
[1]

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Learning Docker

Optimize the power of Docker to run your applications
quickly and easily

Pethuru Raj

Jeeva S. Chelladhurai

Vinod Singh

BIRMINGHAM - MUMBAI

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Learning Docker

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1240615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-793-7

www.packtpub.com

www.itbook.store/books/9781784397937

www.packtpub.com
https://itbook.store/books/9781784397937

Credits

Authors
Pethuru Raj

Jeeva S. Chelladhurai

Vinod Singh

Reviewers
Shashikant Bangera

Sergei Vizel

Baohua Yang

Commissioning Editor
Sarah Crofton

Acquisition Editor
Larissa Pinto

Content Development Editor
Kirti Patil

Technical Editors
Dhiraj Chandanshive

Narsimha Pai

Copy Editors
Vikrant Phadke

Rashmi Sawant

Trishla Singh

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.itbook.store/books/9781784397937

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=c4cde857-9bd5-eb79-829f-53db8af758af
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=c4cde857-9bd5-eb79-829f-53db8af758af
https://itbook.store/books/9781784397937

About the Authors

Pethuru Raj, PhD, works as a cloud architect at the IBM Global Cloud Center of
Excellence (CoE) in Bangalore, India. He completed his CSIR-sponsored PhD degree
at Anna University, Chennai, and continued his UGC-sponsored postdoctoral
research at the Department of Computer Science and Automation of IISc, Bangalore.
Thereafter, he was granted a couple of international research fellowships (JSPS and
JST) to work as a research scientist for 3 years at two leading Japanese universities.

Pethuru has contributed to a number of high-quality technology books that are
edited by internationally acclaimed professionals. In association with another IBMer,
he has recently submitted the complete manuscript for a book called Smart Cities: the
Enabling Technologies and Tools, to be published by the CRC Press in the USA in May
2015. He has collaborated with a few established authors to publish a book called
High-Performance Big Data Analytics, which will be published by Springer-Verlag,
UK, in 2015. He maintains an IT portal at http://www.peterindia.net, and his
LinkedIn profile can be found at https://www.linkedin.com/in/peterindia.

Jeeva S. Chelladhurai has been working as a technical project manager at the
IBM Global Cloud Center of Excellence (CoE) in India for the last 8 years. He has
more than 18 years of experience in the IT industry. In various capacities, he has
technically managed and mentored diverse teams across the globe in envisaging and
building pioneering telecommunication products. He specializes in cloud solution
delivery, with a focus on data center optimization, software-defined environments
(SDEs), and distributed application development, deployment, and delivery
using the newest Docker technology. Jeeva is also a strong proponent of Agile
methodologies, DevOps, and IT automation. He holds a master's degree in computer
science from Manonmaniam Sundaranar University and a graduation certificate in
project management from Boston University. He has been instrumental in crafting
reusable assets for IBM solution architects and consultants in Docker-inspired
containerization technology.

www.itbook.store/books/9781784397937

http://www.peterindia.net
https://www.linkedin.com/in/peterindia
https://itbook.store/books/9781784397937

Vinod Singh is a lead architect for IBM's cloud computing offerings. He has
more than 18 years of experience in the cloud computing, networking, and data
communication domains. Currently, he works for IBM's cloud application services
and partner marketplace offerings. Vinod has worked on architecting, deploying,
and running IBM's PaaS offering (BlueMix) on the SoftLayer infrastructure cloud.
He also provides consultancy and advisory services to clients across the globe on
the adoption of cloud technologies. He is currently focusing on various applications
and services on the IBM Marketplace/BlueMix/SoftLayer platform. He is a graduate
engineer from the National Institute of Technology, Jaipur, and completed his
master's degree at BITS, Pilani.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

About the Reviewers

Shashikant Bangera is a DevOps architect with 16 years of IT experience.
He has vast exposure to DevOps tools across the platform, with core expertise in
open source. He has helped his customers adopt DevOps practice and implemented
Enterprise DevOps for them and has also contributed to many open sources
platforms, such as DevOps Publication. He has designed an automated on-demand
environment with a set of open source tools and also an environment booking tool,
which is available on GitHuB. His Twitter handle is @shzshi.

Sergei Vizel is a senior software engineer at Modera (modera.org). He is a
full-stack web application developer with more than 10 years of impressive
experience. He is a firm believer of the value and power of open source software
and contributes to projects on GitHub. Sergei has published numerous pieces of
open source code of his own. You can learn more about him and contact him on
GitHub via https://github.com/cravler.

www.itbook.store/books/9781784397937

modera.org
https://github.com/cravler
https://itbook.store/books/9781784397937

Baohua Yang is a research scientist on cloud-computing-related technologies at
IBM. He is a contributor to many open source communities such as OpenStack,
OpenvSwitch, Docker, and OpenDaylight. He is also a TPC member and a reviewer
of a number of international conferences and journals.

Baohua's interests mainly include system and application architecture, performance
optimization, and security issues in cloud networking and distributed systems,
especially in emerging technologies such as cloud computing, SDN, and NFV.
He has written many technical books and articles to introduce and analyze
these techniques. He loves open source technologies and enjoys designing and
implementing efficient systems with elegant architecture.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.itbook.store/books/9781784397937

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
https://itbook.store/books/9781784397937

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with Docker 1

An introduction to Docker 2
Docker on Linux 3
Differentiating between containerization and virtualization 4

The convergence of containerization and virtualization 5
Containerization technologies 6

Installing the Docker engine 7
Installing from the Ubuntu package repository 7
Installing the latest Docker using docker.io script 8

Understanding the Docker setup 9
Client server communication 11

Downloading the first Docker image 12
Running the first Docker container 12
Running a Docker container on Amazon Web Services 13
Troubleshooting 14
Summary 15

Chapter 2: Handling Docker Containers 17
Clarifying the Docker terms 18

Docker images and containers 18
A Docker layer 20
A Docker container 20
Docker Registry 20
Docker Repository 21

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Table of Contents

[ii]

Working with Docker images 21
Docker Hub Registry 23
Searching Docker images 24

Working with an interactive container 26
Tracking changes inside containers 28
Controlling Docker containers 30
Housekeeping containers 34
Building images from containers 35
Launching a container as a daemon 37

Summary 38
Chapter 3: Building Images 39

Docker's integrated image building system 39
A quick overview of the Dockerfile's syntax 42
The Dockerfile build instructions 43

The FROM instruction 44
The MAINTAINER instruction 44
The COPY instruction 45
The ADD instruction 46
The ENV instruction 47
The USER instruction 47
The WORKDIR instruction 48
The VOLUME instruction 48
The EXPOSE instruction 49
The RUN instruction 49
The CMD instruction 51
The ENTRYPOINT instruction 53
The ONBUILD instruction 55
The .dockerignore file 55

A brief overview of the Docker image management 56
Best practices for writing Dockerfiles 58
Summary 58

Chapter 4: Publishing Images 59
Understanding the Docker Hub 60
Pushing images to the Docker Hub 63
Automating the building process for images 68
Private repositories on the Docker Hub 71
Organizations and teams on the Docker Hub 72
The REST APIs for the Docker Hub 73
Summary 75

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Table of Contents

[iii]

Chapter 5: Running Your Private Docker Infrastructure 77
The Docker registry and index 78
Docker registry use cases 78
Run your own index and registry 80

Step 1 – Deployment of the index components and
the registry from GitHub 80
Step 2 – Configuration of nginx with the Docker registry 82
Step 3 – Set up SSL on the web server for secure communication 84

Push the image to the newly created Docker registry 87
Summary 88

Chapter 6: Running Services in a Container 89
A brief overview of container networking 90
Envisaging the Container as a Service 93

Building an HTTP server image 93
Running the HTTP server Image as a Service 95
Connecting to the HTTP service 96

Exposing container services 97
Publishing container ports – the -p option 98
Network Address Translation for containers 99
Retrieving the container port 100
Binding a container to a specific IP address 102
Auto-generating the Docker host port 103
Port binding using EXPOSE and the -P option 105

Summary 108
Chapter 7: Sharing Data with Containers 109

The data volume 110
Sharing host data 113

The practicality of host data sharing 117
Sharing data between containers 119

Data-only containers 119
Mounting data volume from other containers 120
The practicality of data sharing between containers 122

Avoiding common pitfalls 125
Directory leaks 125
The undesirable effect of data volume 126

Summary 128

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Table of Contents

[iv]

Chapter 8: Orchestrating Containers 129
Linking containers 130
Orchestration of containers 138

Orchestrate containers using docker-compose 140
Installing docker-compose 141
The docker-compose.yml file 142
The docker-compose command 144
Common usage 145

Summary 150
Chapter 9: Testing with Docker 151

A brief overview of the test-driven development 152
Testing your code inside Docker 152

Running the test inside a container 157
Using a Docker container as a runtime environment 159

Integrating Docker testing into Jenkins 162
Preparing the Jenkins environment 162
Automating the Docker testing process 167

Summary 173
Chapter 10: Debugging Containers 175

Process level isolation for Docker containers 176
Control groups 180

Debugging a containerized application 181
The Docker exec command 182
The Docker ps command 183
The Docker top command 184
The Docker stats command 185
The Docker events command 186
The Docker logs command 186

Installing and using nsenter 187
Summary 188

Chapter 11: Securing Docker Containers 191
Are Docker containers secure enough? 192

The security facets – virtual machines versus Docker containers 192
The security features of containers 194

Resource isolation 195
Resource accounting and control 196

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Table of Contents

[v]

The root privilege – impacts and best practices 197
The trusted user control 197
Non-root containers 197
Loading the Docker images and the security implications 199
The emerging security approaches 199

Security-Enhanced Linux for container security 199
SELinux-inspired benefits 201

The best practices for container security 203
Digital signature verification 206

Secure deployment guidelines for Docker 207
The future 208

Summary 209
Index 211

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[vii]

Preface
We have been fiddling with virtualization techniques and tools for quite a long time
now in order to establish the much-demanded software portability. The inhibiting
dependency factor between software and hardware needs to be decimated by
leveraging virtualization, a kind of beneficial abstraction, through an additional layer
of indirection. The idea is to run any software on any hardware. This is achieved
by creating multiple virtual machines (VMs) out of a single physical server, with
each VM having its own operating system (OS). Through this isolation, which is
enacted through automated tools and controlled resource sharing, heterogeneous
applications are accommodated in a physical machine.

With virtualization, IT infrastructures become open, programmable, remotely
monitorable, manageable, and maintainable. Business workloads can be hosted in
appropriately-sized virtual machines and delivered to the outside world, ensuring
broader and more frequent utilization. On the other hand, for high-performance
applications, virtual machines across multiple physical machines can be readily
identified and rapidly combined to guarantee any kind of high-performance
requirement.

The virtualization paradigm has its own drawbacks. Because of the verbosity and
bloatedness (every VM carries its own operating system), VM provisioning typically
takes a while, the performance goes down due to excessive usage of computational
resources, and so on. Furthermore, the growing need for portability is not fully met
by virtualization. Hypervisor software from different vendors comes in the way of
ensuring application portability. Differences in the OS and application distributions,
versions, editions, and patches hinder smooth portability. Computer virtualization
has flourished, whereas the other, closely associated concepts of network and storage
virtualization are just taking off. Building distributed applications through VM
interactions invites and involves some practical difficulties.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Preface

[viii]

Let's move on to containerization. All of these barriers contribute to the
unprecedented success of the idea of containerization. A container generally contains
an application, and all of the application's libraries, binaries, and other dependencies
are stuffed together to be presented as a comprehensive, yet compact, entity for
the outside world. Containers are exceptionally lightweight, highly portable, easily
and quickly provisionable, and so on. Docker containers achieve native system
performance. The greatly articulated DevOps goal gets fully fulfilled through
application containers. As best practice, it is recommended that every container hosts
one application or service.

The popular Docker containerization platform has come up with an enabling
engine to simplify and accelerate the life cycle management of containers. There are
industry-strength and openly automated tools made freely available to facilitate the
needs of container networking and orchestration. Therefore , producing and sustaining
business-critical distributed applications is becoming easy. Business workloads are
methodically containerized to be easily taken to cloud environments, and they are
exposed for container crafters and composers to bring forth cloud-based software
solutions and services. Precisely speaking, containers are turning out to be the most
featured, favored, and fine-tuned runtime environment for IT and business services.

This book is meticulously designed and developed in order to empower developers,
cloud architects, business managers, and strategists with all the right and relevant
information on the Docker platform and its capacity to power up mission-critical,
composite, and distributed applications across industry verticals.

What this book covers
Chapter 1, Getting Started with Docker, talks about the Docker platform and
how it simplifies and speeds up the process of realizing containerized workloads to
be readily deployed and run on a variety of platforms. This chapter also has step-
by-step details on installing the Docker engine, downloading a Docker image from
the centralized Docker Hub, creating a Docker container out of that image, and
troubleshooting the Docker container.

Chapter 2, Handling Docker Containers, is primarily meant to expound the commands
required to manage Docker images and containers. This chapter provides the basic
Docker terminologies needed to understand the output of Docker commands.
Other details covered here include starting an interactive session inside a container,
managing your images, running containers, and tracking changes inside containers.

Chapter 3, Building Images, introduces Docker's integrated image building system.
The other important topics covered in this chapter include a quick overview of a
Dockerfile's syntax and a bit of theory on how Docker stores images.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Preface

[ix]

Chapter 4, Publishing Images, focuses on publishing images on the centralized Docker
Hub and how to get the most out of the Docker Hub. The other important contents
in the chapter include greater details about the Docker Hub, how to push images to
the Docker Hub, the automatic building of images, creating organizations on Docker
Hub, and finally private repositories.

Chapter 5, Running Your Private Docker Infrastructure, explains how corporates can
set up their own private repositories. Due to certain reasons, corporates may not
want to host specific Docker images in publicly-available image repositories, such
as the Docker Hub. Here, the need for their own private repository to keep up those
images arises. This chapter has all of the information required to set up and sustain
private repositories.

