
www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Three.js Cookbook

Over 80 shortcuts, solutions, and recipes that allow you
to create the most stunning visualizations and 3D scenes
using the Three.js library

Jos Dirksen

BIRMINGHAM - MUMBAI

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Three.js Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1220115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-118-2

www.packtpub.com

www.itbook.store/books/9781783981182

www.packtpub.com
https://itbook.store/books/9781783981182

Credits

Author
Jos Dirksen

Reviewers
Cameron Chamberlain

Josh Marinacci

Felix Palmer

Commissioning Editor
Ashwin Nair

Acquisition Editor
Owen Roberts

Content Development Editor
Adrian Raposo

Technical Editor
Mohita Vyas

Copy Editors
Rashmi Sawant

Stuti Srivastava

Project Coordinator
Kinjal Bari

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Priya Sane

Graphics
Sheetal Aute

Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

About the Author

Jos Dirksen has worked as a software developer and an architect for more than a decade. He
has a lot of experience in a large range of technologies that range from backend technologies,
such as Java and Scala, to frontend development using HTML5, CSS, and JavaScript. Besides
working with these technologies, Jos also regularly speaks at conferences and likes to write
about new and interesting technologies on his blog. He also likes to experiment with new
technologies and see how they can best be used to create beautiful data visualizations, the
results of which you can see on his blog at http://www.smartjava.org/.

He is currently working as an independent contractor for ING, a large Dutch financial
institution, through his own company Smartjava. Previously, he worked as an enterprise
architect for Malmberg, a large Dutch publisher of educational material. He helped to create
the new digital platform for the creation and publication of educational content for primary,
secondary, and vocational education. He has also worked in many different roles in the private
and public sectors, ranging from private companies such as Philips and ASML to organizations
in the public sector, such as the Department of Defense.

He has also written two other books on Three.js: Learning Three.js, Packt Publishing, which
provides an in-depth description of all the features Three.js provides, and Three.js Essentials,
Packt Publishing, which shows you how to use the core features of Three.js through extensive
examples. Besides his interest in frontend JavaScript and HTML5 technologies, he is
also interested in backend service development using REST and traditional web service
technologies. He has already written two books on this subject. He is the coauthor of the book
Open Source ESBs in Action, Manning Publications and author of the book SOA Governance
in Action, Manning Publications. This book is on how to apply SOA governance in a practical
and pragmatic manner.

www.itbook.store/books/9781783981182

http://www.smartjava.org/
https://itbook.store/books/9781783981182

Acknowledgments

Writing a book isn't something you do by yourself. A lot of people have helped and supported
me when I was writing this book.

A special thanks to all the guys from Packt Publishing who have helped me during the writing,
reviewing, and laying out part of the process. Great work guys!

I would also like to thank Ricardo Cabello, also known as Mr.dò_ób, for creating the great
Three.js library.

Many thanks go to the reviewers. They provided me with great feedback and comments that
really helped improve the book. Their positive remarks really helped me shape the book!

Also, I'd like to thank my family: my wife, Brigitte, for supporting me, and my two girls, Sophie
and Amber, who can always find reasons to pull me away from the keyboard and computer.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

About the Reviewers

Cameron Chamberlain is a frontend developer from Australia. He was awarded a first
class honors degree in visual arts (digital media) from the Australian National University,
where he focused on character animation. He has taught several media units at the University
of Canberra and is now working in the user experience team at an international start-up based
in Melbourne. His passions for both web development and computer graphics combine when
exploring new web technology such as WebGL.

Josh Marinacci is an engineer, author, speaker, designer, and general UI wrangler.
He has written books for O'Reilly Media, built IDEs, coded app stores, authored developer
content, and prototyped an endless array of amusing interfaces. He is currently working as
a researcher at Nokia. He previously traveled the world teaching webOS, JavaFX, Swing, and
HTML canvas. He works from home in rainy but green Eugene, Oregon, with his wife and
3-year-old son.

Felix Palmer comes from a physics background and got into software by writing games in
Flash. Since then he has spent time working in London and Silicon Valley, working with a wide
range of technologies from mobile to cloud, server to web. He enjoys combining the visual and
technical aspects and is excited about the opportunities WebGL brings.

Currently he lives in Prague, spending his time building things with WebGL, speaking at
conferences, and writing on www.pheelicks.com. He is the creator of www.piste.io.

www.itbook.store/books/9781783981182

www.pheelicks.com
https://itbook.store/books/9781783981182

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.itbook.store/books/9781783981182

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
https://itbook.store/books/9781783981182

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Table of Contents
Preface 1
Chapter 1: Getting Started 7

Introduction 8
Getting started with the WebGL renderer 8
Getting started with the Canvas renderer 12
Getting started with the CSS 3D renderer 14
Detecting WebGL support 18
Setting up an animation loop 23
Determining the frame rate for your scene 25
Controlling the variables used in the scene 27
Setting up a local web server with Python 30
Setting up a local web server with Node.js 31
Setting up a local web server using Mongoose 32
Solving cross-origin-domain error messages in Chrome 33
Solving cross-origin-domain error messages in Firefox 35
Adding keyboard controls 37
Loading textures asynchronously 40
Loading models asynchronously 43
Loading models asynchronously with progress 45
Loading other resources asynchronously with progress 46
Waiting until resources are loaded 47
Dragging a file from the desktop to the scene 51

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

ii

Table of Contents

Chapter 2: Geometries and Meshes 57
Introduction 57
Rotating an object around its own axis 58
Rotating an object around a point in space 60
Informing Three.js about updates 63
Working with a large number of objects 66
Creating geometries from height maps 69
Pointing an object to another object 74
Writing text in 3D 76
Rendering 3D formulas as 3D geometries 80
Extending Three.js with a custom geometry object 83
Creating a spline curve between two points 86
Creating and exporting a model from Blender 88
Using OBJMTLLoader with multiple materials 93
Applying matrix transformations 97

Chapter 3: Working with the Camera 101
Introduction 101
Making the camera follow an object 102
Zooming the camera to an object 105
Using a perspective camera 109
Using an orthographic camera 112
Creating a 2D overlay 115
Rotating the camera around a scene 120
Matching the rendered view to a resized browser 123
Converting world coordinates to screen coordinates 126
Selecting an object in the scene 128

Chapter 4: Materials and Textures 133
Introduction 133
Adding depth to a mesh with a bump map 134
Adding depth to a mesh with a normal map 137
Using HTML canvas as a texture 141
Using HTML video as a texture 143
Creating a mesh with multiple materials 146
Using separate materials for faces 148
Setting up repeating textures 152
Making part of an object transparent 154
Using a cubemap to create reflective materials 158
Using a dynamic cubemap to create reflective materials 164
Using Blender to create custom UV mapping 167
Configuring blend modes 172
Using a shadow map for fixed shadows 175

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

iii

Table of Contents

Chapter 5: Lights and Custom Shaders 179
Introduction 179
Creating shadows with THREE.SpotLight 180
Creating shadows with THREE.DirectionalLight 183
Softening lights by adding ambient lighting 186
Using THREE.HemisphereLight for natural lighting 188
Adding a moving all-directional light 190
Moving a light source along a path 192
Making a light source follow an object 195
Creating a custom vertex shader 198
Creating a custom fragment shader 203

Chapter 6: Point Clouds and Postprocessing 209
Introduction 209
Creating a point cloud based on a geometry 210
Creating a point cloud from scratch 213
Coloring the individual points in a point cloud 216
Styling individual points 218
Moving individual points of a point cloud 224
Exploding a point cloud 226
Setting up the basic postprocessing pipeline 230
Creating custom postprocessing steps 233
Saving WebGL output to disk 238

Chapter 7: Animation and Physics 241
Introduction 241
Creating animations with Tween.js 242
Animating using morph targets 245
Animating with skeletons 250
Using morph animations created in Blender 254
Using skeleton animations created in Blender 258
Adding a simple collision detection 263
Saving a movie of an animation in Chrome 266
Dragging and dropping objects around a scene 270
Adding a physics engine 274

Index 279

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Preface
Each year, web browsers become more powerful, increase in features, and improve in
performance. Throughout the last couple of years, browsers have emerged as a great platform
to create immersive, complex, and beautiful applications. Most of the current applications
that are being built use modern HTML5 features such as web sockets, local storage, and
advanced CSS techniques for styling.

Most modern browsers, however, also have support for a technology that can be used
to create beautiful, 3D graphics and animations that use the GPU to achieve maximal
performance. This technology is called WebGL and is supported by the latest versions of
Firefox, Chrome, Safari, and Internet Explorer. With WebGL, you can create 3D scenes that
run directly in your browser, without the need for any plugins. Support on the desktop for this
standard is great, and most modern devices and mobile browsers fully support this standard.

To create WebGL applications, however, you need to learn a new language (called GLSL) and
understand how vertex and fragment shaders can be used to render your 3D geometries.
Luckily, though, there are a number of JavaScript libraries available that wrap the WebGL
internals and provide a JavaScript API that you can use without having to understand the
most complex features of WebGL. One of the most mature and feature-rich of those libraries
is Three.js.

Three.js started in 2010 and provides a large number of easy-to-use APIs that expose all the
features of Three.js and allows you to quickly create complex 3D scenes and animations in
your browser.

Through its APIs, you can do pretty much everything that you want with Three.js. However,
because it has so many features, it's sometimes difficult to find the right way to accomplish
something. Throughout the years, Three.js has been under heavy development, but it is
stabilizing now. So many examples and tutorials that you find online are outdated and don't
work anymore. In this book, we'll provide you with a large number of recipes that you can
follow to accomplish some common tasks with Three.js. Each example is accompanied with
a runnable example that you can examine to better understand the recipe or adapt for your
own purposes.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Preface

2

What this book covers
Chapter 1, Getting Started, covers the basic recipes that you can use when you create new
Three.js-based applications. We'll show you how you can set up a basic Three.js skeleton
using any of the available Three.js renderers. We'll further show you WebGL detection, loading
resources, setting up an animation loop, adding drag and drop support, and controlling your
scene through the keyboard.

Chapter 2, Geometries and Meshes, shows you a number of recipes that focus on creating,
working with and manipulating geometries and meshes. We'll go into detail on how to
rotate meshes in different ways, manipulate them using matrix transformations, generate
geometries programmatically, and load models from Blender and in other formats.

Chapter 3, Working with the Camera, focuses on recipes that manipulate the cameras
available in Three.js. It shows you how to work with the perspective and the orthogonal
camera. This chapter also shows you recipes that explain how to rotate a camera, center a
camera, and follow objects around.

Chapter 4, Materials and Textures, contains recipes that explain how to get good results
working with the materials provided by Three.js. It has recipes on transparency, reflections,
UV mapping, face materials, bump and normal maps and also explains how the various blend
modes work.

Chapter 5, Lights and Custom Shaders, has recipes that deal with the workings of the
different light sources in Three.js and shows you how to work with WebGL shaders. It shows
you how to correctly set up shadows, create a sun-like lighting source, and goes into the
differences between spot lights, point lights, and directional lights. In this chapter, we'll also
provide you with a couple of recipes that explain how to create a custom vertex shader and a
custom fragment shader.

Chapter 6, Point Clouds and Postprocessing, provides you with recipes that show you how
to set up postprocessing. With postprocessing, you can enhance your scene with blurring,
coloring, or other types of effects. This chapter also contains recipes that explain features
of a particle system, such as animation and particle materials.

Chapter 7, Animation and Physics, shows you a number of recipes that help you in animating
the objects in your scene and show you how to add physics (such as gravity and collision
detection) to your scene.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Preface

3

What you need for this book
The only thing that you need for this book is a simple text editor to experiment with the
provided recipes and a modern web browser to run the examples. For some of the advanced
recipes, it is preferred to have a locally installed web server or disable some security settings
in your browser. In Chapter 1, Getting Started, recipes are provided that explain how to set up
such a server and disable the relevant security settings.

Who this book is for
This book is for everyone who has a basic understanding of JavaScript and Three.js but
wants to learn how to use more advanced features of Three.js You don't need to understand
advanced math concepts or have in depth knowledge of WebGL. The recipes in this book will
explain the various features of Three.js step-by-step and we also provide all the recipes as
ready to use HTML sources.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Preface

4

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: " One
interesting thing to note is the addition of texture.needsUpdate = true to the ondrop
event handler."

A block of code is set as follows:

step1(function (value1) {
 step2(value1, function(value2) {
 step3(value2, function(value3) {
 step4(value3, function(value4) {
 // Do something with value4
 });
 });
 });
});

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 var y = camera.position.y;
 camera.position.y = y * Math.cos(control.rotSpeed) +
 z * Math.sin(control.rotSpeed);
 camera.position.z = z * Math.cos(control.rotSpeed) –
 y * Math.sin(control.rotSpeed);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Preface

5

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "On this screen,
just click on the I'll be careful, I promise! button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

www.itbook.store/books/9781783981182

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://itbook.store/books/9781783981182

Preface

6

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/1182OS.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.itbook.store/books/9781783981182

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://itbook.store/books/9781783981182

1
Getting Started

In this chapter, we'll cover the following recipes:

 f Getting started with the WebGL renderer

 f Getting started with the Canvas renderer

 f Getting started with the CSS 3D renderer

 f Detecting WebGL support

 f Setting up an animation loop

 f Determining the frame rate for your scene

 f Controlling the variables used in the scene

 f Setting up a local web server with Python

 f Setting up a local web server with Node.js

 f Setting up a local web server using Mongoose

 f Solving cross-origin-domain error messages in Chrome

 f Solving cross-origin-domain error messages in Firefox

 f Adding keyboard controls

 f Loading textures asynchronously

 f Loading models asynchronously

 f Loading models asynchronously with progress

 f Loading other resources asynchronously with progress

 f Waiting until resources are loaded

 f Dragging a file from the desktop to the scene

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

8

Introduction
In this chapter we'll show you a number of recipes that introduce the basic usage of Three.js.
We'll start with a number of simple recipes that you can use as a starting point for your
Three.js projects. Next, we'll show you a couple of features that you can add to your project,
such as WebGL detection and defining an animation loop. We'll end with a number of
more advanced features such as adding drag and drop support, and loading resources
synchronously and asynchronously.

Getting started with the WebGL renderer
When you want to create an initial Three.js project that uses WebGL for rendering, you always
have to set up the same couple of variables. You need a THREE.WebGLRenderer object,
a THREE.Scene object, a camera, and some way to render the scene. In this recipe, we'll
provide you with a standard template that you can use in your own projects to quickly get
started with the WebGL renderer.

Getting ready
Make sure that you download the sources for this book. You can either do this in the
following two ways:

 f Firstly, you can do this by cloning the Git repo that you can find at
https://github.com/josdirksen/threejs-cookbook.

 f Alternatively, you can download the sources from Packt Publishing website. When you
extract the ZIP file or clone the repository you'll find a set of directories; one for each
chapter of this book. For this recipe, you can use 0 as a reference.

You can directly view the end result of this recipe by opening the previously mentioned file in
your browser. When you open this example in the browser, you'll see the following screenshot:

www.itbook.store/books/9781783981182

https://github.com/josdirksen/threejs-cookbook
https://itbook.store/books/9781783981182

Chapter 1

9

This is a minimal scene, rendered with the THREE.WebGLRenderer object.

How to do it...
Creating a skeleton that you can use as a base for your projects is easy. With a couple of
simple steps, you'll get your first WebGLRenderer-based Three.js scene up and running:

1. Let's first define the basic HTML that we'll use:
<!DOCTYPE html>
<html>
 <head>
 <title>01.01 - WebGLRenderer - Skeleton</title>
 <script src="../libs/three.js"></script>
 <style>
 body {
 margin: 0;
 overflow: hidden;
 }
 </style>
 </head>
 <body>

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

10

 <script>
 ...
 </script>
 </body>
</html>

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

As you can see this is use a simple page, with a script tag in the body that'll contain
our Three.js code. The only interesting part is the CSS style.

We will add this style to the body element to make sure that our Three.js scene will
run in fullscreen mode and won't show any scrollbars.

2. Next, let's start by filling in the script tag. The first thing that we will do is create a
number of global variables that are used throughout this recipe:
 // global variables
 var renderer;
 var scene;
 var camera;

The renderer variable will hold a reference to the THREE.WebGLRenderer object
that we're going to create in the next step. The scene variable is the container for all
the objects that we want to render, and the camera variable determines what we will
see when we render the scene.

3. Usually, you'd want to wait for all the HTML elements to finish loading, before you
start running your JavaScript. For this, we use the following JavaScript:
 // calls the init function when the window is done
 loading.
 window.onload = init;

With this code, we tell the browser to call the init function, once the complete page
has loaded. In the next step, we'll show the content of this init function.

www.itbook.store/books/9781783981182

http://www.packtpub.com
http://www.packtpub.com/support
https://itbook.store/books/9781783981182

Chapter 1

11

4. For your skeleton to work, you need to add the init function, which looks as follows:

function init() {

 // create a scene, that will hold all our elements
 // such as objects, cameras and lights.
 scene = new THREE.Scene();
 // create a camera, which defines where we looking
 at.
 camera = new THREE.PerspectiveCamera(45,
 window.innerWidth / window.innerHeight, 0.1, 1000);
 // position and point the camera to the center
 camera.position.x = 15;
 camera.position.y = 16;
 camera.position.z = 13;
 camera.lookAt(scene.position);

 // create a renderer, set the background color and
 size
 renderer = new THREE.WebGLRenderer();
 renderer.setClearColor(0x000000, 1.0);
 renderer.setSize(window.innerWidth,
 window.innerHeight);

 // create a cube and add to scene
 var cubeGeometry = new THREE.BoxGeometry(
 10 * Math.random(),
 10 * Math.random(),
 10 * Math.random());

 var cubeMaterial = new THREE.MeshNormalMaterial();

 var cube = new THREE.Mesh(cubeGeometry,
 cubeMaterial);
 scene.add(cube);

 // add the output of the renderer to the html element
 document.body.appendChild(renderer.domElement);

 // call the render function
 renderer.render(scene, camera);

 }

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

12

In this init function, we first created a THREE.Scene object with the
container for all the objects that we want to render. Next, we created a camera,
which determines the field of the view that will be rendered. Next, we created the
THREE.WebGLRenderer object, which is used to render the scene using WebGL.
The THREE.WebGLRenderer object has many properties. In this recipe, we used
the setClearColor property to set the background of our scene to black, and
we told the renderer to use the complete window for its output, using the window.
innerWidth and window.innerHeight properties. To see whether our skeleton
page is working, we then added a simple THREE.Mesh object with a THREE.
BoxGeometry object to the scene. At this point, we can add the output of the
WebGL, as a child of the HTML body element. We do this by appending the renderer's
DOM element to the document body. Now, all that is left to do is render the scene by
calling renderer.render().

With these steps, you've created a basic WebGLRenderer based Three.js scene, which you
can use as a basic starting point for all your Three.js experiments.

See also
 f The THREE.WebGLRenderer object only works when your browser supports WebGL.

Even though most modern desktop browsers (and even a large number of mobile
browsers) support WebGL, in some cases, you might need to look for an alternative.
Three.js provides a couple of other renderers, which you can use. To get an up-to-date
overview of which browsers support WebGL, you can check out the information on
this topic at http://caniuse.com/webgl.

 f Besides using the THREE.WebGLRenderer object to render your scene, you can use
the THREE.CanvasRenderer object, which is explained in Getting started with the
Canvas renderer recipe or the THREE.CSS3DRenderer object, which is explained in
the Getting started with the CSS 3D renderer recipe.

Getting started with the Canvas renderer
If your system doesn't support WebGL, there is an alternative renderer that you can use to
render your scenes: the CanvasRenderer object. This renderer doesn't use WebGL to render
the output, but directly uses JavaScript to draw the HTML5 canvas element.

Getting ready
In the r69 Version of Three.js, the canvas renderer has been removed from the default
distribution. To use this renderer, we have to first import the following two files:

 <script src="../libs/CanvasRenderer.js"></script>
 <script src="../libs/Projector.js"></script>

www.itbook.store/books/9781783981182

http://caniuse.com/webgl
https://itbook.store/books/9781783981182

Chapter 1

13

For this recipe, you can take a look at the 01.02-canvasrenderer-skeleton.html
example from the sources in this chapter. If you open this example in your browser, you'll
see a cube, pretty much like the one in the previous recipe:

This time, however, this cube is rendered with the HTML5 canvas element. HTML5 canvas is
supported on many devices, but provides less performance than the WebGL- based solution.

How to do it...
To set up the WebGL renderer, you will follow exactly the same steps as we showed in the
previous recipe, Getting started with the WebGL renderer, so we won't go into the details in
this section but we'll just list down the differences:

1. To get started with the THREE.CanvasRenderer object, the only thing we need
to change is the following:

 � Replace the THREE.WebGLRenderer object in the following piece of code:
 renderer = new THREE.WebGLRenderer();
 renderer.setClearColor(0x000000, 1.0);
 renderer.setSize(window.innerWidth,
 window.innerHeight);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

14

 � Replace the THREE.WebGLRenderer object with the THREE.
CanvasRenderer object as follows:

 renderer = new THREE.CanvasRenderer();
 renderer.setClearColor(0x000000, 1.0);
 renderer.setSize(window.innerWidth,
 window.innerHeight);

And that's it. With this change, we move from rendering using WebGL to rendering on the
HTML5 canvas.

How it works...
The main difference between the HTML5 canvas renderer and the WebGL renderer is that this
approach uses JavaScript to directly draw to the HTML5 canvas for rendering your 3D scene.
The main issue with this approach is the lousy performance. When you use the THREE.
WebGLRenderer object, you can use hardware-accelerated rendering. However, with the
THREE.CanvasRenderer object, you have to completely rely on software-based rendering,
which will result in lower performance. An added disadvantage of THREE.CanvasRenderer
is that you can't use the advanced materials and features of Three.js, as that relies on WebGL
specific functionality.

See also
 f If you can use the WebGL approach given in the Getting started with the WebGL

renderer recipe, you should really use it. It provides more features than those that
are available with the canvas-based approach, and has much better performance.

 f In the following recipe, Getting started with the CSS 3D renderer, this will also show
a different approach where we use the CSS 3D-based renderer to animate the
HTML elements. CSS 3D also provides hardware accelerated rendering, but only has
support for a limited set of Three.js features.

Getting started with the CSS 3D renderer
HTML and CSS are getting more and more powerful each day. Modern browsers, both mobile
and desktop variants, have great support for these two standards. The latest versions of CSS
also support 3D transformations. With the THREE.CSS3DRenderer object, we can directly
access these CSS 3D features and transform an arbitrary HTML element in 3D space.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

15

Getting ready
To use the CSS 3D renderer, we first have to download the specific JavaScript file from
the Three.js site, as it hasn't been included in the standard Three.js distribution. You can
download this file directly from GitHub at https://raw.githubusercontent.com/
mrdoob/three.js/master/examples/js/renderers/CSS3DRenderer.js or look
in the lib directory of the sources provided with this book.

To see the CSS3DRenderer scene in action, you can open the example
01.03-cssrenderer-skeleton.html in your browser:

What you see here is a standard HTML div element, rendered in 3D with the
THREE.CSS3DRenderer object.

www.itbook.store/books/9781783981182

https://raw.githubusercontent.com/mrdoob/three.js/master/examples/js/renderers/CSS3DRenderer.js
https://raw.githubusercontent.com/mrdoob/three.js/master/examples/js/renderers/CSS3DRenderer.js
https://itbook.store/books/9781783981182

Getting Started

16

How to do it...
To set up a THREE.CSS3DRenderer based scene, we need to perform a couple of
simple steps:

1. Before we get started with the THREE.CSS3DRenderer specific information,
first, you have to set up a simple basic HTML page as we did in the Getting started
with the WebGL renderer recipe. So walk through the first three steps of that recipe,
and then continue with the next step.

2. After the initial setup, the first thing that we need to do is to add the correct
JavaScript to our head element:
 <script src="../libs/CSS3DRenderer.js"></script>

Next, we'll start with the definition of the global variables that we need:

 var content = '<div>' +
 '<h1>This is an H1 Element.</h1>' +
 'Hello Three.js cookbook'
 +
 '<textarea> And this is a textarea</textarea>' +
 '</div>';

 // global variables, referenced from render loop
 var renderer;
 var scene;
 var camera;

3. What we define here is a string representation of the element that we want to render.
As the THREE.CSS3DRenderer object works with the HTML elements, we won't
use any of the standard Three.js geometries here, but just plain HTML. The renderer,
scene, and camera are simple variables for the corresponding Three.js elements, so
that we can easily access them from the render() function, which we'll see later on.

4. Similar to the other skeletons we will initialize the scene in the init() function.
The function that you need to add to the THREE.CSS3DRenderer object is shown
as follows:
 function init() {

 scene = new THREE.Scene();
 camera = new THREE.PerspectiveCamera(45,
 window.innerWidth / window.innerHeight, 0.1, 1000);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

17

 // create a CSS3DRenderer
 renderer = new THREE.CSS3DRenderer();
 renderer.setSize(window.innerWidth, window.innerHeight);
 document.body.appendChild(renderer.domElement);

 // position and point the camera to the center of the
 scene
 camera.position.x = 500;
 camera.position.y = 500;
 camera.position.z = 500;
 camera.lookAt(scene.position);

 var cssElement = createCSS3DObject(content);
 cssElement.position.set(100, 100, 100);
 scene.add(cssElement);

 render();
 }

5. We'll focus on the highlighted parts in this code fragment. For an explanation of the
other parts of this function, we will take a look at the Getting started with the WebGL
renderer recipe. As you can see in this fragment, this time we will create a THREE.
CSS3DRenderer object. Just as we did with the other renderers, we also need to set
the size. Since we want to fill the screen, we will use the window.innerwidth and
window.innerheight properties. The rest of the code stays the same.

6. Now, all we need to do to finish this skeleton is add an element. With the CSS 3D
renderer, we can only add THREE.CSS3DObject elements. For this step, just add
the following function:

function createCSS3DObject(content)
 {
 // convert the string to dome elements
 var wrapper = document.createElement('div');
 wrapper.innerHTML = content;
 var div = wrapper.firstChild;

 // set some values on the div to style it.
 // normally you do this directly in HTML and
 // CSS files.
 div.style.width = '370px';
 div.style.height = '370px';
 div.style.opacity = 0.7;
 div.style.background = new THREE.Color(Math.random()
 * 0xffffff).getStyle();

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

18

 // create a CSS3Dobject and return it.
 var object = new THREE.CSS3DObject(div);
 return object;
 }

This function takes an HTML string as the input, converts it to an HTML element,
sets some CSS styles, and uses this as the input to create a THREE.CSS3DObject
object, which is added to the scene.

If you open this file in your browser, you'll see something that resembles the example we
showed in the Getting ready section of this recipe. You can use the HTML page and JavaScript
as a template for the entirety of your CSS 3D renderer project.

How it works...
With CSS 3D, you can apply all kinds of transformations to the HTML elements. For instance,
you can apply a specific rotation around an axis using the transform property. The interesting
thing is that you can also apply matrix transformations. Three.js uses matrix transformations
internally to position and rotate the elements. With the THREE.CSS3DRenderer object,
Three.js hides the internal CSS 3D specific transformations and styles and provides a nice
abstraction level, which you can use to work with the HTML elements in 3D.

See also
 f If you can use the WebGL approach from the Getting started with the WebGL

renderer recipe, you should really use it. It provides more features than those that
are available with the CSS-based approach, but has less support for mobile devices.
If, on the other hand, you're looking to manipulate the HTML elements on screen, the
THREE.CSS3DRenderer object is a great solution.

Detecting WebGL support
Not all browsers currently support WebGL. When you create a page that uses the THREE.
WebGLRenderer object, it is a good idea to make sure that the browser supports WebGL.
If a browser doesn't support it, this will result in all kinds of strange JavaScript errors in the
JavaScript console and an empty screen for the end user. To make sure that your WebGL
projects work as expected, we'll explain how to detect WebGL support in a browser in
this recipe.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

19

Getting ready
In this recipe, as an example, we will use the 01.04-detect-webgl-support.html file,
which you can find in the sources provided with this book. If you open this file, you'll see the
following result if your browser doesn't support WebGL:

Let's take a look at the recipe to create the preceding example.

How to do it...
To detect WebGL and create the message WebGL is not-supported, we need to perform the
following steps:

1. First, we'll create the CSS for the pop up to show when WebGL isn't supported.

2. Then, we need to detect whether the browser WebGL is supported. For this, we'll
write a method that returns the values true or false.

3. Finally, we'll use the result from the previous step to either show the pop up or
just continue.

In the following section, we'll look at these steps in detail:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

20

4. The first thing you need to do is set up the CSS that we'll use:
<!DOCTYPE html>
<html>
 <head>
 <style>
 .black_overlay {
 display: none;
 position: absolute;
 top: 0;
 left: 0%;
 width: 100%;
 height: 100%;
 background-color: black;
 z-index: 1001;
 opacity: .80;
 }

 .white-content {
 display: none;
 position: absolute;
 top: 25%;
 left: 25%;
 width: 50%;
 height: 70px;
 padding: 16px;
 border: 2px solid grey;
 background-color: black;
 z-index: 1002;
 }

 .big-message {
 width: 80%;
 height: auto;
 margin: 0 auto;
 padding: 5px;
 text-align: center;
 color: white;

 font-family: serif;
 font-size: 20px;
 }

 </style>
 <title></title>
 </head>
 <body>

As you can see, there is nothing special in this CSS. The only thing that we will do here
is create a number of classes that we'll use to create a pop-up message and hide the
background. Next, we will define the HTML that is used to create the pop ups.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

21

5. The following snippet shows you the HTML code, which will contain the message.
Using the CSS that we previously defined we can show or hide this element:
 <!-- Lightbox to show when WebGL is supported or not
 -->
 <div id="lightbox" class="white-content">
 <div class="big-message" id="message">

 </div>
 <a href="javascript:void(0)"
 onclick="hideLightbox()">Close
 </div>
 <div id="fade" class="black_overlay"></div>

As you can see, we just create a number of div elements that are currently hidden.
When we detect that WebGL isn't supported this will be shown by the two div
elements by changing their visibility.

6. Next, let's take a look at the JavaScript you need to add to detect WebGL. We'll create
the following function for it:
 // loosely based on the http://get.webgl.org
 function detectWebGL() {

 // first create a canvas element
 var testCanvas = document.createElement("canvas");
 // and from that canvas get the webgl context
 var gl = null;

 // if exceptions are thrown, indicates webgl is null
 try {
 gl = testCanvas.getContext("webgl");
 } catch (x) {
 gl = null;
 }

 // if still null try experimental
 if (gl == null) {
 try {
 gl = testCanvas.getContext("experimental-webgl");
 } catch (x) {
 gl = null;
 }

 }
 // if webgl is all good return true;
 if (gl) {
 return true;
 } else {
 return false;
 }
}

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

22

As you can see, we create an HTML canvas element and then try to create a WebGL
context with the getContext function. If this fails, the gl variable is set to null but
if it succeeds, the gl variable will contain the WebGL context. If the gl variable isn't
null, it will return true. On the hand, if it is, it will return false.

7. Now that we're able to detect whether a browser supports WebGL or not, we'll use
this function to show a pop up. For this recipe, we'll also show you a pop up when
WebGL is supported:

 var hasGl = detectWebGL();
 if (hasGl) {
 showLightbox("WebGL is supported");
 } else {
 showLightbox("WebGL is not-supported");
 }

 function showLightbox(message) {
 var lightBox = document.getElementById('light');
 lightBox.style.display = 'block';

 var fadeBox = document.getElementById('fade');
 fadeBox.style.display = 'block'

 var msg = document.getElementById('message');
 msg.textContent = message;
 }

 function hideLightbox() {
 var lightBox = document.getElementById('light');
 lightBox.style.display = 'none';

 var fadeBox = document.getElementById('fade');
 fadeBox.style.display = 'none'
 }

And that is it for this recipe. If we add this to a web page, a browser that supports WebGL
shows a pop up with WebGL is supported, if no WebGL is available, a pop up is shown with
the text WebGL isn't supported. Besides this approach, you can also use the detector object
provided by Three.js at https://github.com/mrdoob/three.js/blob/master/
examples/js/Detector.js. If you include this file in your JavaScript, you can detect
WebGL by checking the webgl attribute of the Detector object.

www.itbook.store/books/9781783981182

https://github.com/mrdoob/three.js/blob/master/examples/js/Detector.js
https://github.com/mrdoob/three.js/blob/master/examples/js/Detector.js
https://itbook.store/books/9781783981182

Chapter 1

23

Setting up an animation loop
In the recipes at the beginning of this chapter, we showed you how to set up a basic Three.
js scene, using one of the available renderers. If you want to add animations to your Three.
js scene, for instance, to move the camera around or rotate an object, you'll need to call the
render function multiple times. In the old days of JavaScript, you had to control this yourself
using the setTimeout or setInterval JavaScript functions. The problem with these
functions is that they don't take into account what is happening in your browser. For instance,
your page will be hidden or the Three.js scene might be scrolled out of view. A better solution
for animations, and the one that we'll use in this recipe, is requestAnimationFrame. With
this function, your browser determines when it is the best time to call the animation code.

Getting ready
For this recipe, we will use the 01.05-setup-animation-loop.html example HTML file.
To see the animation in action, just open this file in your browser:

This example uses the WebGL renderer. You can of course apply this same recipe to the other
renderers we've discussed in this chapter.

Let's take a look at the steps we need to take to set up such an animation loop.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

24

How to do it...
To create an animation loop you don't have to change much in your existing code:

1. Let's first look at how to use requestAnimationFrame for rendering. For this,
we've created a render function:
 function render() {
 renderer.render(scene, camera);
 scene.getObjectByName('cube').rotation.x += 0.05;
 requestAnimationFrame(render);
 }

As you can see, we pass the render function as an argument to request a frame for
animation. This will cause the render function to be called at a regular interval.
In the render function, we will also update the rotation of the x axis of the cube to
show you that the scene is re-rendered.

2. To use this function in the recipes, which we saw at the beginning of this chapter,
we just have to replace this call:
 function init() {
 ...
 // call the render function
 renderer.render(scene, camera);
 }
With the following:
 function init() {
 ...
 // call the render function
 render();
 }

3. You will now have your own animation loop, so any changes made to your
model, camera, or other objects in the scene can now be done from within
the render() function.

See also
 f We mentioned that in this recipe, we've used the THREE.WebGLRenderer object as

an example. You can of course also apply this to the skeletons from the Getting started
with the Canvas renderer recipe or Getting started with the CSS 3D renderer recipe.

 f What will be of interest to you also is the Determining the frame rate of your scene
recipe, where we'll add additional functionality to the skeletons so you can easily see
how often the render function is called by requestAnimationFrame.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

25

Determining the frame rate for your scene
When you create large Three.js applications with many objects and animations, it is good to
keep an eye on the frame rate at which the browser can render your scene. You can do this
yourself using log statements from your animation loop, but luckily, there is already a good
solution available that integrates great with Three.js (which isn't that strange since it was
originally written for Three.js).

Getting ready
For this recipe, we'll use the stats.js JavaScript library that you can download from its
GitHub repository at https://github.com/mrdoob/stats.js/. To use this library,
you have to include it at the top of your HTML file such as this:

 <script src="../libs/stats.min.js"></script>

We've also provided a ready to use example for this recipe. If you open the
01.06-determine-framerate.html file in your browser, you can directly see how
this library shows the current framerate, which you can see at the top-left of the browser,
as shown in the following screenshot:

Let's take a look at the steps you need to take to add this to your Three.js application.

www.itbook.store/books/9781783981182

https://github.com/mrdoob/stats.js/
https://itbook.store/books/9781783981182

Getting Started

26

How to do it...
Adding this functionality to your scene only takes a couple of small steps, which are as follows:

1. Firstly, we have to create the stats object and position it. For this, we create a
simple function:
 function createStats() {
 var stats = new Stats();
 stats.setMode(0);

 stats.domElement.style.position = 'absolute';
 stats.domElement.style.left = '0';
 stats.domElement.style.top = '0';

 return stats;
 }

We create the statistics object by calling new Stats(). The Stats.js library
supports two different modes that we can set with the setMode function. If we pass
0 as an argument, you see the frames rendered in the last second, and if we set the
mode to 1, we see the milliseconds that were needed to render the last frame. For
this recipe, we want to see the framerate, so we set the mode to 0.

2. Now that we can create the statistics object, we need to append the init method
we've seen in the skeleton recipes:
 // global variables
 var renderer;
 var scene;
 var camera;
 var stats;

 function init() {
 ...
 stats = createStats();
 document.body.appendChild(stats.domElement);

 // call the render function
 render();
 }

As you can see we created a new global variable called stats, which we'll use to
access our statistics object. In the init method, we use the function we just created,
and add the stats object to our HTML body.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

27

3. We're almost there. The only thing we need to do now is make sure that we update
the stats object whenever the render function is called. This way, the stats object
can calculate either the framerate or the time it took to run the render function:

 function render() {
 requestAnimationFrame(render);

 scene.getObjectByName('cube').rotation.x+=0.05;
 renderer.render(scene, camera);
 stats.update();
 }

How it works...
We mentioned that Stats.js provides two modes. It either shows the framerate or the time
it took to render the last frame. The Stats.js library works by simply keeping track of the
time passed between calls and its update function. If you're monitoring the framerate, it
counts how often the update was called within the last second, and shows that value. If you're
monitoring the render time, it just shows the time between calls and the update function.

Controlling the variables used in the scene
When you're developing and writing JavaScript, you often need to tune some variables for
the best visualization. You might need to change the color of a sphere, change the speed of
an animation, or experiment with more complex material properties. You can just change the
source code, and reload the HTML, but that becomes tedious and time consuming. In this
recipe, we'll show you an alternative way to quickly and easily control the variables in your
Three.js scene.

Getting ready
For this recipe, we also need an external JavaScript library called dat.gui. You can download
the latest version from https://code.google.com/p/dat-gui/, or look into the libs
directory of the sources provided with this book. To use this library, you first have to include it
in the top of your HTML file:

 <script src="../libs/dat.gui.min.js"></script>

www.itbook.store/books/9781783981182

https://code.google.com/p/dat-gui/
https://itbook.store/books/9781783981182

Getting Started

28

In the source folder of this chapter, there is also a ready-to-use example, which we'll explain
in the following sections. When you open the 01.07-control-variables.html file,
you'll see the following:

As you can see in the preceding screenshot, a menu is available in the top-right corner that
you can use to control the rotation speed and the scaling of the cube.

How to do it...
To use this library for yourself, you only need to do a couple of small things:

1. The first thing you need to do is define a JavaScript object that contains the
properties you want to control. In this case, you need to add it to the init
function and create a new global JavaScript variable with the name, control:
 ...
 var control;
 function init() {
 ...

 control = new function() {
 this.rotationSpeed = 0.005;
 this.scale = 1;
 };

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

29

 addControls(control);

 // call the render function
 render();
 }

2. The control object in the preceding code contains two properties: rotationSpeed
and scale. In the addControls function, we'll create the UI component that is
shown in the preceding screenshot:
 function addControls(controlObject) {
 var gui = new dat.GUI();
 gui.add(controlObject, 'rotationSpeed', -0.1, 0.1);
 gui.add(controlObject, 'scale', 0.01, 2);
 }

In this addControls function, we use the provided argument that contains the
rotationSpeed and scale properties in order to create the control GUI. For each
variable, we specify four arguments:

1. Object: The first argument is the JavaScript object that contains the
variables. In our case, it's the object passed to the addControls function.

2. Name: The second argument is the name of the variable we want to add.
This should point to one of the variables (or functions) available in the object
that is provided in the first argument.

3. Minimum value: The third argument is the minimum value that should be
shown in the GUI.

4. Maximum value: The last argument specifies the maximum value that
should be shown.

3. At this point, we've got a GUI that can be used to control the variables, as you can see
in the following screenshot:

The only thing we now need to do is make sure that we update our object in the
render loop, which is based on the variables from the GUI. We can do this easily in
the render function, which is as follows:

 function render() {
 renderer.render(scene, camera);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

30

 scene.getObjectByName('cube').rotation.x+=
 control.rotationSpeed;
 scene.getObjectByName('cube')
 .scale.set
 (control.scale,
 control.scale,
 control.scale);

 requestAnimationFrame(render);
 }

There's more...
In this recipe, we've just used dat.gui to change the numeric values. The dat.gui library
also allows you to add controls for other types of values as follows:

 f If the variable you add is a Boolean, a checkbox will be shown

 f If the variable is a string, you can add an array of valid values

 f If the variable is a color, you can use add color to create a color picker

 f If the variable is a function, you get a button that fires the selected function

Besides this, you can add different kinds of event listeners to fire custom callbacks when
a value managed by dat.gui changes. For more information, see the dat.gui library
documentation which you can find at http://workshop.chromeexperiments.com/
examples/gui/#1--Basic-Usage.

Setting up a local web server with Python
The best way to test your Three.js applications, or any JavaScript application for that matter,
is to run it on a local web server. This way, you have the best representation of how your users
will eventually see your Three.js visualization. In this chapter, we will show you three different
ways in which you can run a web server locally. The three different ways to set up a local web
server are:

 f One way to do this is via a Python-based approach that you can use if you've got
Python installed

 f Another way is to do if you use Node.js or have already played around with Node.js,
you can use the npm command to install a simple web server

 f A third option is if you don't want to use the npm command or Python, you can also
use Mongoose, which is a simple portable web server, that runs on OS X
and Windows

This recipe will focus on the Python-based approach (the first bullet point).

www.itbook.store/books/9781783981182

http://workshop.chromeexperiments.com/examples/gui/#1--Basic-Usage
http://workshop.chromeexperiments.com/examples/gui/#1--Basic-Usage
https://itbook.store/books/9781783981182

Chapter 1

31

Getting ready
If you've got Python installed, you can very easily run a simple web server. You will first need
to check whether you've got Python installed. The easiest way to do this is just type in python
on a console and hit enter. If you see an output as follows, you are ready to begin:

> python
Python 2.7.3 (default, Apr 10 2013, 05:09:49)
[GCC 4.7.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

How to do it...
1. Once Python (http://python.org) has been installed, you can run a simple web

server by just executing the following Python command. You will need to do this in the
directory from where you want to host the files:
> python -m SimpleHTTPServer

2. The following output shows the web server running on port 8000:

Serving HTTP on 0.0.0.0 port 8000...

