
www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Odoo Development Essentials

Fast track your development skills to build powerful
Odoo business applications

Daniel Reis

BIRMINGHAM - MUMBAI

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Odoo Development Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 2090615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-279-6

www.packtpub.com

www.itbook.store/books/9781784392796

www.packtpub.com
https://itbook.store/books/9781784392796

Credits

Author
Daniel Reis

Reviewers
Pedro M. Baeza

Nicolas Bessi

Alexandre Fayolle

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Subho Gupta

Content Development Editor
Siddhesh Salvi

Technical Editors
Ankur Ghiye

Manali Gonsalves

Naveenkumar Jain

Copy Editors
Hiral Bhat

Pranjali Chury

Wishva Shah

Sameen Siddiqui

Project Coordinator
Nidhi J. Joshi

Proofreaders
Paul Hindle

Chris Smith

Indexer
Tejal Soni

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

About the Author

Daniel Reis has worked in the IT industry for over 15 years, most of it for
a multinational consultancy firm, implementing business applications for a
variety of sectors, including telco, banking, and industry. He has been working
with Odoo (formerly OpenERP) since 2010, is an active contributor to the Odoo
Community Association projects, and has been a regular speaker at the OpenDays
annual conference.

He currently works at Securitas, a global security services company, where he
introduced Python and Odoo into the applications portfolio.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

About the Reviewers

Pedro M. Baeza is an Odoo freelance consultant, developer, and trainer with
more than 16 years of experience in IT. He's been in the Odoo world for 4 years,
and has been involved in its community since the beginning, first in the Spanish
community, and then in the worldwide community that later formed the Odoo
Community Association (OCA). Currently, he is the Spanish localization PSC and
website PSC team leader, and also an active reviewer and contributor for most of
the community projects.

He doesn't have direct employees, but collaborates with other companies and
freelancers to deploy Odoo implementations. He feels that the best part of this is
having to contact a lot of awesome people to work with to get to a common goal
and that this is the perfect environment for getting close to perfection!

I would like to thank the awesome community, which is spread
around the world, for pushing me a little further and adding to my
knowledge. I also want to thank my girlfriend (and future wife),
Esther, for understanding why I'm unable to spend time with her
because of the job and my current commitment to the community.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Nicolas Bessi has been an Odoo/OpenERP developer and consultant since 2006
when it was still TinyERP. He is the author of many modules including the "report
webkit" add-on that was part of the official add-ons for many years, which inspired
the actual QWeb report engine.

He's an active member of Odoo Community Association and is responsible for Swiss
localization. He was recognized as an OpenERP top contributor in 2010, and is still
an active partisan of Open Source values.

Nicolas is a technical leader at Camptocamp, a leading society in Open Source
technologies that is a historical Odoo contibutor and partner. Camtocamp is actively
working alongside Odoo to bring the solution to the next level.

Alexandre Fayolle installed his first Linux distribution in 1995 (Slackware at
the time, before moving to Debian in 1996) and has never used another OS on his
computers since. He started using Python in 1999 when he cofounded Logilab,
where he was a CTO, software architect, and Agile coach. He got the opportunity to
participate in a large number of FLOSS projects, including pyxml, Pypy, Cubicweb,
and Pylint. In 2012, he joined Camptocamp to work on Odoo, which was still called
OpenERP at the time. He became a very active member of the Odoo Community
Association, both as a direct module contributor and as a mentor to new comers.
He also happens to be a jazz vibraphone player.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.itbook.store/books/9781784392796

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
https://itbook.store/books/9781784392796

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[i]

Table of Contents
Preface	 vii
Chapter 1: Getting Started with Odoo Development	 1

Setting up a host for the Odoo server	 1
Provisions for a Debian host	 2
Creating a user account for Odoo	 3

Installing Odoo from source	 4
Initializing a new Odoo database	 5

Managing your databases	 6
A word about Odoo product versions	 7
More server configuration options	 8

Odoo server configuration files	 8
Changing the listening port	 8
Logging	 9

Developing from your workstation	 9
Using a Linux text editor	 10
Installing and configuring Samba	 10

Enabling the on-board technical tools	 12
Activating the Technical Features	 12
Activating the Developer mode	 13

Installing third-party modules	 14
Finding community modules	 14
Configuring the addons path	 15
Updating the module list	 16

Summary	 16
Chapter 2: Building Your First Odoo Application	 17

Understanding applications and modules	 18
Modifying and extending modules	 18
Creating a new module	 19

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Table of Contents

[ii]

Adding to the addons path	 21
Installing the new module	 22
Upgrading a module	 22
Creating an application model	 23
Adding menu entries	 25
Creating views – form, tree, and search	 27

Creating a form view	 27
Formatting as a business document	 28
Adding action buttons	 28
Organizing forms using groups	 29
The complete form view	 29

Adding list and search views	 30
Adding business logic	 31
Setting up access control security	 32
Row-level access rules	 34
Adding an icon to the module	 35
Summary	 36

Chapter 3: Inheritance – Extending Existing Applications	 37
Adding sharing capability to the To-Do app	 37

Road map for the user sharing features	 38
Extending the to-do task model	 39

Adding fields to a model	 39
Modifying existing fields	 40
Modifying model's methods	 41

Extending views	 42
Extending tree and search views	 45

More on using inheritance to extend models	 46
Copying features using prototype inheritance	 46
Embedding models using delegation inheritance	 47

Using inheritance to add social network features	 48
Modifying data	 49

Extending the record rules	 50
Summary	 51

Chapter 4: Data Serialization and Module Data	 53
Understanding external identifiers	 53

Finding External IDs	 55
Exporting and importing data	 56

Exporting data	 56
Importing data	 58
Related records in CSV data files	 59

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Table of Contents

[iii]

Module data	 60
Demonstration data	 61

XML data files	 61
The data noupdate attribute	 62
Defining Records in XML	 63
Setting field values	 63
Setting values using expressions	 64
Setting values for relation fields	 64
Shortcuts for frequently used Models	 65
Other actions in XML data files	 66

Deleting records	 66
Triggering functions and workflows	 66

Summary	 67
Chapter 5: Models – Structuring the Application Data	 69

Organizing application features into modules	 69
Introducing the todo_ui module	 70
Creating models	 71

Model attributes	 72
Models and Python classes	 72
Transient and Abstract models	 73
Inspecting existing models	 74

Creating fields	 75
Basic field types	 75
Common field attributes	 76
Reserved field names	 77

Relations between models	 78
Many to one relations	 79
Many to many relations	 79
One to many inverse relations	 81
Hierarchical relations	 81
Referencing fields using dynamic relations	 82

Computed fields	 83
Search and write on computed fields	 84
Storing computed fields	 85
Related fields	 85

Model constraints	 86
Summary	 86

Chapter 6: Views – Designing the User Interface	 87
Window actions	 88
Menu items	 89

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Table of Contents

[iv]

Context and domain	 90
Session context	 90
Domain expressions	 91

Form views	 93
Business views	 93
The header status bar	 94

The business flow pipeline	 95
Title and subtitle	 96
Labels for fields	 96
Smart buttons	 97
Organizing content in a form	 98
Tabbed notebooks	 99

View elements	 99
Buttons	 99
Fields	 100

Relational fields	 101
Field widgets	 101
On-change events	 102

Dynamic views	 102
List views	 103
Search views	 104
Other types of views	 105

Calendar views	 105
Gantt views	 106
Graph views	 107

Summary	 108
Chapter 7: ORM Application Logic – Supporting
Business Processes	 109

To-do wizard	 109
Wizard model	 110
Wizard form	 111
Wizard business logic	 113
Raising exceptions	 114
Auto-reloading code changes	 114
Actions on the wizard dialog	 114

Working with the server	 116
Using relation fields	 117
Querying models	 118
Writing on records	 119
Transactions and low-level SQL	 120
Working with time and dates	 121
Working with relation fields	 122

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Table of Contents

[v]

Manipulating recordsets	 123
Other recordset operations	 124

The execution environment	 125
Model methods for client interaction	 125

Overriding the default methods	 127
Model method decorators	 128
Debugging	 129

Summary	 132
Chapter 8: QWeb – Creating Kanban Views and Reports	 133

Getting started with kanban board	 134
Kanban views	 134

Design kanban views	 136
Priority and kanban state	 137
Kanban view elements	 137
The vignette kanban view	 138
Actions in kanban views	 140
The card kanban view	 140

Adding QWeb dynamic content	 141
Conditional rendering with t-if	 142
Rendering values with t-esc and t-raw	 143
Loop rendering with t-foreach	 143
Dynamic attributes with t-att- prefixes	 144
String substitution in attributes with t-attf- prefixes	 145
Setting variables with t-set	 145
Calling other templates with t-call	 146
Other QWeb directives	 148
Advanced kanban elements	 148
Adding a kanban card option menu	 148
Adding colors to kanban cards	 149
Using text ellipsis for long texts	 150
Custom CSS and JavaScript assets	 150

Creating business reports	 151
Installing wkhtmltopdf	 152
QWeb report templates	 152
Presenting data in reports	 153
Enabling language translation in reports	 155
Designing report content	 155
Paper formats	 157

Summary	 158

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Table of Contents

[vi]

Chapter 9: External API – Integration with Other Systems	 159
Setting up a Python client	 159
Calling the Odoo API using XML-RPC	 160

Opening an XML-RPC connection	 160
Reading data from the server	 161
Calling other methods	 162

Writing a Notes desktop application	 163
Communication layer with Odoo	 164
Creating the GUI	 165

Introducing the ERPpeek client	 167
The ERPpeek API	 167
The ERPpeek CLI	 168

Summary	 169
Chapter 10: Deployment Checklist – Going Live	 171

Installing Odoo	 171
Installing from the source code	 172
Setting up the configuration file	 173
Setting up as a system service	 174

Using a reverse proxy	 176
Setting up nginx for reverse proxy	 176
Enforcing HTTPS	 178
Nginx optimizations	 179
Long polling	 180

Server and module updates	 181
Summary	 182

Index	 183

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[vii]

Preface
Odoo is a powerful open source platform for business applications. On top of it
a suite of closely integrated applications was built, covering all business areas
from CRM and Sales to Accounting and Stocks. Odoo has a dynamic and growing
community around it, constantly adding features, connectors, and additional
business apps.

Odoo Development Essentials provides a step-by-step guide to Odoo development
to quickly climb the learning curve and become productive in the Odoo
application platform.

The first three chapters aim to make the reader comfortable with Odoo, the basic
techniques to set up a development environment, and with the module development
approach and workflow.

The next five chapters explain in detail several development areas used in modules:
data files, models, views, business logic, and QWeb.

The two final chapters guide you through integrating Odoo applications with
external applications and discuss what to consider when deploying your Odoo
instance for production use.

What this book covers
Chapter 1, Getting Started with Odoo Development, covers setting up a development
environment, installing Odoo from source, and learning how to manage Odoo
server instances.

Chapter 2, Building Your First Odoo Application, guides you through the creation of
your first Odoo module, covering all the different layers involved: models, views,
and business logic.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Preface

[viii]

Chapter 3, Inheritance – Extending Existing Applications, explains the inheritance
mechanisms and uses them to create extension modules that add or modify
features on other existing modules.

Chapter 4, Data Serialization and Module Data, covers the most used Odoo data file
formats, XML and CSV, external identifiers, and how to use data files in modules
and in data import/export.

Chapter 5, Models – Structuring the Application Data, discusses in detail the Model layer
with the types of models and fields available, including relational and computed fields.

Chapter 6, Views – Designing the User Interface, covers the View layer, explaining in
detail several types of views and all the elements that can be used to create dynamic
and intuitive user interfaces.

Chapter 7, ORM Application Logic – Supporting Business Processes, introduces
programming business logic on the server side, exploring the ORM concepts and
features, and also explains how to use wizards for sophisticated user interaction.

Chapter 8, QWeb – Creating Kanban Views and Reports, goes over the Odoo QWeb
templates, using them to create rich kanban boards and HTML-based reports.

Chapter 9, External API – Integration with Other Systems, explains how to use Odoo
server logic from external applications, and introduces a popular client programming
library that can also be used as a command-line client.

Chapter 10, Deployment Checklist – Going Live, shows you how to prepare a server for
production prime time and explains what configuration should be taken care of and
how to configure an Nginx reverse proxy for improved security and scalability.

What you need for this book
We will install our Odoo server in an Ubuntu or Debian system, but we expect you
to use the operating system and programming tools of your choice, be it Windows,
Macintosh, or any other.

We will provide some guidance on setting up a virtual machine with Ubuntu
Server. You should choose the virtualization software to be used, such as VirtualBox
or VMware Player, both available for free. If you are using Ubuntu or Debian
workstation, no virtual machine will be needed.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Preface

[ix]

Who this book is for
This book is targeted at developers with experience in developing business
applications who are willing to quickly become productive with Odoo.

You are expected to have an understanding of MVC application design and
knowledge of the Python programming language.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"It also needs to be Python importable, so it must also have a __init__.py file."

A block of code is set as follows:

{
 'name': 'To-Do Application',
 'description': 'Manage your personal Tasks with this module.',
 'author': 'Daniel Reis',
 'depends': ['mail'],
 'application': True,
}

Any command-line input or output is written as follows:

$ mkdir ~/odoo-dev/custom-addons

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Select
the Update Modules List option."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

www.itbook.store/books/9781784392796

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
https://itbook.store/books/9781784392796

Preface

[xi]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[1]

Getting Started with
Odoo Development

Before we dive into Odoo development, we need to set up our development
environment, and you need to learn the basic administration tasks for it.

In this chapter, you will learn how to set up the work environment, where we will
later build our Odoo applications.

You will also learn how to set up a Debian or Ubuntu system to host our
development server instances, and how to install Odoo from the GitHub source code.
Then you will learn how to set up file sharing with Samba, allowing you to work on
Odoo files from a workstation running Windows or any other operating system.

Odoo is built using the Python programming language and uses the PostgreSQL
database for its data storage, so these are the main requirements we should have in
our Odoo host.

To run Odoo from source, we will need to install first the Python libraries it depends
on. The Odoo source code can then be downloaded from GitHub and executed from
source. While we can download a zip or tarball, it's best to get the sources using
GitHub, so we'll also have it installed on our Odoo host.

Setting up a host for the Odoo server
We will prefer using Debian/Ubuntu for our Odoo server, even though you will
still be able to work from your favorite desktop system, be it Windows, Macintosh,
or Linux.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Getting Started with Odoo Development

[2]

Odoo can run on a variety of operating systems, so why pick Debian at the expense
of other operating systems? Because Odoo is developed primarily with the Debian/
Ubuntu platform in mind, it supports Odoo better. It will be easier to find help and
additional resources if working with Debian/Ubuntu.

It's also the platform the majority of developers work on, and where most
deployments are rolled out. So, inevitably, Odoo developers will be expected to be
comfortable with that platform. Even if you're from a Windows background it will
be important to have some knowledge about it.

In this chapter, you will learn how to set up and work with Odoo hosted in a Debian
system, using only the command line. For those more at home with a Windows
system, we will cover how to set up a virtual machine to host the Odoo server. As a
bonus, the techniques you will learn will also allow you to manage Odoo in cloud
servers where your only access will be through Secure Shell (SSH).

Keep in mind that these instructions are intended to set up a
new system for development. If you want to try some of them
in an existing system, always take a backup ahead of time to
be able to restore it in case something goes wrong.

Provisions for a Debian host
As explained earlier, we will need a Debian host for our Odoo version 8.0 server.
If these are your first steps with Linux, you may like to know that Ubuntu is a
Debian-based Linux distribution, so they are very similar.

Odoo is guaranteed to work with the current stable version
of Debian or Ubuntu. At the time of writing this book, these
are Debian 7 "Wheezy" and Ubuntu 14.04 "Trusty Tahr". Both
ship with Python 2.7, necessary to run Odoo.

If you are already running Ubuntu or another Debian-based distribution, you're set;
this machine can also be used as a host for Odoo.

For the Windows and Macintosh operating systems, it is possible to have
Python, PostgreSQL, and all the dependencies installed, and then run Odoo
from source natively.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 1

[3]

However, that could prove to be a challenge, so our advice is to use a virtual
machine running Debian or Ubuntu Server. You're welcome to choose your
preferred virtualization software to get a working Debian system in a VM. If you
need some guidance, here is some advice: regarding the virtualization software,
you have several options, such as Microsoft Hyper-V (available in some versions
of Windows), Oracle VirtualBox, or VMWare Player (or VMWare Fusion for
Macintosh). VMWare Player is probably easier to use, and free-to-use downloads can
be found at https://my.vmware.com/web/vmware/downloads.

Regarding the Linux image to use, Ubuntu Server is more user friendly to install
than Debian. If you're beginning with Linux, I would recommend trying a ready-
to-use image. TurnKey Linux provides easy-to-use, preinstalled images in several
formats, including ISO. The ISO format will work with any virtualization software
you choose, or even on a bare-metal machine you might have. A good option might
be the LAPP image, found at http://www.turnkeylinux.org/lapp.

Once installed and booted, you should be able to log in to a command-line shell.

If you are logging in using root, your first task should be to create a user to use for
your work, since it's considered bad practice to work as root. In particular, the Odoo
server will refuse to run if you are using root.

If you are using Ubuntu, you probably won't need this since the installation process
has already guided you in the creation of a user.

Creating a user account for Odoo
First, make sure sudo is installed. Our work user will need it. If logged in as root:

apt-get update && apt-get upgrade # Install system updates

apt-get install sudo # Make sure 'sudo' is installed

The following commands will create an odoo user:

useradd -m -g sudo -s /bin/bash odoo # Create an 'Odoo' user with sudo
powers

passwd odoo # Ask and set a password for the new user

You can change odoo to whatever username you want. The -m option has its home
directory created. The -g sudo adds it to the sudoers list, so it can run commands as
root, and the -s /bin/bash sets the default shell to bash, which is nicer to use than
the default sh.

Now we can log in as the new user and set up Odoo.

www.itbook.store/books/9781784392796

https://my.vmware.com/web/vmware/downloads
http://www.turnkeylinux.org/lapp
https://itbook.store/books/9781784392796

Getting Started with Odoo Development

[4]

Installing Odoo from source
Ready-to-install Odoo packages can be found at nightly.odoo.com, available as
Windows (.exe), Debian (.deb), CentOS (.rpm), and source code tarballs (.tar.gz).

As developers, we will prefer installing directly from the GitHub repository. This
will end up giving us more control over versions and updates.

To keep things tidy, let's work in an /odoo-dev directory inside your home directory.
Throughout the book, we will assume this is where your Odoo server is installed.

First, make sure you are logged in as the user created above, or during the
installation process, and not as root. Assuming your user is odoo, you can confirm
this with the following command:

$ whoami

odoo

$ echo $HOME

/home/odoo

Now we can use this script. It shows us how to install Odoo from source in
a Debian system:

$ sudo apt-get update && sudo apt-get upgrade # Install system updates

$ sudo apt-get install git # Install Git

$ mkdir ~/odoo-dev # Create a directory to work in

$ cd ~/odoo-dev # Go into our work directory

$ git clone https://github.com/odoo/odoo.git -b 8.0 # Get Odoo source
code

$./odoo/odoo.py setup_deps # Installs Odoo system dependencies

$./odoo/odoo.py setup_pg # Installs PostgreSQL & db superuser for unix
user

At the end, Odoo should be ready to be used. The ~ symbol is a shortcut for
your home directory (for example, /home/odoo). The git -b 8.0 option asks to
explicitly download the 8.0 branch of Odoo. At the time of writing this book, this is
redundant, since 8.0 is the default branch, but this may change, so it will make the
script time resilient.

To start an Odoo server instance, just run odoo.py:

$ ~/odoo-dev/odoo/odoo.py

www.itbook.store/books/9781784392796

nightly.odoo.com
https://itbook.store/books/9781784392796

Chapter 1

[5]

By default, Odoo instances listen from port 8069, so if we point a browser to
http://<server-address>:8069 we will reach that instance. When we are
accessing it for the first time, it will show us an assistant to create a new database,
as shown in the following screenshot:

But we will learn how to initialize new databases from the command line, now so
press Ctrl + C to stop the server and get back to the command prompt.

Initializing a new Odoo database
To be able to create a new database, your user must be a PostgreSQL superuser.
The ./odoo.py setup_pg does that for you; otherwise use the following command
to create a PostgreSQL superuser for the current Unix user with:

$ sudo createuser --superuser $(whoami)

To create a new database we use the command createdb. Let's create a v8dev
database:

$ createdb v8dev

To initialize this database with the Odoo data schema we should run Odoo on the
empty database by using the -d option:

$ ~/odoo-dev/odoo/odoo.py -d v8dev

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Getting Started with Odoo Development

[6]

This will take a couple of minutes to initialize a v8dev database, and will end with
an INFO log message Modules loaded. Then the server will be ready to listen to
client requests.

By default, this method will initialize the database with demonstration data,
which often is useful on development databases. To initialize a database without
demonstration data, add to the command the option: --without-demo-data=all.

Open http://<server-name>:8069 in your browser to be presented with the login
screen. If you don't know your server name, type the hostname command at the
terminal to find it, or the ifconfig command to find the IP address.

If you are hosting Odoo in a virtual machine you might need to do some network
configuration to be able to use it as a server. The simplest solution is to change the
VM network type from NAT to Bridged. With this, instead of sharing the host IP
address, the guest VM will have its own IP address. It's also possible to use NAT,
but that requires you to configure port forwarding, so your system knows that some
ports, such as 8069, should be handled by the VM. In case you're having trouble,
hopefully these details can help you find help in the documentation for your chosen
virtualization software.

The default administrator account is admin with password admin. Upon login you
are presented with the Settings menu, displaying the installed modules. Remove the
Installed filter and you will be able to see and install any of the official modules.

Whenever you want to stop the Odoo server instance and return to the command
line, press Ctrl + C. At the bash prompt, pressing the Up arrow key will bring you
the previous shell command, so it's a quick way to start Odoo again with the same
options. You will see the Ctrl + C followed by Up arrow and Enter is a frequently
used combination to restart the Odoo server during development.

Managing your databases
We've seen how to create and initialize new Odoo databases from the command line.
There are more commands worth knowing for managing databases.

You already know how to use the createdb command to create empty databases,
but it can also create a new database by copying an existing one, by using a
--template option.

Make sure your Odoo instance is stopped and you have no other connection open on
the v8dev database created above, and run:

$ createdb --template=v8dev v8test

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 1

[7]

In fact, every time we create a database, a template is used. If none is specified,
a predefined one called template1 is used.

To list the existing databases in your system use the PostgreSQL utility psql utility
with the -l option:

$ psql -l

Running it we should see listed the two databases we created so far: v8dev and
v8test. The list will also display the encoding used in each database. The default is
UTF8, which is the encoding needed for Odoo databases.

To remove a database you no longer need (or want to recreate), use the
dropdb command:

$ dropdb v8test

Now you know the basics to work with several databases. To learn more on
PostgresSQL, the official documentation can be found at http://www.postgresql.
org/docs/

WARNING: The drop database will irrevocably destroy your
data. Be careful when using it and always keep backups of
your important databases before using it.

A word about Odoo product versions
At the date of writing, Odoo's latest stable is version 8, marked on GitHub as branch
8.0. This is the version we will work with throughout the book.

It's important to note that Odoo databases are incompatible between Odoo major
versions. This means that if you run Odoo 8 server against an Odoo/OpenERP 7
database, it won't work. Non-trivial migration work is needed before a database can
be used with a later version of the product.

The same is true for modules: as a general rule a module developed for an Odoo
major version will not work with other versions. When downloading a community
module from the Web, make sure it targets the Odoo version you are using.

On the other hand, major releases (7.0, 8.0) are expected to receive frequent updates,
but these should be mostly fixes. They are assured to be "API stable", meaning
that model data structures and view element identifiers will remain stable. This is
important because it means there will be no risk of custom modules breaking due to
incompatible changes on the upstream core modules.

www.itbook.store/books/9781784392796

http://www.postgresql.org/docs/
http://www.postgresql.org/docs/
https://itbook.store/books/9781784392796

Getting Started with Odoo Development

[8]

And be warned that the version in the master branch will result in the next major
stable version, but until then it's not "API stable" and you should not use it to build
custom modules. Doing so is like moving on quicksand: you can't be sure when
some changes will be introduced that will make you custom module break.

More server configuration options
The Odoo server supports quite a few other options. We can check all available
options with the --help option:

$./odoo.py --help

It's worth while to have an overview on the most important ones.

Odoo server configuration files
Most of the options can be saved in a configuration file. By default, Odoo will use
the .openerp-serverrc file in your home directory. Conveniently, there is also the
--save option to store the current instance configuration into that file:

$ ~/odoo-dev/odoo/odoo.py --save --stop-after-init # save configuration
to file

Here we also used the --stop-after-init option, to have the server stop after it
finishes its actions. This option is often used when running tests or asking to run a
module upgrade to check if it installs correctly.

Now we can inspect what was saved in this default configuration file:

$ more ~/.openerp_serverrc # show the configuration file

This will show all configuration options available with the default values for them.
Editing them will be effective the next time you start an Odoo instance. Type q to
quit and go back to the prompt.

We can also choose to use a specific configuration file, using the --conf=<filepath>
option. Configuration files don't need to have all those the options you've just seen.
Only the ones that actually change a default value need to be there.

Changing the listening port
The --xmlrpc-server=<port> command allows us to change the default 8069 port
where the server instance listens. This can be used to run more than one instances at
the same time, on the same server.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 1

[9]

Let's try that. Open two terminal windows. On the first one run:

$ ~/odoo-dev/odoo.py --xmlrpc-port=8070

and on the other run:

$ ~/odoo-dev/odoo.py --xmlrpc-port=8071

And there you go: two Odoo instances on the same server listening on different
ports. The two instances can use the same or different databases. And the two could
be running the same or different versions of Odoo.

Logging
The --log-level option allows us to set the log verbosity. This can be very useful to
understand what is going on in the server. For example, to enable the debug log level
use: --log-level=debug

The following log levels can be particularly interesting:

•	 debug_sql to inspect SQL generated by the server
•	 debug_rpc to detail the requests received by the server
•	 debug_rpc_answer to detail the responses sent by the server

By default the log output is directed to standard output (your console screen), but it
can be directed to a log file with the option --logfile=<filepath>.

Finally, the --debug option will bring up the Python debugger (pdb) when an
exception is raised. It's useful to do a post-mortem analysis of a server error. Note
that it doesn't have any effect on the logger verbosity. More details on the Python
debugger commands can be found here: https://docs.python.org/2/library/
pdb.html#debugger-commands.

Developing from your workstation
You may be running Odoo with a Debian/Ubuntu system, either in a local virtual
machine or in a server over the network. But you may prefer to do the development
work in your personal workstation, using your favorite text editor or IDE.

This may frequently be the case for developers working from Windows
workstations. But it also may be the case for Linux users that need to work
on an Odoo server over the local network.

www.itbook.store/books/9781784392796

https://docs.python.org/2/library/pdb.html#debugger-commands
https://docs.python.org/2/library/pdb.html#debugger-commands
https://itbook.store/books/9781784392796

Getting Started with Odoo Development

[10]

A solution for this is to enable file sharing in the Odoo host, so that files are easy to
edit from our workstation. For Odoo server operations, such as a server restart, we
can use an SSH shell (such as PuTTY on Windows) alongside our favorite editor.

Using a Linux text editor
Sooner or later, we will need to edit files from the shell command line. In many
Debian systems the default text editor is vi. If you're not comfortable with it, then
you probably could use a friendlier alternative. In Ubuntu systems the default text
editor is nano. You might prefer it since it's easier to use. In case it's not available in
your server, it can be installed with:

$ sudo apt-get install nano

In the following sections we will assume nano as the preferred editor. If you prefer
any other editor, feel free to adapt the commands accordingly.

Installing and configuring Samba
The Samba project provides Linux file sharing services compatible with Microsoft
Windows systems. We can install it on our Debian/Ubuntu server with:

$ sudo apt-get install samba samba-common-bin

The samba package installs the file sharing services and the samba-common-bin
package is needed for the smbpasswd tool. By default users allowed to access shared
files need to be registered with it. We need to register our user odoo and set a
password for its file share access:

$ sudo smbpasswd -a odoo

After this the odoo user will be able to access a fileshare for its home directory,
but it will be read only. We want to have write access, so we need to edit Sambas,
configuration file to change that:

$ sudo nano /etc/samba/smb.conf

In the configuration file, look for the [homes] section. Edit its configuration lines so
that they match the settings below:

[homes]
 comment = Home Directories
 browseable = yes
 read only = no
 create mask = 0640
 directory mask = 0750

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 1

[11]

For the configuration changes to take effect, restart the service:

$ sudo /etc/init.d/smbd restart

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

To access the files from Windows, we can map a network drive for the path
\\<my-server-name>\odoo using the specific user and password defined
with smbpasswd. When trying to log in with the odoo user, you might find
trouble with Windows adding the computer's domain to the user name (for
example MYPC\odoo). To avoid this, use an empty domain by prepending a \
to the login (for example \odoo).

www.itbook.store/books/9781784392796

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://itbook.store/books/9781784392796

Getting Started with Odoo Development

[12]

If we now open the mapped drive with Windows Explorer, we will be able to access
and edit the contents of the odoo user home directory.

Enabling the on-board technical tools
Odoo includes some tools that are very helpful for developers, and we will
make use of them throughout the book. They are the Technical Features and the
Developer Mode.

These are disabled by default, so this is a good moment to learn how to enable them.

Activating the Technical Features
Technical Features provide advanced server configuration tools.

They are disabled by default, and to enable them, we need to log in as admin. In the
Settings menu, select Users and edit the Administrator user. In the Access Rights
tab, you will find a Technical Features checkbox. Let's check it and save.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 1

[13]

Now we need to reload the page in our web browser. Then we should see in
the Settings menu a new Technical menu section giving access to many Odoo
server internals.

The Technical menu option allows us to inspect and edit all Odoo configurations
stored in the database, from user interface to security and other system parameters.
You will be learning more about many of these throughout the book.

Activating the Developer mode
The Developer mode enables a combobox near the top of Odoo windows, making
a few advanced configuration options available throughout the application. It also
disables the minification of JavaScript and CSS used by the web client, making it
easier to debug client-side behavior.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Getting Started with Odoo Development

[14]

To enable it, open the drop-down menu from the top-right corner of the browser
window, next to the username, and select the About Odoo option. In the About
dialog, click on the Activate the developer mode button at the top-right corner.

After this, we will see a Debug View combo box at the top left of the current
form area.

Installing third-party modules
Making new modules available in an Odoo instance so they can be installed is
something that newcomers to Odoo frequently find confusing. But it doesn't have
to be so, so let's demystify it.

Finding community modules
There are many Odoo modules available from the Internet. The apps.odoo.com
website is a catalogue of modules that can be downloaded and installed in your system.
The Odoo Community Association (OCA) coordinates community contributions and
maintains quite a few module repositories on GitHub, at https://github.com/OCA/

www.itbook.store/books/9781784392796

apps.odoo.com
https://github.com/OCA/
https://itbook.store/books/9781784392796

Chapter 1

[15]

To add a module to an Odoo installation we could just copy it into the addons
directory, alongside the official modules. In our case, the addons directory is at
~/odoo-dev/odoo/addons/. This might not be the best option for us, since our Odoo
installation is based on a version controlled code repository, and we will want to
keep it synchronized with the GitHub repository.

Fortunately, we can use additional locations for modules, so we can keep our custom
modules in a different directory, without having them mixed with the official addons.

As an example, we will download the OCA project department and make its modules
available in our Odoo installation. This project is a set of very simple modules adding a
Department field on several forms, such as Projects or CRM Opportunities.

To get the source code from GitHub:

$ cd ~/odoo-dev

$ git clone https://github.com/OCA/department.git -b 8.0

We used the optional -b option to make sure we are downloading the modules for
the 8.0 version. Since at the moment of writing 8.0 is the projects default branch we
could have omitted it.

After this, we will have a new /department directory alongside the /odoo
directory, containing the modules. Now we need to let Odoo know about this
new module directory.

Configuring the addons path
The Odoo server has a configuration option called addons-path setting where to
look for modules. By default this points at the /addons directory where the Odoo
server is running.

Fortunately, we can provide Odoo not only one, but a list of directories where
modules can be found. This allows us to keep our custom modules in a different
directory, without having them mixed with the official addons.

Let's start the server with an addons path including our new module directory:

$ cd ~/odoo-dev/odoo

$./odoo.py -d v8dev --addons-path="../department,./addons"

If you look closer at the server log you will notice a line reporting the addons
path in use: INFO ? openerp: addons paths: (...). Confirm that it contains our
department directory.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Getting Started with Odoo Development

[16]

Updating the module list
We still need to ask Odoo to update its module list before these new modules are
available to install.

For this we need the Technical menu enabled, since the Update Modules List menu
option is provided by it. It can be found in the Modules section of the Settings menu.

After running the modules list update we can confirm the new modules are
available to install. In the Local Modules list, remove the Apps filter and search
for department. You should see the new modules available.

Summary
In this chapter, you learned how to set up a Debian system to host Odoo and to
install it from GitHub sources. We also learned how to create Odoo databases and
run Odoo instances. To allow developers to use their favorite tools in their personal
workstation, we also explained how to configure file sharing in the Odoo host.

We should now have a functioning Odoo environment to work with and be
comfortable managing databases and instances.

With this in place, we're ready to go straight into the action. In the next chapter we
will create from scratch our first Odoo module and understand the main elements
it involves.

So let's get started!

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[17]

Building Your First
Odoo Application

Developing in Odoo most of the time means creating our own modules. In this
chapter, we will create our first Odoo application, and you will learn the steps
needed make it available to Odoo and install it.

Inspired by the notable todomvc.com project, we will build a simple to-do
application. It should allow us to add new tasks, then mark them as completed,
and finally clear the task list of all completed tasks.