Chapter 6, Running Services in a Container, illustrates how a web application can be
run inside a Docker container as a service, and how to expose the service for the
outside world to find and access it. How the appropriate Dockerfile gets developed
to simplify this task is also described in detail.

Chapter 7, Sharing Data with Containers, shows you how to use Docker's volumes
feature to share data between the Docker host and its containers. The other topics
covered here are how to share data between containers, the common use cases, and
the typical pitfalls to avoid.

Chapter 8, Orchestrating Containers, focuses on orchestrating multiple
containers towards composite, containerized workloads. It is a well-known
truth that orchestration plays a major role in producing composite applications.
This chapter includes some information about orchestration and the toolset made
available for enabling the process of orchestration. Finally, you will find a well-
orchestrated example of how containers can be orchestrated to bring forth highly
reusable and business-aware containers.

Chapter 9, Testing with Docker, focuses on testing your code inside Docker images.
In this chapter, you find out how to run the tests inside an ad hoc Docker image.
Finally, you come across details of how to integrate Docker testing into a continuous
integration server, such as Jenkins.

Chapter 10, Debugging Containers, teaches you how to debug applications running
inside containers. Also, the details regarding how Docker ensures that processes
running inside containers are isolated from the outside world are covered.
Furthermore, descriptions of the usage of the nsenter and nsinit tools for effective
debugging are included.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Preface

[x]

Chapter 11, Securing Docker Containers, is crafted to explain the brewing security
and privacy challenges and concerns, and how they are addressed through the
liberal usage of competent standards, technologies, and tools. This chapter inscribes
the mechanism on dropping user privileges inside an image. There is also a brief
introduction on how the security capabilities introduced in SELinux come in handy
when securing Docker containers.

What you need for this book
The Docker platform requires a 64-bit hardware system to run on. Docker
applications have been developed on Ubuntu 14.04 for this book, but this does
not mean that the Docker platform cannot run on other Linux distributions,
such as Redhat, CentOS, CoreOS, and so on. However, the Linux kernel version
must be 3.10 or above.

Who this book is for
If you are an application developer who wants to learn about Docker in order to
utilize its features for application deployment, then this book is for you. No prior
knowledge of Docker is required.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"If the docker service is running, then this command will print the status as
start/running, along with its process ID."

A block of code is set as follows:

FROM busybox:latest
CMD echo Hello World!!

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Preface

[xi]

Any command-line input or output is written as follows:

$ sudo docker tag 224affbf9a65 localhost:5000/vinoddandy/
dockerfileimageforhub

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Select the
Docker option, which is in the drop-down menu, and then click on Launch Now."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.itbook.store/books/9781784397937

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://itbook.store/books/9781784397937

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.itbook.store/books/9781784397937

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://itbook.store/books/9781784397937

[1]

Getting Started with Docker
These days, Docker technology is gaining more market and more mind shares
among information technology (IT) professionals across the globe. In this chapter,
we would like to shed more light on Docker, and show why it is being touted as
the next best thing for the impending cloud IT era. In order to make this book
relevant to software engineers, we have listed the steps needed for crafting highly
usable application-aware containers, registering them in a public registry repository,
and then deploying them in multiple IT environments (on-premises as well as
off-premises). In this book, we have clearly explained the prerequisites and the most
important details of Docker, with the help of all the education and experiences that
we could gain through a series of careful implementations of several useful Docker
containers in different systems. For doing this, we used our own laptops as well as a
few leading public Cloud Service Providers (CSP).

We would like to introduce you to the practical side of Docker for the game-
changing Docker-inspired containerization movement.

In this chapter, we will cover the following topics:

• An introduction to Docker
• Docker on Linux
• Differentiating between containerization and virtualization
• Installing the Docker engine
• Understanding the Docker setup
• Downloading the first image
• Running the first container
• Running a Docker container on Amazon Web Services (AWS)
• Troubleshooting the Docker containers

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Getting Started with Docker

[2]

An introduction to Docker
Due to its overwhelming usage across industry verticals, the IT domain has been
stuffed with many new and pathbreaking technologies used not only for bringing
in more decisive automation but also for overcoming existing complexities.
Virtualization has set the goal of bringing forth IT infrastructure optimization and
portability. However, virtualization technology has serious drawbacks, such as
performance degradation due to the heavyweight nature of virtual machines (VM),
the lack of application portability, slowness in provisioning of IT resources, and so
on. Therefore, the IT industry has been steadily embarking on a Docker-inspired
containerization journey. The Docker initiative has been specifically designed for
making the containerization paradigm easier to grasp and use. Docker enables the
containerization process to be accomplished in a risk-free and accelerated fashion.

Precisely speaking, Docker is an open source containerization engine, which
automates the packaging, shipping, and deployment of any software applications
that are presented as lightweight, portable, and self-sufficient containers, that will
run virtually anywhere.

A Docker container is a software bucket comprising everything necessary to run
the software independently. There can be multiple Docker containers in a single
machine and containers are completely isolated from one another as well as from
the host machine.

In other words, a Docker container includes a software component along with
all of its dependencies (binaries, libraries, configuration files, scripts, jars, and so
on). Therefore, the Docker containers could be fluently run on x64 Linux kernel
supporting namespaces, control groups, and file systems, such as Another Union
File System (AUFS). However, as indicated in this chapter, there are pragmatic
workarounds for running Docker on other mainstream operating systems, such
as Windows, Mac, and so on. The Docker container has its own process space and
network interface. It can also run things as root, and have its own /sbin/init,
which can be different from the host machines'.

In a nutshell, the Docker solution lets us quickly assemble composite, enterprise-
scale, and business-critical applications. For doing this, we can use different and
distributed software components: Containers eliminate the friction that comes with
shipping code to distant locations. Docker also lets us test the code and then deploy
it in production as fast as possible. The Docker solution primarily consists of the
following components:

• The Docker engine
• The Docker Hub

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 1

[3]

The Docker engine is for enabling the realization of purpose-specific as well as
generic Docker containers. The Docker Hub is a fast-growing repository of the
Docker images that can be combined in different ways for producing publicly
findable, network-accessible, and widely usable containers.

Docker on Linux
Suppose that we want to directly run the containers on a Linux machine. The Docker
engine produces, monitors, and manages multiple containers as illustrated in the
following diagram:

The preceding diagram vividly illustrates how future IT systems would have
hundreds of application-aware containers, which would innately be capable of
facilitating their seamless integration and orchestration for deriving modular
applications (business, social, mobile, analytical, and embedded solutions). These
contained applications could fluently run on converged, federated, virtualized,
shared, dedicated, and automated infrastructures.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Getting Started with Docker

[4]

Differentiating between containerization
and virtualization
It is pertinent, and paramount to extract and expound the game-changing
advantages of the Docker-inspired containerization movement over the widely
used and fully matured virtualization paradigm. In the containerization paradigm,
strategically sound optimizations have been accomplished through a few crucial
and well-defined rationalizations and the insightful sharing of the compute
resources. Some of the innate and hitherto underutilized capabilities of the Linux
kernel have been rediscovered. These capabilities have been rewarded for bringing
in much-wanted automation and acceleration, which will enable the fledgling
containerization idea to reach greater heights in the days ahead, especially those of
the cloud era. The noteworthy business and technical advantages of these include the
bare metal-scale performance, real-time scalability, higher availability, and so on.
All the unwanted bulges and flab are being sagaciously eliminated to speed up the
roll-out of hundreds of application containers in seconds and to reduce the time
taken for marketing and valuing in a cost-effective fashion. The following diagram
on the left-hand side depicts the virtualization aspect, whereas the diagram on the
right-hand side vividly illustrates the simplifications that are being achieved in
the containers:

DB DB

Bins/Libs Bins/Libs

Bins/Libs Bins/Libs Bins/Libs

Hypervisor (Type 2)

Host OS

Host OS

Hardware
Hardware

Web
Server

Web
ServerApp App App

Guest
OS

Guest
OS

Guest
OS

Docker Apps

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 1

[5]

The following table gives a direct comparison between virtual machines
and containers:

Virtual Machines (VMs) Containers

Represents hardware-level virtualization Represents operating system virtualization

Heavyweight Lightweight

Slow provisioning Real-time provisioning and scalability

Limited performance Native performance

Fully isolated and hence more secure Process-level isolation and hence less
secure

The convergence of containerization and
virtualization
A hybrid model, having features from both the virtual machines and that of
containers, is being developed. It is the emergence of system containers, as illustrated
in the preceding right-hand-side diagram. Traditional hypervisors, which implicitly
represent hardware virtualization, directly secure the environment with the help
of the server hardware. That is, VMs are completely isolated from the other VMs
as well as from the underlying system. But for containers, this isolation happens
at the process level and hence, they are liable for any kind of security incursion.
Furthermore, some vital features that are available in the VMs are not available in
the containers. For instance, there is no support for SSH, TTY, and the other security
functionalities in the containers. On the other hand, VMs are resource-hungry and
hence, their performance gets substantially degraded. Indeed, in containerization
parlance, the overhead of a classic hypervisor and a guest operating system will
be eliminated to achieve bare metal performance. Therefore, a few VMs can be
provisioned and made available to work on a single machine. Thus, on one hand,
we have the fully isolated VMs with average performance and on the other side,
we have the containers that lack some of the key features, but are blessed with high
performance. Having understood the ensuing needs, product vendors are working
on system containers. The objective of this new initiative is to provide full system
containers with the performance that you would expect from bare metal servers,
but with the experience of virtual machines. The system containers in the preceding
right-hand-side diagram represent the convergence of two important concepts
(virtualization and containerization) for smarter IT. We will hear and read more
about this blending in the future.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Getting Started with Docker

[6]

Containerization technologies
Having recognized the role and the relevance of the containerization paradigm
for IT infrastructure augmentation and acceleration, a few technologies that leverage
the unique and decisive impacts of the containerization idea have come into
existence and they have been enumerated as follows:

• LXC (Linux Containers): This is the father of all kinds of containers and it
represents an operating-system-level virtualization environment for running
multiple isolated Linux systems (containers) on a single Linux machine.
The article LXC on the Wikipedia website states that:

"The Linux kernel provides the cgroups functionality that allows
limitation and prioritization of resources (CPU, memory, block I/O,
network, etc.) without the need for starting any virtual machines,
and namespace isolation functionality that allows complete isolation
of an applications' view of the operating environment, including
process trees, networking, user IDs and mounted file systems."

You can get more information from http://en.wikipedia.org/wiki/LXC.

• OpenVZ: This is an OS-level virtualization technology based on the Linux
kernel and the operating system. OpenVZ allows a physical server to run
multiple isolated operating system instances, called containers, virtual
private servers (VPSs), or virtual environments (VEs).

• The FreeBSD jail: This is a mechanism that implements an OS-level
virtualization, which lets the administrators partition a FreeBSD-based
computer system into several independent mini-systems called jails.

• The AIX Workload partitions (WPARs): These are the software
implementations of the OS-level virtualization technology, which provide
application environment isolation and resource control.

• Solaris Containers (including Solaris Zones): This is an implementation
of the OS-level virtualization technology for the x86 and SPARC systems.
A Solaris Container is a combination of the system resource controls and
boundary separation provided by zones. Zones act as completely isolated
virtual servers within a single operating system instance.

In this book, considering the surging popularity and the mass adoption happening
to Docker, we have chosen to dig deeper, dwell in detail on the Docker platform, the
one-stop solution for the simplified and streamlined containerization movement.

www.itbook.store/books/9781784397937

http://en.wikipedia.org/wiki/LXC
https://itbook.store/books/9781784397937

Chapter 1

[7]

Installing the Docker engine
The Docker engine is built on top of the Linux kernel and it extensively leverages its
features. Therefore, at this point in time, the Docker engine can only be directly run
on Linux OS distributions. Nonetheless, the Docker engine could be run on the Mac
and Microsoft Windows operating systems by using the lightweight Linux VMs with
the help of adapters, such as Boot2Docker. Due to the surging growing of Docker, it
is now being packaged by all major Linux distributions so that they can retain their
loyal users as well as attract new users. You can install the Docker engine by using
the corresponding packaging tool of the Linux distribution; for example, by using
the apt-get command for Debian and Ubuntu, and the yum command for RedHat,
Fedora, and CentOS.

We have chosen the Ubuntu Trusty 14.04 (LTS) (64-bit) Linux
distribution for all practical purposes.

Installing from the Ubuntu package repository
This section explains the steps involved in installing the Docker engine from the
Ubuntu package repository in detail. At the time of writing this book, the Ubuntu
repository had packaged Docker 1.0.1, whereas the latest version of Docker was 1.5.
We strongly recommend installing Docker version 1.5 or greater by using any one of
the methods described in the next section.

However, if for any reason you have to install the Ubuntu packaged version, then
please follow the steps described here:

1. The best practice for installing the Ubuntu packaged version is to begin
the installation process by resynchronizing with the Ubuntu package
repository. This step will essentially update the package repository to the
latest published packages, thus we will ensure that we always get the latest
published version by using the command shown here:
$ sudo apt-get update

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.itbook.store/books/9781784397937

http://www.packtpub.com
http://www.packtpub.com/support
https://itbook.store/books/9781784397937

Getting Started with Docker

[8]

2. Kick-start the installation by using the following command. This setup will
install the Docker engine along with a few more support files, and it will also
start the docker service instantaneously:
$ sudo apt-get install -y docker.io

The Docker package is called docker.io because an older version of
the Ubuntu package was called docker. As a result, all the files with
the name docker are installed as docker.io.
Examples are /usr/bin/docker.io and /etc/bash_
completion.d/docker.io.

3. For your convenience, you can create a soft link for docker.io called docker.
This will enable you to execute Docker commands as docker instead of
docker.io. You can do this by using the following command:

$ sudo ln -sf /usr/bin/docker.io /usr/local/bin/docker

The official Ubuntu package does not come with the latest
stable version of docker.

Installing the latest Docker using docker.io
script
The official distributions might not package the latest version of Docker. In such
a case, you can install the latest version of Docker either manually or by using the
automated scripts provided by the Docker community.

