9781783283354

Chapter 10

307

How to do it…
The {{ }} interpolation syntax in AngularJS causes problems when the template loads,
and is displayed before compilation can occur. The following is an example:

<div ng-controller="PlayerCtrl">
 Player: {{ player.name }}
</div>

If this template is displayed before compilation, it will suffer from the uncompiled template
flash problem and display Player: {{ player.name }} momentarily.

The ng-cloak fix is as follows:

<div ng-cloak ng-controller="PlayerCtrl">
 Player: {{ player.name }}
</div>

Of course, this hides the entire <div> element until AngularJS can compile it and strip away
the ng-cloak attribute. This works, but you can do better.

Instead of interpolating using {{ }}, the ng-bind directive will replace the contents of that
element with the evaluated expression passed to it. This can be done as follows:

<div ng-controller="PlayerCtrl">
 Player:
</div>

With this, the uncompiled template will simply flash Player:, which allows the page to
be displayed faster without hiding everything, and the bound data will be interpolated as
AngularJS transparently compiles the template.

JSFiddle: http://jsfiddle.net/msfrisbie/807L7Lbh/

How it works…
Since HTML element's attributes in the DOM aren't visible, the page will appear normal, but
unfilled until compilation. The bound data is then interpolated as it becomes available, and
the user simply sees the data pop into the page after a brief delay.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/807L7Lbh/
https://itbook.store/books/9781783283354

AngularJS Hacks

308

Commenting JSON files
This isn't quite an AngularJS hack per se, but when you are writing JSON configuration
files (for example, in your Grunt configuration, Bower package definition, or npm package
definition), you might find that you forgot the purpose of a line. Inconveniently, JSON does not
support formal comments, but there are some clever (but highly controversial) workarounds
that can be used with a pinch.

How to do it…
If the JSON file is parsed in a certain way, you can take advantage of that by allowing the data
format to bleed outside the boundaries of the JSON specification.

Ignored properties
If you know that a section of JSON won't be exhaustively parsed, that is, there is a defined set
of keys that it will examine, then the easiest route is to just incorporate a property that the
program will ignore. This can be done as follows:

(package.json)

{
 "name": "playerApp",
 "version": "1.0.0",
 "_comment_devDependencies": "External test, build, or documentation
framework components that the application does not directly depend
upon",
 "devDependencies": {
 "grunt": "^0.4.1",
 ...
 }
 ...
}

Duplicate properties
An ignored property will suffice in many cases, but having to dodge whatever entity is
consuming the JSON is a bit like boxing with it, and it will often be the case that you won't
be able to sprinkle _comment properties everywhere you want to. If you determine that the
JSON parser will use only the last value encountered for a property, then you can incorporate
duplicate values for properties that the parser will theoretically ignore, as long as the last
encountered value is valid. This can be done as follows:

(package.json)

{

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 10

309

 "name": "playerApp",
 "version": "1.0.0",
 "devDependencies": "External test, build, or documentation framework
components that the application does not directly depend upon",
 "devDependencies": {
 "grunt": "JavaScript task runner",
 "grunt": "^0.4.1",
 "grunt-autoprefixer": "Parse CSS and add vendor-prefixed CSS
properties",
 "grunt-autoprefixer": "^0.7.3",
 ...
 }
 ...
}

Don't run with scissors
If you're unwilling to take the risk of a nonstandard JSON file, the proper way of commenting
on a JSON file is to strip out the comments with a preprocessor before handing it off to the
parser using something such as JSMin.

How it works…
I suspect that Douglas Crockford might like to take a swing at me for recommending the first
two solutions, but the fact of the matter is that there are certain scenarios, especially with
smaller projects, where they work just fine.

There's more…
As mentioned earlier, this strategy is highly controversial and has the potential to cause
trouble if you're not careful.

Since doing this sort of thing goes against the JSON specification, you are at the mercy of
whatever is using this JSON file. Various JSON interpreters will handle this in different ways.
If the JSON file is fed into a stream parser, or parsed into a dictionary where there is no
guarantee of key ordering, this will encounter problems. But hey, it's called a hack for a reason.