You will learn how Odoo follows an MVC architecture, and we will go through the
following layers during the to-do application implementation:

•	 The model, defining the structure of the data
•	 The view, describing the user interface
•	 The controller, supporting the business logic of the application

The model layer is defined with Python objects that have their data is stored in the
PostgreSQL database. The database mapping is automatically managed by Odoo,
and the mechanism responsible for this is the object relational model, (ORM).

The view layer describes the user interface. Views are defined using XML, which is
used by the web client framework to generate data-aware HTML views.

www.itbook.store/books/9781784392796

todomvc.com
https://itbook.store/books/9781784392796

Building Your First Odoo Application

[18]

The web client views perform data persistent actions by interacting with the server
ORM. These can be basic operations such as write or delete, but can also invoke
methods defined in the ORM Python objects, performing more complex business
logic. This is what we refer to as the controller layer.

Note that the concept of controller mentioned here is different
from the Odoo web development controllers. Those are
program endpoints that web pages can call to perform actions.

With this approach, you will be able to gradually learn about the basic building
blocks that make up an application and experience the iterative process of building
an Odoo module from scratch.

Understanding applications and modules
It's common to hear about Odoo modules and applications. But what exactly is the
difference between them? Modules are building blocks of Odoo applications. A
module can add or modify Odoo features. It is supported by a directory containing
a manifest or descriptor file (named __openerp__.py) and the remaining files that
implement its features. Sometimes, modules can also be referred to as "add-ons."
Applications are not different from regular modules, but functionally, they provide
a central feature, around which other modules add features or options. They provide
the core elements for a functional area, such as accounting or HR, around which other
modules add features. Because of this, they are highlighted in the Odoo Apps menu.

Modifying and extending modules
In the example that will follow, we will create a new module with as few
dependencies as possible.

This will not be the typical case, however. The most frequent situation is where
modifications or extensions are needed on an already existing module to fit some
specific use cases.

The golden rule is that we shouldn't modify existing modules by changing them
directly. It's considered bad practice to modify existing modules. This is especially
true for the official modules provided by Odoo. Doing so does not allow a clear
separation between the original module code and our modifications, and makes it
difficult to apply upgrades.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 2

[19]

Instead, we should create new modules to be applied on top of the modules we want
to modify, and implement those changes. This is one of Odoo's main strengths: it
provides "inheritance" mechanisms that allow custom modules to extend existing
modules, either official or from the community. The inheritance is possible at all
levels data models, business logic, and user interface layers.

Right now, we will create a completely new module, without extending any existing
module, to focus on the different parts and steps involved in module creation. We
will just take a brief look at each part, since each will be studied in more detail in the
later chapters. Once we are comfortable with creating a new module, we can dive
into the inheritance mechanisms, which will be introduced in the next chapter.

Creating a new module
Our module will be a very simple application to keep to-do tasks. These tasks will have
a single text field, for the description, and a checkbox to mark them as complete. We
will also have a button to clean the to-do list from the old completed tasks.

These are very simple specifications, but throughout the book we will gradually add
new features to it, to make it more interesting for the users.

Enough talk, let's start coding and create our new module.

Following the instructions in Chapter 1, Getting Started with Odoo Development, we
should have the Odoo server at /odoo-dev/odoo/. To keep things tidy, we will
create a new directory alongside it to host our custom modules:

$ mkdir ~/odoo-dev/custom-addons

An Odoo module is a directory containing an __openerp__.py descriptor file. This is
still a legacy from when Odoo was named OpenERP, and in the future is expected to
become __odoo__.py.

It also needs to be Python importable, so it must also have an __init__.py file.

The module's directory name will be its technical name. We will use todo_app for
it. The technical name must be a valid Python identifier: it should begin with a letter
and can only contain letters, numbers, and the underscore character. The following
commands create the module directory and create an empty __init__.py file in it:

$ mkdir ~/odoo-dev/custom-addons/todo_app

$ touch ~/odoo-dev/custom-addons/todo_app/__init__.py

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Building Your First Odoo Application

[20]

Next we need to create the descriptor file. It should contain only a Python dictionary
with about a dozen possible attributes, of which only the name attribute is required.
A longer description attribute and the author also have some visibility and
are advised.

We should now add an __openerp__.py file alongside the __init__.py file with
the following content:

{
 'name': 'To-Do Application',
 'description': 'Manage your personal Tasks with this module.',
 'author': 'Daniel Reis',
 'depends': ['mail'],
 'application': True,
}

The depends attribute can have a list of other modules required. Odoo will have
them automatically installed when this module is installed. It's not a mandatory
attribute, but it's advised to always have it. If no particular dependencies are needed,
we should depend on the special base module. You should be careful to ensure all
dependencies are explicitly set here, otherwise the module may fail to install in a
clean database (due to missing dependencies) or have loading errors, if the other
needed modules are loaded afterwards. For our application, we want to depend on
the mail module because that is the module that adds the Messaging top menu, and
we will want to include our new menu options there.

To be concise, we chose to use very few descriptor keys, but in a real word scenario
it is recommended to also use these additional keys, since they are relevant for the
Odoo app store:

•	 summary is displayed as a subtitle for the module.
•	 version, by default, is 1.0. Should follow semantic versioning rules

(see semver.org for details).
•	 license identifier, by default is AGPL-3.
•	 website is a URL to find more information about the module. This can

help people to find more documentation or the issue tracker to file bugs
and suggestions.

•	 category is the functional category of the module, which defaults to
Uncategorized. The list of existing categories can be found in the security
Groups form (Settings | User | Groups menu), in the Application field
drop-down list.

www.itbook.store/books/9781784392796

semver.org
https://itbook.store/books/9781784392796

Chapter 2

[21]

These other descriptor keys are also available:

•	 installable is by default True, but can be set to False to disable a module.
•	 auto_install if this is set to True this module is automatically installed if

all its dependencies are already installed. It is used for glue modules.

Since Odoo 8.0, instead of the description key we can use a README.rst or
README.md file in the module's top directory.

Adding to the addons path
Now that we have a new module, even if minimal, we want to make it available
in Odoo.

For that, we need to make sure the directory the module is in is part of the addons
path. And then we need to update the Odoo module list.

Both operations have been explained in detail in the previous chapter, but we will
follow here with a brief overview of what is needed.

We will position in our work directory and start the server with the appropriate
addons path configuration:

$ cd ~/odoo-dev

$ odoo/odoo.py -d v8dev --addons-path="custom-addons,odoo/addons" --save

The --save option saves the options you used in a config file. This spares you from
repeating them the next time you restart the server: just run ./odoo.py and the last
saved options will be used.

Look closely at the server log. It should have an INFO ? openerp: addons paths: (...)
line, and it should include our custom-addons directory.

Remember to also include any other addons directories you might be using. For
instance, if you followed the last chapter's instructions to install the department
repository, you might want to include it and use the option:

--addons-path="custom-addons,department,odoo/addons"

Now let's ask Odoo to acknowledge the new module we just added.

For that, in the Modules section of the Settings menu, select the Update Modules
List option. This will update the module list adding any modules added since the
last update to the list. Remember that we need the Technical Features enabled for
this option to be visible. That is done by selecting the Technical Features checkbox
for our user.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Building Your First Odoo Application

[22]

Installing the new module
The Local Modules option shows us the list of available modules. By default it
shows only Apps modules. Since we created an application module we don't need
to remove that filter to see it. Type "todo" in the search and you should see our new
module, ready to be installed.

Now click on its Install button and you're done!

Upgrading a module
Developing a module is an iterative process, and you will want changes made on
source files to be applied and visible in Odoo.

In most cases this is done by upgrading the module: look up the module in the Local
Modules list and, since it is installed, you will see an Upgrade button available.

However, when the changes are only in Python code, the upgrade may not have an
effect. Instead of a module upgrade, an application server restart is needed.

In some cases, if the module has changed both in data files and Python code, you
might need both operations. This is a common source of confusion for newcomer
Odoo developers.

But fortunately, there is a better way. The simplest and fastest way to make all our
changes to a module effective is to stop (Ctrl + C) and restart the server process
requesting our modules to be upgraded on our work database.

To start the server upgrading the todo_app module in the v8dev database, we
will use:

$./odoo.py -d v8dev -u todo_app

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 2

[23]

The -u option (or --update in the long form) requires the -d option and
accepts a comma-separated list of modules to update. For example, we could
use: -u todo_app,mail.

Whenever you need to upgrade work in progress modules throughout the book, the
safest way to do so is to go to the terminal window where you have Odoo running,
stop the server, and restart it with the command above. Frequently pressing the Up
arrow key will be enough, since it should bring you the previous command you used
to start the server.

Unfortunately, updating the module list and uninstalling modules are both actions
not available through the command line. These have to be done through the web
interface, in the Settings menu.

Creating an application model
Now that Odoo knows about our new module, let's start by adding to it a
simple model.

Models describe business objects, such as an opportunity, a sales order, or a partner
(customer, supplier, and so on.). A model has a list of attributes and can also define
its specific business.

Models are implemented using a Python class derived from an Odoo template class.
They translate directly to database objects, and Odoo automatically takes care of that
when installing or upgrading the module.

Some consider it good practice to keep the Python files for models inside a models
subdirectory. For simplicity we won't be following that here, so let's create a
todo_model.py file in the todo_app module main directory.

Add the following content to it:

-*- coding: utf-8 -*-
from openerp import models, fields
class TodoTask(models.Model):
 _name = 'todo.task'
 name = fields.Char('Description', required=True)
 is_done = fields.Boolean('Done?')
 active = fields.Boolean('Active?', default=True)

The first line is a special marker telling the Python interpreter that this file has
UTF-8, so that it can expect and handle non-ASCII characters. We won't be using
any, but it's safer to use it anyway.

The second line makes available the models and fields objects from the Odoo core.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Building Your First Odoo Application

[24]

The third line declares our new model. It's a class derived from models.Model. The
next line sets the _name attribute defining the identifier that will be used throughout
Odoo to refer to this model. Note that the actual Python class name is meaningless to
the other Odoo modules. The _name value is what will be used as an identifier.

Notice that this and the following lines are indented. If you're not familiar with
Python you should know that this is important: indentation defines a nested code
block, so these four line should all be equally indented.

The last three lines define the model's fields. It's worth noting that name and active
are names of special fields. By default Odoo will use the name field as the record's
title when referencing it from other models. The active field is used to inactivate
records, and by default only active records will be shown. We will use it to clear
away completed tasks without actually deleting them from the database.

Right now, this file is not yet used by the module. We must tell Odoo to load it with
the module in the __init__.py file. Let's edit it to add the following line:

from . import todo_model

That's it. For our changes to take effect the module has to be upgraded. Locate the
To-Do application in the Local Modules and click on its Upgrade button.

Now we can inspect the newly created model in the Technical menu. Go to
Database Structure | Models and search for the todo.task model on the list.
Then click on it to see its definition:

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 2

[25]

If everything went right, this will let us confirm that the model and our fields
were created. If you made changes and don't see them here, try a server restart,
as described before, to force all of the Python code to be reloaded.

We can also see some additional fields we didn't declare. These are the five reserved
fields Odoo automatically adds to any model. They are as follows:

•	 id: This is the unique identifier for each record in the particular model.
•	 create_date and create_uid: These tell us when the record was created

and who created it, respectively.
•	 write_date and write_uid: These tell us when the record was last modified

and who modified it, respectively.

Adding menu entries
Now that we have a model to store our data, let's make it available on the
user interface.

All we need to do is to add a menu option to open the To-do Task model so
that it can be used. This is done using an XML file. Just as in the case of models,
some people consider it good practice to keep the view definitions inside a views
subdirectory.

We will create a new todo_view.xml data file in the module's top directory, and it
will declare a menu item and the action performed by it:

<?xml version="1.0"?>
<openerp>
 <data>

 <!-- Action to open To-do Task list -->
 <act_window id="action_todo_task"
 name="To-do Task"
 res_model="todo.task"
 view_mode="tree,form" />

 <!-- Menu item to open To-do Task list -->
 <menuitem id="menu_todo_task"
 name="To-Do Tasks"
 parent="mail.mail_feeds"
 sequence="20"
 action="action_todo_task" />

 </data>
</openerp>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Building Your First Odoo Application

[26]

The user interface, including menu options and actions, is stored in database tables.
The XML file is a data file used to load those definitions into the database when the
module is installed or upgraded. This is an Odoo data file, describing two records
to add to Odoo:

•	 The <act_window> element defines a client-side Window Action to open the
todo.task model defined in the Python file, with the tree and form views
enabled, in that order.

•	 The <menuitem> defines a menu item under the Messaging menu (identified
by mail.mail_feeds), calling the action_todo_task action, which was
defined before. The sequence lets us set the order of the
menu options.

Now we need to tell the module to use the new XML data file. That is done in the
__openerp__.py file using the data attribute. It defines the list of files to be loaded
by the module. Add this attribute to the descriptor's dictionary:

 'data': ['todo_view.xml'],

Now we need to upgrade the module again for these changes to take effect. Go to the
Messaging menu and you should see our new menu option available.

Clicking on it will open an automatically generated form for our model, allowing us
to add and edit records.

Views should be defined for models to be exposed to the users, but Odoo is nice
enough to do that automatically if we don't, so we can work with our model right
away, without having any form or list views defined yet.

So far, so good! Let's improve our user interface now. Try the gradual improvements
as shown in the next sections, doing frequent module upgrades, and don't be afraid
to experiment.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 2

[27]

In case an upgrade fails because of an XML error, don't panic!
Comment out the last edited XML portions, or remove the XML
file from __openerp__.py, and repeat the upgrade. The server
should start correctly. Now read the error message in the server
log carefully—it should point you to where the problem is.

Creating views – form, tree, and search
As we have seen, if no view is defined, Odoo will automatically generate basic views
to get you going. But surely you would like to define the module views yourself, so
that's what we'll do next.

Odoo supports several types of views, but the three main ones are: list (also called
tree), form, and search views. We'll add an example of each to our module.

All views are stored in the database, in the ir.ui.view model. To add a view in a
module, we declare a <record> element describing the view in an XML file that will
be loaded into the database when the module is installed.

Creating a form view
Edit the XML we just created to add this <record> element just after the <data>
opening tag at the top:

<record id="view_form_todo_task" model="ir.ui.view">
 <field name="name">To-do Task Form</field>
 <field name="model">todo.task</field>
 <field name="arch" type="xml">

 <form string="To-do Task">
 <field name="name"/>
 <field name="is_done"/>
 <field name="active" readonly="1"/>
 </form>

 </field>
</record>

This will add a record to the model ir.ui.view with the identifier view_form_
todo_task. The view is for the model todo.task and named To-do Task Form.
The name is just for information, does not have to be unique, but should allow one to
easily identify what record it refers to.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Building Your First Odoo Application

[28]

The most important attribute is arch, containing the view definition. Here we say it's
a form, and it contains three fields, and we chose to make the active field read only.

Formatting as a business document
The above provides a basic form view, but we can make some improvements to
make it nicer. For document models Odoo has a presentation style that mimics a
paper page. The form contains two elements: a <header>, containing action buttons,
and a <sheet>, containing the data fields:

<form>
 <header>
 <!-- Buttons go here-->
 </header>
 <sheet>
 <!-- Content goes here: -->
 <field name="name"/>
 <field name="is_done"/>
 </sheet>
</form>

Adding action buttons
Forms can have buttons to run actions. These are able to trigger workflow actions,
run Window Actions, such as opening another form, or run Python functions defined
in the model.

They can be placed anywhere inside a form, but for document-style forms, the
recommended place for them is the <header> section.

For our application, we will add two buttons to run methods of the todo.task
model:

<header>
 <button name="do_toggle_done" type="object"
 string="Toggle Done" class="oe_highlight" />
 <button name="do_clear_done" type="object"
 string="Clear All Done" />
</header>

The basic attributes for a button are: string with the text to display on the button,
the type of action it performs, and the name that is the identifier for that action. The
optional class attribute can apply CSS styles, just like in regular HTML.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 2

[29]

Organizing forms using groups
The <group> tag allows organizing the form content. Placing <group> elements inside
a <group> element creates a two column layout inside the outer group. Group elements
are advised to have a name to make it easier for other modules to extend on them.

We will use this to better organize our content. Let's change the <sheet> content of
our form to match this:

 <sheet>
 <group name="group_top">
 <group name="group_left">
 <field name="name"/>
 </group>
 <group name="group_right">
 <field name="is_done"/>
 <field name="active" readonly="1"/>
 </group>
 </group>
 </sheet>

The complete form view
At this point, our record in todo_view.xml for the todo.task form view should
look like this:

<record id="view_form_todo_task" model="ir.ui.view">
 <field name="name">To-do Task Form</field>
 <field name="model">todo.task</field>
 <field name="arch" type="xml">

 <form>
 <header>
 <button name="do_toggle_done" type="object"
 string="Toggle Done" class="oe_highlight" />
 <button name="do_clear_done" type="object"
 string="Clear All Done" />
 </header>
 <sheet>
 <group name="group_top">
 <group name="group_left">
 <field name="name"/>
 </group>
 <group name="group_right">
 <field name="is_done"/>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Building Your First Odoo Application

[30]

 <field name="active" readonly="1" />
 </group>
 </group>
 </sheet>
 </form>

 </field>
</record>

Remember that for the changes to be loaded into our Odoo database, a module
upgrade is needed. To see the changes in the web client, the form needs to be
reloaded: either click again on the menu option that opens it, or reload the browser
page (F5 in most browsers).

Now, let's add the business logic for the actions buttons.

Adding list and search views
When viewing a model in list mode, a <tree> view is used. Tree views are capable
of displaying lines organized in hierarchies, but most of the time they are used to
display plain lists.

We can add the following tree view definition to todo_view.xml:

<record id="view_tree_todo_task" model="ir.ui.view">
 <field name="name">To-do Task Tree</field>
 <field name="model">todo.task</field>
 <field name="arch" type="xml">
 <tree colors="gray:is_done==True">
 <field name="name"/>
 <field name="is_done"/>
 </tree>
 </field>
</record>

We have defined a list with only two columns, name and is_done. We also added a
nice touch: the lines for done tasks (is_done==True) are shown in grey.

At the top right of the list Odoo displays a search box. The default fields it searches
for and available predefined filters can be defined by a <search> view.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 2

[31]

As before, we will add this to the todo_view.xml:

<record id="view_filter_todo_task" model="ir.ui.view">
 <field name="name">To-do Task Filter</field>
 <field name="model">todo.task</field>
 <field name="arch" type="xml">
 <search>
 <field name="name"/>
 <filter string="Not Done"
 domain="[('is_done','=',False)]"/>
 <filter string="Done"
 domain="[('is_done','!=',False)]"/>
 </search>
 </field>
</record>

The <field> elements define fields that are also searched when typing in the search
box. The <filter> elements add predefined filter conditions, using domain syntax
that can be selected with a user click.

Adding business logic
Now we will add some logic to our buttons. Edit the todo_model.py Python file to
add to the class the methods called by the buttons.

We will use the new API introduced in Odoo 8.0. For backward compatibility, by
default Odoo expects the old API, and to create methods using the new API we need
to use Python decorators on them. First we need to import the new API, so add it to
the import statement at the top of the Python file:

from openerp import models, fields, api

The Toggle Done button's action will be very simple: just toggle the Is Done? flag.
For logic on a record, the simplest approach is to use the @api.one decorator. Here
self will represent one record. If the action was called for a set of records, the API
would handle that and trigger this method for each of the records.

Inside the TodoTask class add:

@api.one
def do_toggle_done(self):
 self.is_done = not self.is_done
 return True

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Building Your First Odoo Application

[32]

As you can see, it simply modifies the is_done field, inverting its value. Methods,
then, can be called from the client side and must always return something. If they
return None, client calls using the XMLRPC protocol won't work. If we have nothing
to return, the common practice is to just return the True value.

After this, if we restart the Odoo server to reload the Python file, the Toggle Done
button should now work.

For the Clear All Done button we want to go a little further. It should look for all
active records that are done, and make them inactive. Form buttons are supposed to
act only on the selected record, but to keep things simple we will do some cheating,
and it will also act on records other than the current one:

@api.multi
def do_clear_done(self):
 done_recs = self.search([('is_done', '=', True)])
 done_recs.write({'active': False})
 return True

On methods decorated with @api.multi the self represents a recordset. It can
contain a single record, when used from a form, or several records, when used
from a list view. We will ignore the self recordset and build our own done_recs
recordset containing all the tasks that are marked as done. Then we set the active
flag to False, in all of them.

The search is an API method returning the records meeting some conditions. These
conditions are written in a domain, that is a list of triplets. We'll explore domains in
more detail later.

The write method sets values at once on all elements of the recordset. The values
to write are described using a dictionary. Using write here is more efficient than
iterating through the recordset to assign the value to them one by one.

Note that @api.one is not the most efficient for these actions, since it will run for
each selected record. The @api.multi ensures that our code runs only once even if
there is more than one record selected when running the action. This could happen if
an option for it were to be added on the list view.

Setting up access control security
You might have noticed, upon loading our module is getting a warning message in
the server log: The model todo.task has no access rules, consider adding one.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 2

[33]

The message is pretty clear: our new model has no access rules, so it can't be used
by anyone other than the admin super user. As a super user the admin ignores data
access rules, that's why we were able to use the form without errors. But we must fix
this before other users can use it.

To get a picture of what information is needed to add access rules to a model, use the
web client and go to: Settings|Technical|Security|Access Controls List.

Here we can see the ACL for the mail.mail model. It indicates, per group, what
actions are allowed on records.

This information needs to be provided by the module, using a data file to load the
lines into the ir.model.access model. We will add full access on the model to the
employee group. Employee is the basic access group nearly everyone belongs to.

This is usually done using a CSV file named security/ir.model.access.csv.
Models have automatically generated identifiers: for todo.task the identifier is
model_todo_task. Groups also have identifiers set by the modules creating them. The
employee group is created by the base module and has identifier base.group_user.
The line's name is only informative and it's best if it's kept unique. Core modules
usually use a dot-separated string with the model name and the group. Following this
convention we would use todo.task.user.

Now we have everything we need to know, let's add the new file with the
following content:

id,name,model_id:id,group_id:id,perm_read,perm_write,perm_create,perm_
unlink
access_todo_task_group_user,todo.task.user,model_todo_task,base.group_
user,1,1,1,1

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Building Your First Odoo Application

[34]

We must not forget to add the reference to this new file in the __openerp__.py
descriptor's data attribute, so that should look like this:

'data': [
 'todo_view.xml',
 'security/ir.model.access.csv',
],

As before, upgrade the module for these additions to take effect. The warning
message should be gone, and you can confirm the permissions are OK by logging
in with the user demo (password is also demo) and trying the to-do tasks feature.

Row-level access rules
Odoo is a multi-user system, and we would like the to-do tasks to be private to
each user. Fortunately for us, Odoo also supports row-level access rules. In the
Technical menu they can be found in the Record Rules option, alongside the
Access Control List.

Record rules are defined in the ir.rule model. As usual, we need a distinctive
name. We also need the model they operate on and the domain to force access
restriction. The domain filter uses the same domain syntax mentioned before,
and used across Odoo.

Finally, rules may be either global (the global field is set to True) or only for
particular security groups. In our case, it could perfectly be a global rule, but to
illustrate the most common case, we will make it a group-specific rule, applying
only to the employees group.

We should create a security/todo_access_rules.xml file with this content:

<?xml version="1.0" encoding="utf-8"?>
<openerp>
 <data noupdate="1">
 <record id="todo_task_user_rule" model="ir.rule">
 <field name="name">ToDo Tasks only for owner</field>
 <field name="model_id" ref="model_todo_task"/>
 <field name="domain_force">[('create_uid','=',user.id)]
 </field>
 <field name="groups" eval="[(4,ref('base.group_user'))]"/>
 </record>
 </data>
</openerp>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 2

[35]

Notice the noupdate="1" attribute. It means this data will not be updated in module
upgrades. This will allow it to be customized later, since module upgrades won't
destroy user-made changes. But beware that this will also be so while developing, so
you might want to set noupdate="0" during development, until you're happy with
the data file.

In the groups field, you will also find a special expression. It's a one-to-many
relational field, and they have special syntax to operate with. In this case, the
(4, x) tuple indicates to append x to the records, and x is a reference to the
employees group, identified by base.group_user.

As before, we must add the file to __openerp__.py before it can be loaded to
the module:

'data': [
 'todo_view.xml',
 'security/ir.model.access.csv',
 'security/todo_access_rules.xml',
],

Adding an icon to the module
Our module is looking good. Why not add an icon to it to make it look even better?
For that we just need to add to the module a static/description/icon.png file
with the icon to use.

The following commands add an icon copied form the core Notes module:

$ mkdir -p ~/odoo-dev/custom-addons/todo_app/static/description

$ cd ~/odoo-dev/custom-addons/todo_app/static/description

$ cp ../odoo/addons/note/static/description/icon.png ./

Now, if we update the module list, our module should be displayed with the
new icon.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Building Your First Odoo Application

[36]

Summary
We created a new module from the start, covering the most frequently used elements
in a module: models, the three base types of views (form, list, and search), business
logic in model methods, and access security.

In the process, you got familiar with the module development process, which
involves module upgrades and application server restarts to make the gradual
changes effective in Odoo.

Always remember, when adding model fields, an upgrade is needed. When
changing Python code, including the manifest file, a restart is needed. When
changing XML or CSV files, an upgrade is needed; also when in doubt, do both:
upgrade the modules and restart the server.

In the next chapter, you will learn about building modules that stack on existing ones
to add features.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[37]

Inheritance – Extending
Existing Applications

One of Odoo's most powerful features is the ability to add features without directly
modifying the underlying objects.

This is achieved through inheritance mechanisms, functioning as modification layers
on top of existing objects. These modifications can happen at all levels: models,
views, and business logic. Instead of directly modifying an existing module, we
create a new module to add the intended modifications.

Here, you will learn how to write your own extension modules, empowering you to
leverage existing core or community applications. As a relevant example, you will
learn how to add Odoo's social and messaging features to your own modules.

Adding sharing capability to the
To-Do app
Our To-Do application now allows users to privately manage their own to-do
tasks. Won't it be great to take the app to another level by adding collaboration and
social networking features to it? We will be able to share tasks and discuss them with
other people.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Inheritance – Extending Existing Applications

[38]

We will do this with a new module to extend the previously created To-Do app to
add these new features. Here is what we expect to achieve by the end of this chapter:

Road map for the user sharing features
Here is our work plan for the feature extensions to be implemented:

•	 Add fields to the Task model, such as the user who owns the task
•	 Modify the business logic to operate only on the current user's tasks, instead

of all tasks the user is able to see
•	 Add the necessary fields to the views
•	 Add social networking features: the message wall and the followers

We will start creating the basic skeleton for the module alongside the todo_app
module. Following the installation example in Chapter 1, Getting Started with Odoo
Development we are hosting our modules at ~/odoo-dev/custom-addons/:

$ mkdir ~/odoo-dev/custom-addons/todo_user

$ touch ~/odoo-dev/custom-addons/todo_user/__init__.py

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 3

[39]

Now create the __openerp__.py, containing this code:

{ 'name': 'Multiuser To-Do',
 'description': 'Extend the To-Do app to multiuser.',
 'author': 'Daniel Reis',
 'depends': ['todo_app'], }

We haven't done that, but including the summary and category keys can be
important when publishing modules to the Odoo online app store.

Next, we can install it. It should be enough to update the Modules List from the
Settings menu, find the new module in the Local Modules list and click on its Install
button. For more detailed instructions on discovering and installing a module you
can refer back to Chapter 1, Getting Started with Odoo Development.

Now, let's start adding the new features to it.

Extending the to-do task model
New models are defined through Python classes. Extending them is also done
through Python classes, but using an Odoo specific mechanism.

To extend an existing model we use a Python class with a _inherit attribute. This
identifies the model to be extended. The new class inherits all the features of the
parent Odoo model, and we only need to declare the modifications that we wish
to introduce.

In fact, Odoo models exist outside our particular module, in a central registry. This
registry can also be referred to as the pool, and can be accessed from model methods
using self.env[<model name>]. For example, to reference the res.partner model
we would write self.env['res.partner'].

To modify an Odoo model we get a reference to its registry class and then perform
in place changes on it. This means that these modifications will also be available
everywhere else where the model is used.

In the module loading sequence, during a server start, modifications will only be
visible to the modules loaded afterward. So, the loading sequence is important and
we should make sure that the module dependencies are correctly set.

Adding fields to a model
We will extend the todo.task model to add a couple of fields to it: the user
responsible for the task, and a deadline date.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Inheritance – Extending Existing Applications

[40]

Create a new todo_task.py file declaring a class extending the original model:

-*- coding: utf-8 -*-
from openerp import models, fields, api
class TodoTask(models.Model):
 _inherit = 'todo.task'
 user_id = fields.Many2one('res.users', 'Responsible')
 date_deadline = fields.Date('Deadline')

The class name is local to this Python file, and in general is irrelevant for other
modules. The _inherit class attribute is the key here: it tells Odoo that this class
is inheriting from the todo.task model. Notice the _name attribute absent. It is not
needed because it is already inherited from the parent model.

The next two lines are regular field declarations. The user_id represents a user from
the Users model, res.users. It's a Many2one field, the equivalent to a foreign key
in database jargon. The date_deadline is a simple date field. In Chapter 5, Models
– Structuring the Application Data we will be explaining in more detail the types of
fields available in Odoo.

We still need to add to the __init__.py file the import statement to include it in
the module:

from . import todo_task

To have the new fields added to the model's supporting database table we need to
perform a module upgrade. If everything goes as expected, you should see the new
fields when inspecting the todo.task model, in the Technical menu, Database
Structure | Models option.

Modifying existing fields
As you can see, adding new fields to an existing model is quite straightforward.
Since Odoo 8, modifying attributes on already existing fields is also possible. It's
done by adding a field with the same name, and setting values only for the attributes
to be changed.

For example, to add a help tooltip to the name field, we could add this line to the
todo_ task.py described above:

name = fields.Char(help="What needs to be done?")

If we upgrade the module, go to a to-do task form, and pause the mouse pointer over
the Description field, the above tooltip text will be displayed.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 3

[41]

Modifying model's methods
Inheritance also works at the business logic level. Adding new methods is simple:
just declare their functions inside the inheriting class.

To extend existing logic, the corresponding method can be overridden by declaring
a method with the exact same name, and the new method will replace the previous
one. But it can extend the code of the inherited class, by using Python's super()
keyword to call the parent method.

It's best to avoid changing the method's function signature (that is, keep the same
arguments) to be sure that the existing calls on it will keep working properly. In case
you need to add additional parameters, make them optional (with a default value)
keyword arguments.

The original Clear All Done action is not appropriate for our task-sharing module
anymore, since it clears all tasks regardless of their user. We need to modify it so that
it clears only the current user tasks.

For this, we will override the original method with a new version that first finds the
list of completed tasks for the current user, and then inactivates them:

 @api.multi
 def do_clear_done(self):
 domain = [('is_done', '=', True),
 '|', ('user_id', '=', self.env.uid),
 ('user_id', '=', False)]
 done_recs = self.search(domain)
 done_recs.write({'active': False})
return True

We first list the done records to act upon using the search method with a filter
expression. The filter expression follows an Odoo specific syntax referred to as
a domain.

The filter domain used is defined the first instruction: it is a list of conditions, where
each condition is a tuple.

These conditions are implicitly joined with an AND operator ('&' in domain syntax).
To add an OR operation a pipe ('|') is used in place of a tuple, and it will affect the
next two conditions. We will go into more details about domains in Chapter 6, Views -
Designing the User Interface.

The domain used here filters all done tasks ('is_done', '=', True) that either
have the current user as responsible ('user_id', '=', self.env.uid) or don't
have a current user set ('user_id', '=', False).

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Inheritance – Extending Existing Applications

[42]

What we just did was to completely overwrite the parent method, replacing it with
a new implementation.

But this is not what we usually want to do. Instead we should extend the existing
logic to add some additional operations to it. Otherwise we could break already
existing features. Existing logic is inserted in an overriding method using Python's
super() command, to call the parent's version of the method.

Let's see an example of this: we could write a better version of do_toggle_done()
that only performs its action on the Tasks assigned to our user:

 @api.one
 def do_toggle_done(self):
 if self.user_id != self.env.user:
 raise Exception('Only the responsible can do this!')
 else:
 return super(TodoTask, self).do_toggle_done()

These are the basic techniques for overriding and extending business logic defined in
model classes. Next we will see how to extend the user interface views.

Extending views
Forms, lists, and search views are defined using the arch XML structures. To extend
views we need a way to modify this XML. This means locating XML elements and
then introducing modifications on those points.

Inherited views allow just that. An inherited view looks like this:

<record id="view_form_todo_task_inherited" model="ir.ui.view">
 <field name="name">Todo Task form – User extension</field>
 <field name="model">todo.task</field>
 <field name="inherit_id" ref="todo_app.view_form_todo_task"/>
 <field name="arch" type="xml">
 <!-- ...match and extend elements here! ... -->
 </field
</record>

The inherit_id field identifies the view to be extended, by referring to its external
identifier using the special ref attribute. External identifiers will be discussed in
more detail in Chapter 4, Data Serialization and Module Data.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 3

[43]

The natural way to locate elements in XML is to use XPath expressions. For example,
taking the form view defined in the previous chapter, the XPath expression to
locate the <field name="is_done"> element is: //field[@name]='is_done'. This
expression finds a field element with a name attribute equal to is_done. You can
find more information on XPath at: https://docs.python.org/2/library/xml.
etree.elementtree.html#xpath-support.

Having name attributes on elements is important because it makes it a lot easier
to select them for extension points. Once the extension point is located, it can be
modified or have XML elements added near it.