If you don't have Python installed, take a look at one of the following two recipes for
alternative options.

Setting up a local web server with Node.js
If you would like to test your Three.js applications, then as described in the How to set up a
local web server with Python recipe, you can run it in three different ways. This recipe will
focus on the Node.js approach.

Getting ready
To run a local web server with Node.js (https://nodejs.org), we first have to check
whether we've got npm (the node package manager, which is installed together with Node.js)
installed. You can check this by running the npm command from the command line:

> npm

If the output is similar to the following code snippet, you've got npm installed and you are
ready to begin the recipe:

Usage: npm <command>

where ...

www.itbook.store/books/9781783981182

http://python.org
https://nodejs.org
https://itbook.store/books/9781783981182

Getting Started

32

How to do it...
1. You can use it to run a simple web server using:

Usage: npm <command>...

2. Now, you are ready to install a web server by running:
> npm install -g http-server

3. Finally, you are ready to start the web server by running http-server from the
command line:

> http-server

Starting up http-server, serving ./ on port: 8080

Hit CTRL-C to stop the server

A final recipe for running your own web server is presented in the next section. In that recipe
you don't need Python or Node.js installed, but we will show you how to download a portable
web server that you can run without requiring any installation.

Setting up a local web server using
Mongoose

If you would like to test your Three.js applications, then as described in the How to set up
a local web server with Python recipe, you can run it in three different ways. If the first two
approaches fail, you can always use a simple portable web server using Mongoose. This
recipe will focus on the Mongoose approach.

Getting ready
Before you run Mongoose, you first have to download it. You can download Mongoose from
https://code.google.com/p/mongoose/downloads/list.

How to do it...
1. The platform you are using will affect how you run Mongoose. If you're running

Windows, you can just copy the downloaded file (an executable) to the folder from
where you want to host your files from (for example, the directory where you extracted
the sources for this book), and double-click on the executable to start the web server
on port 8080.

2. For Linux or OS X platforms, you will also need to have a copy of the downloaded file
in the directory where your files are located, but you have to start Mongoose from the
command line.

www.itbook.store/books/9781783981182

https://code.google.com/p/mongoose/downloads/list
https://itbook.store/books/9781783981182

Chapter 1

33

See also
 f If you can't install a local web server, you can take a look at the Solving

cross-origin-domain error messages in Chrome recipe. This recipe provides
you with an alternative way of running the more advanced Three.js examples.

Solving cross-origin-domain error messages
in Chrome

When you are developing Three.js applications, the simplest way of testing your application
is to just open the file in your browser. For a lot of scenarios, this will work, until you start
loading textures and models. If you try to do this, you'll be presented with an error that looks
something like this:

This error, which you can easily reproduce yourself by just dragging 01.09-solve-cross-
origin-issues.html to your browser, will have the terms cross-origin or SecurityError in
its message. What this error means is that the browsers prevents the current page loading
a resource from a different domain. This is a necessary feature to avoid maleficent websites
access to personal information. During development, however, this can be a bit incovenient.
In this recipe, we'll show you how you can circumvent these kinds of errors by tweaking the
security settings of your browser.

We'll take a look at how to disable the security checks for the two browsers that have the best
support for WebGL: Chrome and Firefox. In this recipe, we'll look at how to do this in Chrome,
and in the next recipe, we'll show you how to do this in Firefox. An important note, though,
before we go on with the recipe. If you can, run a local web server. It's much more secure and
doesn't result in low security settings in your browser.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

34

How to do it...
1. After the installation of Chrome is complete, we will then need to disable the

security settings in Chrome, for which we have to pass a command line parameter.
Each operating system, however, does this slightly differently:

 � For Windows, you call the following (from the command line):
chrome.exe --disable-web-security

 � On Linux, do the following:
google-chrome --disable-web-security

 � And on Mac OS, you disable the settings by starting Chrome using:

open -a Google\ Chrome --args --disable-web-security

2. When you start Chrome this way, even running it directly from the filesystem will load
the resources correctly to give you the following result:

3. Do remember to restart the browser normally after you're done experimenting or
developing with Three.js, since you've lowered the security settings of your browser.

4. For Firefox users, we explain how to solve these cross-origin issues for this browser
in the following recipe.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

35

Solving cross-origin-domain error messages
in Firefox

In the previous recipe, we explained that cross-origin error messages can occur when you run
Three.js applications from the filesystem. In this recipe, we showed you how to solve these
kind of issues on Chrome. In this recipe, we look at how to solve these issues in another
popular browser: Firefox.

How to do it...
1. For Firefox, we will then need to disable the security settings directly from the

browser. If you type about:config in the URL bar, you will see the following:

2. On this screen, just click on the I'll be careful, I promise! button. This will bring you to
an overview page that shows you all the internal properties available in Firefox.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

36

3. Following this, in the search box on this screen type security.fileuri.strict_
origin_policy and change its value, as shown in the following screenshot:

4. Now, when you open a file directly in the browser, even the resources loaded through
one of the asynchronous loaders will work.

5. Do remember to change these settings back after you're done experimenting or
developing with Three.js, since you've lowered the security settings of your browser.

How it works...
The reason we have to set these properties is that, by default, the modern browser checks
whether you're allowed to request a resource from a different domain than the one you're
running on. When you use Three.js to load a model or a texture, it uses an XMLHTTPRequest
object to access that resource. Your browser will check for the availability of the correct
headers, and since you're requesting a resource from your local system, which doesn't provide
the correct headers, an error will occur. Even, though with this recipe, you can circumvent
this restriction, it is better to always test with a local web server, since that will most closely
resemble how your users will access it online.

For more information on CORS, refer to http://www.w3.org/TR/cors/.

See also
 f As we mentioned in the previous section, a better way to handle these kinds of errors

is by setting up a local web server. The Setting up a local web server with Python
recipe, explains how to accomplish this.

www.itbook.store/books/9781783981182

http://www.w3.org/TR/cors/
https://itbook.store/books/9781783981182

Chapter 1

37

Adding keyboard controls
If you want to create games or more advanced 3D scenes, you often need a way to control
elements in your scene using keyboard controls. For instance, you might make a platform
game where the user uses the arrows on the keyboard to move through your game. Three.js in
itself doesn't provide a specific functionality to handle keyboard events, since it is very easy to
connect the standard HTML JavaScript event handling to Three.js.

Getting ready
For this recipe, we included an example where you can rotate a cube around its x and z
axes using the arrows on your keyboard. If you first open an example 01.10-keyboard-
controls.html in your browser, you'll see a simple cube:

With the up, down, left, and right arrows on your keyboard, you can rotate this cube. With this
file open, you are now ready to begin.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

38

How to do it...
Adding a key support in your browser is very easy; all you have to do is assign an event
handler to document.onkeydown.

1. To do this we need to assign a function to the document.onkeydown object
This function will get called whenever a key is pressed. The following code,
wrapped in the setupKeyControls function, registers this listener:
 function setupKeyControls() {
 var cube = scene.getObjectByName('cube');
 document.onkeydown = function(e) {
 switch (e.keyCode) {
 case 37:
 cube.rotation.x += 0.1;
 break;
 case 38:
 cube.rotation.z -= 0.1;
 break;
 case 39:
 cube.rotation.x -= 0.1;
 break;
 case 40:
 cube.rotation.z += 0.1;
 break;
 }
 };
 }

2. In this function, we use the keyCode property from the passed event e in order
to determine what to do. In this example, if a user presses the left arrow key that
corresponds to key code 37, we change the rotation.x property of the Three.js
object in our scene. We apply the same principle to the up arrow key(38), the right
arrow (39), and the down arrow (40).

How it works...
Using event handlers is a standard HTML JavaScript mechanism, they are a part of the DOM
API. This API allows you to register functions for all kinds of different events. Whenever that
specific event occurs, the provided function is called. In this recipe, we chose to use the
KeyDown event. This event is triggered when the user presses a key. There is also a KeyUp
event available that is triggered when the user releases a key, which one to use depends on
your use case. Note that there is also a KeyPress event available. This event, though, is
meant to be used with characters and doesn't register any noncharacter key press.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

39

There's more...
In this recipe, we only showed the key code values for the arrows. There is, of course, a
separate key code for each key on your keyboard. A good explanation of how the various
keys are mapped (especially, the special ones such as the function keys) can be found at
http://unixpapa.com/js/key.html. If you want to know the key value of a specific
key, and you don't feel like looking up the value in a list, you can also use just the following
simple handler to output the key codes to the JavaScript console:

 function setupKeyLogger() {
 document.onkeydown = function(e) {
 console.log(e);
 }
 }

This small handler logs the complete event. In the output to the console, you can then see the
key code that is used, as shown in the following screenshot:

As you can see, you also see a lot of other interesting information. For instance, you can see
whether the shift or Alt keys were also pressed at the same time of the event.

www.itbook.store/books/9781783981182

http://unixpapa.com/js/key.html
https://itbook.store/books/9781783981182

Getting Started

40

See also
 f If you want to learn more about key events, Mozilla provides a good overview of all the

events that are available at https://developer.mozilla.org/en-US/docs/
Web/Events.

Loading textures asynchronously
When you create Three.js scenes, you often need to load resources. There might be textures
you want to load for your objects, you might have some external models you want to include in
your scene, or maybe some CSV data that you want to use as an input for your visualization.
Three.js offers a number of different ways of loading these resources asynchronously, which
we'll explore in this and the following recipes.

To run these recipes and experiment with them, we included a simple sample in the source
folder of this chapter that shows this loading in action. If you open an example 01.11-load-
async-resources.html in your browser, and open the JavaScript console, you'll see the
progress and the result of loading resources asynchronously.

Please note that since we are loading files directly from the browser, you need to have either
a local web server installed (see the Setting up a local web server with Python recipe or
the Setting up a local web server with Node.js recipe) or disable some security checks as
explained in the Solving cross-origin-domain error messages in Chrome recipe or the Solving
cross-origin-domain error messages in Firefox recipe.

In these first of the five recipes, we'll show you how you can load textures asynchronously
with Three.js.

www.itbook.store/books/9781783981182

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://itbook.store/books/9781783981182

Chapter 1

41

Getting ready
Before looking at the steps in this recipe, you will need to create a number of standard callbacks
that can be used by all the different loaders. These callbacks are used to inform you when a
resource is loaded, when loading fails and, if available, the progress of the current request.

So for loading resources, we need to define three different callbacks:

 f The onload callback: Whenever a resource is loaded, this callback will be called with
the loaded resource as an argument.

 f The onprogress callback: Some loaders provide progress during the loading
of a resource. At specific intervals, this callback will be called to inform you how
much of the resource has been loaded.

 f The onerror callback: If something goes wrong during the loading of the resource,
this callback is used to inform you about the error that occurred.

For all the recipes dealing with asynchronous loading, we'll use the same set of loaders. These
loaders just output some information to the console, but you can of course customize these
callbacks for your specific use case.

First, we define the onLoadCallback function, which is called when a resource is loaded:

 function onLoadCallback(loaded) {
 // just output the length for arrays and binary blobs
 if (loaded.length) {
 console.log("Loaded", loaded.length);
 } else {
 console.log("Loaded", loaded);
 }
 }

As you can see from the function definition, we just output the passed argument to the
console. The other two callbacks, onProgressCallback and onErrorCallback,
work exactly in the same manner as they are presented:

 function onProgressCallback(progress) {
 console.log("Progress", progress);
 }

 function onErrorCallback(error) {
 console.log("Error", error)
 }

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

42

In the following sections and recipes, we'll reference these callbacks when
we use the Three.js provided functionality to load resources.

How to do it...
1. To load a texture asynchronously, we use the loadTexture function from

THREE.ImageUtils:
 function loadTexture(texture) {
 var texture = THREE.ImageUtils.loadTexture(textureURL, null,
 onLoadCallback, onErrorCallback);
 console.log("texture after loadTexture call", texture);
 }

2. The loadTexture function from THREE.ImageUtils takes the following
four arguments:

 � The first one points to the location of the image you want to load

 � The second one can be used to provide a custom UV mapping (a UV mapping
is used to determine which part of a texture to apply to a specific face)

 � The third argument is the callback to be used when the textures have
been loaded

 � The final argument is the callback to be used in case of an error

3. Note that the first console output also shows a valid texture object. Three.js does
this, so you can immediately assign this object as a texture to a material. The actual
image inside the texture, however, is only loaded after the onLoadCallback
function is called.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

43

How it works...
Three.js provides a nice wrapper to load textures. Internally, Three.js uses the standard
way of loading resources from an XMLHTTPRequest web page With an XMLHTTPRequest
web page, you can make an HTTP request for a specific resource and process the result.
If you don't want to use the Three.js provided functionality, you can also implement an
XMLHTTPRequest function yourself.

See also
 f To run these examples and load resources asynchronously, we need to either run a

web server locally, as explained in the Setting up a local web server using Python
recipe or the Setting up a web server using Node.js recipe, or disable some security
settings, as explained in the Solving cross-origin-domain error messages in Chrome
recipe or the Solving cross-origin-domain error messages in Firefox recipe.

 f Alternatively, if you don't want to load resources asynchronously, but wait for all the
resources to load, before you initialize your scene you can look at the next Waiting
until resources are loaded recipe.

Loading models asynchronously
In the Loading textures asynchronously recipe, we explained that Three.js offers helper
functions to load different types of resources asynchronously. In this recipe, we'll look at
how you can use the THREE.JSONLoader object to load models asynchronously.

Getting ready
Before you get started with this recipe, make sure that you've walked through the steps
explained in the Getting ready section of the Loading textures asynchronously recipe. In
the following section, we'll reference the JavaScript callbacks defined in the Getting ready
section of that recipe.

How to do it...
1. Three.js also allows you to easily load external models. The following function shows

you how to do this for the JSON models' Three.js uses. The same, however, applies to
any of the other model loaders:
 function loadModel(modelUrl) {
 var jsonLoader = new THREE.JSONLoader();
 jsonLoader.load(modelUrl, onLoadCallback, null);
 }

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

44

2. The jsonLoader.load function takes the following three arguments:

 � The first one is the location of the model you want to load

 � The second is the callback to call when the model is successfully loaded

 � The final parameter is the one that we can specify the path from where the
texture images should be loaded

3. When we call this function, you'll see the following output on the console:

There is more...
With this approach, the JSONLoader object doesn't provide any feedback on how much it
has loaded. If you want to load large models, it is nice to know something about the progress.
The JSONLoader object also provides an alternative way of loading models that also provides
progress. In the Load model asynchronously with progress recipe, we show you how to load
a model and provide feedback on the progress. Besides the THREE.JSONLoader object,
which loads Three.js' own proprietary models, Three.js is also shipped with a large number
of loaders that you can use for other model formats. For an overview of what is provided by
Three.js, please refer to https://github.com/mrdoob/three.js/tree/master/
examples/js/loaders.

www.itbook.store/books/9781783981182

https://github.com/mrdoob/three.js/tree/master/examples/js/loaders
https://github.com/mrdoob/three.js/tree/master/examples/js/loaders
https://itbook.store/books/9781783981182

Chapter 1

45

Loading models asynchronously with
progress

In the previous section, the Loading models asynchronously recipe, we loaded a model
asynchronously without providing feedback about the progress. In this recipe, we'll
explain how you can add progress feedback to that scenario.

Getting started
Before you get started with this recipe, make sure that you've walked through the steps
explained in the Getting ready section of the Loading textures asynchronously recipe.
In the following section, we'll reference the JavaScript callbacks defined in the Getting
ready section of that recipe.

How to do it...
1. To load models and to also show progress, we have to use a different method apart

from THREE.JSONLoader. If we use the loadAjaxJSON function, we can also
specify a progress callback instead of just the load callback:
 function loadModelWithProgress(model) {
 var jsonLoader = new THREE.JSONLoader();
 jsonLoader.loadAjaxJSON(jsonLoader, model, onLoadCallback,
 null, onProgressCallback);
 }

2. If we now load the same model as the previous one, we see the loading progress
as follows:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

46

Loading other resources asynchronously
with progress

Besides loading specific resources, Three.js also provides a simple helper object to load
any type of resource asynchronously. In this recipe, we'll explain how you can use the
THREE.XHRLoader object to load any type of resource asynchronously.

Getting ready
Before you get started with this recipe, make sure that you've walked through the steps
explained in the Getting ready section of the Loading textures asynchronously recipe.
In the following section, we'll reference the JavaScript callbacks defined in the Getting
ready section of that recipe.

How to do it...
1. The final resource loader we want to show in this recipe is the THREE.XHRLoader

object. This loader allows you to load any resource that you might need in your
Three.js scene:
 function loadOthers(res) {
 var xhrLoader = new THREE.XHRLoader();
 xhrLoader.load(res, onLoadCallback,
 onProgressCallback, onErrorCallback);
 }

2. The arguments for the XHRLoader.load function should look pretty familiar by now,
as it's pretty much the same as for the other loaders. First, we pass the location of
the resource we want to load, and then we specify the various callbacks. The output
from this function looks like this:

In the preceding screenshot, you can also see the progress while the resource is
being loaded.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

47

Waiting until resources are loaded
In the Load resources asynchronously recipe, we showed how you can load external Three.js
resources asynchronously. For many sites and visualization, loading resources asynchronously
is a good approach. Sometimes, however, you want to make sure that all the resources you
require in your scene have been loaded beforehand. For instance, when you're creating a
game, you might want to load all the data for a specific level beforehand. A common method
of loading resources synchronously is nesting the asynchronous callbacks we've seen in the
previous recipe. This, however, quickly becomes unreadable and very hard to manage. In this
recipe, we'll use a different approach and work with a JavaScript library called Q.

Getting ready
As for all the external libraries that we use, we need to include the Q library in our
HTML. You can download the latest version of this library from its GitHub repository at
https://github.com/kriskowal/q, or use the version provided in the libs folder
in the sources for this book. To include this library in your HTML page, add the following
in the head element of your HTML page:

 <script src="../libs/q.js"></script>

In the sources for this chapter, you can also find an example where we load resources
synchronously. Open 01.12-wait-for-resources.html in your browser and open
the JavaScript console:

On the console output, you'll see that the required resources and models are loaded one
after another.

www.itbook.store/books/9781783981182

https://github.com/kriskowal/q
https://itbook.store/books/9781783981182

Getting Started

48

How to do it...
1. Let's first take a look at what we're aiming for in this recipe. We want to load

resources synchronously, using the Q library, in the following manner:
 loadModel(model)
 .then(function(result) {return loadTexture(texture)})
 .then(function(result) {return loadModel(m)})
 .then(function(result) {return loadTexture(texture)})
 .then(function(result) {return loadOthers(resource)})
 .then(function(result) {return loadModelWithProgress(m)})
 .then(function(result) {return loadModel(model)})
 .then(function(result) {return loadOthers(resource)})
 .then(function(result) {return loadModel(model)})
 .then(function() {console.log("All done with sequence")})
 .catch(function(error) {
 console.log("Error occurred in sequence:",error);
 })
 .progress(function(e){
 console.log("Progress event received:", e);
 });

2. What this code fragment means is that:

1. Firstly, we want to call loadModel(model).

2. Once the model is loaded, we load, using the then function, a texture using
the loadTexture(texture) function. Once this texture is loaded, we will
then load the next resource and so on. In this code fragment, you can also
see that we also call a catch and a progress function. If an error occurs
during loading, the function provided to catch() will be called. The same
goes for progress(). If one of the methods wants to provide information
about its progress, the function passed into progress() will be called.

3. However, you will then find out that this won't work with the functions from
our previous recipe. To get this to work, we have to replace the callbacks
from these functions with a special Q construct that is called a deferred
function:
 function loadTexture(texture) {

 var deferred = Q.defer();
 var text = THREE.ImageUtils.loadTexture
 (texture, null, function(loaded) {
 console.log("Loaded texture: ", texture);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

49

 deferred.resolve(loaded);
 }, function(error) {
 deferred.reject(error);
 });

 return deferred.promise;
 }

4. In this code snippet, we create a new JavaScript object with the name
deferred. The deferred object will make sure that the results of the
callbacks, this time defined as anonymous functions, are returned in such
a way that we can use the then function we saw at the beginning of this
chapter. If the resource is loaded successfully, we use the deferred.
resolve function to store the result; if the resource was loaded
unsuccessfully, we store the error using the deferred.reject function.

5. We use the same approach for the loadModel, loadOthers, and
loadModelWithProgress functions:
 function loadModel(model) {

 var deferred = Q.defer();
 var jsonLoader = new THREE.JSONLoader();
 jsonLoader.load(model, function(loaded) {
 console.log("Loaded model: ", model);
 deferred.resolve(loaded);
 }, null);

 return deferred.promise;
 }

 function loadOthers(res) {
 var deferred = Q.defer();

 var xhrLoader = new THREE.XHRLoader();
 xhrLoader.load(res, function(loaded) {
 console.log("Loaded other: ", res);
 deferred.resolve(loaded);
 }, function(progress) {
 deferred.notify(progress);
 }, function(error) {
 deferred.reject(error);
 });

 return deferred.promise;
 }

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

50

6. In the loadOthers function, we are also provided with the progress
information. To make sure that the progress callback is handled correctly, we
use the deferred.notify() function and pass in the progress object:
 function loadModelWithProgress(model) {
 var deferred = Q.defer();

 var jsonLoader = new THREE.JSONLoader();
 jsonLoader.loadAjaxJSON(jsonLoader, model,
 function(model) {
 console.log("Loaded model with progress: ", model);
 deferred.resolve(model)
 }, null,
 function(progress) {
 deferred.notify(progress)
 });

 return deferred.promise;
 }

7. With these changes, we can now load the resources synchronously.

How it works...
To understand how this works, you have to understand what Q does. Q is a promises library.
With promises, you can replace the nested callbacks (also called the Pyramid of doom at
http://calculist.org/blog/2011/12/14/why-coroutines-wont-work-on-
the-web/) with simple steps. The following example for the Q site nicely shows what this
accomplishes:

step1(function (value1) {
 step2(value1, function(value2) {
 step3(value2, function(value3) {
 step4(value3, function(value4) {
 // Do something with value4
 });
 });
 });
});

www.itbook.store/books/9781783981182

http://calculist.org/blog/2011/12/14/why-coroutines-wont-work-on-the-web/
http://calculist.org/blog/2011/12/14/why-coroutines-wont-work-on-the-web/
https://itbook.store/books/9781783981182

Chapter 1

51

Using promises, we can flatten this to the following (just like we did in this recipe):

Q.fcall(promisedStep1)
then(promisedStep2)
then(promisedStep3)
then(promisedStep4)
then(function (value4) {
 // Do something with value4
})
catch(function (error) {
 // Handle any error from all above steps
})
done();

If we were to rewrite the Three.js library, we could have used promises in Three.js internally,
but since Three.js already uses callbacks, we had to use the Q.defer() function provided
by Q to convert these callbacks to promises.

There is more...
We only touched a small part of what is possible with the Q promises library. We used it for
synchronous loading, but Q has many other useful features. A very good starting point is the
Q wiki available at https://github.com/kriskowal/q/wiki.

See also
 f Just like every recipe that loads resources you have to make sure that you run it

either with a local web server, see the Setting up a local web server using Python
recipe or the Setting up a web server using Node.js recipe, or disable some security
settings (see the Solving cross-origin-domain error messages in Chrome recipe
or the Solving cross-origin-domain error messages in Firefox recipe). If you want
to load resources asynchronously, you can take a look at the Load any resource
asynchronously recipe.

Dragging a file from the desktop to
the scene

When you create visualizations, it is a nice feature to let your users provide their own
resources. For instance, you might want to let the user specify their own textures or models.
You can implement this with a traditional upload form, but with HTML5, you also have the
option to let the user drag and drop a resource directly from the desktop. In this recipe, we'll
explain how to provide this drag and drop functionality to your users.

www.itbook.store/books/9781783981182

https://github.com/kriskowal/q/wiki
https://itbook.store/books/9781783981182

Getting Started

52

Getting ready
The easiest way to prepare for this recipe is by first looking at the example we created for you.
Open an example 01.14-drag-file-to-scene.html in your browser.

Please note that this only works when running your own web server,
or with security exceptions disabled.

When you drag and drop an image file onto the drop area (the dashed square), you'll
immediately see that the texture of the rotating box is changed and the image that you
provide is used.

In the following section, we'll explain how you can create this functionality.

How to do it...
To do this, please carry out the following steps:

1. First, we have to set up the correct CSS and define the drop area. To create the
dashed drop area, we add the following CSS to the style element in the head
element of our page:
 #holder { border: 10px dashed #ccc;
 width: 150px; height: 150px;
 margin: 20px auto;}
 #holder.hover { border: 10px dashed #333; #333}

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

53

As you can see in this CSS, we style the HTML element with ID holder to have a
dashed border. The HTML for the holder div element is shown next:
 <body>
 <div id="holder"></div>
 </body>

The drop area has been defined, so the next step is to add drag and drop the
functionality to it.

2. Then, we have to assign the correct event handlers so that we can respond to the
various drag and drop related events.

3. Just as in our previous recipes, we defined a function that contains all the
required logic:
 function setupDragDrop() {
 var holder = document.getElementById('holder');

 holder.ondragover = function() {
 this.className = 'hover';
 return false;
 };

 holder.ondragend = function() {
 this.className = '';
 return false;
 };

 holder.ondrop = function(e) {
 ...
 }
 }

In this code fragment, we defined three event handlers. The holder.ondragover
event handler sets the class on the div element to 'hover'. This way, the user can
see that they are allowed to drop the file there. The holder.ondragend event
handler is called when the user moves away from the drop area. In the event handler,
we remove the class of the div element. Finally, if the user drops a file in the
designated area, the holder.ondrop function is called, which we use to process
the dropped image.

4. The final step is to process the dropped resource and update the material of our box.
When a user drops a file, the following piece of code is executed:

 this.className = '';
 e.preventDefault();

 var file = e.dataTransfer.files[0],
 var reader = new FileReader();

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Getting Started

54

 reader.onload = function(event) {
 holder.style.background =
 'url(' + event.target.result + ') no-repeat
 center';

 var image = document.createElement('img');
 image.src = event.target.result;
 var texture = new THREE.Texture(image);
 texture.needsUpdate = true;

 scene.getObjectByName('cube').material.map =
 texture;
 };
 reader.readAsDataURL(file);
 return false;

The first thing that happens is that we call e.preventDefault(). We need to
do this to make sure that the browser doesn't just show the file, since that is its
normal behavior. Next, we look at the event and retrieve the dropped file using
e.dataTransfer.files[0]. We can't really do much with the file itself, since
Three.js can't work directly with those, so we have to convert it to an img element.
For this, we use a FileReader object. When the reader is done loading, we use the
content to create this img element. This element is then used to create the THREE.
Texture object, which we set as material for our box.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 1

55

How it works...
Drag and drop functionality isn't something that is supported by Three.js out of the box.
As we saw in the previous section, we use the standard HTML5 drag and drop related
events. A good overview of what events are available can be found in the official HTML5
documentation at http://www.w3.org/TR/html5/editing.html#drag-and-drop-
processing-model.

One interesting thing to note is the addition of texture.needsUpdate = true to the
ondrop event handler. The reason we need to set this property of the texture is to inform
Three.js that our texture has changed. This is needed because WebGL and also Three.js
caches textures for performance reasons. If we change a texture, we have to set this
property to true to make sure that WebGL knows what to render.

www.itbook.store/books/9781783981182

http://www.w3.org/TR/html5/editing.html#drag-and-drop-processing-model
http://www.w3.org/TR/html5/editing.html#drag-and-drop-processing-model
https://itbook.store/books/9781783981182

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

2
Geometries and Meshes

In this chapter, we'll cover the following recipes:

 f Rotating an object around its own axis

 f Rotating an object around a point in space

 f Informing Three.js about updates

 f Working with a large number of objects

 f Creating geometries from height maps

 f Pointing an object to another object

 f Writing text in 3D

 f Rendering 3D formulas as 3D geometries

 f Extending Three.js with a custom geometry object

 f Creating a spline curve between two points

 f Creating and exporting a model from Blender

 f Using OBJMTLLoader with multiple materials

 f Applying matrix transformations

Introduction
Three.js comes with a large number of geometries that you can use out of the box. In this
chapter, we'll show you some recipes that explain how you can transform these standard
geometries. Besides that, we'll also show you how to create your own custom geometries
and load geometries from external sources.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

58

You can access all of the example code within all recipes in this cookbook
from the GitHub repository created at https://github.com/
josdirksen/threejs-cookbook.

Rotating an object around its own axis
There are many ways in which you can change the appearance of a mesh. For example, you
can change its position, scale, or material. Often, you'll also need to change the rotation of
THREE.Mesh. In this first recipe on rotation, we'll show you the simplest way to rotate an
arbitrary mesh.

Getting ready
To rotate a mesh, we first need to create a scene that contains an object you can rotate.
For this recipe, we provide an example, 02.01-rotate-around-axis.html, that you can
open in your browser. When you open this recipe, you'll see something similar to the following
screenshot in your browser:

In this demo, you can see a 3D cube slowly rotating around its axis. Using the control GUI in
the upper-right corner, you can change the speed at which the object rotates.

www.itbook.store/books/9781783981182

https://github.com/josdirksen/threejs-cookbook
https://github.com/josdirksen/threejs-cookbook
https://itbook.store/books/9781783981182

Chapter 2

59

How to do it...
To rotate the cube from this example around its axis like we showed you in the previous
screenshot, you have to take a couple of steps:

1. For the first step in this recipe, we'll set up the control GUI, as we've shown in
Chapter 1, Getting Started, in the Controlling the variables used in the scene
recipe, which you can see in the top-right corner. This time, we'll use the following
as the control object:
 control = new function() {
 this.rotationSpeedX = 0.001;
 this.rotationSpeedY = 0.001;
 this.rotationSpeedZ = 0.001;
 };

With this control object, we'll control the rotation around any of the three axes.
We pass this control object to the addControls function:

 function addControls(controlObject) {
 var gui = new dat.GUI();
 gui.add(controlObject, 'rotationSpeedX', -0.2, 0.2);
 gui.add(controlObject, 'rotationSpeedY', -0.2, 0.2);
 gui.add(controlObject, 'rotationSpeedZ', -0.2, 0.2);
 }

Now when we call the addControls function, we'll get the nice GUI that you saw in
the screenshot at the beginning of this recipe.

2. Now that we can control the rotation through the GUI, we can use these values to
directly set the rotation of our object. In this example, we continuously update the
rotation property of the mesh, so you get the nice animation you can see in the
example. For this, we define the render function like this:

 function render() {
 var cube = scene.getObjectByName('cube');
 cube.rotation.x += control.rotationSpeedX;
 cube.rotation.y += control.rotationSpeedY;
 cube.rotation.z += control.rotationSpeedZ;
 renderer.render(scene, camera);
 requestAnimationFrame(render);
 }

In this function, you can see that we increase the rotation property of the THREE.
Mesh object with the value set in the control GUI. This results in the animation you
can see in the screenshot in the Getting ready section. Note that the rotation property
is of the THREE.Vector3 type. This means that you can also set the property in one
statement using cube.rotation.set(x, y, z).

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

60

How it works...
When you set the rotation property on THREE.Mesh, as we do in this example, Three.js
doesn't directly calculate the new positions of the vertices of the geometry. If you print out
these vertices to the console, you'll see that regardless of the rotation property, they will
stay exactly the same. What happens is that when Three.js actually renders THREE.Mesh in
the renderer.render function, it is at that exact point that its exact position and rotation
is calculated. So when you translate, rotate, or scale THREE.Mesh, the underlying THREE.
Geometry object stays the same.

See also
There are different ways to rotate an object besides the one we showed here:

 f In the upcoming Rotating an object around a point in space recipe, we'll show you
how you can rotate an object around an arbitrary point in space instead of its own
axis, as we showed in this recipe

Rotating an object around a point in space
When you rotate an object using its rotate property, the object is rotated around its own
center. In some scenarios, though, you might want to rotate an object around a different
object. For instance, when modeling the solar system, you want to rotate the moon around the
earth. In this recipe, we'll explain how you can set up Three.js objects in such a way that you
can rotate them around one another or any point in space.

Getting ready
For this recipe, we've also provided an example you can experiment with. To load this
example, just open 02.02-rotate-around-point-in-space.html in a browser.
When you open this file, you'll see something similar to the following screenshot:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

61

With the controls on the right-hand side, you can rotate various objects around. By changing
the rotationSpeedX, rotationSpeedY, and rotationSpeedZ properties, you can rotate the red
box around the center of the sphere.

To best demonstrate the rotation of an object around another one,
you should rotate around that object's y axis. To do this, change the
rotationSpeedY property.

How to do it...
Rotating an object around another object takes a couple of additional steps compared to the
rotation we showed in the previous recipe:

1. Let's first create the central blue sphere you can see in the screenshot. This is the
object that we'll rotate the little red box around:
 // create a simple sphere
 var sphere = new THREE.SphereGeometry(6.5, 20, 20);
 var sphereMaterial = new THREE.MeshLambertMaterial({
 color: 0x5555ff
 });

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

62

 var sphereMesh = new THREE.Mesh(sphere, spherMaterial);
 sphereMesh.receiveShadow = true;
 sphereMesh.position.set(0, 1, 0);
 scene.add(sphereMesh);

So far, there's nothing special in this code snippet. You can see a standard
THREE.Sphere object from which we create THREE.Mesh and add it to the scene.

2. The next step is to define a separate object, which we'll use as the pivot point for
our box:
 // add an object as pivot point to the sphere
 pivotPoint = new THREE.Object3D();
 sphereMesh.add(pivotPoint);

The pivotPoint object is a THREE.Object3D object. This is the parent object of
THREE.Mesh and can be added to a scene without a geometry or a material. In this
recipe, however, we don't add it to the scene but add it to the sphere we created in
step 1. So, if the sphere rotates or changes position, this pivotPoint object will
also change its position and rotation since we added it as a child to the sphere.

3. Now we can create the red box, and instead of adding it to the scene, we add it to
the pivotPoint object we just created:

 // create a box and add to scene
 var cubeGeometry = new THREE.BoxGeometry(2, 4, 2);
 var cubeMaterial = new THREE.MeshLambertMaterial();
 cubeMaterial.color = new THREE.Color('red');
 cube = new THREE.Mesh(cubeGeometry, cubeMaterial);
 // position is relative to it's parent
 cube.position.set(14, 4, 6);
 cube.name = 'cube';
 cube.castShadow = true;
 // make the pivotpoint the cube's parent.
 pivotPoint.add(cube);

Now we can rotate pivotPoint and the cube will follow the rotation of
pivotPoint. For this recipe, we do this by updating the rotation property
of pivotPoint in the render function:

 function render() {
 renderer.render(scene, camera);
 pivotPoint.rotation.x += control.rotationSpeedX;
 pivotPoint.rotation.y += control.rotationSpeedY;
 pivotPoint.rotation.z += control.rotationSpeedZ;
 requestAnimationFrame(render);
 }

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

63

How it works...
When you create THREE.Mesh in Three.js, you normally just add it to THREE.Scene and
position it individually. In this recipe, however, we've made use of the THREE.Mesh feature,
which extends from THREE.Object3D itself and can also contain children. So when the
parent object is rotated, this will also affect the children.

A really interesting aspect of using the approach explained in this recipe is that we can now do
a couple of interesting things:

 f We can rotate the box itself by updating the cube.rotation property like we did in
the Rotating an object around its own axis recipe

 f We can also rotate the box around the sphere by changing the rotation property of the
sphere, as we added pivotPoint as a child of the sphere mesh

 f We can even combine everything, we can rotate pivotPoint, sphereMesh, and
cube—all separately—and create very interesting effects

See also
In this recipe, we've used the fact that we can add children to meshes as a way to rotate an
object around another object. However, after reading the following recipes, you will learn more
about this:

 f In the Rotating an object around its own axis recipe, we showed you how you can
rotate an object around its own axis

Informing Three.js about updates
If you've worked a bit longer with Three.js, you'll probably have noticed that sometimes,
it seems that changes you make to a certain geometry doesn't always result in a change
onscreen. This is because for performance reasons, Three.js caches some objects (such as
the vertices and faces of a geometry) and doesn't automatically detect updates. For these
kinds of changes, you'll have to explicitly inform Three.js that something has changed. In
this recipe, we'll show you what properties of a geometry are cached and require explicit
notification to Three.js to be updated. These properties are:

 f geometry.vertices

 f geometry.faces

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

64

 f geometry.morphTargets

 f geometry.faceVertexUvs

 f geometry.faces[i].normal and geometry.vertices[i].normal

 f geometry.faces[i].color and geometry.vertices[i].color

 f geometry.vertices[i].tangent

 f geometry.lineDistances

Getting ready
An example is available that allows you to change two properties that require an explicit
update: face colors and vertex positions. If you open up the 02.04-update-stuff.html
example in your browser, you'll see something similar to the following screenshot:

With the menu in the top-right section, you can change two properties of this geometry. With the
changeColors button, you can set the colors of each individual face to a random color, and with
changeVertices, you change the position of each vertex of this cube. To apply these changes,
you have to push the setUpdateColors button or the setUpdateVertices button, respectively.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

65

How to do it...
There are a number of properties where you have to explicitly tell Three.js about the update.
This recipe will show you how to inform Three.js about all possible changes. Depending on
the change you're making, you can jump in at any step of the recipe:

1. Firstly, if you want to add vertices or change the values of an individual vertex of
a geometry, you can use the geometry.vertices property. Once you've added
or changed an element, you need to set the geometry.verticesNeedUpdate
property to true.

2. Following this, you might want the face definition within a geometry to be cached as
well, which will require you to use the geometry.faces property. This means that
when you add THREE.Face or update one of the existing properties, you need to set
geometry.elementsNeedUpdate to true.

3. You might then want to morph targets that can be used to create animations,
where one set of vertices morph into another set of vertices. This will require the
geometry.morphTargets property. To do this, when you add a new morph target
or update an existing one, you need to set geometry.morphTargetsNeedUpdate
to true.

4. Then, the next step would be to add geometry.faceVertexUvs. With this property,
you define how textures are mapped onto the geometry. If you add or change elements
in this array, you need to set the geometry.uvsNeedUpdate property to true.

5. You might also want to change the vertices or faces' normals by changing the
geometry.faces[i].normal and geometry.vertices[i].normal properties.
When you do this, you have to set geometry.normalsNeedUpdate to true
to inform Three.js about this. Besides the normal, there is also a geometry.
vertices[i].tangent property. This property is used to calculate shadows and
also calculate when textures are rendered. If you make manual changes, you have
to set geometry.tangentsNeedUpdate to true.

6. Next, you can define individual colors on the vertices or the faces. You do this by
setting these color properties: geometry.faces[i].color and geometry.
vertices[i].color. Once you've made changes to these properties, you have to
set geometry.colorsNeedUpdate to true.

7. As a final step, you can choose to change textures and materials during runtime.
When you want to change one of these properties of a material, you need to set
material.needsUpdate to true: texture, fog, vertex colors, skinning, morphing,
shadow map, alpha test, uniforms, and lights. If you want to update the data behind
a texture, you need to set the texture.needsUpdate flag to true.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

66

How it works...
As a summary, steps 1 to 7 apply to geometries and any resulting Three.js objects that are
based on geometries.

To get the most performance out of your 3D scene, Three.js caches certain properties and
values that usually don't change. Especially when working with the WebGL renderer, a lot of
performance is gained by caching all these values. When you set one of these flags to true,
Three.js knows, very specifically, which part it needs to update.

See also
 f There are recipes within this book that are similar to this. If you look at the source

code for the Applying matrix transformations recipe, you can see that we've used the
verticesNeedUpdate property after we applied some matrix transformations to
the geometry.

Working with a large number of objects
If you have scenes with large numbers of objects, you will start noticing some performance
issues. Each of the meshes you create and add to the scene will need to be managed by
Three.js, which will cause slowdowns when you're working with thousands of objects. In this
recipe, we'll show you how to merge objects together to improve performance.

Getting ready
There are no additional libraries or resources required to merge objects together. We've
prepared an example that shows you the difference in performance when using separate
objects compared to a merged object. When you open up the 02.05-handle-large-
number-of-object.html example, you can experiment with the different approaches.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

67

You will see something similar to the following screenshot:

In the preceding screenshot, you can see that with a merged object approach, we still get 60
fps when working with 120,000 objects.

How to do it...
Merging objects in Three.js is very easy. The following code snippet shows you how to merge
the objects from the previous example together. The important step here is to create a new
THREE.Geometry() object named mergedGeometry and then create a large number of
BoxGeometry objects, as shown in the highlighted code sections:

 var mergedGeometry = new THREE.Geometry();
 for (var i = 0; i < control.numberToAdd; i++) {
 var cubeGeometry = new THREE.BoxGeometry(
 4*Math.random(),
 4*Math.random(),
 4*Math.random());

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

68

 var translation = new THREE.Matrix4().makeTranslation(
 100*Math.random()-50,
 0, 100*Math.random()-50);
 cubeGeometry.applyMatrix(translation);
 mergedGeometry.merge(cubeGeometry);
 }
 var mesh = new THREE.Mesh(mergedGeometry,
 new THREE.MeshNormalMaterial({
 opacity: 0.5,
 transparent: true
 }));
 scene.add(mesh);

We merge each cubeGeometry object into the mergedGeometry object by calling the
merge function. The result is a single geometry that we use to create THREE.Mesh,
which we add to the scene.

How it works...
When you call the merge function on a geometry (let's call it merged) and pass in the
geometry to be merged (let's call this one toBeMerged), Three.js takes the following steps:

1. First, Three.js clones all the vertices from the toBeMerged geometry and adds them
to the vertices array of the merged geometry.

2. Next, it walks through the faces from the toBeMerged geometry and creates new
faces in the merged geometry, copying the original normal and colors.

3. As a final step, it copies the uv mapping from toBeMerged into the uv mapping of
the merged geometry.

The result is a single geometry that, when added to the scene, looks like multiple geometries.