Creating custom AngularJS comments
An overlooked ability of AngularJS is its ability to wield directives with the intention of
streamlining the development process. One awesome way to do this is by using directives
to comment in your application.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Hacks

310

How to do it…
Normally, nesting HTML comments requires variable syntax as shown here:

<!--
<div>
 <p>I am the outer comment</p>
 <!- -
 <p>I am the inner comment</p>
 - ->
</div>
-->

This is completely obnoxious. It would be much better to be able to add comments
anywhere without having to worry about which comments are already in place. Since the
HTML comment convention doesn't suit your needs, you are able to just make your own
comment directive, as follows:

(app.js)

angular.module('myApp', [])
.directive('x', function() {
 return {
 restrict: 'AE',
 compile: function(el) {
 el.remove();
 }
 };
});

Now, you are able to do the following, using attribute comments:

(index.html)

<div x>
 <p>I am the outer comment</p>
 <p x>I am the inner comment</p>
</div>

Alternately, you can do the following with element comments:

(index.html)

<x>
<div>
 <p>I am the outer comment</p>

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 10

311

 <x>
 <p>I am the inner comment</p>
 </x>
</div>
</x>

JSFiddle: http://jsfiddle.net/msfrisbie/95nc7j7z/

How it works…
This commenting style allows you to instruct the client to strip out chunks of the DOM upon
template compilation. Every time AngularJS encounters the directive, it will just destroy that
entire DOM node during the compile phase and move on.

There's more…
HTML comments aren't quite what you'd expect. The customary <!-- --> pairing actually
comprises SGML delimiters <! >, and within the delimiters is a single SGML comment that
is bookended by -- --. This is what prevents you from nesting comments without variable
syntax, or using -- within comments.

You also have quite a bit of freedom to make the HTML-compliant comment directive string
or SGML-compliant comment directive string appear how you want it to. Choosing a string of
alphabetic characters, such as x or cmnt, will always be a valid directive name, and you can
use this as both an element or attribute directive. However, since AngularJS will be handling
the compilation, you are able to choose special characters such as , or | to act as a directive
comment. You usually cannot use these as an element tag by themselves (<|></|>—you'll need
to use something as <a |>), but as long as it follows the HTML5 attribute specification
and the browser doesn't barf all over the place when it parses the HTML, the comment directive
world is your plaything—go crazy.

Keep in mind that this probably isn't something you would include in a production application;
this is more of a tool to be used in the development process. Since it's best to not serve the
client data you know they won't use or need, a production application's asset preparation is
usually smart enough to remove HTML comments during minification, so giving preference to
using them is recommended.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/95nc7j7z/
https://itbook.store/books/9781783283354

AngularJS Hacks

312

Extensibility
It is also completely possible to extend these comment directives in ways that might suit your
development process. For example, if you wanted the directive to be cut out only when a flag
is set, you could do the following:

(app.js)

angular.module('myApp', [])
.directive('x', function() {
 return {
 restrict: 'AE',
 link: function(scope, el) {
 scope.$watch('flags.purgeComments', function(newVal) {
 if (newVal) {
 el.remove();
 }
 });
 }
 };
});

JSFiddle: http://jsfiddle.net/msfrisbie/5vej1z39/

Obviously, this example cannot be reversed since the DOM node is being destroyed.

Referencing deep properties safely using
$parse

When dealing with object access, a seasoned JavaScript developer will be quite familiar with
this error message:

TypeError: Cannot read property '...' of undefined

This, of course, is the result of attempting to access a property on an object that does
not exist in the current lexical scope. It is often the case that the developer is aware of
the possibility that the referenced object can be undefined, but it would be preferred
that a failed property access returns undefined instead of throwing an error.

How to do it…
The typical use case is an asynchronous method that references a piece of data that isn't
necessarily initialized before use.