For installing the latest version of Docker manually, follow these steps:

1. Add the Docker release tool's repository path to your APT sources,
as shown here:
$ sudo sh -c "echo deb https://get.docker.io/ubuntu \

 docker main > /etc/apt/sources.list.d/docker.list"

2. Import the Docker release tool's public key by running the following
command:
$ sudo apt-key adv --keyserver \

 hkp://keyserver.ubuntu.com:80 --recv-keys \

 36A1D7869245C8950F966E92D8576A8BA88D21E9

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 1

[9]

3. Resynchronize with the package repository by using the command
shown here:
$ sudo apt-get update

4. Install docker and then start the docker service.

$ sudo apt-get install -y lxc-docker

The lxc-docker command will install the Docker image
using the name docker.

The Docker community has taken a step forward by hiding these details in an
automated install script. This script enables the installation of Docker on most
of the popular Linux distributions, either through the curl command or through
the wget command, as shown here:

• For curl command:
$ sudo curl -sSL https://get.docker.io/ | sh

• For wget command:

$ sudo wget -qO- https://get.docker.io/ | sh

The preceding automated script approach enforces AUFS as
the underlying Docker file system. This script probes the AUFS
driver, and then installs it automatically if it is not found in
the system. In addition, it also conducts some basic tests upon
installation for verifying the sanity.

Understanding the Docker setup
It's important to understand Docker's components and their versions, storage,
execution drivers, file locations, and so on. Incidentally, the quest for understanding
the Docker setup would also reveal whether the installation was successful or
not. You can accomplish this by using two docker subcommands, namely docker
version, and docker info.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Getting Started with Docker

[10]

Let's start our docker journey with the docker version subcommand,
as shown here:

$ sudo docker version

Client version: 1.5.0

Client API version: 1.17

Go version (client): go1.4.1

Git commit (client): a8a31ef

OS/Arch (client): linux/amd64

Server version: 1.5.0

Server API version: 1.17

Go version (server): go1.4.1

Git commit (server): a8a31ef

Although the docker version subcommand lists many lines of text, as a Docker
user, you should know what these following output lines mean:

• The client version
• The client API version
• The server version
• The server API version

The client and server versions that have been considered here are 1.5.0 and the client
API and the server API, versions 1.17.

If we dissect the internals of the docker version subcommand, then it will first
list the client-related information that is stored locally. Subsequently, it will make a
REST API call to the server over HTTP to obtain the server-related details.

Let's learn more about the Docker environment using the docker info subcommand:

$ sudo docker -D info

Containers: 0

Images: 0

Storage Driver: aufs

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 1

[11]

 Root Dir: /var/lib/docker/aufs

 Backing Filesystem: extfs

 Dirs: 0

Execution Driver: native-0.2

Kernel Version: 3.13.0-45-generic

Operating System: Ubuntu 14.04.1 LTS

CPUs: 4

Total Memory: 3.908 GiB

Name: dockerhost

ID: ZNXR:QQSY:IGKJ:ZLYU:G4P7:AXVC:2KAJ:A3Q5:YCRQ:IJD3:7RON:IJ6Y

Debug mode (server): false

Debug mode (client): true

Fds: 10

Goroutines: 14

EventsListeners: 0

Init Path: /usr/bin/docker

Docker Root Dir: /var/lib/docker

WARNING: No swap limit support

As you can see in the output of a freshly installed Docker engine, the number of
Containers and Images is invariably nil. The Storage Driver has been set up
as aufs, and the directory has been given the /var/lib/docker/aufs location.
The Execution Driver has been set to the native mode. This command also lists
details, such as the Kernel Version, the Operating System, the number of CPUs, the
Total Memory, and Name, the new Docker hostname.

Client server communication
On Linux installations, Docker is usually programmed for carrying out server-client
communication by using the Unix socket (/var/run/docker.sock). Docker also has
an IANA registered port, which is 2375. However, for security reasons, this port is
not enabled by default.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Getting Started with Docker

[12]

Downloading the first Docker image
Having installed the Docker engine successfully, the next logical step is to download
the images from the Docker registry. The Docker registry is an application repository,
which hosts a range of applications that vary between basic Linux images and
advanced applications. The docker pull subcommand is used for downloading any
number of images from the registry. In this section, we will download a tiny version of
Linux called the busybox image by using the following command:

$ sudo docker pull busybox

511136ea3c5a: Pull complete

df7546f9f060: Pull complete

ea13149945cb: Pull complete

4986bf8c1536: Pull complete

busybox:latest: The image you are pulling has been verified. Important:
image verification is a tech preview feature and should not be relied on
to provide security.

Status: Downloaded newer image for busybox:latest

Once the images have been downloaded, they can be verified by using the docker
images subcommand, as shown here:

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

busybox latest 4986bf8c1536 12 weeks ago 2.433 MB

Running the first Docker container
Now, you can start your first Docker container. It is standard practice to start with
the basic Hello World! application. In the following example, we will echo Hello
World! by using a busybox image, which we have already downloaded, as shown
here:

$ sudo docker run busybox echo "Hello World!"

"Hello World!"

Cool, isn't it? You have set up your first Docker container in no time. In the
preceding example, the docker run subcommand has been used for creating a
container and for printing Hello World! by using the echo command.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 1

[13]

Running a Docker container on Amazon
Web Services
Amazon Web Services (AWS) announced the availability of Docker containers at the
beginning of 2014, as a part of its Elastic Beanstalk offering. At the end of 2014, they
revolutionized Docker deployment and provided the users with options shown here
for running Docker containers:

• The Amazon EC2 container service (only available in preview mode at the
time of writing this book)

• Docker deployment by using the Amazon Elastic Beans services

The Amazon EC2 container service lets you start and stop the container-enabled
applications with the help of simple API calls. AWS has introduced the concept of
a cluster for viewing the state of your containers. You can view the tasks from a
centralized service, and it gives you access to many familiar Amazon EC2 features,
such as the security groups, the EBS volumes and the IAM roles.

Please note that this service is still not available in the AWS console. You need to
install AWS CLI on your machine to deploy, run, and access this service.

The AWS Elastic Beanstalk service supports the following:

• A single container that supports Elastic Beanstalk by using a console.
Currently, it supports the PHP and Python applications.

• A single container that supports Elastic Beanstalk by using a command line
tool called eb. It supports the same PHP and Python applications.

• Use of multiple container environments by using Elastic beanstalk.

Currently, AWS supports the latest Docker version, which is 1.5.

This section provides a step-by-step process to deploy a sample application on a
Docker container running on AWS Elastic Beanstalk.The following are the steps of
deployment:

1. Log in to the AWS Elastic Beanstalk console by using this
https://console.aws.amazon.com/elasticbeanstalk/ URL.

2. Select a region where you want to deploy your application, as shown here:

Vinod Kumar Singh � Singapore � Help �

www.itbook.store/books/9781784397937

https://console.aws.amazon.com/elasticbeanstalk/
https://itbook.store/books/9781784397937

Getting Started with Docker

[14]

3. Select the Docker option, which is in the drop down menu, and then click
on Launch Now. The next screen will be shown after a few minutes, as
shown here:

Now, click on the URL that is next to Default-Environment (Default-
Environment-pjgerbmmjm.elasticbeanstalk.com), as shown here:

Troubleshooting
Most of the time, you will not encounter any issues when installing Docker.
However, unplanned failures might occur. Therefore, it is necessary to discuss
prominent troubleshooting techniques and tips. Let's begin by discussing the
troubleshooting knowhow in this section. The first tip is that the running status of
Docker should be checked by using the following command:

$ sudo service docker status

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 1

[15]

However, if Docker has been installed by using the Ubuntu package, then you will
have to use docker.io as the service name. If the docker service is running, then
this command will print the status as start/running along with its process ID.

If you are still experiencing issues with the Docker setup, then you could open
the Docker log by using the /var/log/upstart/docker.log file for further
investigation.

Summary
Containerization is going to be a dominant and decisive paradigm for the enterprise
as well as cloud IT environments in the future because of its hitherto unforeseen
automation and acceleration capabilities. There are several mechanisms in place
for taking the containerization movement to greater heights. However, Docker has
zoomed ahead of everyone in this hot race, and it has successfully decimated the
previously-elucidated barriers.

In this chapter, we have exclusively concentrated on the practical side of Docker for
giving you a head start in learning about the most promising technology. We have
listed the appropriate steps and tips for effortlessly installing the Docker engine in
different environments, for leveraging and for building, installing, and running a
few sample Docker containers, both in local as well as remote environments. We will
dive deep into the world of Docker and dig deeper to extract and share tactically and
strategically sound information with you in the ensuing chapters. Please read on to
gain the required knowledge about advanced topics, such as container integration,
orchestration, management, governance, security, and so on, through the Docker
engine. We will also discuss a bevy of third-party tools.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[17]

Handling Docker Containers
In the previous chapter, we explained stimulating and sustainable concepts,
which showed the Docker's way of crafting futuristic and flexible application-aware
containers. We discussed all the relevant details of producing the Docker containers
in multiple environments (on-premise as well as off-premise). Using these techniques,
you can easily replicate these features in your own environments to get a rewarding
experience. Therefore, the next step for us is to understand the container's life cycle
aspects in a decisive manner. You will learn the optimal utilization of containers of our
own as well as those of other third-party containers in an effective and risk-free way.
Containers are to be found, assessed, accessed, and leveraged toward bigger and better
applications. There are several tools that have emerged to streamline the handling
of containers.

In this chapter, we will dig deeper and describe the critical aspects of container
handling at length. A number of practical tips and execution commands for the
leveraging of containers will also be discussed in this chapter.

In this chapter, we will cover the following topics:

• Clarifying the Docker terms
• Working with the Docker images and containers
• The meaning of the Docker registry and its repository
• The Docker Hub Registry
• Searching the Docker images
• Working with an interactive container
• Tracking the changes inside the containers
• Controlling and housekeeping the Docker containers
• Building images from containers
• Launching a container as a daemon

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Handling Docker Containers

[18]

Clarifying the Docker terms
To make this chapter substantially simpler to understand and to minimize any kind
of ambiguity, the frequently used terms will be explained in the following section.

Docker images and containers
A Docker image is a collection of all of the files that make up a software application.
Each change that is made to the original image is stored in a separate layer. To
be precise, any Docker image has to originate from a base image according to the
various requirements. Additional modules can be attached to the base image for
deriving the various images that can exhibit the preferred behavior. Each time you
commit to a Docker image you are creating a new layer on the Docker image, but
the original image and each pre-existing layer remains unchanged. In other words,
images are typically of the read-only type. If they are empowered through the
systematic attachment of newer modules, then a fresh image will be created with a
new name. The Docker images are turning out to be a viable base for developing and
deploying the Docker containers.

A base image has been illustrated here. Debian is the base image, and a variety of
desired capabilities in the form of functional modules can be incorporated on the
base image for arriving at multiple images:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 2

[19]

Every image has a unique ID, as explained in the following section. The base images
can be enhanced such that they can create the parent images, which in turn can be
used for creating the child images. The base image does not have any parent, that is,
the parent images sit on top of the base image. When we work with an image and
if we don't specify that image through an appropriate identity (say, a new name),
then the latest image (recently generated) will always be identified and used by the
Docker engine.

As per the Docker home page, a Docker image has a read-only template. For
example, an image could contain an Ubuntu operating system, with Apache and
your web application installed on it. Docker provides a simple way for building
new images or of updating the existing images. You can also download the Docker
images that the other people have already created. The Docker images are the
building components of the Docker containers. In general, the base Docker image
represents an operating system, and in the case of Linux, the base image can be one
of its distributions, such as Debian. Adding additional modules to the base image
ultimately dawns a container. The easiest way of thinking about a container is as
the read-write layer that sits on one or more read-only images. When the container
is run, the Docker engine not only merges all of the required images together, but
it also merges the changes from the read-write layer into the container itself. This
makes it a self-contained, extensible, and executable system. The changes can be
merged by using the Docker docker commit subcommand. The new container will
accommodate all the changes that are made to the base image. The new image will
form a new layer on top of the base image.

The following diagram will tell you everything clearly. The base image is the Debian
distribution, then there is an addition of two images (the emacs and the Apache
server), and this will result in the container:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Handling Docker Containers

[20]

Each commit invariably makes a new image. This makes the number of images go
up steadily, and so managing them becomes a complicated affair. However, the
storage space is not a big challenge because the new image that is generated is only
comprised of the newly added modules. In a way, this is similar to the popular object
storage in the cloud environments. Every time you update an object, there will be a
new object that gets created with the latest modification and then it is stored with a
new ID. In the case of object storage, the storage size balloons significantly.

A Docker layer
A Docker layer could represent either read-only images or read-write images.
However, the top layer of a container stack is always the read-write (writable) layer,
which hosts a Docker container.

A Docker container
From the preceding diagram, it is clear that the read-write layer is the container
layer. There could be several read-only images beneath the container layer. Typically,
a container originates from a read-only image through the act of a commit. When you
start a container, you actually refer to an image through its unique ID. Docker pulls
the required image and its parent image. It continues to pull all the parent images
until it reaches the base image.

Docker Registry
A Docker Registry is a place where the Docker images can be stored in order to be
publicly found, accessed, and used by the worldwide developers for quickly crafting
fresh and composite applications without any risks. Because all the stored images
would have gone through multiple validations, verifications, and refinements, the
quality of those images will be really high. Using the Docker push command, you
can dispatch your Docker image to the Registry so that it is registered and deposited.
As a clarification, the registry is for registering the Docker images, whereas the
repository is for storing those registered Docker images in a publicly discoverable
and centralized place. A Docker image is stored within a Repository in the Docker
Registry. Each Repository is unique for each user or account.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 2

[21]

Docker Repository
A Docker Repository is a namespace that is used for storing a Docker image. For
instance, if your app is named helloworld and your username or namespace for the
Registry is thedockerbook then, in the Docker Repository, where this image would
be stored in the Docker Registry would be named thedockerbook/helloworld.