See also
 f The main issue with this approach is that it gets harder to color, style, animate, and

transform the objects that are merged together independently. For Three.js, after the
merge, it counts as a single object. It is, however, possible to apply specific materials
to each face. We show you how to do this in the Using separate materials for faces
recipe in Chapter 4, Materials and Textures.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

69

Creating geometries from height maps
With Three.js, it is easy to create your own geometries. For this recipe, we're going to show you
how to create your own geometry based on a terrain height map.

Getting ready
To convert a height map into a 3D geometry, we first need to have a height map. In the source
files provided with this book, you can find a height map for a portion of the Grand Canyon.
The following image shows you what this looks like:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

70

If you're familiar with the Grand Canyon, you'll probably recognize the distinct shape. The final
result we'll have at the end of this recipe can be viewed by opening up the 02.06-create-
terrain-from-heightmap.html file in your browser. You'll see something similar to the
following screenshot:

How to do it...
To create a heightmap-based geometry, you need to perform these steps:

1. Before we look at the required Three.js code, we first need to load the image and set
some properties that determine the final size and height of the geometry. This can be
done by adding the following code snippet and loading the image by setting the img.
src property to the location of our height map. Once the image is loaded, the img.
onload function will be called, where we convert the image data to THREE.Geometry:
 var depth = 512;
 var width = 512;
 var spacingX = 3;
 var spacingZ = 3;
 var heightOffset = 2;
 var canvas = document.createElement('canvas');
 canvas.width = 512;
 canvas.height = 512;

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

71

 var ctx = canvas.getContext('2d');
 var img = new Image();
 img.src = "../assets/other/grandcanyon.png";
 img.onload = function () {...}

2. Once the image is loaded in the onload function, we need the value of each pixel
and convert it to THREE.Vector3:
 // draw on canvas
 ctx.drawImage(img, 0, 0);
 var pixel = ctx.getImageData(0, 0, width, depth);
 var geom = new THREE.Geometry();
 var output = [];
 for (var x = 0; x < depth; x++) {
 for (var z = 0; z < width; z++) {
 // get pixel
 // since we're grayscale, we only need one element
 // each pixel contains four values RGB and opacity
 var yValue = pixel.data
 [z * 4 + (depth * x * 4)] / heightOffset;
 var vertex = new THREE.Vector3(
 x * spacingX, yValue, z * spacingZ);
 geom.vertices.push(vertex);
 }
 }

As you can see in this code snippet, we process each of the image pixels, and based
on the pixel value, we create THREE.Vector3, which we add to the vertices array
of our custom geometry.

3. Now that we've defined the vertices, the next step is to use these vertices to
create faces:
 // we create a rectangle between four vertices, and we do
 // that as two triangles.
 for (var z = 0; z < depth - 1; z++) {
 for (var x = 0; x < width - 1; x++) {
 // we need to point to the position in the array
 // a - - b
 // | x |
 // c - - d
 var a = x + z * width;
 var b = (x + 1) + (z * width);
 var c = x + ((z + 1) * width);
 var d = (x + 1) + ((z + 1) * width);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

72

 var face1 = new THREE.Face3(a, b, d);
 var face2 = new THREE.Face3(d, c, a);
 geom.faces.push(face1);
 geom.faces.push(face2);
 }
 }

As you can see, each set of four vertices is converted into two THREE.Face3
elements and added to the faces array.

4. Now all we need to do is to let Three.js calculate the vertex and face normals,
and we can create THREE.Mesh from this geometry and add it to the scene:

 geom.computeVertexNormals(true);
 geom.computeFaceNormals();
 var mesh = new THREE.Mesh(geom, new
 THREE.MeshLambertMaterial({color: 0x666666}));
 scene.add(mesh);

If you render this scene, you might need to play around with the camera
position and the scale of the final mesh to get the correct size.

How it works...
Height maps are a way to embed the height information into an image. Each pixel value of the
image represents the relative height measured at that point. In this recipe, we've processed
this value, together with its x and y values, and converted it into a vertex. If we do this for each
point, we get an exact 3D representation of the 2D height map. In this case, it results in a
geometry that contains 512 * 512 vertices.

There's more…
When we create a geometry from scratch, there are a few interesting things we can add.
We can, for instance, color each individual face. This can be done by doing the following:

1. Firstly, add the chroma library (you can download the source from
https://github.com/gka/chroma.js):
 <script src="../libs/chroma.min.js"></script>

2. You can then create a color scale:
 var scale = chroma.scale(['blue', 'green', red])
 .domain([0, 50]);

www.itbook.store/books/9781783981182

https://github.com/gka/chroma.js
https://itbook.store/books/9781783981182

Chapter 2

73

3. Set the face colors based on the height of the face:
 face1.color = new THREE.Color(
 scale(getHighPoint(geom, face1)).hex());
 face2.color = new THREE.Color(
 scale(getHighPoint(geom, face2)).hex())

4. Finally, set vertexColors of the material to THREE.FaceColors. The result looks
something like this:

You can also apply different kinds of materials to really create a terrain-like effect. For more
information on this, see Chapter 4, Materials and Textures, on materials.

See also
 f In this sample, we've used a height map to create a geometry. You can also use a

heightmap as a bump map to add depth detail to a model. We show you how to do
this in Chapter 4, Materials and Textures, in the Adding depth to a mesh with bump
map recipe.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

74

Pointing an object to another object
A common requirement for many games is that cameras and other objects follow
each other or be aligned to one another. Three.js has standard support for this using the
lookAt function. In this recipe, you'll learn how you can use the lookAt function to point
an object to look at another object.

Getting ready
The example for this recipe can be found in the sources for this book. If you open
02.07-point-object-to-another.html in your browser, you see something
similar to the following screenshot:

With the menu, you can point the large blue rectangle to look at any of the other meshes
in the scene.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

75

How to do it...
Creating the lookAt functionality is actually very simple. When you add THREE.Mesh to
the scene, you can just call its lookAt function and point it to the position it should turn to.
For the example provided for this recipe, this is done as follows:

 control = new function() {
 this.lookAtCube = function() {
 cube.lookAt(boxMesh.position);
 };
 this.lookAtSphere = function() {
 cube.lookAt(sphereMesh.position);
 };
 this.lookAtTetra = function() {
 cube.lookAt(tetraMesh.position);
 };
 };

So when you push the lookAtSphere button, the rectangle's lookAt function will be called
with the sphere's position.

How it works...
Using this code, it is very easy to line up one object with another. With the lookAt function,
Three.js hides the complexity that is needed to accomplish this. Internally, Three.js uses
matrix calculations to determine the rotation it needs to apply to the object to align it correctly
with the object you're looking at. The required rotations are then set on the object (to the
rotation property) and shown in the next render loop.

There's more…
In this example, we showed you how to align one object to another. With Three.js, you can use
the same approach for other types of objects. You can point the camera to center on a specific
object using camera.lookAt(object.position), and you can also direct a light to point
to a specific object using light.lookAt(object.position).

You can also use lookAt to follow a moving object. Just add the lookAt code in the render
loop, and the object will follow the moving object around.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

76

See also
 f The lookAt function uses matrix calculations internally. In the last recipe of this

chapter, Applying matrix transformations, we show you how you can use matrix
calculations to accomplish other effects.

Writing text in 3D
A cool feature of Three.js is that it allows you to write text in 3D. With a couple of simple steps,
you can use any text, even with font support, as a 3D object in your scene. This recipe shows
you how to create 3D text and explains the different configuration options available to style
the result.

Getting ready
To work with 3D text, we need to include some additional JavaScript in our pages. Three.js
provides a number of fonts you can use, and they are provided as individual JavaScript files.
To add all the available fonts, include the following scripts:

 <script src="../assets/fonts/gentilis_bold.typeface.js">
 </script>
 <script src="../assets/fonts/gentilis_regular.typeface.js">
 </script>
 <script src="../assets/fonts/optimer_bold.typeface.js"></script>
 <script src="../assets/fonts/optimer_regular.typeface.js">
 </script>
 <script src="../assets/fonts/helvetiker_bold.typeface.js">
 </script>
 <script src="../assets/fonts/helvetiker_regular.typeface.js">
 </script>
 <script src=
 "../assets/fonts/droid/droid_sans_regular.typeface.js">
 </script>
 <script src=
 "../assets/fonts/droid/droid_sans_bold.typeface.js">
 </script>
 <script src=
 "../assets/fonts/droid/droid_serif_regular.typeface.js">
 </script>
 <script src="..
 /assets/fonts/droid/droid_serif_bold.typeface.js">
 </script>

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

77

We've already done this in the 02.09-write-text-in-3D.html example. If you open this
in your browser, you can play around with the various fonts and properties available when
creating text in Three.js. When you open the specified example you will see something similar
to the following screenshot:

How to do it...
Creating 3D text in Three.js is very easy. All you have to do is create THREE.TextGeometry
like this:

 var textGeo = new THREE.TextGeometry(text, params);
 textGeo.computeBoundingBox();
 textGeo.computeVertexNormals();

The text property is the text we want to write, and params define how the text is rendered.
The params object can have many different parameters, which you can look at in more detail
in the How it works… section.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

78

In our example, however, we've used the following set of parameters (which point to the GUI in
the top-right section):

 var params = {
 material: 0,
 extrudeMaterial: 1,
 bevelEnabled: control.bevelEnabled,
 bevelThickness: control.bevelThickness,
 bevelSize: control.bevelSize,
 font: control.font,
 style: control.style,
 height: control.height,
 size: control.size,
 curveSegments: control.curveSegments
 };

This geometry can then be added to the scene like any other geometry:

 var material = new THREE.MeshFaceMaterial([
 new THREE.MeshPhongMaterial({
 color: 0xff22cc,
 shading: THREE.FlatShading
 }), // front
 new THREE.MeshPhongMaterial({
 color: 0xff22cc,
 shading: THREE.SmoothShading
 }) // side
]);
 var textMesh = new THREE.Mesh(textGeo, material);
 textMesh.position.x = -textGeo.boundingBox.max.x / 2;
 textMesh.position.y = -200;
 textMesh.name = 'text';
 scene.add(textMesh);

There is one thing you need to take into account when working with
THREE.TextGeometry and materials. As you can see from the code
snippet, we add two material objects instead of one. The first material is
applied to the front of rendered text, and the second one is applied to the
side of the rendered text. If you just pass in one material, it is applied to
both the front and the side.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

79

How it works...
As mentioned, there is a variety of different parameters:

Parameter Description
height The height property defines the depth of the text, in other words,

how far the text is extruded to make it 3D.
size With this property, you set the size of the final text.
curveSegments If a character has curves (for example, the letter a), this property

defines how smooth the curves will be.
bevelEnabled A bevel provides a smooth transition from the front of the text to

the side. If you set this value to true, a bevel will be added to the
rendered text.

bevelThickness If you've set bevelEnabled to true, it defines how deep the
bevel is.

bevelSize If you've set bevelEnabled to true, it defines how high the
bevel is.

weight This is the weight of the font (normal or bold).
font This is the name of the font to be used.
material When an array of materials is provided, this should contain the

index of the material to be used for the front.
extrudeMaterial When an array of materials is provided, this should contain the

index of the materials to be used for the side.

When you create THREE.TextGeometry, Three.js internally uses THREE.ExtrudeGeometry
to create the 3D shapes. THREE.ExtrudeGeometry works by taking a 2D shape and extrudes
it along the Z axis to make it 3D. To create a 2D shape from a text string, Three.js uses the
JavaScript files that we included in the Getting ready section of this recipe. These JavaScript
files, based on http://typeface.neocracy.org/fonts.html, allow you to render text
as 2D paths, which we then can convert to 3D.

There's more…
If you want to use a different font, you can convert your own fonts at http://typeface.
neocracy.org/fonts.html. All you need to do to use these fonts is include them
on your page and pass in the correct name and style values as parameters to
THREE.TextGeometry.

www.itbook.store/books/9781783981182

http://typeface.neocracy.org/fonts.html
http://typeface.neocracy.org/fonts.html
http://typeface.neocracy.org/fonts.html
https://itbook.store/books/9781783981182

Geometries and Meshes

80

Rendering 3D formulas as 3D geometries
Three.js offers many different ways to create geometries. You can use the standard Three.js
objects, such as THREE.BoxGeometry and THREE.SphereGeometry, create geometries
completely from scratch, or just load models created by external 3D modeling programs. In
this recipe, we will show you another way to create geometries. This recipe shows you how to
create geometries based on math formulas.

Getting ready
For this recipe, we'll be using the THREE.ParametricGeometry object. As this is available
from the standard Three.js distribution, there is no need to include additional JavaScript files.

To see the end result of this recipe, you can look at 02.10-create-parametric-
geometries.html, you'll see something similar to the following screenshot:

This figure shows you a Gray's Kleinbottle, which is rendered based on a couple of simple
math formulas.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

81

How to do it...
Generating geometries using math formulas with Three.js is very easy and only takes two steps:

1. The first thing we need to do is create the function that will create the geometry for
us. This function will take two arguments: u and v. When Three.js uses this function
to generate a geometry, it will call this function with u and v values, starting at 0 and
ending at 1. For each of these u and v combinations, this function should return a
THREE.Vector3 object, which represents a single vertex in the final geometry. The
function that creates the figure you saw in the previous section is shown next:
 var paramFunction = function(u, v) {
 var a = 3;
 var n = 3;
 var m = 1;
 var u = u * 4 * Math.PI;
 var v = v * 2 * Math.PI;
 var x = (a + Math.cos(n * u / 2.0)
 * Math.sin(v) - Math.sin(n * u / 2.0)
 * Math.sin(2 * v)) * Math.cos(m * u / 2.0);
 var y = (a + Math.cos(n * u / 2.0)
 * Math.sin(v) - Math.sin(n * u / 2.0)
 * Math.sin(2 * v)) * Math.sin(m * u / 2.0);
 var z = Math.sin(n * u / 2.0)
 * Math.sin(v) + Math.cos(n * u / 2.0)
 * Math.sin(2 * v);
 return new THREE.Vector3(x, y, z);
 }

You can provide functions of your own as long as you return a new THREE.Vector3
object for each value of u and v.

2. Now that we've got the function that creates our geometry, we can use this function
to create THREE.ParametricGeometry:
 var geom = new THREE.ParametricGeometry(paramFunction
 , 100, 100);
 var mat = new THREE.MeshPhongMaterial({
 color: 0xcc3333a,
 side: THREE.DoubleSide,
 shading: THREE.FlatShading
 });
 var mesh = new THREE.Mesh(geom, mat);
 scene.add(mesh);

You can clearly see that three arguments have been applied to the constructor of
THREE.ParametricObject. This is discussed in more detail in the How it works… section.

All you have to do after creating the geometry is create THREE.Mesh and add it to the scene
just like any other Three.js object.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

82

How it works...
From step 2 in the preceding code snippet, you can see that we provide three arguments to
the constructor of THREE.ParametricObject. The first one is the function we showed you
in step 1, the second determines in how many steps we divide the u parameter, and the third
one determines in how many steps we divide the v parameter. The higher the number, the
more vertices will be created, and the smoother the final geometry will look. Note, though,
that a very high amount of vertices has an adverse effect on performance.

When you create THREE.ParametricGeometry, Three.js will call the provided function a
number of times. The amount of times the function is called is based on the second and third
parameters. This results in a set of THREE.Vector3 objects, which are then automatically
combined into faces. This results in a geometry that you can use just like any other geometry.

There's more…
There are many different things you can do with these kinds of geometries than what is shown
in this recipe. In the 02.10-create-parametric-geometries.html source file, you can
find a couple of other functions that create interesting-looking geometries such as the one
shown in the following screenshot:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

83

Extending Three.js with a custom geometry
object

In the recipes you've seen so far, we create Three.js objects from scratch. We either build a
new geometry from scratch with vertices and faces, or we reuse an existing one and configure
it for our purpose. While this is good enough for most scenarios, it isn't the best solution when
you need to maintain a large code base with lots of different geometries. In Three.js, you
create geometries by just instantiating a THREE.GeometryName object. In this recipe, we'll
show you how you can create a custom geometry object and instantiate it just like the other
Three.js objects.

Getting ready
The example that you can use to experiment with this recipe can be found in the provided
sources. Open up 02.11-extend-threejs-with-custom-geometry.html in your
browser to see the final result, which will be similar to the following screenshot:

In this screenshot, you see a single rotating cube. This cube is created as a custom geometry
and can be instantiated by using new THREE.FixedBoxGeometry(). In the upcoming
section, we'll explain how to accomplish this.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

84

How to do it...
Extending Three.js with a custom geometry is fairly easy and only takes a couple of
simple steps:

1. The first thing we need to do is create a new JavaScript object that contains the
logic and properties of our new Three.js geometry. For this recipe, we'll create
FixedBoxGeometry, which acts exactly like THREE.BoxGeometry but uses the
same values for its height, width, and depth. For this recipe, we create this new object
in the setupCustomObject function:
 function setupCustomObject() {
 // First define the object.
 THREE.FixedBoxGeometry = function (width, segments) {
 // first call the parent constructor
 THREE.Geometry.call(this);
 this.width = width;
 this.segments = segments;
 // we need to set
 // - vertices in the parent object
 // - faces in the parent object
 // - uv mapping in the parent object
 // normally we'd create them here ourselves
 // in this case, we just reuse the once
 // from the boxgeometry.
 var boxGeometry = new THREE.BoxGeometry(
 this.width,
 this.width,
 this.width, this.segments, this.segments);
 this.vertices = boxGeometry.vertices;
 this.faces = boxGeometry.faces;
 this.faceVertexUvs = boxGeometry.faceVertexUvs;
 }
 // define that FixedBoxGeometry extends from
 // THREE.Geometry
 THREE.FixedBoxGeometry.prototype
 = Object.create(THREE.Geometry.prototype);
 }

In this function, we define a new JavaScript object using THREE.
FixedBoxGeometry = function (width, segments) {..}. In this
function, we first call the constructor of the parent object (THREE.Geometry.call(
this)). This makes sure that all properties are correctly initialized. Next, we wrap
an existing THREE.BoxGeometry object and use information from that object to set
vertices, faces, and faceVertexUvs for our own custom object.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

85

Finally, we need to tell JavaScript that our THREE.BoxGeometry object extends
from THREE.Geometry. This is done by setting a prototype property of THREE.
FixedBoxGeometry to Object.create(THREE.Geometry.prototype).

2. After setupCustomObject() is called, we can now use the same approach to
create this object like we do for the other Three.js-provided geometries:

 var cubeGeometry = new THREE.FixedBoxGeometry(3, 5);
 var cubeMaterial = new THREE.MeshNormalMaterial();
 var cube = new THREE.Mesh(cubeGeometry, cubeMaterial);
 scene.add(cube);

At this point, we've created a custom Three.js geometry that you can instantiate just
like the standard geometries provided by Three.js.

How it works...
In this recipe, we use one of the standard ways JavaScript provides to create objects that
inherit from other objects. We defined the following:

 THREE.FixedBoxGeometry.prototype
 = Object.create(THREE.Geometry.prototype);

This code fragment tells JavaScript that THREE.FixedBoxGeometry is created, it inherits
all the properties and functions from THREE.Geometry, which has its own constructor.
This is the reason we also add the following call to our new object:

 THREE.Geometry.call(this);

This calls the constructor of the THREE.Geometry object whenever our own custom object
is created.

There is more to prototype-based inheritance than what's explained in this short recipe.
If you want to know more about prototype-based inheritance, the Mozilla guys have a great
explanation on how inheritance using the prototype property works at https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Guide/Inheritance_and_the_
prototype_chain.

There's more...
In this recipe, we've wrapped an existing Three.js object to create our custom object.
You can also apply this same approach for objects that are created completely from scratch.
For instance, you can create THREE.TerrainGeometry from the JavaScript code we used
in the Creating geometries from heightmaps recipe to create a 3D terrain.

www.itbook.store/books/9781783981182

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Inheritance_and_the_prototype_chain
https://itbook.store/books/9781783981182

Geometries and Meshes

86

Creating a spline curve between two points
When you create visualizations and, for instance, want to visualize the flight path of an
airplane, drawing a curve between the start and end point is a good approach. In this recipe,
we'll show you how you can do this using the standard THREE.TubeGeometry object.

Getting ready
When you open the example for this recipe, 02.12-create-spline-curve.html, you can
see a tube geometry that curves from start to end:

In the upcoming section, we'll explain step by step how to create this curve.

How to do it...
To create a curved spline, like what is shown in the preceding example, we need to take a
couple of simple steps:

1. The first thing we need to do is define some constants for this curve:
 var numPoints = 100;
 var start = new THREE.Vector3(-20, 0, 0);
 var middle = new THREE.Vector3(0, 30, 0);
 var end = new THREE.Vector3(20, 0, 0);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

87

The numPoints object defines how many vertices we'll use to define the curve and
the number of segments we use when rendering the tube. The start vector defines
the position where we want to start the curve, the end vector determines the end
point of our curve, and finally, the middle vector defines the height and center point
of our curve. If we, for instance, set numPoints to 5, we get a different kind of curve.

2. Now that we've got the start, end, and middle vectors, we can use them to create
a nice curve. For this, we can use an object provided by Three.js, called THREE.
QuadraticBezierCurve3:
 var curveQuad = new THREE.QuadraticBezierCurve3(
 start, middle, end);

Based on this curveQuad, we can now create a simple tube geometry.

3. To create a tube, we use THREE.TubeGeometry and pass in curveQuad, which we
created in the previous step:

 var tube = new THREE.TubeGeometry(
 curveQuad, numPoints, 2, 20, false);
 var mesh = new THREE.Mesh(tube, new
 THREE.MeshNormalMaterial({
 opacity: 0.6,
 transparent: true
 }));
 scene.add(mesh);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

88

How it works...
The QuadraticBezierCurve3 object we created in this recipe has a number of different
functions (getTangentAt and getPointAt) that determine the location somewhere
along the path. These functions return information based on the start, middle, and end
vectors passed in to the constructor. When we pass QuadraticBezierCurve3 into THREE.
TubeGeometry, THREE.TubeGeometry uses the getTangentAt function to determine
where to position its vertices.

There's more…
In this recipe, we used THREE.QuadraticBezierCurve3 to create our spline. Three.js also
provides a THREE.CubicBezierCurve3 and THREE.SplineCurve3 curve, which you
can use to define these kinds of splines. You can find more information on the differences
between a quadratic Bezier curve and a cubic Bezier curve at http://stackoverflow.
com/questions/18814022/what-is-the-difference-between-cubic-bezier-
and-quadratic-bezier-and-their-use-c.

Creating and exporting a model from
Blender

Blender, which you can download from http://www.blender.org/download/, is a great
tool to create 3D models and has excellent support for Three.js. With the right plugin, Blender
can export models directly into Three.js' own JSON format, which can then easily be added to
your scene.

Getting ready
Before we can use the JSON exporter in Blender, we first need to install the plugin in Blender.
To install the plugin, take the following steps:

1. The first thing you need to do is get the latest version of the plugin. We've added
this to the source code of this book. You can find this plugin in the assets/plugin
folder. In that directory, you'll find a single directory with the io_mesh_threejs
name. To install the plugin, just copy this complete directory to the plugin location
of Blender. As Blender is multiplatform, depending on your OS, this plugin directory
might be stored in a different location.

www.itbook.store/books/9781783981182

http://stackoverflow.com/questions/18814022/what-is-the-difference-between-cubic-bezier-and-quadratic-bezier-and-their-use-c
http://stackoverflow.com/questions/18814022/what-is-the-difference-between-cubic-bezier-and-quadratic-bezier-and-their-use-c
http://stackoverflow.com/questions/18814022/what-is-the-difference-between-cubic-bezier-and-quadratic-bezier-and-their-use-c
http://www.blender.org/download/
https://itbook.store/books/9781783981182

Chapter 2

89

2. For Windows, copy the io_mesh_threejs directory to C:\Users\USERNAME\
AppData\Roaming\Blender Foundation\Blender\2.70a\scripts\addons.

3. For OS X users, it depends on where you installed Blender (extracted the ZIP file).
You should copy the io_mesh_threejs directory to /location/of/extracted/
zip/blender.app/Contents/MacOS/2.6X/scripts/addons.

4. Finally, for Linux users, copy the io_mesh_threejs directory to /home/
USERNAME/.config/blender/2.70a/scripts/addons.

5. If you've installed Blender through apt-get, you should copy the io_mesh_threejs
directory to /usr/lib/blender/scripts/addons.

6. The next step is to enable the Three.js plugin. If Blender is already running, restart
it and open User Preferences. You can find this by navigating to File | User
Preferences. In the screen that opens, select the Addons tab, which lists all the
plugins that are available.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

90

7. At this point, the Three.js plugin is enabled. To make sure it stays enabled when you
restart Blender, click on the Save User Settings button. Now, close this window and
if you navigate to File | Export, you should see a Three.js export function as shown in
the following screenshot:

Now, let's look at the rest of this recipe and see how we can export a model from Blender
and load it in Three.js.

How to do it...
To export a model from Blender, we first have to create one. Instead of loading an existing one,
in this recipe, we'll create one from scratch, export it, and load it in Three.js:

1. To start off, when you open Blender, you'll see a cube. First, we delete this cube.
You do this by pressing x and clicking on delete in the pop up.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

91

2. Now, we'll create a simple geometry that we can export with the Three.js plugin we
installed. For this, click on Add in the bottom menu and select Monkey, as shown in
the following screenshot:

Now, you should have an empty scene in Blender with monkey geometry in the middle:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

92

3. We can export this monkey to Three.js using the plugin we installed in the Getting
ready section of this recipe. To do this, navigate to Export | Three.js in the File menu.
This opens up the export dialog where you can determine the directory to export the
model to. In this Export dialog, you can also set some additional Three.js-specific
export properties, but the default properties usually are okay. For this recipe, we
exported the model as monkey.js.

4. At this point, we've exported the model and can now load it with Three.js. To load the
model, we only have to add the following JavaScript to the Getting started with the
WebGL renderer recipe we showed in Chapter 1, Getting Started:

 function loadModel() {
 var loader = new THREE.JSONLoader();
 loader.load("../assets/models/monkey.js",
 function(model, material) {
 var mesh = new THREE.Mesh(model, material[0]);
 mesh.scale = new THREE.Vector3(3,3,3);
 scene.add(mesh);
 });
 }

The result is a rotating monkey, which we created in Blender, rendered by Three.js as shown in
the following screenshot:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

93

See also
There are a few recipes that you will benefit from reading:

 f In the Using OBJMTLLoader with multiple materials recipe, we use a different format,
which we load into Three.js

 f In Chapter 7, Animation and Physics, where we look at animations, we'll revisit the
Three.js exporter plugin when we're working with skeleton-based animations in the
Animating with skeletons recipe.

Using OBJMTLLoader with multiple
materials

Three.js provides a number of standard geometries that you can use to create your 3D
scenes. Complex models, however, are more easily created in dedicated 3D modeling
applications such as Blender or 3ds Max. Luckily, though, Three.js has great support for
a large number of export formats, so you can easily load models created in these kinds of
packages. A standard that is widely supported is the OBJ format. With this format, the model
is described with two different files: an .obj file that defines the geometries and an .mtl
file that defines the material. In this recipe, we'll show you the steps you need to take to
successfully load a model using OBJMTLLoader, which is provided by Three.js.

Getting ready
To load models described in the .obj and .mtl format, we need to first include the correct
JavaScript file, as these JavaScript objects aren't included in the standard Three.js JavaScript
file. So, within the head section, you need to add the following script tags:

 <script src="../libs/MTLLoader.js"></script>
 <script src="../libs/OBJMTLLoader.js"></script>

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

94

The model we use in this example is a Lego mini figure. In Blender, the original model
looks like this:

You can see the final model by opening up 02.14-use-objmtlloader-with-multiple-
materials.html in your browser. The following screenshot shows you what the renderer
model looks like:

Let's walk you through the steps you need to take to load such a model.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 2

95

How to do it...
Before we load the model in Three.js, we first need to check whether the correct paths are
defined in the .mtl file. So, the first thing we need to do is open the .mtl file in a text editor:

1. When you open the .mtl file for this example, you'll see the following:
 newmtl Cap
 Ns 96.078431
 Ka 0.000000 0.000000 0.000000
 Kd 0.990000 0.120000 0.120000
 Ks 0.500000 0.500000 0.500000
 Ni 1.000000
 d 1.00000
 illum 2
 newmtl Minifig
 Ns 874.999998
 Ka 0.000000 0.000000 0.000000
 Kd 0.800000 0.800000 0.800000
 Ks 0.200000 0.200000 0.200000
 Ni 1.000000
 d 1.000000
 illum 2
 map_Kd ../textures/Mini-tex.png

This .mtl file defines two materials: one for the body of the mini figure and one for its
cap. What we need to check is the map_Kd property. This property needs to contain
the relative path, from where the .obj file is loaded to where Three.js can find the
textures. In our example, this path is: .../textures/Mini-tex.png.

2. Now that we've made sure the .mtl file contains the correct references, we can load
the model using THREE.OBJMTLLoader:
 var loader = new THREE.OBJMTLLoader();
 // based on model from:
 // http://www.blendswap.com/blends/view/69499
 loader.load("../assets/models/lego.obj",
 "../assets/models/lego.mtl",
 function(obj) {
 obj.translateY(-3);
 obj.name='lego';
 scene.add(obj);
 });

As you can see, we pass both .obj and .mtl files into the load function. The final
argument of this load function is a callback function. This callback function will
be called when the model is done loading.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

96

3. At this point, you can do everything you want with the loaded model. In this example,
we add the scaling and rotation functionality through the menu in the top-right
section and apply these properties to the render function:

 function render() {
 renderer.render(scene, camera);
 var lego = scene.getObjectByName('lego');
 if (lego) {
 lego.rotation.y += control.rotationSpeed;
 lego.scale.set(
 control.scale, control.scale, control.scale);
 }
 requestAnimationFrame(render);
 }

How it works...
The .obj and .mtl file formats are well-documented formats. OBJMTLLoader parses
the information from these two files and creates geometries and materials based on that
information. It uses the .obj file to determine an object's geometry and uses information
from the .mtl file to determine the material, which is THREE.MeshLambertMaterial in
this case, to be used for each geometry.

Three.js then combines these together into THREE.Mesh objects and returns a single
THREE.Object3D object that contains all the parts of the Lego figure, which you can
then add to the scene.

There's more…
In this recipe, we showed you how to load objects defined in the .obj and .mtl format.
Besides this format, Three.js also supports a wide range of other formats. For a good overview
of the file formats supported by Three.js, refer to this directory on Three.js' GitHub repository:
https://github.com/mrdoob/three.js/tree/master/examples/js/loaders.

See also
 f For this recipe, we assume we have a complete model in the correct format.

If you want to create a model from scratch, a good open source 3D modeling tool
is Blender. The the Creating and Exporting a model from a Blender recipe, explains
how to create a new model in Blender and export it so that Three.js can load it.

www.itbook.store/books/9781783981182

https://github.com/mrdoob/three.js/tree/master/examples/js/loaders
https://itbook.store/books/9781783981182

Chapter 2

97

Applying matrix transformations
In the first couple of recipes in this chapter, we used the rotation property and applied
translations to get the desired rotational effect. Behind the scenes, Three.js uses matrix
transformations to modify the shape and position of the mesh or the geometry. Three.js
also provides the functionality to apply custom matrix transformations directly to a
geometry or a mesh. In this recipe, we'll show you how you can apply your own custom
matrix transformations directly to a Three.js object.

Getting ready
To view this recipe in action and experiment with the various transformations, open the
02.15-apply-matrix-transformations.html example in your browser. You'll be
presented with the following simple Three.js scene:

In this scene, you can use the menu on the right-hand side to apply various transformations
directly to the spinning cube. In the next section, we'll show you the steps you need to take to
create this yourself.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

98

How to do it...
Creating your own matrix transformation is very simple.

1. Firstly, let's look at the code that gets called when you click on the
doTranslation button:
 this.doTranslation = function() {
 // you have two options, either use the
 // helper function provided by three.js
 // new THREE.Matrix4().makeTranslation(3,3,3);
 // or do it yourself
 var translationMatrix = new THREE.Matrix4(
 1, 0, 0, control.x,
 0, 1, 0, control.y,
 0, 0, 1, control.z,
 0, 0, 0, 1
);
 cube.applyMatrix(translationMatrix);
 // or do it on the geometry
 // cube.geometry applyMatrix(translationMatrix);
 // cube.geometry.verticesNeedUpdate = true;
 }

As you can see in the code, creating a custom matrix transformation is very easy and
requires only the following steps.

2. First, you instantiate a new THREE.Matrix4 object and pass in the values of the
matrix as arguments to the constructor.

3. Next, you use the applyMatrix function of either THREE.Mesh or THREE.
Geometry to apply the transformation to that specific object.

4. If you apply this on THREE.Geometry you have to set the verticesNeedUpdate
property to true, as vertex changes aren't automatically propagated to the renderer
(see the Informing Three.js about updates recipe).

How it works
The transformations used in this recipe are based on matrix calculations. Matrix calculations
by themselves are a rather complex subject. If you're interested in more information on how
matrix calculations work and how they can be used for all different kinds of transformations, a
good explanation can be found at http://www.matrix44.net/cms/notes/opengl-3d-
graphics/basic-3d-math-matrices.

www.itbook.store/books/9781783981182

http://www.matrix44.net/cms/notes/opengl-3d-graphics/basic-3d-math-matrices
http://www.matrix44.net/cms/notes/opengl-3d-graphics/basic-3d-math-matrices
https://itbook.store/books/9781783981182

Chapter 2

99

There's more…
In the example for this chapter, you can apply a couple of transformations to the rotating cube.
The following code snippet shows you the matrices used for these transformations:

 this.doScale = function() {
 var scaleMatrix = new THREE.Matrix4(
 control.x, 0, 0, 0,
 0, control.y, 0, 0,
 0, 0, control.z, 0,
 0, 0, 0, 1
);
 cube.geometry.applyMatrix(scaleMatrix);
 cube.geometry.verticesNeedUpdate = true;
 }
 this.doShearing = function() {
 var scaleMatrix = new THREE.Matrix4(
 1, this.a, this.b, 0,
 this.c, 1, this.d, 0,
 this.e, this.f, 1, 0,
 0, 0, 0, 1
);
 cube.geometry.applyMatrix(scaleMatrix);
 cube.geometry.verticesNeedUpdate = true;
 }
 this.doRotationY = function() {
 var c = Math.cos(this.theta),
 s = Math.sin(this.theta);
 var rotationMatrix = new THREE.Matrix4(
 c, 0, s, 0,
 0, 1, 0, 0, -s, 0, c, 0,
 0, 0, 0, 1
);
 cube.geometry.applyMatrix(rotationMatrix);
 cube.geometry.verticesNeedUpdate = true;
 }

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Geometries and Meshes

100

In this recipe, we created the matrix transformations from scratch. Three.js, however, also
provides some helper functions in the Three.Matrix4 class that you can use to more easily
create these kinds of matrices:

 f makeTranslation(x, y, z): This function returns a matrix, which when applied
to a geometry or a mesh, translates the object by the specified x, y, and z values

 f makeRotationX(theta): This returns a matrix that can be used to rotate a mesh
or geometry by a certain amount of radians along the x axis

 f makeRotationY(theta): This is the same as the previous one—this time around
the y axis

 f makeRotationZ(theta): This is the same as the previous one—this time around
the z axis

 f makeRotationAxis(axis, angle): This returns a rotation matrix based on the
provided axis and angle

 f makeScale(x, y, z): This function returns a matrix that can be used to scale an
object along any of the three axes

See also
We've also used matrix transformations in other recipes in this chapter:

 f In the first two recipes, Rotating an object around its own axis and Rotating an object
around a point in space, the actual rotation is applied using a matrix transformation

 f In the Rotating an object around its own axis recipe, we used the helper functions
from the THREE.Matrix4 object to rotate an object around its axis

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

3
Working with the

Camera

In this chapter, we'll cover the following recipes:

 f Making the camera follow an object

 f Zooming the camera to an object

 f Using a perspective camera

 f Using an orthographic camera

 f Creating a 2D overlay

 f Rotating the camera around a scene

 f Matching the rendered view to a resized browser

 f Converting world coordinates to screen coordinates

 f Selecting an object in the scene

Introduction
One of the most important objects in Three.js is the camera. With the camera, you define
what part of the scene will be rendered and how the information will be projected on the
screen. In this chapter, we'll show you a number of recipes that will allow you to add more
complex camera functionality to your Three.js applications.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

102

Making the camera follow an object
When you are creating games or visualizations with many moving objects, you might want
to have the camera follow an object around. Normally, when you create a camera, it points
to a single position and shows you the scene that falls within its field of view. In this recipe,
we'll explain how you can create a camera that can follow any of your objects around.

Getting ready
This recipe only makes use of core Three.js functions, so there isn't any need to include
external JavaScript libraries in your source code. If you want to see the final result of this
recipe, you can open 03.01-camera-follow-object.html in your browser, and you'll
see something similar to what is shown in the following screenshot:

In this example, you can see that the camera is focused on the sphere. As the sphere moves
across the scene, the camera moves around to stay focused on the position of the sphere.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

103

How to do it...
For this recipe, we only need to take three simple steps:

1. The first thing we need to do is create the object that we want to follow. For this
recipe, we create a simple THREE.SphereGeometry object and add it to the scene
like this:
 var sphereGeometry = new THREE.SphereGeometry(1.5,20,
 20);
 var matProps = {
 specular: '#a9fcff',
 color: '#00abb1',
 emissive: '#006063',
 shininess: 10
 }
 var sphereMaterial = new
 THREE.MeshPhongMaterial(matProps);
 var sphereMesh = new THREE.Mesh(sphereGeometry,
 sphereMaterial);
 sphereMesh.name = 'sphere';
 scene.add(sphereMesh);

As you can see in this short code snippet, we don't need to do anything special
with the object we want to follow.

2. The next step is that we need a camera that renders the scene and stays focused
on the object we want to follow. The following JavaScript creates and positions
this camera:
 // create a camera, which defines where we're looking at.
 camera = new THREE.PerspectiveCamera(45,
 window.innerWidth / window.innerHeight, 0.1, 1000);
 // position and point the camera to the center of the
 scene
 camera.position.x = 15;
 camera.position.y = 6;
 camera.position.z = 15;

This is a standard THREE.PerspectiveCamera object, which we also use in
most of the other examples in this chapter. Once again, no special configuration
is required.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

104

3. For the final step, we define the render loop that will render the scene and also
point the camera in the right direction for this recipe:

 function render() {
 var sphere = scene.getObjectByName('sphere');
 renderer.render(scene, camera);
 camera.lookAt(sphere.position);
 step += 0.02;
 sphere.position.x = 0 + (10 * (Math.cos(step)));
 sphere.position.y = 0.75 * Math.PI / 2 +
 (6 * Math.abs(Math.sin(step)));
 requestAnimationFrame(render);
 }

In the render function, we use the camera.lookAt function to point the camera to the
position function of the sphere. As we do this in every frame that we render, it will look like
camera is exactly following the position of sphere.

How it works...
THREE.PerspectiveCamera extends from the THREE.Object3D object. THREE.
Object3D provides the lookAt function. When this function is called with the target position
to look at, Three.js creates a transformation matrix (THREE.Matrix4) that aligns the position
of the THREE.Object3D object with the target's position. In the case of the camera, the
result is that the target object is followed around the scene by the camera and is rendered in
the middle of the screen.

There's more…
In this recipe, we use the lookAt function to point a camera to a specific object. You can
apply this same recipe for all the Three.js objects that extend from Object3D. For instance,
you can use this to make sure THREE.SpotLight always illuminates a specific object.
Or, if you're creating animations, you could use this effect to make sure one character is
always looking at the face of a different character.

See also
 f As the lookAt function uses matrix transformations to point one object to another,

you could also do this without making use of the lookAt function. For this, you'll
have to create a transformation matrix yourself. We've explained how to do this in the
Applying matrix transformations recipe, which you can find in Chapter 2, Geometries
and Meshes.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

105

Zooming the camera to an object
Usually, when you position a camera in your scene, you might move it around a bit or let it
focus on different objects. In this recipe, we'll show you how you can zoom in to an object so
that it almost fills the rendered view.

Getting ready
To zoom in, we use the standard functionality from the THREE.PerspectiveCamera object.
We've provided an example that demonstrates the result you'll get at the end of this recipe.
To experiment with this example, open 03.02-zoom-camera-to-object.html in your
browser. You will see something similar to the following screenshot:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

106

Initially, you'll see a small rotating cube in the center of the scene. If you click on the
updateCamera button in the menu in the top-right section, the camera will update and
show you the rotating cube fullscreen like this:

How to do it...
To zoom the camera to an object, we need to take the following steps:

1. The first thing we need to do is create and position the camera that we use to
zoom in:
 camera = new THREE.PerspectiveCamera(45,
 window.innerWidth / window.innerHeight, 0.1, 1000);
 // position and point the camera to the center of the
 scene
 camera.position.x = 15;
 camera.position.y = 15;
 camera.position.z = 15;
 camera.lookAt(scene.position);

As you can see, this is a standard THREE.PerspectiveCamera object, to which we
give a position and add to the scene.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

107

2. To zoom in with the camera, we first need to determine the distance from the camera
to the object and its height:
 // create an helper
 var helper = new THREE.BoundingBoxHelper(cube);
 helper.update();
 // get the bounding sphere
 var boundingSphere = helper.box.getBoundingSphere();
 // calculate the distance from the center of the sphere
 // and subtract the radius to get the real distance.
 var center = boundingSphere.center;
 var radius = boundingSphere.radius;
 var distance = center.distanceTo(camera.position) -
 radius;
 var realHeight = Math.abs(helper.box.max.y -
 helper.box.min.y);

In the previous code snippet, we used THREE.BoundingBoxHelper to determine
the realHeight function of cube and its distance to the camera.

3. With this information, we can determine the field of view (fov) for the camera so that
it only shows the cube:
 var fov = 2 * Math.atan(realHeight *
 control.correctForDepth / (2 * distance))
 * (180 / Math.PI);

What you can see in this code fragment is that we use one additional value, which
is control.correctForDepth, to calculate the field of view. This value, which is
set in the menu in the top-right section in the example, increases the resulting field
of view slightly. We do this because in this calculation, we assume that the camera
is facing the object straight on. If the camera isn't looking straight at the object, we
need to compensate for this offset.