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/5vej1z39/
https://itbook.store/books/9781783283354

Chapter 10

313

Suppose that the user object in this example is populated with a user object served from the
backend, filled upon login authentication, and cleared upon logging out, as shown here:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($log, $scope) {
 $scope.$watch('user', function(newUserVal) {
 $log.log(newUserVal.address.city);
 });
});

// console on pageload:
// TypeError: Cannot read property 'address' of undefined

This might appear safe, but if the user has not authenticated, this will throw an error when
attempts are made to access the address property.

To protect your application from this, you can inject the $parse service to protect against
TypeError when referencing a deep property:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($parse, $log, $scope) {
 $scope.$watch('user', function(newUserVal) {
 $log.log($parse('address.city')(newUserVal));
 });
});

// console on pageload:
// undefined

This parses the expression argument and returns a function to check the expression against.
The returned value will now be undefined for a reference, as shown here, that caused
TypeError in the previous example.

JSFiddle: http://jsfiddle.net/msfrisbie/oao5rav5/

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/oao5rav5/
https://itbook.store/books/9781783283354

AngularJS Hacks

314

The following would be the functional—though less idiomatic—equivalent to the
preceding example:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($parse, $log, $scope) {
 $scope.$watch('user', function() {
 $log.log($parse('user.address.city')($scope));
 });
});

// console on pageload:
// undefined

How it works…
Using $parse in this way takes advantage of AngularJS's template interpolation conventions.
The $parse service is used implicitly when interpolating expressions in the view, allowing
you to use {{ user.name }} in the templates without having to worry about handling
an incomplete object hierarchy. If the property can be accessed, it will be returned and
interpolated; otherwise, it will be returned as undefined.

There's more…
The $parse service can handle multipart expressions, as follows:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($log, $scope, $parse) {
 $scope.$watch('user', function(newUserVal) {
 $log.log($parse('"City: " + address.city')(newUserVal));
 });
});

// console on pageload:
// "City: "

Note that this will not log "City: undefined", which is what would
happen if you perform "City: " + undefined in a vanilla JavaScript.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Chapter 10

315

It can also handle attempts to invoke of methods that might not exist:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($log, $scope, $parse) {
 $scope.$watch('user', function(newUserVal) {
 $log.log($parse(
 '"Address: " + address.fullStr()')(newUserVal)
);
 });
});

// console on pageload:
// "Address: "

We can add the scope data as follows:

(app.js)

angular.module('myApp', [])
.controller('Ctrl', function($log, $scope, $parse) {
 $scope.user = {
 address: {
 number: 1060,
 street: 'W Addison St',
 city: 'Chicago',
 state: 'IL',
 zipCode: 60613,
 fullStr: function() {
 return this.number + ' ' +
 this.street + ', ' +
 this.city + ', ' +
 this.state + ' ' +
 this.zipCode;
 }
 }
 };

 $scope.$watch('user', function(newUserVal) {
 $log.log($parse('"City: " + address.city')(newUserVal));
 });

 $scope.$watch('user', function(newUserVal) {
 $log.log($parse(

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Hacks

316

 '"Address: " + address.fullStr()'
)(newUserVal));
 });
});

// console on pageload:
// Address: 1060 W Addison St, Chicago, IL 60613

JSFiddle: http://jsfiddle.net/msfrisbie/t12ym3as/

See also
ff The Preventing redundant parsing recipe demonstrates how to refactor your

application in order to trim down identical expression parsing

Preventing redundant parsing
The $parse operation can often be unnecessarily repetitive in certain situations. If your
application scales to the point where this redundancy is starting to become a performance
factor, then the parsing can be refactored in order to prevent reparsing the same expression
over and over.