As a practical example, to add the date_deadline field before the is_done field, we
would write in the arch:

<xpath expr="//field[@name]='is_done'" position="before">
 <field name="date_deadline" />
</xpath>

Fortunately Odoo provides shortcut notation for this, so most of the time we can
avoid the XPath syntax entirely. Instead of the xpath element above we can use the
element type we want to locate and its distinctive attributes. The above could also be
written as:

<field name="is_done" position="before">
 <field name="date_deadline" />
</field>

Adding new fields next to existing fields is done often, so the <field> tag is
frequently used as the locator. But any other tag can be used: <sheet>, <group>,
<div>, and so on. The name attribute is usually the best choice for matching elements,
but sometimes, we may need to use string (the displayed label text) or the CSS
class element.

The position attribute used with the locator element is optional, and can have the
following values:

•	 after: This is added to the parent element, after the matched node.
•	 before: This is added to the parent element, before the matched node.
•	 inside (the default value): This is appended to the content of the

matched node.
•	 replace: This replaces the matched node. If used with empty content, it

deletes an element.
•	 attributes: This modifies the XML attributes of the matched element

(there are more details described following this list).

www.itbook.store/books/9781784392796

https://docs.python.org/2/library/xml.etree.elementtree.html#xpath-support
https://docs.python.org/2/library/xml.etree.elementtree.html#xpath-support
https://itbook.store/books/9781784392796

Inheritance – Extending Existing Applications

[44]

The attributes position allows us to modify the matched element's attributes.
This is done using <attribute name="attr-name"> elements with the new
attribute values.

In the Task form, we have the Active field, but having it visible is not that useful.
Maybe, we can hide it from the user. This can be done setting its invisible attribute:

<field name="active" position="attributes">
 <attribute name="invisible">1</attribute>
</field>

Setting the invisible attribute to hide an element is a good alternative to using the
replace locator to remove nodes. Removing should be avoided, since it can break
extension models that may depend on the deleted node.

Finally, we can put all of this together, add the new fields, and get the following
complete inheritance view to extend the to-do tasks form:

<record id="view_form_todo_task_inherited" model="ir.ui.view">
 <field name="name">Todo Task form – User extension</field>
 <field name="model">todo.task</field>
 <field name="inherit_id" ref="todo_app.view_form_todo_task"/>
 <field name="arch" type="xml">
 <field name="name" position="after">
 <field name="user_id" />
 </field>
 <field name="is_done" position="before">
 <field name="date_deadline" />
 </field>
 <field name="name" position="attributes">
 <attribute name="string">I have to...</attribute>
 </field>
 </field
</record>

This should be added to a todo_view.xml file in our module, inside the <openerp>
and <data> tags, as shown in the previous chapter.

Inherited views can also be inherited, but since this creates
more intricate dependencies, it should be avoided.

Also, we should not forget to add the data attribute to the __openerp__.py
descriptor file:

 'data': ['todo_view.xml'],

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 3

[45]

Extending tree and search views
Tree and search view extensions are also defined using the arch XML structure, and
they can be extended in the same way as form views. We will follow example of a
extending the list and search views.

For the list view, we want to add the user field to it:

<record id="view_tree_todo_task_inherited" model="ir.ui.view">
 <field name="name">Todo Task tree – User extension</field>
 <field name="model">todo.task</field>
 <field name="inherit_id" ref="todo_app.view_tree_todo_task"/>
 <field name="arch" type="xml">
 <field name="name" position="after">
 <field name="user_id" />
 </field>
 </field
</record>

For the search view, we will add search by user, and predefined filters for the user's
own tasks and tasks not assigned to anyone:

<record id="view_filter_todo_task_inherited" model="ir.ui.view">
 <field name="name">Todo Task tree – User extension</field>
 <field name="model">todo.task</field>
 <field name="inherit_id" ref="todo_app.view_filter_todo_task"/>
 <field name="arch" type="xml">
 <field name="name" position="after">
 <field name="user_id" />
 <filter name="filter_my_tasks" string="My Tasks"
 domain="[('user_id','in',[uid,False])]" />
 <filter name="filter_not_assigned" string="Not Assigned"
 domain="[('user_id','=',False)]" />
 </field>
 </field
</record>

Don't worry too much about the views-specific syntax. We'll cover that in more detail
in Chapter 6, Views - Designing the User Interface.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Inheritance – Extending Existing Applications

[46]

More on using inheritance to extend
models
We have seen the basic in place extension of models, which is also the most frequent
use of inheritance. But inheritance using the _inherit attribute has more powerful
capabilities, such as mixin classes.

We also have available the delegation inheritance method, using the _inherits
attribute. It allows for a model to contain other models in a transparent way for the
observer, while behind the scenes each model is handling its own data.

Let's explore these possibilities in more detail.

Copying features using prototype inheritance
The method we used before to extend a model used just the _inherit attribute. We
defined a class inheriting the todo.task model, and added some features to it. The
class attribute _name was not explicitly set; implicitly it was todo.task also.

But using the _name attribute allows us to create mixin classes, by setting it to the
model we want to extend. Here is an example:

from openerp import models
class TodoTask(models.Model):
 _name = 'todo.task'
 _inherit = 'mail.thread'

This extends the todo.task model by copying to it the features of the mail.thread
model. The mail.thread model implements the Odoo messages and followers
features, and is reusable, so that it's easy to add those features to any model.

Copying means that the inherited methods and fields will also be available in the
inheriting model. For fields this means that they will be also created and stored in the
target model's database tables. The data records of the original (inherited) and the
new (inheriting) models are kept unrelated. Only the definitions are shared.

These mixins are mostly used with abstract models, such as the mail.thread used
in the example. Abstract models are just like regular models except that no database
representation is created for them. They act like templates, describing fields and logic
to be reused in regular models. The fields they define will only be created on those
regular models inheriting from them. In a moment we will discuss in detail how
to use this to add mail.thread and its social networking features to our module.
In practice when using mixins we rarely inherit from regular models, because this
causes duplication of the same data structures.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 3

[47]

Odoo provides the delegation inheritance mechanism, which avoids data structure
duplication, so it is usually preferred when inheriting from regular models. Let's
look at it in more detail.

Embedding models using delegation
inheritance
Delegation inheritance is the less frequently used model extension method, but it
can provide very convenient solutions. It is used through the _inherits attribute
(note the additional -s) with a dictionary mapping inherited models with fields
linking to them.

A good example of this is the standard Users model, res.users, that has a Partner
model embedded in it:

from openerp import models, fields
class User(models.Model):
 _name = 'res.users'
 _inherits = {'res.partner': 'partner_id'}
 partner_id = fields.Many2one('res.partner')

With delegation inheritance the model res.users embeds the inherited model
res.partner, so that when a new User is created, a partner is also created and
a reference to it is kept in the partner_id field of the User. It is similar to the
polymorphism concept in object oriented programming.

All fields of the inherited model, Partner, are available as if they were User fields,
through the delegation mechanism. For example, the partner name and address
fields are exposed as User fields, but in fact they are being stored in the linked
Partner model, and no data structure duplication occurs.

The advantage of this, compared to prototype inheritance, is that there is no need
to repeat data structures in many tables, such as addresses. Any new model that
needs to include an address can delegate that to an embedded Partner model. And
if modifications are introduced in the partner address fields or validations, these are
immediately available to all the models embedding it!

Note that with delegation inheritance, fields are inherited,
but methods are not.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Inheritance – Extending Existing Applications

[48]

Using inheritance to add social network
features
The social network module (technical name mail) provides the message board found
at the bottom of many forms, also called Open Chatter, the followers are featured
along with the logic regarding messages and notifications. This is something we will
often want to add to our models, so let's learn how to do it.

The social network messaging features are provided by the mail.thread model of
the mail module. To add it to a custom model we need to:

•	 Have the module depend on mail.
•	 Have the class inherit from mail.thread.
•	 Have the Followers and Thread widgets added to the form view.
•	 Optionally, set up record rules for followers.

Let's follow this checklist:

Regarding #1, since our extension module depends on todo_app, which in turn
depends on mail, the dependency on mail is already implicit, so no action is needed.

Regarding #2, the inheritance on mail.thread is done using the _inherit attribute
we used before. But our to-do task extension class is already using the _inherit
attribute. Fortunately it can also accept a list of models to inherit from, so we can use
that to make it also include the inheritance on mail.thread:

 _name = 'todo.task'
 _inherit = ['todo.task', 'mail.thread']

The mail.thread model is an abstract model. Abstract models are just like regular
models except that they don't have a database representation; no actual tables are
created for them. Abstract models are not meant to be used directly. Instead they
are expected to be used in mixin classes, as we just did. We can think of them as
templates with ready-to-use features. To create an abstract class we just need it to use
models.AbstractModel instead of models.Model.

For #3, we want to add the social network widgets at the bottom of the form. We can
reuse the inherited view we already created, view_form_todo_task_inherited,
and add this into its arch data:

<sheet position="after">
 <div class="oe_chatter">
 <field name="message_follower_ids" widget="mail_followers" />
 <field name="message_ids" widget="mail_thread" />
 </div>
</sheet>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 3

[49]

The two fields we add here haven't been explicitly declared by us, but they are
provided by the mail.thread model.

The final step is to set up record rules for followers. This is only needed if our model
has record rules implemented that limit other users' access to its records. In this case,
we need to make sure that the followers for each record have at least read access to it.

We do have record rules on the to-do task model so we need to address this, and
that's what we will do in the next section.

Modifying data
Unlike views, regular data records don't have an XML arch structure and can't be
extended using XPath expressions. But they can still be modified to replace values in
their fields.

The <record id="x" model="y"> element is actually performing an insert or
update operation on the model: if x does not exist, it is created; otherwise, it is
updated/written over.

Since records in other modules can be accessed using a <model>.<identifier>
identifier, it's perfectly legal for our module to overwrite something that was written
before by another module.

Note that the dot is reserved to separate the module name
from the object identifier, so they shouldn't be used in
identifiers. Instead use the underscore.

As an example, let's change the menu option created by the todo_app module to
into My To Do. For that we could add the following to the todo_user/todo_view.
xml file:

 <!-- Modify menu item -->
 <record id="todo_app.menu_todo_task" model="ir.ui.menu">
 <field name="name">My To-Do</field>
 </record>

 <!-- Action to open To-Do Task list -->
 <record model="ir.actions.act_window"
 id="todo_app.action_todo_task">
 <field name="context">
 {'search_default_filter_my_tasks': True}
 </field>
 </record>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Inheritance – Extending Existing Applications

[50]

Extending the record rules
The To-Do application included a record rule to ensure that each task would only be
visible to the user that created it. But now, with the addition of the social features, we
need the task followers to also have access to them. The social network module does
not handle this by itself.

Also, now tasks can have users assigned to them, so it makes more sense to have the
access rules to work on the responsible user instead of the user who created the task.

The plan would be the same as we did for the menu item: overwrite the todo_app.
todo_task_user_rule to modify the domain_force field to a new value.

Unfortunately this won't work this time. Remember the <data no_update="1"> we
used in the security rules XML file: it prevents later write operations on it.

Since updates on that record are being prevented, we need a workaround. That will
be to delete that record and add a replacement for it in our module.

To keep things organized, we will create a security/todo_access_rules.xml file
and add the following content to it:

<?xml version="1.0" encoding="utf-8"?>
<openerp>
 <data noupdate="1">

 <delete model="ir.rule" search="[('id', '=',
 ref('todo_app.todo_task_user_rule'))]" />

 <record id="todo_task_per_user_rule" model="ir.rule">
 <field name="name">ToDo Tasks only for owner</field>
 <field name="model_id" ref="model_todo_task"/>
 <field name="groups"
 eval="[(4, ref('base.group_user'))]"/>
 <field name="domain_force">
 ['|',('user_id','in', [user.id,False]),
 ('message_follower_ids','in',[user.partner_id.id])]
 </field>
 </record>

 </data>
</openerp>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 3

[51]

This finds and deletes the todo_task_user_rule record rule from the todo_app
module, and then creates a new todo_task_per_user_rule record rule. The domain
filter we will now use makes a task visible to the responsible user user_id, to
everyone if the responsible user is not set (equals False), and to all followers.
The rule will run in a context where user is available and represents the current
session user. The followers are partners, not User objects, so instead of user.id,
we need to use user.partner_id.id.

Working on data files with <data noupdate="1"> is
tricky because any later edit won't be updated on Odoo.
To avoid that, temporarily use <data noupdate="0">
during development, and change it back only when
you're done with the module.

As usual, we must not forget to add the new file to the __openerp__.py descriptor
file in the data attribute:

 'data': ['todo_view.xml', 'security/todo_access_rules.xml'],

Notice that on module upgrade, the <delete> element will produce an ugly warning
message, because the record to delete does not exist anymore. It is not an error and
the upgrade will be successful, so we don't need to worry about it.

Summary
You should now be able to create new modules to extend existing modules. We saw
how to extend the To-Do module created in the previous chapter.

New features were added onto the several layers that make up an application.
We extended the Odoo model to add new fields, and extended the methods with
its business logic. Next, we modified the views to make the new fields available on
them. Finally, you learned how to extend a model by inheriting from other models,
and we used that to add the social network features to our To-Do app.

With these three chapters, we had an overview of the common activities involved
in Odoo development, from Odoo installation and setup to module creation
and extension. The next chapters will focus on specific areas, most of which we
visited briefly in these overviews. In the following chapter, we will address data
serialization and the usage of XML and CSV files in more detail.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[53]

Data Serialization
and Module Data

Most Odoo configurations, from user interfaces to security rules, are actually
data records stored in internal Odoo tables. The XML and CSV files found in
modules are not used to run Odoo applications. They are just a means to load those
configurations into the database tables.

Because of this, an important part of Odoo modules is about representing
(serializing) that data into files so that it can be later loaded into a database.

Modules can also have initial and demonstration (fixture) data. Data serialization
allows adding that to our modules. Additionally, understanding Odoo data
serialization formats is important in order to export and import data in the context
of a project implementation.

Before we go into practical cases, we will first explore the external identifier concept,
which is the key to Odoo data serialization.

Understanding external identifiers
All records in the Odoo database have a unique identifier, the id field.

It is a sequential number automatically assigned by the database. However, this
automatic identifier can be a challenge when loading interrelated data: how can we
reference a related record if we can't know beforehand what database ID will be
assigned to it?

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Data Serialization and Module Data

[54]

Odoo's answer to this is the external identifier. External identifiers solve this problem
by assigning named identifiers to the data records to be loaded. A named identifier can
be used by any other piece of record data to reference it later on. Odoo will take care of
translating these identifier names into the actual database IDs assigned to them.

The mechanism behind this is quite simple: Odoo keeps a table with the mapping
between the named External IDs and their corresponding numeric database IDs.
That is the ir.model.data model.

To inspect the existing mappings, go to the Technical section of the Settings menu,
and select the Sequences & Identifiers | External Identifiers menu item.

For example, if we visit the External Identifiers list and filter it by the todo_app
module, we will see the external identifiers generated by the module created previously.

You can see that the external identifiers have a Complete ID label. This is
composed of the module name and the identifier name joined by a dot, for
example, todo_app.action_todo_task.

Since only the Complete ID is required to be unique, the module name ends up
acting as a namespace for identifiers. This means that the same named identifier can
be repeated in different modules, and we don't need to worry about identifiers in our
module colliding with identifiers in other modules.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 4

[55]

At the top of the list, you can see the todo_app.action_todo_task ID. This
is the menu action we created for the module, which is also referenced in the
corresponding menu item. By clicking on it, you can open a form with its details:
the action_todo_task in the todo_app module maps to a specific record ID in the
ir.actions.act_window model.

Besides providing a way for records to easily reference other records, External IDs
also allow avoiding data duplication on repeated imports. If the External ID
is already present, the existing record will be updated, instead of creating a new
record. This is why, on subsequent module upgrades, previously loaded records
are updated instead of being duplicated.

Finding External IDs
When preparing configuration and demonstration data files for modules, we
frequently need to look up existing External IDs that are needed for references.

We can use the External Identifiers menu shown earlier, but the Developer Menu
can provide a more convenient method for that. As you may recall from Chapter 1,
Getting Started with Odoo Development, the Developer Menu is activated in the About
Odoo option, and then, it is available at the top-left corner of the web client view.

To find the External ID for a data record, on the corresponding Form view, select the
View Metadata option from the Developer Menu. This will display a dialog with
the record's database ID and External ID (also known as XML ID).

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Data Serialization and Module Data

[56]

As an example, to look up the Demo user ID, we can navigate to its Form view
(Settings | Users) and select the View Metadata option, after which we will be
shown this:

To find the External ID for view elements, such as form, tree, search, and action, the
Developer Menu is also a good help. For that, use its Manage Views option or open
the information for the desired view using the Edit <view type> options, and then
select their View Metadata option.

Exporting and importing data
We will start exploring how data export and import work in Odoo, and from there,
we will move on to the more technical details.

Exporting data
Data export is a standard feature available in any List view. To use it, we must first
select the rows to export by selecting the corresponding checkboxes on the far left,
and then select the Export option from the More button.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 4

[57]

Here is an example, using the recently created to-do tasks:

The Export option takes us to a dialog form, where we can choose what to export.
The Import Compatible Export option makes sure that the exported file can be
imported back to Odoo. We will need to use this.

The export format can be CSV or Excel. We will prefer CSV file to get a better
understanding of the export format. Next, we should pick the columns we want to
export and click on the Export To File button. This will start the download of a file
with the exported data.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Data Serialization and Module Data

[58]

If we follow these instructions and select the fields shown in the preceding
screenshot, we should end up with a CSV text file similar to this:

"id","name","user_id/id","date_deadline","is_done"
"__export__.todo_task_1","Install Odoo","base.user_root","2015-01-
30","True"
"__export__.todo_task_2","Create dev database","base.user_
root","","False"

Notice that Odoo automatically exported an additional id column. This is an
External ID that is automatically generated for each record. These generated External
IDs use __export__ in place of an actual module name. New identifiers are only
assigned to records that don't already have one, and from there on, they are kept
bound to the same record. This means that subsequent exports will preserve the
same External IDs.

Importing data
First we have to make sure the import feature is enabled. This is done in the Settings
menu, Configuration | General Settings option. Under the Import / Export topic,
make sure the Allow users to import data from CSV files checkbox is enabled.

With this option enabled, the List views show an Import option next to the Create
button at the top of the list.

Let's perform a mass edit on our to-do data: open in a spreadsheet or a text editor the
CSV file we just downloaded, then change a few values and add some new rows.

As mentioned before, the first id column provides a unique identifier for each row
allowing already existing records to be updated instead of duplicated when we
import the data back to Odoo. For new rows we may add to the CSV file, the id
should be left blank, and a new record will be created for them.

After saving the changes on the CSV file, click on the Import option (next to the
Create button) and we will be presented with the import assistant. There we should
select the CSV file location on disk and click on Validate to check its format for
correctness. Since the file to import is based on an Odoo export, there is a good
chance it will be valid.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 4

[59]

Now we can click on Import and there you go: our modifications and new records
should have been loaded into Odoo.

Related records in CSV data files
In the example seen above, the user responsible for each task is a related record in
the users model, with a many to one (or foreign key) relation. The column name
used for it was user_id/id and the field values were External IDs for the related
records, such as base.user_root for the administrator user.

Relation columns should have /id appended to their name, if using External IDs,
or /.id, if using database (numeric) IDs. Alternatively, a colon (:) can be used in
place of the slash for the same effect.

Similarly, many to many relations are also supported. An example of a many to many
relations is the one between Users and Groups: each User can be in many Groups,
and each Group can have many Users. The column name for this type of field should
have appended a /id. The field values accept a comma-separated list of External IDs,
surrounded by double quotes.

For example, the to-do task follower is a many-to-many relation between To-do
Tasks and Partners. It's column name could be follower_ids/id and a field value
with two followers could be:

"__export__.res_partner_1,__export__.res_partner_2"

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Data Serialization and Module Data

[60]

Finally, one to many relations can also be imported through a CSV. The typical
example of this type of relations is a document "head" with several "lines".

We can see an example for such a relation in the company model (form view
available in the Settings menu): a company can have several bank accounts, each
with its own details, and each bank account belongs to (has a many-to-one relation
with) only one company.

It's possible to import companies along with their bank accounts in a single file. For this,
some columns will correspond to the company, and other columns will correspond to
the bank account details. The bank details column names should be prefixed with the
one-to-many fields linking the company to the banks; bank_ids in this case.

The first bank account details goes in the same row as its related company data.
The next bank account's details go in the next rows, but only the bank details
related columns should have values; the company data columns should be empty
in those lines.

Here is an example loading a company with three banks:

id,name,bank_ids/id,bank_ids/acc_number,bank_ids/state
base.main_company,YourCompany,__export__.res_partner_
bank_4,123456789,bank
,,__export__.res_partner_bank_5,135792468,bank
,,__export__.res_partner_bank_6,1122334455,bank

Notice that the two last lines begin with two commas: this corresponds to empty
values in the first two columns, id and name, regarding the head company data. But
the remaining columns, regarding bank accounts, have the values for the second and
third bank records.

These are the essentials on working with export and import from the GUI. It's useful
to set up data in new Odoo instances, or to prepare data files to be included in Odoo
modules. Next we will learn more about using data files in modules.

Module data
Modules use data files to load their configurations into the database, initial data
and demonstration data. This can be done using both CSV and XML files. For
completeness, the YAML file format can also be used, but this is rarely used for data
loading, so we won't be discussing it.

CSV files used by modules are exactly the same as those we have seen and used for
the import feature. When using them in modules, the only additional restriction is
that the file name must match the name of the model to which the data will be loaded.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 4

[61]

A common example is security access, to load into the ir.model.access model. This
is usually done using CSV files, and they should be named ir.model.access.csv.

Demonstration data
Odoo modules may install demo data. This is useful to provide usage examples for a
module and data sets to be used in tests. It's considered good practice for modules to
provide demonstration data. Demonstration data for a module is declared using the
demo attribute of the __openerp__.py manifest file. Just like the data attribute, it is a
list of file names with the corresponding relative paths inside the module.

We will be adding demonstration data to our todo_user module. We can start by
exporting some data from the to-do tasks, as explained in the previous section. Next
we should save that data in the todo_user directory with file name todo.task.csv.
Since this data will be owned by our module, we should edit the id values to replace
the __export__ prefix in the identifiers with the module technical name.

As an example our todo.task.csv data file might look like this:

id,name,user_id/id,date_deadline
todo_task_a,"Install Odoo","base.user_root","2015-01-30"
todo_task_b","Create dev database","base.user_root",""

We must not forget to add this data file to the __openerp__.py manifest
demo attribute:

 'demo': ['todo.task.csv'],

Next time we update the module, as long as it was installed with demo data
enabled, the content of the file will be imported. Note that this data will be rewritten
whenever a module upgrade is performed.

XML files can also be used for demonstration data. Their file names are not required
to match the model to load, because the XML format is much richer and that
information is provided by the XML elements inside the file.

Let's learn more about what XML data files allow us to do that CSV files don't.

XML data files
While CSV files provide a simple and compact format to serialize data, XML files are
more powerful and give more control over the loading process.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Data Serialization and Module Data

[62]

We have already used XML data files in the previous chapters. The user interface
components, such as views and menu items, are in fact records stored in system
models. The XML files in the modules are a means used to load those records into
the server.

To showcase this, we will add a second data file to the todo_user module, named
todo_data.xml, with the following content:

<?xml version="1.0"?>
<openerp>
 <data>
 <!-- Data to load -->
 <record model="todo.task" id="todo_task_c">
 <field name="name">Reinstall Odoo</field>
 <field name="user_id" ref="base.user_root" />
 <field name="date_deadline">2015-01-30</field>
 </record>
 </data>
</openerp>

This XML is equivalent to the CSV data file we have just seen in the previous section.

XML data files have a <openerp> element containing <data> elements, inside of
which we can have have several <record> elements, corresponding to the CSV
data rows.

A <record> element has two mandatory attributes, model and id (the external
identifier for the record), and contains a <field> tag for each field to write on.

Note that the slash notation in field names is not available here: we can't use <field
name="user_id/id">. Instead the ref special attribute is used to reference External
IDs. We'll discuss the values for the relational "to many" fields in a moment.

The data noupdate attribute
When the data loading is repeated, existing records from the previous run
are rewritten.

This is important to keep in mind: it means that upgrading a module will overwrite
any manual changes that might have been made to the data. Notably, if views were
modified with customizations, those changes will be lost with the next module
upgrade. The correct procedure is to instead create inherited views for the changes
we need, as discussed in the Chapter 3, Inheritance – Extending Existing Applications.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 4

[63]

This overwrite behavior is the default, but it can be changed, so that when an already
created record is loaded again no change is made to it. This is done by adding to the
<data> element a noupdate="1" attribute. With this, its records will be created the
first time they are loaded, and in subsequent module upgrades nothing will be done
to them.

This allows for manually made customizations to be safe from module upgrades. It is
often used with record access rules, allowing them to be adapted to implementation
specific needs.

It is also possible to have more than one <data> section in the same XML file. We
can take advantage of this to have a data set with noupdate="1" and another with
noupdate="0".

The noupdate flag is stored in the External Identifier information for each record. It's
possible to edit it directly using the External Identifier form available in the Technical
menu, with the Non Updatable checkbox.

The noupdate attribute is tricky when developing modules,
because changes made to the data later will be ignored, and
Odoo won't pick up later modifications. A solution is to
keep noupdate="0" during development and only set it to
1 once finished.

Defining Records in XML
Each <record> element has two basic attributes, id and model, and contains
<field> elements assigning values to each column. As mentioned before, the id
attribute corresponds to the record's External ID and the model to the target model
where the record will be written. The <field> elements have available a few
different ways to assign values. Let's look at them in detail.

Setting field values
The <record> element defines a data record, and contains <field> elements to set
values on each field.

The name attribute of the field element identifies the field to be written.

The value to write is the element content: the text between the field's opening and
closing tag. In general this is also suitable to set non-text values: for Booleans, "0"/
"1" or "False"/"True" values will be correctly converted; for dates and datetimes,
strings with "YYYY-MM-DD" and "YYYY-MM-DD HH:MI:SS" will be converted properly.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Data Serialization and Module Data

[64]

Setting values using expressions
A more advanced alternative to define a field value is using the eval attribute instead.
This evaluates a Python expression and assigns the resulting value to the field.

The expression is evaluated in a context that, besides Python built-ins, also has some
additional identifiers available. Let's have a look at them.

To handle dates, the following modules are available: time, datetime, timedelta
and relativedelta. They allow calculating date values, something that is
frequently used in demonstration (and test) data. For example, to set a value to
yesterday we would use:

<field name="expiration_date"
 eval="(datetime.now() + timedelta(-1)).strftime('%Y-%m-%d')" />

Also available in the evaluation context is the ref() function, used to translate
an External ID into the corresponding database ID. This can be used to set values
for relational fields. As an example, we have used it before to set the value for the
user_id:

<field name="user_id" eval="ref('base.group_user')" />

The evaluation context also has a reference available to the current Model being
written through obj. It can be used together with ref() to access values from other
records. Here is an example from the Sales module:

<value model="sale.order"
 eval="obj(ref('test_order_1')).amount_total" />

Setting values for relation fields
We have just seen how to set a value on a many-to-one relation field, such as
user_id, using the eval attribute with a ref() function. But there is a simpler way.

The <field> element also has a ref attribute to set the value for a many-to-one field
using an External ID. Using it, we can set the value for user_id using just:

<field name="user_id" ref="base.group_user" />

For one-to-many and many-to-many fields, a list of related IDs is expected, so a
different syntax is needed, and Odoo provides a special syntax to write on this
type of fields.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 4

[65]

The following example, taken from the Fleet app, replaces the list of related records
of a tag_ids field:

<field name="tag_ids"
 eval="[(6,0,
 [ref('vehicle_tag_leasing'),
 ref('fleet.vehicle_tag_compact'),
 ref('fleet.vehicle_tag_senior')]
)]" />

To write on a to many-field we use a list of triples. Each triple is a write command
that does different things according to the code used:

•	 (0,_ ,{'field': value}): This creates a new record and links it to this one
•	 (1,id,{'field': value}): This updates values on an already linked record
•	 (2,id,_): This unlinks and deletes a related record
•	 (3,id,_): This unlinks but does not delete a related record
•	 (4,id,_): This links an already existing record
•	 (5,_,_): This unlinks but does not delete all linked records
•	 (6,_,[ids]): This replaces the list of linked records with the provided list

The underscore symbol used above represents irrelevant values, usually filled with 0
or False.

Shortcuts for frequently used Models
If we go back to Chapter 2, Building Your First Odoo Application, we can find in the
XML files elements other than <record>, such as <act_window> and <menuitem>.

These are convenient shortcuts for frequently used Models that can also be loaded
using regular <record> elements. They load data into base Models supporting the
user interface and will be explored in more detail later, in Chapter 6, Views - Designing
the User Interface.

For reference, so that we can better understand XML files we may encounter
in existing modules, the following shortcut elements are available with the
corresponding Models they load data into:

•	 <act_window>: This is the Window Actions model ir.actions.act_window
•	 <menuitem>: This is the Menu Items model ir.ui.menu
•	 <report>: This is the Report Actions model ir.actions.report.xml
•	 <template>: This is View QWeb Templates stored in model ir.ui.view
•	 <url>: This is the URL Actions model ir.actions.act_url

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Data Serialization and Module Data

[66]

Other actions in XML data files
Until now we have seen how to add or update data using XML files. But XML files
also allow performing other types of actions, sometimes needed to set up data. In
particular, they are capable in deleting the data, execute arbitrary model methods,
and trigger workflow events.

Deleting records
To delete a data record we use the <delete> element, providing it with either an id
or a search domain to find the target record.

In Chapter 3, Inheritance – Extending Existing Applications, we had the need to remove
a record rule added by the to-do app. In the todo_user/security/todo_access_
rules.xml file a <delete> element was used, with a search domain to find the
record to delete:

<delete
 model="ir.rule"
 search="[('id','=',ref('todo_app.todo_task_user_rule'))]"
/>

In this case the same exact effect could be achieved using the id attribute to identify
the record to delete:

<delete model="ir.rule" id="todo_app.todo_task_user_rule" />

Triggering functions and workflows
An XML file can also execute methods during its load process through the
<function> element. This can be used to set up demo and test data. For example, in
the membership module it is used to create demonstration membership invoices:

<function
 model="res.partner"
 name="create_membership_invoice"
 eval="(ref('base.res_partner_2'),
 ref('membership_0'),
 {'amount':180})"
/>

This is calling the create_membership_invoice() method of the res.partner
model. The arguments are passed as a tuple in the eval attribute. In this case
we have a tuple with three arguments: the Partner ID, the Membership ID and a
dictionary containing the invoice amount.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 4

[67]

Another way XML data files can perform actions is by triggering Odoo workflows,
through the <workflow> element.

Workflows can, for example, change the state of a sales order or convert it into an
invoice. Here is an example taken from the sale module, converting a draft sales
order to the confirmed state:

<workflow model="sale.order"
 ref="sale_order_4"
 action="order_confirm" />

The model is self-explanatory by now, and ref identifies the workflow instance we
are acting upon. The action is the workflow signal sent to that workflow instance.

Summary
We have learned all the essentials about data serialization, and gained a better
understanding of the XML aspects we saw in the previous chapters.

We also spent some time understanding External Identifiers, a central concept for
data handling in general, and for module configurations in particular.

XML data files were explained in detail. We learned about the several options
available to set values on fields and also to perform actions such as deleting records
and calling model methods.

CSV files and the data import/export features were also explained. These are
valuable tools for Odoo initial setup or for mass editing of data.

In the next chapter are will explore in detail how to build Odoo models and later
learn more about building their user interfaces.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[69]

Models – Structuring the
Application Data

In the previous chapters, we had an end-to-end overview of creating new modules
for Odoo. In Chapter 2, Building Your First Odoo Application, a completely new
application was built, and in Chapter 3, Inheritance – Extending Existing Applications,
we explored inheritance and how to use it to create an extension module for our
application. In Chapter 4, Data Serialization and Module Data, we discussed how to add
initial and demonstration data to our modules.

In these overviews, we touched all the layers involved in building a backend
application for Odoo. Now, in the following chapters, it's time to explain in more detail
these several layers making up an application: models, views, and business logic.

In this chapter, you will learn how to design the data structures supporting an
application, and how to represent the relations between them.

Organizing application features into
modules
As before, we will use an example to help explain the concepts. One of the great
things about Odoo is being able to pick any existing application or module and add,
on top of it, those extra features you need. So we are going to continue improving
our to-do modules, and in no time they will form a fully featured application!

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Models – Structuring the Application Data

[70]

It is a good practice to split Odoo applications into several smaller modules, each of
them responsible for specific features. This reduces overall complexity and makes
them easier to maintain and upgrade to later Odoo versions. The problem of having
to install all these individual modules can be solved by providing an app module
packaging all those features, through its dependencies. To illustrate this approach
we will be implementing the additional features using new to-do modules.

Introducing the todo_ui module
In the previous chapter, we first created an app for personal to-dos, and then
extended it so that the to-dos could be shared with other people.

Now we want to take our app to a new level by adding to it a kanban board and a
few other nice user interface improvements. The kanban board will let us organize
our tasks in columns, according to their stages, such as Waiting, Ready, Started or
Done.

We will start by adding the data structures to enable that vision. We need to add
stages and it will be nice if we add support for tags as well, allowing the tasks to
be categorized by subject.

The first thing to figure out is how our data will be structured so that we can design
the supporting Models. We already have the central entity: the to-do task. Each task
will be in a stage, and tasks can also have one or more tags on them. This means we
will need to add these two additional models, and they will have these relations:

•	 Each task has a stage, and there can be many tasks in each stage.
•	 Each task can have many tags, and each tag can be in many tasks.

This means that tasks have many to one relation with stages, and many to many
relations with tags. On the other hand, the inverse relations are: stages have a one
to many relationship with tasks and tags have a many to many relation with tasks.

We will start by creating the new todo_ui module and add the to-do stages and
to-do tags models to it.