The base images are stored in the Docker Repository. The base images are
the fountainheads for realizing the bigger and better images with the help of a
careful addition of new modules. The child images are the ones that have their own
parent images. The base image does not have any parent image. The images sitting
on a base image are named as parent images because the parent images bear the
child images.

Working with Docker images
In the previous chapter, we demonstrated the typical Hello World! example by
using a busybox image. Now there is a need for a close observation of the output
of the docker pull subcommand, which is a standard command for downloading
the Docker images. You would have noticed the presence of the busybox:latest
text in the output text, and we will explain this mystery in a detailed manner by
bringing in a small twist to the docker pull subcommand by adding the -a option,
as shown here:

$ sudo docker pull -a busybox

Surprisingly, you will observe that the Docker engine downloads a few more images
with the -a option. You can easily check the images that are available on the Docker
host by running the docker images subcommand, which comes in handy, and it
reveals more details with respect to :latest and the additional images that are
downloaded by running this command. Let us run this command:

$ sudo docker images

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Handling Docker Containers

[22]

You will get the list of images, as follows:

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

busybox ubuntu-14.04 f6169d24347d 3 months ago 5.609
MB

busybox ubuntu-12.04 492dad4279ba 3 months ago 5.455
MB

busybox buildroot-2014.02 4986bf8c1536 3 months ago 2.433
MB

busybox latest 4986bf8c1536 3 months ago 2.433
MB

busybox buildroot-2013.08.1 2aed48a4e41d 3 months ago 2.489
MB

Evidently, we have five items in the preceding list, and to gain a better
understanding of those, we need to comprehend the information that is printed out
by the Docker images subcommand. Here is a list of the possible categories:

• REPOSITORY: This is the name of the repository or image. In the preceding
example, the repository name is busybox.

• TAG: This is the tag associated with the image, for example
buildroot-2014.02, ubuntu-14.04, latest. One or more tags can be
associated with one image.

The ubuntu-* tagged images are built by using the busybox-
static Ubuntu package and the buildroot-* tagged images
are built from scratch by using the buildroot tool-chain.

• IMAGE ID: Every image is associated with a unique ID. The image ID is
represented by using a 64 Hex digit long random number. By default, the
Docker images subcommand will only show 12 Hex digits. You can display
all the 64 Hex digits by using the --no-trunc flag (for example: sudo
docker images --no-trunc).

• CREATED: Indicates the time when the image was created.
• VIRTUAL SIZE: Highlights the virtual size of the image.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 2

[23]

You might be wondering how, in the preceding example, a single pull command
with the -a option was able to download five images, even though we had only
specified one image by the name of busybox. This happened because each Docker
image repository can have multiple variants of the same image and the -a option
downloads all the variants that are associated with that image. In the preceding
example, the variants are tagged as buildroot-2013.08.1, ubuntu-14.04,
ubuntu-12.04, buildroot-2014.02 and latest. A closer observation of the image
IDs will reveal that both buildroot-2014.02 and latest share the image ID
4986bf8c1536.

By default, Docker always uses the image that is tagged as latest. Each image
variant can be directly identified by qualifying it with its tag. An image can be tag-
qualified by appending the tag to the repository name with a : that is added between
the tag and the repository name (<repository>:<tag>). For instance, you can
launch a container with the busybox:ubuntu-14.04 tag, as shown here:

$ sudo docker run -t -i busybox:ubuntu-14.04

The docker pull subcommand will always download the image variant that has the
latest tag in that repository. However, if you choose to download an image variant
other than the latest, then you can do so by qualifying your image with the tag name
by using the following command:

$ sudo docker pull busybox:ubuntu-14.04

Docker Hub Registry
In the previous section, when you ran the docker pull subcommand, the busybox
image got downloaded mysteriously. In this section, let's unravel the mystery
around the docker pull subcommand and how the Docker Hub immensely
contributed toward this unintended success.

The good folks in the Docker community have built a repository of images and they
have made it publicly available at a default location, index.docker.io. This default
location is called the Docker index. The docker pull subcommand is programmed
to look for the images at this location. Therefore, when you pull a busybox image,
it is effortlessly downloaded from the default registry. This mechanism helps in
speeding up the spinning of the Docker containers. The Docker Index is the official
repository that contains all the painstakingly curated images that are created and
deposited by the worldwide Docker development community.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Handling Docker Containers

[24]

This so-called cure is enacted to ensure that all the images stored in the Docker index
are secure and safe through a host of quarantine tasks. There are proven verification
and validation methods for cleaning up any knowingly or unknowingly introduced
malware, adware, viruses, and so on, from these Docker images. The digital signature
is a prominent mechanism of the utmost integrity of the Docker images. Nonetheless, if
the official image has been either corrupted, or tampered with, then the Docker engine
will issue a warning and then continue to run the image.

In addition to the official repository, the Docker Hub Registry also provides a
platform for the third-party developers and providers for sharing their images for
general consumption. The third-party images are prefixed by the user ID of their
developers or depositors. For example, thedockerbook/helloworld is a third-
party image, wherein thedockerbook is the user ID and helloworld is the image
repository name. You can download any third-party image by using the docker
pull subcommand, as shown here:

$ sudo docker pull thedockerbook/helloworld

Apart from the preceding repository, the Docker ecosystem also provides a
mechanism for leveraging the images from any third-party repository hub other than
the Docker Hub Registry, and it provides the images hosted by the local repository
hubs. As mentioned earlier, the Docker engine has been programmed to look for
images in index.docker.io by default, whereas in the case of the third-party or
the local repository hub, we must manually specify the path from where the image
should be pulled. A manual repository path is similar to a URL without a protocol
specifier, such as https://, http:// and ftp://. Following is an example of pulling
an image from a third party repository hub:

$ sudo docker pull registry.example.com/myapp

Searching Docker images
As we discussed in the previous section, the Docker Hub repository typically hosts
both the official images as well as the images that have been contributed by the third-
party Docker enthusiasts. At the time of writing this book, more than 14,000 images
(also called the Dockerized application) were available for the users. These images
can be used either as is, or as a building block for the user-specific applications.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 2

[25]

You can search for the Docker images in the Docker Hub Registry by using the
docker search subcommand, as shown in this example:

$ sudo docker search mysql

The search on mysql will list 400 odd images, as follows:

NAME DESCRIPTION STARS OFFICIAL AUTOMATED

mysql MySQL is the... 147 [OK]

tutum/mysql MySQL Server.. 60 [OK]

orchardup/mysql 34 [OK]

. . . OUTPUT TRUNCATED . . .

As you can see in the preceding search output excerpts, the images are ordered
based on their star rating. The search result also indicates whether or not the image
is official. In order to stay in focus, in this example, we will show only two images.
Here, you can see the official version of mysql, which pulls a 147 star rating image
as its first result. The second result shows that this version of the mysql image was
published by the user tutum. The Docker containers are fast becoming the standard
for the building blocks of the distributed applications. A dynamic repository of
the Docker images will be realized with the help of the enthusiastic contribution
of several community members across the globe. The Repository-based software
engineering will make it easier for users and programmers to quickly code and
assemble their projects. The official repositories can be freely downloaded from the
Docker Hub Registry, and these are curated images. They represent a community
effort that is focused on providing a great base of images for applications, so that the
developers and the system administrators can focus on building new features and
functionalities, while minimizing their repetitive work on commodity scaffolding
and plumbing.

Based on the search queries in the Docker Hub Registry and the discussions
with many of the developer community members, the Docker company, which
spearheaded the Docker movement so powerfully and passionately, came to the
conclusion that the developer community wanted pre-built stacks of their favorite
programming languages. Specifically, the developers wanted to get to work as
quickly as possible writing code without wasting time wrestling with environments,
scaffolding, and dependencies.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Handling Docker Containers

[26]

Working with an interactive container
In the first chapter, we ran our first Hello World! container to get a feel of how the
containerization technology works. In this section, we are going to run a container
in an interactive mode. The docker run subcommand takes an image as an input
and launches it as a container. You have to pass the -t and -i flags to the docker run
subcommand in order to make the container interactive. The -i flag is the key driver,
which makes the container interactive by grabbing the standard input (STDIN) of
the container. The -t flag allocates a pseudo-TTY or a pseudo terminal (terminal
emulator) and then assigns that to the container.

In the following example, we are going to launch an interactive container by using
the ubuntu:14.04 image and /bin/bash as the command:

$ sudo docker run -i -t ubuntu:14.04 /bin/bash

Since the ubuntu image has not been downloaded yet, if we use the docker pull
subcommand, then we will get the following message and the run command will
start pulling the ubuntu image automatically with the following message:

Unable to find image 'ubuntu:14.04' locally

Pulling repository ubuntu

As soon as the download is completed, the container will be launched along with the
ubuntu:14.04 image. It will also launch a bash shell within the container, because
we have specified /bin/bash as the command to be executed. This will land us in a
bash prompt, as shown here:

root@742718c21816:/#

The preceding bash prompt will confirm that our container has been launched
successfully, and it is ready to take our input. If you are wondering about the Hex
number 742718c21816 in the prompt, then it is nothing but the hostname of the
container. In the Docker parlance, the hostname is the same as the container ID.

Let's quickly run a few commands interactively, and then confirm that what we
mentioned about the prompt is correct, as shown here:

root@742718c21816:/# hostname

742718c21816

root@742718c21816:/# id

uid=0(root) gid=0(root) groups=0(root)

root@742718c21816:/# echo $PS1

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 2

[27]

${debian_chroot:+($debian_chroot)}\u@\h:\w\$

root@742718c21816:/#

From the preceding three commands, it is quite evident that the prompt was
composed by using the user ID, the hostname, and the current working directory.

Now, let's use one of the niche features of Docker for detaching it from the
interactive container and then look at the details that Docker manages for this
container. Yes, we can detach it from our container by using the Ctrl + P and Ctrl +
Q escape sequence. This escape sequence will detach the TTY from the container and
land us in the Docker host prompt $, however the container will continue to run.
The docker ps subcommand will list all the running containers and their important
properties, as shown here:

$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

742718c21816 ubuntu:14.04 "/bin/bash" About a
minute ago Up About a minute jolly_lovelace

The docker ps subcommand will list out the following details:

• CONTAINER ID: This shows the container ID associated with the container.
The container ID is a 64 Hex digit long random number. By default, the
docker ps subcommand will show only 12 Hex digits. You can display all
the 64 digits by using the --no-trunc flag (for example: sudo docker ps
--no-trunc).

• IMAGE: This shows the image from which the Docker container has been
crafted.

• COMMAND: This shows you the command executed during the container
launch.

• CREATED: This tells you when the container was created.
• STATUS: This tells you the current status of the container.
• PORTS: This tells you if any port has been assigned to the container.
• NAMES: The Docker engine auto-generates a random container name by

concatenating an adjective and a noun. Either the container ID or its name
can be used to take further action on the container. The container name
can be manually configured by using the --name option in the docker run
subcommand.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Handling Docker Containers

[28]

Having looked at the container status, let's attach it back to our container by using
the docker attach subcommand as shown in the following example. We can either
use the container ID or use its name. In this example, we have used the container
name. If you don't see the prompt, then press the Enter key again:

$ sudo docker attach jolly_lovelace

root@742718c21816:/#

The Docker allows attaching with a container any number of
times, which proves to be very handy for screen sharing.

The docker attach subcommand takes us back to the container prompt. Let's
experiment a little more with the interactive container that is up and running by
using these commands:

root@742718c21816:/# pwd

/

root@742718c21816:/# ls

bin dev home lib64 mnt proc run srv tmp var

boot etc lib media opt root sbin sys usr

root@742718c21816:/# cd usr

root@742718c21816:/usr# ls

bin games include lib local sbin share src

root@742718c21816:/usr# exit

exit

$

As soon as the bash exit command is issued to the interactive container, it will
terminate the bash shell process, which in turn will stop the container. As a result,
we will land on the Docker Host's prompt $.

Tracking changes inside containers
In the previous section, we demonstrated how to craft a container taking ubuntu as a
base image, and then running some basic commands, such as detaching and attaching
the containers. In that process, we also exposed you to the docker ps subcommand,
which provides the basic container management functionality. In this section, we
will demonstrate how we can effectively track the changes that we introduced in our
container and compare it with the image from which we launched the container.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 2

[29]

Let's launch a container in the interactive mode, as we had done in the previous
section:

$ sudo docker run -i -t ubuntu:14.04 /bin/bash

Let's change the directory to /home, as shown here:

root@d5ad60f174d3:/# cd /home

Now we can create three empty files by using the touch command as shown
in the following code snippet. The first ls -l command will show that there are
no files in the directory and the second ls -l command will show that there are
three empty files:

root@d5ad60f174d3:/home# ls -l

total 0

root@d5ad60f174d3:/home# touch {abc,cde,fgh}

root@d5ad60f174d3:/home# ls -l

total 0

-rw-r--r-- 1 root root 0 Sep 29 10:54 abc

-rw-r--r-- 1 root root 0 Sep 29 10:54 cde

-rw-r--r-- 1 root root 0 Sep 29 10:54 fgh

root@d5ad60f174d3:/home#

The Docker engine elegantly manages its filesystem and it allows us to inspect a
container filesystem by using the docker diff subcommand. In order to inspect
the container filesystem, we can either detach it from the container or use another
terminal of our Docker host and then issue the docker diff subcommand. Since we
know that any ubuntu container has its hostname, which is a part of its prompt, and
it is also the container's ID, we can directly run the docker diff subcommand by
using the container ID that is taken from the prompt, as shown here:

$ sudo docker diff d5ad60f174d3

In the given example, the docker diff subcommand will generate four lines,
shown here:

C /home

A /home/abc

A /home/cde

A /home/fgh

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Handling Docker Containers

[30]

The preceding output indicates that the /home directory has been modified, which
has been denoted by C, and the /home/abc, /home/cde and the /home/fgh files have
been added, and these are denoted by A. In addition, D denotes deletion. Since we
have not deleted any files, it is not in our sample output.

Controlling Docker containers
So far, we have discussed a few practical examples for clearly articulating the nitty-
gritty of the Docker containers. In this section, let us introduce a few basic as well as
a few advanced command structures for meticulously illustrating how the Docker
containers can be managed.