Getting ready
Suppose that your application resembles the following code:

(index.html)

<div ng-app="myApp">
 <div ng-controller="OuterCtrl">
 <div ng-repeat="player in data.playerIds"
 ng-controller="InnerCtrl">
 </div>
 </div>
</div>

(app.js)

angular.module('myApp', [])
.controller('OuterCtrl', function($scope, $log) {
 $scope.data = {

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/t12ym3as/
https://itbook.store/books/9781783283354

Chapter 10

317

 playerIds: [1,2,3]
 };
})
.controller('InnerCtrl', function($scope, $log, $parse) {
 $scope.myExp = function() {
 $log.log('Expression evaluated');
 return 'watchedValue';
 };
 $scope.$watch(
 $parse(
 // this IIFE is structured so you can see when
 // $parse() is being invoked
 (function() {
 $log.log('Parse compilation called');
 return 'myExp()';
 })()
),
 function(newVal) {
 $log.log('Watch handler called: ', newVal);
 }
);
});

This will log the following when the page is loaded:

(browser console)

Parse compilation called
Parse compilation called
Parse compilation called
Expression evaluated
Watch handler called: watchedValue
Expression evaluated
Watch handler called: watchedValue
Expression evaluated
Watch handler called: watchedValue
Expression evaluated
Expression evaluated
Expression evaluated

Here, your application is parsing an identical expression for every ng-repeat iteration.
This can be prevented!

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

AngularJS Hacks

318

How to do it…
The $parse() method returns a function that takes the object to which the evaluated
expression needs to be applied. This function can be saved and reused in order to prevent
redundant parsing, as follows:

(app.js)

angular.module('myApp', [])
.controller('OuterCtrl', function($scope, $log, $parse) {
 $scope.data = {
 playerIds: [1,2,3],
 // perform the $parse once and expose the returned
 // function on $scope
 repeatParsed: $parse(
 (function() {
 $log.log("Parse compilation called");
 return 'myExp()';
 })()
)
 };
})
.controller('InnerCtrl', function($scope, $log) {
 $scope.myExp = function() {
 $log.log("Expression evaluated");
 return 'watchedValue';
 };
 // each watcher will implicitly invoke the $parse() return
 // function with $scope as the parameter
 $scope.$watch($scope.data.repeatParsed, function(newVal) {
 $log.log("Watch handler called: ", newVal);
 });
});

JSFiddle: http://jsfiddle.net/msfrisbie/hzevdLd7/

Now, the parsing occurs when the parent controller is initialized and will occur only once, as
shown here:

(browser console)

Parse compilation called
Expression evaluated

www.itbook.store/books/9781783283354

http://jsfiddle.net/msfrisbie/hzevdLd7/
https://itbook.store/books/9781783283354

Chapter 10

319

Watch handler called: watchedValue
Expression evaluated
Watch handler called: watchedValue
Expression evaluated
Watch handler called: watchedValue
Expression evaluated
Expression evaluated
Expression evaluated

How it works…
The $parse() method doesn't evaluate the expression; it only figures out how to extract the
expression from the string and prepares it for evaluation. Moving this preparatory computation
to earlier in the application setup allows you to reuse it.

See also
ff The Referencing deep properties safely using $parse recipe shows how you can

utilize expression parsing to avoid boilerplate object inspection when interacting
with deep objects

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Index
Symbols
$apply()

about 135
anti-pattern awareness 139, 140
invoking 135-137
safeApply() method 136

$compile service 39
$http

used, for creating promises 264-267
$parse

using, for property reference 312-316
$q.all()

URL 261
used, for implementing promise

barriers 260-263
$q.when()

used, for creating promise wrappers 263, 264
$resource

used, for creating promises 267, 268
$rollbackViewValue option 285, 286
$scope.$on() method 154
$scope inheritance

managing 157-160
$submitted state 287, 288
$templateCache 39, 40
$timeout wrapper 140
$touched state 287, 288
$watchCollection

about 223
used, for optimizing application 234-236

$watch deregistration
used, for optimizing application 236, 237

$watchGroup
used, for combining watchers 279, 280

$watch types
deploying 228, 229
DRY watchers, creating 229
managing 228, 229
watch callbacks 228
watchers 228
watch expressions 228

controller as syntax
benefits 152
using 149-151

<select> element 175-177

A
addClass animations

creating, with ngShow 115, 116
CSS animation 117
CSS transitions 116
JavaScript animation 117
working 118, 119

allowInvalid option 284
angular.element() method 39
AngularJS

about 153, 222, 245
directives 7
filters 46
hiding, from user 143, 144
landmines, recognizing 222-224
services 46