We've been using the ~/odoo-dev/custom-addons/ directory to host our modules. To
create the new module alongside the existing ones, we can use these shell commands:

$ cd ~/odoo-dev/custom-addons

$ mkdir todo_ui

$ cd todo_ui

$ touch todo_model.py

$ echo "from . import todo_model" > __init__.py

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 5

[71]

Next, we should add the __openerp__.py manifest file with this content:

{ 'name': 'User interface improvements to the To-Do app',
 'description': 'User friendly features.',
 'author': 'Daniel Reis',
 'depends': ['todo_app'] }

Note that we are depending on todo_app and not on todo_user. In general, it is a
good idea to keep modules as independent as possible. When an upstream module
is changed, it can impact all other modules that directly or indirectly depend on
it. It's best if we can keep the number of dependencies low, and also avoid long
dependency stacks, such as todo_ui → todo_user → todo_app in this case.

Now we can install the module in our Odoo work database and get started with
the models.

Creating models
For the to-do tasks to have a kanban board, we need stages. Stages are the board
columns, and each task will fit into one of these columns.

Let's add the following code to the todo_ui/todo_model.py file:

-*- coding: utf-8 -*-
from openerp import models, fields, api

class Tag(models.Model):
 _name = 'todo.task.tag'
 name = fields.Char('Name', 40, translate=True)

class Stage(models.Model):
 _name = 'todo.task.stage'
 _order = 'sequence,name'
 _rec_name = 'name' # the default
 _table = 'todo_task_stage' # the default
 name = fields.Char('Name', 40, translate=True)
 sequence = fields.Integer('Sequence')

Here, we created the two new Models we will be referencing in the to-do tasks.

Focusing on the task stages, we have a Python class, Stage, based on the class
models.Model, defining a new Odoo model, todo.task.stage. We also defined
two fields, name and sequence. We can see some model attributes, (prefixed with
an underscore) that are new to us. Let's have a closer look at them.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Models – Structuring the Application Data

[72]

Model attributes
Model classes can have additional attributes used to control some of their behaviors:

•	 _name: This is the internal identifier for the Odoo model we are creating.
•	 _order: This sets the order to use when the model's records are browsed. It is

a text string to be used as the SQL order by clause, so it can be anything you
could use there.

•	 _rec_name: This indicates the field to use as the record description when
referenced from related fields, such as a many to one relation. By default,
it uses the name field, which is a commonly found field in models. But this
attribute allows us to use any other field for that purpose.

•	 _table: This is the name of the database table supporting the model. Usually,
it is left to be calculated automatically, and is the model name with the dots
replaced by underscores. But it can be set to indicate a specific table name.

For completeness, we can also have the _inherit and _inherits attributes, as
explained in Chapter 3, Inheritance - Extending Existing Applications.

Models and Python classes
Odoo models are represented by Python classes. In the preceding code, we have a
Python class Stage, based on the models.Model class, used to define a new Odoo
model todo.task.stage.

Odoo models are kept in a central registry, also referred to as pool in the previous
versions. It is a dictionary keeping references of all the model classes available in
the instance, and can be referenced by model name. Specifically, the code in a model
method can use self.envl['x'] or self.env.get('x') to get a reference to a class
representing model x.

You can see that model names are important since they are the key used to access
the registry. The convention for model names is to use a list of lowercase words
joined with dots, like todo.task.stage. Other examples from the core modules
are project.project, project.task or project.task.type. We should use the
singular form: todo.task instead of todo.tasks. For historical reasons it's possible to
find some core models not following this, such as res.users, but that is not the rule.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 5

[73]

Model names must be globally unique. Because of this, the first word should
correspond to the main application the module relates to. In our example, it is todo.
Other examples from the core modules are project, crm, or sale.

Python classes, on the other hand, are local to the Python file where they are
declared. The identifier used for them is only significant for the code in that file.

Because of this, class identifiers are not required to be prefixed by the main
application they relate to. For example, there is no problem to call just Stage to our
class for the todo.task.stage model. There is no risk of collision with possible
classes with the same name on other modules.

Two different conventions for class identifiers can be used: snake_case or
CamelCase. Historically, Odoo code used snake case, and it is still very frequent to
find classes using that convention. But the recent trend is to use camel case, since it is
the Python standard defined by the PEP8 coding conventions. You may have noticed
that we are using the latter form.

Transient and Abstract models
In the preceding code, and in the vast majority of Odoo models, classes are based
on the models.Model class. This type of models have database persistence: database
tables are created for them and their records are stored until explicitly deleted.

But Odoo also provides two other model types to be used: Transient and
Abstract models.

Transient models are based on the models.TransientModel class and are used for
wizard-style user interaction. Their data is still stored in the database, but it is expected
to be temporary. A vacuum job periodically clears old data from these tables.

Abstract models are based on the models.AbstractModel class and have no data
storage attached to them. They act as reusable feature sets to be mixed in with other
models. This is done using the Odoo inheritance capabilities.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Models – Structuring the Application Data

[74]

Inspecting existing models
The information about models and fields created with Python classes is available
through the user interface. In the Settings top menu, select the Technical | Database
Structure | Models menu item. Here, you will find the list of all models available in
the database. Clicking on a model in the list will open a form with its details.

This is a good tool to inspect the structure of a Model, since you have in one place
the result of all additions that may come from several different modules. In this case,
as you can see at the In Modules field, on the top right, the todo.task definitions
are coming from the todo_app and todo_user modules.

In the lower area, we have some information tabs available: a quick reference for
the model Fields, the Access Rights granted, and also list the Views available for
this model.

We can find the model's External Identifier, by activating the Developer Menu and
accessing its View Metadata option. These are automatically generated but fairly
predictable: for the todo.task model, the External Identifier is model_todo_task.

The Models form is editable! It's possible to create and
modify models, fields, and views from here. You can use this
to build prototypes before carving them into proper modules.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 5

[75]

Creating fields
After creating a new model, the next step is to add fields to it. Let's explore the
several types of fields available in Odoo.

Basic field types
We now have a Stage model and will expand it to add some additional fields.
We should edit the todo_ui/todo_model.py file, by removing some unnecessary
attributes included before for the purpose of explanation, making it look like this:

class Stage(models.Model):
 _name = 'todo.task.stage'
 _order = 'sequence,name'
 # String fields:
 name = fields.Char('Name', 40)
 desc = fields.Text('Description')
 state = fields.Selection(
 [('draft','New'), ('open','Started'),('done','Closed')],
 'State')
 docs = fields.Html('Documentation')
 # Numeric fields:
 sequence = fields.Integer('Sequence')
 perc_complete = fields.Float('% Complete', (3, 2))
 # Date fields:
 date_effective = fields.Date('Effective Date')
 date_changed = fields.Datetime('Last Changed')
 # Other fields:
 fold = fields.Boolean('Folded?')
 image = fields.Binary('Image')

Here, we have a sample of the non-relational field types available in Odoo, with the
basic arguments expected by each function. For most, the first argument is the field
title, corresponding to the string keyword attribute. It's an optional argument, but
it is recommended to be provided. If not, a title will be automatically generated from
the field name.

There is a convention for date fields to use date as a prefix in their name. For example,
we should use date_effective instead of effective_date. This can also apply to
other fields, such as amount_, price_ or qty_.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Models – Structuring the Application Data

[76]

A few more arguments are available for most field types:

•	 Char accepts a second, optional argument, size, corresponding to the
maximum text size. It's recommended to use it only if you have a good
reason to.

•	 Text differs from Char in that it can hold multiline text content, but expects
the same arguments.

•	 Selection is a drop-down selection list. The first argument is the list of
selectable options and the second is the title string. The selection list items
are ('value', 'Title') tuples for the value stored in the database and
the corresponding description string. When extending through inheritance,
the selection_add argument can be used to append items to an existing
selection list.

•	 Html is stored as a text field, but has specific handling to present HTML
content on the user interface.

•	 Integer just expects a string argument for the field title.
•	 Float has a second optional argument, an (x,y) tuple with the field's

precision: x is the total number of digits; of those, y are decimal digits.
•	 Date and Datetime data is stored in UTC time. There are automatic

conversions made, based on the user time zone preferences, made available
through the user session context. This is discussed in more detail in Chapter 6,
Views – Designing the User Interface.

•	 Boolean only expects the field title to be set, even if it is optional.
•	 Binary also expects only a title argument.

Other than these, we also have the relational fields, which will be introduced later in this
chapter. But now, there is still more to learn about these field types and their attributes.

Common field attributes
Fields also have a set of attributes we can use, and we'll explain these in more detail:

•	 string is the field title, used as its label in the UI. Most of the time it is not
used as a keyword argument, since it can be set as a positional argument.

•	 default sets a default value for the field. It can be a static value or a callable,
either a function reference or a lambda expression.

•	 size applies only to Char fields, and can set a maximum size allowed.
•	 translate applies to text fields, Char, Text and Html, and makes the field

translatable: it can have different values for different languages.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 5

[77]

•	 help provides the text for tooltips displayed to the users.
•	 readonly=True makes the field not editable on the user interface.
•	 required=True makes the field mandatory.
•	 index=True will create a database index on the field.
•	 copy=False has the field ignored when using the copy function. The

non-relational fields are copyable by default.
•	 groups allows limiting the field's access and visibility to only some groups.

It is a comma-separated list of strings for security group XML IDs.
•	 states expects a dictionary mapping values for UI attributes depending on

values of the state field. For example: states={'done':[('readonly',True)
]}. Attributes that can be used are readonly, required, and invisible.

For completeness, two other attributes are sometimes used when upgrading between
Odoo major versions:

•	 deprecated=True logs a warning whenever the field is being used.
•	 oldname='field' is used when a field is renamed in a newer version,

enabling the data in the old field to be automatically copied into the new field.

Reserved field names
A few field names are reserved to be used by the ORM:

•	 id is an automatic number uniquely identifying each record, and used as the
database primary key. It's automatically added to every model.

The following fields are automatically created on new models, unless the _log_
access=False model attribute is set:

•	 create_uid for the user that created the record
•	 create_date for the date and time when the record is created
•	 write_uid for the last user to modify the record
•	 write_date for the last date and time when the record was modified

This information is available from the web client, using the Developer Mode menu
and selecting the View Metadata option.

There some built-in effects that expect specific field names. We should avoid using
them for purposes other than the intended ones. Some of them are even reserved and
can't be used for other purposes at all:

•	 name is used by default as the display name for the record. Usually it is a
Char, but other field types are also allowed. It can be overridden by setting
the _rec_name model attribute.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Models – Structuring the Application Data

[78]

•	 active (type Boolean) allows inactivating records. Records with
active==False will automatically be excluded from queries. To access them
an ('active','=',False) condition must be added to the search domain,
or 'active_test': False should be added to the current context.

•	 sequence (type Integer) if present in a list view, allows to manually
define the order of the records. To work properly it should also be in the
model's _order.

•	 state (type Selection) represents basic states of the record's life cycle, and
can be used by the state's field attribute to dynamically modify the view:
some form fields can be made read only, required or invisible in specific
record states.

•	 parent_id, parent_left, and parent_right have special meaning for
parent/child hierarchical relations. We will shortly discuss them in detail.

So far we've discussed scalar value fields. But a good part of an application data
structure is about describing the relationships between entities. Let's look at that now.

Relations between models
Looking again at our module design, we have these relations:

•	 Each task has a stage – that's a many to one relation, also known as a foreign
key. The inverse relation is a one to many, meaning that each stage can have
many tasks.

•	 Each task can have many tags – that's a many to many relation. The inverse
relation, of course, is also a many to many, since each tag can also have
many tasks.

Let's add the corresponding relation fields to the to-do tasks in our
todo_ui/todo_model.py file:

class TodoTask(models.Model):
 _inherit = 'todo.task'
 stage_id = fields.Many2one('todo.task.stage', 'Stage')
 tag_ids = fields.Many2many('todo.task.tag', string='Tags')

The preceding code shows the basic syntax for these fields, setting the related model
and the field's title string. The convention for relational field names is to append _id
or _ids to the field names, for to one and to many relations, respectively.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 5

[79]

As an exercise, you may try to also add on the related models, the corresponding
inverse relations:

•	 The inverse of the Many2one relation is a One2many field on stages: each stage
can have many tasks. We should add this field to the Stage class.

•	 The inverse of the Many2many relation is also a Many2many field on tags: each
tag can also be used on many tasks.

Let's have a closer look at relational field definitions.

Many to one relations
Many2one accepts two positional arguments: the related model (corresponding to the
comodel keyword argument) and the title string. It creates a field in the database
table with a foreign key to the related table.

Some additional named arguments are also available to use with this type of field:

•	 ondelete defines what happens when the related record is deleted. Its
default is set null, meaning it is set to an empty value if the related record is
deleted. Other possible values are restrict, raising an error preventing the
deletion, and cascade also deleting this record.

•	 context and domain are meaningful for the web client views. They can be set
on the model to be used by default on any view where the field is used. They
will be better explained in the Chapter 6, Views - Designing the User Interface.

•	 auto_join=True allows the ORM to use SQL joins when doing searches
using this relation. By default this is False to be able to enforce security
rules. If joins are used, the security rules will be bypassed, and the user could
have access to related records the security rules wouldn't allow, but the SQL
queries will be more efficient and run faster.

Many to many relations
The Many2many minimal form accepts one argument for the related model, and it is
recommended to also provide the string argument with the field title.

At the database level, this does not add any column to the existing tables. Instead,
it automatically creates a new relation table with only two ID fields with the
foreign keys to the related tables. The relation table name and the field names are
automatically generated. The relation table name is the two table names joined with
an underscore with _rel appended to it.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Models – Structuring the Application Data

[80]

These defaults can be manually overridden. One way to do it is to use the longer
form for the field definition:

TodoTask class: Task <-> Tag relation (long form):
tag_ids = fields.Many2many(
 'todo.task.tag', # related model
 'todo_task_tag_rel', # relation table name
 'task_id', # field for "this" record
 'tag_id', # field for "other" record
 string='Tasks')

Note that the additional arguments are optional. We could just set the name for the
relation table and let the field names use the automatic defaults.

If you prefer, you may use the long form using keyword arguments instead:

TodoTask class: Task <-> Tag relation (long form):
tag_ids = fields.Many2many(
 comodel_name='todo.task.tag', # related model
 relation='todo_task_tag_rel', # relation table name
 column1='task_id', # field for "this" record
 column2='tag_id', # field for "other" record
 string='Tasks')

Like many to one fields, many to many fields also support the domain and context
keyword attributes.

On some rare occasions we may have to use these long forms to override the
automatic defaults, in particular, when the related models have long names or
when we need a second many to many relation between the same models.

PostgreSQL table names have a limit of 63 characters,
and this can be a problem if the automatically generated
relation table name exceeds that limit. That is a case where
we should manually set the relational table name using the
relation attribute.

The inverse of the Many2many relation is also a Many2many field. If we also add
a Many2many field to the tags, Odoo infers that this many to many relation is the
inverse of the one in the task model.

The inverse relation between tasks and tags can be implemented like this:

class Tag(models.Model):
_name = 'todo.task.tag'
Tag class relation to Tasks:

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 5

[81]

 task_ids = fields.Many2many(
 'todo.task', # related model
 string='Tasks')

One to many inverse relations
The inverse of a Many2one can be added to the other end of the relation. This has no
impact on the actual database structure, but allows us easily browse from the "one"
side the "many" side records. A typical use case is the relation between a document
header and its lines.

On our example, with a One2many inverse relation on stages, we could easily
list all the tasks in that stage. To add this inverse relation to stages, add the code
shown here:

class Stage(models.Model):
_name = 'todo.task.stage'
Stage class relation with Tasks:
 tasks = fields.One2many(
 'todo.task', # related model
 'stage_id', # field for "this" on related model
 'Tasks in this stage')

The One2many accepts three positional arguments: the related model, the field name
in that model referring this record, and the title string. The two first positional
arguments correspond to the comodel_name and inverse_name keyword arguments.

The additional keyword parameters available are the same as for many to one:
context, domain, ondelete (here acting on the "many" side of the relation), and
auto_join.

Hierarchical relations
Parent-child relations can be represented using a Many2one relation to the same
model, to let each record reference its parent. And the inverse One2many makes it
easy for a parent to keep track of its children.

Odoo also provides improved support for these hierarchic data structures: faster
browsing through tree siblings, and simpler search with the additional child_of
operator in domain expressions.

To enable these features we need to set the _parent_store flag attribute and add the
helper fields: parent_left and parent_right. Mind that this additional operation
comes at storage and execution time penalties, so it's best used when you expect to
read more frequently than write, such as a the case of a category tree.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Models – Structuring the Application Data

[82]

Revisiting the tags model defined in the todo_ui/todo_model.py file, we should
now edit it to look like this:

class Tags(models.Model):
 _name = 'todo.task.tag'
 _parent_store = True
 # _parent_name = 'parent_id'
 name = fields.Char('Name')
 parent_id = fields.Many2one(
 'todo.task.tag', 'Parent Tag', ondelete='restrict')
 parent_left = fields.Integer('Parent Left', index=True)
 parent_right = fields.Integer('Parent Right', index=True)

Here, we have a basic model, with a parent_id field to reference the parent record,
and the additional _parent_store attribute to add hierarchic search support. When
doing this, the parent_left and parent_right fields also have to be added.

The field referring to the parent is expected to be named parent_id. But any other
field name can be used by declaring it with the _parent_name attribute.

Also, it is often convenient to add a field with the direct children of the record:

child_ids = fields.One2many(
 'todo.task.tag', 'parent_id', 'Child Tags')

Referencing fields using dynamic relations
So far, the relation fields we've seen can only reference one model. The Reference
field type does not have this limitation and supports dynamic relations: the same
field is able to refer to more than one model.

We can use it to add a To-do Task field, Refers to, that can either refer to a User
or a Partner:

class TodoTask(models.Model):
 refers_to = fields.Reference(
 [('res.user', 'User'), ('res.partner', 'Partner')],
 'Refers to')

You can see that the field definition is similar to a Selection field, but here the
selection list holds the models that can be used. On the user interface, the user will
first pick a model from the list, and then pick a record from that model.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 5

[83]

This can be taken to another level of flexibility: a Referencable Models configuration
table exists to configure the models that can be used in Reference fields. It is
available in the Settings | Technical | Database Structure menu. When creating
such a field we can set it to use any model registered there, with the help of the
referencable_models() function in the openerp.addons.res.res_request
module. In Odoo version 8, it is still using the old-style API, so we need to wrap it to
use with the new API:

from openerp.addons.base.res import res_request
def referencable_models(self):
 return res_request.referencable_models(
 self, self.env.cr, self.env.uid, context=self.env.context)

Using the preceding code, the revisited version of the Refers to field would look
like this:

class TodoTask(models.Model):
 refers_to = fields.Reference(
 referencable_models, 'Refers to')

Computed fields
Fields can have values calculated by a function, instead of simply reading a database
stored value. A computed field is declared just like a regular field, but has an
additional argument compute with the name of the function used to calculate it.

In most cases computed fields involve writing some business logic, so we will develop
this topic more in Chapter 7, ORM Application Logic - Supporting Business Processes. We
can still explain them here, but keeping the business logic side as simple as possible.

Let's work on an example: stages have a fold field. We will add to tasks a computed
field with the Folded? flag for the corresponding stage.

We should edit the TodoTask model in the todo_ui/todo_model.py file to add the
following:

class TodoTask(models.Model):
 stage_fold = fields.Boolean(
 'Stage Folded?',
 compute='_compute_stage_fold')

 @api.one
 @api.depends('stage_id.fold')
 def _compute_stage_fold(self):
 self.stage_fold = self.stage_id.fold

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Models – Structuring the Application Data

[84]

The preceding code adds a new stage_fold field and the _compute_stage_fold
method used to compute it. The function name was passed as a string, but it's also
allowed to pass it as a callable reference (the function identifier with no quotes).

Since we are using the @api.one decorator, self will represent a single record. If we
used @api.multi instead, it would represent a recordset and our code would need
to handle the iteration over each record.

The @api.depends is necessary if the computation uses other fields: it tells the server
when to recompute stored or cached values. It accepts one or more field names as
arguments and dot-notation can be used to follow field relations.

The computation function is expected to assign a value to the field or fields to
compute. If it doesn't, it will error. Since self is a record object, our computation is
simply to get the Folded? field using self.stage_id.fold. The result is achieved by
assigning that value (writing it) to the computed field, self.stage_fold.

We won't be working yet on the views for this module, but you can make a quick
edit on the task form to confirm if the computed field is working as expected: using
the Developer Menu pick the Edit View option and add the field directly in the form
XML. Don't worry: it will be replaced by the clean module view on the next upgrade.

Search and write on computed fields
The computed field we just created can be read, but it can't be searched or written.
This can be enabled by providing specialized functions for that. Along with the
compute function, we can also set a search function, implementing the search logic,
and the inverse function, implementing the write logic.

In order to do this, our computed field declaration becomes like this:

class TodoTask(models.Model):
 stage_fold = fields.Boolean(
 string='Stage Folded?',
 compute='_compute_stage_fold',
 # store=False) # the default
 search='_search_stage_fold',
 inverse='_write_stage_fold')

The supporting functions are:

 def _search_stage_fold(self, operator, value):
 return [('stage_id.fold', operator, value)]

 def _write_stage_fold(self):
 self.stage_id.fold = self.stage_fold

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 5

[85]

The search function is called whenever a (field, operator, value) condition
on this field is found in a search domain expression. It receives the operator and
value for the search and is expected to translate the original search element into an
alternative domain search expression.

The inverse function performs the reverse logic of the calculation, to find the value to
write on the source fields. In our example, it's just writing on stage_id.fold.

Storing computed fields
Computed field's values can also be stored on the database, by setting store to True
on their definition. They will be recomputed when any of their dependencies change.
Since the values are now stored, they can be searched just like regular fields, so a
search function is not needed.

Related fields
The computed field we implemented in the previous section is a special case that can
be automatically handled by Odoo. The same effect can be achieved using Related
fields. They make available, directly on a model, fields that belong to a related
model, accessible using a dot-notation chain. This makes them usable in situations
where dot-notation can't be used, such as UI forms.

To create a related field, we declare a field of the needed type, just like with regular
computed fields, and instead of compute, use the related attribute indicating the
dot-notation field chain to reach the desired field.

To-do tasks are organized in customizable stages and these is turn map into basic
states. We will make them available on tasks, and will use this for some client-side
logic in the next chapter.

Similarly to stage_fold, we will add a computed field on the task model, but now
using the simpler Related field:

class TodoTask(models.Model):
 stage_state = fields.Selection(
 related='stage_id.state',
 string='Stage State')

Behind the scenes, Related fields are just computed fields that conveniently
implement search and inverse. This means that we can search and write on them
out of the box, without having to write any additional code.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Models – Structuring the Application Data

[86]

Model constraints
To enforce data integrity, models also support two types of constraints: SQL
and Python.

SQL constraints are added to the table definition in the database and implemented
by PostgreSQL. They are defined using the class attribute _sql_constraints. It is
a list of tuples with the constraint identifier name, the SQL for the constraint, and the
error message to use.

A common use case is to add unique constraints to models. Suppose we didn't want
to allow the same user to have two active tasks with the same title:

class TodoTask(models.Model):
 _sql_constraints = [
 ('todo_task_name_uniq',
 'UNIQUE (name, user_id, active)',
 'Task title must be unique!')]

Since we are using the user_id field added by the todo_user module, this
dependency should be added to the depends key of the __openerp__.py manifest file.

Python constraints can use a piece of arbitrary code to check conditions. The
checking function needs to be decorated with @api.constrains indicating the
list of fields involved in the check. The validation is triggered when any of them is
modified, and will raise an exception if the condition fails:

from openerp.exceptions import ValidationError
class TodoTask(models.Model):
 @api.one
 @api.constrains('name')
 def _check_name_size(self):
 if len(self.name) < 5:
 raise ValidationError('Must have 5 chars!')

The preceding example prevents saving task titles with less than 5 characters.

Summary
We went through a thorough explanation of models and fields, using them to extend
the To-do app with tags and stages on tasks. You learned how to define relations
between models, including hierarchical parent/child relations. Finally, we saw
simple examples of computed fields and constraints using Python code.

In the next chapter, we will work on the user interface for these back-end model
features, making them available in the views used to interact with the application.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[87]

Views – Designing the
User Interface

This chapter will help you build the graphical interface for your applications. There
are several different types of views and widgets available. The concepts of context
and domain also play an important role for an improved user experience, and you
will learn more about them.

The todo_ui module has the model layer ready, and now it needs the view layer
with the user interface. We will add new elements to the UI as well as modify
existing views that were added in previous chapters.

The best way to modify existing views is to use inheritance, as explained in Chapter 3,
Inheritance – Extending Existing Applications. However, for the sake of clarity, we will
overwrite the existing views, replacing them with completely new views. This will
make the topics easier to explain and follow.

A new XML data file for our UI needs to be added to the module, so we can start by
editing the __openerp__.py manifest file. We will need to use some fields from the
todo_user module, so it must be set as a dependency:

{ 'name': 'User interface improvements to the To-Do app',
 'description': 'User friendly features.',
 'author': 'Daniel Reis',
 'depends': ['todo_user'],
 'data': ['todo_view.xml'] }

Let's get started with the menu items and window actions.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Views – Designing the User Interface

[88]

Window actions
Window actions give instructions to the client-side user interface. When a user clicks
on a menu item or a button to open a form, it's the underlying action that instructs
the user interface what to do.

We will start by creating the window action to be used on the menu items, to open
the to-do tasks and stages views. Create the todo_view.xml data file with the
following code:

<?xml version="1.0"?>
<openerp>
 <data>
 <act_window id="action_todo_stage"
 name="To-Do Task Stages"
 res_model="todo.task.stage"
 view_mode="tree,form" />

 <act_window id="todo_app.action_todo_task"
 name=" To-Do Tasks"
 res_model="todo.task"
 view_mode="tree,form,calendar,gantt,graph"
 target="current "
 context="{'default_user_id': uid}"
 domain="[]"
 limit="80" />

 <act_window id="action_todo_task_stage"
 name="To-Do Task Stages"
 res_model="todo.task.stage"
 src_model="todo.task"
 multi="False"/>
 </data>
</openerp>

Window actions are stored in the ir.actions.act_window model, and can be
defined in XML files using the <act_window> shortcut that we just used.

The first action opens the task stages model, and uses only the basic attributes for
a window action.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 6

[89]

The second action uses an ID in the todo_app namespace to overwrite the
original to-do task action of the todo_app module. It uses the most relevant
window actions attributes:

•	 name: This is the title displayed on the views opened through this action.
•	 res_model: This is the identifier of the target model.
•	 view_mode: These are the view types to make available. The order is relevant

and the first in the list is the view type opened by default.
•	 target: If this is set to new, it will open the view in a dialog window.

By default, it is current, and opens the view in the main content area.
•	 context: This sets context information on the target views, which can be

used to set default values on fields or activate filters, among other things.
We will cover its details later in this chapter.

•	 domain: This is a domain expression setting a filter for the records that will
be available in the opened views.

•	 limit: This is the number of records for each list view page, 80 by default.

The window action already includes the other view types that we will be exploring
in this chapter: calendar, Gantt, and graph. Once these changes are installed, the
corresponding buttons will be seen at the top-right corner, next to the list and form
buttons. Notice that these won't work until we create the corresponding views.

The third window action demonstrates how to add an option under the More button,
at the top of the view. These are the action attributes used to do so.

•	 src_model: This attribute indicates the model for which this window action
should be made available in the More button.

•	 multi: This flag, if set to True, makes it available in the list view. Otherwise,
it will be available in the form view.

Menu items
Menu items are stored in the ir.ui.menu model, and can be searched for in the
Settings menu by navigating to Technical | User Interface | Menu Items. If we
search for Messaging, we will see that it has Organizer as one of its submenus.
With the help of the developer tools we can find the XML ID for that menu item:
it is mail.mail_my_stuff.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Views – Designing the User Interface

[90]

We will replace the existing To-do Task menu item with a submenu that can be
found by navigating to Messaging | Organizer. In the todo_view.xml, after the
window actions, add this code:

 <menuitem id="menu_todo_task_main"
 name="To-Do" parent="mail.mail_my_stuff" />
 <menuitem id="todo_app.menu_todo_task"
 name="To-Do Tasks"
 parent="menu_todo_task_main"
 sequence="10"
 action="todo_app.action_todo_task" />
 <menuitem id="menu_todo_task_stage"
 name="To-Do Stages"
 parent="menu_todo_task_main"
 sequence="20"
 action="action_todo_stage" />

The menu option data for the ir.ui.menu model can also be loaded using the
<menuitem> shortcut element, as used in the preceding code.

The first menu item, To-Do, is a child of the mail.mail_my_stuff Organizer
menu option. It has no action assigned, since it will be used as a parent for the
next two options.

The second menu option rewrites the option defined in the todo_app module so that
it is relocated under the To-Do main menu item.

The third menu item adds a new option to access the to-do stages. We will need it in
order to add some data to be able to use stages in to-do tasks.

Context and domain
We have stumbled on context and domain several times. We have also seen that
window actions are able to set values on them, and that relational fields can also use
them in their attributes. Both concepts are useful to provide richer user interfaces.
Let's see how.

Session context
The context is a dictionary carrying session data to be used by client-side views and
by server processes. It can transport information from one view to another, or to the
server-side logic. It is frequently used in window actions and relational fields to send
information to the views opened through them.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 6

[91]

Odoo sets some basic information about the current session on the context. The
initial session information can look like this:

{'lang': 'en_US', 'tz': 'Europe/Brussels', 'uid': 1}

We have information on the current user ID and the language and time zone
preferences for the user session.

When using an action on the client, such as clicking on a button, information about
the currently selected records is added to the context:

•	 the active_id key is the ID of the selected record on a form,
•	 the active_model key is the model of the current record,
•	 the active_ids key is the list of IDs selected in the tree/list view.

The context can also be used to provide default values on fields or to enable filters
on the target view. To set on the user_id field a default value corresponding to the
session's current user we would use:

{'default_user_id': uid}

And if the target view has a filter named filter_my_tasks, we can enable it using:

{'search_default_filter_my_tasks': True}

Domain expressions
Domains are used to filter data records. Odoo parses them to produce the SQL WHERE
expressions that are used to query the database.

When used on a window action to open a view, domain sets a filter on the records that
will be available in that view. For example, to limit to only the current user's Tasks:

domain=[('user_id', '=', uid)]

The uid value used here is provided by the session context.

When used on a relation field, it will limit the selection options available for that
field. The domain filter can also use values from other fields on the view. With this
we can have different selection options available depending on what was selected
on another field. For example, a contact person field can be made to show only the
persons for the company that was selected on a previous field.

A domain is a list of conditions, where each condition is a ('field', 'operator',
value) tuple.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Views – Designing the User Interface

[92]

The left-hand field is where the filter will be applied to, and can use dot-notation on
relation fields.

The operators that can be used are:

•	 The usual comparison operators: <, >, <=, >=, =, and != are available.
•	 =like to match against the value pattern where the underscore symbol

matches any single character, and % matches any sequence of characters.
•	 like for case-sensitive match against the '%value%' SQL pattern, and ilike

for a case insensitive match. The not like and not ilike operators do the
inverse operation.

•	 child_of finds the direct and indirect children, if parent/child relations are
configured in the target model.

•	 in and not in check for inclusion in a list. In this case, the right-hand value
should be a Python list. These are the only operators that can be used with
list values. A curious special case is when the left-hand is a to-many field:
here the in operator performs a contains operation.

The right-hand value can be a constant or a Python expression to be evaluated.
What can be used in these expressions depends on the evaluation context available
(not to be confused with the session context, discussed in the previous section).
There are two possible evaluation contexts for domains: client side or server side.

For field domains and window actions, the evaluation is made client-side. The
evaluation context here includes the fields available in the current view, and dot-
notation is not available. The session context values, such as uid and active_id, can
also be used. The datetime and time Python modules are available to use in date and
time operations, and also a context_today() function returning the client current date.

Domains used in security record rules and in server Python code are evaluated on
the server side. The evaluation context has the fields of the current record available,
and dot-notation is allowed. Also available is the current session's user record. Using
user.id here is the equivalent to using uid in the client side evaluation context.

The domain conditions can be combined using the logical operators: '&' for "AND"
(the default), '|' for "OR", and '!' for "negation."

The negation is used before the condition to negate. For example, to find all tasks not
belonging to the current user: ['!', ('user_id', '=', uid)]

The "AND" and "OR" operate on the next two conditions. For example: to filter tasks
for the current user or without a responsible user:

['|', ('user_id', '=', uid), ('user_id', '=', False)]

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 6

[93]

A more complex example, used in server-side record rules:

['|', ('message_follower_ids', 'in', [user.partner_id.id]),
 '|', ('user_id', '=', user.id),
 ('user_id', '=', False)]

This domain filters all records where the followers (a many to many relation field)
contain the current user plus the result of the next condition. The next condition is
again the union of two other conditions: the records where the user_id is the current
session user or it is not set.

Form views
As we have seen in previous chapters, form views can follow a simple layout or
a business document layout, similar to a paper document.

We will now see how to design business views and to use the elements and widgets
available. Usually this would be done by inheriting the base view. But to make the
code simpler, we will instead create a completely new view for to-do tasks that will
override the previously defined one.

In fact, the same model can have several views of the same type. When an action
asks to open a view type for a model, the one with the lowest priority is picked. Or
as an alternative, the action can specify the exact identifier of the view to use. The
action we defined at the beginning of this chapter does just that; the view_id tells
the action to specifically use the form with ID view_form_todo_task_ui. This is the
view we will create next.

Business views
In a business application we can differentiate auxiliary data from main business data.
For example, in our app the main data is the to-do tasks, and the tags and stages are
auxiliary tables used by it.

These business models can use improved business view layouts for a better user
experience. If you recall the to-do task form view added in Chapter 2, Building Your
First Odoo Application, it was already following the business view structure.