4. Now that we've got the field of view for the camera, we can assign this value to the
camera.fov property:

 camera.fov = fov;
 camera.updateProjectionMatrix();

As Three.js caches the fov property of the camera, we need to inform Three.
js that the camera configuration has some changes. We do this with the
updateProjectionMatrix function.

At this point, the camera is completely zoomed in on the object.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

108

How it works...
To understand how this works, we need to understand what the field of view property of a
THREE.PerspectiveCamera object does. The following figure shows you the field of
view property:

Horizontal Field of View

Vertical Field of View

Far plane

Near plane

Camera

fov

As you can see in this figure, there is a separate horizontal and vertical field of view.
Three.js only allows you to set the vertical one, and the horizontal field of view is determined
based on the aspect ratio you define on a camera. When you look at this figure, you can also
directly see how this recipe works. By changing the field of view, we shrink the near and far
planes and limit what is being rendered, and this way, we can zoom in.

There's more…
There is an alternative way of zooming in besides the one shown here. Instead of changing the
fov property of the camera, we can also move the camera closer to the object. In the latest
version of Three.js, a zoom property is introduced; you can also use this property to zoom in
on a scene, but you can't use it directly to zoom in on a single object.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

109

Using a perspective camera
Three.js provides two cameras: a camera that renders the scene with a perspective projection
(as we see images in the real world) and a camera that renders the scene with an orthogonal
projection (fake 3D often used in games; for more information on this type of camera, check
out the upcoming Using an orthographic camera recipe). In this recipe, we'll look at the first
of these two cameras and explain how you can use the perspective camera in your own scene.

Getting ready
Working with the properties of a camera can be a bit confusing at times. To help you better
understand the steps or this recipe, we've created a simple page that shows you the effect
each of the camera properties has. Open up 03.03-use-an-perspective-camera.html
in the browser, and you'll see something like this:

With the last four properties available in the menu in the top-right section, you can set the
properties of THREE.PerspectiveCamera, which is used to render this scene, and see the
effect of each property immediately.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

110

How to do it...
In this recipe, we set up each of the camera properties separately. These properties can also
be passed in with the constructor of THREE.PerspectiveCamera. In the There's more…
section of this recipe, we'll show you how to do this.

To set up THREE.PerspectiveCamera completely, we need to perform a couple of steps:

1. The first thing we need to do is instantiate the camera:
 camera = new THREE.PerspectiveCamera();

This creates the camera instance, which we configure in the upcoming steps.

2. Now that we've got a camera, we first need to define the aspect ratio between the
width of the viewport and the height:
 camera.aspect = window.innerWidth / window.innerHeight;

In our recipe, we use the full width and height of the browser, so we specify the
aspect ratio for the camera based on the window.innerWidth and window.
innerHeight properties. If we use a div element with a fixed width and height, you
should use the ratio between these values as the aspect function for the camera.

3. The next two properties we need to define are the near and far properties:
 camera.near = 0.1;
 camera.far = 1000;

These two properties define the area of the scene that this camera will render.
With these two values, the camera will render the scene starting from a distance
of 0.1 to a distance of 1000 from the position of the camera.

4. The last of the properties that can be defined is the (vertical) field of view:
 camera.fov = 45;

This property defines, in degrees, the area that the camera sees. For instance,
humans have a horizontal field of view of 120 degrees, while in video games,
often a field of view of around 90 or 100 degrees is used.

5. Whenever you update one of these four properties of the camera, you have to inform
Three.js about such a change. You do this by adding the following line:
 camera.updateProjectionMatrix();

6. Now, all that is left to do is position the camera and add it to the scene:
 camera.position.x = 15;
 camera.position.y = 16;
 camera.position.z = 13;
 scene.add(camera);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

111

At this point, we can use this camera with any of the available renderers to render a scene
like this: renderer.render(scene, camera).

How it works...
The best way to understand how these properties affect what is rendered on screen is by
looking at the following figure, which shows you these properties:

Horizontal Field of View

Vertical Field of View

Far plane

Near plane

Camera

fov

The position of Near plane in this figure is based on the near property of the camera.
Far plane is based on the far property and the fov shown in the figure corresponds to the
fov property. With the fov property, you define the vertical field of view. The horizontal field of
view is based on the aspect ratio, which you define with the aspect property on the camera.

There's more…
In this recipe, we set each of the properties separately. THREE.PerspectiveCamera also
provides a constructor that you can use to set all these properties in one statement:

 camera = new THREE.PerspectiveCamera(45,
 window.innerWidth / window.innerHeight, 0.1, 1000);

Also remember that THREE.PerspectiveCamera extends from the standard Three.js
THREE.Object3D object. This means that this camera can be rotated and moved around
just like any other object.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

112

See also
 f In the Zooming the camera to an object recipe, we used the fov property of the

camera to zoom in on an object, and in the Using an orthographic camera recipe,
we will show you the second of the two cameras provided by Three.js, which is
THREE.OrthographicCamera.

Using an orthographic camera
In most cases, you'll use THREE.PerspectiveCamera to render your scene. With such
a camera, the result is a scene with a realistic-looking perspective. Three.js provides
an alternative camera with THREE.OrthographicCamera. This camera uses an
orthographic projection to render the scene. With this type of projection, all objects have
the same size regardless of their distance to the camera. This is in contrast to THREE.
PerspectiveCamera, where objects that are further away from the camera appear smaller.
This was used often for fake 3D in games such as the Sims or older versions of SimCity (image
taken from http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/
projection/projection_images/iosmetric_sim_city.jpg).

In this recipe, we'll show you how to configure THREE.OrthographicCamera so that you
can create this fake 3D effect for your own scenes.

www.itbook.store/books/9781783981182

http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/projection/projection_images/iosmetric_sim_city.jpg)
http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/projection/projection_images/iosmetric_sim_city.jpg)
https://itbook.store/books/9781783981182

Chapter 3

113

Getting ready
For this recipe, the only object from Three.js we use is THREE.OrthographicCamera.
This camera is available in the standard Three.js distribution, so there is no need to include
any external JavaScript files. We've provided an example that shows the Three.Orthographic
Camera in action. You can use this camera to better understand the properties you can use
to configure the camera. If you open 03.04-use-an-orthographic-camera.html, you
can see a number of cubes that are rendered with THREE.OrthographicCamera. With the
menu in the top-right section, you can tune the configuration of the camera.

Now, let's look at the steps you need to take to set up this camera.

How to do it...
To set up an orthographic camera in Three.js, we need to perform a couple of very
simple steps:

1. The first thing we need to do is create the camera instance:
 camera = new THREE.OrthographicCamera();

This creates THREE.OrthographicCamera, which is configured with some
default values.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

114

2. The next step is to define the boundaries for this camera:
 camera.left = window.innerWidth / -2;
 camera.right = window.innerWidth / 2;
 camera.top = window.innerHeight / 2;
 camera.bottom = window.innerHeight / - 2;

This defines the area that is rendered by this camera. In the There's more… section
of this recipe, we'll explain how this works.

3. Finally, we have to set the near and far properties of the camera. These properties
define which distance from the camera is rendered:
 camera.near = 0.1;
 camera.far = 1500;

4. When we don't pass in the arguments in the constructor, we have to inform Three.js
that we changed the camera's parameter. For this, we have to add the following line:
 camera.updateProjectionMatrix();

5. The final step is to position and align the camera:
 camera.position.x = -500;
 camera.position.y = 200;
 camera.position.z = 300;
 camera.lookAt(scene.position);

6. Now, we can just use this camera like any other camera and render a scene like this:
 renderer.render(scene, camera);

How it works...
The easiest way to understand how this camera works is by looking at the following figure:

Far planeNear plane

Top

Left

Right

Bottom

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

115

The box you see in this figure is the area an orthographic camera renders. In this figure, you
can also see the left, right, top, and bottom properties we defined on the camera, which
define the boundaries of this box. The final two properties, which are near and far, are
used to define the near plane and the far plane. With these six properties, we can define the
complete box that is rendered with THREE.OrthographicCamera.

There's more…
We can also configure THREE.OrthographicCamera by passing in these arguments in
the constructor:

 camera = new THREE.OrthographicCamera(
 window.innerWidth / -2, window.innerWidth / 2,
 window.innerHeight / 2, window.innerHeight / - 2, 0.1, 1500);

An added advantage is that this way, you don't need to explicitly call camera.
updateProjectionMatrix().

See also
 f Three.js provides two types of camera. If you want to use THREE.

PerspectiveCamera instead, look at the Using a perspective camera recipe,
where the steps that you need to take to create and configure a perspective
camera are explained.

Creating a 2D overlay
In most recipes, we only focus on the 3D aspect of Three.js. We show recipes that explain how
3D objects and scenes are rendered, how they can be viewed with different cameras, and how
you can change how they look through materials. When you are creating games, you usually
also have a 2D layer on top of your 3D scene. You can use this to show health bars, 2D maps,
inventory, and much more. In this recipe, we'll show you how to create a 2D overlay using
THREE.OrthogonalCamera and THREE.PerspectiveCamera together.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

116

Getting ready
For this recipe, we require an image that we will use as an overlay. To demonstrate this recipe,
we create a simple image that looks like this:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

117

In this recipe, we'll combine this static image with a 3D scene to create the scene that can be
seen by opening the 03.05-create-an-hud-overview.html example in your browser:

In this example, you can see that we've got a 3D rotating scene with a static 2D overlay
on top of it.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

118

How to do it...
Let's look at the steps you need to take:

1. Let's start with creating the 2D overlay. The overlay we use in this recipe is the one
with a fixed width and height (800 by 600). So, before we create the cameras, let's
first create the div variable that serves as container for the rendered scene:
 container = document.createElement('div');
 container.setAttribute(
 "style","width:800px; height:600px");
 document.body.appendChild(container);

2. Next, let's create the camera that we use to render the overlay. For this, we require
THREE.OrthographicCamera:
 orthoCamera = new THREE.OrthographicCamera(
 WIDTH / - 2, WIDTH / 2, HEIGHT / 2,
 HEIGHT / - 2, - 500, 1000);
 orthoCamera.position.x = 0;
 orthoCamera.position.y = 0;
 orthoCamera.position.z = 0;

The WIDTH and HEIGHT properties are defined as constants with values
of 800 and 600. This code fragment creates and positions a standard
THREE.OrthographicCamera object.

3. For the 2D overlay, we create a separate scene where we put the 2D elements:
 orthoScene = new THREE.Scene();

4. The only thing we want to add to the 2D scene is the overlay image we showed
in the Getting ready section of this recipe. As it's a 2D image, we'll use a
THREE.Sprite object:
 var spriteMaterial = new THREE.SpriteMaterial({map:
 THREE.ImageUtils.loadTexture(
 "../assets/overlay/overlay.png")});
 var sprite = new THREE.Sprite(spriteMaterial);
 sprite.position.set(0,0,10);
 sprite.scale.set(HEIGHT,WIDTH,1);
 orthoScene.add(sprite);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

119

THREE.Sprite is always rendered in the same size (1 by 1 pixels) regardless of its
distance to the camera. To make the sprite fullscreen, we scale the x axis with 800
(WIDTH) and the y axis with 600 (HEIGHT). With THREE.SpriteMaterial, which
we used in the previous code fragment, we point to the overlay image so that it is
shown when we add THREE.Sprite to the scene.

5. At this point, we've got THREE.OrthogonalCamera and THREE.Scene, which show
you the overlay as an 800 by 600 image. The next step is to create the 3D screen on
which we want to apply this overlay. You don't have to do anything special here; you
can create a 3D scene by defining THREE.PerspectiveCamera and THREE.Scene
and adding some lights and objects. For this recipe, we assume you've got a camera
and a scene with the following names:
 persCamera = new THREE.PerspectiveCamera(60, WIDTH /
 HEIGHT, 1, 2100);
 persScene = new THREE.Scene();

6. Before we move to the render loop where we define that we want to render the 2D
scene as an overlay, we need to configure an additional property on the renderer:
 renderer = new THREE.WebGLRenderer();
 renderer.setClearColor(0xf0f0f0);
 renderer.setSize(800, 600);
 renderer.autoClear = false;
 container.appendChild(renderer.domElement);

On THREE.WebGLRenderer, we set the autoclear property to false. This means
that the screen isn't automatically cleared before renderer renders a scene.

7. The final step is to alter the render loop. We first want to render the 3D scene,
and without clearing the 3D-rendered output, render the overlay on the top:

 function render() {
 renderer.clear();
 renderer.render(persScene, persCamera);
 renderer.clearDepth();
 renderer.render(orthoScene, orthoCamera);
 }

The first thing we do in the render loop is clear the current output by calling the
clear function on the renderer. We need to do this, as we disabled autoclear
on renderer. Now, we render the 3D scene, and before we render the 2D overlay,
we call the clearDepth function on the renderer. This makes sure the 2D overlay
is rendered completely on top and won't intersect at places with the 3D scene.
So finally, we render the 2D overlay by passing in orthoScene and orthoCamera.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

120

How it works...
How this recipe works is actually very simple. We can use the same renderer to render
multiple scenes with multiple different cameras in the same render loop. This way, we can
position various render results on top of each other. With a THREE.OrthoGraphic camera
and THREE.Sprite, it is easy to position an object at absolute positions on screen. By
scaling it to the required size and applying a texture, we can display images using a renderer.
This output, combined with a regular 3D result, allows you to create these kinds of overlays.

See also
There are a couple of recipes that use an orthographic camera and more advanced tricks to
compose the final rendering:

 f In this chapter, we explored how to set up THREE.OrthographicCamera in the
Using an orthographic camera recipe.

 f In Chapter 4, Materials and Textures, we'll show how you can use an HTML5 canvas
and a HTML5 video as an input to a texture in the Using HTML canvas as a texture
and Using an HTML video as a texture recipes.

 f In chapter 6, Point Clouds and Postprocessing, we show you how to set up a more
complex rendering pipeline in the Setting up a postprocessing pipeline recipe.

Rotating the camera around a scene
In Chapter 2, Geometries and Meshes, we already showed you a number of recipes that
explained how to rotate objects. In this recipe, we'll show you how to rotate the camera
around a scene while the camera will keep looking at the center of the scene.

Getting ready
For this recipe, we'll use the standard THREE.PerspectiveCamera object, which we rotate
around a simple scene. To see the final result, open the 03.08-rotate-camera-around-
scene-y-axis.html example in your browser.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

121

On this web page, you can see that the camera rotates around the scene while the floor,
box, and lights stay at the same position.

How to do it...
To accomplish this, we only need to perform a couple of very simple steps:

1. The first thing we need to do is create THREE.PerspectiveCamera and position it
somewhere in the scene:
 // create a camera, which defines where we're looking at.
 camera = new THREE.PerspectiveCamera(45,
 window.innerWidth / window.innerHeight, 0.1, 1000);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

122

 // position and point the camera to the center of the
 scene
 camera.position.x = 15;
 camera.position.y = 16;
 camera.position.z = 13;
 camera.lookAt(scene.position);

2. To rotate the camera, we recalculate its position in the render loop as follows:

 function render() {
 renderer.render(scene, camera);
 var x = camera.position.x;
 var z = camera.position.z;
 camera.position.x = x * Math.cos(control.rotSpeed) +
 z * Math.sin(control.rotSpeed);
 camera.position.z = z * Math.cos(control.rotSpeed) –
 x * Math.sin(control.rotSpeed);
 camera.lookAt(scene.position);
 requestAnimationFrame(render);
 }

In this render function, we update the camera.position.x and camera.
position.z variables, and by calling camera.lookAt(scene.position),
we make sure we keep looking at the center of the scene.

How it works...
What we do here is some basic vector math. We execute a very small rotation of the camera
using a rotation matrix. However, instead of the 3D and 4D matrices we used in other recipes,
we just use a 2D matrix this time (represented with the two calculations in the render loop).
After the rotation, we just need to make sure the camera is still looking at the correct position,
so we use the lookAt function (which once again, internally uses matrix calculations to
determine how to align the camera to the scene).

There's more…
In this recipe, we rotated around the scene's y axis. This results in a very smooth animation
where the camera circles around the scene. We could, of course, also apply this to the other
axes. We provided an example that you can view in the sources provided with this book. If you
open 03.08-rotate-camera-around-scene-x-axis.html in your browser, the camera
rotates around the x axis instead of the y axis.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

123

The only change you have to make is change the calculations in the render loop:

 function render() {
 renderer.render(scene, camera);
 var z = camera.position.z;
 var y = camera.position.y;
 camera.position.y = y * Math.cos(control.rotSpeed) +
 z * Math.sin(control.rotSpeed);
 camera.position.z = z * Math.cos(control.rotSpeed) –
 y * Math.sin(control.rotSpeed);
 camera.lookAt(scene.position);
 requestAnimationFrame(render);
 }

When you look at this example in your browser, you might notice something strange.
At a certain point, it'll look like the camera jumps around. The reason is that the camera
tries to stay the right-side up, so it quickly changes orientation when it is at the top or bottom
of its rotation.

See also
In Chapter 2, Geometries and Meshes, we already discussed some rotation-related recipes.
If you want to learn more about rotation or the matrix calculations required for it, look at the
following recipes from Chapter 2, Geometries and Meshes:

 f Rotating an object around its own axis

 f Rotating an object around a point in space

 f Applying matrix transformations

Matching the rendered view to a resized
browser

When you define a camera in Three.js, you need to define the aspect ratio; for a renderer,
you need to define its output size. Normally, you do this once when you set up your initial
scene. This works great until the user resizes their browser. In this case, the aspect ratio
for the camera will probably change, as will the output size for the renderer. In this recipe,
we'll show you the steps you need to take to react to changes to the screen size.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

124

Getting ready
As with every recipe, we provide an example that you can use to test and experiment with for
this recipe as well. Open 03.06-change-the-camera-on-screen-resize.html in your
browser and make the screen very small.

What you see is that the same amount of information is shown in the scene—only rendered
smaller. When you now increase the screen size again, you'll see that Three.js always uses
the complete available space.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

125

How to do it...
In this recipe, we'll add a resize handler to the web page, which reacts to resize events.
Adding this handler only takes a couple of steps:

1. The first thing we need to add is the function that we call when the resize event
occurs. The following code fragment shows you the onResize function that we
will call in the next step:
 function onResize() {
 camera.aspect = window.innerWidth /
 window.innerHeight;
 camera.updateProjectionMatrix();
 renderer.setSize(window.innerWidth,
 window.innerHeight);
 }

In this code snippet, we first recalculate the aspect ratio for the camera based on the
new width and height. As Three.js caches certain aspects of the camera, we have to
call the updateProjectionMatrix() function next to make sure the new aspect
ratio is used. We also change the size for the renderer to the new width and height,
so the complete screen space is used.

2. Now that we've got our update function, we need to define an event listener:

 window.addEventListener('resize', onResize, false);

As you can see, we add an event listener for the resize event. So whenever the
screen is resized, the provided function, which is onResize, will be called.

How it works...
Whenever something happens within a browser (a button is clicked on, the mouse is moved,
the window is resized, and so on), browsers will throw an event. From JavaScript, you can
register listeners to these events so that you can respond to them. In this recipe, we use the
resize event to listen to any change in the window size. For more information on this event,
you can look at the excellent documentation Mozilla provides at https://developer.
mozilla.org/en-US/docs/Web/Events/resize.

www.itbook.store/books/9781783981182

https://developer.mozilla.org/en-US/docs/Web/Events/resize
https://developer.mozilla.org/en-US/docs/Web/Events/resize
https://itbook.store/books/9781783981182

Working with the Camera

126

Converting world coordinates to screen
coordinates

If you are creating a game that provides a 2D interface on top of a 3D world, for instance, as
shown in the Creating a 2D overlay recipe, you might want to know how the 3D coordinates
map to your 2D overlay. If you know the 2D coordinates, you can add all kinds of visual effects
to the 2D overlay, such as tracking the code or letting the 2D overlay interact with the objects
in the 3D scene.

Getting ready
You don't need to perform any steps to get ready for this recipe. In this recipe, we can use the
THREE.Projector object available in Three.js to determine the correct coordinates. You can
view the result from this recipe in action by opening 03.07-convert-world-coordintate-
to-screen-coordinates.html in your browser as shown in the following screenshot:

The box appears at random positions when you open this example. When you click on
the calculateScreenCoordinate button in the menu in the top-right section, the x and y
coordinates of the center of the box will be shown.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

127

How to do it...
To convert world coordinates to screen coordinates, we use a couple of internal
Three.js objects:

1. The first object we need is THREE.Projector:
 var projector = new THREE.Projector();

2. Next, we use this projector to project the position of the cube onto the camera:
 var vector = new THREE.Vector3();
 projector.projectVector(
 vector.setFromMatrixPosition(object.matrixWorld),
 camera);

The vector variable will now contain the position of the object as it is seen by the
camera object.

3. When you project a vector, as we did in step two, the resulting x and y values range
from -1 to 1. So in this final step, we convert these values to the current screen width
and height:

 var width = window.innerWidth;
 var height = window.innerHeight;
 var widthHalf = width / 2;
 var heightHalf = height / 2;
 vector.x = (vector.x * widthHalf) + widthHalf;
 vector.y = - (vector.y * heightHalf) + heightHalf;

At this point, the vector variable will contain the screen coordinates of the center
of object. You can now use these coordinates with standard JavaScript, HTML,
and CSS to add effects.

How it works...
In this recipe, we use the same effect that Three.js uses to render the scene. When you
render a scene, the objects are projected onto a camera, which determines what area needs
to be rendered and where the objects appear. With the projector class, we can perform this
projection for a single vector. The result is the position of this vector in two dimensions based
on the used camera.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

128

See also
 f In this recipe, we converted world coordinates to screen coordinates. This is actually

rather easy, as we've got all the information (in three dimensions) to correctly
determine the coordinates (in two dimensions). In the Selecting an object in the
scene recipe, we convert a screen coordinate to a world coordinate, which is harder
to do, as we don't have any depth information we can use.

Selecting an object in the scene
A common requirement for Three.js applications is to interact with the scene. You might create
a shooter where you want to use the mouse for aiming or an RPG where you need to interact
with your environment. In this recipe, we'll show you how you can use the mouse to select
objects that are rendered on screen.

Getting ready
To apply this effect, we'll need a scene where we can select some objects. For this recipe,
we've provided an example, which is 03.10-select-an-object-in-the-scene.html.
If you open this file in your browser, you'll see a number of objects moving around the scene.

You can use your mouse to select any of the objects on screen. The first time you click on
them, they'll become transparent, and the next time, they'll become solid again.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

129

How to do it...
We'll need to work through a couple of steps for this recipe:

1. The first thing we need to do is set up the mouse listener. We want to fire a
JavaScript function each time the mouse button is clicked on. To do this,
we register the following listener:
 document.addEventListener('mousedown',
 onDocumentMouseDown, false);

This will tell the browser to fire the onDocumentMouseDown button whenever a
mousedown event is detected.

2. Next, we define the onMouseDown function as follows:
function onDocumentMouseDown(event) { ... }

This function will be called when you push the left mouse button. In the upcoming
steps, we'll show you what to put into this function to detect which object is selected.

3. The first thing we need to do is convert the x and y coordinates of the mouse click to
a position that THREE.PerspectiveCamera can understand:
 var projector = new THREE.Projector();
 var vector = new THREE.Vector3(
 (event.clientX / window.innerWidth) * 2 - 1,
 -(event.clientY / window.innerHeight) * 2 + 1,
 0.5);
 projector.unprojectVector(vector, camera);

At this point, vector will contain the x and y coordinates in coordinates the camera
and Three.js understands.

4. Now we can use another Three.js object, which is THREE.Raycaster, to determine
which objects in our scene might be located at the position we clicked on:
 var raycaster = new THREE.Raycaster(
 camera.position,
 vector.sub(camera.position).normalize());
 var intersects = raycaster.intersectObjects(
 [sphere, cylinder, cube]);

Here, we first create THREE.Raycaster and use the intersectObjects function
to determine whether sphere, cylinder, or cube are selected. If an object is
selected, it will be stored in the intersects array.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Working with the Camera

130

5. Now we can process the intersects array. The first element will be the element
closest to the camera, and in this recipe, this is the one we're interested in:

 if (intersects.length > 0) {
 intersects[0].object.material.transparent = true;
 if (intersects[0].object.material.opacity === 0.5) {
 intersects[0].object.material.opacity = 1;
 } else {
 intersects[0].object.material.opacity = 0.5;
 }
 }

In this recipe, we just switch the opacity of an object whenever it is clicked on.

That's it. With this setup, you can select objects using your mouse.

How it works...
This recipe works by using THREE.RayCaster. With THREE.RayCaster, as the name
implies, you shoot out a ray into the scene. The path of this ray is based on the properties of
the camera, the position of the camera, and the objects provided to the intersectObjects
function. For each of the provided objects, Three.js determines whether a ray cast using
THREE.RayCaster can hit the specified object.

There's more
An interesting effect that can be added, and that better visualizes what is happening, is
rendering the ray that is cast by THREE.RayCaster. You can very easily do this by just
adding the following to step 5 of this recipe:

 var points = [];
 points.push(new THREE.Vector3(camera.position.x,
 camera.position.y - 0.2, camera.position.z));
 points.push(intersects[0].point);
 var mat = new THREE.MeshBasicMaterial({
 color: 0xff0000,
 transparent: true,
 opacity: 0.6
 });
 var tubeGeometry = new THREE.TubeGeometry(new
 THREE.SplineCurve3(points), 60, 0.001);
 var tube = new THREE.Mesh(tubeGeometry, mat);
 scene.add(tube);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 3

131

There's nothing too special in this code fragment. We just draw a line from the position of the
camera (with a small offset to the y axis, or else we don't see anything) to the position where
the ray intersects. The result, which you can also see in the example discussed in the Getting
ready section of this recipe, looks something like this:

See also
 f In this recipe, we convert a 2D coordinate into a 3D one. In the Converting world

coordinates to screen coordinates recipe, we explain how to do the opposite.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

4
Materials and Textures

In this chapter, we'll cover the following recipes:

 f Adding depth to a mesh with a bump map

 f Adding depth to a mesh with a normal map

 f Using HTML canvas as a texture

 f Using HTML video as a texture

 f Creating a mesh with multiple materials

 f Using separate materials for faces

 f Setting up repeating textures

 f Making part of an object transparent

 f Using a cubemap to create reflective materials

 f Using a dynamic cubemap to create reflective materials

 f Using Blender to create custom UV mapping

 f Configuring blend modes

 f Using a shadow map for fixed shadows

Introduction
Three.js offers a large number of different materials and supports many different types of
textures. These textures provide a great way to create interesting effects and graphics. In
this chapter, we'll show you recipes that allow you to get the most out of these components
provided by Three.js.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

134

Adding depth to a mesh with a bump map
For detailed models, you require geometries with a large number of vertices and faces. If a
geometry contains a very large number of vertices, loading the geometry and rendering it
will take more time than it would take for a simple model. If you've got a scene with a large
number of models, it is a good idea to try and minimize the number of vertices for better
performance. There are a number of different techniques that you can use for this. In this
recipe, we'll show you how you can use a bump map texture to add the illusion of depth to
your model.

Getting ready
To get ready for this recipe, we need to get the textures that we want to use on our
geometries. For this recipe, we require two textures: a color map, which is a standard
texture, and a bump map, which describes the depth associated with the standard texture.
The following screenshot shows you the color map that we will use (you can find these
textures in the assets/textures folder in the sources provided with this book):

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

135

As you can see, this is a simple color map of a stone wall. Besides this texture, we also
require the bump map. A bump map is a grayscale image, where the intensity of each pixel
determines the height:

From the preceding screenshot, you can see that the parts between the stones and the mortar
has less height, as it is a dark color, as compared to the stones themselves, which have a
lighter color. You can see the result you end up with at the end of this recipe by opening up the
04.01-add-depth-to-mesh-with-bump-map.html example in your browser.

From the preceding screenshot, you can see two cubes. The cube on the left-hand side is
rendered without a bump map, and the cube on the right-hand side is rendered with a bump
map. As you can see, the right-hand side cube shows much more depth and detail than the
cube on the left-hand side.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

136

How to do it...
When you've got textures, using them to add depth to a model is very straightforward:

1. First, create the geometry you want to use together with the bump map:
var cubeGeometry = new THREE.BoxGeometry(15, 15, 15);

In this recipe, we create THREE.BoxGeometry, but you can use a bump map with
any kind of geometry.

2. The next step is to create the material on which we define the bump map:
var cubeBumpMaterial = new THREE.MeshPhongMaterial();

cubeBumpMaterial.map = THREE.ImageUtils.loadTexture(
 "../assets/textures/Brick-2399.jpg");
cubeBumpMaterial.bumpMap = THREE.ImageUtils.loadTexture(
 "../assets/textures/Brick-2399-bump-map.jpg");

Here, we create THREE.MeshPhongMaterial and set its map and bumpMap
properties. The map property points to the color map texture, and the bumpMap
property point to the grayscale bump map texture.

3. Now you can just create THREE.Mesh and add it to scene:

var bumpCube = new THREE.Mesh(cubeGeometry,
 cubeBumpMaterial);
scene.add(bumpCube);

With these three simple steps, you've created a cube that uses a bump map for added depth.

How it works...
The values of each pixel in the bump map determine the height associated with that part of
the texture. When rendering the scene, Three.js uses this information to determine how light
affects the final color of the pixel it is rendering. The result is that without defining a very
detailed model, we can add the illusion of extra depth. If you want to know more details about
how bump mapping works, look at this site for a very detailed explanation: http://www.
tweak3d.net/articles/bumpmapping/.

www.itbook.store/books/9781783981182

http://www.tweak3d.net/articles/bumpmapping/
http://www.tweak3d.net/articles/bumpmapping/
https://itbook.store/books/9781783981182

Chapter 4

137

There's more…
In this recipe, we showed you the default way to define a bump map. There is, however, one
additional property that you can use to tune bump mapping. The material we used in this
recipe, cubeBumpMaterial, also has a bumpScale property. With this property, you can
set the amount by which the bump map affects the depth. If this value is very small, you'll
see some added depth, and if this value is higher, you'll see a more pronounced depth effect.
You can set this property in the example for this cookbook (04.01-add-depth-to-mesh-
with-bump-map.html).

See also
 f There is an additional way to add detail and depth to your meshes. In the Add depth

to a mesh with a normal map recipe, we show how to add depth and detail with a
normal map instead of a bump map. In the Creating geometries from height maps
recipe, of Chapter 2, Geometries and Meshes, we showed you a different way to use
bump maps by creating THREE.Geometry from it.

Adding depth to a mesh with a normal map
With a bump map, we showed in the Add depth to a mesh with a bump map recipe, how to
add depth and detail to a mesh using a specific texture. In this recipe, we provide another way
to add even more depth and details without increasing the vertex count of the geometry. To
do this, we will use a normal map. A normal map describes the normal vector for each pixel,
which should be used to calculate how light affects the material used in the geometry.

Getting ready
To use normal maps, we first need to get a color map and a normal map. For this recipe, we've
used two screenshots. The first is the color map:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

138

The next screenshot is the normal map:

Now that we've got the two images, let's first look at how this would look in practice.
To see a normal map in action, open the 04.02-add-depth-to-mesh-with-normal-
map.html example:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

139

In this example, you can see a standard rendered cube on the left-hand side and one where
a normal map is added to on the right-hand side. You can directly see that the face of the
right-hand side cube looks much more detailed than the face of the left-hand side cube.

How to do it...
Adding a normal map is actually very easy:

1. First, create the geometry that we want to render:
var cubeGeometry = new THREE.BoxGeometry(15, 15, 15);

For this recipe, we use a simple THREE.BoxGeometry object, but you can use
whichever geometry you want.

2. Now that we've got a geometry, we create the material and configure the properties:
var cubeNormalMaterial = new THREE.MeshPhongMaterial();
cubeNormalMaterial.map = THREE.ImageUtils.loadTexture(
 "../assets/textures/chesterfield.png");
cubeNormalMaterial.normalMap = THREE.ImageUtils.loadTexture(
 "../assets/textures/chesterfield-normal.png");

The map properties contain the standard texture, and the normalMap properties
contain the normal texture, which we showed you in the Getting ready section of
this recipe.

3. All that is left to do now is to create a THREE.Mesh object and add it to the scene
like this:

var normalCube = new THREE.Mesh(
 cubeGeometry, cubeNormalMaterial);
scene.add(normalCube);

As you can see from these steps, using a normal map is very simple.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

140

How it works...
In 3D modeling, a couple of mathematical concepts are important to understand. One of
these concepts is a normal vector. A normal is the vector that stands perpendicular to the
surface of the face of a geometry. This is shown in the following screenshot:

Each blue line represents the normal vector, which is the vector that is perpendicular to
the surface of that face. In a normal map, the direction of these vectors are shown as RGB
values. When you apply a normal map to a specific face, Three.js uses the information
from this normal map and the normal of the face to add depth to that face without adding
additional vertices. For more information on how normal maps are used, refer to the site at
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-
normal-mapping/.

There's more…
You can fine-tune the height and direction in which the information from the normal map is
applied to the face of geometry. For this, you can use the normalScale property like this:

normalCube.material.normalScale.x = 1;
normalCube.material.normalScale.y = 1;

To see this effect in action, look at the example for this recipe, 04.02-add-depth-to-
mesh-with-normal-map.html, where you can use the menu in the top-right section to
change this value.

www.itbook.store/books/9781783981182

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/
https://itbook.store/books/9781783981182

Chapter 4

141

See also
 f An alternative for normal maps is bump maps. In the Add depth to a mesh with a

bump map recipe, we show you how to use such a map instead of a normal map

Using HTML canvas as a texture
Most often when you use textures, you use static images. With Three.js, however, it is also
possible to create interactive textures. In this recipe, we will show you how you can use an
HTML5 canvas element as an input for your texture. Any change to this canvas is automatically
reflected after you inform Three.js about this change in the texture used on the geometry.

Getting ready
For this recipe, we need an HTML5 canvas element that can be displayed as a texture. We can
create one ourselves and add some output, but for this recipe, we've chosen something else.
We will use a simple JavaScript library, which outputs a clock to a canvas element. The resulting
mesh will look like this (see the 04.03-use-html-canvas-as-texture.html example):

The JavaScript used to render the clock was based on the code from this site:
http://saturnboy.com/2013/10/html5-canvas-clock/. To include the code
that renders the clock in our page, we need to add the following to the head element:

<script src="../libs/clock.js"></script>

www.itbook.store/books/9781783981182

http://saturnboy.com/2013/10/html5-canvas-clock/
http://saturnboy.com/2013/10/html5-canvas-clock/
https://itbook.store/books/9781783981182

Materials and Textures

142

How to do it...
To use a canvas as a texture, we need to perform a couple of steps:

1. The first thing we need to do is create the canvas element:
var canvas = document.createElement('canvas');
canvas.width=512;
canvas.height=512;

Here, we create an HTML canvas element programmatically and define a fixed width.

2. Now that we've got a canvas, we need to render the clock that we use as the input
for this recipe on it. The library is very easy to use; all you have to do is pass in the
canvas element we just created:
clock(canvas);

3. At this point, we've got a canvas that renders and updates an image of a clock. What
we need to do now is create a geometry and a material and use this canvas element
as a texture for this material:
var cubeGeometry = new THREE.BoxGeometry(10, 10, 10);
var cubeMaterial = new THREE.MeshLambertMaterial();
cubeMaterial.map = new THREE.Texture(canvas);
var cube = new THREE.Mesh(cubeGeometry, cubeMaterial);

To create a texture from a canvas element, all we need to do is create a new instance
of THREE.Texture and pass in the canvas element we created in step 1. We
assign this texture to the cubeMaterial.map property, and that's it.

4. If you run the recipe at this step, you might see the clock rendered on the sides of the
cubes. However, the clock won't update itself. We need to tell Three.js that the canvas
element has been changed. We do this by adding the following to the rendering loop:

cubeMaterial.map.needsUpdate = true;

This informs Three.js that our canvas texture has changed and needs to be updated
the next time the scene is rendered.

With these four simple steps, you can easily create interactive textures and use everything you
can create on a canvas element as a texture in Three.js.

How it works...
How this works is actually pretty simple. Three.js uses WebGL to render scenes and apply
textures. WebGL has native support for using HTML canvas element as textures, so Three.js just
passes on the provided canvas element to WebGL and it is processed as any other texture.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

143

See also
 f Besides using images and canvas elements as textures, we can also use a video

element as a texture. In the Using HTML video as a texture recipe, we show you
how to use a HTML video element as the input for a texture.

Using HTML video as a texture
Modern browsers have great support for playing video without requiring any plugins.
With Three.js, we can even use this video as the input for our textures. In this recipe,
we'll show you the steps you need to take to output a video on a side of a cube.

Getting ready
For this recipe, we need a video to play, of course. We used the trailer for the Blender-made
movie Sintel (http://www.sintel.org/), which is freely available. To view the result of
this recipe, open 04.04-use-html-video-as-texture.html in your browser.

When you run this example, you can see that the video is being played at the side of a cube
and keeps updating even when the cube is rotating.

www.itbook.store/books/9781783981182

http://www.sintel.org/
http://www.sintel.org/
http://www.sintel.org/
https://itbook.store/books/9781783981182

Materials and Textures

144

How to do it...
To accomplish this effect, we need to define an HTML video element as the source for a
texture. To do this, perform the following steps:

1. The first thing we need is a way to play the video. For this, we add the following HTML
element to the body element of the page:
<video id="video" autoplay loop style="display:none">
 <source src="../assets/video/sintel_trailer-480p.mp4"
 type='video/mp4'>
 <source src="../assets/video/sintel_trailer-480p.webm"
 type='video/webm'>
 <source src="../assets/video/sintel_trailer-480p.ogv"
 type='video/ogg'>
</video>

With this piece of HTML, we'll load the video and play it looped once it is loaded
using the autoplay and loop properties. As we've set display:none, this
video element won't show up on the page.

2. Now that we've got a video playing, we can get a reference to this element and use it
to create a texture:
var video = document.getElementById('video');

videoTexture = new THREE.Texture(video);
videoTexture.minFilter = THREE.LinearFilter;
videoTexture.magFilter = THREE.LinearFilter;
videoTexture.format = THREE.RGBFormat;
videoTexture.generateMipmaps = false;

The minFilter, magFilter, format, and generateMipmaps properties used
here provide the best result and performance when using a video as a texture.

3. At this point, we've got a texture that we can use like any other texture:
var cubeGeometry = new THREE.BoxGeometry(1,9,20);
var cubeMaterial = new THREE.MeshBasicMaterial({map:videoTextu
re});

Here, we set the map property of the material to the video texture. So, any
THREE.Mesh object we create that uses this material will show the video.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

145

4. To finish the recipe, create THREE.Mesh object and add it to the scene:
var cube = new THREE.Mesh(cubeGeometry,
 cubeMaterial);
scene.add(cube);

5. Three.js normally caches textures as they usually don't change that often. In this
recipe, though, the texture changes continuously. To inform Three.js that the texture
has changed, we need to add the following to the render loop:

function render() {
 ...
 videoTexture.needsUpdate = true;
 ...
}

You can use this approach with any video that can be played in the browser.

How it works...
WebGL, which is used by Three.js to render the scenes, has native support to use video
elements as input for the textures. Three.js just passes the video element to WebGL and
doesn't need to do any preprocessing. In the WebGL code, the current image shown by the
video is converted to a texture. Whenever we set videoTexture.needsUpdate to true,
the texture is updated in WebGL.

There's more…
One thing to remember when working with the video element is that the different browsers
have varying support for video formats. A good up-to-date overview of what format is
supported by which browser can be found on Wikipedia at http://en.wikipedia.org/
wiki/HTML5_video#Browser_support.

See also
 f An alternative way to easily create changing textures is explained in the Using HTML

canvas as a texture recipe. In this recipe, we explain how you can use the HTML
canvas element as the input for a texture.

www.itbook.store/books/9781783981182

http://en.wikipedia.org/wiki/HTML5_video#Browser_support
http://en.wikipedia.org/wiki/HTML5_video#Browser_support
https://itbook.store/books/9781783981182

Materials and Textures

146

Creating a mesh with multiple materials
When you create THREE.Mesh, you can only specify a single material that can be used for
that mesh. In most scenarios, this will be sufficient. However, there are also cases where
you want to combine multiple materials. For instance, you might want to combine THREE.
MeshLambertMaterial with a material that shows you the wireframe of the geometry. In
this recipe, we'll show you the required steps to create a mesh that uses multiple materials.

Getting ready
For this recipe, we don't require additional resources or libraries. If you want to look at the
result of this recipe, open up the 04.05-create-a-mesh-with-multiple-materials.
html example in your browser.

In the preceding screenshot, you can see a cylinder. This cylinder is rendered with two
materials. In the next section, we'll show you the steps you need to take to create this.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

147

How to do it...
To create a multimaterial mesh, Three.js provides a helper function. You can use
THREE.SceneUtils for this, as is shown in the next couple of steps:

1. The first thing you need to do is create the geometry you want to use. For this recipe,
we use a simple THREE.CylinderGeometry object:
var cylinderGeometry = new THREE.CylinderGeometry(
 3, 5, 10,20);

2. After the geometry, we can create the materials. You can use as many as you want,
but in this recipe, we'll just use two:
var material1 = new THREE.MeshLambertMaterial(
 {color:0xff0000,
 transparent: true,
 opacity: 0.7});

var material2 = new THREE.MeshBasicMaterial(
 {wireframe:true});

As you can see, we create a transparent THREE.MeshLambertMaterial object
and THREE.MeshBasicMaterial object, which only renders a wireframe.