AngularJS events
broadcasting 154, 155
configuring 153
emitting 155, 156
event listener, deregistering 157
using 153

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

322

AngularJS forms
custom validators 173-175
state, tracking 169-171
validating 171-173
working with 168, 169

AngularJS landmines, recognizing
$watchCollection 223
filters in ng-repeat 222
large object 222
template watchers, controlling 223

AngularJS testing 189, 190
animations

about 83
addClass animations, creating

with ngShow 115, 116
batched animations, staggering 125-127
enter animations, creating with ngIf 92, 93
leave and concurrent animations, creating

with ngView 98-101
move animations, creating with

ngRepeat 105, 107
removeClass animations, creating with

ngClass 120-122
simple fade in/out animation, creating 84-88
tackling ways 83

application
bootstrapping, manually 132, 133
manipulating 302-304
optimizing, $watchCollection used 234-236
optimizing, $watch deregistration

used 236, 237
optimizing, equality $watch used 232, 233
optimizing, reference $watch used 229-231
optimizing, track by in ng-repeat

used 241, 242
optimizing, with compile phase in

ng-repeat 239, 240
scopes, manipulating 302, 303
services, manipulating 303, 304
watchers, inspecting 225-227

application file and module organization
don't fight reusability approach 142
example directory structure 142, 143
group by feature 141
maintaining 140
one module, one file, and one name

approach 141

unified naming and organization convention,
selecting 141

application templates
managing 145, 146
ng-template, using 147
pre-defined templates, in cache 148
remote server templates 146, 147
string template 146

array
populating 177

asynchronous validation, custom form
validators 297, 298

attribute directive
about 11-13
advantages 11

B
batched animations

staggering 125-127
bind once

about 238, 292, 293
isolate scope bindings 294, 295
ng-repeat directive 294

browser global variable 193
built-in directives

about 161
ngController 161
ngIf 165, 166
ngInclude 161
ngRepeat 162-165
ngSwitch 167
ngView 162

built-in search filters
using 56-58

C
catch() method 256
chained handlers

about 254
rejecting 254

class directive 13, 14
comment directive 14, 15
compile phase in ng-repeat

used, for optimizing application 239, 240
config function 80

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

323

controllers
initializing 304-306

currency filters
using 48-51

custom AngularJS comments
creating 309-311
extending 312

custom comparators
used, for filtering 65-67

custom data filters
creating 61-63

custom form validators
about 295
asynchronous validation 297, 298
synchronous validation 296
working 298, 299

custom search filter expression
building 71, 72

custom search filters
creating 64, 65

D
DAMP tests

writing 212-214
data filters

using 55, 56
date filter

using 51-53
debounce option 283, 284
debugging

with json filter 53-55
decorator

event bus as 187, 188
deferred

about 248, 249
URL 249

Descriptive And Meaningful
Phrases (DAMP) 212

directed acyclic graph (DAG) 262
directives

about 7
attribute directive 11-13
class directive 13, 14
comment directive 14, 15
creating 8, 9
element directive 10, 11

interfacing, isolate scope used 20-24
linking 17-19
scope inheritance 28-30
templating 30-32
transclusion 35-37
working through 9, 15

DOM
manipulating 15-17

Domain Specific Language (DSL) 212
Don't Repeat Yourself (DRY) 212
down watched models

trimming 242, 243
DRY watchers

creating 229

E
E2E tests

about 204
executing 197
incorporating, in Grunt 194, 197
writing 204-208

element directive 10, 11
element global variable 193
end-to-end tests. See E2E tests
enter animations

creating, with ngIf 92, 93
CSS3 animation 94
CSS3 transition 93
JavaScript animation 94
working 95, 97

equality $watch
used, for optimizing application 232, 233

event bus
as decorator 187, 188
as service 186
basic implementation 183
building 182, 183
cleanup 184