The corresponding form view should be added after the actions and menu items we
added before, and its generic structure is this, use a lower priority of 10 (the default
priority is 16):

<record id="view_form_todo_task_ui" model="ir.ui.view">
 <field name="name">view_form_todo_task_ui</field>
 <field name="model">todo.task</field>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Views – Designing the User Interface

[94]

 <field name="arch" type="xml">
 <field name="priority">10</field>
 <form>
 <header> <!-- Buttons and status widget --> </header>
 <sheet> <!-- Form content --> </sheet>
 <!-- History and communication: -->
 <div class="oe_chatter">
 <field name="message_follower_ids"
 widget="mail_followers" />
 <field name="message_ids"
 widget="mail_thread" />
 </div>
 </form>

 </field>
</record>

Business views are composed of three visual areas:

•	 A top header
•	 A sheet for the content
•	 A bottom history and communication section

The history and communication section, with the social network widgets at the
lower end is added by inheriting our model from mail.thread (from the mail
module), and adding at the end of the form view the elements in the XML sample
as previously mentioned. We've also seen this in Chapter 3, Inheritance - Extending
Existing Applications.

The header status bar
The status bar on top usually features the business flow pipeline and action buttons.

The action buttons are regular form buttons, and the most common next steps should
be highlighted, using class="oe_highlight". In todo_ui/todo_view.xml we can
now expand the empty header to add a status bar to it:

<header>
 <field name="stage_state" invisible="True" />
 <button name="do_toggle_done" type="object"
 attrs="{'invisible':
 [('stage_state','in',['done','cancel'])]}"
 string="Toggle Done" class="oe_highlight" />
 <!-- Add stage statusbar: ... -->
</header>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 6

[95]

Depending on where in the process the current document is, the action buttons
available could differ. For example, a Set as Done button doesn't make sense if we
are already in the "Done" state.

This can be done using the states attribute, listing the states where the button
should be visible, like this: states="draft,open".

For more flexibility we can use the attrs attribute, forming conditions where the
button should be made invisible: attrs="{'invisible': [('stage_state','in',
['done','cancel'])].

These visibility features are also available for other view elements, and not only for
buttons. We will be exploring that in more detail later in this chapter.

The business flow pipeline
The business flow pipeline is a status-bar widget on a field that represents the point
in the flow where the record is. This is usually a State selection field, or a Stage many
to one field. Both cases can be found across several Odoo modules.

The Stage is a many to one field using a model where the process steps are defined.
Because of this they can be easily configured by end users to fit their specific business
process, and are perfect to support kanban boards.

The State is a selection list featuring rather stable major steps in a process, such as
New, In Progress, or Done. They are not configurable by end users but on the other
hand are easier to use in business logic. States also have special support for views:
the state attribute allows for an element to be selectively available to the user
depending on the state of the record.

It is possible to benefit from the best of both worlds, by using
stages that are also mapped into states. This was what we did
in the previous chapter, by making the State available in to-do
task documents through a computed field.

To add a stage pipeline to our form header:

<!-- Add stage statusbar: ... -->
<field name="stage_id" widget="statusbar"
 clickable="True" options="{'fold_field': 'fold'}" />

The clickable attribute enables clicking on the widget, to change the document's
stage or state. We may not want this if the progress through process steps should be
done only through action buttons.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Views – Designing the User Interface

[96]

In the options attribute we can use some specific settings:

•	 fold_field, when using stages, is the name of the field that the stage model
uses to indicate which stages should be shown folded.

•	 statusbar_visible, when using states, lists the states that should be always
made visible, to keep hidden the other exception states used for less common
cases. Example: statusbar_visible="draft,open,done".

The sheet canvas is the area of the form containing the main form elements. It is
designed to look like an actual paper document, and its data records are sometimes
referred to as documents.

The document structure in general has these components:

•	 Title and subtitle information
•	 A smart button area, on the top right
•	 Document header fields
•	 A notebook with tab pages, with document lines or other details

Title and subtitle
When using the sheet layout, fields outside a <group> block won't have automatic
labels displayed. It's up to the developer to control if and where to display the labels.

HTML tags can also be used to make the title shine. For best results, the document
title should be in a div with the oe_title class:

<div class="oe_title">
 <label for="name" class="oe_edit_only"/>
 <h1><field name="name"/></h1>
 <h3>
 By
 <label for="user_id" class="oe_edit_only"/>
 <field name="user_id" class="oe_inline" />
 </h3>
</div>

Here we can see the use of regular HTML elements such as div, span, h1 and h3.

Labels for fields
Outside <group> sections the field labels are not automatically displayed, but we can
display them using the <label> element:

•	 The for attribute identify the field to get the label text from
•	 The string attribute to override the field's original label text

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 6

[97]

With the class attribute to we can also use CSS classes to control their presentation.
Some useful classes are:

•	 oe_edit_only to display only when the form is in edit mode
•	 oe_read_only to display only when the form is in read mode

An interesting example is to replace the text with an icon:

<label for="name" string=" " class="fa fa-wrench" />

Odoo bundles the Font Awesome icons, being used here. The available icons can be
browsed at http://fontawesome.org.

Smart buttons
The top right area can have an invisible box to place smart buttons. These work like
regular buttons but can include statistical information. As an example we will add a
button displaying the total number of to-dos for the owner of the current to-do.

First we need to add the corresponding computed field to todo_ui/todo_model.py.
Add the following to the TodoTask class:

@api.one
def compute_user_todo_count(self):
 self.user_todo_count = self.search_count(
 [('user_id', '=', self.user_id.id)])

user_todo_count = fields.Integer(
 'User To-Do Count',
 compute='compute_user_todo_count')

Now we will add the button box with one button inside it. Right after the end of the
oe_title div block, add the following:

<div name="buttons" class="oe_right oe_button_box">
 <button class="oe_stat_button"
 type="action" icon="fa-tasks"
 name="%(todo_app.action_todo_task)d"
 string=""
 context="{'search_default_user_id': user_id,
 'default_user_id': user_id}"
 help="Other to-dos for this user" >

 <field string="To-dos" name="user_todo_count"
 widget="statinfo"/>
 </button>
</div>

www.itbook.store/books/9781784392796

http://fontawesome.org
https://itbook.store/books/9781784392796

Views – Designing the User Interface

[98]

The container for the buttons is a div with the oe_button_box class and also
oe_right, to have it aligned to the right hand side of the form.

In the example the button displays the total number of to-do tasks the document
responsible has. Clicking on it will browse them, and if creating new tasks the
original responsible will be used as default.

The button attributes used are:

•	 class="oe_stat_button" is to use a rectangle style instead of a button.
•	 icon is the icon to use, chosen from the Font Awesome icon set.
•	 type will be usually action, for a window action, and name will be the ID

of the action to execute. It can be inserted using the formula %(action-
external-id)d, to translate the external ID into the actual ID number. This
action is expected to open a view with related records.

•	 string can be used to add text to the button. It is not used here because the
contained field already provides the text for it.

•	 context will set defaults on the target view, when clicking through the
button, to filter data and set default values for new records created.

•	 help is the tooltip to display.

The button itself is a container and can have inside it's fields to display statistics.
These are regular fields using the widget statinfo. The field should be a computed
field, defined in the underlying module. We can also use static text instead or
alongside the statinfo fields, such as: <div>User's To-dos</div>

Organizing content in a form
The main content of the form should be organized using <group> tags. A group is
a grid with two columns. A field and its label take two columns, so adding fields
inside a group will have them stacked vertically.

If we nest two <group> elements inside a top group, we will be able to get two
columns of fields with labels, side by side.

<group name="group_top">
 <group name="group_left">
 <field name="date_deadline" />
 <separator string="Reference" />
 <field name="refers_to" />
 </group>
 <group name="group_right">
 <field name="tag_ids" widget="many2many_tags"/>
 </group>
</group>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 6

[99]

Groups can have a string attribute, used as a title for the section. Inside a group
section, titles can also be added using a separator element.

Try the Toggle Form Layout Outline option of the Developer
menu: it draws lines around each form section, allowing for a
better understanding of how the current view is organized.

Tabbed notebooks
Another way to organize content is the notebook, containing multiple tabbed
sections called pages. These can be used to keep less used data out of sight until
needed or to organize a large number of fields by topic.

We won't need this on our to-do task form, but here is an example that could be
added in the task stages form:

<notebook>
 <page string="Whiteboard" name="whiteboard">
 <field name="docs" />
 </page>
 <page name="second_page">
 <!-- Second page content -->
 </page>
</notebook>

It is good practice to have names on pages, to make it more reliable for other modules
to extend them.

View elements
We have seen how to organize the content in a form, using elements such as
header, group, and notebook. Now, we can take a closer look at the field and
button elements, and what we can do with them.

Buttons
Buttons support these attributes:

•	 icon to display. Unlike smart buttons, icons available for regular buttons are
those found in addons/web/static/src/img/icons.

•	 string is the button text description.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Views – Designing the User Interface

[100]

•	 type can be workflow, object or action, to either trigger a workflow signal,
call a Python method, or run a window action.

•	 name is the workflow trigger, model method, or window action to run,
depending on the button type.

•	 args can be used to pass additional parameters to the method, if the type
is object.

•	 context sets values on the session context, which can have an effect after the
windows action is run, or when a Python method is called. In the latter case,
it can sometimes be used as an alternative to args.

•	 confirm adds a dialog with this message text asking for a confirmation.
•	 special="cancel" is used on wizards, to cancel and close the form. It

should not be used with type.

Fields
Fields have these attributes available for them. Most are taken from what was
defined in the model, but can be overridden in the view.

General attributes:

•	 name: identifies the field technical name.
•	 string: provides label text description to override the one provided by the

model.
•	 help: tooltip text to use replace the one provided by the model.
•	 placeholder: provides suggestion text to display inside the field.
•	 widget: overrides the default widget used for the field's type. We will

explore the available widgets a bit later in the chapter.
•	 options: holds additional options to be used by the widget.
•	 class: provides CSS classes to use for the field's HTML.
•	 invisible="1": makes the field invisible.
•	 nolabel="1": does not display the field's label, it is only meaningful for

fields inside a <group> element.
•	 readonly="1": makes the field non editable.
•	 required="1": makes the field mandatory.

Attributes specific for some field types:

•	 sum, avg: for numeric fields, and in list/tree views, add a summary at the end
with the total or the average of the values.

•	 password="True": for text fields, displays the field as a password field.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 6

[101]

•	 filename: for binary fields, is the field for the name of the file.
•	 mode="tree": for One2many fields, is the view type to use to display the

records. By default it is tree, but can also be form, kanban or graph.

For the Boolean attributes in general, we can use True or 1 to enable and False or 0
to disable them. For example, readonly="1" and readonly="True" are equivalent.

Relational fields
On relational fields, we can have some additional control on what the user is allowed
to do. By default, the user can create new records from these fields (also known
as quick create) and open the related record form. This can be disabled using the
options field attribute:

options={'no_open': True, 'no_create': True}

The context and domain are also particularly useful on relational fields. The context
can define default values for the related records, and the domain can limit the
selectable records, for example, based on another field of the current record. Both
context and domain can be defined in the model, but they are only used on the view.

Field widgets
Each field type is displayed in the form with the appropriate default widget. But
other additional widgets are available and can be used as well:

Widgets for text fields:

•	 email: makes the e-mail text an actionable mail-to address.

•	 url: formats the text as a clickable URL.

•	 html: expects HTML content and renders it; in edit mode it uses a WYSIWYG
editor to format the content without the need to know HTML.

Widgets for numeric fields:

•	 handle: specifically designed for sequence fields, this displays a handle to
drag lines in a list view and manually reorder them.

•	 float_time: formats a float value as time in hours and minutes.
•	 monetary: displays a float field as a currency amount. The currency to

use can be taken from a field, such as options="{'currency_field':
'currency_id'}".

•	 progressbar: presents a float as a progress percentage, usually it is used on
a computed field calculating a completion rate.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Views – Designing the User Interface

[102]

Some widgets for relational and selection fields:

•	 many2many_tags: displays a many to many field as a list of tags.
•	 selection: uses the Selection field widget for a many to one field.
•	 radio: allows picking a value for a selection field option using radio buttons.
•	 kanban_state_selection: shows a semaphore light for the kanban state

selection list.
•	 priority: represents a selection as a list of clickable stars.

On-change events
Sometimes we need the value for a field to be automatically calculated when another
field is changed. The mechanism for this is called on-change.

Since version 8, the on-change events are defined on the model layer, without the
need for any specific markup on the views. This is done by creating the methods to
perform the calculations and binding them to the triggering field(s) using a decorator
@api.onchange('field1', 'field2').

In previous versions, this binding was done in the view layer, using the onchange
field attribute to set the class method called when that field was changed. This is still
supported, but is deprecated. Be aware that the old-style on-change methods can't be
extended using the new API. If you need to do that, you should use the old API.

Dynamic views
The elements visible as a form can also be changed dynamically, depending, for
example, on the user's permissions or the process stage the document is in.

These two attributes allow us to control the visibility of user interface elements:

•	 groups: makes the element visible only for members of the specified security
groups. It expects a comma separated list of group's XML IDs.

•	 states: makes the element visible only when the document is in the
specified state. It expects a comma-separated list of State codes, and the
document model must have a state field.

For more flexibility, we can instead set an element's visibility using client-side
evaluated expressions. This is done using the attrs attribute with a dictionary
mapping the invisible attribute to the result of a domain expression.

For example, to have the refers_to field visible in all states except draft:
<field name="refers_to"
 attrs="{'invisible': [('state','=','draft')]}" />

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 6

[103]

The invisible attribute is available in any element, not only fields. We can use it on
notebook pages or groups, for example.

The attrs can also set values for two other attributes: readonly and required, but
these only make sense for data fields, making them not editable or mandatory. With
this we can add some client logic such as making a field mandatory, depending on
the value from another field, or only from a certain state onward.

List views
Compared to form views, list views are much simpler. A list view can contain fields
and buttons, and most of their attributes for forms are also valid here.

Here is an example of a list view for our To-do Tasks:

<record id="todo_app.view_tree_todo_task" model="ir.ui.view">
 <field name="name">To-do Task Tree</field>
 <field name="model">todo.task</field>
 <field name="arch" type="xml">
 <tree editable="bottom"
 colors="gray:is_done==True"
 fonts="italic: state!='open'" delete="false">
<field name="is_done" invisible="True"/>
<field name="stage_state" invisible="True"/>
 <field name="name"/>
 <field name="user_id"/>
 </tree>
 </field>
</record>

The attributes for the tree top element are:

•	 editable: makes the records editable directly on the list view. The possible
values are top and bottom, the location where new records will be added.

•	 colors: dynamically sets the text color for the records, based on their content.
It is a semicolon-separated list of color:condition values. The color is a
CSS valid color (see http://www.w3.org/TR/css3-color/#html4), and
the condition is a Python expression to evaluate on the context of the
current record.

•	 fonts: dynamically modifies the font for the records based on their content.
Similar to the colors attribute, but instead sets a font style to bold, italic
or underline.

•	 create, delete, edit: if set to false (in lowercase), these disable the
corresponding action on the list view.

www.itbook.store/books/9781784392796

http://www.w3.org/TR/css3-color/#html4
https://itbook.store/books/9781784392796

Views – Designing the User Interface

[104]

Search views
The search options available on views are defined with a search view. It defines the
fields to be searched when typing in the search box It also provides predefined filters
that can be activated with a click, and data grouping options for the records on list
and kanban views.

Here is a search view for the to-do tasks:

<record id="todo_app.view_filter_todo_task"
 model="ir.ui.view">
 <field name="name">To-do Task Filter</field>
 <field name="model">todo.task</field>
 <field name="arch" type="xml">
 <search>
 <field name="name" filter_domain="['|',
 ('name','ilike',self),('user_id','ilike',self)]"/>
 <field name="user_id"/>
 <filter name="filter_not_done" string="Not Done"
 domain="[('is_done','=',False)]"/>
 <filter name="filter_done" string="Done"
 domain="[('is_done','!=',False)]"/>
 <separator/>
 <filter name="group_user" string="By User"
 context="{'group_by': 'user_id'}"/>
 </search>
 </field>
</record>

We can see two fields to be searched for: name and user_id. On name we have
a custom filter rule that makes the "if search" both on the description and on the
responsible user. Then we have two predefined filters, filtering the not done and
done tasks. These filters can be activated independently, and will be joined with an
"OR" operator if both are enabled. Blocks of filters separated with a <separator/>
element will be joined with an "AND" operator.

The third filter only sets a group-by context. This tells the view to group the records
by that field, user_id in this case.

The field elements can use these attributes:

•	 name: identifies the field to use.
•	 string: provides a label text to use instead of the default.
•	 operator: allows us to use a different operator other than the default – "="

for numeric fields and ilike for the other field types.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 6

[105]

•	 filter_domain: can be used to set a specific domain expression to use for
the search, providing much more flexibility than the operator attribute. The
text being searched for is referenced in the expression using self.

•	 groups: makes the search on the field available only for a list of security
groups (identified by XML IDs).

For the filter elements these are the attributes available:

•	 name: is an identifier to use for inheritance or for enabling it through
search_default_ keys in the context of window actions.

•	 string: provides label text to display for the filter (required).
•	 domain: provides the filter domain expression to be added to the active domain.
•	 context: is a context dictionary to add to the current context. Usually this

sets a group_by key with the name of the field to group the records.
•	 groups: makes the search filter available only for a list of groups.

Other types of views
The most frequent view types used are the form and list views, discussed until
now. Other than these, a few other view types are available, and we will give a brief
overview on each of them. Kanban views won't be addressed now, since we will
cover them in Chapter 8, QWeb – Creating Kanban Views and Reports.

Remember that the view types available are defined in the view_mode attribute of the
corresponding window action.

Calendar views
As the name suggests, this view presents the records in a calendar. A calendar view
for the to-do tasks could look like this:

<record id="view_calendar_todo_task" model="ir.ui.view">
 <field name="name">view_calendar_todo_task</field>
 <field name="model">todo.task</field>
 <field name="arch" type="xml">
 <calendar date_start="date_deadline" color="user_id"
 display="[name], Stage [stage_id]">
 <!-- Fields used for the text of display attribute -->
 <field name="name" />
 <field name="stage_id" />
 </calendar>
 </field>
</record>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Views – Designing the User Interface

[106]

The calendar attributes are these:

•	 date_start: This is the field for the start date (mandatory).
•	 date_end: This is the field for the end date (optional).
•	 date_delay: This is the field with the duration in days. This is to be used

instead of date_end.
•	 color: This is the field used to color the calendar entries. Each value in the

field will be assigned a color, and all its entries will have the same color.
•	 display: This is the text to be displayed in the calendar entries. Fields can

be inserted using [<field>]. These fields must be declared inside the
calendar element.

Gantt views
This view presents the data in a Gantt chart, which is useful for scheduling. The
to-do tasks only have a date field for the deadline, but we can use it to have a basic
Gantt view working:

<record id="view_gantt_todo_task" model="ir.ui.view">
 <field name="name">view_gantt_todo_task</field>
 <field name="model">todo.task</field>
 <field name="arch" type="xml">
 <gantt date_start="date_deadline"
 default_group_by="user_id" />
 </field>
</record>

Attributes that can be used for Gantt views are as follows:

•	 date_start: This is the field for the start date (mandatory).
•	 date_stop: This is the field for the end date. It can be replaced by the

date_delay.
•	 date_delay: This is the field with the duration in days. It can be used instead

of date_stop.
•	 progress: This is the field that provides completion percentage (between 0

and 100).
•	 default_group_by: This is the field used to group the Gantt tasks.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 6

[107]

Graph views
The graph view type provides a data analysis of the data, in the form of a chart or an
interactive pivot table.

We will add a pivot table to the to-do tasks. First, we need a field to be aggregated. In
the TodoTask class, in the todo_ui/todo_model.py file, add this line:

 effort_estimate = fields.Integer('Effort Estimate')

This should also be added to the to-do task form so that we can set some data on it.
Now, let's add the graph view with a pivot table:

<record id="view_graph_todo_task" model="ir.ui.view">
 <field name="name">view_graph_todo_task</field>
 <field name="model">todo.task</field>
 <field name="arch" type="xml">
 <graph type="pivot">
 <field name="stage_id" type="col" />
 <field name="user_id" />
 <field name="date_deadline" interval="week" />
 <field name="effort_estimate" type="measure" />
 </graph>
 </field>
</record>

The graph element has a type attribute set to pivot. It can also be bar (default), pie,
or line. In the case of bar, an additional stacked="True" can be used to make it a
stacked bar chart.

The graph should contain fields that have these possible attributes:

•	 name: This identifies the field to use in the graph, as in other views.
•	 type: This describes how the field will be used, as a row group (default), as a

col group (column), or as a measure.
•	 interval: only meaningful for date fields, this is the time interval used to

group time data by day, week, month, quarter or year.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Views – Designing the User Interface

[108]

Summary
You learned more about Odoo views used to build the user interface. We started
by adding menu options and the window actions used by them to open views. The
concepts of context and domain were explained in more detail in following sections.

You also learned about designing list views and configuring search options using
search views. Next, we had an overview of the other view types available: calendar,
Gantt, and graph. Kanban views will be explored later, when you learn how to
use QWeb.

We have already seen models and views. In the next chapter, you will learn how to
implement server-side business logic.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[109]

ORM Application
Logic – Supporting

Business Processes
In this chapter, you will learn to write code to support business logic in your models
and you will also learn how it can be activated on events and user actions. Using
the Odoo programming API, we can write complex logic and wizards allow us to
provide a rich user interaction with these programs.

To-do wizard
With the wizards, we can ask users to input information to be used in some
processes. Suppose our to-do app users regularly need to set deadlines and the
responsible persons for a large number of tasks. We could use an assistant to help
them with this. It should allow them to pick the tasks to be updated and then choose
the deadline date and/or the responsible user to set on them.

We will start by creating a new module for this feature: todo_wizard. Our module
will have a Python file and an XML file, so the todo_wizard/__openerp__.py
description will be as shown in the following code:

{ 'name': 'To-do Tasks Management Assistant',
 'description': 'Mass edit your To-Do backlog.',
 'author': 'Daniel Reis',
 'depends': ['todo_user'],
 'data': ['todo_wizard_view.xml'], }

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[110]

The todo_wizard/__init__.py file to load our code is just one line, as follows:

from . import todo_wizard_model

Next, we need to describe the data model supporting our wizard.

Wizard model
A wizard displays a form view to the user, usually in a dialog window, with some
fields to be filled in. These will then be used by the wizard logic.

This is implemented using the model/view architecture used for regular views, with
a difference: the supporting model is based on models.TransientModel instead of
models.Model.

This type of model is also stored in the database, but the data is expected to be useful
only until the wizard is completed or canceled. Server vacuum processes regularly
clean up old wizard data from the corresponding database tables.

The todo_wizard/todo_wizard_model.py file will define the three fields we need:
the lists of tasks to update, the user responsible for them, and the deadline to set on
them, as shown here:

-*- coding: utf-8 -*-
from openerp import models, fields, api
from openerp import exceptions # will be used in the code

import logging
_logger = logging.getLogger(__name__)

class TodoWizard(models.TransientModel):
 _name = 'todo.wizard'
 task_ids = fields.Many2many('todo.task', string='Tasks')
 new_deadline = fields.Date('Deadline to Set')
 new_user_id = fields.Many2one(
 'res.users',string='Responsible to Set')

It's worth noting that if we used a one to many relation, we would have to add the
inverse many to one field on to-do tasks. We should avoid many to one relations
between transient and regular models, and so we used a many to many relation that
fulfills the same purpose without the need to modify the to-do task model.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 7

[111]

We are also adding support to message logging. The logger is initialized with the
two lines just before the TodoWizard, using the Python logging standard library.
To write messages to the log we can use:

_logger.debug('A DEBUG message')
_logger.info('An INFO message')
_logger.warning('A WARNING message')
_logger.error('An ERROR message')

We will see some usage examples in this chapter.

Wizard form
The wizard form view looks exactly the same as regular forms, except for two
specific elements:

•	 A <footer> section can be used to place the action buttons.
•	 A special cancel button type is available to interrupt the wizard without

performing any action.

This is the content of our todo_wizard/todo_wizard_view.xml file:

<openerp>
 <data>
 <record id="To-do Task Wizard" model="ir.ui.view">
 <field name="name">To-do Task Wizard</field>
 <field name="model">todo.wizard</field>
 <field name="arch" type="xml">

 <form>
 <div class="oe_right">
 <button type="object" name="do_count_tasks"
 string="Count" />
 <button type="object" name="do_populate_tasks"
 string="Get All" />
 </div>
 <field name="task_ids" />
 <group>
 <group> <field name="new_user_id" /> </group>
 <group> <field name="new_deadline" /> </group>
 </group>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[112]

 <footer>
 <button type="object" name="do_mass_update"
 string="Mass Update" class="oe_highlight"
 attrs="{'invisible':
 [('new_deadline','=',False),
 ('new_user_id', '=',False)]}" />
 <button special="cancel" string="Cancel"/>
 </footer>
 </form>
 </field>
 </record>

 <!-- More button Action →
 <act_window id="todo_app.action_todo_wizard"
 name="To-Do Tasks Wizard"
 src_model="todo.task" res_model="todo.wizard"
 view_mode="form" target="new" multi="True" />
 </data>

 </openerp>

The window action we see in the XML adds an option to the More button of the
to-do task form by using the src_model attribute. target="new" makes it open
as a dialog window.

You might also have noticed attrs in the Mass Update button used to make it
invisible until either a new deadline or responsible user is selected.

This is how our wizard will look:

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 7

[113]

Wizard business logic
Next we need to implement the actions performed while clicking on the Mass
Update button. The method called by the button is do_mass_update and it should
be defined in the todo_wizard/todo_wizard_model.py file, as shown in the
following code:

 @api.multi
 def do_mass_update(self):
 self.ensure_one()
 if not (self.new_deadline or self.new_user_id):
 raise exceptions.ValidationError('No data to update!')
 # else:
 _logger.debug('Mass update on Todo Tasks %s',
 self.task_ids.ids)
 if self.new_deadline:
 self.task_ids.write({'date_deadline': self.new_deadline})
 if self.new_user_id:
 self.task_ids.write({'user_id': self.new_user_id.id})
 return True

Our code can handle only one wizard instance at a time. We could have used
@api.one, but it is not advised to do so in wizards. In some cases, we want the wizard
to return a window action telling the client what to do next. That is not possible with
@api.one, since it would return a list of actions instead of a single one.

Because of this, we prefer to use @api.multi but then we use ensure_one() to
check that self represents a single record. It should be noted that self is a record
representing the data on the wizard form.

The method begins by validating if a new deadline date or responsible user was given,
and raises an error if not. Next, we demonstrate writing a message to the server log.

If the validation passes, we write the new values given to the selected tasks. We
are using the write method on a record set, such as the task_ids to many field to
perform a mass update. This is more efficient than repeating a write on each record
in a loop.

Now we will work on the logic behind the two buttons at the top: Count and Get All.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[114]

Raising exceptions
When something is not right, we will want to interrupt the program with an error
message. This is done by raising an exception. Odoo provides a few additional
exception classes to the ones available in Python. These are examples for the most
useful ones:

from openerp import exceptions
raise exceptions.Warning('Warning message')
raise exceptions.ValidationError('Not valid message')

The Warning message also interrupts execution but can sound less severe that a
ValidationError. While it's not the best user interface, we take advantage of that
on the Count button to display a message to the user:

 @api.multi
 def do_count_tasks(self):
 Task = self.env['todo.task']
 count = Task.search_count([])
 raise exceptions.Warning(
 'There are %d active tasks.' % count)

Auto-reloading code changes
When you're working on Python code, the server needs to be restarted every time
the code is changed to reload it. To make life easier for developers an --auto-
reload option is available. It monitors the source code and automatically reloads it
if changes are detected. Here is an example of it's usage:

$./odoo.py -d v8dev --auto-reload

But this is a Linux-only feature. If you are using Debian/Ubuntu box to run the
server, as recommended in Chapter 1, Getting Started with Odoo Development, it should
work for you. The pyinotify Python package is required, and it should be installed
either through apt-get or pip, as shown here:

$ sudo apt-get install python-pyinotify # using OS packages

$ pip install pyinotify # using pip, possibly in a virtualenv

Actions on the wizard dialog
Now suppose we want a button to automatically pick all the to-do tasks to spare the
user from picking them one by one. That's the point of having the Get All button in
the form. The code behind this button will get a record set with all active tasks and
assign it to the tasks in the many to many field.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 7

[115]

But there is a catch here. In dialog windows, when a button is pressed, the wizard
window is automatically closed. We didn't face this problem on the Count button
because it uses an exception to display it's message; so the action fails and the
window is not closed.

Fortunately we can work around this behavior by returning an action to the client
that reopens the same wizard. The model methods are allowed to return an action
for the web client to perform, in the form of a dictionary describing the window
action to execute. This dictionary uses the same attributes used to define window
actions in module XML.

We will use a helper function for the window action dictionary to reopen the wizard
window, so that it can be easily reused in several buttons, as shown here:

 @api.multi
 def do_reopen_form(self):
 self.ensure_one()
 return {
 'type': 'ir.actions.act_window',
 'res_model': self._name, # this model
 'res_id': self.id, # the current wizard record
 'view_type': 'form',
 'view_mode': 'form',
 'target': 'new'}

It is worth noting that the window action could be anything else, like jumping to
a specific form and record, or opening another wizard form to ask for additional
user input.

Now the Get All button can do its job and keep the user working on the
same wizard:

 @api.multi
 def do_populate_tasks(self):
 self.ensure_one()
 Task = self.env['todo.task']
 all_tasks = Task.search([])
 self.task_ids = all_tasks
 # reopen wizard form on same wizard record
 return self.do_reopen_form()

Here we can see how to get a reference to a different model, which is todo.task in
this case, to perform actions on it. The wizard form values are stored in the transient
model and can be read and written as in regular models. We can also see that the
method sets the task_ids value with the list of all active tasks.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[116]

Note that since self is not guaranteed to be a single record, we validate that using
self.ensure_one(). We shouldn't use the @api.one decorator because it would
wrap the returned value in a list. Since the web client expects to receive a dictionary
and not a list, it wouldn't work as intended.

Working with the server
Our server code will usually run inside a method of a model, as is the case for
do_mass_update() in the preceding code.

In this context, self represents the recordset being acted upon. Instances of model
classes are actually recordsets. For actions executed from views, this will be only the
record currently selected on it. If it's a form view, it is usually a single record, but in
tree views, there can be several records.

The self.env object allows us to access our running environment; this includes the
information on the current session, such as the current user and session context, and
also access all the other models available in the server.

To better explore programming on the server side, we can use the server interactive
console, where we have an environment similar to what we can find inside a
model method.

This is a new feature for version 9. It has been back-ported as a module for version 8,
and it can be downloaded from the link https://www.odoo.com/apps/modules/8.0/
shell/. It just needs to be placed somewhere in your add-ons path, and no further
installation is necessary, or you can use the following commands to get the code from
GitHub and make the module available in our custom add-ons directory:

$ cd ~/odoo-dev

$ git clone https://github.com/OCA/server-tools.git -b 8.0

$ ln -s server-tools/shell custom-addons/shell

$ cd ~/odoo-dev/odoo

To use this, run odoo.py with the shell command and the database to use as
shown here:

$./odoo.py shell -d v8dev

You will see the server start up sequence in the terminal ending in a >>> Python
prompt. Here, self represents the record for the administrator user as shown here:

>>> self

res.users(1,)

>>> self.name

www.itbook.store/books/9781784392796

https://www.odoo.com/apps/modules/8.0/shell/
https://www.odoo.com/apps/modules/8.0/shell/
https://itbook.store/books/9781784392796

Chapter 7

[117]

u'Administrator'

>>> self._name

'res.users'

>>> self.env

<openerp.api.Environment object at 0xb3f4f52c>

In the session above, we do some inspection on our environment. self represents a
res.users recordset containing only the record with ID 1 and name Administrator.
We can also confirm the recordset's model name inspecting self._name, and confirm
that self.env is a reference for the environment.

As usual, you can exit the prompt using Ctrl + D. This will also close the server
process and bring you back to the system shell prompt.

The Model class referenced by self is in fact a recordset, an iterable collection of
records. Iterating through a recordset returns individual records.

The special case of a recordset with only one record is called a singleton. Singletons
behave like records, and for all practical purposes are the same thing as a record.
This particularity means that a record can be used wherever a recordset is expected.

Unlike multi-element recordsets, singletons can access their fields using the dot
notation, as shown here:

>>> print self.name

Administrator

>>> for rec in self:

 print rec.name

Administrator

In this example, we loop through the records in the self recordset and print out the
content of their name field. It contains only one record, so only one name is printed
out. As you can see, self is a singleton and behaves as a record, but at the same time
is iterable like a recordset.

Using relation fields
As we saw earlier, models can have relational fields: many to one, one to many, and
many to many. These field types have recordsets as values.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[118]

In the case of many to one, the value can be a singleton or an empty recordset. In
both cases, we can directly access their field values. As an example, the following
instructions are correct and safe:

>>> self.company_id

res.company(1,)

>>> self.company_id.name

u'YourCompany'

>>> self.company_id.currency_id

res.currency(1,)

>>> self.company_id.currency_id.name

u'EUR'

Conveniently, an empty recordset also behaves like a singleton, and accessing its
fields does not return an error but just returns False. Because of this, we can traverse
records using dot notation without worrying about errors from empty values, as
shown here:

>>> self.company_id.country_id

res.country()

>>> self.company_id.country_id.name

False

Querying models
With self we can only access the method's recordset. But the self.env environment
reference allows us to access any other model.

For example, self.env['res.partner'] returns a reference to the Partners model
(which is actually an empty recordset). We can then use search() or browse() on it
to generate recordsets.

The search() method takes a domain expression and returns a recordset with
the records matching those conditions. An empty domain [] will return all
records. If the model has the active special field, by default only the records with
active=True will be considered. A few optional keyword arguments are available,
as shown here:

•	 order: This is a string to be used as the ORDER BY clause in the database
query. This is usually a comma-separated list of field names.