The Docker engine enables you to start, stop, and restart a container with a set
of docker subcommands. Let's begin with the docker stop subcommand, which
stops a running container. When a user issues this command, the Docker engine
sends SIGTERM (-15) to the main process, which is running inside the container.
The SIGTERM signal requests the process to terminate itself gracefully. Most of the
processes would handle this signal and facilitate a graceful exit. However, if this
process fails to do so, then the Docker engine will wait for a grace period. Even after
the grace period, if the process has not been terminated, then the Docker engine will
forcefully terminate the process. The forceful termination is achieved by sending
SIGKILL (-9). The SIGKILL signal cannot be caught or ignored, and so it will result
in an abrupt termination of the process without a proper clean-up.

Now, let's launch our container and experiment with the docker stop subcommand,
as shown here:

$ sudo docker run -i -t ubuntu:14.04 /bin/bash

root@da1c0f7daa2a:/#

Having launched the container, let's run the docker stop subcommand on this
container by using the container ID that was taken from the prompt. Of course, we
have to use a second screen or terminal to run this command, and the command will
always echo back to the container ID, as shown here:

$ sudo docker stop da1c0f7daa2a

da1c0f7daa2a

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 2

[31]

Now, if we switch to the screen or terminal, where we were running the container, we
will notice that the container is being terminated. If you observe a little more closely,
you will also notice the text exit next to the container prompt. This has happened due
to the SIGTERM handling mechanism of the bash shell, as shown here:

root@da1c0f7daa2a:/# exit

$

If we take it one step further and run the docker ps subcommand, then we will not
find this container anywhere in the list. The fact is that the docker ps subcommand,
by default, always lists the container that is in the running state. Since our container
is in the stopped state, it has been comfortably left out of the list. Now, you might
ask, how do we see the container that is in the stopped state? Well, the docker ps
subcommand takes an additional argument -a, which will list all the containers
in that Docker host irrespective of its status. This can be done by running the
following command:

$ sudo docker ps -a

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

da1c0f7daa2a ubuntu:14.04 "/bin/bash" 20
minutes ago Exited (0) 10 minutes ago
desperate_engelbart

$

Next, let's look at the docker start subcommand, which is used for starting
one or more stopped containers. A container could be moved to the stopped
state either by the docker stop subcommand or by terminating the main process
in the container either normally or abnormally. On a running container, this
subcommand has no effect.

Let's start the previously stopped container by using the docker start
subcommand, as follows:

$ sudo docker start da1c0f7daa2a

da1c0f7daa2a

$

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Handling Docker Containers

[32]

By default, the docker start subcommand will not attach to the container.
You can attach it to the container either by using the -a option in the docker
start subcommand or by explicitly using the docker attach subcommand,
as shown here:

$ sudo docker attach da1c0f7daa2a

root@da1c0f7daa2a:/#

Now let's run the docker ps and verify the container's running status,
as shown here:

$ sudo docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

da1c0f7daa2a ubuntu:14.04 "/bin/bash" 25
minutes ago Up 3 minutes
desperate_engelbart

$

The restart command is a combination of the stop and the start functionality.
In other words, the restart command will stop a running container by following
the precise steps followed by the docker stop subcommand and then it will initiate
the start process. This functionality will be executed by default through the docker
restart subcommand.

The next important set of container-controlling subcommands are docker pause
and docker unpause. The docker pause subcommands will essentially freeze the
execution of all the processes within that container. Conversely, the docker unpause
subcommand will unfreeze the execution of all the processes within that container
and resume the execution from the point where it was frozen.

Having seen the technical explanation of pause and unpause, let's see a detailed
example for illustrating how this feature works. We have used two screen or
terminal scenarios. On one terminal, we have launched our container and used an
infinite while loop for displaying the date and time, sleeping for 5 seconds, and then
continuing the loop. We will run the following commands:

$ sudo docker run -i -t ubuntu:14.04 /bin/bash

root@c439077aa80a:/# while true; do date; sleep 5; done

Thu Oct 2 03:11:19 UTC 2014

Thu Oct 2 03:11:24 UTC 2014

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 2

[33]

Thu Oct 2 03:11:29 UTC 2014

Thu Oct 2 03:11:34 UTC 2014

Thu Oct 2 03:11:59 UTC 2014

Thu Oct 2 03:12:04 UTC 2014

Thu Oct 2 03:12:09 UTC 2014

Thu Oct 2 03:12:14 UTC 2014

Thu Oct 2 03:12:19 UTC 2014

Thu Oct 2 03:12:24 UTC 2014

Thu Oct 2 03:12:29 UTC 2014

Thu Oct 2 03:12:34 UTC 2014

$

Our little script has very faithfully printed the date and time every 5 seconds with an
exception at the following position:

Thu Oct 2 03:11:34 UTC 2014

Thu Oct 2 03:11:59 UTC 2014

Here, we encountered a delay of 25 seconds, because this is when we initiated the
docker pause subcommand on our container on the second terminal screen, as
shown here:

$ sudo docker pause c439077aa80a

c439077aa80a

When we paused our container, we looked at the process status by using the docker
ps subcommand on our container, which was on the same screen, and it clearly
indicated that the container had been paused, as shown in this command result:

$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

c439077aa80a ubuntu:14.04 "/bin/bash" 47
seconds ago Up 46 seconds (Paused)
ecstatic_torvalds

We continued on to issuing the docker unpause subcommand, which unfroze our
container, continued its execution, and then started printing the date and time, as we
saw in the preceding command, shown here:

$ sudo docker unpause c439077aa80a

c439077aa80a

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Handling Docker Containers

[34]

We explained the pause and the unpause commands at the beginning of this section.
Lastly, the container and the script running within it had been stopped by using the
docker stop subcommand, as shown here:

$ sudo docker stop c439077aa80a

c439077aa80a

Housekeeping containers
In many of the previous examples, when we issued docker ps -a we saw the many
stopped containers. These containers could continue to stay in the stopped status
for ages, if we chose not to intervene. At the outset, it may look like a glitch, but in
reality, we can perform operations, such as committing an image from a container,
restarting the stopped container, and so on. However, not all the stopped containers
will be reused, and each of these unused containers will take up the disk space in
the filesystem of the Docker host. The Docker engine provides a couple of ways to
alleviate this issue. Let's start exploring them.

During a container startup, we can instruct the Docker engine to clean up the
container as soon as it reaches the stopped state. For this purpose, the docker run
subcommand supports an --rm option (for example: sudo docker run -i -t --rm
ubuntu:14.04 /bin/bash).

The other alternative is to list all the containers by using the -a option of the
docker ps subcommand and then manually remove them by using the docker rm
subcommand, as shown here:

$ sudo docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
 PORTS NAMES

7473f2568add ubuntu:14.04 "/bin/bash" 5 seconds ago Exited
 (0) 3 seconds ago jolly_wilson

$ sudo docker rm 7473f2568add

7473f2568add

$

Two docker subcommands, that is, docker rm and docker ps, could be combined
to automatically delete all the containers that are not currently running, as shown in
the following command:

$ sudo docker rm 'sudo docker ps -aq --no-trunc'

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 2

[35]

In the preceding command, the command inside the back quotes will produce a list
of the full container IDs of every container, running or otherwise, which will become
the argument for the docker rm subcommand. Unless forced with the -f option to
do otherwise, the docker rm subcommand will only remove the container that is not
in the running state. It will generate the following error for the running container
and then continue to the next container on the list:

Error response from daemon: You cannot remove a running container.
Stop the container before attempting removal or use -f

Building images from containers
So far, we have crafted a handful of containers by using the standard base images
busybox and ubuntu. In this section, let us see how we can add more software to
our base image on a running container and then convert that container into an
image for future use.

Let's take ubuntu:14.04 as our base image, install the wget application, and then
convert the running container to an image by performing the following steps:

1. Launch an ubuntu:14.04 container by using the docker run subcommand,
shown here:
$ sudo docker run -i -t ubuntu:14.04 /bin/bash

2. Having launched the container, let's quickly verify if wget is available
for our image or not. We have used the which command with wget as
an argument for this purpose and, in our case, it returns empty, which
essentially means that it could not find any wget installation in this
container. This command is run as follows:
root@472c96295678:/# which wget

root@472c96295678:/#

3. Now let's move on to the next step which involves the wget installation.
Since it is a brand new ubuntu container, before installing wget, we must
synchronize with the ubuntu package repository, as shown here:
root@472c96295678:/# apt-get update

4. Once the ubuntu package repository synchronization is over, we can
proceed toward installing wget, as shown here:
root@472c96295678:/# apt-get install -y wget

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Handling Docker Containers

[36]

5. Having completed the wget installation, let's confirm our installation of wget
by invoking the which command with wget as an argument, as shown here:
root@472c96295678:/#which wget

/usr/bin/wget

root@472c96295678:/#

6. Installation of any software would alter the base image composition, which
we can also trace by using the docker diff subcommand introduced in
Tracking changes inside containers section of this chapter. From a second
terminal or screen, we can issue the docker diff subcommand, as follows:
$ sudo docker diff 472c96295678

The preceding command would show a few hundred lines of modification
to the ubuntu image. This modification includes the update on package
repository, wget binary, and the support files for wget.

7. Finally, let's move to the most important step of committing the image.
The Docker commit subcommand can be performed on a running or a
stopped container. When commit is performed on a running container,
the Docker engine will pause the container during the commit operation
in order to avoid any data inconsistency. We strongly recommend
performing the commit operation on a stopped container. We can commit a
container to an image by the docker commit subcommand, as shown here:

$ sudo docker commit 472c96295678 \

 learningdocker/ubuntu_wget

a530f0a0238654fa741813fac39bba2cc14457aee079a7ae1fe1c64dc7e1ac
25

We have committed our image by using the name learningdocker/ubuntu_wget.

Step by step, we saw how to create an image from a container. Now, let's quickly
list the images of our Docker host and see if this newly created image is a part of
the image list by using the following command:

$ sudo docker images

REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE

learningdocker/ubuntu_wget latest a530f0a02386
48 seconds ago 221.3 MB

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 2

[37]

busybox buildroot-2014.02 e72ac664f4f0
2 days ago 2.433 MB

ubuntu 14.04 6b4e8a7373fe
2 days ago 194.8 MB

From the preceding docker images subcommand output, it is quite evident that
our image creation from the container has been quite successful.

Now that you have learned how to create an image from the containers by
using a few easy steps, we would encourage you to predominantly use this
method for testing purposes. The most elegant and the most recommended way
of creating an image is to use the Dockerfile method, which will be introduced
in the next chapter.

Launching a container as a daemon
We have already experimented with an interactive container, tracked the changes
that were made to the containers, created images from the containers and
then gained insights in the containerization paradigm. Now, let's move on to
understanding the real workhorse of the Docker technology. Yes that's right. In
this section, we will walk you through the steps that are required for launching a
container in the detached mode; in other words, we will learn about the steps that
are required for launching a container as a daemon. We will also view the text that is
generated in the container.

The docker run subcommand supports an option -d, which will launch a container
in a detached mode, that is, it will launch a container as a daemon. For the purpose
of illustration, let's resort to our date and time script, which we used in the pause
and unpause container example, as shown here:

$ sudo docker run -d ubuntu \

 /bin/bash -c "while true; do date; sleep 5; done"

0137d98ee363b44f22a48246ac5d460c65b67e4d7955aab6cbb0379ac421269b

The docker logs subcommand is used for viewing the output generated by our
daemon container, as shown here:

$ sudo docker logs \

0137d98ee363b44f22a48246ac5d460c65b67e4d7955aab6cbb0379ac421269b

Sat Oct 4 17:41:04 UTC 2014

Sat Oct 4 17:41:09 UTC 2014

Sat Oct 4 17:41:14 UTC 2014

Sat Oct 4 17:41:19 UTC 2014

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Handling Docker Containers

[38]

Summary
In this chapter, we described the knowledge that is gained in the post-implementation
phases, primarily regarding the operational aspect of the Docker containers. We
started the chapter by clarifying important terms, such as images, containers, registry,
and repository, in order to enable you to acquire an unambiguous understanding
of the concepts illustrated thereafter. We explained how to search for the images in
the Docker repository. We also discussed the operation and handling of the Docker
containers, how to track the changes inside the containers, how to control and
housekeep the containers. In an easy-to-grasp manner, we will explain the process of
the Docker image building in the next chapter.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[39]

Building Images
In the previous chapter, we explained the image and container handling, and its
housekeeping techniques and tips to you in detail. In addition to that, we also have
explained the standard procedure for installing any software package on a Docker
container and then converting the container into an image for future usage and
maneuvering. This chapter is quite different from the earlier ones, and it is in this
chapter to clearly describe how the Docker images are built using Dockerfile,
which is the standard way to bring forth the highly usable Docker images.
Leveraging Dockerfile is the most competent way to build powerful images for the
software development community.

We will cover the following topics in this chapter:

• Docker's integrated image building system
• Quick overview of the Dockerfile's syntax
• Dockerfile build instructions
• How Docker stores images

Docker's integrated image building
system
The Docker images are the fundamental building blocks of containers. These images
could be very basic operating environments, such as busybox or ubuntu, as we
found while experimenting with Docker in the previous chapters. Alternatively,
the images could craft advanced application stacks for the enterprise and cloud IT
environments. As we discussed in the previous chapter, we could craft an image
manually by launching a container from a base image, install all the required
applications, make the necessary configuration file changes, and then commit the
container as an image.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Building Images

[40]

As a better alternative, we could resort to the automated approach of crafting the
images by using Dockerfile. Dockerfile is a text-based build script that contains
special instructions in a sequence for building the right and relevant images from
the base images. The sequential instructions inside the Dockerfile can include the
base image selection, installing the required application, adding the configuration
and the data files, and automatically running the services as well as exposing those
services to the external world. Thus the Dockerfile-based automated build system
has simplified the image-building process. It also offers a great deal of flexibility in
the way in which the build instructions are organized and in the way in which they
visualize the complete build process.