F
filters

about 46
built-in search filters, using 56-58
chaining 59-61
currency filters, using 48-51

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

324

custom data filters, creating 61-63
custom search filters, creating 64, 65
data filters, using 55, 56
date filter, using 51-53
json filter, using 53-55
lowercase filters, using 46-48
number filters, using 48-51
search filter, building 68-70
uppercase filters, using 46-48

finally() method 257
finite state machine (FSM) 84
form errors

cleaning up, ngMessages directive
used 289-291

G
getterSetter option 284, 285
Grunt

E2E tests, incorporating 194, 197
Protractor, incorporating 194, 197
test environment, configuring 190-192
test environment, executing 190-192

Gruntfile
modifying 195, 196

H
hack 309
HTML5 datetime input types

<input type="date"> type 278
<input type="datetime-local"> type 278
<input type="month"> type 278
<input type="time"> type 278
<input type="week"> type 278
using 278
working 279

I
isolate scope

used, for interfacing with directives 20-24
using 33, 34

isolate scope attribute expressions 295
isolate scope bindings 294, 295

J
JSON files

commenting 308, 309
duplicate properties, incorporating 308
ignored properties, incorporating 308
JSMin, using 309

json filter
using, for debugging 53-55

K
Karma test runner

using 190, 191

L
lazy binding

isolate scope attribute expressions 294, 295
methods and expressions 295
ng-repeat directive 294
used, for trimming watch list 292, 293

leave and concurrent animations
creating, with ngView 98-100
CSS3 animation 101
CSS3 transition 100
JavaScript animation 102
working 103-105

limitTo filters 59
lowercase filters

using 46-48

M
mock backend server

setting up 209-212
model input

controlling, with ngModelOptions 282
move animations

about 114
creating, with ngRepeat 105-107
CSS3 animation 108
CSS3 transition 107
JavaScript animation 109
working 111-114

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

325

N
native route resolves

promises, incorporating into 270-272
nested directives

interaction between 24-26
nested ui-router resolves

implementing 273, 276
single-state promise dependencies 274, 275
state promise inheritance 273, 274

ng-bind
ng-cloak, avoiding with 306, 307

ngClass directive
about 115, 120
removeClass animations,

creating with 120-122
ng-cloak

about 306
avoiding, with ng-bind 306, 307

ngController directive 161
ngForm directive 115, 120
ngHide directive 115, 120
ngIf directive

about 92, 98, 165, 166
enter animations, creating with 92, 93

ngInclude directive 92, 98, 161
ngMessage directive 92, 98
ngMessages directive

about 115, 120
used, for cleaning up form errors 289-292

ngMockE2E module 208
ngModel directive 115, 120
ngModelOptions

$rollbackViewValue option 285
allowInvalid option 284
debounce option 283, 284
getterSetter option 284, 285
time zone option 285
updateOn option 282, 283
URL 283
used, for controlling model inputs 282
working 286, 287

ngOptions directive
about 175-177
array, populating within 177, 178
null options 180
object, populating within 181

option groups, implementing 179
option model assignment,

defining explicitly 179
option values, defining 178
option values, defining explicitly 181

ng-repeat directive 240, 294
ngRepeat directive

about 92, 98, 162-165
used, for creating move animations 105-107

ngShow directive
about 115, 120
addClass animations, creating with 115, 116

ng-strict-di directive
sanity checking with 281

ngSwitch directive 92, 98, 167
ngView directive

about 92, 98, 162
leave and concurrent animations,

creating with 98-100
null option 180
number filters

using 48-51

O
object

populating 181
optional nested directive controllers 26-28
option groups

defining, explicitly 179
option model assignment

defining, explicitly 179
option values

defining, explicitly 178-182
orderBy filters 59

P
Page Object test pattern

using 214-219
promise barriers

implementing, $q.all() used 260-263
promise handlers

about 255, 256
and promises, chaining 253

promise notifications
implementing 258-260

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

326

promises
about 246, 250, 252
and promise handlers,

chaining 253-257
catch() method 256
chained handler data handoff 254
chained handler, rejecting 254
deferred 248, 249
finally() method 257
implementing 246
incorporating, into native route