•	 limit: This sets a maximum number of records to retrieve.
•	 offset: This ignores the first n results; it can be used with limit to query

blocks of records at a time.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 7

[119]

Sometimes we just need to know the number of records meeting certain conditions.
For that we can use search_count(), which returns the record count instead of
a recordset.

The browse() method takes a list of IDs or a single ID and returns a recordset with
those records. This can be convenient for the cases where we already know the IDs
of the records we want.

Some usage examples of this are shown here:

>>> self.env['res.partner'].search([('name', 'like', 'Ag')])

res.partner(7, 51)

>>> self.env['res.partner'].browse([7, 51])

res.partner(7, 51)

Writing on records
Recordsets implement the active record pattern. This means that we can assign
values on them, and these changes will be made persistent in the database. This is
an intuitive and convenient way to manipulate data, as shown here:

>>> admin = self.env['res.users'].browse(1)

>>> admin.name = 'Superuser'

>>> print admin.name

Superuser

Recordsets have three methods to act on their data: create(), write(),
and unlink().

The create() method takes a dictionary to map fields to values and returns the
created record. Default values are automatically applied as expected, which is
shown here:

>>> Partner = self.env['res.partner']

>>> new = Partner.create({'name': 'ACME', 'is_company': True})

>>> print new

res.partner(72,)

The unlink() method deletes the records in the recordset, as shown here:

>>> rec = Partner.search([('name', '=', 'ACME')])

>>> rec.unlink()

True

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[120]

The write() method takes a dictionary to map fields to values. These are updated
on all elements of the recordset and nothing is returned, as shown here:

>>> Partner.write({'comment': 'Hello!'})

Using the active record pattern has some limitations; it updates only one field at a
time. On the other hand, the write() method can update several fields of several
records at the same time by using a single database instruction. These differences
should be kept in mind for the cases where performance can be an issue.

It is also worth mentioning copy() to duplicate an existing record; it takes that as an
optional argument and a dictionary with the values to write on the new record. For
example, to create a new user copying from the Demo User:

>>> demo = self.env.ref('base.user_demo')

>>> new = demo.copy({'name': 'Daniel', 'login': 'dr', 'email':''})

>>> self.env.cr.commit()

Remember that fields with the copy=False attribute won't be copied.

Transactions and low-level SQL
Database writing operations are executed in the context of a database transaction.
Usually we don't have to worry about this as the server takes care of that while
running model methods.

But in some cases, we may need a finer control over the transaction. This can be done
through the database cursor self.env.cr, as shown here:

•	 self.env.cr.commit(): This commits the transaction's buffered write
operations.

•	 self.env.savepoint(): This sets a transaction savepoint to rollback to.
•	 self.env.rollback(): This cancels the transaction's write operations since

the last savepoint or all if no savepoint was created.

In a shell session, your data manipulation won't be
made effective in the database until you use self.
env.cr.commit().

With the cursor execute() method, we can run SQL directly in the database. It takes
a string with the SQL statement to run and a second optional argument with a tuple
or list of values to use as parameters for the SQL. These values will be used where %s
placeholders are found.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 7

[121]

If you're using a SELECT query, records should then be fetched. The fetchall()
function retrieves all the rows as a list of tuples and dictfetchall() retrieves
them as a list of dictionaries, as shown in the following example:

>>> self.env.cr.execute("SELECT id, login FROM res_users WHERE

 login=%s OR id=%s", ('demo', 1))

>>> self.env.cr.fetchall()

 [(4, u'demo'), (1, u'admin')]

It's also possible to run data manipulation language instructions (DML)
such as UPDATE and INSERT. Since the server keeps data caches, they may
become inconsistent with the actual data in the database. Because of that, while
using raw DML, the caches should be cleared afterwards by using self.env.
invalidate_all().

Caution!
Executing SQL directly in the database can lead to
inconsistent data. You should use it only if you are
sure of what you are doing.

Working with time and dates
For historical reasons, date and datetime values are handled as strings instead of the
corresponding Python types. Also datetimes are stored in the database in UTC time.
The formats used in the string representation are defined by:

•	 openerp.tools.misc.DEFAULT_SERVER_DATE_FORMAT

•	 openerp.tools.misc.DEFAULT_SERVER_DATETIME_FORMAT

They map to %Y-%m-%d and %Y-%m-%d %H:%M:%S respectively.

To help handle dates, fields.Date and fields.Datetime provide a few functions.
For example:

>>> from openerp import fields

>>> fields.Datetime.now()

'2014-12-08 23:36:09'

>>> fields.Datetime.from_string('2014-12-08 23:36:09')

 datetime.datetime(2014, 12, 8, 23, 36, 9)

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[122]

Given that dates and times are handled and stored by the server in a naive UTC
format, which is not time zone aware and is probably different from the time zone
that the user is working on, a few other functions that help to deal with this are
shown here:

•	 fields.Date.today(): This returns a string with the current date in the
format expected by the server and using UTC as a reference. This is adequate
to compute default values.

•	 fields.Datetime.now(): This returns a string with the current datetime in
the format expected by the server using UTC as a reference. This is adequate
to compute default values.

•	 fields.Date.context_today(record, timestamp=None): This returns a
string with the current date in the session's context. The timezone value is
taken from the record's context, and the optional parameter to use is datetime
instead of the current time.

•	 fields.Datetime.context_timestamp(record, timestamp):
That converts a naive datetime (without timezone) into a timezone aware
datetime. The timezone is extracted from the record's context, hence the
name of the function.

To facilitate conversion between formats, both fields.Date and fields.Datetime
objects provide these functions:

•	 from_string(value): This converts a string into a date or datetime object.
•	 to_string(value): This converts a date or datetime object into a string in

the format expected by the server.

Working with relation fields
While using the active record pattern, relational fields can be assigned recordsets.

For a many to one field, the value assigned must be a single record (a singleton
recordset).

For to-many fields, their value can also be assigned with a recordset, replacing the list
of linked records, if any, with a new one. Here a recordset with any size is allowed.

While using the create() or write() methods, where values are assigned using
dictionaries, relational fields can't be assigned to recordset values. The corresponding
ID, or list of IDs should be used.

For example, instead of self.write({'user_id': self.env.user}), we should
rather use self.write({'user_id': self.env.user.id}).

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 7

[123]

Manipulating recordsets
We will surely want to add, remove, or replace the elements in these related fields,
and so this leads to the question: how can recordsets be manipulated?

Recordsets are immutable but can be used to compose new recordsets. Some set
operations are supported, which are shown here:

•	 rs1 | rs2: This results in a recordset with all elements from both recordsets.
•	 rs1 + rs2: This also concatenates both recordsets into one.
•	 rs1 & rs2: This results in a recordset with only the elements present in

both recordsets.
•	 rs1 - rs2: This results in a recordset with the rs1 elements not present

in rs2.

The slice notation can also be used, as shown here:

•	 rs[0] and rs[-1] retrieve the first element and the last elements.
•	 rs[1:] results in a copy of the recordset without the first element. This

yields the same records as rs – rs[0] but preserves their order.

In general, while manipulating recordsets, you should assume that the record order
is not preserved. However, addition and slicing are known to keep record order.

We can use these recordset operations to change the list by removing or adding
elements. You can see this in the following example:

•	 self.task_ids |= task1: This adds task1 element if it's not in the recordset.
•	 self.task_ids -= task1: This removes the reference to task1 if it's present

in the recordset.
•	 self.task_ids = self.task_ids[:-1]: This unlinks the last record.

While using the create() and write() methods with values in a dictionary, a
special syntax is used to modify to many fields. This was explained in Chapter 4, Data
Serialization and Module Data, in the section Setting values for relation fields. Refer to the
following sample operations equivalent to the preceding ones using write():

•	 self.write([(4, task1.id, False)]): This adds task1 to the member.
•	 self.write([(3, task1.id, False)]): This unlinks task1.
•	 self.write([(3, self.task_ids[-1].id, False)]): This unlinks the

last element.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[124]

Other recordset operations
Recordsets support additional operations on them.

We can check if a record is included or is not in a recordset by doing the following:

•	 record in recordset

•	 record not in recordset

These operations are also available:

•	 recordset.ids: This returns the list with the IDs of the recordset elements.
•	 recordset.ensure_one(): This checks if it is a single record (singleton);

if it's not, it raises a ValueError exception.
•	 recordset.exists(): This returns a copy with only the records that

still exist.
•	 recordset.filtered(func): This returns a filtered recordset.
•	 recordset.mapped(func): This returns a list of mapped values.
•	 recordset.sorted(func): This returns an ordered recordset.

Here are some usage examples for these functions:

>>> rs0 = self.env['res.partner'].search([])

>>> len(rs0) # how many records?

68

>>> rs1 = rs0.filtered(lambda r: r.name.startswith('A'))

>>> print rs1

res.partner(3, 7, 6, 18, 51, 58, 39)

>>> rs2 = rs1.filtered('is_company')

>>> print rs2

res.partner(7, 6, 18)

>>> rs2.mapped('name')

[u'Agrolait', u'ASUSTeK', u'Axelor']

>>> rs2.mapped(lambda r: (r.id, r.name))

[(7, u'Agrolait'), (6, u'ASUSTeK'), (18, u'Axelor')]

>> rs2.sorted(key=lambda r: r.id, reverse=True)

res.partner(18, 7, 6)

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 7

[125]

The execution environment
The environment provides contextual information used by the server. Every
recordset carries its execution environment in self.env with these attributes:

•	 env.cr: This is the database cursor being used.
•	 env.uid: This is the ID for the session user.
•	 env.user: This is the record for the session user.
•	 env.context: This is an immutable dictionary with a session context.

The environment is immutable, and so it can't be modified. But we can create
modified environments and then run actions using them. These methods can
be used for that:

•	 env.sudo(user): If this is provided with a user record, it returns an
environment with that user. If no user is provided, the administrator
superuser will be used, which allows running specific queries bypassing
security rules.

•	 env.with_context(dictionary): This replaces the context with a new one.
•	 env.with_context(key=value,...): This sets values for keys in the current

context.

The env.ref() function takes a string with an External ID and returns a record for it,
as shown here:

>>> self.env.ref('base.user_root')

res.users(1,)

Model methods for client interaction
We have seen the most important model methods used to generate recordsets and
how to write on them. But there are a few more model methods available for more
specific actions, as shown here:

•	 read([fields]): This is similar to browse, but instead of a recordset, it
returns a list of rows of data with the fields given as it's argument. Each row
is a dictionary. It provides a serialized representation of the data that can be
sent through RPC protocols and is intended to be used by client programs
and not in server logic.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[126]

•	 search_read([domain], [fields], offset=0, limit=None,
order=None): This performs a search operation followed by a read on the
resulting record list. It is intended to be used by RPC clients and saves them
the extra round trip needed when doing a search first and then a read.

•	 load([fields], [data]): This is used to import data acquired from a CSV
file. The first argument is the list of fields to import, and it maps directly to a
CSV top row. The second argument is a list of records, where each record is
a list of string values to parse and import, and it maps directly to the CSV
data rows and columns. It implements the features of CSV data import
described in Chapter 4, Data Serialization and Module Data, like the External
IDs support. It is used by the web client Import feature. It replaces the
deprecated import_data method.

•	 export_data([fields], raw_data=False): This is used by the web client
Export function. It returns a dictionary with a data key containing the data–a
list of rows. The field names can use the .id and /id suffixes used in CSV
files, and the data is in a format compatible with an importable CSV file. The
optional raw_data argument allows for data values to be exported with their
Python types, instead of the string representation used in CSV.

The following methods are mostly used by the web client to render the user interface
and perform basic interaction:

•	 name_get(): This returns a list of (ID, name) tuples with the text representing
each record. It is used by default to compute the display_name value,
providing the text representation of relation fields. It can be extended to
implement custom display representations, such as displaying the record code
and name instead of only the name.

•	 name_search(name='', args=None, operator='ilike', limit=100):
This also returns a list of (ID, name) tuples, where the display name matches
the text in the name argument. It is used by the UI while typing in a relation
field to produce the list suggested records matching the typed text. It is used
to implement product lookup both by name and by reference while typing in
a field to pick a product.

•	 name_create(name): This creates a new record with only the title name to
use for it. It is used by the UI for the quick-create feature, where you can
quickly create a related record by just providing its name. It can be extended
to provide specific defaults while creating new records through this feature.

•	 default_get([fields]): This returns a dictionary with the default values
for a new record to be created. The default values may depend on variables
such as the current user or the session context.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 7

[127]

•	 fields_get(): This is used to describe the model's field definitions, as seen
in the View Fields option of the developer menu.

•	 fields_view_get(): This is used by the web client to retrieve the structure
of the UI view to render. It can be given the ID of the view as an argument or
the type of view we want using view_type='form'. Look at an example of
this: rset.fields_view_get(view_type='tree').

Overriding the default methods
We have learned about the standard methods provided by the API. But what we can
do with them doesn't end there! We can also extend them to add custom behavior to
our models.

The most common case is to extend the create() and write() methods. This can
be used to add the logic triggered whenever these actions are executed. By placing
our logic in the appropriate section of the custom method, we can have the code run
before or after the main operations are executed.

Using the TodoTask model as an example, we can make a custom create(), which
would look like this:

@api.model
def create(self, vals):
 # Code before create
 # Can use the `vals` dict
 new_record = super(TodoTask, self).create(vals)
 # Code after create
 # Can use the `new` record created
 return new_record

A custom write() would follow this structure:

@api.multi
def write(self, vals):
 # Code before write
 # Can use `self`, with the old values
 super(TodoTask, self).write(vals)
 # Code after write
 # Can use `self`, with the new (updated) values
 return True

These are common extension examples, but of course any standard method available
for a model can be inherited in a similar way to add to it our custom logic.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[128]

These techniques open up a lot of possibilities, but remember that other tools are also
available that are better suited for common specific tasks and should be preferred:

•	 To have a field value calculated based on another, we should use computed
fields. An example of this is to calculate a total when the values of the lines
are changed.

•	 To have field default values calculated dynamically, we can use a field
default bound to a function instead of a scalar value.

•	 To have values set on other fields when a field is changed, we can use
on-change functions. An example of this is when picking a customer to
set the document's currency to the corresponding partner's, which can
afterwards be manually changed by the user. Keep in mind that on-change
only works on form view interaction and not on direct write calls.

•	 For validations, we should use constraint functions decorated with @api.
constrains(fld1,fld2,...). These are like computed fields but are expected
to raise errors when conditions are not met instead of computing values.

Model method decorators
During our journey, the several methods we encountered used API decorators like
@api.one. These are important for the server to know how to handle the method.
We have already given some explanation of the decorators used; now let's recap the
ones available and when they should be used:

•	 @api.one: This feeds one record at a time to the function. The decorator does
the recordset iteration for us and self is guaranteed to be a singleton. It's the
one to use if our logic only needs to work with each record. It also aggregates
the return values of the function on each record in a list, which can have
unintended side effects.

•	 @api.multi: This handles a recordset. We should use it when our logic can
depend on the whole recordset and seeing isolated records is not enough, or
when we need a return value that is not a list like a dictionary with a window
action. In practice it is the one to use most of the time as @api.one has some
overhead and list wrapping effects on result values.

•	 @api.model: This is a class-level static method, and it does not use
any recordset data. For consistency, self is still a recordset, but its content
is irrelevant.

•	 @api.returns(model): This indicates that the method return instances of the
model in the argument, such as res.partner or self for the current model.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 7

[129]

The decorators that have more specific purposes that were explained in detail in
Chapter 5, Models – Structuring Application Data are shown here:

•	 @api.depends(fld1,...): This is used for computed field functions to
identify on what changes the (re)calculation should be triggered.

•	 @api.constrains(fld1,...): This is used for validation functions to
identify on what changes the validation check should be triggered.

•	 @api.onchange(fld1,...): This is used for on-change functions to identify
the fields on the form that will trigger the action.

In particular the on-change methods can send a warning message to the user interface.
For example, this could warn the user that the product quantity just entered is not
available on stock, without preventing the user from continuing. This is done by
having the method return a dictionary describing the following warning message:

 return {
 'warning': {
 'title': 'Warning!',
 'message': 'The warning text'}
 }

Debugging
We all know that a good part of a developer's work is to debug code. To do this we
often make use of a code editor that can set breakpoints and run our program step by
step. Doing so with Odoo is possible, but it has it's challenges.

If you're using Microsoft Windows as your development workstation, setting up an
environment capable of running Odoo code from source is a nontrivial task. Also the
fact that Odoo is a server that waits for client calls and only then acts on them makes
it quite different to debug compared to client-side programs.

While this can certainly be done with Odoo, arguably it might not be the most
pragmatic approach to the issue. We will introduce some basic debugging strategies,
which can be as effective as many sophisticated IDEs with some practice.

Python's integrated debug tool pdb can do a decent job at debugging. We can set a
breakpoint by inserting the following line in the desired place:

import pdb; pdb.set_trace()

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[130]

Now restart the server so that the modified code is loaded. As soon as the program
execution reaches that line, a (pdb) Python prompt will be shown in the terminal
window where the server is running, waiting for our input.

This prompt works as a Python shell, where you can run any expression or
command in the current execution context. This means that the current variables
can be inspected and even modified. These are the most important shortcut
commands available:

•	 h: This is used to display a help summary of the pdb commands.
•	 p: This is used to to evaluate and print an expression.
•	 pp: This is for pretty print, which is useful for larger dictionaries or lists.
•	 l: This lists the code around the instruction to be executed next.
•	 n (next): This steps over to the next instruction.
•	 s (step): This steps into the current instruction.
•	 c (continue): This continues execution normally.
•	 u(up): This allows to move up the execution stack.
•	 d(down): This allows to move down the execution stack.

The Odoo server also supports the --debug option. If it's used, when the server finds
an exception, it enters into a post mortem mode at the line where the error was raised.
This is a pdb console and it allows us to inspect the program state at the moment
where the error was found.

It's worth noting that there are alternatives to the Python built-in debugger.
There is pudb that supports the same commands as pdb and works in
text-only terminals, but uses a more friendly graphical display, making useful
information readily available such as the variables in the current context and
their values.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 7

[131]

It can be installed either through the system package manager or through pip, as
shown here:
$ sudo apt-get install python-pudb # using OS packages

$ pip install pudb # using pip, possibly in a virtualenv

It works just like pdb; you just need to use pudb instead of pdb in the
breakpoint code.

Another option is the Iron Python debugger ipdb, which can be installed by using
the following code:
$ pip install ipdb

Sometimes we just need to inspect the values of some variables or check if some
code blocks are being executed. A Python print statement can perfectly do the job
without stopping the execution flow. As we are running the server in a terminal
window, the printed text will be shown in the standard output. But it won't be stored
to the server log if it's being written to a file.

Another option to keep in mind is to set debug level log messages at sensitive points
of our code if we feel that we might need them to investigate issues in a deployed
instance. It would only be needed to elevate that server logging level to DEBUG and
then inspect the log files.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

ORM Application Logic – Supporting Business Processes

[132]

Summary
In the previous chapters, you saw how to build models and design views. Here you
went a little further learning how to implement business logic and use recordsets to
manipulate model data.

You also saw how the business logic can interact with the user interface and learned
to create wizards that dialogue with the user and serve as a platform to launch
advanced processes.

In the next chapter, our focus will go back to the user interface, and you will learn
how to create powerful kanban views and design your own business reports.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[133]

QWeb – Creating Kanban
Views and Reports

QWeb is a template engine used by Odoo. It is XML based and is used to generate
HTML fragments and pages. QWeb was first introduced in version 7.0 to enable
richer kanban views, and with version 8.0, is also used for report generation and
CMS website pages.

Here you will learn about the QWeb syntax and how to use it to create your own
kanban views and custom reports.

To understand kanban boards, kanban is a word of Japanese origin that is used to
represent a work queue management method. It takes inspiration from the Toyota
Production System and Lean Manufacturing, and has become popular in the
software industry with its adoption in Agile methodologies.

The kanban board is a tool to visualize the work queue. Work items are represented
by cards that are organized in columns representing the stages of the work process.
New work items start on the left-most column and travel through the board until
they reach the right-most column, representing completed work.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[134]

Getting started with kanban board
The simplicity and visual impact of kanban board make them excellent to support
simple business processes. A basic example of a kanban board can have three
columns, as shown in the following image: "To Do," "Doing," and "Done," but it can
of course be extended to whatever specific process steps we may need:

Photo credits: A Scrum board suggesting using kanban by Jeff.lasovski. Courtesy of Wikipedia.

Kanban views are a distinctive Odoo feature, making it easy to implement these
boards. Let's learn how to use them.

Kanban views
In form views, we use mostly specific XML elements, such as <field> and <group>,
and few HTML elements, such as <h1> or <div>. With kanban views, it's quite the
opposite; they are HTML-based templates and support only two Odoo-specific
elements, <field> and <button>.

The HTML can be dynamically generated using the QWeb template engine. It
processes special tag attributes in HTML elements to produce the final HTML to be
presented in the web client. This brings a lot of control on how to render the content,
but also make view design a more complex.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 8

[135]

Kanban views are so flexible that there can be many different ways to design them,
and it can be hard to provide a recipe to follow. A good rule of thumb is to find an
existing kanban view similar to what we want to achieve, and create our new kanban
view work based on it.

Looking at the kanban views used in the standard modules, it's possible to identify
two main kanban view styles: vignette and card kanbans.

Examples of vignette style kanban views can be found for Customers, Products,
and also Apps & Modules. They usually have no border and are decorated with an
image on the left-hand side, as shown in the following image:

The card style kanban is usually used to display cards organized in columns for
the process stages. Examples are CRM Opportunities and Project Tasks. The main
content is displayed in the card top area and additional information can be displayed
in the bottom-right and bottom-left areas, as shown in the following image:

We will see the skeleton and typical elements used in both styles of views so that you
can feel comfortable adapting them to your particular use cases.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[136]

Design kanban views
First thing is to create a new module adding our kanban views to to-do tasks. In a
real-world work, situation using a module for this would probably be excessive and
they could perfectly well be added directly in the todo_ui module. But for a clearer
explanation, we will use a new module and avoid too many, and possibly confusing,
changes in already created files. We will name it todo_kanban and create the usual
initial files as follows:

$ cd ~/odoo-dev/custom-addons

$ mkdir todo_kanban

$ touch todo_kanban/__init__.py

Now, edit the descriptor file todo_kanban/__openerp__.py as follows:

{'name': 'To-Do Kanban',
 'description': 'Kanban board for to-do tasks.',
 'author': 'Daniel Reis',
 'depends': ['todo_ui'],
 'data': ['todo_view.xml'] }

Next, create the XML file where our shiny new kanban views will go and set kanban
as the default view on the to-do task's window action, as shown in the following:

<?xml version="1.0"?>
<openerp>
 <data>	
 <!-- Add Kanban view mode to the menu Action: -->
 <act_window id="todo_app.action_todo_task"
 name=" To-Do Tasks"
 res_model="todo.task"
 view_mode="kanban,tree,form,calendar,gantt,graph"
 context="{'search_default_filter_my_tasks': True}" />
 <!-- Add Kanban view -->
 <record id="To-do Task Kanban" model="ir.ui.view">
 <field name="name">To-do Task Kanban</field>
 <field name="model">todo.task</field>
 <field name="arch" type="xml">
 <!-- Empty for now, but the Kanban will go here! -->
 </field>
 </record>
 </data>
</openerp>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 8

[137]

Now we have in place the basic skeleton for our module. The templates used in
kanban views and reports are extended using the regular techniques used for other
views, for example using XPATH expressions. See Chapter 3, Inheritance – Extending
Existing Applications, for more details.

Before starting with the kanban views, we need to add a couple of fields to the to-do
tasks model.

Priority and kanban state
The two fields that are frequently used in kanban views are priority and kanban
state. Priority lets users organize their work items, signaling what should be
addressed first. Kanban state signals whether a task is ready to move to the next
stage or is blocked for some reason. Both are supported by selection fields and have
specific widgets to use on forms and kanban views.

To add these fields to our model, we will add a todo_kanban/todo_model.py file,
as shown in the following:

from openerp import models, fields
class TodoTask(models.Model):
 _inherit = 'todo.task'
 priority = fields.Selection(
 [('0', 'Low'), ('1', 'Normal'), ('2', 'High')],
 'Priority', default='1')
 kanban_state = fields.Selection(
 [('normal', 'In Progress'),
 ('blocked', 'Blocked'),
 ('done', 'Ready for next stage')],
 'Kanban State', default='normal')

Let's not forget the todo_kanban/__init__.py file that will load the preceding code:

from . import todo_task

Kanban view elements
The kanban view architecture has a <kanban> top element and the following
basic structure:

 <kanban>
 <!-- Fields to use in expressions... -->
 <field name="a_field" />
 <templates>
 <t t-name="kanban-box">

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[138]

 <!-- HTML Qweb template … -->
 </t>
 </templates>
 </kanban>

The <templates> element contains the templates for the HTML fragments to
use—one or more. The main template to be used must be named kanban-box.
Other templates are allowed for HTML fragments to include in the main template.

The templates use standard HTML, but can include the <field> tag to insert model
fields. Some QWeb special directives for dynamic content generation can also be
used, like the t-name used in the previous example.

All model fields used have to be declared with a <field> tag. If they are used only
in expressions, we have to declare them before the <templates> section. One of
these fields is allowed to have an aggregated value, displayed at the top of the
kanban columns. This is done by adding an attribute with the aggregation to use,
for example:

<field name="effort_estimate" sum="Total Effort" />

Here the sum for the estimated effort field is presented at the top of the kanban
columns with the label text Total Effort. Supported aggregations are sum, avg, min,
max, and count.

The <kanban> top element also supports a few interesting attributes:

•	 default_group_by: This sets the field to use for the default column groups.
•	 default_order: This sets a default order to use for the kanban items.
•	 quick_create="false": This disables the quick create option on the

kanban view.
•	 class: This adds a CSS class to the root element of the rendered

kanban view.

Now let's have a closer look at the QWeb templates to use in the kanban views.

The vignette kanban view
For the vignette kanban QWeb templates, the skeleton looks like the following:

<t t-name="kanban-box">
 <div class="oe_kanban_vignette">
 <!-- Left side image: -->

 <div class="oe_kanban_details">

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 8

[139]

 <!-- Title and data -->
 <h4>Title</h4>
 Other data

 More data

 </div>
 </div>
</t>

You can see the two main CSS classes provided for vignette style kanbans:
oe_kanban_vignette for the top container and oe_kanban_details for the
data content.

The complete vignette kanban view for the to-do tasks is as follows:

 <kanban>
 <templates>
 <t t-name="kanban-box">
 <div class="oe_kanban_vignette">
 <img t-att-src="kanban_image('res.partner',
 'image_medium', record.id.value)"
 class="oe_kanban_image"/>
 <div class="oe_kanban_details">
 <!-- Title and Data content -->
 <h4>
 <field name="name" />
 </h4>
 <field name="tag_ids" />

 <field name="user_id" />
 <field name="date_deadline" />

 <field name="kanban_state"
 widget="kanban_state_selection"/>
 <field name="priority" widget="priority"/>
 </div>
 </div>
 </t>
 </templates>
 </kanban>

We can see the elements discussed until now, and also a few new ones. In the
tag, we have the special t-att-src QWeb attribute. It can calculate the image src
content from a database stored field. We will be explaining this and other QWeb
directives in a moment. We can also see the usage of the special type attribute in the
<a> tag. Let's have a closer look at it.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[140]

Actions in kanban views
In QWeb templates, the <a> tag for links can have a type attribute. It sets the type
of action the link will perform so that links can act just like the buttons in regular
forms. So in addition to the <button> elements, the <a> tags can also be used to
run Odoo actions.

As in form views, the action type can be action or object, and it should be
accompanied by a name attribute, identifying the specific action to execute.
Additionally, the following action types are also available:

•	 open: This opens the corresponding form view.
•	 edit: This opens the corresponding form view directly in edit mode.
•	 delete: This deletes the record and removes the item from the kanban view.

The card kanban view
The card kanban can be a little more complex. It has a main content area and two
footer sub-containers, aligned to each of the card sides. A button opening an action
menu may also be featured at the card's top-right corner.

The skeleton for this template looks like the following:

<t t-name="kanban-box">
 <div class="oe_kanban_card">
 <div class="oe_dropdown_kanban oe_dropdown_toggle">
 <!-- Top-right drop down menu -->
 </div>
 <div class="oe_kanban_content">
 <!-- Content fields go here... -->
 <div class="oe_kanban_bottom_right"></div>
 <div class="oe_kanban_footer_left"></div>
 </div>
 </div>
</t>

A card kanban is more appropriate for the to-do tasks, so instead of the view
described in the previous section, we would be better using the following:

<t t-name="kanban-box">
 <div class="oe_kanban_card">
 <div class="oe_kanban_content">
 <!-- Option menu will go here! -->

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 8

[141]

 <h4>
 <field name="name" />
 </h4>
 <field name="tags" />

 <field name="user_id" />
 <field name="date_deadline" />

 <div class="oe_kanban_bottom_right">
 <field name="kanban_state"
 widget="kanban_state_selection"/>
 </div>
 <div class="oe_kanban_footer_left">
 <field name="priority" widget="priority"/>
 </div>
 </div>
 </div>
</t>

So far we have seen static kanban views, using a combination of HTML and special
tags (field, button, a). But we can have much more interesting results using
dynamically generated HTML content. Let's see how we can do that using QWeb.

Adding QWeb dynamic content
The QWeb parser looks for special attributes (directives) in the templates and
replaces them with dynamically generated HTML.

For kanban views, the parsing is done by client-side JavaScript. This means that the
expression evaluations done by QWeb should be written using the JavaScript syntax,
not Python.

When displaying a kanban view, the internal steps are roughly as follows:

•	 Get the XML for the templates to render.
•	 Call the server read() method to get the data for the fields in the templates.
•	 Locate the kanban-box template and parse it using QWeb to output the final

HTML fragments.
•	 Inject the HTML in the browser's display (the DOM).

This is not meant to be technically exact. It is just a mind map that can be useful to
understand how things work in kanban views.

Next we will explore the several QWeb directives available, using examples that
enhance our to-do task kanban card.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[142]

Conditional rendering with t-if
The t-if directive, accepts a JavaScript expression to be evaluated. The tag and its
content will be rendered if the condition evaluates to true.

For example, in the card kanban, to display the Task effort estimate, only if it has
a value, after the date_deadline field, add the following:

<t t-if="record.effort_estimate.raw_value > 0">
 Estimate <field name="effort_estimate"/>
</t>

The JavaScript evaluation context has a record object representing the record being
rendered, with the fields requested from the server. The field values can be accessed
using either the raw_value or the value attributes:

•	 raw_value: This is the value returned by the read() server method, so it's
more suitable to use in condition expressions.

•	 value: This is formatted according to the user settings, and is meant to be
used for display in the user interface.

The QWeb evaluation context also has references available for the JavaScript web
client instance. To make use of them, a good understanding of the web client
architecture is needed, but we won't be able to go into that detail. For reference
purposes, the following identifiers are available in QWeb expression evaluation:

•	 widget: This is a reference to the current KanbanRecord widget object,
responsible for the rendering of the current record into a kanban card.
It exposes some useful helper functions we can use.

•	 record: This is a shortcut for widget.records and provides access to the
fields available, using dot notation.

•	 read_only_mode: This indicates if the current view is in read mode (and not
in edit mode). It is a shortcut for widget.view.options.read_only_mode.

•	 instance: This is a reference to the full web client instance.

It is also noteworthy that some characters are not allowed inside expressions. The
lower than sign (<) is such a case. You may use a negated >= instead. Anyway,
alternative symbols are available for inequality operations as follows:

•	 lt: This is for less than.
•	 lte: This is for less than or equal to.
•	 gt: This is for greater than.
•	 gte: This is for greater than or equal to.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 8

[143]

Rendering values with t-esc and t-raw
We have used the <field> element to render the field content. But field values can
also be presented directly without a <field> tag. The t-esc directive evaluates an
expression and renders its HTML escaped value, as shown in the following:

<t t-esc="record.message_follower_ids.raw_value" />

In some cases, and if the source data is ensured to be safe, t-raw can be used to
render the field raw value, without any escaping, as shown in the following code:

<t t-raw="record.message_follower_ids.raw_value" />

Loop rendering with t-foreach
A block of HTML can be repeated by iterating through a loop. We can use it to add
the avatars of the task followers to the task's kanban card.

Let's start by rendering just the Partner IDs of the task, as follows:

<t t-foreach="record.message_follower_ids.raw_value" t-as="rec">
 <t t-esc="rec" />;
</t>

The t-foreach directive accepts a JavaScript expression evaluating to a collection to
iterate. In most cases, this will be just the name of a to many relation field. It is used
with a t-as directive to set the name to be used to refer to each item in the iteration.

In the previous example, we loop through the task followers, stored in the message_
follower_ids field. Since there is limited space on the kanban card, we could have
used the slice() JavaScript function to limit the number of followers to display, as
shown in the following:

t-foreach="record.message_follower_ids.raw_value.slice(0, 3)"

The rec variable holds each iteration's value, a Partner ID in this case.

A few helper variables are also automatically created. They have the name defined
in t-as as prefix. In our example we used rec, so the helper variables available are
as follows:

•	 rec_index: This is the iteration index, starting from zero.
•	 rec_size: This is the number of elements of the collection.
•	 rec_first: This is true on the first element of the iteration.
•	 rec_last: This is true on the last element of the iteration.
•	 rec_even: This is true on even indexes.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[144]

•	 rec_odd: This is true on odd indexes.
•	 rec_parity: This is either odd or even, depending on the current index.
•	 rec_all: This represents the object being iterated over.
•	 rec_value: This, when iterating through a dictionary, {key: value}, holds

the value (rec holds the key name).

For example, we could make use of the following to avoid a trailing comma on
our ID list:

<t t-foreach="record.message_follower_ids.raw_value.slice(0, 3)"
 t-as="rec">
 <t t-esc="rec" /><t t-if="!rec_last">;</t>
</t>

Dynamic attributes with t-att- prefixes
We need to render the image for each follower. The final HTML would be something
like , where the URL needs to be dynamically generated. QWeb
can do this using t-att- prefixed directives. In this case, the src attribute can be
rendered using a t-att-src directive with a JavaScript expression.