The Docker engine tightly integrates this build process with the help of the docker
build subcommand. In the client-server paradigm of Docker, the Docker server
(or daemon) is responsible for the complete build process and the Docker command
line interface is responsible for transferring the build context, including transferring
Dockerfile to the daemon.

In order to have a sneak peak into the Dockerfile integrated build system in this
section, we will introduce you to a basic Dockerfile. Then we will explain the steps
for converting that Dockerfile into an image, and then launching a container from
that image. Our Dockerfile is made up of two instructions, as shown here:

$ cat Dockerfile

FROM busybox:latest

CMD echo Hello World!!

In the following, we will discuss the two instructions mentioned earlier:

• The first instruction is for choosing the base image selection. In this example,
we will select the busybox:latest image

• The second instruction is for carrying out the command CMD, which instructs
the container to echo Hello World!!.

Now, let's proceed towards generating a Docker image by using the preceding
Dockerfile by calling docker build along with the path of Dockerfile.
In our example, we will invoke the docker build subcommand from the
directory where we have stored Dockerfile, and the path will be specified
by the following command:

$ sudo docker build .

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 3

[41]

After issuing the preceding command, the build process will begin by sending
build context to the daemon and then display the text shown here:

Sending build context to Docker daemon 3.072 kB

Sending build context to Docker daemon

Step 0 : from busybox:latest

The build process would continue and, after completing itself, it will display
the following:

Successfully built 0a2abe57c325

In the preceding example, the image was built by the IMAGE ID 0a2abe57c325.
Let's use this image to launch a container by using the docker run subcommand
as follows:

$ sudo docker run 0a2abe57c325

Hello World!!

Cool, isn't it? With very little effort, we have been able to craft an image with
busybox as the base image, and we have been able to extend that image to produce
Hello World!!. This is a simple application, but the enterprise-scale images can
also be realized by using the same technology.

Now let's look at the image details by using the docker images subcommand, as
shown here:

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

<none> <none> 0a2abe57c325 2 hours ago 2.433 MB

Here, you may be surprised to see that the IMAGE (REPOSITORY) and TAG name have
been listed as <none>. This is because we did not specify any image or any TAG name
when we built this image. You could specify an IMAGE name and optionally a TAG
name by using the docker tag subcommand, as shown here:

$ sudo docker tag 0a2abe57c325 busyboxplus

The alternative approach is to build the image with an image name during the build
time by using the -t option for the docker build subcommand, as shown here:

$ sudo docker build -t busyboxplus .

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Building Images

[42]

Since there is no change in the instructions in Dockerfile, the Docker engine will
efficiently reuse the old image that has ID 0a2abe57c325 and update the image name
to busyboxplus. By default, the build system would apply latest as the TAG name.
This behavior can be modified by specifying the TAG name after the IMAGE name by
having a : separator placed between them. That is, <image name>:<tag name> is
the correct syntax for modifying behaviors, where <image name> is the name of the
image and <tag name> is the name of the tag.

Once again, let's look at the image details by using the docker images subcommand,
and you will notice that the image (Repository) name is busyboxplus and the tag
name is latest:

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

busyboxplus latest 0a2abe57c325 2 hours ago 2.433 MB

Building images with an image name is always recommended as the best practice.

Having experienced the magic of Dockerfile, in the subsequent sections we will
introduce you to the syntax or the format of Dockerfile and explain a dozen
Dockerfile instructions.

The latest Docker release (1.5) has incorporated an additional
option (-f) in the docker build subcommand, and it is used
for specifying a Dockerfile with an alternative name.

A quick overview of the Dockerfile's
syntax
In this section, we will explain the syntax or the format of Dockerfile.
A Dockerfile is made up of instructions, comments, and empty lines,
as shown here:

Comment

INSTRUCTION arguments

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 3

[43]

The instruction line of Dockerfile is made up of two components, where the
instruction line begins with the instruction itself, which is followed by the arguments
for the instruction. The instruction could be written in any case, in other words, it is
case-insensitive. However, the standard practice or convention is to use uppercase in
order to differentiate it from the arguments. Let's take another look at the content of
Dockerfile in our previous example:

FROM busybox:latest
CMD echo Hello World!!

Here, FROM is an instruction which has taken busybox:latest as an argument,
and CMD is an instruction which has taken echo Hello World!! as an argument.

The comment line in Dockerfile must begin with the # symbol. The # symbol
after an instruction is considered as an argument. If the # symbol is preceded by
a whitespace, then the docker build system would consider that as an unknown
instruction and skip the line. Now, let's better understand these mentioned cases
with the help of an example to get a better understanding of the comment line:

• A valid Dockerfile comment line always begins with a # symbol as the
first character of the line:
This is my first Dockerfile comment

• The # symbol can be a part of an argument:
CMD echo ### Welcome to Docker ###

• If the # symbol is preceded by a whitespace, then it is considered as an
unknown instruction by the build system:

 # this is an invalid comment line

The docker build system ignores any empty line in the Dockerfile, and so
the author of Dockerfile is encouraged to add comments and empty lines to
substantially improve the readability of Dockerfile.

The Dockerfile build instructions
So far, we have looked at the integrated build system, the Dockerfile syntax and a
sample life cycle, including how a sample Dockerfile is leveraged to generate an
image and how a container gets spun off from that image. In this section, we will
introduce the Dockerfile instructions, their syntax, and a few fitting examples.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Building Images

[44]

The FROM instruction
The FROM instruction is the most important one and it is the first valid instruction of a
Dockerfile. It sets the base image for the build process. The subsequent instructions
would use this base image and build on top of it. The docker build system lets you
flexibly use the images built by anyone. You can also extend them by adding more
precise and practical features to them. By default, the docker build system looks
in the Docker host for the images. However, if the image is not found in the Docker
host, then the docker build system will pull the image from the publicly available
Docker Hub Registry. The docker build system will return an error if it can not find
the specified image in the Docker host and the Docker Hub Registry.

The FROM instruction has the following syntax:

FROM <image>[:<tag>]

In the preceding code statement, note the following:

• <image>: This is the name of the image which will be used as the base image.
• <tag>: This is the optional tag qualifier for that image. If any tag qualifier has

not been specified, then the tag latest is assumed.

Here is an example of the FROM instruction with the image name centos:

FROM centos

Here is another example of the FROM instruction with the image name ubuntu and the
tag qualifier 14.04:

FROM ubuntu:14.04

Docker allows multiple FROM instructions in a single Dockerfile in order to create
multiple images. The Docker build system will pull all the images specified in the
FROM instruction. Docker does not provide any mechanism for naming the individual
images that are generated with the help of multiple FROM instructions. We strongly
discourage using multiple FROM instructions in a single Dockerfile, as damaging
conflicts could arise.

The MAINTAINER instruction
The MAINTAINER instruction is an informational instruction of a Dockerfile.
This instruction capability enables the authors to set the details in an image.
Docker does not place any restrictions on placing the MAINTAINER instruction
in Dockerfile. However, it is strongly recommended that you should place
it after the FROM instruction.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 3

[45]

The following is the syntax of the MAINTAINER instruction, where <author's
detail> can be in any text. However, it is strongly recommended that you use the
image author's name and the e-mail address, as shown in this code syntax:

MAINTAINER <author's detail>

Here is an example of the MAINTAINER instruction with the author name and the
e-mail address:

MAINTAINER Dr. Peter <peterindia@gmail.com>

The COPY instruction
The COPY instruction enables you to copy the files from the Docker host to the
filesystem of the new image. The following is the syntax of the COPY instruction:

COPY <src> ... <dst>

The preceding code terms bear the explanations shown here:

• <src>: This is the source directory, the file in the build context, or the
directory from where the docker build subcommand was invoked.

• ...: This indicates that multiple source files can either be specified
directly or be specified by wildcards.

• <dst>: This is the destination path for the new image into which the source
file or directory will get copied. If multiple files have been specified, then the
destination path must be a directory and it must end with a slash /.

Using an absolute path for the destination directory or a file is recommended.
In the absence of an absolute path, the COPY instruction will assume that the
destination path will start from root /. The COPY instruction is powerful enough for
creating a new directory and for overwriting the filesystem in the newly created image.

In the following example, we will copy the html directory from the source build
context to /var/www/html, which is in the image filesystem, by using the COPY
instruction, as shown here:

COPY html /var/www/html

Here is another example of the multiple files (httpd.conf and magic) that will
be copied from the source build context to /etc/httpd/conf/, which is in the
image filesystem:

COPY httpd.conf magic /etc/httpd/conf/

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Building Images

[46]

The ADD instruction
The ADD instruction is similar to the COPY instruction. However, in addition to
the functionality supported by the COPY instruction, the ADD instruction can handle
the TAR files and the remote URLs. We can annotate the ADD instruction as COPY
on steroids.

The following is the syntax of the ADD instruction:

ADD <src> ... <dst>

The arguments of the ADD instruction are very similar to those of the COPY
instruction, as shown here:

• <src>: This is either the source directory or the file that is in the build
context or in the directory from where the docker build subcommand
will be invoked. However, the noteworthy difference is that the source
can either be a TAR file stored in the build context or be a remote URL.

• ...: This indicates that the multiple source files can either be specified
directly or be specified by using wildcards.

• <dst>: This is the destination path for the new image into which the source
file or directory will be copied.

Here is an example for demonstrating the procedure for copying multiple source files
to the various destination directories in the target image filesystem. In this example,
we have taken a TAR file (web-page-config.tar) in the source build context with
the http daemon configuration file and the files for the web pages are stored in the
appropriate directory structure, as shown here:

$ tar tf web-page-config.tar

etc/httpd/conf/httpd.conf

var/www/html/index.html

var/www/html/aboutus.html

var/www/html/images/welcome.gif

var/www/html/images/banner.gif

The next line in the Dockerfile content has an ADD instruction for copying the TAR
file (web-page-config.tar) to the target image and extracting the TAR file from the
root directory (/) of the target image, as shown here:

ADD web-page-config.tar /

Thus the TAR option of the ADD instruction can be used for copying multiple files to
the target image.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 3

[47]

The ENV instruction
The ENV instruction sets an environment variable in the new image. An environment
variable is a key-value pair, which can be accessed by any script or application. The
Linux applications use the environment variables a lot for a starting configuration.

The following line forms the syntax of the ENV instruction:

ENV <key> <value>

Here, the code terms indicate the following:

• <key>: This is the environment variable
• <value>: This is the value that is to be set for the environment variable

The following lines give two examples for the ENV instruction, where in the first line
DEBUG_LVL has been set to 3 and, in the second line, APACHE_LOG_DIR has been set to
/var/log/apache:

ENV DEBUG_LVL 3
ENV APACHE_LOG_DIR /var/log/apache

The USER instruction
The USER instruction sets the start up user ID or user Name in the new image.
By default, the containers will be launched with root as the user ID or UID.
Essentially, the USER instruction will modify the default user ID from root to
the one specified in this instruction.

The syntax of the USER instruction is as follows:

USER <UID>|<UName>

The USER instructions accept either <UID> or <UName> as its argument:

• <UID>: This is a numerical user ID
• <UName>: This is a valid user Name

The following is an example for setting the default user ID at the time of startup to
73. Here 73 is the numerical ID of the user:

USER 73

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Building Images

[48]

However, it is recommended that you have a valid user ID to match with the /etc/
passwd file, the user ID can contain any random numerical value. However, the user
Name must match with a valid user name in the /etc/passwd file, otherwise the
docker run subcommand will fail and it will display the following error message:

finalize namespace setup user get supplementary groups Unable to find
user

The WORKDIR instruction
The WORKDIR instruction changes the current working directory from / to the
path specified by this instruction. The ensuing instructions, such as RUN, CMD,
and ENTRYPOINT will also work on the directory set by the WORKDIR instruction.

The following line gives the appropriate syntax for the WORKDIR instruction:

WORKDIR <dirpath>

Here, <dirpath> is the path for the working directory to set in. The path can be
either absolute or relative. In case of a relative path, it will be relative to the previous
path set by the WORKDIR instruction. If the specified directory is not found in the
target image filesystem, then the director will be created.

The following line is a clear example of the WORKDIR instruction in a Dockerfile:

WORKDIR /var/log

The VOLUME instruction
The VOLUME instruction creates a directory in the image filesystem, which can later be
used for mounting volumes from the Docker host or the other containers.

The VOLUME instruction has two types of syntax, as shown here:

• The first type is either exec or JSON array (all values must be within double-
quotes (")):
VOLUME ["<mountpoint>"]

• The second type is shell, as shown here:

VOLUME <mountpoint>

In the preceding line, <mountpoint> is the mount point that has to be created
in the new image.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 3

[49]

The EXPOSE instruction
The EXPOSE instruction opens up a container network port for communicating
between the container and the external world.

The syntax of the EXPOSE instruction is as follows:

EXPOSE <port>[/<proto>] [<port>[/<proto>]...]

Here, the code terms mean the following:

• <port>: This is the network port that has to be exposed to the outside world.
• <proto>: This is an optional field provided for a specific transport protocol,

such as TCP and UDP. If no transport protocol has been specified, then TCP
is assumed to be the transport protocol.

The EXPOSE instruction allows you to specify multiple ports in a single line.

The following is an example of the EXPOSE instruction inside a Dockerfile exposing
the port number 7373 as a UDP port and the port number 8080 as a TCP port. As
mentioned earlier, if the transport protocol has not been specified, then the TCP
transport is assumed to be the transport protocol:

EXPOSE 7373/udp 8080

The RUN instruction
The RUN instruction is the real workhorse during the build time, and it can run any
command. The general recommendation is to execute multiple commands by using
one RUN instruction. This reduces the layers in the resulting Docker image because
the Docker system inherently creates a layer for each time an instruction is called in
Dockerfile.