resolves 270-272
using, with $http 264-267
using, with $resource 267, 268
using, with Restangular 268-270
working 247, 248

promise.then() method 258
promise wrappers

creating, $q.when() used 263, 264
Protractor

about 193
configuration file, setting 196, 197
Gruntfile, modifying 195, 196
incorporating, in Grunt 194, 197
installation 194
Selenium's WebDriver manager 195

publish-subscribe (pub-sub) architecture 182

R
recursive directives

$compile service 39
$templateCache 39, 40
about 37, 38, 42, 43
angular.element() method 39

redundant parsing
preventing 316-319

reference $watch
used, for optimizing application 229-231

remote server templates 146, 147
removeClass animations

creating, with ngClass 120
CSS animation 122
CSS transitions 122
JavaScript animation 123
working 124, 125

Restangular
used, for creating promises 268, 270

S
scope inheritance, directives 28-30
scopes, application

manipulating 302, 303
search filter

building, from scratch 68-70
Selenium's WebDriver manager

using 195
Selenium WebDriver 193
service constants

using 73, 74
service decorators

using 80-82
service factories

about 75
using 75, 76

service providers
using 78-80

services
about 46
using 76-78

service values
using 73, 74

simple fade in/out animation
creating 84-88
ng-cloak, utilizing 88

single-state promise dependencies 274, 275
slideDown() method

replicating 89-91
slideUp() method

replicating 89-91
string template 146
synchronous validation, custom form

validators 296

T
template-binding watch expressions

optimizing 237, 238
template watchers 223
time zone option 285
track by, in ng-repeat

used, for optimizing application 241, 242

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

327

transclusion, directives
using 35-37

U
ui-router framework 273
unit tests

controller, initializing 202
creating 201
executing 203
HTTP backend, initializing 202
initializing 199
writing 197-202

universal watch callback
creating 224, 225

updateOn option 282, 283
uppercase filters

using 46-48

V
validators, AngularJS forms 173

W
watch callbacks 228
watchers

combining, with $watchGroup 279, 280
watchers, application

inspecting 225, 227
watch list

trimming, lazy binding used 292, 293

Y
Yeoman

test environment, configuring 190-192
test environment, executing 190-192

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Thank you for buying

AngularJS Web Application
Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Mastering AngularJS
Directives
ISBN: 978-1-78398-158-8 Paperback: 210 pages

Develop, maintain, and test production-ready directives
for any AngularJS-based application

1.	 Explore the options available for creating
directives, by reviewing detailed explanations
and real-world examples.

2.	 Dissect the life cycle of a directive and understand
why they are the base of the AngularJS framework.

3.	 Discover how to create structured, maintainable,
and testable directives through a step-by-step,
hands-on approach to AngularJS.

Building an Application with
AngularJS [Video]
ISBN: 978-1-78328-369-9 Duration: 02:22 hours

Get creative with AngularJS to develop
exciting applications

1.	 Use views and controllers to build an application
from the ground up quickly.

2.	 Construct Angular services and implement
dependency injection with the help of
illustrative examples.

3.	 Master asynchronous programming through the
effective use of JavaScript coupled with Angular.

Please check www.PacktPub.com for information on our titles

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1.	 Make the most out of AngularJS by understanding
the AngularJS philosophy and applying it to
real-life development tasks.