We also need to access the Partner's avatar stored in the database. Kanban views
provide a helper function to conveniently generate that: kanban_image(). It accepts
as arguments the model name, the field name holding the image we want, and the ID
for the record to retrieve.

With this, we can rewrite the followers loop as follows:

<div>
 <t t-foreach="record.message_follower_ids.raw_value.slice(0, 3)"
 t-as="rec">
 <img t-att-src="kanban_image(
 'res.partner', 'image_small', rec)"
 class="oe_kanban_image oe_kanban_avatar_smallbox"/>
 </t>
</div>

We used it for the src attribute, but any attribute can be dynamically generated
with a t-att- prefix.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 8

[145]

String substitution in attributes with
t-attf- prefixes
Another way to dynamically generate tag attributes is using string substitution.
This is helpful to have parts of larger strings generated dynamically, such as a URL
address or CSS class names.

The directive contains expression blocks that will be evaluated and replaced by
the result. These are delimited either by {{ and }} or by #{ and }. The content of
the blocks can be any valid JavaScript expression and can use any of the variables
available for QWeb expressions, such as record and widget.

Now let's replace <field name="date_deadline"/> in our kanban card with
the following:

<span t-attf-class="oe_kanban_text{{
 record.date_deadline.raw_value and
 !(record.date_deadline.raw_value > (new Date()))
 ? '_red' : '_black' }}">
 <field name="date_deadline"/>

This results in either class="oe_kanban_text_red" or class="oe_kanban_text_
black", depending on the deadline date. Please note that, while the oe_kanban_
text_red CSS class is available in kanban views, the oe_kanban_text_black CSS
class does not exist and was used to better explain the point.

The lower than sign (<) is not allowed in the expressions, and
we chose to work around this by using a negated greater than
comparison. Another possibility would be to use the lt (lower
than) symbol instead.

Setting variables with t-set
For more complex logic, we can store the result of an expression into a variable to
be used later in the template. This is to be done using the t-set directive, naming
the variable to set, followed by the t-value directive, with the expression calculating
the assigned value.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[146]

As an example, the following code renders missed deadlines in red, just as in
the previous section, but uses a variable with the CSS class to use, as shown in
the following:

<t t-set="red_or_black" t-value="
 record.date_deadline.raw_value and
 record.date_deadline.raw_value lte (new Date())
 ? 'oe_kanban_text_red' : ''" />

 <field name="date_deadline" />

It is also possible to assign HTML content to a variable, as in the following example:

<t t-set="calendar_sign">
 📅
</t>
<t t-raw="calendar_sign" />

The oe_e CSS class uses the Entypo pictogram font. The HTML representation for the
calendar sign is stored in a variable that can then be used when needed in the template.

Calling other templates with t-call
We can have QWeb templates for HTML snippets that are reused in other templates.
This makes it possible to have buildings blocks to use for composing the user
interface views.

Additional templates are defined inside the <templates> tag and identified by a top
element with a t-name other than kanban-box. A template can be included using the
t-call directive.

The follower avatar list is something that could be isolated in a reusable snippet.
Let's rework it to use a sub-template. We should start by adding another template to
our XML file, inside the <templates> element, after the <t t-name="kanban-box">
node, as shown in the following:

<t t-name="follower_avatars">
<div>
 <t t-foreach="record.message_follower_ids.raw_value.slice(0, 3)"
 t-as="rec">
 <img t-att-src="kanban_image(
 'res.partner', 'image_small', rec)"
 class="oe_kanban_image oe_kanban_avatar_smallbox"/>
 </t>
</div>
</t>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 8

[147]

Calling it from the kanban-box main template is quite straightforward—instead of
the <div> element containing the "for each" directive, we should use the following:

<t t-call="follower_avatars" />

We can also call templates defined in other modules. For this we just need to use the
module.name full identifier, as we do with the other views. For instance, this snippet
can be referred using the full identifier todo_kanban.follower_avatars.

The called template runs in the same context as the caller, so any variable names
available in the caller are also available when processing the called template.

A more elegant solution is to pass arguments to the called template. This is done by
setting variables inside the t-call tag. These will be evaluated and made available
in the sub-template context only, and won't exist in the caller's context.

We could use this to have the maximum number of follower avatars set by the caller
instead of being hard-coded in the sub-template. First, we need to replace the "3"
fixed value by a variable, arg_max for example:

<t t-name="follower_avatars">
<div>
 <t t-foreach="record.message_follower_ids.raw_value.slice(
 0, arg_max)" t-as="rec">
 <img t-att-src="kanban_image(
 'res.partner', 'image_small', rec)"
 class="oe_kanban_image oe_kanban_avatar_smallbox"/>
 </t>
</div>
</t>

Then, define that variable's value when performing the sub-template call as follows:

<t t-call="follower_avatars">
 <t t-set="arg_max" t-value="3" />
</t>

The entire content inside the t-call element is also available to the sub-template
through the magic variable 0. Instead of the argument variables, we can define
an HTML code fragment that could be inserted in the sub-template using
<t t-raw="0" />.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[148]

Other QWeb directives
We have gone through through the most important QWeb directives, but there are
a few more we should be aware of. We'll do a short explanation on them.

We have seen t-att-NAME and t-attf-NAME style dynamic tag attributes.
Additionally, the fixed t-att directive can be used. It accepts either a key-value
dictionary mapping or a pair (a two-element list).

Use the following mapping:

<p t-att="{'class': 'oe_bold', 'name': 'test1'}" />

This results in the following:

<p class="oe_bold" name="test1" />

Use the following pair:

<p t-att="['class', 'oe_bold']" />

This results in the following:

<p class="oe_bold" />

Advanced kanban elements
We've seen the basics about kanban views and QWeb templates. There are still a few
techniques we can use to bring a richer user experience to our kanban cards.

Adding a kanban card option menu
Kanban cards can have an option menu, placed at the top right. Usual actions are to
edit or delete the record, but any action callable from a button is possible. There is
also available a widget to set the card's color.

The following is a baseline HTML code for the option menu to be added at the top of
the oe_kanban_content element:

<div class="oe_dropdown_kanban oe_dropdown_toggle">
 í
 <ul class="oe_dropdown_menu">
 <t t-if="widget.view.is_action_enabled('edit')">
 Edit...
 </t>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 8

[149]

 <t t-if="widget.view.is_action_enabled('delete')">
 Delete
 </t>
 <!-- Color picker option: -->
 <ul class="oe_kanban_colorpicker"
 data-field="color"/>

</div>

It is basically an HTML list of <a> elements. The Edit and Delete options use QWeb
to make them visible only when their actions are enabled on the view. The widget.
view.is_action_enabled function allows us to inspect if the edit and delete actions
are available and to decide what to make available to the current user.

Adding colors to kanban cards
The color picker option allows the user to choose the color of a kanban card.
The color is stored in a model field as a numeric index.

We should start by adding this field to the to-do task model, by adding to
todo_kanban/todo_model.py the following line:

 color = fields.Integer('Color Index')

Here we used the usual name for the field, color, and this is what is expected in the
data-field attribute on the color picker.

Next, for the colors selected with the picker to have any effect on the card, we must add
some dynamic CSS based on the color field value. On the kanban view, just before the
<templates> tag, we must also declare the color field, as shown in the following:

<field name="color" />

And, we need to replace the kanban card top element, <div class="oe_kanban_
card">, with the following:

<div t-attf-class="oe_kanban_card
 #{kanban_color(record.color.raw_value)}">

The kanban_color helper function does the translation of the color index into the
corresponding CSS class name.

And that's it! You can now enjoy changing the kanban card colors at your will!

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[150]

Using text ellipsis for long texts
Sometimes field texts may be too long to properly present in a kanban card. One
way to avoid this is to cut the excessive text replacing it by an ellipsis (...). A helper
function for this is available in kanban views.

For example, to limit our to-do task titles to the first 32 characters, we should replace
the <field name="name" /> element with the following:

<t t-esc="kanban_text_ellipsis(record.name.value, 32)" />

Custom CSS and JavaScript assets
As we have seen, kanban views are mostly HTML and make heavy use of CSS
classes. We have been introducing some frequently used CSS classes provided by
the standard product. But for best results, modules can also add their own CSS.

We are not going into details here on how to write CSS, but it's relevant to explain how
a module can add its own CSS (and JavaScript) web assets. Odoo assets are declared
in the assets_backend template. To add our module assets, we should extend that
template. The XML file for this is usually placed inside a views/ module subdirectory.

The following is a sample XML file to add a CSS and a JavaScript file to the todo_
kanban module, and it could be at todo_kanban/views/todo_kanban_assets.xml:

<?xml version="1.0" encoding="utf-8"?>
<openerp>
 <data>
 <template id="assets_backend"
 inherit_id="web.assets_backend"
 name="Todo Kanban Assets" >
 <xpath expr="." position="inside">
 <link rel="stylesheet"
 href="/todo_kanban/static/src/css/todo_kanban.css"
 />
 <script type="text/javascript"
 src="/todo_kanban/static/src/js/todo_kanban.js">
 </script>
 </xpath>
 </template>
 </data>
</openerp>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 8

[151]

As usual, it should be referenced in the __openerp__.py descriptor file. Notice that
the assets are located inside a /static/src subdirectory. This is not required, but is
a convention used in all standard modules and is the recommended practice.

Creating business reports
Reports are an important part for a business application. Since version 8, the
reference report engine for Odoo is QWeb. Reports are views rendered in HTML and
then exported to PDF. This means that most of what we have learned with kanban
views will also be useful to design reports.

We will add a report to our module. First, we should add the file with its definition
to the todo_kanban/__openerp__.py descriptor file, as shown in the following:

 'data': ['todo_view.xml', 'todo_report.xml']

The todo_report.xml file can start by declaring the new report as follows:

<?xml version="1.0"?>
<openerp>
 <data>	
 <report id="report_todo_task_action"
 string="To-do Tasks"
 model="todo.task"
 report_type="qweb-pdf"
 name="todo_kanban.report_todo_task_template"
 />
 </data>
</openerp>

The <report> tag is a shortcut to write data on the ir.actions.report.xml model,
which is a particular type of client action. Their data is available in the Settings |
Technical | Reports menu option.

After installing this, the to-do task form view will display a Print button at the top,
at the left of before the More button, and a click on it will display this option to run
the report.

At the moment, it won't work, since we haven't yet defined the report. This will be a
QWeb report, so we will be using a QWeb template. The name attribute identifies the
template to be used. Unlike other identifier references, the module prefix in the name
attribute is required. We must use the full reference module_name.identifier_name.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[152]

Installing wkhtmltopdf
To correctly generate reports, a recent version of the wkhtmltopdf library needs to
be installed. Its name stands for "Webkit HTML to PDF." Odoo uses it to convert a
rendered HTML page into a PDF document.

Older versions have issues, such as not printing page headers and footers, so the
wkhtmltopdf version should be at least 0.12.0. Unfortunately, at the time of writing,
the version provided by Ubuntu is not adequate, so we need to download the latest
release for your OS and CPU from http://wkhtmltopdf.org/downloads.html.
For Ubuntu 14.04 (Trusty) 64-bit, at the time of writing this is wkhtmltox-0.12.1_
linux-trusty-amd64.deb.

The current version, if installed, can be checked with the following:

$ wkhtmltopdf --version

wkhtmltopdf 0.12.1 (with patched qt)

That is what we can see after installing the latest stable version at the date of writing.
That's probably not what you will get now on your system. Let's go through the
installation steps that will get us there.

We should make sure that the Debian/Ubuntu distributed version is not installed:

$ sudo apt-get remove --purge wkhtmltopdf

Next we should download the latest package to a temporary directory and install it:

$ cd /tmp

$ wget http://downloads.sourceforge.net/project/wkhtmltopdf/
archive/0.12.1/wkhtmltox-0.12.1_linux-trusty-amd64.deb

$ sudo dpkg -i wkhtmltox-0.12.1_linux-trusty-amd64.deb

After this, the wkhtmltopdf version should print out as shown previously, and the
Odoo server won't display the You need Wkhtmltopdf to print a pdf version of the
report's INFO message anymore.

QWeb report templates
The reports will usually follow a basic skeleton, as shown in the following. This can be
added to the todo_kanban/todo_report.xml file, just after the <report> element.

<template id="report_todo_task_template">
 <t t-call="report.html_container">
 <t t-foreach="docs" t-as="o">
 <t t-call="report.external_layout">

www.itbook.store/books/9781784392796

http://wkhtmltopdf.org/downloads.html
https://itbook.store/books/9781784392796

Chapter 8

[153]

 <div class="page">
 <!-- Report page content -->
 </div>
 </t>
 </t>
 </t>
</template>

The most important parts here are the t-call directives using standard report
structures. The report.html_container template does the setup of supporting
HTML document for us. The report.external_layout template handles the report
header and footer, using the corresponding setup from the appropriate company.
Alternatively, we can use report.internal_layout instead, which uses only
a basic header.

Presenting data in reports
Reports also use QWeb, but they are processed server-side, using a Python QWeb
engine, unlike the kanban views, which are processed client-side (in the web
browser) using a JavaScript engine. You can see it as two implementations of the
same specification, and there are some differences that we need to be aware of.

To start with, QWeb expressions are evaluated using Python syntax, not JavaScript.
For the simplest expressions, there may be little or no difference, but more complex
operations will probably be different.

The expression evaluation context is also different. For reports, we have the
following variables available:

•	 docs: This is an iterable collection with the records to print
•	 doc_ids: This is a list of the IDs of the records to print
•	 doc_model: This identifies the model of the records, for example, todo.task
•	 time: This is a reference to Python's time library
•	 user: This is the record for the user running the report
•	 res_company: This is the record for the current user's company

The report content is written in HTML, and field values can be referenced using the
t-field attribute, and it can be complemented with t-field-options to use
a specific widget to render the field content.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[154]

A simple example is as follows:

<!-- Report page content -->
<h2 t-field="o.name" />
<p t-field="o.user_id.name" />

 <t t-foreach="o.message_follower_ids" t-as="f">

 <img t-if="f.image_small"
 t-att-src="'data:image/png;base64,%s' % f.image_small"
 style="max-height: 45px;" />

 </t>

Since the rendering is done server-side, records are objects and we can use dot
notation to access fields from related data.

We can also see a technique to display images stored on fields: they are automatically
converted to their base64 representation, so they can be used in a <img
src="data:..."/> tag. This was used inside a second loop, iterating through the
follower list.

Fields can be used with additional options. These are very similar to the options
attribute used on form views, as seen in Chapter 6, Views – Designing the User Interface,
with an additional widget to set the widget to use to render the field.

A common example is a monetary field, as shown in the following:

<span t-field="o.amount"
 t-field-options='{
 "widget": "monetary",
 "display_currency": "o.pricelist_id.currency_id"}'/>

A more sophisticated case is the contact widget, used to format addresses, as shown
in the following:

<div t-field="res_company.partner_id"
 t-field-options='{
 "widget": "contact",
 "fields": ["address", "name", "phone", "fax"],
 "no_marker": true}' />

By default, some pictograms, such as a phone, are displayed in the address.
The no_marker="true" option disables them.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 8

[155]

Enabling language translation in reports
A helper function, translate_doc(), is available to dynamically translate the report
content to a specific language.

It needs the name of the field where the language to use can be found. This will
frequently be the Partner the document is to be sent to, usually stored at partner_
id.lang. In our case, we don't have a Partner field, but we can use the responsible
user, and the corresponding language preference is in user_id.lang.

The function expects a template name, and will render and translate it. This means
that we need to define the page content of our report in a separate template,
as shown in the following:

<template id="report_todo_task_template">
 <t t-call="report.html_container">
 <t t-foreach="doc_ids" t-as="doc_id">
 <t t-raw="translate_doc(doc_id, doc_model,
 'user_id.partner_id.lang',
 'todo_kanban.report_todo_task_doc')"/>
 </t>
 </t>
</template>

Designing report content
The layout of the content can be done using the Twitter Bootstrap HTML grid
system. In a nutshell, Bootstrap has a grid layout with 12 columns. A new row can be
added using <div class="row">. Inside a row, we have cells, each spanning though
a certain number of columns, that should take up the 12 columns. Each cell can be
defined with <div class="col-xs-N">, where N is the number of columns it spans.

A complete reference for Bootstrap, describing these
and other style elements, can be found at http://
getbootstrap.com/css/.

We should now add the template for the document pages as follows:

<template id="report_todo_task_doc">
 <t t-call="report.external_layout">
 <div class="page">
 <div class="row">
 <div class="col-xs-12">
 <h2></h2>
 </div>

www.itbook.store/books/9781784392796

http://getbootstrap.com/css/
http://getbootstrap.com/css/
https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[156]

 </div>
 <div class="row">
 <div class="col-xs-8">
 By:
 </div>
 <div class="col-xs-4">
 Deadline:
 </div>
 </div>
 <!-- Table -->
 </div>
 </t>
</template>

Here the first row spans the full page width, and the second row has two cells, taking
two-thirds and one-third of the page width, respectively.

Next we will add an HTML table, at the <!-- Table --> comment, to display all the
task followers with name and picture, as shown in the following:

 <table class="table table-bordered">
 <!-- Table header -->
 <tr>
 <th>Avatar</th>
 <th>Name</th>
 </tr>
 <!-- Table rows -->
 <t t-foreach="o.message_follower_ids" t-as="f">
 <!-- Each row -->
 <tr>
 <td>
 <img t-if="f.image_small"
 t-att-src="'data:image/png;base64,%s' %
 f.image_small"
 style="max-height: 32px;" />
 </td>
 <td>

 </td>
 </tr>
 <!-- Totals in a last row -->
 <t t-if="f_last">
 <tr>
 <td colspan="2">
 <p class="text-right">
 <t t-esc="len(o.message_follower_ids)"/>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 8

[157]

 followers </p></
strong>
 </td>
 </tr>
 </t>
 <!-- End table totals -->
 </t>
 </table>

Here we also showed how to display a total in the last row of the table, using
a <t t-if="f_last"> block inside the loop to render the total row only on the
last iteration.

Note that loop totals should not be calculated by accumulation into a variable. You
will face variable scope issues, and it's also a less efficient method.

If you can't have the model give you that information (as it should, to keep the logic
layer separated from the presentation layer), you should calculate those totals using
Python instructions such as len() or sum(). For example, to display the total after
the table:

 <!-- Totals after the table -->
 <p class="text-right">
 <t t-esc="len(o.message_follower_ids)"/> followers
 </p>

Paper formats
The default paper format is defined in the company setup. But we can also specify
the paper format to be used by a specific report. Unfortunately, the <report> tag
does not support setting that, so in this case, we need to use a <record> instead, as
shown in the following:

<record id="report_todo_task_action"
 model="ir.actions.report.xml">
 <field name="name">To-do Tasks</field>
 <field name="model">todo.task</field>
 <field name="report_type">qweb-html</field>
 <field name="template_name">
 todo_kanban.report_todo_task_template</field>
 <field name="paper_format_id"
 ref="report.paperformat_euro" />
</record>

The paper formats available are defined in Settings | Technical | Reports |
Paper Format.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

QWeb – Creating Kanban Views and Reports

[158]

Summary
You learned about kanban boards and how to build kanban views to implement
them. We also introduced QWeb templating and how it can be used to design the
kanban cards. QWeb is also the rendering engine powering the website CMS, so it's
growing in importance in the Odoo toolset. Finally, you had an overview on how to
create reports, also using the QWeb engine.

In the next chapter, we will explore how to leverage the RPC API to interact with
Odoo from external applications.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[159]

External API – Integration
with Other Systems

Until now, we have been working with server-side code. However, the Odoo server
also provides an external API, which is used by its web client and is also available for
other client applications.

In this chapter, we will learn how to use the Odoo external API from our own client
programs. For simplicity, we will focus on Python-based clients.

Setting up a Python client
The Odoo API can be accessed externally using two different protocols: XML-RPC and
JSON-RPC. Any external program capable of implementing a client for one of these
protocols will be able to interact with an Odoo server. To avoid introducing additional
programming languages, we will keep using Python to explore the external API.

Until now, we have been running Python code only on the server. This time, we will
use Python on the client side, so it's possible you might need to do some additional
setup on your workstation.

To follow the examples in this chapter, you will need to be able to run Python files
on your work computer. The Odoo server requires Python 2, but our RPC client
can be in any language, so Python 3 will be just fine. However, since some readers
may be running the server on the same machine they are working on (hello Ubuntu
users!), it will be simpler for everyone to follow if we stick to Python 2.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

External API – Integration with Other Systems

[160]

If you are using Ubuntu or a Macintosh, probably Python is already installed.
Open a terminal console, type python, and you should be greeted with something
like the following:

Python 2.7.8 (default, Oct 20 2014, 15:05:29)

[GCC 4.9.1] on linux2

Type "help", "copyright",", "credits" or "license" for more information.

>>>

Windows users can find an installer and also quickly get up
to speed. The official installation packages can be found at
https://www.python.org/downloads/.

Calling the Odoo API using XML-RPC
The simplest method to access the server is using XML-RPC. We can use the
xmlrpclib library from Python's standard library for this. Remember that we are
programming a client in order to connect to a server, so we need an Odoo server
instance running to connect to. In our examples, we will assume that an Odoo server
instance is running on the same machine (localhost), but you can use any
IP address or server name, if the server is running on another machine.

Opening an XML-RPC connection
Let's get a fist contact with the external API. Start a Python console and type
the following:

>>> import xmlrpclib
>>> srv, db = 'http://localhost:8069', 'v8dev'
>>> user, pwd = 'admin', 'admin'
>>> common = xmlrpclib.ServerProxy('%s/xmlrpc/2/common' % srv)
>>> common.version()
{'server_version_info': [8, 0, 0, 'final', 0], 'server_serie':
'8.0', 'server_version': '8.0', 'protocol_version': 1}

Here, we import the xmlrpclib library and then set up some variables with the
information for the server location and connection credentials. Feel free to adapt
these to your specific setup.

Next, we set up access to the server's public services (not requiring a login),
exposed at the /xmlrpc/2/common endpoint. One of the methods that are available
is version(), which inspects the server version. We use it to confirm that we can
communicate with the server.

www.itbook.store/books/9781784392796

https://www.python.org/downloads/
https://itbook.store/books/9781784392796

Chapter 9

[161]

Another public method is authenticate(). In fact, this does not create a session,
as you might be led to believe. This method just confirms that the username and
password are accepted and returns the user ID that should be used in requests
instead of the username, as shown here:

>>> uid = common.authenticate(db, user, pwd, {})
>>> print uid
1

Reading data from the server
With XML-RPC, no session is maintained and the authentication credentials are sent
with every request. This adds some overhead to the protocol, but makes it simpler
to use.

Next, we set up access to the server methods that need a login to be accessed. These
are exposed at the /xmlrpc/2/object endpoint, as shown in the following:

>>> api = xmlrpclib.ServerProxy('%s/xmlrpc/2/object' % srv)
>>> api.execute_kw(db, uid, pwd, 'res.partner', 'search_count', [[]])
70

Here, we are doing our first access to the server API, performing a count on the
Partner records. Methods are called using the execute_kw() method that takes the
following arguments:

•	 The name of the database to connect to
•	 The connection user ID
•	 The user password
•	 The target model identifier name
•	 The method to call
•	 A list of positional arguments
•	 An optional dictionary with keyword arguments

The preceding example calls the search_count method of the res.partner
model with one positional argument, [], and no keyword arguments. The
positional argument is a search domain; since we are providing an empty list,
it counts all the Partners.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

External API – Integration with Other Systems

[162]

Frequent actions are search and read. When called from the RPC, the search
method returns a list of IDs matching a domain. The browse method is not available
from the RPC, and read should be used in its place to, given a list of record IDs,
retrieve their data, as shown in the following code:

>>> api.execute_kw(db, uid, pwd, 'res.partner', 'search',
[[('country_id', '=', 'be'), ('parent_id', '!=', False)]])
[43, 42]
>>> api.execute_kw(db, uid, pwd, 'res.partner', 'read', [[43]],
{'fields': ['id', 'name', 'parent_id']})
[{'parent_id': [7, 'Agrolait'], 'id': 43, 'name': 'Michel
Fletcher'}]

Note that for the read method, we are using one positional argument for the list of
IDs, [43], and one keyword argument, fields. We can also notice that relational
fields are retrieved as a pair, with the related record's ID and display name. That's
something to keep in mind when processing the data in your code.

The search and read combination is so frequent that a search_read method is
provided to perform both operations in a single step. The same result as the previous
two steps can be obtained with the following:

>>> api.execute_kw(db, uid, pwd, 'res.partner', 'search_read',
[[('country_id', '=', 'be'), ('parent_id', '!=', False)]],
{'fields': ['id', 'name', 'parent_id']})

The search_read method behaves like read, but expects as first positional argument
a domain instead of a list of IDs. It's worth mentioning that the field argument on
read and search_read is not mandatory. If not provided, all fields will be retrieved.

Calling other methods
The remaining model methods are all exposed through RPC, except for those starting
with "_" that are considered private. This means that we can use create, write, and
unlink to modify data on the server as follows:

>>> api.execute_kw(db, uid, pwd, 'res.partner', 'create', [{'name':
'Packt'}])
75
>>> api.execute_kw(db, uid, pwd, 'res.partner', 'write', [[75],
{'name': 'Packt Pub'}])
True
>>> api.execute_kw(db, uid, pwd, 'res.partner', 'read', [[75], ['id',
'name']])
[{'id': 75, 'name': 'Packt Pub'}]
>>> api.execute_kw(db, uid, pwd, 'res.partner', 'unlink', [[75]])
True

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 9

[163]

One limitation of the XML-RPC protocol is that it does not support None values.
The implication is that methods that don't return anything won't be usable through
XML-RPC, since they are implicitly returning None. This is why methods should
always finish with at least a return True statement.

Writing a Notes desktop application
Let's do something interesting with the RPC API. What if users could manage their
Odoo to-do tasks directly from their computer's desktop? Let's write a simple Python
application to do just that, as shown in the following screenshot:

For clarity, we will split it into two files: one concerned to interact with the server
backend, note_api.py, and another with the graphical user interface, note_gui.py.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

External API – Integration with Other Systems

[164]

Communication layer with Odoo
We will create a class to set up the connection and store its information. It should
expose two methods: get() to retrieve task data and set() to create or update tasks.

Select a directory to host the application files and create the note_api.py file.
We can start by adding the class constructor, as follows:

import xmlrpclib
class NoteAPI():
 def __init__(self, srv, db, user, pwd):
 common = xmlrpclib.ServerProxy(
 '%s/xmlrpc/2/common' % srv)
 self.api = xmlrpclib.ServerProxy(
 '%s/xmlrpc/2/object' % srv)
 self.uid = common.authenticate(db, user, pwd, {})
 self.pwd = pwd
 self.db = db
 self.model = 'todo.task'

Here we store in the created object all the information needed to execute calls on a
model: the API reference, uid, password, database name, and the model to use.

Next we will define a helper method to execute the calls. It takes advantage of the
object stored data to provide a smaller function signature, as shown next:

 def execute(self, method, arg_list, kwarg_dict=None):
 return self.api.execute_kw(
 self.db, self.uid, self.pwd, self.model,
 method, arg_list, kwarg_dict or {})

Now we can use it to implement the higher level get() and set() methods.

The get() method will accept an optional list of IDs to retrieve. If none are listed, all
records will be returned, as shown here:

 def get(self, ids=None):
 domain = [('id',' in', ids)] if ids else []
 fields = ['id', 'name']
 return self.execute('search_read', [domain, fields])

The set() method will have as arguments the task text to write, and an optional
ID. If ID is not provided, a new record will be created. It returns the ID of the record
written or created, as shown here:

 def set(self, text, id=None):
 if id:

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 9

[165]

 self.execute('write', [[id], {'name': text}])
 else:
 vals = {'name': text, 'user_id': self.uid}
 id = self.execute('create', [vals])
 return id

Let's end the file with a small piece of test code that will be executed if we run the
Python file:

if __name__ == '__main__':
 srv, db = 'http://localhost:8069', 'v8dev'
 user, pwd = 'admin', 'admin'
 api = NoteAPI(srv, db, user, pwd)
 from pprint import pprint
 pprint(api.get())

If we run the Python script, we should see the content of our to-do tasks printed out.
Now that we have a simple wrapper around our Odoo backend, let's deal with the
desktop user interface.

Creating the GUI
Our goal here was to learn to write the interface between an external application and
the Odoo server, and this was done in the previous section. But it would be a shame
not going the extra step and actually making it available to the end user.

To keep the setup as simple as possible, we will use Tkinter to implement the
graphical user interface. Since it is part of the standard library, it does not require
any additional installation. It is not our goal to explain how Tkinter works, so we
will be short on explanations about it.

Each Task should have a small yellow window on the desktop. These windows
will have a single Text widget. Pressing Ctrl + N will open a new Note, and pressing
Ctrl + S will write the content of the current note to the Odoo server.

Now, alongside the note_api.py file, create a new note_gui.py file. It will first
import the Tkinter modules and widgets we will use, and then the NoteAPI class,
as shown in the following:

from Tkinter import Text, Tk
import tkMessageBox
from note_api import NoteAPI

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

External API – Integration with Other Systems

[166]

Next we create our own Text widget derived from the Tkinter one. When creating an
instance, it will expect an API reference, to use for the save action, and also the Task's
text and ID, as shown in the following:

class NoteText(Text):
 def __init__(self, api, text='', id=None):
 self.master = Tk()
 self.id = id
 self.api = api
 Text.__init__(self, self.master, bg='#f9f3a9',
 wrap='word', undo=True)
 self.bind('<Control-n>', self.create)
 self.bind('<Control-s>', self.save)
 if id:
 self.master.title('#%d' % id)
 self.delete('1.0', 'end')
 self.insert('1.0', text)
 self.master.geometry('220x235')
 self.pack(fill='both', expand=1)

The Tk() constructor creates a new UI window and the Text widget places itself inside
it, so that creating a new NoteText instance automatically opens a desktop window.

Next, we will implement the create and save actions. The create action opens a
new empty window, but it will be stored in the server only when a save action is
performed, as shown in the following code:

 def create(self, event=None):
 NoteText(self.api, '')
 def save(self, event=None):
 text = self.get('1.0', 'end')
 self.id = self.api.set(text, self.id)
 tkMessageBox.showinfo('Info', 'Note %d Saved.' % self.id)

The save action can be performed either on existing or on new tasks, but there is no
need to worry about that here since those cases are already handled by the set()
method of NoteAPI.

Finally, we will add the code that retrieves and creates all note windows when the
program is started, as shown in the following code:

if __name__ == '__main__':
 srv, db = 'http://localhost:8069', 'v8dev'
 user, pwd = 'admin', 'admin'
 api = NoteAPI(srv, db, user, pwd)
 for note in api.get():
 x = NoteText(api, note['name'], note['id'])
 x.master.mainloop()

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 9

[167]

The last command runs mainloop() on the last Note window created, to start
waiting for window events.

This is a very basic application, but the point here is to make an example of
interesting ways to leverage the Odoo RPC API.

Introducing the ERPpeek client
ERPpeek is a versatile tool that can be used both as an interactive Command-line
Interface (CLI) and as a Python library, with a more convenient API than the one
provided by xmlrpclib. It is available from the PyPi index and can be installed with
the following:

$ pip install -U erppeek

On a Unix system, if you are installing it system wide, you might need to prepend
sudo to the command.

The ERPpeek API
The erppeek library provides a programming interface, wrapping around
xmlrpclib, which is similar to the programming interface we have for the
server-side code.

Our point here is to provide a glimpse of what ERPpeek has to offer, and not to
provide a full explanation of all its features.

We can start by reproducing our first steps with xmlrpclib using erppeek
as follows:

>>> import erppeek
>>> api = erppeek.Client('http://localhost:8069', 'v8dev',
 'admin', 'admin')
>>> api.common.version()
>>> api.count('res.partner', [])
>>> api.search('res.partner', [('country_id', '=', 'be'),
 ('parent_id', '!=', False)])
>>> api.read('res.partner', [43], ['id', 'name', 'parent_id'])

As you can see, the API calls use fewer arguments and are similar to the server-side
counterparts.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

External API – Integration with Other Systems

[168]

But ERPpeek doesn't stop here, and also provides a representation for Models. We
have the following two alternative ways to get an instance for a model, either using
the model () method or accessing an attribute in camel case:

>>> m = api.model('res.partner')
>>> m = api.ResPartner

Now we can perform actions on that model as follows:

>>> m.count([('name', 'like', 'Packt%')])
1
>>> m.search([('name', 'like', 'Packt%')])
[76]

It also provides client-side object representation for records as follows:

>>> recs = m.browse([('name', 'like', 'Packt%')])
>>> recs
<RecordList 'res.partner,[76]'>
>>> recs.name
['Packt']

As you can see, ERPpeek goes a long way from plain xmlrpclib, and makes it
possible to write code that can be reused server side with little or no modification.

The ERPpeek CLI
Not only can erppeek be used as a Python library, it is also a CLI that can be used
to perform administrative actions on the server. Where the odoo shell command
provided a local interactive session on the host server, erppeek provides a remote
interactive session on a client across the network.

Opening a command line, we can have a peek at the options available, as shown in
the following:

$ erppeek --help

Let's see a sample session as follows:

$ erppeek --server='http://localhost:8069' -d v8dev -u admin

Usage (some commands):

 models(name) # List models matching pattern

 model(name) # Return a Model instance

(...)

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 9

[169]

Password for 'admin':

Logged in as 'admin'

v8dev >>> model('res.users').count()

3

v8dev >>> rec = model('res.partner').browse(43)

v8dev >>> rec.name

'Michel Fletcher'

As you can see, a connection was made to the server, and the execution context
provided a reference to the model() method to get model instances and perform
actions on them.