3. Now, we can create the object that can be added to the scene. Instead of
instantiating THREE.Mesh, we use the createMultiMaterialObject function
provided by the THREE.SceneUtils object:

var cylinder = THREE.SceneUtils.createMultiMaterialObject(
 cylinderGeometry,
 [material1, material2]);

You can add the result from this function to the scene:

scene.add(cylinder);

One thing to take into account is that the object we create here isn't THREE.Mesh but
THREE.Object3D. Why a different object is created is explained in the next section.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

148

How it works...
What happens when you call the createMultiMaterialObject function is that Three.js
simply creates multiple meshes and groups them together. If you open the Three.js file and
look up this function, you'll see the following code:

function createMultiMaterialObject(geometry, materials) {
var group = new THREE.Object3D();
for (var i = 0, l = materials.length; i < l; i ++) {
group.add(new THREE.Mesh(geometry, materials[i]));
}
return group;
}

In this function, Three.js iterates over the materials that are provided, and for each material,
a new THREE.Mesh object is created. Because all the created meshes are added to group,
the result looks like a single mesh that's created with multiple materials.

See also
 f When you use the approach from this recipe to create a material that uses multiple

materials, the materials are applied to the complete geometry. In the Using separate
materials for faces recipe, we show you how to use a different material for each
specific face of a geometry.

Using separate materials for faces
Each geometry in Three.js consists of a number of vertices and faces. In most cases, when
you define a material that can be used together with a geometry, you use a single material.
With Three.js, however, it is also possible to define a unique material for each of the faces of
your geometry. You could, for instance, use this to apply different textures to each side of a
model of a house. In this recipe, we will explain how to set up the materials so that you can
use different textures for individual faces.

Getting ready
In this recipe, we won't use any external textures or libraries. It is good, however, to look
at the final result that we'll be creating in this recipe. For this, open the 04.06-use-
separate-materials-for-faces.html example in your browser.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

149

In the preceeding screenshot, you can see a rotating sphere, where each face is rendered
with a different color and half of the faces have been made transparent. In the following
section, we'll show you the steps you need to take to recreate this.

How to do it...
To define specific materials for each face, we need to perform the following steps:

1. The first thing we need to do is create the geometry. For this recipe, we use
THREE.SphereGeometry, but these steps can also be applied to other geometries:
var sphereGeometry = new THREE.SphereGeometry(3, 10, 10);

2. When we create the material in step 3, we provide an array of materials that we want
to use. Additionally, we need to specify on each face the material from the array we'll
use. You can do this with the following code:
var materials = [];
var count = 0;
sphereGeometry.faces.forEach(function(face) {
 face.materialIndex = count++;
 var material = new THREE.MeshBasicMaterial(

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

150

 {color:Math.abs(Math.sin(count/70))*0xff0000});
 material.side = THREE.DoubleSide;
 if (count % 2 == 0) {
 material.transparent = true;
 material.opacity = 0.4;
 }
 materials.push(material);
});

In this code snippet, we traverse all the faces of the geometry we created. For each
face, we set the materialIndex property to the index of the material we want to
use. We also create a unique material object for each face in this code snippet,
make half of them transparent, and finally, push the materials we create into the
materials array.

3. At this point, the materials array contains a unique material for each face of the
geometry, and for all the faces, the materialIndex property points to one of the
materials in that array. Now, we can create THREE.MeshFaceMaterial object and
together with the geometry, we can create THREE.Mesh:

 var sphere = new THREE.Mesh(
 sphereGeometry, new THREE.MeshFaceMaterial(materials));
 scene.add(sphere);

That's it. Each face of the geometry will use the material it points to.

How it works...
Because we specify materialIndex on each THREE.Face object, Three.js knows which
material from the provided array it should use when it wants to render a specific face. One
thing you need to take into account is that this can affect the performance of your scene, as
each of the materials needs to be managed by Three.js; however, the performance is better
than using separate meshes but worse than combining the textures into one.

There's more…
Some of the geometries Three.js provides already set a materialIndex property when you
instantiate them. For instance, when you create THREE.BoxGeometry, the first two faces are
mapped to materialIndex 1, the next two are mapped to materialIndex 2, and so on.
So, if you want to style the sides of a box, you just have to provide an array with six materials.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

151

Another interesting use of using materials for specific faces is that you can easily create
interesting patterns, for instance, when you can very easily create a checked layout like this:

All you need is some small change to how you assign the materialIndex properties
like this:

var plane = new THREE.PlaneGeometry(10, 10, 9, 9);

var materials = [];
var material_1 = new THREE.MeshBasicMaterial(
 {color:Math.random()*0xff0000, side: THREE.DoubleSide});
var material_2 = new THREE.MeshBasicMaterial(
 {color:Math.random()*0xff0000, side: THREE.DoubleSide});

materials.push(material_1);
materials.push(material_2);

var index = 0;
for (var i = 0 ; i < plane.faces.length-1 ; i+=2) {
 var face = plane.faces[i];
 var nextFace = plane.faces[i+1];
 face.materialIndex = index;
 nextFace.materialIndex = index;

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

152

 if (index === 0) {
 index = 1;
 } else {
 index = 0;
 }
}

See also
 f If you don't want to style specific faces but apply multiple materials to a complete

geometry, you can look at the Creating a mesh with multiple materials recipe,
where we explain how to do just that

Setting up repeating textures
Sometimes, when you've found a texture you want to apply, you might want to repeat it.
For instance, if you've got a large ground plane on which you want to apply a seamless
wood texture, you don't want the texture to be applied as a single image for the whole plane.
Three.js allows you to define the manner in which a texture is repeated when it is used on a
geometry. In this recipe, we'll explain the steps you need to take to accomplish this.

Getting ready
The first thing we need is the image that we'll use for a texture. For the best effect,
you should use seamless textures. A seamless texture can be repeated without showing
the seam between two textures next to each other. For this recipe, we'll use the webtreats_
metal_6-512px.jpg texture, which you can find in the asset/textures folder that you
can find in the sources for this book.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

153

To see the repeat effect in practice, you can open the 04.12-setup-repeating-
textures.html example in your browser.

With the menu in the top-right corner, you can define how often the texture is repeated along
its x axis and y axis.

How to do it...
To set up a repeating texture is very simple and only requires a couple of steps:

1. First, create the geometry and the material:
var cubeGeometry = new THREE.BoxGeometry(10, 10, 10);
var cubeMaterial = new THREE.MeshPhongMaterial();

In this recipe, we use THREE.MeshPhongMaterial, but you can use this recipe for
all the materials that allow you use textures.

2. Next, we load the texture and set it on cubeMaterial:
cubeMaterial.map = THREE.ImageUtils.loadTexture
 ("../assets/textures/webtreats_metal_6-512px.jpg");

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

154

3. The next step is to set the wrapS and wrapT properties on the texture:
cubeMaterial.map.wrapS = cubeMaterial.map.wrapT
 = THREE.RepeatWrapping;

These properties define whether Three.js should stretch the texture to the
side (THREE.ClampToEdgeWrapping) or repeat the texture with THREE.
RepeatWrapping.

4. The final step is to set how often to repeat the texture along the x axis and y axis:
cubeMaterial.map.repeat.set(2, 2);

In this case, we repeat the texture along both its axis twice.

5. An interesting thing to know is that by providing negative values to the
map.repeat.set function, you can also mirror the texture.

How it works...
Each face within a geometry has a UV mapping that defines which part of a texture
should be used for that face. When you configure a repeat wrapping, Three.js changes
this UV mapping according to the values that have been set on the map.repeat property.
As we also define that we want to use THREE.RepeatWrapping, WebGL knows how to
interpret these changed UV values.

See also
 f Repeating textures works by changing the UV mapping according to the repeat

property. You can also configure a UV mapping by hand, as shown in the Using
Blender to create custom UV mapping recipe.

Making part of an object transparent
You can create a lot of interesting visualizations using the various materials available with
Three.js. In this recipe, we'll look at how you can use the materials available with Three.js to
make part of an object transparent. This will allow you to create complex-looking geometries
with relative ease.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

155

Getting ready
Before we dive into the required steps in Three.js, we first need to have the texture that we will
use to make an object partially transparent. For this recipe, we will use the following texture,
which was created in Photoshop:

You don't have to use Photoshop; the only thing you need to keep in mind is that you use an
image with a transparent background. Using this texture, in this recipe, we'll show you how you
can create the following (04.08-make-part-of-object-transparent.html):

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

156

As you can see in the preceeding, only part of the sphere is visible, and you can look through
the sphere to see the back at the other side of the sphere.

How to do it...
Let's look at the steps you need to take to accomplish this:

1. The first thing we do is create the geometry. For this recipe, we use
THREE.SphereGeometry:
var sphereGeometry = new THREE.SphereGeometry(6, 20, 20);

Just like all the other recipes, you can use whatever geometry you want.

2. In the second step, we create the material:
var mat = new THREE.MeshPhongMaterial();
mat.map = new THREE.ImageUtils.loadTexture(
 "../assets/textures/partial-transparency.png");
mat.transparent = true;
mat.side = THREE.DoubleSide;
mat.depthWrite = false;
mat.color = new THREE.Color(0xff0000);

As you can see in this fragment, we create THREE.MeshPhongMaterial and load
the texture we saw in the Getting ready section of this recipe. To render this correctly,
we also need to set the side property to THREE.DoubleSide so that the inside of
the sphere is also rendered, and we need to set the depthWrite property to false.
This will tell WebGL that we still want to test our vertices against the WebGL depth
buffer, but we don't write to it. Often, you need to set this to false when working with
more complex transparent objects or particles.

3. Finally, add the sphere to the scene:

var sphere = new THREE.Mesh(sphereGeometry, mat);
scene.add(sphere);

With these simple steps, you can create really interesting effects by just experimenting with
textures and geometries.

There's more…
With Three.js, it is possible to repeat textures (refer to the Setup repeating textures recipe).
You can use this to create interesting-looking objects such as this:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

157

The code required to set a texture to repeat is the following:

var mat = new THREE.MeshPhongMaterial();
mat.map = new THREE.ImageUtils.loadTexture(
 "../assets/textures/partial-transparency.png");
mat.transparent = true;
mat.map.wrapS = mat.map.wrapT = THREE.RepeatWrapping;
mat.map.repeat.set(4, 4);
mat.depthWrite = false;
mat.color = new THREE.Color(0x00ff00);

By changing the mat.map.repeat.set values, you define how often the texture is repeated.

See also
 f There are two alternative ways of making part of an object transparent. You could divide

the object into multiple geometries and group them, or you could make individual faces
transparent like we did in the Using separate materials for faces recipe.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

158

Using a cubemap to create reflective
materials

With the approach Three.js uses to render scenes in real time, it is difficult and very
computationally intensive to create reflective materials. Three.js, however, provides a way
you can cheat and approximate reflectivity. For this, Three.js uses cubemaps. In this recipe,
we'll explain how to create cubemaps and use them to create reflective materials.

Getting ready
A cubemap is a set of six images that can be mapped to the inside of a cube. They can be
created from a panorama picture and look something like this:

In Three.js, we map such a map on the inside of a cube or sphere and use that information to
calculate reflections. The following screenshot (example 04.10-use-reflections.html)
shows what this looks like when rendered in Three.js:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

159

As you can see in the preceeding screenshot, the objects in the center of the scene reflect the
environment they are in. This is something often called a skybox. To get ready, the first thing
we need to do is get a cubemap. If you search on the Internet, you can find some ready-to-use
cubemaps, but it is also very easy to create one yourself. For this, go to http://gonchar.me/
panorama/. On this page, you can upload a panoramic picture and it will be converted to a set
of pictures you can use as a cubemap. For this, perform the following steps:

1. First, get a 360 degrees panoramic picture. Once you have one, upload it to the
http://gonchar.me/panorama/ website by clicking on the large OPEN button:

2. Once uploaded, the tool will convert the panorama picture to a cubemap as shown in
the following screenshot:

www.itbook.store/books/9781783981182

http://gonchar.me/panorama/
http://gonchar.me/panorama/
http://gonchar.me/panorama/
https://itbook.store/books/9781783981182

Materials and Textures

160

3. When the conversion is done, you can download the various cube map sites. The
recipe in this book uses the naming convention provided by Cube map sides option,
so download them. You'll end up with six images with names such as right.png,
left.png, top.png, bottom.png, front.png, and back.png.

Once you've got the sides of the cubemap, you're ready to perform the steps in the recipe.

How to do it...
To use the cubemap we created in the previous section and create reflecting material,
 we need to perform a fair number of steps, but it isn't that complex:

1. The first thing you need to do is create an array from the cubemap images
you downloaded:
var urls = [
 '../assets/cubemap/flowers/right.png',
 '../assets/cubemap/flowers/left.png',
 '../assets/cubemap/flowers/top.png',
 '../assets/cubemap/flowers/bottom.png',
 '../assets/cubemap/flowers/front.png',
 '../assets/cubemap/flowers/back.png'
];

2. With this array, we can create a cubemap texture like this:
var cubemap = THREE.ImageUtils.loadTextureCube(urls);
cubemap.format = THREE.RGBFormat;

3. From this cubemap, we can use THREE.BoxGeometry and a custom
THREE.ShaderMaterial object to create a skybox (the environment
surrounding our meshes):
var shader = THREE.ShaderLib["cube"];
shader.uniforms["tCube"].value = cubemap;

var material = new THREE.ShaderMaterial({

 fragmentShader: shader.fragmentShader,
 vertexShader: shader.vertexShader,
 uniforms: shader.uniforms,

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

161

 depthWrite: false,
 side: THREE.DoubleSide

});

// create the skybox
var skybox = new THREE.Mesh(new THREE.BoxGeometry(10000, 10000,
10000), material);
scene.add(skybox);

Three.js provides a custom shader (a piece of WebGL code) that we can use for
this. As you can see in the code snippet, to use this WebGL code, we need to define
a THREE.ShaderMaterial object. With this material, we create a giant THREE.
BoxGeometry object that we add to scene.

4. Now that we've created the skybox, we can define the reflecting objects:
var sphereGeometry = new THREE.SphereGeometry(4,15,15);
var envMaterial = new THREE.MeshBasicMaterial(
 {envMap:cubemap});
var sphere = new THREE.Mesh(sphereGeometry, envMaterial);

As you can see, we also pass in the cubemap we created as a property (envmap)
to the material. This informs Three.js that this object is positioned inside a skybox,
defined by the images that make up cubemap.

5. The last step is to add the object to the scene, and that's it:

scene.add(sphere);

In the example in the beginning of this recipe, you saw three geometries. You can use this
approach with all different types of geometries. Three.js will determine how to render the
reflective area.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

162

How it works...
Three.js itself doesn't really do that much to render the cubemap object. It relies on
a standard functionality provided by WebGL. In WebGL, there is a construct called
samplerCube. With samplerCube, you can sample, based on a specific direction, which
color matches the cubemap object. Three.js uses this to determine the color value for
each part of the geometry. The result is that on each mesh, you can see a reflection of the
surrounding cubemap using the WebGL textureCube function. In Three.js, this results in
the following call (taken from the WebGL shader in GLSL):

vec4 cubeColor = textureCube(tCube,
 vec3(-vReflect.x, vReflect.yz));

A more in-depth explanation on how this works can be found at http://codeflow.org/
entries/2011/apr/18/advanced-webgl-part-3-irradiance-environment-
map/#cubemap-lookup.

There's more...
In this recipe, we created the cubemap object by providing six separate images. There
is, however, an alternative way to create the cubemap object. If you've got a 360 degrees
panoramic image, you can use the following code to directly create a cubemap object
from that image:

var texture = THREE.ImageUtils.loadTexture(360-degrees.png',
 new THREE.UVMapping());

Normally when you create a cubemap object, you use the code shown in this recipe to map
it to a skybox. This usually gives the best results but requires some extra code. You can also
use THREE.SphereGeometry to create a skybox like this:

var mesh = new THREE.Mesh(
 new THREE.SphereGeometry(500, 60, 40),
 new THREE.MeshBasicMaterial({ map: texture }));
mesh.scale.x = -1;

This applies the texture to a sphere and with mesh.scale, turns this sphere inside out.

www.itbook.store/books/9781783981182

http://codeflow.org/entries/2011/apr/18/advanced-webgl-part-3-irradiance-environment-map/#cubemap-lookup
http://codeflow.org/entries/2011/apr/18/advanced-webgl-part-3-irradiance-environment-map/#cubemap-lookup
http://codeflow.org/entries/2011/apr/18/advanced-webgl-part-3-irradiance-environment-map/#cubemap-lookup
https://itbook.store/books/9781783981182

Chapter 4

163

Besides reflection, you can also use a cubemap object for refraction (think about light bending
through water drops or glass objects):

All you have to do to make a refractive material is load the cubemap object like this:

var cubemap = THREE.ImageUtils.loadTextureCube(urls,
 new THREE.CubeRefractionMapping());

And define the material in the following way:

var envMaterial = new THREE.MeshBasicMaterial({envMap:cubemap});
envMaterial.refractionRatio = 0.95;

See also
 f If you look closely at the example shown at the beginning of this recipe, you might

notice that you don't see the reflections of the individual objects on each other. You
only see the reflection of the skybox. In the Using a dynamic cubemap to create
reflective materials recipe, we show you how you can make the cubemap object
dynamic so that other rendered meshes are reflected.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

164

Using a dynamic cubemap to create
reflective materials

In the Using a cubemap to create reflective materials recipe, we showed how you can create
a material that reflects its environment. The only caveat was that other meshes rendered in
the scene didn't show up in the reflection; only the cubemap was shown. In this recipe, we
will show you how you can create a dynamic cubemap that also reflects other meshes in
the scene.

Getting ready
To get ready for this recipe, you need to follow the steps explained in the Getting ready
section for the Using a cubemap to create reflective materials recipe. For this recipe, we
provide a separate example that you can display by opening 04.11-use-reflections-
dynamically.html in your browser.

If you look closely at the central sphere in the preceding, you can see that it not only reflects
the environment, but also reflects the cylinder, and if you rotate the scene, you can also see
the cube reflection.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

165

How to do it...
To accomplish this, we first need to perform a couple of the same steps, like we did in the
Using a cubemap to create reflective materials recipe. So, before you start with the steps
in this recipe, take the first three steps from that recipe. After these three steps, you can
continue with these steps:

1. To create a dynamic cubemap, we need to use THREE.CubeCamera:
cubeCamera = new THREE.CubeCamera(0.1, 20000, 256);
cubeCamera.renderTarget.minFilter =
 THREE.LinearMipMapLinearFilter;
scene.add(cubeCamera);

With THREE.CubeCamera, we can take a snapshot of the environment and use it as
the cubemap object in our materials. For the best result, you should position THREE.
CubeCamera at the same location as the mesh on which you want to use the dynamic
cubemap object. In this recipe, we use it on the central sphere, which is located at this
position: 0, 0, 0. So, we don't need to set the position of cubeCamera.

2. For this recipe, we use three geometries:
var sphereGeometry = new THREE.SphereGeometry(4,15,15);
var cubeGeometry = new THREE.BoxGeometry(5,5,5);
var cylinderGeometry = new THREE.CylinderGeometry(2,4,10,
 20, false);

3. Next, we're going to define the materials. We use the following two materials:
var dynamicEnvMaterial = new THREE.MeshBasicMaterial(
 {envMap: cubeCamera.renderTarget });
var envMaterial = new THREE.MeshBasicMaterial(
 {envMap: cubemap });

The first one is the material that uses the output from cubeCamera as its cubemap,
and the second material uses a static cubemap object.

4. With these two materials, we can create the meshes and add them to the scene:
var sphere = new THREE.Mesh(sphereGeometry, dynamicEnvMaterial);
sphere.name='sphere';
scene.add(sphere);

var cylinder = new THREE.Mesh(cylinderGeometry, envMaterial);
cylinder.name='cylinder';
scene.add(cylinder);
cylinder.position.set(10,0,0);

var cube = new THREE.Mesh(cubeGeometry, envMaterial);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

166

cube.name='cube';
scene.add(cube);
cube.position.set(-10,0,0);

5. The last step we need to take is that in the render loop, we update cubeCamera
like this:
function render() {
 sphere.visible = false;
 cubeCamera.updateCubeMap(renderer, scene);
 sphere.visible = true;
 renderer.render(scene, camera);
 ...
 requestAnimationFrame(render);
}

When you've taken all these steps, you'll end up with a sphere in the middle of the scene
that not only reflects the environment, but also the other objects in the scene.

How it works...
In the Using a cubemap to create reflective materials recipe we explained how a cubemap
is used to create reflective objects. The same principle also applies to this recipe, so if
you haven't read the How it works… section from the Using a cubemap to create reflective
materials recipe, please do that first. The main difference is that for this recipe, we create
a cubemap on the fly with THREE.CubeCamera instead of using a static one. When you
instantiate THREE.CubeCamera, you're really creating six THREE.PerspectiveCamera
objects—one for each side of the cubemap. Whenever you call updateCubeMap, as we do
in this recipe in the render loop, Three.js just renders the scene using these six cameras
and uses the render results as the cubemap to be used.

There's more…
In this recipe, we showed you how to make one mesh reflect the complete scene. If you
create separate THREE.CubeCamera objects for each of the meshes in the scene, you
can create a dynamic cubemap for all the objects. Keep in mind, though, that this is a
rather computationally-intensive process. Instead of rendering the scene once, you incur
six additional render passes for each cube camera you use.

See also
 f For a static cubemap, you can use the steps explained in the previous recipe,

 which is the Using a cubemap to create reflective materials recipe

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

167

Using Blender to create custom UV mapping
If you want to apply a texture (a 2D image) to a geometry, you need to tell Three.js which
part of the texture should be used for a specific THREE.face object. The definition of how a
texture maps to the individual faces of a geometry is called a UV mapping. A UV mapping,
for example, tells Three.js how to map a 2D map of the earth to a 3D sphere geometry.
When you're working with simple shapes, or the basic geometries provided with Three.js,
the standard UV mapping that's provided is often enough. However, when shapes become
more complex or you have some specific texture mapping requirements, you need to change
how each face of a geometry is mapped to part of a texture. One option is to do this by hand,
but for larger geometries, this is very difficult and time-consuming. In this recipe, we will
show you how you can create a custom mapping with Blender.

Getting ready
For this recipe, you need to have Blender installed; if you haven't installed Blender yet, look
at the Getting ready section of the Creating and exporting a model from Blender recipe
from Chapter 2, Geometries and Meshes. Once you've installed Blender, start it and you're
presented with a screen similar to the following screenshot:

In the following section, we'll show you the steps you need to take to create a custom UV
mapping for this cube.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

168

How to do it...
The following steps explain how to create a custom UV mapping in Blender and use it
in Three.js:

1. The first thing to do is switch to edit mode. To do this, hover the mouse over the
cube and hit tab. You should see something like this:

If the cube isn't highlighted, hover over it with the mouse and push a. This will select
all the vertices and faces.

2. Now, let's create a standard UV mapping for this cube. To do this, navigate to
Mesh | Uv Unwrap | Unwrap. Now, split the active view and open the UV/Image
editor view.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

169

In the left part of the Blender window, we now see how all the selected faces and
vertices are mapped to a texture.

3. In the right-hand side view, select the front face, and you can immediately see how
that face is mapped to the texture:

Now, we can change the mapping of this face by moving the vertices on the left-hand
side side of the screen. Before we do that, though, we first load a texture image.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

170

4. With your mouse on top of the left part of the screen, hit Alt + O to select an image.
For this recipe, it is easiest to use the debug.png texture you can find in the
assets/textures directory. Once you open the image, the screen will look like this:

5. By dragging the corners in the left view, we change the UV mapping of the selected
face. Move these corners around to create something like this:

As you can see, we changed the UV mapping for this face from the whole texture to
just the top-left corner.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

171

6. The next step is to export this geometry, load it in Three.js, and see whether the
mapping has really changed for the face we changed. To export the model, we'll
use the OBJ format in this recipe. So, navigate to File | Export | Wavefront and
save the model.

7. To load the model, we first need to include the OBJLoader JavaScript file on the
header of the page:
<script src="../libs/OBJLoader.js"></script>

8. Now, we can use the loader to load the model and add it to the scene:
var loader = new THREE.OBJLoader();
loader.load("../assets/models/blender/uvmap.obj", function(model)
{
 model.children[0].material.map = THREE.ImageUtils
 .loadTexture("../assets/textures/debug.png");
 scene.add(model);
});

In this example, we explicitly set the texture we want to use, as we didn't use
OBJMTLLoader.

9. As a final step, let's look at the result. We provided an example, 04.14-create-
custom-uv-mapping.html, that shows the result of these steps.

As you can see from the preceding screenshot, the front face for which we changed the UV
mapping shows only part of the texture, while the other sides show the complete texture.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

172

There's more…
We've only touched upon a very small part of how Blender can help in creating UV mappings.
A good starting point to learn more about UV mapping in Blender are the following two sites:

 f http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/UV_Map_
Basics

 f http://wiki.blender.org/index.php/Doc:2.6/Manual/Textures/
Mapping/UV

See also
 f For more information on how to integrate Three.js with Blender, you can have a

look at the Creating and exporting a model from Blender recipe, from Chapter 2,
Geometries and Meshes where we show how to install the Three.js plugin for
Blender and how you can load a model and its material directly in Three.js.

Configuring blend modes
When an object is rendered on top of another object in Three.js, you can configure how to
blend in the colors from the objects behind it. In this recipe, we show you the steps you need
to take to set a specific blend mode. You can compare this with the way the various blending
layers in Photoshop work.

Getting ready
Understanding the results of a specific blend mode is difficult. To help in understanding
the different available blend modes, we provide a simple web page that shows you the
blend modes and allows you to switch between them. You can see this example by
opening 04.13-configuring-blend-modes.html in your browser.

www.itbook.store/books/9781783981182

http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/UV_Map_Basics
http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/UV_Map_Basics
http://wiki.blender.org/index.php/Doc:2.6/Manual/Textures/Mapping/UV
http://wiki.blender.org/index.php/Doc:2.6/Manual/Textures/Mapping/UV
http://wiki.blender.org/index.php/Doc:2.6/Manual/Textures/Mapping/UV
https://itbook.store/books/9781783981182

Chapter 4

173

With the menu in the top-right section of the preceding screenshot, you can see what the
result of each blend mode is.

How to do it...
Setting a blend mode is easy:

1. First, create a geometry and a material:
var cubeGeometry = new THREE.BoxGeometry(10, 4, 10);
var cubeMaterial = new THREE.MeshPhongMaterial(
 {map: THREE.ImageUtils.loadTexture(
 "../assets/textures/debug.png")});

2. Next, set the blending property to the blend mode you want to use:
cubeMaterial.blending = THREE.SubtractiveBlending;

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Materials and Textures

174

3. Then, set the transparent property to true:

cubeMaterial.transparent = true;

You can find an overview of the available, standard blend modes by looking at the
Three.js sources:

THREE.NoBlending = 0;
THREE.NormalBlending = 1;
THREE.AdditiveBlending = 2;
THREE.SubtractiveBlending = 3;
THREE.MultiplyBlending = 4;

How it works...
As we've seen, Three.js uses WebGL to render the scenes. The blend modes you define
on the material for Three.js are used internally by WebGL to determine how to blend the
background color with the foreground color.

There's more…
Besides the blend modes we've shown in this recipe, it is also possible to define your
own custom blend modes. You can do this by setting the blending property to THREE.
CustomBlending. Use these three material properties to define how the foreground
is blended with the background: blendSrc, blendDst, and blendEquation.
For blendSrc, you can use the following values:

THREE.DstColorFactor = 208;
THREE.OneMinusDstColorFactor = 209;
THREE.SrcAlphaSaturateFactor = 210;

For blendDst, you can use these values:

THREE.ZeroFactor = 200;
THREE.OneFactor = 201;
THREE.SrcColorFactor = 202;
THREE.OneMinusSrcColorFactor = 203;
THREE.SrcAlphaFactor = 204;
THREE.OneMinusSrcAlphaFactor = 205;
THREE.DstAlphaFactor = 206;
THREE.OneMinusDstAlphaFactor = 207;

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

175

For the blendEquation, WebGL supports the following set:

THREE.AddEquation = 100;
THREE.SubtractEquation = 101;
THREE.ReverseSubtractEquation = 102;

A very good example that shows many of these settings can be found on the Three.js examples
site at http://threejs.org/examples/#webgl_materials_blending_custom.

Using a shadow map for fixed shadows
In Chapter 5, Lights and Custom Shaders we will show you a number of recipes that deal with
lights and shadows. It is, however, also possible to fake shadows using a texture. This kind of
texture is called a shadow map or a light map. In this recipe, we explain how you can use such
a texture in Three.js.

Getting ready
For this recipe, we first need a shadow map. There are different ways to create shadow maps,
but that is outside the scope of this recipe. If you're interested in creating your own shadow
maps, you can follow this tutorial from the Blender site: http://wiki.blender.org/
index.php/Doc:2.4/Tutorials/Game_Engine/YoFrankie/Baking_Shadow_Maps.

In the sources for this book, in the assets/textures folder, you can find a shadow-map.
png file that we'll use in this recipe.

www.itbook.store/books/9781783981182

http://threejs.org/examples/#webgl_materials_blending_custom
http://wiki.blender.org/index.php/Doc:2.4/Tutorials/Game_Engine/YoFrankie/Baking_Shadow_Maps
http://wiki.blender.org/index.php/Doc:2.4/Tutorials/Game_Engine/YoFrankie/Baking_Shadow_Maps
https://itbook.store/books/9781783981182

Materials and Textures

176

In the preceding figure, you can see what a shadow map looks like. As you can see, a shadow
map contains the shadows of a scene prerendered in the target geometry, in this case, a
plane. If we use this image as a shadow map, we can easily view the following scene:

In this scene, we use the shadow map to create shadows for the ground plane.

How to do it...
Using a shadow map is very easy. Before we look at the steps, make sure that you've got a
geometry and a material. In the following steps, we have THREE.Mesh with the name floor:

1. A UV mapping defines how a face maps to a specific part of a texture. The UV
mapping in a geometry is stored in the faceVertexUvs property of a geometry.
The first element of this array contains the UV mappings used for the other kinds
of textures, and the second element contains the UV mapping for the shadow
map. As this value isn't filled by default, we point it to the first element in the
faceVertexUvs array:
floor.geometry.faceVertexUvs[1] =
 floor.geometry.faceVertexUvs[0];

2. Next, you need to set the shadow map to the lightmap property of the material:
floor.material.lightMap = THREE.ImageUtils.loadTexture
 ("../assets/textures/shadow-map-soft.png");

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 4

177

3. Finally, you add the other textures you might want to use:

floor.material.map = THREE.ImageUtils.loadTexture
 ("../assets/textures/tiles.jpg");

That's all you need to do. This works great, especially when you've got scenes with static
meshes and fixed lights, and this is a great boost to performance.

See also
 f If you require dynamic shadows that update based on animated lighting or objects in

the scene, you need something else (or in addition to) than shadow maps. In Chapter
5, Lights and Custom Shaders in the Creating shadows with Three.SpotLight recipe,
we explain how to create dynamic shadows.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

5
Lights and Custom

Shaders

In this chapter, we'll cover the following recipes:

 f Creating shadows with THREE.SpotLight

 f Creating shadows with THREE.DirectionalLight

 f Softening lights by adding ambient lighting

 f Using THREE.HemisphereLight for natural lighting

 f Adding a moving all-directional light

 f Moving a light source along a path

 f Making a light source follow an object

 f Creating a custom vertex shader

 f Creating a custom fragment shader

Introduction
Three.js provides a large number of light sources out of the box. In this chapter, we'll show
you a number of recipes that work on lights and also show you how to get the most out of the
lighting options provided by Three.js. We'll also show you two advanced recipes that explain
how you can access the raw features of WebGL by creating your own custom vertex and
fragment shaders.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

180

Creating shadows with THREE.SpotLight
Three.js offers many different types of lights you can use in your scenes. A couple of these
lights also allow you to add shadows to the scene. When you use THREE.SpotLight or a
THREE.DirectionalLight object, you can let Three.js add shadows based on the position
of the lights. In this recipe, we'll show you how to do this with THREE.SpotLight.

Getting ready
For this recipe, you don't need any external dependencies. Three.js includes all the available
lights directly in the main Three.js JavaScript library. We've created a simple example that you
can use to see how shadows work in combination with THREE.SpotLight in Three.js. You
can view this example by opening 05.01-using-shadows-with-a-spotLight.html in
your browser. You will see something similar to the following screenshot:

In this scene, you can see that we've added two meshes to the scene, both of which cast
a shadow on the floor. From this example, you can also directly see the distinct light shape
provided by THREE.SpotLight.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

181

How to do it...
To create a shadow with THREE.SpotLight, we need to set a couple of properties,
which define the area where shadows are created:

1. Before we look at THREE.SpotLight, the first thing we need to do is tell the
renderer that we want to enable shadows. To do this, set the following property
on THREE.WebGLRenderer:
 renderer.shadowMapEnabled = true;

2. The next step is to inform Three.js which objects cast shadows and which objects
receive shadows. If you look back at the screenshot in the Getting ready section,
you can see that the monkey and the cube both cast a shadow and the floor receives
the shadow. To do this, you have to set the following properties on the THREE.Mesh
objects that should cast shadows:
..monkey.castShadow = true;
 cubeMesh.castShadow = true;

For objects that receive shadows, you have to set the following on the
THREE.Mesh object:
 floorMesh.receiveShadow = true;

3. At this point, we're ready to create THREE.SpotLight:
 var spotLight = new THREE.SpotLight();
 spotLight.angle = Math.PI/8; // in radians
 spotLight.exponent = 30;
 spotLight.position = new THREE.Vector3(40,60,-50);

These are the standard properties that define how THREE.SpotLight adds light
to a scene.

4. The next step is to set up the shadow-related properties:
 spotLight.castShadow = true;
 spotLight.shadowCameraNear = 50;
 spotLight.shadowCameraFar = 200;
 spotLight.shadowCameraFov = 35;

The first property, castShadow, tells Three.js that this light casts shadows.
As casting shadows is an expensive operation, we need to define the area
where shadows can appear. This is done with the shadowCameraNear,
shadowCameraFar, and shadowCameraFov properties.

5. Three.js uses something called a shadow map to render the shadows. If your shadow
looks a bit blocky around its edges, it means the shadow map is too small. To
increase the shadow map size, set the following properties:
 spotLight.shadowMapHeight = 2048;
 spotLight.shadowMapWidth = 2048;

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

182

Alternatively, you can also try to change the shadowMapType property of
THREE.WebGLRenderer. You can set this to THREE.BasicShadowMap,
THREE.PCFShadowMap, or THREE.PCSSoftShadowMap.

6. The last step is to add THREE.SpotLight to the scene:

 scene.add(spotLight);

Determining the correct properties for the various THREE.SpotLight properties can be
difficult. In the following section, we'll explain a bit more how the various properties affect
the area where shadows are rendered.

How it works...
When you want to use THREE.SpotLight as a light source that can cast shadows,
Three.js needs to know the area that will be affected by these shadows. You can compare
this with the arguments you use to configure THREE.PerspectiveCamera. So, what you
do with the shadowCameraNear, shadowCameraFar, and shadowCameraFov properties
is define where Three.js should render shadows. Determining the correct values for these
properties can be a bit difficult, but luckily, Three.js can visualize this area. If you set the
shadowCameraVisible property of THREE.SpotLight to true, Three.js will show you
the affected area, as shown in the following screenshot:

In this screenshot, the size of the area is visualized with orange and red lines. By enabling this
shadowCameraVisible property and experimenting with the other values, you can quickly
determine the correct values.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

183

See also
 f In Three.js, there are two light sources that can cast shadows:

THREE.SpotLight and THREE.DirectionalLight. In the Creating shadows
with a THREE.DirectionalLight recipe, we explain how to cast shadows using
THREE.DirectionalLight. A more performant but static way to create shadows
is explained in the Using a shadow map for fixed shadows recipe in Chapter 4,
Materials and Textures.

Creating shadows with THREE.
DirectionalLight

With THREE.DirectionalLight, you can simulate a light source from far away whose rays
run parallel to each other. A good example of this is light received from the sun. In this recipe,
we'll show you how to create THREE.DirectionalLight and use it to create shadows.

Getting ready
For this recipe, we've created an example that shows you what the shadows cast by a
THREE.DirectionalLight object look like. Open up the 05.02-using-shadows-with-
a-directionalLight.html example in your browser, and you'll see something like what is
shown in the following screenshot:

In this screenshot, a single THREE.DirectionalLight object provides the shadows
and lighting.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

184

How to do it...
Using THREE.DirectionLight as a shadow only takes a couple of steps:

1. The first thing we need to do to enable any kind of shadow is set
shadowMapEnabled on THREE.WebGLRenderer to true:
 renderer.shadowMapEnabled = true;

2. Next, we inform Three.js which of our objects should receive shadows and which
should cast shadows. So, for the objects that should cast a shadow, set the
castShadow property on THREE.Mesh to true:
 monkey.castShadow = true;
 cubeMesh.castShadow = true;

For the objects that should receive a shadow, the floor in this case, set the following
property on THREE.Mesh to true:

 floorMesh.receiveShadow = true;

3. Now, we can create THREE.DirectionalLight and configure this light source.
Add the following code to create THREE.DirectionalLight:
 var directionalLight = new THREE.DirectionalLight();
 directionalLight.position = new THREE.Vector3(70,40,-50);
 directionalLight.castShadow = true;

4. This will create and position THREE.DirectionalLight and together with the
castShadow property, this light source will be used by Three.js to render shadows.

5. The next step is to configure the area where shadows should be rendered:
 directionalLight.shadowCameraNear = 25;
 directionalLight.shadowCameraFar = 200;
 directionalLight.shadowCameraLeft = -50;
 directionalLight.shadowCameraRight = 50;
 directionalLight.shadowCameraTop = 50;
 directionalLight.shadowCameraBottom = -50;

With these properties, we create a box-like area where Three.js will render shadows.

6. Three.js uses two additional properties to determine the detail of the rendered
shadow: shadowMapWidth and shadowMapHeight. If your shadows look a bit
rough or blocky, you should increase the values like this:
 directionalLight.shadowMapWidth = 2048;
 directionalLight.shadowMapHeight = 2048;

7. After all these properties have been set, you can add the light source to the scene:
 scene.add(directionalLight);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

185

As you can see from these steps it is a little complicated to correctly configure
THREE.DirectionalLight. Determining the correct values can be difficult. In the next
section, we'll explain a bit more what these properties do and how you can determine their
optimal values for your scene.

How it works...
If you look back to the Using an orthographic camera recipe in Chapter 3, Working
with the Camera, you'll notice that the camera uses the same properties as THREE.
DirectionalLight. Both these objects define a bounding box that is rendered in
the case of THREE.OrthographicCamera and is used to determine where to render
shadows in the case of THREE.DirectionalLight. With shadowCameraNear,
shadowCameraFar, shadowCameraLeft, shadowCameraRight, shadowCameraTop,
and shadowCameraBottom, you define this area. You can set an additional property on
THREE.DirectionalLight to visualize the affected area. If you set directionalLight.
shadowCameraVisible to true, Three.js will draw the box defined by the
shadowCameraXXX properties. The following screenshot shows you the result of enabling the
shadowCameraVisible property:

Shadows will only be rendered in the area contained by the orange box.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

186

See also
 f In Three.js, there are two light sources that can cast shadows: THREE.SpotLight

and THREE.DirectionalLight. In the Creating shadows with THREE.SpotLight
recipe, we explain how to cast shadows using THREE.SpotLight. An alternative way
to create shadows is explained in the Using a shadow map for fixed shadows recipe
in Chapter 4, Materials and Textures.

Softening lights by adding ambient lighting
When you add lights to a scene, the result might look a bit harsh. You can see a strong
contrast between the areas that receive lights and those that don't. When you look at real-life
lighting, everything is a bit softer and almost every surface will receive some light, most often
reflected from other surfaces. In this recipe, we'll show you how you can soften the light usage
in your scene using THREE.AmbientLight.

Getting ready
There are no steps required to get ready for this recipe. To see the final result in action,
we provided an example, which you can see by opening the 05.03-soften-lights.html
example in your browser. You will find something similar to the following screenshot:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

187

With the menu in the top-right section, you can enable or disable THREE.AmbientLight to
see the effect THREE.AmbientLight object has.

How to do it...
THREE.AmbientLight is the simplest of lights to use. As it applies light to the complete
scene, there is no need to position the light source. All you have to do is create an instance
of THREE.AmbientLight and add it to the scene:

1. First, create the instance of THREE.AmbientLight:
 var ambientLight = new THREE.AmbientLight(0x332222);

This will create the light source. When you create the ambient light, you can specify
its color as a hex value. Don't specify it too high; if you do, your whole scene will be
very bright.

2. The only thing left to do is add this light to the scene:

 scene.add(ambientLight);

With these two very simple steps, you've created THREE.AmbientLight.

How it works...
THREE.AmbientLight works in a very simple way. When you create THREE.AmbientLight,
you pass in a color (in hex) into its constructor. When the scene is rendered, Three.js just blends
in the specified color to the color of any of your meshes.

See also
 f Even though THREE.AmbientLight can be used to soften the lighting in a scene,

it's hard to create natural-looking lighting. In the Using THREE.HemisphereLight for
natural lighting recipe, we show you how to use a different light source for natural
outside lighting.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

188

Using THREE.HemisphereLight for natural
lighting

If you look at the lighting outside, you'll see that the lights don't really come from a single
direction. Part of the sunlight is reflected by Earth, and other parts are scattered by the
atmosphere. The result is a very soft light coming from lots of directions. In Three.js,
we can create something similar using THREE.HemisphereLight.

Getting ready
Just like the other lights provided by Three.js, there is no need to include any additional
JavaScript file to work with THREE.HemisphereLight. All you need is a scene with some
objects, and you can add this light. To see the effect THREE.HemisphereLight object has,
we've provided a simple example. Open up 05.04-create-a-sun-like-light.html in
your browser. You will see something similar to the following screenshot:

With the controls in the top-right section, you can enable and disable THREE.
HemisphereLight and THREE.DirectionalLight, which are used in this scene.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

189

How to do it...
Creating THREE.HemisphereLight works in pretty much the same way as creating the
other lights:

1. You first need to instantiate a THREE.HemisphereLight instance:
 var hemiLight = new THREE.HemisphereLight(
 0xffffff, 0xffffff, 0.6);

The first parameter sets the color of the sky, and the second color sets the color
reflected from the floor. In both these cases, we just set a white light. With the last
property, you can control the intensity of THREE.HemisphereLight object. In this
case, we dampen the light by setting it to 0.6.