2.	 Effectively structure, write, test, and finally deploy
your application.

3.	 Add security and optimization features to your
AngularJS applications.

4.	 Harness the full power of AngularJS by creating
your own directives.

AngularJS Directives
ISBN: 978-1-78328-033-9 Paperback: 110 pages

Learn how to craft dynamic directives to fuel your
single-page web applications using AngularJS

1.	 Learn how to build an AngularJS directive.

2.	 Create extendable modules for plug-and-play
usability.

3.	 Build apps that react in real time to changes in
your data model.

Please check www.PacktPub.com for information on our titles

www.itbook.store/books/9781783283354

https://itbook.store/books/9781783283354

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Maximizing AngularJS Directives
	Introduction
	Building a simple element directive
	Working through the directive spectrum
	Manipulating the DOM
	Linking directives
	Interfacing with a directive using isolate scope
	Interaction between nested directives
	Optional nested directive controllers
	Directive scope inheritance
	Directive templating
	Isolate scope
	Directive transclusion
	Recursive directives

	Chapter 2: Expanding Your
Toolkit with Filters
and Service Types
	Introduction
	Using the uppercase and lowercase filters
	Using the number and currency filters
	Using the date filter
	Debugging using the json filter
	Using data filters outside the template
	Using built-in search filters
	Chaining filters
	Creating custom data filters
	Creating custom search filters
	Filtering with custom comparators
	Building a search filter from scratch
	Building a custom search filter expression from scratch
	Using service values and constants
	Using service factories
	Using services
	Using service providers
	Using service decorators

	Chapter 3: AngularJS Animations
	Introduction
	Creating a simple fade in/out animation
	Replicating jQuery's slideUp() and slideDown() methods
	Creating enter animations with ngIf
	Creating leave and concurrent animations with ngView
	Creating move animations with ngRepeat
	Creating addClass animations with ngShow
	Creating removeClass animations with ngClass
	Staggering batched animations

	Chapter 4: Sculpting and Organizing your Application
	Introduction
	Manually bootstrapping an application
	Using safe $apply
	Application file and module organization
	Hiding AngularJS from the user
	Managing application templates
	The "Controller as" syntax

	Chapter 5: Working with the Scope and Model
	Introduction
	Configuring and using AngularJS events
	Managing $scope inheritance
	Working with AngularJS forms
	 Working with <select> and ngOptions
	Building an event bus

	Chapter 6: Testing in AngularJS
	Introduction
	Configuring and running your test environment in Yeoman and Grunt
	Understanding Protractor
	Incorporating E2E tests and Protractor in Grunt
	Writing basic unit tests
	Writing basic E2E tests
	Setting up a simple mock backend server
	Writing DAMP tests
	Using the Page Object test pattern

	Chapter 7: Screaming Fast AngularJS
	Introduction
	Recognizing AngularJS landmines
	Creating a universal watch callback
	Inspecting your application's watchers
	Deploying and managing $watch types efficiently
	Optimizing the application using reference $watch
	Optimizing the application using equality $watch
	Optimizing the application using $watchCollection
	Optimizing the application using $watch deregistration
	Optimizing template-binding watch expressions
	Optimizing the application with the compile phase in ng-repeat
	Optimizing the application using track by in ng-repeat
	Trimming down watched models

	Chapter 8: Promises
	Introduction
	Understanding and implementing a basic promise
	Chaining promises and promise handlers
	Implementing promise notifications
	Implementing promise barriers with $q.all()
	Creating promise wrappers with $q.when()
	Using promises with $http
	Using promises with $resource
	Using promises with Restangular
	Incorporating promises into native route resolves
	Implementing nested ui-router resolves

	Chapter 9: What's New in AngularJS 1.3
	Introduction
	Using HTML5 datetime input types
	Combining watchers with $watchGroup
	Sanity checking with ng-strict-di
	Controlling model input with ngModelOptions
	Incorporating $touched and $submitted states
	Cleaning up form errors with ngMessages
	Trimming your watch list with lazy binding
	Creating and integrating custom form validators

	Chapter 10: AngularJS Hacks
	Introduction
	Manipulating your application from the console
	DRYing up your controllers
	Using ng-bind instead of ng-cloak
	Commenting JSON files
	Creating custom AngularJS comments
	Referencing deep properties safely using $parse
	Preventing redundant parsing

	Index