The erppeek.Client instance used for the connection is also available through the
client variable. Notably, it provides an alternative to the web client to manage the
following modules installed:

•	 client.modules(): This can search and list modules available or installed
•	 client.install(): This performs module installation
•	 client.upgrade(): This orders modules to be upgraded
•	 client.uninstall(): This uninstalls modules

So, ERPpeek can also provide good service as a remote administration tool for
Odoo servers.

Summary
Our goal for this chapter was to learn how the external API works and what it is
capable of. We started exploring it using a simple Python XML-RPC client, but the
external API can be used from any programming language. In fact, the official docs
provide code examples for Java, PHP, and Ruby.

There are a number of libraries to handle XML-RPC or JSON-RPC, some generic and
some specific for use with Odoo. We tried not point out any libraries in particular,
except for erppeek, since it is not only a proven wrapper for the Odoo/OpenERP
XML-RPC but because it is also an invaluable tool for remote server management
and inspection.

Until now, we used our Odoo server instances for development and tests. But to
have a production grade server, there are additional security and optimization
configurations that need to be done. In the next chapter, we will focus on them.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[171]

Deployment Checklist –
Going Live

In this chapter, you will learn how to prepare your Odoo server for use in the
production environment.

There are many possible strategies and tools that can be used to deploy and manage
an Odoo production server. We will guide you through one way of doing it.

This is the server setup checklist that we will follow:

•	 Install Odoo from the source
•	 Set up the Odoo configuration file
•	 Set up multiprocessing workers
•	 Set up the Odoo system service
•	 Set up a reverse proxy with SSL support

Let's get started.

Installing Odoo
Odoo has Debian/Ubuntu packages available for installation. With these, you
get a working server process that automatically starts on system boot. This
installation process is straightforward, and you can find all you need at
http://nightly.odoo.com.

While this is an easy and convenient way to install Odoo, here we prefer running
from version-controlled source code since this provides better control over what
is deployed.

www.itbook.store/books/9781784392796

http://nightly.odoo.com
https://itbook.store/books/9781784392796

Deployment Checklist – Going Live

[172]

Installing from the source code
Sooner or later, your server will need upgrades and patches. A version controlled
repository can be of great help when the time comes.

We use git to get our code from a repository, just like we did to install the
development environment. For example:

$ git clone https://github.com/odoo/odoo.git -b 8.0 --depth=1

This command gets from GitHub the branch 8.0 source code into an odoo/
subdirectory. At the time of writing, 8.0 is the default branch, so the -b 8.0 option
is optional. The --depth=1 option was used to get a shallow copy of the repository,
without all version history. This reduces the disk space used and makes the clone
operation much faster.

It might be worthwhile to have a slightly more sophisticated setup, with a staging
environment alongside the production environment.

With this, we could fetch the latest source code version and test it in the staging
environment, without disturbing the production environment. When we're happy
with the new version, we would deploy it from staging to production.

Let's consider the repository at ~/odoo-dev/odoo to be our staging environment.
It was cloned from GitHub, so that a git pull inside it will fetch and merge the
latest changes. But it is also a repository itself, and we can clone it for our production
environment, as shown in the following example:

$ mkdir ~/odoo-prd && cd ~/odoo-prd

$ git clone ~/odoo-dev/odoo ~/odoo-prd/odoo/

This will create the production repository at ~/odoo-prd/odoo cloned from the
staging ~/odoo-dev/odoo. It will be set to track that repository, so that a git pull
inside production will fetch and merge the last versions from staging. Git is smart
enough to know that this is a local clone and uses hard links to the parent repository
to save disk space, so the --depth option is unnecessary.

Whenever a problem found in production needs troubleshooting, we can checkout
in the staging environment the version of the production code, and then debug
to diagnose and solve the issue, without touching the production code. Later, the
solution patch can be committed to the staging Git history, and then deployed to the
production repository using a git pull command on it.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 10

[173]

Git will surely be an invaluable tool to manage the versions of
your Odoo deployments. We just scratched the surface of what
can be done to manage code versions. If you're not already
familiar with Git, it's worth learning more about it. A good
starting point is http://git-scm.com/doc.

Setting up the configuration file
Adding the --save option when starting an Odoo server saves the configuration used
to the ~/.openerp_serverrc file. We can use the file as a starting point for our server
configuration, which will be stored on /etc/odoo, as shown in the following code:

$ sudo mkdir /etc/odoo

$ sudo chown $(whoami) /etc/odoo

$ cp ~/.openerp_serverrc /etc/odoo/openerp-server.conf

This will have the configuration parameters to be used by our server instance.

The following are the parameters essential for the server to work correctly:

•	 addons_path: This is a comma-separated list of the paths where modules
will be looked up, using the directories from left to right. This means that the
leftmost directories in the list have a higher priority.

•	 xmlrpc_port: This is the port number at which the server will listen. By
default, port 8069 is used.

•	 log_level: This is the log verbosity. The default is the info level, but using
the debug_rpc level, while more verbose, adds important information to
monitor server performance.

The following settings are also important for a production instance:

•	 admin_passwd: This is the master password to access the web client database
management functions. It's critical to set this with a strong password or an
empty value to deactivate the function.

•	 dbfilter: This is a Python-interpreted regex expression to filter the
databases to be listed. For the user to not be prompted to select a database, it
should be set with ^dbname$, for example, dbfilter = ^v8dev$.

•	 logrotate=True: This will split the log into daily files and keep only one
month of log history.

•	 data_dir: This is the path where the attachment files are stored. Remember
to have backups on it.

•	 without_demo=True: This should be set in production environments so that
new databases do not have demo data on them.

www.itbook.store/books/9781784392796

http://git-scm.com/doc
https://itbook.store/books/9781784392796

Deployment Checklist – Going Live

[174]

When using a reverse proxy, the following settings should be considered:

•	 proxy_mode=True: This is important to set when using a reverse proxy.
•	 xmlrpc-interface: This sets the addresses that will be listened to. By

default, it listens to all 0.0.0.0, but when using a reverse proxy, it can be set
to 127.0.0.1 in order to respond only to local requests.

A production instance is expected to handle significant workload. By default, the
server runs one process and is capable of handling only one request at a time.
However, a multiprocess mode is available so that concurrent requests can be
handled. The option workers=N sets the number of worker processes to use. As a
guideline, you can try setting it to 1+2*P, where P is the number of processors. The
best setting to use needs to be tuned for each case, since it depends on the server load
and what other services are running on the server (such as PostgreSQL).

We can check the effect of the settings made by running the server with the -c or
--config option as follows:

$./odoo.py -c /etc/odoo/openerp-server.conf

Setting up as a system service
Next, we will want to set up Odoo as a system service and have it started
automatically when the system boots.

The Odoo source code includes an init script, used for the Debian packaged
distribution. We can use it as our service init script with minor modifications
as follows:

$ sudo cp ~/odoo-prd/odoo/debian/init /etc/init.d/odoo

$ sudo chmod +x /etc/init.d/odoo

At this point, you might want to check the content of the init script. The key
parameters are assigned to variables at the top of the file. A sample is as follows:

PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/bin
DAEMON=/usr/bin/openerp-server
NAME=odoo
DESC=odoo
CONFIG=/etc/odoo/openerp-server.conf
LOGFILE=/var/log/odoo/odoo-server.log
PIDFILE=/var/run/${NAME}.pid
USER=odoo

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 10

[175]

The USER variable is the system user under which the server will run, and you
probably want to change it. The other variables should be adequate and we will
prepare the rest of the setup having their default values in mind. DAEMON is the path
to the server executable, CONFIG is the configuration file to use, and LOGFILE is the
log file location.

The DAEMON executable can be a symbolic link to our actual Odoo location, as shown
in the following:

$ sudo ln -s ~/odoo-prd/odoo/odoo.py /usr/bin/openerp-server

$ sudo chown $(whoami) /usr/bin/openerp-server

Next we must create the LOGFILE directory as follows:

$ sudo mkdir /var/log/odoo

$ sudo chown $(whoami) /etc/odoo

Now we should be able to start and stop our Odoo service as follows:

$ sudo /etc/init.d/odoo start

Starting odoo: ok

We should now be able to get a response from the server and see no errors in the log
file, as shown in the following:

$ curl http://localhost:8069

<html><head><script>window.location = '/web' +
location.hash;</script></head></html>

$ less /var/log/odoo/odoo-server.log # show the log file

Stopping the service is done in a similar way, as shown in the following:

$ sudo /etc/init.d/odoo stop

Stopping odoo: ok

Ubuntu provides the easier to remember service command
to manage services. If you prefer, you can instead use sudo
service odoo start and sudo service odoo stop.

We now only need to make this service start automatically on system boot:

$ sudo update-rc.d odoo defaults

After this, when we reboot our server, the Odoo service should be started
automatically and with no errors. It's a good time to check that all is working
as expected.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Deployment Checklist – Going Live

[176]

Using a reverse proxy
While Odoo itself can serve web pages, it is strongly recommended to have a reverse
proxy in front of it. A reverse proxy acts as an intermediary managing the traffic
between the clients sending requests and the Odoo servers responding to them.
Using a reverse proxy has several benefits.

On the security side, it can do the following:

•	 Handle (and enforce) HTTPS protocols to encrypt traffic
•	 Hide the internal network characteristics
•	 Act an "application firewall" limiting the URLs accepted for processing

And on the performance side, it can provide significant improvements:

•	 Cache static content, thus reducing the load on the Odoo servers
•	 Compress content to speed up loading times
•	 Act as a load balancer distributing load between several servers

Apache is a popular option to use as reverse proxy. Nginx is a recent alternative with
good technical arguments. Here we will choose to use nginx as a reverse proxy and
show how it can be used perform the functions mentioned above.

Setting up nginx for reverse proxy
First, we should install nginx. We want it to listen on the default HTTP ports, so we
should make sure they are not already taken by some other service. Performing this
command should result in an error, as shown in the following:

$ curl http://localhost

curl: (7) Failed to connect to localhost port 80

If not, you should disable or remove that service to allow nginx to use those ports.
For example, to stop an existing Apache server you should:

$ sudo /etc/init.d/apache2 stop

Now we can install nginx, which is done in the expected way:

$ sudo apt-get install nginx

To confirm that it is working correctly, we should see a "Welcome to nginx" page
when visiting the server address with a browser or using curl http://localhost
in the server.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 10

[177]

Nginx configuration files follow the same approach as Apache: they are stored in
/etc/nginx/available-sites/ and activated by adding a symbolic link in /etc/
nginx/enabled-sites/. We should also disable the default configuration provided
by the nginx installation, as shown in the following:

$ sudo rm /etc/nginx/sites-enabled/default

$ sudo touch /etc/nginx/sites-available/odoo

$ sudo ln -s
/etc/nginx/sites-available/odoo /etc/nginx/sites-enabled/odoo

Using an editor, such as nano or vi, we should edit our nginx configuration file
as follows:

$ sudo nano /etc/nginx/sites-available/odoo

First we add the upstreams, the backend servers nginx will redirect traffic to, the
Odoo server in our case, which is listening on port 8069, shown in the following:

upstream backend-odoo {
 server 127.0.0.1:8069;
}
server {
 location / {
 proxy_pass http://backend-odoo;
 }
}

To test if the edited configuration is correct, use the following:

$ sudo nginx -t

In case you find errors, confirm the configuration file is correctly typed. Also, a
common problem is for the default HTTP to be taken by another service, such as
Apache or the default nginx website. Double-check the instructions given before to
make sure that this is not the case, then restart nginx. After this, we can have nginx to
reload the new configuration as follows:

$ sudo /etc/init.d/nginx reload

We can now confirm that nginx is redirecting traffic to the backend Odoo server, as
shown in the following:

$ curl http://localhost

<html><head><script>window.location = '/web' +
location.hash;</script></head></html>

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Deployment Checklist – Going Live

[178]

Enforcing HTTPS
Next we should install a certificate to be able to use SSL. To create a self-signed
certificate, follow the following steps:

$ sudo mkdir /etc/nginx/ssl && cd /etc/nginx/ssl

$ sudo openssl req -x509
-newkey rsa:2048 -keyout key.pem -out cert.pem -days 365 -nodes

$ sudo chmod a-wx * # make files read only

$ sudo chown www-data:root * # access only to www-data group

This creates an ssl/ directory inside the /etc/nginx/ directory and creates a
password less self-signed SSL certificate. When running the openssl command,
some additional information will be asked, and a certificate and key files are
generated. Finally, the ownership of these files is given to the user www-data used to
run the web server.

Using self-signed certificated can pose some security risks,
such as man-in-the-middle attacks, and may even not be
allowed by some browsers. For a robust solution, you
should use a certificate signed by a recognized certificate
authority. This is particularly important if you are running
a commercial or e-commerce website.

Now that we have an SSL certificate, we are ready to configure nginx to use it.

To enforce HTTPS, we will redirect all HTTP traffic to it. Replace the server
directive we defined previously with the following:

server {
 listen 80;
 add_header Strict-Transport-Security max-age=2592000;
 rewrite ^/.*$ https://$host$request_uri? permanent;
}

If we reload the nginx configuration now and access the server with a web browser,
we will see that the http:// address will be converted into an https:// address.

But it won't return any content before we configure the HTTPS service properly, by
adding the following server configuration:

server {
 listen 443 default;
 # ssl settings
 ssl on;

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 10

[179]

 ssl_certificate /etc/nginx/ssl/cert.pem;
 ssl_certificate_key /etc/nginx/ssl/key.pem;
 keepalive_timeout 60;
 # proxy header and settings
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forward-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_redirect off;

 location / {
 proxy_pass http://backend-odoo;
 }
}

This will listen to the HTTPS port and use the /etc/nginx/ssl/ certificate files to
encrypt the traffic. We also add some information to the request header to let the
Odoo backend service know it's being proxied. For security reasons, it's important
for Odoo to make sure the proxy_mode parameter is set to True. At the end, the
location directive defines that all request are passed to the backend-odoo upstream.

Reload the configuration, and we should have our Odoo service working through
HTTPS, as shown in the following:

$ sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok

nginx: configuration file /etc/nginx/nginx.conf test is successful

$ sudo service nginx reload

 * Reloading nginx configuration nginx

 ...done.

$ curl -k https://localhost

<html><head><script>window.location = '/web' +
location.hash;</script></head></html>

The last output confirms that the Odoo web client is being served over HTTPS.

Nginx optimizations
Now, it is time for some fine-tuning of the nginx settings. They are recommended to
enable response buffering and data compression that should improve the speed of
the website. We also set a specific location for the logs.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Deployment Checklist – Going Live

[180]

The following configurations should be added inside the server listening on port 443,
for example, just after the proxy definitions:

odoo log files
access_log /var/log/nginx/odoo-access.log;
error_log /var/log/nginx/odoo-error.log;
increase proxy buffer size
proxy_buffers 16 64k;
proxy_buffer_size 128k;
force timeouts if the backend dies
proxy_next_upstream error timeout invalid_header http_500
http_502 http_503;
enable data compression
gzip on;
gzip_min_length 1100;
gzip_buffers 4 32k;
gzip_types text/plain application/x-javascript text/xml text/css;
gzip_vary on;

We can also activate static content caching for faster responses to the types of requests
mentioned in the preceding code example and to avoid their load on the Odoo server.
After the location / section, add the following second location section:

location ~* /web/static/ {
 # cache static data
 proxy_cache_valid 200 60m;
 proxy_buffering on;
 expires 864000;
 proxy_pass http://backend-odoo;
}

With this, the static data is cached for 60 minutes. Further requests on those requests
in that interval will be responded to directly by nginx from the cache.

Long polling
Long polling is used to support the instant messaging app, and when using
multiprocessing workers, it is handled on a separate port, which is 8072 by default.

For our reverse proxy, this means that the longpolling requests should be passed
to this port. To support this, we need to add a new upstream to our nginx
configuration, as shown in the following code:

upstream backend-odoo-im { server 127.0.0.1:8072; }

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Chapter 10

[181]

Next, we should add another location to the server handling the HTTPS requests, as
shown in the following code:

 location /longpolling { proxy_pass http://backend-odoo-im;}

With these settings, nginx should pass these requests to the proper Odoo server port.

Server and module updates
Once the Odoo server is ready and running, there will come a time when you need to
install updates on Odoo. This involves two steps: first, to get the new versions of the
source code (server or modules), and second, to install them.

If you have followed the approach described in the Installing from the source code
section, we can fetch and test the new versions in the staging repository. It is
strongly advised that you make a copy of the production database and test the
upgrade on it. If v8dev were our production database, this could be done with
the following commands:

$ dropdb v8test ; createdb v8test

$ pg_dump v8dev | psql -d v8test

$ cd ~/odoo-dev/odoo/

$./odoo.py -d v8test --xmlrpc-port=8080 -c
/etc/odoo/openerp-server.conf -u all

If everything goes OK, it should be safe to perform the upgrade on the production
service. Remember to make a note of the current version Git reference, in order to
be able to roll back by checking out this version again. Keeping a backup of the
database before performing the upgrade is also highly advised.

After this, we can pull the new versions to the production repository using Git and
complete the upgrade, as shown here:

$ cd ~/odoo-prd/odoo/

$ git pull

$./odoo.py -c /etc/odoo/openerp-server.conf
--stop-after-init -d v8dev -u all

$ sudo /etc/init.d/odoo restart

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Deployment Checklist – Going Live

[182]

Summary
In this chapter, you learned about the additional steps to set up and run Odoo in a
Debian-based production server. The most important settings in the configuration file
were visited, and you learned how to take advantage of the multiprocessing mode.

For improved security and scalability, you also learned how to use nginx as a reverse
proxy in front of our Odoo server processes.

We hope this covers the essentials of what is needed to run an Odoo server and
provide a stable and secure service to your users.

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[183]

Index
A
abstract models 73
access control security

setting up 32, 33
action buttons

adding, to forms 28
actions, kanban views

about 140
delete 140
edit 140
open 140

actions, XML data files
about 66
functions, triggering 66, 67
records, deleting 66
workflows, triggering 66, 67

addons path
configuring 15
modules, adding to 21

application features
organizing, into modules 69

application model
creating 23-25

applications 18
arguments, field types

Char 76
Float 76
Html 76
Integer 76
Selection 76
Text 76

B
Bootstrap

URL 155
browse() method 119
business document

form, formatting as 28
business logic

adding, to buttons 31, 32
business reports

creating 151
data, presenting 153, 154
language translation, enabling 155
paper formats, defining 157
QWeb report templates, using 152
report content, designing 155-157
wkhtmltopdf library, installing 152

business views 93
buttons

business logic, adding to 31, 32
buttons, view elements

about 99
attributes 99, 100

C
calendar views

about 105
attributes 106

card kanban view 140, 141
cards 133
card style kanban 135
client interaction

model methods 125
Command-line Interface (CLI) 167

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[184]

community modules
finding 14

computed fields
about 83, 84
declaring 84
storing 85

configuration parameters, Odoo
addons_path 173
log_level 173
xmlrpc_port 173

content management system (CMS) 133
context

about 90
session context 90

controller 17
CSV data files

records 59, 60
cursor execute() method 120
Custom CSS assets

using 150

D
data

exporting 56-58
importing 58
modifying 49

database ID 53
data noupdate attribute 62
Debian host

provisions for 2, 3
delegation inheritance

used, for embedding models 47
descriptor keys, Odoo app store

auto_install 21
installable 21

Developer mode
activating 13, 14

domain
about 90
expressions 91, 92
using 91

dynamic views
about 102
attributes 102

E
elements, kanban views 137, 138
env.ref() function 125
erppeek API 167
erppeek CLI 168
erppeek client 167
execution environment

about 125
attributes 125

expressions, domain 92
external identifiers

about 53, 54
finding 55

F
features

copying, prototype inheritance used 46
fetchall() function 121
fields

attributes 76
creating 75
reserved field names 77

fields types
about 75
arguments 75

fields, view elements
about 100
attributes 100
attributes, for field types 100, 101
on-change events 102
relational fields 101
widgets 101

field widgets
about 101
for numeric fields 101
for relational fields 102
for selection fields 102
for text fields 101

forms
action buttons, adding to 28
formatting, as business document 28
organizing, groups used 29

form views
about 29, 93
business views 93

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[185]

creating 27
header status bar 94, 95

G
Gantt views

about 106
attributes 106

Git
about 173
URL 173

graph views
about 107
attributes 107

groups
used, for organizing forms 29

H
header status bar, form views

about 94, 95
business flow pipeline 95
content, organizing 98, 99
labels, for fields 96
smart buttons 97, 98
subtitle 96
tabbed notebooks 99
title 96

hierarchical relations 81
host

setting up, for Odoo server 1, 2
HTTPS

enforcing 178, 179

I
icon

adding, to modules 35
inheritance

used, for adding social network
features 48, 49

used, for extending models 46
installation, wkhtmltopdf library 152

J
JavaScript assets

using 150

K
kanban board

about 133
example 134
kanban views 134, 135
using 134

kanban cards
about 148
colors, adding 149
option menu, adding 148, 149
text ellipsis, using 150

kanban views
about 134, 135
actions 140
card kanban view 140, 141
Custom CSS assets 150
designing 136
elements 137, 138
JavaScript assets 150
vignette kanban view 138, 139

kanban views, fields
kanban state 137
priority 137

keys, Odoo app store
category 20
license 20
summary 20
version 20
website 20

L
Linux text editor

using 10
list views

about 103
adding 30
attributes 103

long polling 180

M
many to many relations 59, 79, 80
many to one relation 59
menu entries

adding 25, 26

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[186]

menu items 89, 90
model classes

attributes 72
model constraints 86
model methods, client interaction

about 125, 126
debugging 129-131
decorators 128
default methods, overriding 127
shortcut commands 130

models
about 17
abstract models 73
and Python classes 72
creating 71
embedding, delegation inheritance used 47
extending, inheritance used 46
inspecting 74
relations 78
transient models 73

module data
about 60
demonstration data 61

module list
updating 16

modules
about 18
adding, to addons path 21
application features, organizing into 69
creating 19, 20
extending 18
icon, adding to 35
installing 22
modifying 18
upgrading 22, 23

N
nginx

optimizations 179, 180
setting up, for reverse proxy 176, 177

Notes desktop application
communication layer, with Odoo 164, 165
GUI, creating 165, 166
writing 163

O
object relational model (ORM) 17
Odoo

configuration file, setting up 173, 174
developing, from workstation 9
installing 171
installing, from source 4, 5
installing, from source code 172
product versions 7
setting up, as system service 174, 175
URL 116
URL, for installation instructions 171
user account, creating for 3

Odoo API
calling, with XML-RPC 160

Odoo API, calling with XML-RPC
data, reading from server 161, 162
model methods, calling 162

Odoo Community Association (OCA) 14
Odoo database

initializing 5, 6
managing 6, 7

Odoo server
host, setting up for 1, 2

Odoo server configuration files 8
official installation packages, Python

URL 160
on-board technical tools

Developer mode, activating 13, 14
enabling 12
Technical Features, activating 12, 13

on-change events 102
one to many inverse relations 81
one to many relations 60

P
position attribute, values

after 43
attributes 43
before 43
inside 43
replace 43

PostgresSQL
URL, for official documentation 7

priority, kanban views 137

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[187]

production instance settings, Odoo
admin_passwd 173
data_dir 173
dbfilter 173
logrotate=True 173
without_demo=True 173

product versions, Odoo 7
prototype inheritance

used, for copying features 46
Python classes

models 72
Python client

setting up 159, 160
Python debugger commands

URL 9

Q
QWeb

about 133
other directives 148

QWeb, directives
t-debug 148
t-js 148
t-log 148

QWeb dynamic content
adding 141
conditional rendering, with t-if 142
dynamic attributes, with t-att- prefixes 144
loop, rendering with t-foreach 143, 144
string substitution attributes, with

t-attf- prefixes 145
templates, calling with t-call 146, 147
values, rendering with t-esc 143
values, rendering with t-raw 143
variables, setting with t-set 145, 146

QWeb report templates
using 152

R
recordset

manipulating 123
operations 124

records, in CSV data files 59, 60
related fields 85

relation fields
many to many 117
many to one 117
one to many 118
using 118

relations, models
about 78
hierarchical 81
many to many 79, 80
many to one 79
one to many inverse 81

reserved field names 77
reverse proxy

nginx, setting up for 176, 177
using 176

row level access rules 34, 35

S
Samba

configuring 10, 12
installing 10, 12

search() method 118
search views

about 104
adding 30
extending 45
filter elements, attributes 105

Secure Shell (SSH) 2
server

dates, working with 121, 122
low-level SQL 120, 121
models, querying 118, 119
recordset operations 124
recordsets, manipulating 123
records, writing on 119, 120
relation fields, using 118
relation fields, working with 122
time, working with 121, 122
transactions 120, 121
working with 116, 117

server configuration options
about 8
listening port, modifying 8
logging 9

server updates 181

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[188]

session context 90
settings, reverse proxy 174
sharing capability

adding, to To-Do app 37
singleton 117
social network features

adding, inheritance used 48, 49
source

Odoo, installing from 4, 5
source code

Odoo, installing from 172

T
t-attf- prefixes

using 145
t-att- prefixes

using 144
t-call

used, for calling other templates 146, 147
Technical Features

activating 12, 13
t-esc

using 143
t-foreach

used, for rendering loop 143, 144
third-party modules

addons path, configuring 15
community modules, finding 14
installing 14
module list, updating 16

t-if
used, for conditional rendering 142

to-do task model
existing fields, modifying 40
extending 39
fields, adding 39, 40
methods, modifying 41, 42

todo_ui module 70
to-do wizard

about 109
actions, on wizard dialog 114, 115
exceptions, raising 114
wizard business logic 113
wizard form 111, 112
wizard model 110

transient models 73
t-raw

using 143
tree views

extending 45
t-set

used, for setting variables 145, 146
TurnKey Linux

URL 3

U
unlink() method 119
user account

creating, for Odoo 3
user sharing features

work plan 38, 39

V
view elements

about 99
buttons 99, 100
fields 100

views
about 17
calendar views 105, 106
creating 27
extending 42-44
form views 93
Gantt views 106
graph views 107
list views 103
search views 104, 105

vignette kanban view 138, 139
vignette style kanban 135
VMWare Player

URL 3

W
window actions

about 88
attributes 89

wizard business logic 113
wizard form 111, 112
wizard model 110

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

[189]

wkhtmltopdf library
installing 152
URL 152

workstation
Odoo, developing from 9

X
XML data files

about 61
data noupdate attribute 62
field values, setting 63
Records, defining in XML 63
shortcuts, for frequently used Models 65
values, setting for relation fields 64, 65
values, setting with expressions 64

XML-RPC
Odoo API, calling with 160

XML-RPC connection
opening 160

XPath
URL 43

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Thank you for buying
Odoo Development Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.itbook.store/books/9781784392796

www.packtpub.com
https://itbook.store/books/9781784392796

Working with OpenERP
ISBN: 978-1-78216-380-0 Paperback: 334 pages

Learn to utilize OpenERP to transform and streamline
your business

1.	 Learn to install and configure OpenERP on
Windows or Ubuntu.

2.	 Understand how to enter sales orders, create
invoices, and receive payments step-by-step.

3.	 Implement powerful purchasing and
manufacturing modules in OpenERP using
real-world examples.

4.	 Learn advanced OpenERP features and how to
create your own custom modules.

IPython Interactive Computing
and Visualization Cookbook
ISBN: 978-1-78328-481-8 Paperback: 512 pages

Over 100 hands-on recipes to sharpen your skills in
high-performance numerical computing and data
science with Python

1.	 Find out how to improve your Code to
write high-quality, readable, and well-tested
programs with IPython.

2.	 Master all of the new features of the IPython
Notebook, including interactive HTML/
JavaScript widgets.

3.	 Analyze data effectively using Bayesian and
Frequentist data models with Pandas, PyMC,
and R.

Please check www.PacktPub.com for information on our titles

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

Administrating Solr
ISBN: 978-1-78328-325-5 Paperback: 120 pages

Master the use of Drupal and associated scripts to
administrate, monitor, and optimize Solr

1.	 Learn how to work with monitoring tools like
OpsView, New Relic, and SPM.

2.	 Utilize Solr scripts and Collection Distribution
scripts to manage Solr.

3.	 Employ search features like querying,
categorizing, search based on location,
and distributed search.

Python Data Analysis
ISBN: 978-1-78355-335-8 Paperback: 348 pages

Learn how to apply powerful data analysis techniques
with popular open source Python modules

1.	 Learn how to find, manipulate, and analyze
data using Python.

2.	 Perform advanced, high performance linear
algebra and mathematical calculations with
clean and efficient Python code.

3.	 Explore predictive analytics and machine
learning using SciKit-Learn with this Python
machine learning tutorial.

4.	 Learn cluster and regression analysis.

Please check www.PacktPub.com for information on our titles

www.itbook.store/books/9781784392796

https://itbook.store/books/9781784392796

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Odoo Development
	Setting up a host for the Odoo server
	Provisions for a Debian host
	Creating a user account for Odoo

	Installing Odoo from source
	Initializing a new Odoo database
	Managing your databases

	A word about Odoo product versions
	More server configuration options
	Odoo server configuration files
	Changing the listening port
	Logging

	Developing from your workstation
	Using a Linux text editor
	Installing and configuring Samba

	Enabling the on-board technical tools
	Activating the Technical Features
	Activating the Developer mode

	Installing third-party modules
	Finding community modules
	Configuring the addons path
	Updating the module list

	Summary

	Chapter 2: Building Your First
Odoo Application
	Understanding applications and modules
	Modifying and extending modules
	Creating a new module
	Adding to the addons path
	Installing the new module
	Upgrading a module
	Creating an application model
	Adding menu entries
	Creating views – form, tree, and search
	Creating a form view
	Formatting as a business document
	Adding action buttons
	Organizing forms using groups
	The complete form view

	Adding list and search views
	Adding business logic
	Setting up access control security
	Row-level access rules
	Adding an icon to the module
	Summary

	Chapter 3: Inheritance – Extending Existing Applications
	Adding sharing capability to the
To-Do app
	Road map for the user sharing features

	Extending the to-do task model
	Adding fields to a model
	Modifying existing fields
	Modifying model's methods

	Extending views
	Extending tree and search views

	More on using inheritance to extend models
	Copying features using prototype inheritance
	Embedding models using delegation inheritance

	Using inheritance to add social network features
	Modifying data
	Extending the record rules

	Summary

	Chapter 4: Data Serialization
and Module Data
	Understanding external identifiers
	Finding External IDs

	Exporting and importing data
	Exporting data
	Importing data
	Related records in CSV data files

	Module data
	Demonstration data

	XML data files
	The data noupdate attribute
	Defining Records in XML
	Setting field values
	Setting values using expressions
	Setting values for relation fields
	Shortcuts for frequently used Models
	Other actions in XML data files
	Deleting records
	Triggering functions and workflows

	Summary

	Chapter 5: Models – Structuring the Application Data
	Organizing application features into modules
	Introducing the todo_ui module
	Creating models
	Model attributes
	Models and Python classes
	Transient and Abstract models
	Inspecting existing models

	Creating fields
	Basic field types
	Common field attributes
	Reserved field names

	Relations between models
	Many to one relations
	Many to many relations
	One to many inverse relations
	Hierarchical relations
	Referencing fields using dynamic relations

	Computed fields
	Search and write on computed fields
	Storing computed fields
	Related fields

	Model constraints
	Summary

	Chapter 6: Views – Designing the
User Interface
	Window actions
	Menu items
	Context and domain
	Session context
	Domain expressions

	Form views
	Business views
	The header status bar
	The business flow pipeline
	Title and subtitle
	Labels for fields
	Smart buttons
	Organizing content in a form
	Tabbed notebooks

	View elements
	Buttons
	Fields
	Relational fields
	Field widgets
	On-change events

	Dynamic views

	List views
	Search views
	Other types of views
	Calendar views
	Gantt views
	Graph views

	Summary

	Chapter 7: ORM Application
Logic – Supporting
Business Processes
	To-do wizard
	Wizard model
	Wizard form
	Wizard business logic
	Raising exceptions
	Auto-reloading code changes
	Actions on the wizard dialog

	Working with the server
	Using relation fields
	Querying models
	Writing on records
	Transactions and low-level SQL
	Working with time and dates
	Working with relation fields
	Manipulating recordsets
	Other recordset operations

	The execution environment
	Model methods for client interaction
	Overriding the default methods
	Model method decorators
	Debugging

	Summary

	Chapter 8: QWeb – Creating Kanban Views and Reports
	Getting started with kanban board
	Kanban views

	Design kanban views
	Priority and kanban state
	Kanban view elements
	The vignette kanban view
	Actions in kanban views
	The card kanban view

	Adding QWeb dynamic content
	Conditional rendering with t-if
	Rendering values with t-esc and t-raw
	Loop rendering with t-foreach
	Dynamic attributes with t-att- prefixes
	String substitution in attributes with
t-attf- prefixes
	Setting variables with t-set
	Calling other templates with t-call
	Other QWeb directives
	Advanced kanban elements
	Adding a kanban card option menu
	Adding colors to kanban cards
	Using text ellipsis for long texts
	Custom CSS and JavaScript assets

	Creating business reports
	Installing wkhtmltopdf
	QWeb report templates
	Presenting data in reports
	Enabling language translation in reports
	Designing report content
	Paper formats

	Summary

	Chapter 9: External API – Integration with Other Systems
	Setting up a Python client
	Calling the Odoo API using XML-RPC
	Opening an XML-RPC connection
	Reading data from the server
	Calling other methods

	Writing a Notes desktop application
	Communication layer with Odoo
	Creating the GUI

	Introducing the ERPpeek client
	The ERPpeek API
	The ERPpeek CLI

	Summary

	Chapter 10: Deployment Checklist –
Going Live
	Installing Odoo
	Installing from the source code
	Setting up the configuration file
	Setting up as a system service

	Using a reverse proxy
	Setting up nginx for reverse proxy
	Enforcing HTTPS
	Nginx optimizations
	Long polling

	Server and module updates
	Summary

	Index