2. Next, we need to position the light:
 hemiLight.position.set(0, 500, 0);

When you position THREE.HemisphereLight, it's best to position it directly above
the scene for the best effect.

3. Finally, with the position set, the last step is to add the light to the scene:

 scene.add(hemiLight);

You could use THREE.HemisphereLight as the main light source of your scene, but most
often, this light source is used together with a different light source. For the best outdoor
effect, use it with THREE.DirectionalLight, which can cast shadows.

How it works...
THREE.HemisphereLight pretty much acts as two THREE.DirectionalLight objects:
one positioned at the specified position and another one in exactly the opposite position.
So, when a scene is rendered, THREE.HemisphereLight lights an object from the top
and from the opposite direction to create a natural-looking effect.

There's more…
You can, of course, also use two THREE.DirectionalLight objects instead of
THREE.HemisphereLight. With careful tuning, you can reach the exact same effect
as you would get with THREE.HemisphereLight. The added advantage is that you could
also make very faint shadows with this approach, as THREE.DirectionalLight supports
casting shadows whereas THREE.HemisphereLight does not.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

190

See also
 f In the Softening lights by adding ambient lighting recipe, we showed you a more

simple approach of supporting the main light sources in your scene. We showed you
how you can use THREE.AmbientLight as an extra light source to soften the lights
and the shadows.

Adding a moving all-directional light
In a lot of cases, you don't need a light source that casts shadows but just a light source that
illuminates your scene. In the Creating shadows with THREE.SpotLight and Creating shadows
with THREE.DirectionalLight recipes, we already showed you how you can use THREE.
SpotLight and THREE.DirectionalLight. In this recipe, we'll show you a third kind of
light, which is THREE.PointLight; this kind of light emits light to all directions and in this
recipe, we will show you how to create one and move it through the scene.

Getting ready
As the Three.js standard comes with the THREE.PointLight object, there is no need to
include any additional JavaScript. The same is the case with all the recipes where we've
included an example where you can see the result of this recipe in action. For this recipe,
open the 05.05-use-a-point-light.html example in your browser, and you'll see the
following result:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

191

In this example, there are four THREE.PointLight objects that move from the top to the
bottom in between three models of a shark. You can use your mouse to move around this
scene and see how THREE.PointLight illuminates the models.

How to do it...
Creating a moving THREE.PointLight object is very easy and only takes a couple of steps:

1. The first thing to do is create a THREE.PointLight instance:
 var pointLight = new THREE.PointLight();
 pointLight.color = new THREE.Color(0xff0000);
 pointLight.intensity = 3;
 pointLight.distance = 60;
 pointLight.name = 'pointLight';

With the color property, we set the color THREE.PointLight object emits, and the
intensity allows us to set how much light is emitted. Finally, the distance property is
used to calculate how much the intensity decreases the farther away the lit object is
from the light. In this case, the intensity will be 0 when the distance to the light is 60.

2. THREE.PointLight emits lights in all directions, so we need to set the position
property and then we can add the light to the scene:
 pointLight.position = new THREE.Vector3(-30,0,0);
 scene.add(pointLight);

3. The last thing we need to do for this recipe is move THREE.PointLight through the
scene. Like all animations, we do this in the render loop by adding the following to the
render function:

 var light = scene.getObjectByName('pointLight');
 light.position.y = 15 * Math.sin(count+=0.005);

In this small code snippet, we first get a reference to our THREE.PointLight object
and then update its position.y property. For this to work, we also need to define a
global count property at the top of our JavaScript like this:

 var count = 0;

With these simple steps, you've created THREE.PointLight, which moves up and down
through the scene.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

192

How it works...
THREE.PointLight emits light in all directions; you can compare this a bit with
THREE.SpotLight but with a 360 degree field of view in all directions. This is also the main
reason that THREE.PointLight can't be used to cast shadows. As there is so much light
being emitted by THREE.PointLight, it is very difficult and resource-intensive to calculate
the resulting shadows.

So, if you want shadows and also use THREE.PointLight, you could use a shadow map if
you have a static THREE.PointLight object or an extra THREE.SpotLight object and set
it to only cast shadows with the onlyShadow property.

See also
There are a couple of recipes that you can look at in relation to this recipe:

 f In the Creating shadows with a THREE.SpotLight recipe, we showed you how you
can use THREE.SpotLight to create shadows. You can use this together with
THREE.PointLight.

 f In the Creating shadows with a THREE.DirectionalLight recipe, we show you how to
set up and configure THREE.DirectionalLight. This light casts shadows and
can be used together with THREE.PointLight.

 f In Chapter 4, Materials and Textures, we showed you the Using a shadow map
for fixed shadows recipe. This recipe explained how to use shadow maps to fake
shadows. If you use that recipe together with this one, you can use it to fake the
shadows cast by THREE.PointLight.

Moving a light source along a path
In the Add an moving all-directional light recipe, we moved a light source up and down. While
these simple kinds of paths are often enough, there are cases where you want more control
over how your light source moves through a scene. In this recipe, we'll show you how you can
move a light source along a predefined path.

Getting ready
To create this recipe, we'll use a THREE.SplineCurve3D and THREE.SpotLight object.
As both of these objects are included with Three.js, we don't need to take any steps to get
ready. A good thing to do, however, is look at the provided example for this recipe, which
will show you what you'll get when you execute the steps from this recipe when you run the
05.06-move-a-light-through-the-scene.html example:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

193

In the screenshot, you can see a light that moves slowly along the purple line. In the next
section, we'll show you how you can create this yourself.

How to do it...
For this recipe, we first need to create the path that we'll follow:

1. For this path, we'll create THREE.SplineCurve3:
 var spline = new THREE.SplineCurve3([
 new THREE.Vector3(-100, 20, 100),
 new THREE.Vector3(-40, 20, 20),
 new THREE.Vector3(0, 20, -100),
 new THREE.Vector3(20, 20, -100),
 new THREE.Vector3(40, 20, 100),
 new THREE.Vector3(70, 20, 10),
 new THREE.Vector3(100, 20, 30),
 new THREE.Vector3(-100, 20, 100)]);

This will result in a curved path that moves through the points added in the
constructor of the THREE.SplineCurve3 object.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

194

2. Before we position our light on the path of this THREE.SplineCurve3 object,
let's create the light:
 var pointLight = new THREE.PointLight();
 pointLight.color = new THREE.Color(0xff0000);
 pointLight.intensity = 3;
 pointLight.distance = 60;
 pointlight.name = 'pointLight';

3. Now, we can use this SplineCurve3 object to determine the position of our light.
For this, we create a helper function called positionLight:
 var pos = 0;
 function positionLight() {
 light = scene.getObjectByName('pointLight');
 if (pos <= 1) {
 light.position = spline.getPointAt(pos);
 pos += 0.001
 } else {
 pos = 0;
 }
 }

In this function, we use spline.getPointAt(pos) to determine where on the
THREE.SplineCurve3 path we need to position our light. With pos at 0, we're
at the beginning of spline and with pos at 1, we're at the end. This way, we slowly
(in steps of 0.001) move the light along the spline.

4. All that is left to do is call the positionLight function from the render function:

 function render() {
 renderer.render(scene, camera);
 positionLight();
 orbit.update();
 requestAnimationFrame(render);
 }

As the render function is called approximately 60 times per second and we take 1000 steps
for our complete path, the light will move along the complete path in about 17 seconds.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

195

How it works...
When you instantiate a THREE.SplineCurve3 object, you pass in an array of
THREE.Vector3 objects. Three.js internally interpolates these points to create a fluid
curve that moves through all these points. Once the curve is created, you have two ways
to get positions. You can use the getPointAt function, as we did in this recipe, to get a
relative position based on the provided parameter, from 0 to 1, and the length of the curve.
Alternatively, you can also use the getPoints function, where you specify, as the parameter,
in how many points the line should be divided.

There's more…
In the Getting ready part of this recipe, we showed you an example where a light moved
through a scene. What you could see was that we also showed the path along which the
light moved. To do this for yourself, you can use the getPoints function from the created
THREE.SplineCurve3 object to create a THREE.Line object:

 var geometry = new THREE.Geometry();
 var splinePoints = spline.getPoints(50);
 var material = new THREE.LineBasicMaterial({
 color: 0xff00f0
 });
 geometry.vertices = splinePoints;
 var line = new THREE.Line(geometry, material);
 scene.add(line);

In this recipe, we moved a light along a specific path. However, as a light is also just an object
with a specific position, we can apply this same principle to all the other objects in the scene,
such as THREE.Mesh, THREE.PerspectiveCamera, or THREE.OrthographicCamera.

Making a light source follow an object
If you've got a moving object in the scene that you want to highlight with a spotlight, you need
to be able to change the direction a light is pointed at. In this recipe, we will show you how to
do just that. We will show you how you can keep THREE.SpotLight pointed at a moving
object in the scene.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

196

Getting ready
There are no steps that you need to take to run this recipe. You can see the final result of this
recipe by opening up the 05.07-make-a-light-follow-object.html example in your
browser. You will see something similar to the following screenshot:

In this example, you can see a sphere that moves from left to right and back again.
THREE.SpotLight in this scene follows the position of this sphere so that it is always
pointed directly at the center of that object.

How to do it...
Following an object in Three.js is very easy and only takes a couple of easy steps:

1. The fist thing we need to do is create the object that we want to follow. For this
recipe, this is THREE.SpotLight:
 var sphereGeometry = new THREE.SphereGeometry(1.5, 20,
 20);
 var matProps = {
 specular: 0xa9fcff,
 color: 0x00abb1,
 emissive: 0x006063,
 shininess: 10
 }

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

197

 var sphereMaterial = new
 THREE.MeshPhongMaterial(matProps);
 var sphereMesh = new THREE.Mesh(
 sphereGeometry, sphereMaterial);sphereMesh.name =
 'sphere'; scene.add(sphereMesh);

2. Next, we create and add THREE.SpotLight to the scene:
 spotLight = new THREE.SpotLight();
 spotLight.position.set(20, 80, 30);
 spotLight.castShadow = true;
 spotLight.angle = 0.15;
 spotLight.distance = 160;
 scene.add(spotLight);

Note that at this step, we don't point the created light to the sphere. We'll do this in
the next step in the render loop.

3. To keep the light pointed at the sphere, we need to set the target property to the
correct value. We do this in the render function of the scene:
 var step = 0;
 function render() {
 step += 0.02;
 renderer.render(scene, camera);
 var sphere = scene.getObjectByName('sphere');
 sphere.position.x = 0 + (10 * (Math.cos(step)));
 sphere.position.y = 0.75 * Math.PI / 2 +
 (6 * Math.abs(Math.sin(step)));
 spotLight.target = sphere;
 requestAnimationFrame(render);
 }

One thing to notice in the last step is that we set the target property of spotLight
to the THREE.Mesh object and not to the position property of THREE.Mesh.

There's more…
To point THREE.SpotLight at a certain position, we set its target property. As you've seen
in the recipe steps, we target THREE.Object3D, from which THREE.Mesh extends, instead
of a position. If we want to point THREE.SpotLight to an arbitrary position, we need to first
create an empty THREE.Object3D object:

 var target = new THREE.Object3D();
 target.position = new THREE.Vector3(20,10,-10);
 scene.add(target);
 spotLight.target = target;

This way, you can point THREE.SpotLight not just to an existing object in the scene but to
any position you want.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

198

See also
 f In this recipe, we pointed a light at a specific target, and we can also make a camera

follow an object around the scene, as we showed in the Making the camera follow
an object recipe from Chapter 3, working with the Camera and point one object to
another, as shown in the Pointing an object to another object recipe in Chapter 2,
Geometries and Meshes.

Creating a custom vertex shader
When you want to create advanced 3D effects with great performance, you can choose to write
your own shaders. Shaders are programs that directly affect what your results look like and
which colors are used to represent them. A shader always comes as a pair. A vertex shader
determines what a geometry will look like, and a fragment shader will determine the resulting
color. In this recipe, we'll show you how you can use your own custom vertex shader in Three.js.

Getting ready
WebGL and GLSL, which is the language in which you write shaders, are supported by most
modern browsers. So, for this recipe, there aren't any additional steps you need to take before
you can walk through this recipe. A good resource on GLSL is always the khronos website
(http://www.khronos.org); they have a great tutorial (http://www.khronos.org/
webgl/wiki/Tutorial) on WebGL that can help you better understand what we're doing in
this recipe. For this specific recipe, we've provided two examples. The first one is the one we'll
use in this recipe, and you can view this one by opening 05.09-custom-vertex-shader.
html in your browser.

www.itbook.store/books/9781783981182

http://www.khronos.org
http://www.khronos.org/webgl/wiki/Tutorial
http://www.khronos.org/webgl/wiki/Tutorial
https://itbook.store/books/9781783981182

Chapter 5

199

This example, as you can see in the previous screenshot, shows you THREE.BoxGeometry,
where the position of its individual vertices have been replaced using a vertex shader. A more
advanced example can be found in 05.09-custom-vertex-shader-2.html.

In this example, we once again change the position of individual vertices, but this time,
we use THREE.SphereGeometry as the source and combine it with a perlin noise generator.

How to do it...
To create a custom vertex shader, you need to follow these steps:

1. As we just want to write a vertex shader, we'll use a standard fragment shader,
which is the one also used by THREE.MeshBasicMaterial from Three.js. You can
get a reference to this shader by selecting the correct one from THREE.ShaderLib:
 var basicShader = THREE.ShaderLib['basic'];

2. The next step is to define the Uniforms object. Uniforms are parameters that are
passed into the shaders as arguments:
 Var uniforms = {}
 uniforms = THREE.UniformsUtils
 .merge([basicShader.uniforms]);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

200

 var texture = THREE.ImageUtils
 .loadTexture('../assets/textures/debug.png');
 uniforms['map'].value = texture;
 uniforms.delta = {type: 'f', value: 0.0};
 uniforms.scale = {type: 'f', value: 1.0};

In this code snippet, we first merge the standard uniforms that are by the fragment
shader we reuse, we set a texture, and the last two uniforms are the ones we access
in our own custom vertex shader, as we'll see later on.

3. Now, we can define THREE.ShaderMaterial and tell Three.js the shaders that we
want to use:
 var defines = {};
 defines["USE_MAP"] = "";
 var material = new THREE.ShaderMaterial({
 defines: defines,
 uniforms: uniforms,
 vertexShader: document
 getElementById('sinusVertexShader').text,
 fragmentShader: basicShader.fragmentShader
 });

In this code snippet, you can see that we reference the uniform value we saw
in step 2, as fragmentShader we use basicShader from step 1, and for the
vertexShader parameter, we reference our custom shader, which we'll define
in the next step. Note that we also provide a defines element; this is needed to
make sure Three.js shows our texture.

4. At this point, we can define our own custom vertex shader. We do this directly in the
HTML as follows:
 <script id="sinusVertexShader" type="x-shader/x-vertex">
 varying vec2 vUv;
 uniform float delta;
 uniform float scale;
 void main() {
 vUv = uv;
 vec3 p = position;
 p.z += sin(2.0 * p.y + delta) * 5.0;
 p.z += cos(2.0 * p.z + delta / 2.0) * 5.0;
 p.z += cos(2.0 * p.x + delta) * 5.0;
 p.x += sin(p.y + delta / 2.0) * 10.0;
 vec4 mvPosition =
 modelViewMatrix * vec4(scale * p, 1.0);
 gl_Position = projectionMatrix * mvPosition;
 }
 </script>

With this shader, we change the location of the vertices by changing the p.z and the
p.x part of its position.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

201

5. At this point, we can just create a geometry and use the material we created in
step 3:
 var cubeGeometry = new THREE.BoxGeometry(5, 5, 5);
 var cube = new THREE.Mesh(cubeGeometry, material);
 scene.add(cube);

6. If you look in the shader code in step 4, you can see that the position is influenced
by the delta uniform value. We use the render function to pass in a new value
for this uniform:

 function render() {
 renderer.render(scene, camera);
 uniforms.delta.value += 0.01;
 requestAnimationFrame(render);
 }

These are all the steps you need to take to create and use a custom vertex shader combined
with a simple fragment shader from Three.js.

How it works...
Let's look a bit closer at what is happening in the vertex shader used in this recipe. Before we
start, we'll give you a very short introduction to the types of qualifiers that you can use with the
variables in your shader code:

 f The uniform qualifier: This is a global variable that can be passed in from JavaScript
to the shaders. You can change this value in each rendering loop but can't change
the value in the shader itself.

 f The attribute qualifier: This is a value that can be specified for each individual
vertex. The attributes qualifier are passed on into the vertex shader.

 f The varying qualifier: This is used to pass data between the vertex shader and the
fragment shader. It can be written into the vertex shader but can only be read in the
fragment shader.

 f The const qualifier: This is a constant value and is defined directly in your shader
code. This value can't change during the execution of your shaders.

The first thing we do is define some parameters:

 varying vec2 vUv;
 uniform float delta;
 uniform float scale;

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

202

The vUv vector is a varying variable and is a value that is passed into the fragment shader
and is required for the basic shader to work in Three.js. The other two parameters are passed
in as uniforms from the JavaScript you saw in the previous section. Let's look at the main
function, which is the function that is exectured for each vertex:

 void main() {
 vUv = uv;
 vec3 p = position;
 p.z += sin(2.0 * p.y + delta) * 5.0;
 p.z += cos(2.0 * p.z + delta / 2.0) * 5.0;
 p.z += cos(2.0 * p.x + delta) * 5.0;
 p.x += sin(p.y + delta / 2.0) * 10.0;
 vec4 mvPosition =
 modelViewMatrix * vec4(scale * p, 1.0);
 gl_Position = projectionMatrix * mvPosition;
 }

The main thing that happens here is that we change the position of the vertex based on the
passed-in delta and some sin and cos functions. The result is that each vertex of our model
is displaced in some manner. Finally, we need to set the gl_Position variable with the new
position of our vertex.

There's more…
When you look for information on custom shaders, you'll most often see examples of fragment
shaders. In many use cases, a vertex shader doesn't need to change the positions of the
vertices. When it does, it is often for effects such as smoke or fire. There aren't that many
good vertex shaders examples out there. The following two sites, however, provide a good
starting point if you want to learn more about vertex shaders:

 f A good resource to learn more about vertex shaders is the shader tutorial from
lighthouse3d at http://www.lighthouse3d.com/tutorials/glsl-
tutorial/shader-examples/

 f There is also an online vertex shader editor available at kickjs.org, which you can
find at http://www.kickjs.org/example/shader_editor/shader_editor.
html

See also
 f As a vertex shader is always accompanied with a fragment shader, it is good to

also understand how they work. In the Creating a custom fragment shader recipe,
we explain the steps you need to take to set up a custom fragment shader.

www.itbook.store/books/9781783981182

http://www.lighthouse3d.com/tutorials/glsl-tutorial/shader-examples/
http://www.lighthouse3d.com/tutorials/glsl-tutorial/shader-examples/
http://www.kickjs.org/example/shader_editor/shader_editor.html
http://www.kickjs.org/example/shader_editor/shader_editor.html
https://itbook.store/books/9781783981182

Chapter 5

203

Creating a custom fragment shader
A WebGL shader always consists of two parts: the vertex shader that can be used to reposition
the individual vertices of the model and a fragment shader that can be used to add color
to the model. In this recipe, we'll show you the steps you need to take to use a custom
fragment shader.

Getting ready
Before we start with the fragment shader, there is one thing you need to know. Just like
with a vertex shader, you don't write the fragment shader code in JavaScript. These shaders
are written in the GLSL language. So, if you want to learn more about the functions and
notations used in this example, look at the WebGL specification, which can be found at
https://www.khronos.org/registry/webgl/specs/1.0/. If you want to experiment
with the provided shader code, you can just open up 05.10-custom-fragment-shader.
html in your browser.

This shader colors an object based on the normal vector and on the distance from the
camera. In the following sections, we will explain how you can do this.

www.itbook.store/books/9781783981182

https://www.khronos.org/registry/webgl/specs/1.0/
https://itbook.store/books/9781783981182

Lights and Custom Shaders

204

How to do it...
Let's start with the JavaScript part of this recipe:

1. A shader always consists of a vertex shader and a fragment shader. In this recipe,
we'll use the standard vertex shader provided by Three.js and provide our own custom
fragment shader. Three.js keeps all its shaders in THREE.ShaderLib:
 var basicShader = THREE.ShaderLib['normal'];

In step 3, we'll reference this basicShader object to get the standard vertex shader.

2. For our custom shader, we have some configuration options. These options are
passed into a shader using uniforms:
 var uniforms = {};
 uniforms.delta = {type: 'f', value: 0.0};
 uniforms.mNear = { type: "f", value: 1.0 };
 uniforms.mFar = { type: "f", value: 60.0 };

This means that in our shader code, we can access the delta, mNear, and mFar
values, all of which are floating point values, and we can use them to calculate the
colors we want to render.

3. Next, we can create the shader material:
 var material = new THREE.ShaderMaterial({
 uniforms: uniforms,
 vertexShader: basicShader.vertexShader,
 fragmentShader: document
 getElementById('simple-fragment').text,
 });

In the configuration of THREE.ShaderMaterial, we reference our uniform
variable, the standard vertex shader, basicShader.vertexShader provided by
Three.js, and our own custom fragment shader. We'll show you the definition of our
custom shader in step 5.

4. The last thing we need to do is create THREE.BoxGeometry and add it to the scene
using the material created in the previous step:
 var boxGeometry = new THREE.BoxGeometry(5, 15, 5);
 var box = new THREE.Mesh(boxGeometry, material);
 scene.add(box);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

205

5. In step 3, we referenced a DOM element with the simple-fragment name. In your
HTML page, you should define it like this:
 <script id="simple-fragment" type="x-shader/x-fragment">
 varying vec3 vNormal;
 uniform float delta;
 uniform float mNear;
 uniform float mFar;
 const float PI = 3.14159265358979323846264;
 void main()
 {
 float depth = gl_FragCoord.z / gl_FragCoord.w;
 float depthColor = smoothstep(mNear, mFar
 , depth);
 gl_FragColor = vec4(abs(sin(delta + 0.7*PI) +
 cos(normalize(vNormal).x)/2.0) - depthColor
 ,abs(sin(delta + 1.0*PI) +
 cos(normalize(vNormal).y)/2.0) - depthColor
 ,abs(sin(delta + 1.2*PI) +
 cos(normalize(vNormal).z)/2.0) – depthColor, 1.0);
 }
 </script>

If you want to know more about how this fragment shader works, look at the
explanation in the How it works... section of this recipe.

6. If you've looked at the example from the Getting ready section, you can see that
the colors change constantly. This happens because we update the delta property,
which is passed into our custom shader, in the render loop of this page:

 function render() {
 renderer.render(scene, camera);
 uniforms.delta.value += 0.005;
 requestAnimationFrame(render);
 }

How it works...
To understand how this shader works, let's look through the code step by step. Let's start by
looking at the variables used in this shader:

 varying vec3 vNormal;
 uniform float delta;
 uniform float mNear;
 uniform float mFar;
 float PI = 3.14159265358979323846264;

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Lights and Custom Shaders

206

The vNormal object is a variable that is passed in from the standard Three.js vertex shader
and contains the value of the normal vector applicable to this fragment. The three uniform
values are passed in from the JavaScript, as we've seen in the previous section. The PI
variable is a constant that doesn't change over time. Each fragment shader should set the
gl_fragColor vector, which determines the color and opacity of each fragment. For this
shader, we set the vector as follows:

 void main()
 {
 float depth = gl_FragCoord.z / gl_FragCoord.w;
 float depthColor = smoothstep(mNear, mFar, depth);
 gl_FragColor = vec4(
 abs(sin(delta + 0.7*PI)
 + cos(normalize(vNormal).x)/2.0) – depthColor
 ,abs(sin(delta + 1.0*PI)
 + cos(normalize(vNormal).y)/2.0) – depthColor,
 abs(sin(delta + 1.2*PI)
 + cos(normalize(vNormal).z)/2.0) – depthColor,
 1.0);
 }

Without going into too many GLSL details, roughly the following steps are taken:

1. First, we determine the depth of this fragment. You can see this as the distance of
this fragment from the camera.

2. As depth is an absolute value, we convert it to a scale of 0 to 1 using the
smoothstep function. As this function also takes the mNear and mFar uniforms as
its parameters, we can control how much the depth affects the color of a fragment
from JavaScript.

3. Finally, we define the color of the fragment by setting gl_FragColor. The
gl_FragColor variable is of type vec4, where the first three values determine the
RGB value of the color and the last one defines the opacity. This is all on a scale of 0
to 1. For each part of the color, we use a function that includes the vNormal vector
and calculated depthColor variable to generate a color.

This is just the tip of the iceberg of what you can do with custom fragment shaders. In the
upcoming section, you can find some resources to learn more about this.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 5

207

There's more…
Creating custom fragment shaders is rather difficult. It'll take a lot of experimenting, a good
grasp of math, and a lot of patience. There are, however, a number of resources available
that can help you understand fragment shaders and learn from the work of others:

 f Lots of fragment shaders can be found at http://glslsandbox.com/

 f On the Shadertoy site, you can experiment fragment shaders using different kinds
of input: https://www.shadertoy.com/

 f A simple online shader editor can be found at http://shdr.bkcore.com/

Another great help can be the latest version of Firefox Dev Tools. This is a special version
of Firefox, which provides great debugging support and even includes a shader editor that
you can use to edit a shader program and directly see the results. You can download this
version from https://www.mozilla.org/en-US/firefox/developer/.

There is, of course, the khronos website (http://www.khronos.org), which is a great
resource to find out what a specific function actually does.

See also
 f As a fragment shader is always accompanied with a vertex shader, it is good to

also understand how they work. In the Creating a custom vertex shader recipe,
we explained the steps you need to take to set up a custom vertex shader.

www.itbook.store/books/9781783981182

http://glslsandbox.com/
https://www.shadertoy.com/
http://shdr.bkcore.com/
https://www.mozilla.org/en-US/firefox/developer/
http://www.khronos.org
https://itbook.store/books/9781783981182

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

6
Point Clouds and

Postprocessing

In this chapter, we'll cover the following recipes:

 f Creating a point cloud based on a geometry

 f Creating a point cloud from scratch

 f Coloring individual points in a point cloud

 f Styling individual points

 f Moving individual points of a point cloud

 f Exploding a point cloud

 f Setting up the basic postprocessing pipeline

 f Creating custom postprocessing steps

 f Saving WebGL output to disk

Introduction
Three.js has support for many different types of geometries and objects. In this chapter, we'll
show you a number of recipes that use the THREE.PointCloud object. With this object, you
can create a point cloud where the individual vertices are rendered instead of the complete
mesh. You have all kinds of different styling options available for the points, and you can even
move the individual points around to create very interesting-looking (and realistic) animations
and simulations.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

210

Creating a point cloud based on a geometry
An interesting feature of Three.js is that it also allows you to create point clouds. A point
cloud isn't rendered as a solid geometry, but all the individual vertices are rendered as single
points. In this recipe, we'll show you how to create such a point cloud based on an already
existing geometry.

Getting ready
There are no additional steps required to start with this recipe. For the example we use in
this recipe, however, we use an external model as the basis for our point cloud. We also use
a camera control object, THREE.OrbitControls, to make navigation around the example
easier. If you want to use the camera control object yourself, you need to add the following
JavaScript libraries to the scene (besides the standard Three.js one):

 <script src="../libs/OrbitControls.js"></script>
 <script src="../libs/OBJLoader.js"></script>

The external model we use is also provided with the sources in this book and can be found
in the assets/models/cow folder. To see what the result of this recipe can look like, we
provided an example that shows you a point cloud that was created based on an existing
geometry (06.01-create-point-cloud-from-geometry.html).You will see something
similar to the following screenshot:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

211

As you can see in this screenshot, we've loaded a cow geometry and created a point cloud
based on it. You can, of course, use any geometry you want, but especially complex models
look really great when rendered as a point cloud.

How to do it...
Creating a point cloud isn't that different from creating a simple THREE.Mesh object.
The following section explains the steps you should take:

1. The first thing you need in this approach is THREE.Geometry. You can use either
one of the standard geometries or load an external one. For this recipe, we'll load
an external one (the cow we mentioned in the Getting ready section of this recipe):
 var loader = new THREE.OBJLoader();
 loader.load(
 "../assets/models/cow/cow.obj",
 function(cow) {
 // get the main cow geometry from the
 // loaded object hierarchy
 var cowGeometry = cow.children[1].geometry;
 }
);

In this code snippet, we load the external model, so we have geometry on which we
can base the point cloud.

2. Before we create the point cloud, we first have to tell Three.js what we want the point
cloud to look like. For this, we create THREE.PointCloudMaterial:
 var pcMat = new THREE.PointCloudMaterial();
 pcMat.map = THREE.ImageUtils.loadTexture
 ("../assets/textures/ps_smoke.png");
 pcMat.color = new THREE.Color(0x5555ff);
 pcMat.transparent = true;
 pcMat.size = 0.2;
 pcMat.blending = THREE.AdditiveBlending;

This material defines what each point will look like. Most of the properties are pretty
self-explanatory. The interesting one here is the blending property. By setting the
blending property to THREE.AdditiveBlending, you get the nice glow effect you
can see in the screenshot at the beginning of this recipe.

3. At this point, we have THREE.Geometry and THREE.PointCloudMaterial; with
these two objects, we can create the point cloud:
 pc = new THREE.PointCloud(geometry, pcMat);
 pc.sizeAttenuation = true;
 pc.sortPoints = true;

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

212

As you can see, we pass in THREE.Geometry and THREE.PointCloudMaterial
to create THREE.PointCloud. On the created point cloud, we set two additional
properties to true. The sizeAttenuation property makes sure that the size of a
point also depends on the distance from the camera. So, points farther away look
smaller. The sortPoints property makes sure that when you use transparent
points, as we do in this recipe, they are rendered correctly.

4. The last step to perform is to add the created THREE.PointCloud object to
the scene:
 scene.add(pc);

Now, Three.js will render the point cloud just like it does any other 3D object.

How it works...
When you create THREE.PointCloud, Three.js creates a point for each vertex of the provided
THREE.Geometry object. No other information in THREE.Geometry is used. Internally, for
THREE.WebGLRenderer, it directly uses GL_POINTS, which is a WebGL primitive, to render
the individual points (refer to https://www.khronos.org/opengles/sdk/docs/man/
xhtml/glDrawElements.xml for more information). Then, using a custom fragment shader,
it styles these points. The result is that when you use THREE.WebGLRenderer, you can easily
render millions of points while maintaining great performance.

There's more...
Points are a great way to represent all kinds of different effects. For some interesting
applications of points, you can look at the following examples:

 f One million points rendered on WebGL: http://soulwire.github.io/WebGL-
GPU-Particles/

 f Morphing from one geometry to another using a point cloud: http://oos.
moxiecode.com/js_webgl/particles_morph/index.html

See also
In this chapter, we have a number of recipes that deal with points that are closely related to
this one:

 f In the Creating a point cloud from scratch recipe, we create a point cloud from a
custom-created geometry

 f In the Styling individual points recipe, we show you how you can style the individual
points of a point cloud

 f In the Moving individual points of a point cloud and Exploding a point cloud recipes,
we show you how you can move the points around

www.itbook.store/books/9781783981182

https://www.khronos.org/opengles/sdk/docs/man/xhtml/glDrawElements.xml
https://www.khronos.org/opengles/sdk/docs/man/xhtml/glDrawElements.xml
http://oos.moxiecode.com/js_webgl/particles_morph/index.html
http://oos.moxiecode.com/js_webgl/particles_morph/index.html
https://itbook.store/books/9781783981182

Chapter 6

213

Creating a point cloud from scratch
When you want to create a point cloud, you can pass in an existing geometry and base the
point cloud on it. In this recipe, we'll show you how you can create THREE.Geometry from
scratch and create a point cloud from it.

Getting ready
For this recipe, we don't require any additional JavaScript libraries and we don't need to load
external models, as we create our geometry from scratch. You can look at the geometry we
created by opening 06.02-create-point-system-from-scratch.html in your browser.
You will see something similar to the following screenshot:

In the next section, we'll explain how to create this custom geometry and use it together with
THREE.PointCloud.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

214

How to do it...
The steps are pretty much the same as shown in the Creating a point cloud based on a
geometry recipe, except that first, we need to create our own custom geometry:

1. Creating a custom geometry is fairly easy:
 var x = 100;
 var y = 100;
 var geometry = new THREE.Geometry();
 for (var i = 0 ; i < x ; i++) {
 for (var j = 0 ; j < y ; j++) {
 var v = new THREE.Vector3();
 v.x = i / 10;
 v.y = Math.sin(i/100 * Math.PI*2)
 + Math.cos(j/100 * Math.PI) * 2;
 v.z = j / 10;
 geometry.vertices.push(v);
 }
 }

As you can see from this code snippet, you first need to instantiate THREE.
Geometry and then create THREE.Vector3 instances and push them to the
vertices property of geometry.

2. Now that we've got a geometry, we just need THREE.PointCloudMaterial:
 var pcMat = new THREE.PointCloudMaterial(geometry);
 pcMat.map = THREE.ImageUtils.loadTexture
 ("../assets/textures/ps_smoke.png");
 pcMat.color = new THREE.Color(0x55ff55);
 pcMat.transparent = true;
 pcMat.size = 0.2;
 pcMat.blending = THREE.AdditiveBlending;

3. Use this material together with the geometry to create THREE.PointCloud and
add it to the scene:

 pc = new THREE.PointCloud(geometry, pcMat);
 pc.sizeAttenuation = true;
 pc.sortPoints = true;
 scene.add(pc);

If you've already looked at the Creating a point cloud based on a geometry recipe, you'll notice
that most of the steps are the same. The only difference between these two recipes is how
you create the geometry.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

215

How it works...
For an explanation on how this works, look at the How it works… section from the Creating a
point cloud based on a geometry recipe.

There's more…
In Chapter 2, Geometries and Meshes, we showed how you could render 3D formulas
with Three.js. With the setup from this recipe, you can also create 3D formulas that are
visualized as point clouds. For instance, the following screenshot shows you a 3D formula
from Chapter 2, Geometries and Meshes, rendered as a point cloud:

As you can see, you can very easily create great-looking point clouds this way.

See also
There are a couple of recipes in this chapter that are related to this recipe:

 f In the Creating a point cloud based on a geometry recipe, we use an existing
geometry to create a point cloud

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

216

 f In the Styling individual points recipe, we show you how you can style the individual
points of a point cloud

 f In the Moving individual points of a point cloud and Exploding a point cloud recipes,
we show you how you can move the points around

Coloring the individual points in a point
cloud

When you create a point cloud, every point has the same color and style, as every point uses
the same THREE.PointCloudMaterial object. There is, however, a way to add color to the
individual points.

Getting ready
There is no need for any additional steps to run this recipe. We'll create a custom geometry,
just like we did in the Creating a point cloud from scratch recipe, and this time, we color
each individual point. The result of this recipe can be seen by opening 06.03-color-
individual-points-in-point-system.html in your browser. You will see something
similar to the following screenshot:

As you can see, we've colored the individual points in various shades of red.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

217

How to do it...
To accomplish individual colored points, we need to set one additional property when we
create THREE.Geometry. The following steps show you how to do this:

1. We start by creating the geometry. When we create the individual vertices, we can
also inform Three.js about the color that we want to use for it:
 var x = 100;
 var y = 100;
 var geometry = new THREE.Geometry();
 for (var i = 0 ; i < x ; i++) {
 for (var j = 0 ; j < y ; j++) {
 var v = new THREE.Vector3(i,0,j);
 var rnd = Math.random()/2 + 0.5;
 geometry.colors.push(
 new THREE.Color(rnd, rnd/4, 0));
 geometry.vertices.push(v);
 }
 }

In this code snippet, we create a random color and push it to the geometry.colors
array. At the end of these two loops, we will have 10000 vertices in the vertices
array and 10000 colors in the colors array.

2. Now, we can create THREE.PointCloudMaterial and use it together with the
geometry to create THREE.PointCloud:
 var pcMat = new THREE.PointCloudMaterial(geometry);
 pcMat.vertexColors = true;
 pcMat.map = THREE.ImageUtils
 .loadTexture("../assets/textures/ps_smoke.png");
 pcMat.transparent = true;
 pc = new THREE.PointCloud(geometry, pcMat);
 scene.add(pc);

To use the colors we created in step 1, we need to set the vertexColors property
of THREE.PointCloudMaterial to true. In this code snippet, we also load
a texture and assign it to the map property. We use individual colors, so there is
no need to set the color property on the material we need to set color on
THREE.Geometry, which we show in the next step.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

218

3. If you've already looked at the example shown in the Getting ready section of this
recipe, you'll notice that the colors of the points change. We can easily do this by
just changing the color in the colors array of the geometry in the render loop:

 for (var i = 0 ; i < pc.geometry.colors.length ; i++) {
 var rnd = Math.random()/2 + 0.5;
 pc.geometry.colors[i] = new THREE.Color(rnd, rnd/4, 0);
 }
 pc.geometry.colorsNeedUpdate = true;

When you change the colors, you need to set the colorsNeedUpdate property to
true so that Three.js knows that the colors of the points need to be updated.

How it works...
Three.js uses WebGL to render individual points. For this, Three.js uses vertex shaders and
fragment shaders (see the previous chapter for more recipes on this). To color the individual
points, Three.js passes the information into the fragment shader used to determine the output
color. The corresponding piece of shader code looks like this:

 gl_FragColor = vec4(psColor, opacity);

The psColor variable is the one that is passed from the colors array of THREE.Geometry to
the shader used to color the points.

See also
 f Coloring an individual point in Three.js is very simple and straightforward. However,

if you want to change more properties of the points, such as the opacity or the size,
you can't do that with standard Three.js. In the Styling individual points recipe, we'll
show you how you can create a custom shader to also change these properties of the
points within a point cloud.

 f If you're interested in adding animation to the points in the point cloud, you can look
at the Moving individual points of a point cloud and Exploding a point cloud recipes.

Styling individual points
With the standard Three.js functionality, you can't style the individual points of a point cloud.
You can change their color, as we've shown in the Coloring the individual points in a point
cloud recipe, but it isn't possible to change a point's size or opacity. In this recipe, we'll show
you how to create a custom vertex and fragment shader, which allow you to change the color,
opacity, and size of the individual points of a point cloud and that you can also easily extend
to add more properties.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

219

Getting ready
There are no external libraries used in this recipe. We'll just extend the basic Three.js
functionality by creating our own custom shaders. To see the shaders in action, open the
06.04-style-individual-points-in-point-system-with-custom-shader.html
example in your browser. You will see something similar to the following recipe:

As you can see in this screenshot, the size, color, and opacity of the individual points differ.

How to do it…
Let's look at the steps that you need to take to accomplish this:

1. Let's start simple and first create the geometry from which we'll create the
point cloud:
 var geometry = new THREE.Geometry();
 var pSize = [];
 var pOpacity = [];
 var width= 100;
 var height = 100;

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

220

 // create the geometry and set custom values
 for (var i = 0 ; i < width ; i++) {
 for (var j = 0 ; height < y ; j++) {
 var v = new THREE.Vector3();
 v.x = i / 10;
 v.y = (Math.sin(i/200 * Math.PI*2)
 + Math.cos(j/50 * Math.PI)
 + Math.sin((j+i)/40 * Math.PI))/2;
 v.z = j / 10;
 // add the vertex
 geometry.vertices.push(v);
 // add vertex specific color, size and opacity
 geometry.colors.push(new
 THREE.Color(v.y,0.5,0.7));
 pSize.push(Math.random());
 pOpacity.push(Math.random()/4+0.5);
 }
 }

As you can see, we create THREE.Geometry from scratch and generate 10,000
vertices. As we want to change the color, size, and opacity of the individual vertices,
we also generate values for these properties for each of the 10,000 vertices.
The colors are stored in the geometry.colors array as this is the standard
Three.js functionality. We store the size in the pSize array and the opacity in the
pOpacity array.

2. Now that we've got a geometry and a couple of arrays containing the expected size
and opacity for the individual vertices, let's define the material for the point cloud:
 var attributes = ...; // filled in in next steps
 var uniforms = ...; // filled in in next steps
 var psMat2 = new THREE.ShaderMaterial({
 attributes: attributes,
 uniforms: uniforms,
 transparent : true,
 blending : THREE.AdditiveBlending,
 vertexShader: document
 getElementById('pointVertexShader').text,
 fragmentShader: document
 getElementById('pointFragmentShader').text
 });

Instead of using the standard THREE.PointCloudMaterial object, we use
THREE.ShaderMaterial. The transparent and blending are properties
standard material properties and behave as you'd expect. We'll explain the other
properties in the upcoming steps.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

221

3. In step 2, the material referenced the attributes variable. In this step, we'll configure
this variable:
 var attributes = {
 pSize: { type: 'f', value: pSize },
 pOpacity: { type: 'f', value: pOpacity }
 };

Our attributes object contains two properties. The first one points to the array
that contains the sizes of the vertices and the second one points to the array that
contains the opacity values. The f value for type means that it is an array of floats.
As we reference this attribute from our shader material, we can access the individual
values in our shaders.

4. In step 2, we also defined some uniforms. The uniforms object are also passed into
the shader but are the same for all vertices:
 var basicShader = THREE.ShaderLib['point_basic'];
 var uniforms = THREE.UniformsUtils
 .merge([basicShader.uniforms]);
 uniforms['map'].value = THREE.ImageUtils.loadTexture(
 "../assets/textures/ps_smoke.png");
 uniforms['size'].value = 100;
 uniforms['opacity'].value = 0.5;
 uniforms['psColor'].value = new THREE.Color(0xffffff);

Here, we reuse the standard uniforms Three.js uses in its shaders and use it to
further configure the shaders.