The RUN instruction has two types of syntax:

• The first is the shell type, as shown here:
RUN <command>

Here, the <command> is the shell command that has to be executed during the
build time. If this type of syntax is to be used, then the command is always
executed by using /bin/sh -c.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Building Images

[50]

• The second syntax type is either exec or the JSON array, as shown here:

RUN ["<exec>", "<arg-1>", ..., "<arg-n>"]

Within this, the code terms mean the following:

 ° <exec>: This is the executable to run during the build time.
 ° <arg-1>, ..., <arg-n>: These are the variables (zero or more)

number of the arguments for the executable.

Unlike the first type of syntax, this type does not invoke /bin/sh -c. Therefore, the
types of shell processing, such as the variable substitution ($USER) and the wild card
substitution (*, ?), do not happen in this type. If shell processing is critical for you,
then you are encouraged to use the shell type. However, if you still prefer the exec
(JSON array type) type, then use your preferred shell as the executable and supply
the command as an argument.

For example, RUN ["bash", "-c", "rm", "-rf", "/tmp/abc"].

Now let's look at a few examples of the RUN instruction. In the first example, we will
use the RUN instruction for adding a greeting line to the .bashrc file in the target
image filesystem, as shown here:

RUN echo "echo Welcome to Docker!" >> /root/.bashrc

The second example is a Dockerfile, which has the instructions for crafting an
Apache2 application image on top of the Ubuntu 14.04 base image. The ensuing
steps will explain the Dockerfile instructions line by line:

1. We are going to build an image by using ubuntu:14.04 as the base image
using the FROM instruction, as shown here:
###
Dockerfile to build an Apache2 image
###
Base image is Ubuntu
FROM ubuntu:14.04

2. Set the author's details by using the MAINTAINER instruction, as shown here:
Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 3

[51]

3. By using one RUN instruction, we will synchronize the apt repository
source list, install the apache2 package, and then clean the retrieved files,
as shown here:

Install apache2 package
RUN apt-get update && \
 apt-get install -y apache2 && \
 apt-get clean

The CMD instruction
The CMD instruction can run any command (or application), which is similar to the RUN
instruction. However, the major difference between those two is the time of execution.
The command supplied through the RUN instruction is executed during the build time,
whereas the command specified through the CMD instruction is executed when the
container is launched from the newly created image. Therefore, the CMD instruction
provides a default execution for this container. However, it can be overridden by the
docker run subcommand arguments. When the application terminates, the container
will also terminate along with the application and vice versa.

The CMD instruction has three types of syntax, as shown here:

• The first syntax type is the shell type, as shown here:
CMD <command>

Within this, the <command> is the shell command, which has to be executed
during the launch of the container. If this type of syntax is used, then the
command is always executed by using /bin/sh -c.

• The second type of syntax is exec or the JSON array, as shown here:
CMD ["<exec>", "<arg-1>", ..., "<arg-n>"]

Within this, the code terms mean the following:

 ° <exec>: This is the executable, which is to be run during the
container launch time.

 ° <arg-1>, ..., <arg-n>: These are the variable (zero or more)
numbers of the arguments for the executable.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Building Images

[52]

• The third type of syntax is also exec or the JSON array, which is similar to the
previous type. However, this type is used for setting the default parameters
to the ENTRYPOINT instruction, as shown here:

CMD ["<arg-1>", ..., "<arg-n>"]

Within this, the code terms mean the following:

 ° <arg-1>, ..., <arg-n>: These are the variable (zero or more)
numbers of the arguments for the ENTRYPOINT instruction, which
will be explained in the next section.

Syntactically, you can add more than one CMD instruction in Dockerfile.
However, the build system would ignore all the CMD instructions except for the
last one. In other words, in the case of multiple CMD instructions, only the last
CMD instruction would be effective.

Here, in this example, let's craft an image by using Dockerfile with the CMD
instruction for providing a default execution, and then launching a container
by using the crafted image. The following is Dockerfile with a CMD instruction to
echo a text:

##
Dockerfile to demonstrate the behaviour of CMD
##
Build from base image busybox:latest
FROM busybox:latest
Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>
Set command for CMD
CMD ["echo", "Dockerfile CMD demo"]

Now, let's build a Docker image by using the docker build subcommand and cmd-
demo as the image name. The docker build system will read the instruction from
the Dockerfile, which is stored in the current directory (.), and craft the image
accordingly as shown here:

$ sudo docker build -t cmd-demo .

Having built the image, we can launch the container by using the docker run
subcommand, as shown here:

$ sudo docker run cmd-demo

Dockerfile CMD demo

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 3

[53]

Cool, isn't it? We have given a default execution for our container and our container
has faithfully echoed Dockerfile CMD demo. However, this default execution can be
easily overridden by passing another command as an argument to the docker run
subcommand, as shown in the following example:

$ sudo docker run cmd-demo echo Override CMD demo

Override CMD demo

The ENTRYPOINT instruction
The ENTRYPOINT instruction will help in crafting an image for running an application
(entry point) during the complete life cycle of the container, which would have
been spun out of the image. When the entry point application is terminated, the
container would also be terminated along with the application and vice versa.
Therefore, the ENTRYPOINT instruction would make the container function like an
executable. Functionally, ENTRYPOINT is akin to the CMD instruction, but the major
difference between the two is that the entry point application is launched by using
the ENTRYPOINT instruction, which cannot be overridden by using the docker run
subcommand arguments. However, these docker run subcommand arguments will
be passed as additional arguments to the entry point application. Having said this,
Docker provides a mechanism for overriding the entry point application through the
--entrypoint option in the docker run subcommand. The --entrypoint option
can accept only word as its argument, and so it has limited functionality.

Syntactically, the ENTRYPOINT instruction is very similar to the RUN and CMD
instructions, and it has two types of syntax, as shown here:

• The first type of syntax is the shell type, as shown here:
ENTRYPOINT <command>

Here, <command> is the shell command, which is executed during the launch
of the container. If this type of syntax is used, then the command is always
executed by using /bin/sh -c.

• The second type of syntax is exec or the JSON array, as shown here:

ENTRYPOINT ["<exec>", "<arg-1>", ..., "<arg-n>"]

Within this, the code terms mean the following:

 ° <exec>: This is the executable, which has to be run during the
container launch time.

 ° <arg-1>, ..., <arg-n>: These are the variable (zero or more)
numbers of arguments for the executable.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Building Images

[54]

Syntactically, you can have more than one ENTRYPOINT instruction in a Dockerfile.
However, the build system will ignore all the ENTRYPOINT instructions except the last
one. In other words, in the case of multiple ENTRYPOINT instructions, only the last
ENTRYPOINT instruction will be effective.

In order to gain a better understanding of the ENTRYPOINT instruction, let's craft an
image by using Dockerfile with the ENTRYPOINT instruction, and then launching
a container by using the crafted image. The following is Dockerfile with an
ENTRYPOINT instruction to echo a text:

##
Dockerfile to demonstrate the behaviour of ENTRYPOINT
##
Build from base image busybox:latest
FROM busybox:latest
Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>
Set entrypoint command
ENTRYPOINT ["echo", "Dockerfile ENTRYPOINT demo"]

Now, let's build a Docker image by using the docker build as the subcommand and
entrypoint-demo as the image name. The docker build system would read the
instruction from Dockerfile stored in the current directory (.) and craft the image,
as shown here:

$ sudo docker build -t entrypoint-demo .

Having built the image, we can launch the container by using the docker run
subcommand:

$ sudo docker run entrypoint-demo

Dockerfile ENTRYPOINT demo

Here, the container will run like an executable by echoing the Dockerfile
ENTRYPOINT demo string and then it will exit immediately. If we pass any additional
arguments to the docker run subcommand, then the additional argument would
be passed to the entry point command. The following is a demonstration of
launching the same image with the additional arguments given to the docker run
subcommand:

$ sudo docker run entrypoint-demo with additional arguments

Dockerfile ENTRYPOINT demo with additional arguments

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 3

[55]

Now, let's see an example where we override the build time entry point application
with the --entrypoint option and then launch a shell (/bin/sh) in the docker run
subcommand, as shown here:

$ sudo docker run --entrypoint="/bin/sh" entrypoint-demo

/ #

The ONBUILD instruction
The ONBUILD instruction registers a build instruction to an image and this
is triggered when another image is built by using this image as its base image.
Any build instruction can be registered as a trigger and those instructions will be
triggered immediately after the FROM instruction in the downstream Dockerfile.
Therefore, the ONBUILD instruction can be used to defer the execution of the build
instruction from the base image to the target image.

The syntax of the ONBUILD instruction is as follows:

ONBUILD <INSTRUCTION>

Within this, <INSTRUCTION> is another Dockerfile build instruction, which will
be triggered later. The ONBUILD instruction does not allow the chaining of another
ONBUILD instruction. In addition, it does not allow the FROM and MAINTAINER
instructions as ONBUILD triggers.

Here is an example of the ONBUILD instruction:

ONBUILD ADD config /etc/appconfig

The .dockerignore file
In the Docker's integrated image building system section, we learnt that the docker
build process will send the complete build context to the daemon. In a practical
environment, the docker build context will contain many other working files and
directories, which would never be built into the image. Nevertheless, the docker
build system would still send those files to the daemon. So, you may be wondering
how you can optimize the build process by not sending these working files to the
daemon. Well, the folks behind Docker too have thought about that and given a very
simple solution: using a .dockerignore file.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Building Images

[56]

The.dockerignore is a newline-separated TEXT file, wherein you can provide
the files and the directories which are to be excluded from the build process.
The exclusion list in the file can have both the fully specified file or directory name
and the wild cards.

The following snippet is a sample .dockerignore file through which the build
system has been instructed to exclude the .git directory and all the files that
have the.tmp extension:

.git
*.tmp

A brief overview of the Docker image
management
As we have seen in the previous chapter and this chapter, there are many ways of
getting a handle on a Docker image. You could download a fully set up application
stack from the public repository by using the docker pull subcommand. Otherwise
you could craft your own application stack either manually by using the docker
commit subcommand or automatically by using Dockerfile and the docker build
subcommand combination.

The Docker images are being positioned as the key building-blocks of the
containerized applications that, in turn, enable the realization of distributed
applications, which will be deployed on the cloud servers. The Docker images are
built in layers, that is, the images can be built on top of other images. The original
image is called the parent image and the one that is generated is called the child
image. The base image is a bundle, which comprises an application's common
dependencies. Each change that is made to the original image is stored as a separate
layer. Each time you commit to a Docker image, you will create a new layer on the
Docker image, and each change that is made to the original image will be stored as
a separate layer. As the reusability of the layers is facilitated, making new Docker
images becomes simple and fast. You can create a new Docker image by changing a
single line in Dockerfile and you do not need to rebuild the whole stack.

Now that we have learnt about the layers in the Docker image, you may be
wondering how one could visualize these layers in a Docker image. Well,
the docker history subcommand is an excellent and handy tool for visualizing
the image layers.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 3

[57]

Let's see a practical example to better understand the layering in the Docker images.
For this purpose, let's follow these three steps:

1. Here, we have Dockerfile with the instructions for automatically building
the Apache2 application image on top of the Ubuntu 14.04 base image. The
RUN section of the previously crafted and used Dockerfile of this chapter
will be reused in this section, as shown here:
###
Dockerfile to build an Apache2 image
###
Base image is Ubuntu
FROM ubuntu:14.04
Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>
Install apache2 package
RUN apt-get update && \
 apt-get install -y apache2 && \
 apt-get clean

2. Now craft an image from the preceding Dockerfile by using the docker
build subcommand, as shown here:
$ sudo docker build -t apache2 .

3. Finally, let's visualize the layers in the Docker image by using the docker
history subcommand:
$ sudo docker history apache2

4. This will produce a detailed report on each layer of the apache2 Docker
image, as shown here:

IMAGE CREATED CREATED BY SIZE

aa83b67feeba 2 minutes ago /bin/sh -c apt-get update &&
apt-get inst 35.19 MB

c7877665c770 3 minutes ago /bin/sh -c #(nop) MAINTAINER
Dr. Peter <peter 0 B

9cbaf023786c 6 days ago /bin/sh -c #(nop) CMD
[/bin/bash] 0 B

03db2b23cf03 6 days ago /bin/sh -c apt-get update &&
apt-get dist-upg 0 B

8f321fc43180 6 days ago /bin/sh -c sed -i
's/^#\s*\(deb.*universe\)$/ 1.895 kB

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Building Images

[58]

6a459d727ebb 6 days ago /bin/sh -c rm -rf
/var/lib/apt/lists/* 0 B

2dcbbf65536c 6 days ago /bin/sh -c echo '#!/bin/sh' >
/usr/sbin/polic 194.5 kB

97fd97495e49 6 days ago /bin/sh -c #(nop) ADD
file:84c5e0e741a0235ef8 192.6 MB

511136ea3c5a 16 months ago 0 B

Here, the apache2 image is made up of ten image layers. The top two layers, the
layers with image IDs aa83b67feeba and c7877665c770, are the result of RUN and
MAINTAINER instructions in our Dockerfile. The remaining eight layers of the image
will be pulled from the repository by the FROM instruction in our Dockerfile.

Best practices for writing Dockerfiles
It is an undisputable truth that a set of best practices always plays an indispensable
role in elevating any new technology. There is a well-written document listing all
the best practices for crafting a Dockerfile. We found it incredible, and so, we
wanted to share it for your benefit. You can find it at https://docs.docker.com/
articles/dockerfile_best-practices/.