5. Looking back at step 2, the only two properties we need to define are the actual
shaders: document.getElementById('pointVertexShader').text and
document.getElementById('pointFragmentShader').text. Let's start
with the vertex shader:
 <script id="pointVertexShader"
 type="x-shader/x-vertex">
 precision highp float;
 precision highp int;
 attribute vec3 color;
 attribute float pSize;
 attribute float pOpacity;
 uniform float size;
 uniform float scale;
 varying vec3 vColor;
 varying float vOpacity;
 void main() {
 vColor = color;

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

222

 vOpacity = pOpacity;
 vec4 mvPosition = modelViewMatrix
 * vec4(position, 1.0);
 gl_PointSize = 2.0 * pSize * size
 * (scale / length(mvPosition.xyz));
 gl_Position = projectionMatrix * mvPosition;
 }
 </script>

A vertex shader is used to determine the position and the size of a vertex. In this
shader, we set the size of the vertex and the point and use the pSize attribute in the
calculation. This way, we can control the size of the individual pixel. We also copy the
value of color and pOpacity to a varying value so that we can access it from our
fragment shader in the next step.

6. So far, the size of the point could be configured directly from Three.js. Now, let's look
at the fragment shader and do the same for the color and opacity:
 <script id="pointFragmentShader"
 type="x-shader/x-fragment">
 precision highp float;
 precision highp int;
 uniform vec3 psColor;
 uniform float opacity;
 varying vec3 vColor;
 varying float vOpacity;
 uniform sampler2D map;
 void main() {
 gl_FragColor = vec4(psColor, vOpacity);
 gl_FragColor = gl_FragColor * texture2D(map,
 vec2(gl_PointCoord.x, 1.0 - gl_PointCoord.y));
 gl_FragColor = gl_FragColor * vec4(vColor, 1.0);
 }
 </script>

The fragment shader is only a small program. What we do here is the following:

1. We first set the color of the fragment (the point) to the color defined
on the material (psColor), and the opacity is set to the point-specific
opacity (vOpacity).

2. Next, we apply the provided texture (map).

3. Finally, we multiply the color value(gl_Fragcolor) with the point specific
color(vcolor).

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

223

7. At this point, we've configured the material and created the specific shaders.
Now, we can just create the point cloud and add it to the scene:

 ps = new THREE.PointCloud(geometry, psMat2);
 ps.sortPoints = true;
 scene.add(ps);

With this last step, you're done.

As you can see, as this isn't a standard Three.js functionality, we need to take some additional
steps to accomplish our goals.

How it works...
In the previous section, we've already explained a bit how the styling of individual points
works. The main thing to remember here is that under the hood, Three.js creates vertex and
fragment shaders for rendering. If there is a functionality you want that can't be configured
in the standard shaders, you can use THREE.ShaderMaterial to create your own custom
implementations. You can still use Three.js to create your geometries and handle all the
WebGL initialization stuff but use your own shader implementations.

There's more…
With this setup, you've got a basic skeleton to create your own custom shader based on point
clouds. You can now easily add more functionalities, other configuration options, and more by
just adding to this setup.

See also
 f If you just want to color an individual point, you can refer to the Coloring the individual

points in a point cloud recipe, and if you're interested in adding animation to the
points in the point cloud, you can refer to the Moving individual points of a point
cloud and Exploding a point cloud recipes.

 f There are also a couple of other recipes that use vertex and fragment shaders. In this
chapter, you can find the Creating custom postprocessing steps recipe, which uses a
shader as a postprocessing effect. In Chapter 5, Light and Custom Shaders, we have
the Creating a custom vertex shader recipe, which uses a custom vertex shader to
alter the shape of a geometry, and the Creating a custom fragment shader recipe,
which colors 3D objects using a custom fragment shader implementation.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

224

Moving individual points of a point cloud
When you create a point cloud from a geometry, the position of the points is based on the
vertices from the provided geometry. The result is a point cloud where the individual points
don't move. In this recipe, we show you how you can move the individual points of a point cloud.

Getting ready
For this recipe, we require a point cloud that contains some points. You can create your
own one (as we explained in the Creating a point cloud from scratch and Creating a point
cloud from an existing geometry recipes). We will use the point cloud we created in the
Styling individual points recipe. As always, we've provided an example where you can see
the final result of this recipe. Open 06.05-move-individual-points.html in your
browser, and you'll see the following screenshot:

If you open this in your browser, you'll see all the points being moved around the screen.
In the following section, we'll explain how you can do that.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

225

How to do it...
To create moving points, we need to perform the following steps:

1. Make sure you've got a point cloud with a geometry. Look at the Creating a point
cloud from scratch and Creating a point cloud based on a geometry recipes to learn
how to create such a point cloud. In this recipe, we assume the point cloud can be
referenced through the ps variable.

2. The next step is to update the position of the individual points of the point cloud.
We do that by updating the render loop:
 var step = 0;
 function render() {
 renderer.render(scene, camera);
 requestAnimationFrame(render);
 step=0.005;
 var count = 0;
 var geometry = ps.geometry;
 geometry.vertices.forEach(function(v){
 // calculate new value for the y value
 v.y = (Math.sin((v.x/20+step) * Math.PI*2)
 + Math.cos((v.z/5+step*2) * Math.PI)
 + Math.sin((v.x + v.y + step*2)/4
 * Math.PI))/2;
 // and calculate new colors
 geometry.colors[count++]=
 new THREE.Color(v.y,0.5,0.7);
 });
 geometry.verticesNeedUpdate = true;
 geometry.colorsNeedUpdate = true;
 }

In the render loop, we access geometry through the ps variable. Next, we change
the y position (v.y) of each point based on the value of the step variable. By
increasing the step value in each render loop, we create the animation you can see
when you look at the example for this recipe. Finally, we need to tell Three.js that
the positions of the vertices in the geometry have changed by setting geometry.
verticesNeedUpdate to true.

In this recipe, we also change the colors of each point, so to inform Three.js about these
changes, we also set geometry.colorsNeedUpdate to true.

How it works...
This recipe works in a very simple way. A point cloud is created based on the position of the
vertices of THREE.Geometry by simply changing the position of the vertices around which
we can move the points.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

226

See also
 f In this recipe, we changed the position of the vertices in a very simple way. We just

changed the y value of the vertex. In the Exploding a point cloud recipe, we show you
an approach where the position of a vertex is changed based on its normal vector.

Exploding a point cloud
You can create many interesting effects with point clouds. You can, for instance, create
water, smoke, and cloud effects. In this recipe, we show you another interesting effect you
can create with points. We'll show you how you can explode a point cloud where each point's
path is based on its normal vector.

Getting ready
For this recipe, there aren't any steps that need to be taken before we start looking at the
recipe. We've provided an example where you can see the resulting explosion in action.
Open the 06.06-explode-geometry.html example in your browser and you'll see a
screen that looks like the following screenshot:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

227

If you click on the implode button, the points will move to the middle of the screen; if you click
on explode, they'll move outwards. With the speed property, you can set the speed at which
the points will move.

How to do it…
To accomplish this effect, you only need to perform a couple of small steps:

1. The first thing we need to do is create the geometry. For the best effect, we use a
geometry with lots of vertices:
 cube = new THREE.CubeGeometry(4,6,4,20,20,20);
 cube.vertices.forEach(function(v) {
 v.velocity = Math.random();
 });
 createPointSystemFromGeometry(cube);

As you can see, we don't just create the geometry; we also add a velocity
parameter to each of the vertices, which we set to a random value. We do this
to make sure not all the points explode at the same speed (which would have the
same effect as just scaling the geometry).

2. Now, we can create the point cloud:
 var psMat = new THREE.PointCloudMaterial();
 psMat.map = THREE.ImageUtils.loadTexture(
 "../assets/textures/ps_ball.png");
 psMat.blending = THREE.AdditiveBlending;
 psMat.transparent = true;
 psMat.opacity = 0.6;
 var ps = new THREE.PointCloud(cube, psMat);
 ps.sortPoints = true;
 scene.add(ps);

This is just a standard point cloud based on the geometry we created in step 1.

3. In the introduction to the recipe, we mentioned that we wanted to explode the
points based on their normal vector. So, before we start rendering the scene and
updating the position of the individual points, we first need to calculate the normal
of each vector:
 var avgVertexNormals = [];
 var avgVertexCount = [];
 for (var i = 0 ; i < cube.vertices.length ; i++) {
 avgVertexNormals.push(new THREE.Vector3(0,0,0));
 avgVertexCount.push(0);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

228

 }
 // first add all the normals
 cube.faces.forEach(function (f) {
 var vA = f.vertexNormals[0];
 var vB = f.vertexNormals[1];
 var vC = f.vertexNormals[2];
 // update the count
 avgVertexCount[f.a]+=1;
 avgVertexCount[f.b]+=1;
 avgVertexCount[f.c]+=1;
 // add the vector
 avgVertexNormals[f.a].add(vA);
 avgVertexNormals[f.b].add(vB);
 avgVertexNormals[f.c].add(vC);
 });
 // then calculate the average
 for (var i = 0 ; i < avgVertexNormals.length ; i++) {
 avgVertexNormals[i].divideScalar(avgVertexCount[i]);
 }

We won't explain this code snippet in detail, but what we do here is that we
calculate the normal vector of each vertex based on the normal vectors of the
faces the particular vector is part of. The final normal vector is stored in the
avgVertexNormals array.

4. Next, we look at a helper function that we'll call from the render loop in the next
step. This function determines the new position of each vertex based on the velocity
function we defined in step 1 and the normal vector we calculated in step 3:
 function explode(outwards) {
 var dir = outwards === true ? 1 : -1;
 var count = 0;
 cube.vertices.forEach(function(v){
 v.x+=(avgVertexNormals[count].x
 * v.velocity * control.scale)*dir;
 v.y+=(avgVertexNormals[count].y
 * v.velocity * control.scale)*dir;
 v.z+=(avgVertexNormals[count].z
 * v.velocity * control.scale)*dir;
 count++;
 });
 cube.verticesNeedUpdate = true;
 }

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

229

The control.scale variable is set through GUI and determines the speed at which
our geometry expands, and the dir property is based on whether we want to move
the points outwards or inwards. The verticesNeedUpdate property is required to
inform Three.js about these changes.

5. Now all that is left to do is call the explode function from the render loop:
 function render() {
 renderer.render(scene, camera);
 explode(true); // or explode(false)
 requestAnimationFrame(render);
 }

There's more
In this example, we've used a standard geometry; you can, of course, also use an externally
loaded model.

This screenshot, for instance, shows you an exploding model of a cow.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

230

See also
 f Another recipe that deals with animation and moving individual points around can be

found in the Moving individual points of a point cloud recipe.

Setting up the basic postprocessing pipeline
Besides rendering a scene in 3D, Three.js also allows you to add postprocessing effects to
the final output. With postprocessing, you can take the final rendered 2D image and apply all
different kinds of filters to it. You could, for instance, add specific blurring effects, sharpen
specific colors, and much more. In this recipe, we'll show you how to set up a postprocessing
pipeline in Three.js, which you can use to add effects to the final rendered scene.

Getting ready
To work with postprocessing in Three.js, you need to include a number of additional JavaScript
files from the Three.js distribution. For this recipe, the following JavaScript files should be
added to your HTML page:

 <script src="../libs/postprocessing/CopyShader.js"></script>
 <script src="../libs/postprocessing/EffectComposer.js"></script>
 <script src="../libs/postprocessing/RenderPass.js"></script>
 <script src="../libs/postprocessing/ShaderPass.js"></script>
 <script src="../libs/postprocessing/MaskPass.js"></script>

To demonstrate how postprocessing works, we'll apply the dot-screen effect to a Three.js
scene. For this effect, we require one additional JavaScript file:

 <script src="../libs/postprocessing/DotScreenShader.js">
</script>

We've also provided an example that shows you the final result of this recipe. You can view
this by opening 06.07-setup-basic-post-processing-pipeline.html in your
browser. You will see something similar to the following screenshot:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

231

In this screenshot, you can see that we've rendered a scene with a large number of cubes
and applied an effect to render it as a series of dots.

How to do it...
Setting up a postprocessing pipeline only takes a couple of small steps:

1. To set up a postprocessing pipeline, we need something called a composer. We'll use
this composer in the render loop to create the final output. The first thing we need
for that is a new global variable:
 var composer;

2. Next, we need to instantiate a composer as a new instance of THREE.
EffectComposer:
 composer = new THREE.EffectComposer(renderer);

We pass in THREE.WebGLRenderer, which we would normally use to render
the scene.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

232

3. Now, we need to define the steps that the composer will execute. These steps are
executed sequentially and we can use them to apply multiple effects to the scene.
The first step we always need to take is to render the scene. For this, we use
THREE.RenderPass:
 var renderPass = new THREE.RenderPass(scene, camera);
 composer.addPass(renderPass);

A render pass renders a scene object using the provided camera and renderer we
configured in step 2.

4. Now that we've rendered the scene, we can apply a postprocessing effect. For this
recipe, we use THREE.DotScreenShader:
 var effect = new THREE.ShaderPass(THREE.DotScreenShader
);
 effect.uniforms['scale'].value = 4;
 effect.renderToScreen = true;
 composer.addPass(effect);

In this code snippet, we create a postprocessing step (THREE.ShaderPass), add it
to the composer (composer.addPass(effect)), and tell the effect composer to
render the output of this step to screen by setting renderToScreen to true.

5. The final step we need to take is to alter the render loop:

 function render() {
 composer.render();
 requestAnimationFrame(render);
 }

As you can see, we now use the composer object we created in step 2 to render the
final output instead of THREE.WebGLRenderer.

In this recipe, we've only used a single postprocessing step, but you can use as many steps
as you want. You just have to remember that in the final step, you set the renderToScreen
property to true.

How it works...
In a couple of recipes, we've already explained that Three.js uses WebGL shaders to render
the 3D scenes. THREE.EffectComposer uses the same approach. Each of the steps you
add run a simple vertex and fragment shader on the output from the previous step. In the
Creating custom postprocessing steps recipe, we'll dive into more detail and create a custom
postprocessing step ourselves.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

233

There's more
Three.js provides a large number of standard shaders and steps you can use in THREE.
EffectComposer. For a complete overview of the possible shaders and standard steps,
look at the following directories:

 f https://github.com/mrdoob/three.js/tree/master/examples/js/
postprocessing: This directory contains all the standard postprocessing steps you
can use with THREE.EffectComposer.

 f https://github.com/mrdoob/three.js/tree/master/examples/js/
shaders: Three.js provides the THREE.ShaderPass postprocessing step, which
allows you to directly use WebGL shaders. On this page, you can find a large number
of shaders that can be used with the THREE.ShaderPass object.

See also
 f Even though Three.js provides a large number of standard shaders and

postprocessing steps, you can also easily create your own. In the Creating custom
postprocessing steps recipe, we show you how to create a custom vertex and
fragment shader that works with THREE.EffectComposer.

Creating custom postprocessing steps
In the Setting up the basic postprocessing pipeline recipe, we showed you how you can use
THREE.EffectComposer to add postprocessing effects to a rendered Three.js scene. In
this recipe, we'll explain how you can create custom processing steps that you can use with
THREE.EffectComposer.

Getting ready
This recipe uses THREE.EffectComposer, so we need to load some additional JavaScript
files with the correct objects. For this, you need to add the following at the top of your
HTML page:

 <script src="../libs/postprocessing/CopyShader.js"></script>
 <script src="../libs/postprocessing/EffectComposer.js"></script>
 <script src="../libs/postprocessing/RenderPass.js"></script>
 <script src="../libs/postprocessing/ShaderPass.js"></script>
 <script src="../libs/postprocessing/MaskPass.js"></script>

www.itbook.store/books/9781783981182

https://github.com/mrdoob/three.js/tree/master/examples/js/postprocessing
https://github.com/mrdoob/three.js/tree/master/examples/js/postprocessing
https://github.com/mrdoob/three.js/tree/master/examples/js/shaders
https://github.com/mrdoob/three.js/tree/master/examples/js/shaders
https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

234

In this recipe, we'll create a postprocessing effect that converts the output using a
mosaic effect. You can look at the final result by opening 06.08-create-custom-post-
processing-step.html in your browser. You will see something similar to the
following screenshot:

You might not recognize this, but what you're seeing is a large number of cubes that
are rotating.

How to do it…
We create this effect by using a custom fragment shader. The following steps explain how to
set this up:

1. We first need to create THREE.EffectComposer and configure the steps:
 var composer = new THREE.EffectComposer(renderer);
 var renderPass = new THREE.RenderPass(scene, camera);
 composer.addPass(renderPass);

So far, we have only added the render step (THREE.RenderPass), which renders the
scene and allows us to add additional postprocessing effects.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

235

2. To use custom shaders, we'll need to use the THREE.ShaderPass object:
 var customShader = {
 uniforms: {
 "tDiffuse": { type: "t", value: null},
 "scale": { type: "f", value: 1.0 },
 "texSize": { type: "v2", value:
 new THREE.Vector2(50, 50) },
 "center": { type: "v2", value:
 new THREE.Vector2(0.5, 0.5) },
 },
 vertexShader: document.
 getElementById('hexagonVertexShader').text,
 fragmentShader: document.
 getElementById('hexagonFragmentShader').text
 };
 var effect = new THREE.ShaderPass(customShader);
 effect.renderToScreen = true;
 composer.addPass(effect);

We pass in customShader as an argument to THREE.ShaderPass. This
customShader object contains the configuration of our custom shader. The
uniforms objects are the variables we pass into our custom shader, and
vertexShader and fragmentShader point to our shader programs.

3. Let's first look at vertexShader from step 2:
 <script id="hexagonVertexShader"
 type="x-shader/x-vertex">
 varying vec2 texCoord;
 void main() {
 texCoord = uv;
 gl_Position = projectionMatrix * modelViewMatrix
 * vec4(position, 1.0);
 }
 </script>

This is a simple vertex shader that doesn't change anything related to the output.
The only thing to notice in this shader code is that we pass the coordinate that we're
working on (uv, which is automatically passed in by Three.js) to the fragment shader
as a varying value with the texCoord name.

4. The final step is to look at the fragment shader from step 2:
 <script id="hexagonFragmentShader"
 type="x-shader/x-fragment">
 uniform sampler2D tDiffuse;
 uniform vec2 center;

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

236

 uniform float scale;
 uniform vec2 texSize;
 varying vec2 texCoord;
 void main() {
 vec2 tex = (texCoord * texSize - center) / scale;
 tex.y /= 0.866025404;
 tex.x -= tex.y * 0.5;
 vec2 a;
 if (tex.x + tex.y - floor(tex.x) - floor(tex.y)
 < 1.0)
 a = vec2(floor(tex.x), floor(tex.y));
 else a = vec2(ceil(tex.x), ceil(tex.y));
 vec2 b = vec2(ceil(tex.x), floor(tex.y));
 vec2 c = vec2(floor(tex.x), ceil(tex.y));
 vec3 TEX = vec3(tex.x, tex.y, 1.0 - tex.x - tex.y);
 vec3 A = vec3(a.x, a.y, 1.0 - a.x - a.y);
 vec3 B = vec3(b.x, b.y, 1.0 - b.x - b.y);
 vec3 C = vec3(c.x, c.y, 1.0 - c.x - c.y);
 float alen = length(TEX - A);
 float blen = length(TEX - B);
 float clen = length(TEX - C);
 vec2 choice;
 if (alen < blen) {
 if (alen < clen) choice = a;
 else choice = c;
 } else {
 if (blen < clen) choice = b;
 else choice = c;
 }
 choice.x += choice.y * 0.5;
 choice.y *= 0.866025404;
 choice *= scale / texSize;
 gl_FragColor = texture2D(tDiffuse, choice
 + center / texSize);
 }
 </script>

This is a rather large shader program and explaining the details is a bit out of scope
for this recipe. In short, what happens is that this shader looks at the color of the
surrounding pixels and based on that, it determines how to draw this pixel. The
important item to notice here is uniform sampler2D tDiffuse at the top of
the code. This is the output of the previous render step passed into the shader as
a 2D texture. Using tDiffuse in the calculations, we can change the output that
is rendered on screen. If we don't want to apply an effect, we would just use vec4
color = texture2D(tDiffuse, texCoord) to set the output color.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

237

5. The last step is to update the render loop to use composer instead of renderer:

 function render() {
 composer.render();
 requestAnimationFrame(render);
 }

Writing shaders is difficult work; a setup like this, however, makes it a lot easier to create
your own custom shaders. Just replace the fragment shader from step 4 with your own
implementation and you can start experimenting.

How it works...
In this recipe, we've used THREE.EffectComposer together with THREE.RenderPass to
render the scene. If we add more steps to THREE.EffectComposer, we can access the
current rendering directly from our shader by accessing the tDiffuse texture. This way, we
can easily add all kinds of effects by just writing a shader that uses the tDiffuse texture as
its input.

There's more…
When you write shaders, you can pretty much create whatever you want. Getting started
with shaders, however, can be rather difficult. A good example of some shaders that apply
a specific effect can be found at https://github.com/evanw/glfx.js. The shader
we used in this recipe was also adopted from the hexagonpixalte.js shader that you
can find in the src/filters/fun/hexagonalpixelate.js folder in the mentioned
GitHub repository.

You can also look at the sources of the effects that are provided by Three.js. You can access
them directly from GitHub at https://github.com/mrdoob/three.js/tree/master/
examples/js/shaders.

See also
In Chapter 5, Lights and Custom Shaders, we've also created two custom shaders:

 f In the Creating a custom vertex shader recipe, we explain the steps you need to take
to set up a custom vertex shader

 f In the Creating a custom fragment shader recipe, we explain the steps you need to
take to set up a custom fragment shader

www.itbook.store/books/9781783981182

https://github.com/evanw/glfx.js
https://github.com/mrdoob/three.js/tree/master/examples/js/shaders
https://github.com/mrdoob/three.js/tree/master/examples/js/shaders
https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

238

Saving WebGL output to disk
In this book we've created some very beautiful visualizations so far. The trouble with this,
however, is that it's difficult to save the output of your rendering as an image. In this recipe,
we'll show you how you can create a normal image from a WebGL-rendered scene, which can
be saved to the disk.

Getting ready
There isn't much to do in order to get ready for this recipe. We'll be using standard HTML5
features, which you can apply not just to Three.js-based outputs, but to any HTML5 canvas
element. We've prepared a very simple example page, where you test the result of this recipe.
For this, open the 06.09-save-webgl-output.html example in your browser. You will see
something similar to the following screenshot:

On this page, you'll see a single Three.js scene. If you hit the p key, the current state will be
saved as a new image, which you can then download normally. Note that in the preceding
screenshot, we've zoomed out of the page.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 6

239

How to do it...
For this recipe, we only need to take a couple of simple steps:

1. The first thing we do is register an event listener for key presses:
 window.addEventListener("keyup", copyCanvas);

Whenever a key is pressed, the copyCanvas function will be called.

2. Now let's look at the copyCanvas function:
 function copyCanvas(e) {
 var imgData, imgNode;
 if (e.which !== 80) {
 return;
 } else {
 imgData = renderer.domElement.toDataURL();
 }
 // create a new image and add to the document
 imgNode = document.createElement("img");
 imgNode.src = imgData;
 document.body.appendChild(imgNode);
 }

The first thing we do here is check which key was pressed. If the p key was pressed,
we'll continue. Next, we take the image data from the canvas with the toDataURL()
function. The final step we need to take is to create a new img element, assign the
data (imgData), and add it to the document.

3. This would work for non-WebGL canvas elements. However, if you work with
WebGL, we need to take one additional step. We need to instantiate THREE.
WebGLRenderer like this:

 renderer = new THREE.WebGLRenderer(
 {preserveDrawingBuffer: true});

If we don't do this, you'll only see a black screen in the output and not the actual
WebGL output. Note, though, that this does have an adverse impact on performance.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Point Clouds and Postprocessing

240

How it works...
In HTML5, it is possible to describe a file or any other resource using a URL starting with
data. So, instead of fetching resources in multiple HTTP requests, these resources could be
included directly in the HTML document. The canvas element allows you to copy its contents
as a URL that complies with this scheme. In this recipe, we use this data URL to create a new
img element, which can be saved like a normal image.

If you want to dive into the details of the data URL scheme, you can look at the RFC (Request
For Comments) that describes this scheme at http://tools.ietf.org/html/rfc2397.

There's more
In the most recent version of Chrome and Firefox, you can also save the output of an HTML
canvas element by right-clicking and selecting Save Image As. Besides using the standard
browser functionality, it is also possible to directly start the download of the image. If you
use the following piece of code instead of creating and adding a new image, the browser will
automatically download the canvas as an image:

 var link = document.createElement("a");
 link.download = 'capture.png';
 link.href = imgData;
 link.click();

Finally, If you've got an animation that you want to save as a movie, you can do that as well.
You can find instructions on how to do this at: http://www.smartjava.org/content/
capture-canvas-and-webgl-output-video-using-websockets

www.itbook.store/books/9781783981182

http://tools.ietf.org/html/rfc2397
http://www.smartjava.org/content/capture-canvas-and-webgl-output-video-using-websockets
http://www.smartjava.org/content/capture-canvas-and-webgl-output-video-using-websockets
https://itbook.store/books/9781783981182

7
Animation and Physics

In this chapter, we'll cover the following recipes:

 f Creating animations with Tween.js

 f Animation using morph targets

 f Animation with skeletons

 f Using morph animations created in Blender

 f Using skeleton animations created in Blender

 f Adding a simple collision detection

 f Saving a movie of an animation in Chrome

 f Dragging and dropping objects around a scene

 f Adding a physics engine

Introduction
In the chapters so far, we've mostly dealt with static scenes or scenes with limited animation.
In this chapter, we show you a number of recipes that you can use to make your scenes
more dynamic. We show you recipes that talk about how to add advanced animations, how to
drag and drop objects around your scene, and even how to add physics to your scene, such as
gravity and collision detection.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

242

Creating animations with Tween.js
In Chapter 1, Getting Started, we've already showed you how to set up an animation loop,
and in Chapter 2, Geometries and Meshes, we showed you how to create simple animations
by changing properties of THREE.Mesh. When you have many or complex animations, the
code can quickly become complex to maintain or understand. In this recipe, we'll show you
how you can use an external JavaScript library that makes the creation of animations easier
and more maintainable. We'll use the Tween.js library for this.

Getting ready
For this recipe, we use a library from https://github.com/sole/tween.js/. As this is
an external library, we first need to make sure it is included in our HTML page. For this, first
add the following within the head element of your page:

 <script src="../libs/tween.js"></script>

For this recipe, we'll create a simple animation using this library. If you open the
07.01-animation-with-tweenjs.html example in your browser, you can view
the final result, which is similar to what is shown in the following screenshot:

www.itbook.store/books/9781783981182

https://github.com/sole/tween.js/
https://itbook.store/books/9781783981182

Chapter 7

243

If you open this example in your browser, you'll see a small red cube that moves to a
different position and rotates while it is moving. This animation is configured using the
Tween.js library.

How to do it…
Once you've added the required library to your HTML page, creating the animation only takes
a couple of simple steps:

1. To use this library, we need to first create an instance of a TWEEN.Tween object:
 var tween = new TWEEN.Tween({x:0 , y:1.25, z:0, rot: 0});

This creates a TWEEN.Tween instance. We can use this instance to move
the provided properties from the start value (the value we added in this step)
to an end value.

2. The next step is to define the target values for the properties. We do this by using
the to function:
 tween.to({x:5, y:15, z:-10, rot: 2*Math.PI}, 5000);

With this function, we tell the tween object that we want to slowly change the
provided values in the constructor to these values. So, we change the x property
from 0 to 5. The second parameter, which is 5000, defines how many milliseconds
this change should take.

3. We can also choose how the value changes over time. You can for instance use a
linear easing function, which changes the values at a constant rate, a quadratic
one, which starts with small changes and quickly increases, or even use an easing
function that bounces (overshoots) at the end. There are many more easing functions
that are predefined in TWEEN (see the There's more… section for more information).
You do this by calling the easing function:
 tween.easing(TWEEN.Easing.Elastic.InOut);

4. So far, we have changed the values of these properties from one value to another,
but we don't really do anything when a value changes. In this recipe, we want to
change the position and the rotation of the cube. You do this by calling the onUpdate
function and passing in the function that should be called on each change:
 tween.onUpdate(function() {
 cube.position.set(this.x, this.y, this.z);
 cube.rotation.set(this.rot, this.rot, this.rot);
 });

As you can see in this code snippet, we use the provided properties to set the rotation
and position properties of cube.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

244

5. There are a number of other settings you can use on the tween object to control
how the animation behaves. For this recipe, we tell the tween object to repeat its
animation indefinitely and use a yo-yo effect that reverses the animation each time
it is repeated:
 tween.repeat(Infinity);
 tween.yoyo(true);

6. Finally, we can start the tween object by calling the start function:
 tween.start();

7. At this point, you won't see anything happening. There is one last step you need to
add to the render loop to inform the tween object how much time has passed so
that it can calculate the correct values for the properties you provided in step 1:

 TWEEN.update();

This will update all the TWEEN.Tween objects you've defined and call the onUpdate
functions with the updated values.

You define the start value, the end value, and how the start value should transition to the
end value.

How it works…
Whenever you call TWEEN.update(), the TWEEN library will determine how much time has
passed from the previous call to TWEEN.update for each TWEEN.Tween object (or in the
case of the first time, the time from calling start() on the TWEEN.Tween object). Based
on this difference, the start time of tween, and the configured easing property, this library
calculates new values for the passed-in properties. Finally, it will call the function passed into
onUpdate() so that you can take action on the changed values.

There's more…
In this recipe, we didn't show all the configuration you can pass into the TWEEN.Tween object.
For a complete overview of all the different easing options and other properties of the TWEEN.
Tween object, refer to the GitHub project site at https://github.com/sole/tween.js/.

www.itbook.store/books/9781783981182

https://github.com/sole/tween.js/
https://itbook.store/books/9781783981182

Chapter 7

245

Before we move on to the next recipe, there is one additional interesting aspect of the Tween.
js library. In our recipe, we configured the TWEEN.Tween object step by step. You can also
configure the object in one call like this:

 var tween = new TWEEN.Tween({x:0 , y:1.25, z:0, rot: 0})
 .to({x:5, y:15, z:-10, rot: 2*Math.PI}, 5000)
 .easing(TWEEN.Easing.Elastic.InOut)
 .onUpdate(function() {
 cube.position.set(this.x, this.y, this.z);
 cube.rotation.set(this.rot, this.rot, this.rot);
 })
 .repeat(Infinity)
 .yoyo(true)
 .start();

This works because Tween.js offers a fluent API. So for each function call, this library returns
the original TWEEN.Tween object. This means that you can easily chain calls together like we
did in the previous code fragment.

See also
 f You can use the Tween.js library in pretty much every case where we used an animation

in this book. For instance, in Chapter 2, Geometries and Meshes, we showed you the
Rotating an object around its own axis recipe. The rotation could be easily managed
using a TWEEN.Tween object. In Chapter 3, Working with the Camera, we showed you
how to zoom in on an object in the Zooming the camera to an object recipe. With the
Tween.js library, we can easily animate this zoom functionality.

Animating using morph targets
When modeling 3D objects and characters, there are generally two different ways of creating
animations. You can animate using morph targets, or you can use skeleton-and-bones-based
animations. Three.js facilitates both of these approaches. In this recipe, we'll look at the
morph-based animation. With morph-based animations, like the name implies, you morph
one geometry shape into another. This works great for facial expressions and other very
detailed animations.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

246

Getting ready
For this recipe, we don't require any additional libraries as morph-based animations are
supported by the standard Three.js distribution. To make this recipe more understandable,
we use an existing 3D model to demonstrate how morphing works. You can see the model
and the available morphs when you open the 07.02-animation-with-morphing.html
example in your browser. You will see something similar to what is shown in the
following screenshot:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

247

In this example, you can see a simple model of a car. Using the sliders in the top-right section,
you can slowly morph this car into a different model, as shown in the following screenshot:

If you check the animate box, an animation that automatically morphs this car will start.

How to do it…
To use morphing animations, we need to take the following steps:

1. The first thing we need to do is load the model that contains morph targets.
For this recipe, we've got a JSON-based model, which we load like this:
 var jsonLoader = new THREE.JSONLoader();
 jsonLoader.load("../assets/models/morph/car.js",
 function(model, materials) {
 ...
 });

Here, we use THREE.JSONLoader to load a model, and once it is loaded,
we call the provided function.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

248

2. Before we create THREE.Mesh, there is one additional step we need to take.
We need to set the morphTargets property on the materials that are set to true:
 materials.forEach(function(mat) {
 mat.morphTargets = true;
 });

3. Next, we need to create THREE.Mesh and add it to the scene:
 car = new THREE.Mesh(model,
 new THREE.MeshFaceMaterial(materials));
 scene.add(car);

As you can see, we follow the standard way of creating THREE.Mesh and add it
to the scene just like any other object.

4. Now that we've got an object in the scene that can be morphed, we can use the
morphTargetInfluences property to set how much the object is morphed into
a specific direction. In the example for this recipe, we used the UI to control this
setting as follows:

 gui.add(control, 'mt_1', 0,
 1).step(0.01).listen().onChange(function(a){
 car.morphTargetInfluences[1] = a;
 });
 gui.add(control, 'mt_2', 0,
 1).step(0.01).listen().onChange(function(a){
 car.morphTargetInfluences[2] = a;
 });;
 gui.add(control, 'mt_3', 0,
 1).step(0.01).listen().onChange(function(a){
 car.morphTargetInfluences[3] = a;
 });

The model we used in this recipe has four morph targets (with names mt_0, mt_1,
mt_2, and mt_3), its base state and three other car models. By increasing the
morphTargetInfluence object of one of those other models, we can morph the
model into that direction.

As you can see in this recipe, by simply changing the value of a specific
morphTargetInfluences value, you can change the way your model looks.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

249

How it works…
In models that support multiple morph targets, an additional set of vertices is stored to
represent that position for each of the targets. So, if you've got a face model that has a
morph target for a smile, one for a frown, and one for a smirk, you effectively store four
times as many vertex positions. With the morphTargetInfluences property, you can tell
Three.js how far the base state (the geometry.vertices property) should be morphed
toward that specific morph target. Three.js will then calculate the average position of each
individual vertex and render the updated model. A very interesting thing is that you can
combine morph targets. So if you've got separate morph targets for eye movement and
mouth movement, you can easily create very animated and lifelike animations.

There's more…
In this recipe, we loaded an external model that contained the morph targets. If you've
already got a simple geometry that you want to use for morph-based animations, you can
also easily do that. For instance, if you've got a geometry, you can add morphTargets
using the following code:

 cubeGeometry.morphTargets[0] = {name: 't1', vertices:
 cubeTarget2.vertices};
 cubeGeometry.morphTargets[1] = {name: 't2', vertices:
 cubeTarget1.vertices};

The important aspect here is to make sure you provide the same amount of vertices to
the vertices property as there are in the initial geometry. You can now control the
morph between the various targets using the morphTargetInfluences properties on
THREE.Mesh:

 cube.morphTargetInfluences[0] = 0.4;
 cube.morphTargetInfluences[1] = 0.6;

See also
 f An alternative way to animate models can be done using skeleton and bones.

We explain how to do this in the Animation with skeletons recipe. We also provide
two recipes in this chapter where we define morph-and-skeleton-based animations
in an external tool (Blender, in our case) and play the animation in Three.js. See the
Using morph animations created in Blender and Using skeleton animations created
in Blender recipes for more information about these approaches.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

250

Animating with skeletons
A common way to animate complex models is using bones and skinning. In this approach,
we define a geometry, add a skeleton, and tie the geometry to that skeleton. Whenever we
move or rotate one of the bones of the skeleton, the geometry is deformed accordingly. In this
recipe, we will show you how you can use the Three.js functionality to move and rotate bones
directly from JavaScript.

Getting ready
For this recipe, we use an external model that already contains a skeleton we can move
around. To load this model, we use THREE.JSONLoader, which is available in the standard
distribution of Three.js. So, we don't need to import any additional JavaScript files to get this
recipe to work. Of course, we've provided an example of this recipe in action, which you can
view by opening the 07.03-animation-with-skeleton.html example in your browser.
You will see something similar to what is shown in the following screenshot:

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

251

This example shows you a model of a giraffe and provides an interface that you can use to
move the neck bone. You can change the rotation of the neck bone and even its position.
When you do this, you'll see that part of the mesh responds to the movement of this bone.
In this recipe, we'll show you how to accomplish this for yourself.

How to do it…
Working directly with bones isn't that difficult and only takes a couple of small steps:

1. The first thing we need to do is load a model that contains bones. For this recipe,
we once again use THREE.JSONLoader:
 var jsonLoader = new THREE.JSONLoader();
 jsonLoader.load("../assets/models/bones/giraffe.js",
 function(model, materials) {
 ...
 });

2. Once the model from step 1 has been loaded, we can set up the materials and
create the mesh. Let's first look at the materials:
 materials.forEach(function(mat) {
 mat.skinning = true;
 });

Here, we set the skinning property of the material to true. This tells Three.js that
this object contains bones and the geometry should deform when the bones move.

3. Next, we create the mesh and add it to the scene:
 var giraffe = new THREE.SkinnedMesh(model, materials[0]);
 scene.add(giraffe);

As you can see, we've used a different kind of mesh for this object. Instead of the
THREE.Mesh object, we've used a THREE.SkinnedMesh object.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

252

4. To access the bones, we access the children elements of THREE.SkinnedMesh.
Getting the correct bone to animate might take some experimenting if the bones
aren't clearly named. The easiest way to determine which bone to use is to look
through the output of the JavaScript console and browse the children of the mesh.

5. In this case, we want to rotate the tail bone and rotate and position the neck. For this,
we add the following to the render loop:
 // the neck bone
 giraffe.children[0].children[1].children[0].children[0]
 .rotation.x = control.neck_rot_x;
 giraffe.children[0].children[1].children[0].children[0]
 .rotation.y = control.neck_rot_y;
 giraffe.children[0].children[1].children[0].children[0]
 .rotation.z = control.neck_rot_z;
 giraffe.children[0].children[1].children[0].children[0]
 .position.x = control.neck_pos_x;
 giraffe.children[0].children[1].children[0].children[0]
 .position.y = control.neck_pos_y;
 giraffe.children[0].children[1].children[0].children[0]
 .position.z = control.neck_pos_z;
 // the tail bone
 giraffe.children[0].children[0].children[0]
 .rotation.z -= 0.1

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

253

That's it! Whenever we now change the position of the rotation of the bones we used
in the previous code snippet, the geometry will deform accordingly.

Working with bones isn't that difficult, but selecting the correct bone to change and move
around can take some experimentation.

How it works…
When you enable the skinning property on the material, Three.js passes all the information
about the relevant bones and positions into its vertex shader. The vertex shader will use this
information to position the vertices to their new position based on the position and rotation
of the relevant bones. More information and a good introduction on how to execute skeletal
animations from a vertex shader can be found on the OpenGL website at https://www.
opengl.org/wiki/Skeletal_Animation.

There's more…
If you want to get a quick overview of how the bones are organized in a model, you can use a
specific helper class that is provided by Three.js. The following code snippet shows you how to
create THREE.SkeletonHelper for the model we used in this recipe:

 var helper = new THREE.SkeletonHelper(giraffe);
 scene.add(helper);

This will visualize the bones of a model, as shown in the following screenshot:

www.itbook.store/books/9781783981182

https://www.opengl.org/wiki/Skeletal_Animation
https://www.opengl.org/wiki/Skeletal_Animation
https://itbook.store/books/9781783981182

Animation and Physics

254

If you move bones around, which we do in our recipe, you also need to add the following line
to your render loop:

 helper.update();

This way, THREE.SkeletonHelper will always reflect the latest state of the model.

See also
 f A simpler way to animate models is using morph targets. We explain how to do this in

the Animation using morph targets recipe. We also provide two recipes in this chapter
where we define morph-and-skeleton-based animations in an external tool (Blender,
in our case) and play the animation in Three.js. Refer to the Using morph animations
created in Blender and Using skeleton animations created in Blender recipes for
more information on these approaches.

Using morph animations created in Blender
Creating morph animations by hand is difficult to do in Three.js. Simple transformations can
probably be handled, but creating advanced animations programmatically is very difficult.
Luckily, there are a large number of external 3D programs that you can use to create the
models and animations. In this recipe, we'll use Blender, which we already used in Chapter 2,
Geometries and Meshes, to create a morph-based animation and play it back using Three.js.

Getting ready
To use this recipe, you have to have Blender installed and enable the Three.js exporter plugin.
We've already explained how to do this in the Creating and exporting a model from Blender
recipe, in Chapter 2, Geometries and Meshes. So if you haven't already done so, you should
first install Blender and then the Three.js export plugin. Once you've installed Blender, you
should create an animation that uses shape keys to define various formats. Doing this is out of
the scope of this book, but to make sure, you can test the steps explained in this recipe—we've
included a Blender file, which has a minimal shape-keys-based animation. So before we get
started with the recipe, we'll load the example Blender model.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

255

For this, take the following steps:

1. Open Blender and navigate to File | Open.

2. In the window that opens, navigate to the sources provided with the book and
open the simplemorph.blend file, which can be found in the assets/models/
blender directory.

3. Once this file is opened, you'll see a cube in the center of an empty scene like this:

This is the starting point from where we start the recipe.

4. If you want to preview the (very simple) animation we've created here, just click on
the play button or use the Alt + A key combination.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

256

5. We will load this file in Three.js and play the animation we created in Blender.
To see the final result, open the 07.04-create-morph-in-blender.html
example in your browser. You will see something similar to what is shown in the
following screenshot:

You'll see an animating cube that uses morph targets (defined as shape keys in
Blender) to morph a cube into different shapes.

How to do it…
If you've followed the steps explained in the Getting ready section of this recipe, you'll be
looking at a simple Blender workspace with a single cube and an animation that slowly
morphs the cube using a set of shape keys. To export this animation from Blender and use it
in Three.js, we need to take a couple of steps:

1. The first thing we need to do is export the model and the animation to which we can
load it in Three.js. To do this, navigate to File | Export | Three.js.

2. In the window that opens, we can select a destination and a filename. For this recipe,
name the file simplemorph.js and set the destination to the assets/models/
morph folder.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

257

3. Before we hit the Export button, we need to configure some Three.js-specific
properties. You can do this in the panel on the left-hand side in the Export Three.js
section. In that section, make sure that the Morph animation checkbox is selected.
Once you've checked the box, click on the Export button.

4. Now we're done with our work in Blender and can load the exported model in
Three.js. For this, we use THREE.JSONLoader like this:
 var loader = new THREE.JSONLoader();
 loader.load("../assets/models/morph/simplemorph.js"
 ,function(model){
 ...
 });

In this code snippet, we load the model using THREE.JSONLoader.

5. Once the model is loaded, we need to create a material where we need to set the
morphTargets property to true:
 var mat = new THREE.MeshLambertMaterial(
 {color: 0xff3333, morphTargets:true})

6. With this material, we can create the mesh to be added to the scene. This time,
as we want to use the animation provided from Blender, we create THREE.
MorphAnimMesh, which we add to the scene:
 mesh = new THREE.MorphAnimMesh(model, mat);
 mesh.castShadow = true;
 scene.add(mesh);

7. We need to take a final step before we can play the animation:
 mesh.parseAnimations();
 mesh.playAnimation('animation', 20);
 mesh.duration = 10;
 render();

With the parseAnimation() function, Three.js will parse the names of the provided
morph target elements from the model and use it to create an animation. When
you export using the Three.js plugin from Blender, the name of the animation is
animation. To play the animation, we call playAnimation with the name of the
animation and the frame rate, and finally, we set the duration (in seconds) of the
animation. Note that you don't always have to set the duration of an animation. In
some cases, the model itself provides the duration.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

258

8. The final change we need to make is in the render function itself:
 var t = new THREE.Clock();
 function render() {
 renderer.render(scene, camera);
 mesh.updateAnimation(t.getDelta());
 requestAnimationFrame(render);
 }

Here, we create a global THREE.Clock() instance, which we use to determine how
much time is passed between sequential calls to the render function. This is passed
into the updateAnimation function of THREE.MorphAnimMesh so that it can
calculate which frame to show.

As you've seen from the recipe, getting an animation to play in Three.js from Blender isn't that
difficult. One thing to take into account here, though, is that this can result in huge files when
you've got models with a high vertex count. This happens because the Blender export plugin
creates a new morph target for each frame of the animation.

There's more…
In this recipe, we've used the Three.js export function of Blender to save the model in a format
THREE.JSONLoader can load. There are a large number of other 3D formats available, which
can be used to store 3D scenes and animations that are supported by Three.js. An overview
of the file formats that are available in Three.js can be found on the Three.js GitHub site at
https://github.com/mrdoob/three.js/tree/master/examples/js/loaders.

See also
In this chapter, we've got some other recipes that deal with animations:

 f Animation using morph targets

 f Animation with skeletons

 f Using skeleton animations created in Blender

Using skeleton animations created in
Blender

In the Animation with skeletons recipe, we animated a model by directly changing the position
and rotation of its bones. This works great in an interactive scenery but isn't a practical way to
create animations. With Blender and other 3D tools, you've got a large set of tools to create
animations based on a specific skeleton and a set of bones. In this recipe, we'll show you how
you can play back a skeleton-based animation that was created in Blender.

www.itbook.store/books/9781783981182

https://github.com/mrdoob/three.js/tree/master/examples/js/loaders
https://itbook.store/books/9781783981182

Chapter 7

259

Getting ready
To use this recipe, you need to have Blender installed and enable the Three.js exporter plugin.
If you haven't done so, follow the steps from the Creating and exporting a model from Blender
recipe, in Chapter 2, Geometries and Meshes. Once Blender and the Three.js export plugin
have been installed, we need to create a skeleton-based animation. Creating this in Blender is
out of the scope of this book, so we've provided an existing model to demonstrate this recipe.
To get started, perform the following steps:

1. Open Blender and navigate to File | Open.

2. In the window that opens, navigate to the sources provided with the book and open
the crow-skeleton.blend file, which can be found in the assets/models/
blender directory.

3. Once this file is open, you'll see a crow in the center of an empty scene like this:

This is the starting point of this recipe.

4. If you want to preview the crow animation, click on the play button or use the
Alt + A key combination.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

260

We have also provided an example that you can open in your browser to see the same
animation in a Three.js scene. When you open the 07.05-create-skeleton-animation-
in-blender.html example in your browser, you should see something like this:

How to do it…
Before we can use the model in Three.js, we first have to export it from Blender:

1. To start the export, first navigate to File | Export | Three.js.

2. In the window that opens, we can select a destination and a filename. For this
recipe, name the file crow.js and set the destination to the assets/models/
bones folder.

3. Before we hit the Export button, we need to configure some Three.js-specific
properties. You can do this in the panel on the left-hand side in the Export Three.js
section. In that section, make sure that the Bones, Skinning, and Skeletal animation
checkboxes are selected. If the Morph Animation checkbox is selected, disable it.
Once you've checked the box, click on the Export button.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

261

4. Now that we've exported the model, the first thing we need to do in Three.js is load
the model using THREE.JSONLoader:
 var loader = new THREE.JSONLoader();
 loader.load("../assets/models/bones/crow.js"
 ,function(model){
 ...
 });

5. Once the model is loaded in Three.js. we can process it. The first thing we do in the
callback from the loader.load function is to set up the material:
 var mat = new THREE.MeshLambertMaterial({color: 0xf33f33,
 shading: THREE.FlatShading, skinning:true})

This is just a standard THREE.MeshLambertMaterial object. The only thing you
need to make sure is to set the skinning property of the material to true.

6. Now that we've got the model and the material, we can create a mesh. As we're
working with skeletons, we need to create THREE.SkinnedMesh:
 mesh = new THREE.SkinnedMesh(model, mat);

7. Next, we need to select the animation we want to play. For this, you use the following
code snippet:
 model.animation = "Crow.ArmatureAction";
 THREE.AnimationHandler.add(model.animations[0]);
 var animation = new THREE.Animation(
 mesh, model.animation);
 animation.play();

You need to make sure the animation property contains the name of an animation
from the model.animations array. In this case, we've only got one animation
with the Crow.ArmatureAction name. Skeleton-based animations are handled
using THREE.AnimationHandler. So, we add the animation from our model to
the handler. Next, we need to create a THREE.Animation instance. This object
combines our model with the animation we want to play. When we have this object
we can call the play() function to tell Three.js to play the animation.

8. The final step we need to take before the animation will play is to update the
render loop:

 var t = new THREE.Clock();
 function render() {
 renderer.render(scene, camera);
 THREE.AnimationHandler.update(t.getDelta());
 requestAnimationFrame(render);
 }

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

262

Here, we use THREE.Clock() to determine how much time has passed
(t.getDelta()) between this frame and the previous one. This is passed into
THREE.AnimationHandler to update all the registered animations and move
the mesh in the correct position.

How it works…
When exporting the animation, the Three.js exporter will write out the position and rotation
of the bones at the times we specified in Blender. This information can then be used directly
in Three.js to determine the position and rotation of the bones when we're playing back the
animation. This way, we can create fairly complex animations without having to create huge
model files.

There's more…
Working with skeletons in Blender and creating animations from them is a subject on which
much is written. If you're interested in learning more about rigging models and creating
skeleton-based animations, a couple of good resources to start with are the following:

 f Blender Tutorial: Basics of Character Rigging at http://www.youtube.com/
watch?v=cGvalWG8HBU

 f Blender manual: rigging at http://wiki.blender.org/index.php/Doc:2.6/
Manual/Rigging

 f Blender Guru: introduction to rigging at http://www.blenderguru.com/
tutorials/introduction-to-rigging

 f Building A Basic Low Poly Character Rig In Blender at http://cgi.tutsplus.
com/tutorials/building-a-basic-low-poly-character-rig-in-
blender--cg-16955

See also
In this chapter, we have some other recipes that deal with animations:

 f Animation using morph targets

 f Animation with skeletons

 f Using morph animations created in Blender

www.itbook.store/books/9781783981182

http://www.youtube.com/watch?v=cGvalWG8HBU
http://www.youtube.com/watch?v=cGvalWG8HBU
http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging
http://wiki.blender.org/index.php/Doc:2.6/Manual/Rigging
http://www.blenderguru.com/tutorials/introduction-to-rigging
http://www.blenderguru.com/tutorials/introduction-to-rigging
http://cgi.tutsplus.com/tutorials/building-a-basic-low-poly-character-rig-in-blender--cg-16955
http://cgi.tutsplus.com/tutorials/building-a-basic-low-poly-character-rig-in-blender--cg-16955
http://cgi.tutsplus.com/tutorials/building-a-basic-low-poly-character-rig-in-blender--cg-16955
https://itbook.store/books/9781783981182

Chapter 7

263

Adding a simple collision detection
When you're creating games or interactive environments, a common requirement is the option
to detect collisions between objects. In the Adding a physics engine recipe, we use an external
library to handle collisions (and other physics). This, however, is a rather heavy solution if all
you require is the option to detect collisions. In this recipe, we provide a simple approach that
you can use if you want to detect collisions without having to use an external library.

Getting ready
In this recipe, we use THREE.Raycaster to check for collisions. This object is provided
by the standard Three.js distribution, so you don't need any additional libraries. We've
provided a simple example that shows you how this recipe can be applied. For this, open the
07.06-add-simple-detection-collision.html example in your browser, and you will
see something similar to what is shown in the following screenshot:

In this example, you can move the central cube around using the arrow keys and rotate it
around the y axis with the a and b keys. Whenever a collision occurs with one of the other
cubes, we change the opacity to indicate a collision.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

264

How to do it…
To accomplish collision detection, we need to take a couple of steps:

1. Let's start simple and create the cube that we'll move around. We will detect
collisions between this cube and the cubes we define in step 2:
 var cubeGeometry = new THREE.BoxGeometry(2, 2, 2);
 var cubeMaterial = new THREE.MeshLambertMaterial({color:
0xff2255});
var cube = new THREE.Mesh(cubeGeometry, cubeMaterial);
cube.name='cube';
scene.add(cube);

2. Now, let's create an array that will hold all the objects that we can collide with and
add some cubes to that array:
var cubes = [];
var cubeMaterial2 = new THREE.MeshLambertMaterial({color:
0xff0000});
var cube2 = new THREE.Mesh(cubeGeometry, cubeMaterial2);
cube2.position.set(5,0,0);
cube2.name='cube-red';
scene.add(cube2);
cubes.push(cube2);
...
var cubeMaterial5 = new THREE.MeshLambertMaterial({color:
0xff00ff});
var cube5 = new THREE.Mesh(cubeGeometry, cubeMaterial5);
cube5.position.set(-5,0,0);
cube5.name='cube-purple';
scene.add(cube5);
cubes.push(cube5);

3. Now that we've got the object to move around and the objects to detect the collisions
with, we can add the code to detect collisions. In the render loop, we need to add
the following:

// reset the opacity at the beginning of the loop
cubes.forEach(function(cube){
 cube.material.transparent = false;
 cube.material.opacity = 1.0;

});

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

265

var cube = scene.getObjectByName('cube');
var originPoint = cube.position.clone();

for (var vertexIndex = 0;
 vertexIndex < cube.geometry.vertices.length;
 vertexIndex++) {
 var localVertex = cube.geometry.
 vertices[vertexIndex].clone();
 var globalVertex = localVertex.applyMatrix4(
 cube.matrix);
 var directionVector = globalVertex.sub(
 cube.position);

 var ray = new THREE.Raycaster(
 originPoint,
 directionVector.clone().normalize());
 var collisionResults = ray.intersectObjects(cubes);
 if (collisionResults.length > 0
 && collisionResults[0].distance <
 directionVector.length()) {
 collisionResults[0].object
 .material.transparent = true;
 collisionResults[0]
 .object.material.opacity = 0.4;
 }
}

In this piece of code, we simply check whether one of the vertices of our moving
cube intersects with any of the cubes in the cubes array. If we detect a collision,
we change the opacity of the cube we collided with.

With these steps, we have a rudimentary solution to detect collisions. This approach works
great to detect collisions between flat objects but might miss detection with small spike-like
objects. You can enhance this solution by checking collisions against more vertices. You can,
for instance, add more vertices by increasing the widthSegments, heightSegments, and
depthSegments objects of the cube, or you can calculate intermediate vertices yourself.

How it works…
To detect collisions in this approach, we shoot a ray using THREE.RayCaster from the
center of the cube that is moving to each of its vertices. If this ray intersects with one of the
other cubes from the cubes array in its path from the center to a vertex, it means that one
of the vertices is inside one of the other cubes. We interpret this as a collision and can take
appropriate action.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

266

There's more…
This recipe is based on the great work done by Lee Stemkoski, who provided an initial
implementation of this approach at http://stemkoski.github.io/Three.js/
Collision-Detection.html. Besides a ray-based approach to collision detection, there
are, of course, alternative approaches. A very common approach is to use the bounding boxes
of a mesh to detect whether two meshes touch. Three.js even provides a function for this in
the THREE.Box3 object called isIntersectionBox. As using a ray casting approach is a
rather computationally expensive way to detect collisions, often a bounding box approach is
used first, followed by the more accurate ray casting method.

A couple of good resources on such an approach can be found here:

 f 3D Theory - Collision Detection at http://www.euclideanspace.com/threed/
animation/collisiondetect/

 f AABB to AABB detection in C++ at http://www.miguelcasillas.com/?p=30

 f 3D Collision detection and resolution using sweeping AABB bounding boxes
at http://techny.tumblr.com/post/42125198333/3d-collision-
detection-and-resolution-using-sweeping

The physics engine we will use in the Adding a physics engine recipe also uses a
shapes-based approach to collision detection. Besides just a bounding box, it provides
a number of different shapes to detect collisions.

See also
 f In the Adding a physics engine recipe, we detect collisions using the physics engine.

For another recipe that uses THREE.RayCaster, you can also look at the Dragging
and dropping objects around a scene recipe, which can also be found in this chapter.

Saving a movie of an animation in Chrome
In this chapter, we've showed you various ways to create animations. Sometimes, however,
people don't have a WebGL-enabled browser, or you want to just share the resulting animation
and not the WebGL website. In these cases, it would be very helpful to be able to just save the
animation to your local filesystem and share it. In this recipe, we show you one approach you
can use for this scenario.

www.itbook.store/books/9781783981182

http://stemkoski.github.io/Three.js/Collision-Detection.html
http://stemkoski.github.io/Three.js/Collision-Detection.html
http://www.euclideanspace.com/threed/animation/collisiondetect/
http://www.euclideanspace.com/threed/animation/collisiondetect/
http://www.miguelcasillas.com/?p=30
http://techny.tumblr.com/post/42125198333/3d-collision-detection-and-resolution-using-sweeping
http://techny.tumblr.com/post/42125198333/3d-collision-detection-and-resolution-using-sweeping
https://itbook.store/books/9781783981182

Chapter 7

267

Getting ready
To work with this recipe, you need to make sure that you use Google Chrome. We use an
internal functionality to save the animation as a WebM file, which unfortunately, still only
works on Google Chrome. We don't have to create the complete functionality for this recipe
from scratch, as there is a library available that handles the low-level technical stuff for us:
CCapture (https://github.com/spite/ccapture.js/). To work with this library,
we need to load the following two JavaScript files at the top of our HTML page:

 <script src="../libs/CCapture.min.js"></script>
 <script src="../libs/Whammy.js"></script>

We've provided a very simple example that shows you this recipe in action. If you open up
07.07-save-a-movie-of-an-animation.html in your browser, you'll see a slowly
moving cube in your browser, as shown in the following screenshot:

The reason this cube moves so slowly is that in the background, a movie is being saved.
The libraries used slow down the animation to make sure no frames are skipped. To save
the movie, click on the saveMovie menu button at the top of the screen.

www.itbook.store/books/9781783981182

https://github.com/spite/ccapture.js/
https://itbook.store/books/9781783981182

Animation and Physics

268

The resulting movie can now be played in the movie player of your choice, which supports
WebM (for instance, VLC or mPlayer) as shown in the following screenshot:

How to do it…
Once you've included the appropriate libraries in your HTML page, using this library is
actually very easy:

1. The first thing we need to do is create a capture object:
 Var capturer = new CCapture({
 framerate: 20
 });

Here, we create a capturer that captures 20 frames per second.

2. The next step before we start rendering the scene is to start capturer:
 capturer.start();
 // call the render loop
 render();

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

269

3. We also need to tell capturer what to capture in the render loop:
 function render() {
 renderer.render(scene, camera);
 capturer.capture(renderer.domElement);
 requestAnimationFrame(render);
 }

With these steps, the capturer object will start capturing the output of our WebGL
canvas 20 times per second.

4. As a last step, we need to add a functionality to save the movie (in our example, this
is triggered by clicking on the saveMovie button):

 this.saveMovie = function() {
 var videoUrl = capturer.save();
 var link = document.createElement("a");
 link.download = 'video.webm';
 link.href = videoUrl;
 link.click();
 };

This will download the movie as video.webm and save it to your local disk.

When you run this, you will notice that the frame rate in your browser drops significantly. The
reason is that the CCapture library changes the behavior of the requestAnimationFrame
function to make sure it has enough time to capture the screen and add it as a frame to
the movie. The movie file that is created will look like you expected and have the number of
frames per second, as specified in step 1 of this recipe.

There's more…
The approach that we showed you in the recipe works great for most types of animations.
However, when you want to record a user interacting with your scene, you can't use this library
as it slows down the rendering of your scene, which makes interacting with the scene difficult.
An alternative way to record the scene is using a backend service that collects screenshots
and creates a movie server side. An example of such a setup can be found at http://www.
smartjava.org/content/capture-canvas-and-webgl-output-video-using-
websockets.

See also
 f If you just want to save a screenshot instead of a complete movie, you can use the

Saving WebGL output to disk recipe, which we explained in Chapter 6, Point Clouds
and Postprocessing.

www.itbook.store/books/9781783981182

http://www.smartjava.org/content/capture-canvas-and-webgl-output-video-using-websockets
http://www.smartjava.org/content/capture-canvas-and-webgl-output-video-using-websockets
http://www.smartjava.org/content/capture-canvas-and-webgl-output-video-using-websockets
https://itbook.store/books/9781783981182

Animation and Physics

270

Dragging and dropping objects around
a scene

When you create an interactive environment, a common requirement is the option to use
your mouse to drag objects around. This functionality isn't something that is supported out
of the box by Three.js. In this recipe, we'll show you the steps that are needed to implement
this functionality.

Getting ready
For this recipe, we only use the functionality that is available in the standard Three.js library.
We'll use the THREE.Raycaster object together with THREE.Projector to implement the
drag and drop functionality. To see the drag and drop functionality in action, you can open the
07.08-drag-n-drop-object-around-scene.html example in your browser, and you
will see something similar to what is shown in the following screenshot:

In this example, you can see a large number of cubes, which you can move individually.
Just click on one with the mouse and drag it to a new position. This scene also uses
THREE.OrbitControls, so when you click on the white background, you can use
your mouse to rotate the scene.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

271

How to do it…
For this recipe, we need to take a fair amount of steps:

1. The first thing we do is create a number of global variables, which we'll access in
the following steps:
 var plane;
 var selectedObject;
 var projector = new THREE.Projector();
 var offset = new THREE.Vector3();
 var objects =[];

We'll explain how these objects are used in the upcoming steps.

2. When we want to move an object around, we need to determine on what plane
(around which axis) we're going to move the selected cube. A mouse moves in two
dimensions, while our scene moves in three. For this, we'll use a invisible helper
plane, which we define like this:
 plane = new THREE.Mesh(new THREE.PlaneGeometry(2000,
 2000, 18, 18), new THREE.MeshBasicMaterial());
 plane.visible = false;
 scene.add(plane);

This plane is assigned to the global plane variable we saw in step 1.

3. The next step is to create all the cubes. For an easy understanding of this recipe,
we list the code about how cubes are created:
 for (var i = 0 ; i < 200 ; i ++) {
 var cubeGeometry = new THREE.BoxGeometry(2, 2, 2);
 var cubeMaterial = new
 THREE.MeshLambertMaterial({color:
 Math.random() * 0xffffff});
 cubeMaterial.transparent = true;
 cube = new THREE.Mesh(cubeGeometry, cubeMaterial);
 objects.push(cube);
 // randomize position, scale and rotation
 scene.add(cube);
 }

The most interesting line is the highlighted one, where we add the created cube
to the global array with the name objects. Only cubes from this array can be
moved around.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

272

4. Now that we've got the basics out of the way, we need to tell Three.js what to do when
the mouse moves, when a mouse button is clicked on, and when a mouse button is
released. Let's first look at the onmousemove function:
 document.onmousemove = function(e) {
 ...
 };

Before we can access the information from the mouse movement, we need to register
a listener. We do this, as you can see in the code snippet, by assigning a function
to the document.onmousemove property. In the following steps, we'll look at the
contents of this onmousemove function.

5. In the onmousemove function, we do a couple of different things. The first thing we
always need to do is convert the mouse position to a position in 3D space and create
THREE.Raycaster for that position:
 // get the mouse position in viewport coordinates
 var mouse_x = (event.clientX / window.innerWidth)
 * 2 - 1;
 var mouse_y = - (event.clientY / window.innerHeight)
 * 2 + 1;
 // get the 3D position and create a raycaster
 var vector = new THREE.Vector3(mouse_x, mouse_y, 0.5);
 projector.unprojectVector(vector, camera);
 var raycaster = new THREE.Raycaster(camera.position,
 vector.sub(camera.position).normalize());

At this point, we can use THREE.Raycaster to select objects that are the position
of our mouse.

6. The next step is to either drag an object around if we've already clicked on one
(see steps 7, 8, and 9 for more details on this), or reposition the plane we created
in step 2:
 if (selectedObject) {
 var intersects = raycaster.intersectObject(plane);
 selectedObject.position.copy(intersects[0]
 .point.sub(offset));
 } else {
 var intersects = raycaster.intersectObjects(objects);
 if (intersects.length > 0) {
 plane.position.copy(intersects[0]
 .object.position);
 plane.lookAt(camera.position);
 }
 }

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

273

If we've selected an object and are dragging it around, we set the position of that
object based on the position where the ray cast from our mouse intersects the
invisible helper plane using the offset that we calculate in step 9. If we aren't
dragging an object around, and using our ray we determine that we intersect one
of the cubes, we move our helper plane object to the position of that object and
make sure the plane faces the camera (plane.lookAt(camera.position)).
The object, if we select it, will move alongside this helper plane object.

7. Next, we need to define a function to handle the onmousedown events:
 document.onmousedown = function(event) {
 ...
 };

8. Now, let's look at what to fill in for the onmousedown event:
 var mouse_x = (event.clientX / window.innerWidth)* 2 - 1;
 var mouse_y = -(event.clientY / window.innerHeight)*
 2 + 1;
 var vector = new THREE.Vector3(mouse_x, mouse_y, 0.5);
 projector.unprojectVector(vector, camera);
 var raycaster = new THREE.Raycaster(camera.position,
 vector.sub(camera.position).normalize());
 var intersects = raycaster.intersectObjects(objects);

We once again use THREE.Raycaster to determine whether an object intersects
with a ray cast from the position of our mouse.

9. Now that we know the intersects, we can use them to select the object we're
interested in:
 if (intersects.length > 0) {
 orbit.enabled = false;
 selectedObject = intersects[0].object;
 // and calculate the offset
 var intersects = raycaster.intersectObject(plane);
 offset.copy(intersects[0].point).sub(plane.position);
}

As you can see in this snippet, we first disable the orbit controller (as we want to
drag the object around and not rotate the scene). Next, we assign the first intersected
object to the selectedObject variable, which we used in step 6 to move the
selected cube around. Finally, we need to determine the offset between the point
where we clicked and the center of the plane. We need this to correctly position the
cube in step 6.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

274

10. The last step we need to take is to enable the orbit controller when we release the
mouse button and set the selectedObject property back to null:

 document.onmouseup = function(event) {
 orbit.enabled = true;
 selectedObject = null;
 }

As you can see, there are plenty of steps you need to take to implement this recipe. You can
also look at the sources from 07.08-drag-n-drop-object-around-scene.html,
which also contain inline documentation about why certain steps are needed.

There's more…
This recipe was based on the example from the Three.js website, which you can find at
http://threejs.org/examples/#webgl_interactive_draggablecubes.
So, for another example to play around with, you can look at that implementation.

In this recipe, we showed you how you can move the complete mesh around. You can also
use this same approach to move individual vertices, faces, or lines around. So, with a little
bit of effort, you can use this approach to create a kind of sculpting tool with which you could
directly modify a geometry from your browser. For instance, you could create something like
this http://stephaneginier.com/sculptgl/.

See also
 f In this chapter, we also use THREE.Raycaster for the Adding simple collision

detection recipe. If you want to drag and drop external files onto your Three.js scene,
you can refer to the Dragging a file from the desktop to the scene recipe in Chapter 1,
Getting Started.

Adding a physics engine
In the recipes so far, we've added animations and detection collisions to the scene manually.
In this recipe, we'll show you how to use an external physics engine to add gravity, collision
detection, and other physics effects to your scene.

www.itbook.store/books/9781783981182

http://threejs.org/examples/#webgl_interactive_draggablecubes
http://stephaneginier.com/sculptgl/
https://itbook.store/books/9781783981182

Chapter 7

275

Getting ready
For this recipe, we need to use a couple of external libraries. At the top of your HTML page,
you have to add the following:

 <script src="../libs/physi.js"></script>

This library contains the main implementation of the physics engine. This library in itself uses
two additional libraries that need to be provided. You first need to make sure the ammo.js
library is stored in the same location as the physi.js library, and at the beginning of your
JavaScript code, you should add this:

 Physijs.scripts.worker = "../libs/physijs_worker.js";

This points to a web worker (http://www.w3.org/TR/workers/) that handles the physics
calculations in a separate thread. There is, of course, a ready-to-use example of this recipe
that you can use as a reference or to experiment with. The example for this recipe is called
07.09-add-a-physics-engine.html, and when this is opened in the browser you will
see something similar to what is shown in the following screenshot:

In this example, you can use the addCube button to add cubes to the scene. This cube will
be added high above the ground plane and will drop down. The physics engine will determine
how the falling cube interacts with its environment.

www.itbook.store/books/9781783981182

http://www.w3.org/TR/workers/
https://itbook.store/books/9781783981182

Animation and Physics

276

How to do it…
In this recipe, we only set up a basic physics-enabled scene. Refer to the There's more…
section of this recipe for additional functionality provided by the Physijs library. To create a
basic scene, you need to take the following steps:

1. The first thing to do is that instead of creating THREE.Scene, we'll create
Physics.Scene:
 scene = new Physijs.Scene;
 scene.setGravity(new THREE.Vector3(0, -30, 0));

On this newly created scene, we also need to set the gravity property. In this case,
we set a gravity of -30 on the y axis, which means a scene where objects fall down.

2. Next, let's create THREE.Geometry and THREE.MeshLambertMaterial, which
we'll use for the cubes:
 var cubeGeometry = new THREE.BoxGeometry(
 4 * Math.random() + 2,
 4 * Math.random() + 2,
 4 * Math.random() + 2);
 var cubeMaterial = new THREE.MeshLambertMaterial(
 {
 color: 0xffffff * Math.random()
 }
);

There is nothing special to do in this step for Physijs.

3. The next step is to create a mesh object. For objects to work with Physijs, we need
to create a Physijs library specific mesh and a Physijs library specific material:
 var box_material = Physijs.createMaterial(
 cubeMaterial,
 control.friction,
 control.restitution);
 var cube = new Physijs.BoxMesh(
 cubeGeometry,
 box_material,
 10
);
 scene.add(cube);

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Chapter 7

277

For the material, we use the Physijs.createMaterial function. This wraps
our material created in step 2 and allows us to define the friction and restitution
properties. The friction defines the roughness of the object and affects how far it
can slide over another object. The restitution object is used for the bounciness
of an object. To create a mesh, we use the Physijs.BoxMesh object, provide the
geometry and the material we just created, and also add the weight of the object.
Physijs provides differently shaped meshes; for more information on them,
refer to the There's more… section of this recipe.

4. The final step we need to take is to update the render loop:

 function render() {
 renderer.render(scene, camera);
 requestAnimationFrame(render);
 scene.simulate();
 }

Here, we add the scene.simulate function. This is used to calculate the
new positions of all the objects that have been wrapped in a Physijs library
specific mesh.

With these basic steps, you've got a fully working physics-enabled Three.js scene.
An important aspect to take into account when using this engine is that there is a hit
on performance. For each object of the scene, Physijs will need to calculate its next
position and rotation. This works great for tens of objects, but you'll see a severe hit
when working with hundreds of Physijs-managed objects.

How it works…
We call scene.simulate(), which we added to the render loop in step 4, for each frame
that is rendered. When this function is called, Physijs will look at all the objects it knows
about, and it also looks at the gravity configured on the scene and will use that information to
calculate new positions and rotations for each object if collisions between objects occur. it will
use the friction and restitution properties of the Physijs material and the weight
function of an object to determine how that object and the one it collides with should react.
This is repeated in each render loop and gives the simulation of real physics in the scene.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Animation and Physics

278

There's more…
What we've done in this recipe is only a very small part of what is possible with this physics
engine. You can find more information on the Physijs website at http://chandlerprall.
github.io/Physijs/. Interesting subjects from that site are:

 f Support for different object shapes: https://github.com/chandlerprall/
Physijs/wiki/Basic-Shapes.

 f How to add constraints to your object. This makes it possible to constrain the
movement of an object around an axis (like a slider), a joint, or even another
object. More information on this feature can be found at https://github.com/
chandlerprall/Physijs/wiki/Constraints.

Physijs uses an external physics library for all the calculations. For more information on
that engine, look at the ammo.js website (https://github.com/kripken/ammo.js/).
Note that ammo.js itself is a JavaScript port of the Bullet physics engine. So, if you really want
to dive into the details, you should look at the Bullet documentation that can be found at
http://bulletphysics.org/wordpress/.

See also
 f If you don't want to include a complete physics engine inside your project, you can

also simulate parts of a physics engine yourself. How to add basic collision detection
to your scene is explained in the Adding a simple collision detection recipe.

www.itbook.store/books/9781783981182

http://chandlerprall.github.io/Physijs/
http://chandlerprall.github.io/Physijs/
https://github.com/chandlerprall/Physijs/wiki/Basic-Shapes
https://github.com/chandlerprall/Physijs/wiki/Basic-Shapes
https://github.com/chandlerprall/Physijs/wiki/Constraints
https://github.com/chandlerprall/Physijs/wiki/Constraints
https://github.com/kripken/ammo.js/
http://bulletphysics.org/wordpress/
https://itbook.store/books/9781783981182

Index
Symbols
2D overlay

creating 115-120
3D

text, writing 76-79
3D geometries

3D formulas, rendering as 80-82
3D parameters

bevelEnabled 79
bevelSize 79
bevelThickness 79
curveSegments 79
extrudeMaterial 79
font 79
height 79
material 79
size 79
weight 79

.mtl file 95

A
addControls function, arguments

maximum value 29
minimum value 29
name 29
object 29

ambient lighting
added, for softening lights 186, 187

animating
morph targets, used for 245-249
with skeletons 250-254

animation loop
setting up 23, 24

animation movie
saving, in Chrome 266-269

animations
creating, with Tween.js 242-245

attribute qualifier 201

B
Blender

model, creating from 88-93
model, exporting from 88-93
references 262
URL 88, 175
used, for creating custom UV

mapping 167-171
blending property 211
blend modes

configuring 172-175
Bullet documentation

URL 278
bump map

depth adding, to mesh with 134-136
bump mapping

URL 136

C
callbacks

onerror callback 41
onload callback 41
onprogress callback 41

camera
creating, to follow object 102-104
rotating, around scene 120-123
zooming, to object 105-108

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

280

Canvas renderer 12, 13
CCapture

URL 267
chroma library

URL 72
Chrome

animation movie, saving 266-269
cross-origin-domain error messages,

solving 33, 34
collision detection

adding 263-266
URL 266

color property 191
const qualifier 201
control.scale variable 229
CORS

URL 36
cross-origin-domain error messages

solving, in Chrome 33, 34
solving, in Firefox 35, 36

CSS 3D renderer
about 14-18
URL 15

cubemap
URL 162
used, for creating reflective

materials 158-163
cubic Bezier curve

URL 88
custom fragment shader

creating 203-207
custom geometry object

Three.js, extending with 83-85
custom postprocessing steps

creating 233-237
custom UV mapping

creating, Blender used 167-171
custom vertex shader

creating 198-202

D
dat.gui library

about 30
URL 27, 30

depth
adding, to mesh with bump map 134-136
adding, to mesh with normal map 137-140

detector object
URL 22

disk
WebGL output, saving to 238-240

distance property 191
dragging and dropping objects

around scene 270-274
dynamic cubemap

used, for creating reflective
materials 164-166

E
end vector 87

F
faces

separate materials, used for 148-152
Far plane 111
file

dragging, from desktop to scene 51-55
Firefox

cross-origin-domain error messages,
solving 35, 36

Firefox Dev Tools
URL 207

fixed shadows
shadow map, used for 175-177

fonts
URL 79

formats, Three.js
URL 96

fragment shaders
URL 207

frame rate
determining, for scene 25-27

G
geometries

creating, from height map 69-73

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

281

H
height map

geometries, creating from 69-73
HTML5 documentation

URL 55
HTML canvas

used, as texture 141, 142
HTML video

used, as texture 143-145

I
individual points

coloring, in point cloud 216-218
moving, of point cloud 224, 225
styling 218-223

inheritance, prototype property
URL 85

J
JSONLoader object 44

K
keyboard controls

adding 37-40
khronos website

URL 198, 207

L
large number of objects

working with 66-68
lighthouse3d

URL 202
lights

softening, ambient lighting added 186, 187
light source

following, object 195-197
moving, along path 192-195

local web server
setting up, Mongoose used 32
setting up, with Node.js 31, 32
setting up, with Python 30, 31

lookAt function 76

M
map property 136
matrix transformations

applying 97-100
makeRotationAxis(axis, angle) 100
makeRotationX(theta) 100
makeRotationY(theta) 100
makeScale(x, y, z) 100
makeTranslation(x, y, z) 100
URL 98

mesh
creating, with multiple materials 146, 147

middle vector 87
model

creating, from Blender 88-92
exporting, from Blender 88-92
loading, asynchronously 43, 44
loading asynchronously, with progress 45

Mongoose
about 30
URL 32
used, for setting up local web server 32

morph animation, Blender
using 254-258

morph targets
used, for animating 245-249

moving all-directional light
adding 190-192

multiple materials
mesh, creating with 146, 147
OBJMTLLoader, used with 93-96

N
natural lighting

THREE.HemisphereLight, used for 188, 189
Near plane 111
Node.js

local web server, setting up 31, 32
URL 31

normal map
depth adding, to mesh with 137-140
URL 140

normal vector 140
numPoints object 87

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

282

O
object

camera, zooming to 105-108
making, partially transparent 155-157
pointing, to another object 74, 75
rotating, around own axis 58-60
rotating, around point in space 60-63
selecting, in scene 128-131

object shapes
URL 278

OBJMTLLoader
used, with multiple materials 93-96

orthographic camera
using 112-115

other resources
loading asynchronously, with progress 46

P
perspective camera

using 109-111
physics engine

adding 274-278
Physijs

URL 278
point cloud

creating 210-212
creating, from scratch 213-215
exploding 226-229
individual points, coloring 216-218
individual points, moving of 224, 225

points, WebGL
URL 212

postprocessing pipeline
setting up 230-233

Python
local web server, setting up 30, 31
URL 31

Q
Q wiki

URL 51

R
reflective materials

creating, cubemap used 158-163
creating, dynamic cubemap used 164-166

rendered view
matching, to resized browser 123-125

render function 201
repeating textures

setting up 152-154
resize event

URL 125
resized browser

rendered view, matching to 123-125
resources

loading 47-51
RFC

URL 240

S
scene

object, selecting 128-131
screen coordinates

world coordinates, converting to 126, 127
sculpting tool

URL 274
separate materials

used, for faces 148-152
shader editor

URL 207
shaders

about 198
URL 233, 237

Shadertoy
URL 207

shadow map
used, for fixed shadows 175-177

shadows
creating, with

THREE.DirectionalLight 183-186
creating, with THREE.SpotLight 180-183

SimCity
URL 112

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

283

Sintel
URL 143

skeletal animation
URL 253

skeleton animations, Blender
using 258-262

skeletons
animating with 250-254

spline curve
creating, between two points 86-88

start vector 87
stats.js

URL 25

T
text

writing, in 3D 76-79
text property 77
texture

HTML canvas, using as 141, 142
HTML video, using as 143-145
loading, asynchronously 40-43

THREE.DirectionalLight
shadows, creating with 183-186

THREE.HemisphereLight
used, for natural lighting 188, 189

Three.js
about 209
extending, with custom geometry

object 83-85
updating 63-65
URL 258

THREE.SpotLight
shadows, creating with 180-183

Tween.js
animations, creating with 242-245
URL 242, 244

U
uniform qualifier 201
UV mapping, in Blender

URL 172

V
variables

controlling, in scene 27-30
varying qualifier 201
vNormal object 206

W
WebGL

URL 12
WebGL output

saving, to disk 238-240
URL 240

WebGL primitive
URL 212

WebGL renderer 8-12
WebGL specification

URL 203
WebGL support

detecting 18-22
web worker

URL 275
world coordinates

converting, to screen coordinates 126, 127

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Thank you for buying

Three.js Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Three.js Essentials
ISBN: 978-1-78398-086-4 Paperback: 198 pages

Create and animate beautiful 3D graphics with this
fast-paced tutorial

1. Acquire thorough knowledge of the essential
features of Three.js, explained using
comprehensive examples.

2. Animate HTML5 elements directly from Three.js
using the CSS3 3D renderer.

3. Visualize information such as sound and open
data in beautiful 3D.

Learning Three.js:
The JavaScript 3D Library
for WebGL
ISBN: 978-1-78216-628-3 Paperback: 402 pages

Create and animate stunning 3D graphics using the
open source Three.js JavaScript library

1. Create and animate beautiful 3D graphics directly
in the browser using JavaScript without the need
to learn WebGL.

2. Learn how to enhance your 3D graphics with
light sources, shadows, and advanced materials
and textures.

3. Each subject is explained using extensive
examples that you can directly use and
adapt for your own purposes.

Please check www.PacktPub.com for information on our titles

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

Game Development with
Three.js
ISBN: 978-1-78216-853-9 Paperback: 118 pages

Embrace the next generation of game development
and reach millions of gamers online with the Three.js
3D graphics library

1. Develop immersive 3D games that anyone can
play on the Internet.

2. Learn Three.js from a gaming perspective,
including everything you need to a build
beautiful and high-performance worlds.

3. A step-by-step guide filled with game-focused
examples and tips.

Node Cookbook
Second Edition
ISBN: 978-1-78328-043-8 Paperback: 378 pages

Over 50 recipes to master the art of asynchronous
server-side JavaScript using Node.js, with coverage
of Express 4 and Socket.IO framework and the new
Streams API

1. Work with JSON, XML, and web sockets to make
the most of asynchronous programming.

2. Extensive code samples covering Express 4
and Socket.IO.

3. Learn how to process data with streams and
create specialized streams.

Please check www.PacktPub.com for information on our titles

www.itbook.store/books/9781783981182

https://itbook.store/books/9781783981182

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction
	Getting started with the WebGL renderer
	Getting started with the Canvas renderer
	Getting started with the CSS 3D renderer
	Detecting WebGL support
	Setting up an animation loop
	Determining the frame rate for your scene
	Controlling the variables used in the scene
	Setting up a local web server with Python
	Setting up a local web server with Node.js
	Setting up a local web server using Mongoose
	Solving cross-origin-domain error messages in Chrome
	Solving cross-origin-domain error messages in Firefox
	Adding keyboard controls
	Loading textures asynchronously
	Loading models asynchronously
	Loading models asynchronously with progress
	Loading other resources asynchronously with progress
	Waiting until resources are loaded
	Dragging a file from the desktop to
the scene

	Chapter 2: Geometries and Meshes
	Introduction
	Rotating an object around its own axis
	Rotating an object around a point in space
	Informing Three.js about updates
	Working with a large number of objects
	Creating geometries from height maps
	Pointing an object to another object
	Writing text in 3D
	Rendering 3D formulas as 3D geometries
	Extending Three.js with a custom geometry object
	Creating a spline curve between two points
	Creating and exporting a model from Blender
	Using OBJMTLLoader with multiple materials
	Applying matrix transformations

	Chapter 3: Working with the Camera
	Introduction
	Making the camera follow an object
	Zooming the camera to an object
	Using a perspective camera
	Using an orthographic camera
	Creating a 2D overlay
	Rotating the camera around a scene
	Matching the rendered view to a resized browser
	Converting world coordinates to screen coordinates
	Selecting an object in the scene

	Chapter 4: Materials and Textures
	Introduction
	Adding depth to a mesh with a bump map
	Adding depth to a mesh with a normal map
	Using HTML canvas as a texture
	Using HTML video as a texture
	Creating a mesh with multiple materials
	Using separate materials for faces
	Setting up repeating textures
	Making part of an object transparent
	Using a cubemap to create reflective materials
	Using a dynamic cubemap to create reflective materials
	Using Blender to create custom UV mapping
	Configuring blend modes
	Using a shadow map for fixed shadows

	Chapter 5: Lights and Custom Shaders
	Introduction
	Creating shadows with THREE.SpotLight
	Creating shadows with THREE.DirectionalLight
	Softening lights by adding ambient lighting
	Using THREE.HemisphereLight for natural lighting
	Adding a moving all-directional light
	Moving a light source along a path
	Making a light source follow an object
	Creating a custom vertex shader
	Creating a custom fragment shader

	Chapter 6: Point Clouds and Postprocessing
	Introduction
	Creating a point cloud based on a geometry
	Creating a point cloud from scratch
	Coloring the individual points in a point cloud
	Styling individual points
	Moving individual points of a point cloud
	Exploding a point cloud
	Setting up the basic postprocessing pipeline
	Creating custom postprocessing steps
	Saving WebGL output to disk

	Chapter 7: Animation and Physics
	Introduction
	Creating animations with Tween.js
	Animating using morph targets
	Animating with skeletons
	Using morph animations created in Blender
	Using skeleton animations created in Blender
	Adding a simple collision detection
	Saving a movie of an animation in Chrome
	Dragging and dropping objects around
a scene
	Adding a physics engine

	Index