Summary
Building the Docker images is a critical aspect of the Docker technology for
streamlining the arduous task of containerization. As indicated before, the Docker
initiative has turned out to be disruptive and transformative for the containerization
paradigm. Dockerfile is the most prominent way for producing the competent Docker
images, which can be used meticulously. We have illustrated all the commands, their
syntax, and their usage techniques in order to empower you with all the easy-to-grasp
details, and this will simplify the image-building process for you. We have supplied
a bevy of examples in order to substantiate the inner meaning of each command. In
the next chapter, we are going to discuss the Docker Hub, which is a well-designated
store for storing and sharing the Docker images, and we will also discuss its profound
contribution to the penetration of the containerization concept into the IT enterprises.

www.itbook.store/books/9781784397937

https://docs.docker.com/articles/dockerfile_best-practices/
https://docs.docker.com/articles/dockerfile_best-practices/
https://itbook.store/books/9781784397937

[59]

Publishing Images
In the previous chapter, we learned how to build Docker images. The next logical
step is to publish these images in a public repository for public discovery and
consumption. So, this chapter focuses on publishing images on the Docker Hub,
and how to get the most out of the Docker Hub. We can create a new Docker image,
using a commit command and a Dockerfile, build on it, and push it to the Docker
Hub. The concept of a trusted repository will be discussed. This trusted repository
is created from GitHub or Bitbucket. This can then be integrated with the Docker
Hub to automatically build images, as a result of updates in the repository. This
repository on GitHub is used to store the Dockerfile, which was previously created.
Also, we will illustrate how worldwide organizations can enable their teams of
developers to craft and contribute a variety of Docker images to be deposited in the
Docker Hub. The Docker Hub REST APIs can be used for user management and
manipulation of repository programmatically.

The following topics are covered in this chapter:

• Understanding the Docker Hub
• How to push images to the Docker Hub
• Automatic building of images
• Private repositories on the Docker Hub
• Creating organizations on the Docker Hub
• The Docker Hub REST API

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Publishing Images

[60]

Understanding the Docker Hub
The Docker Hub is a central place used for keeping the Docker images either in a
public or private repository. The Docker Hub provides features, such as a repository
for Docker images, user authentications, automated image builds, integration with
GitHub or Bitbucket, and managing organizations and groups. The Docker Registry
component of the Docker Hub manages the repository.

Docker Registry is a storage system used to store the images. Automated build is a
feature of the Docker Hub, which is not open source yet, at the time of writing this
book. The following diagram shows the typical features:

In order to work with the Docker Hub, you have to register with the Docker Hub,
and create an account using the link at https://hub.docker.com/account/signup.
You can update the Username, Password, and Email Address, as shown in the
following screenshot:

www.itbook.store/books/9781784397937

https://hub.docker.com/account/signup
https://itbook.store/books/9781784397937

Chapter 4

[61]

After completing the Sign Up process, you need to complete the verification received
in an e-mail. After the e-mail verification is completed, you will see something
similar to the following screenshot, when you login to the Docker Hub:

The creation of an account in the Docker Hub is completed successfully, and now
you can log in to your Docker Hub account using https://hub.docker.com/
account/login/?next=/account/welcome/, as shown in the following screenshot:

www.itbook.store/books/9781784397937

https://hub.docker.com/account/login/?next=/account/welcome/
https://hub.docker.com/account/login/?next=/account/welcome/
https://itbook.store/books/9781784397937

Publishing Images

[62]

The Docker Hub also supports command-line access to the Docker Hub using a
Ubuntu terminal:

ubuntu@ip-172-31-21-44:~$ sudo docker login

Username: vinoddandy

Password:

Email: vinoddandy@gmail.com

After a successful login, the output is as follows:

Login Succeeded

You can browse the available images in the Docker Hub, which are as follows:

Also, you can see your settings, update your profile, and get the details of the
supported communities, such as Twitter, stackoverflow, #IRC, Google Groups,
and GitHub.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 4

[63]

Pushing images to the Docker Hub
Here, we will create a Docker image on the local machine, and push this image
to the Docker Hub. You need to perform the following steps in this section:

1. Create a Docker image on the local machine by doing one of the following:
 ° Using the docker commit sub command
 ° Using the docker commit sub command with Dockerfile

2. Push this created image to the Docker Hub.
3. Delete the image from the Docker Hub.

We will use the Ubuntu base image, run the container, add a new directory and
a new file, and then create a new image. In Chapter 3, Building Images, we have seen
the creation of the Docker image using Dockerfile. You may refer to this to check
for details of the Dockerfile syntax.

We will run the container with the name containerforhub from the base ubuntu
image, as shown in the following terminal code:

$ sudo docker run -i --name="containerforhub" -t ubuntu /bin/bash

root@e3bb4b138daf:/#

Next, we'll create a new directory and file in the containerforhub container.
We will also update the new file with some sample text to test later:

root@bd7cc5df6d96:/# mkdir mynewdir

root@bd7cc5df6d96:/# cd mynewdir

root@bd7cc5df6d96:/mynewdir# echo 'this is my new container to make
image and then push to hub' >mynewfile

root@bd7cc5df6d96:/mynewdir# cat mynewfile

This is my new container to make image and then push to hub

root@bd7cc5df6d96:/mynewdir#

Let's build the new image with the docker commit command from the container,
which has just been created. Note that the commit command would be executed
from the host machine, from where the container is running, and not from inside
this container:

$ sudo docker commit -m="NewImage" containerforhub
vinoddandy/imageforhub

3f10a35019234af2b39d5fab38566d586f00b565b99854544c4c698c4a395d03

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Publishing Images

[64]

Now, we have a new Docker image available on the local machine with the
vinoddandy/imageforhub name. At this point in time, a new image with
mynewdir and mynewfile is created locally.

We will log in to the Docker Hub using the sudo docker login command, as
discussed earlier in this chapter.

Let's push this image to the Docker Hub from the host machine:

$ sudo docker push vinoddandy/imageforhub

The push refers to a repository [vinoddandy/imageforhub] (len: 1)

Sending image list

Pushing tag for rev [c664d94bbc55] on {https://cdn-registry-
1.docker.io/v1/repositories/vinoddandy/imageforhub/tags/latest
}

Now, we'll login to the Docker Hub and verify the image in Repositories.

To test the image from the Docker Hub, let's remove this image from the local
machine. To remove the image, first we need to stop the container and then
delete the container:

$ sudo docker stop containerforhub

$ sudo docker rm containerforhub

$

We will also delete the vinoddandy/imageforhub image:

$ sudo docker rmi vinoddandy/imageforhub

We will pull the newly created image from the Docker Hub, and run the new
container on the local machine:

$ sudo docker run -i --name="newcontainerforhub" -t
vinoddandy/imageforhub /bin/bash

Unable to find image 'vinoddandy/imageforhub' locally

Pulling repository vinoddandy/imageforhub

c664d94bbc55: Pulling image (latest) from vinoddandy/imageforhub,
endpoint: http

c664d94bbc55: Download complete

5506de2b643b: Download complete

root@9bd40f1b5585:/# cat /mynewdir/mynewfile

This is my new container to make image and then push to hub

root@9bd40f1b5585:/#

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 4

[65]

So, we have pulled the latest image from the Docker Hub and created the container
with the new image vinoddandy/imageforhub. Make a note that the Unable to
find image 'vinoddandy/imageforhub' locally message confirms that the
image is downloaded from the remote repository of the Docker Hub.

The text in mynewfile verifies that it is the same image, which was created earlier.

Finally, we will delete the image from the Docker Hub using https://registry.
hub.docker.com/u/vinoddandy/imageforhub/ and then click on Delete
Repository, as shown in the following screenshot:

We'll again create this image but using the Dockerfile process. So, let's create the
Docker image using the Dockerfile concept explained in Chapter 3, Building Images,
and push this image to the Docker Hub.

The Dockerfile on the local machine is as follows:

###
Dockerfile to build a new image
###
Base image is Ubuntu
FROM ubuntu:14.04
Author: Dr. Peter

www.itbook.store/books/9781784397937

https://registry.hub.docker.com/u/vinoddandy/imageforhub/
https://registry.hub.docker.com/u/vinoddandy/imageforhub/
https://itbook.store/books/9781784397937

Publishing Images

[66]

MAINTAINER Dr. Peter <peterindia@gmail.com>
create 'mynewdir' and 'mynewfile'
RUN mkdir mynewdir
RUN touch /mynewdir/mynewfile
Write the message in file
RUN echo 'this is my new container to make image and then push to
hub' \
 >/mynewdir/mynewfile

Now we build the image locally using the following command:

$ sudo docker build -t="vinoddandy/dockerfileimageforhub" .

Sending build context to Docker daemon 2.56 kB

Sending build context to Docker daemon

Step 0 : FROM ubuntu:14.04

---> 5506de2b643b

Step 1 : MAINTAINER Vinod Singh <vinod.puchi@gmail.com>

---> Running in 9f6859e2ca75

---> a96cfbf4a810

removing intermediate container 9f6859e2ca75

Step 2 : RUN mkdir mynewdir

---> Running in d4eba2a31467

---> 14f4c15610a7

removing intermediate container d4eba2a31467

Step 3 : RUN touch /mynewdir/mynewfile

---> Running in 7d810a384819

---> b5bbd55f221c

removing intermediate container 7d810a384819

Step 4 : RUN echo 'this is my new container to make image and then
push to hub'

/mynewdir/mynewfile

---> Running in b7b48447e7b3

---> bcd8f63cfa79

removing intermediate container b7b48447e7b3

successfully built 224affbf9a65

ubuntu@ip-172-31-21-44:~/dockerfile_image_hub$

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 4

[67]

We'll run the container using this image, as shown here:

$ sudo docker run -i --name="dockerfilecontainerforhub" –t
vinoddandy/dockerfileimageforhub

root@d3130f21a408:/# cat /mynewdir/mynewfile

this is my new container to make image and then push to hub

This text in mynewdir confirms that the new image is built properly with a new
directory and a new file.

Repeat the login process, in the Docker Hub, and push this newly created image:

$ sudo docker login

Username (vinoddandy):

Login Succeeded

$ sudo docker push vinoddandy/dockerfileimageforhub

The push refers to a repository [vinoddandy/dockerfileimageforhub]
(len: 1)

Sending image list

Pushing repository vinoddandy/dockerfileimageforhub (1 tags)

511136ea3c5a: Image already pushed, skipping

d497ad3926c8: Image already pushed, skipping

b5bbd55f221c: Image successfully pushed

bcd8f63cfa79: Image successfully pushed

224affbf9a65: Image successfully pushed

Pushing tag for rev [224affbf9a65] on
{https://cdn-registry-1.docker.io/v1/repos

itories/vinoddandy/dockerfileimageforhub/tags/latest}

$

Finally, we can verify the availability of the image on the Docker Hub:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Publishing Images

[68]

Automating the building process for
images
We learnt how to build images locally and push those images to the Docker Hub.
The Docker Hub also has the capability to automatically build the image from
Dockerfile kept in the repository of GitHub or Bitbucket. Automated builds
are supported on both private and public repositories of GitHub and Bitbucket.
The Docker Hub Registry keeps all the automated build images. The Docker Hub
Registry is based on open source and can be accessed from https://github.com/
docker/docker-registry.

We will discuss the steps needed to implement the automated build process:

1. We first connect the Docker Hub to my GitHub account.
Login to the Docker Hub, and click on View Profile and then navigate to
Add Repository | Automated Build, as shown in the following screenshot:

2. We now select GitHub:

www.itbook.store/books/9781784397937

https://github.com/docker/docker-registry
https://github.com/docker/docker-registry
https://itbook.store/books/9781784397937

Chapter 4

[69]

3. Once GitHub is selected, it will ask for authorization. Here, we will select
Public and Private, as shown here:

4. After clicking on Select, it will now show your GitHub repository:

5. Click on the Select button of your repository vinodsinghh/
dockerautomationbuild, shown in the preceding screenshot:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Publishing Images

[70]

6. We choose the default branch and update the tag with Githubimage.
Also, we will keep the location as its default value, which is the root
of our Docker Hub, as shown in the following screenshot:

7. Finally, we will click on Create Repository, as shown in the
preceding screenshot:

8. Click on build details to track your build status, as shown in the preceding
screenshot. It will lead you to the following screenshot:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 4

[71]

So, whenever the Dockerfile is updated in GitHub, the automated build gets
triggered, and a new image will be stored in the Docker Hub Registry. We can
always check the build history. We can change the Dockerfile on the local machine
and push to GitHub. Then, we can see the automated build link of the Docker Hub
at https://registry.hub.docker.com/u/vinoddandy/dockerautomatedbuild/
builds_history/82194/.

Private repositories on the Docker Hub
The Docker Hub provides both a public and private repository. The public repository
is free to users and private is a paid service. The plans with private repositories are
available in different sizes, such as a micro, small, medium, or large subscription.

Docker has published their public repository code to open source at
https://github.com/docker/docker-registry.

Normally, enterprises will not like to keep their Docker images either in a Docker
public or private repository. They prefer to keep, maintain, and support their own
repository. Hence, Docker also provides the option for enterprises to create and
install their own repository.

Let's create a repository in the local machine using the registry image provided by
Docker. We will run the registry container on the local machine, using the registry
image from Docker:

$ sudo docker run -p 5000:5000 -d registry

768fb5bcbe3a5a774f4996f0758151b1e9917dec21aedf386c5742d44beafa41

In the automated build section, we built the vinoddandy/dockerfileforhub
image. Let's tag the image ID 224affbf9a65 to our locally created registry
image. This tagging of the image is needed for unique identification inside the local
repository. This image registry may have multiple variants in the repository, so
this tag will help you identify the particular image:

$ sudo docker tag
224affbf9a65localhost:5000/vinoddandy/dockerfileimageforhub

Once the tagging is done, push this image to a new registry using the docker push
command:

$ sudo docker push localhost:5000/vinoddandy/dockerfile

imageforhub

www.itbook.store/books/9781784397937

https://registry.hub.docker.com/u/vinoddandy/dockerautomatedbuild/builds_history/82194/
https://registry.hub.docker.com/u/vinoddandy/dockerautomatedbuild/builds_history/82194/
https://github.com/docker/docker-registry
https://itbook.store/books/9781784397937

Publishing Images

[72]

The push refers to a repository
[localhost:5000/vinoddandy/dockerfileimageforhub

] (len: 1)

Sending image list

Pushing repository localhost:5000/vinoddandy/dockerfileimageforhub (1
tags)

511136ea3c5a: Image successfully pushed

d497ad3926c8: Image successfully pushed

--

224affbf9a65: Image successfully pushed

Pushing tag for rev [224affbf9a65] on
{http://localhost:5000/v1/repositories/vin

oddandy/dockerfileimageforhub/tags/latest}

ubuntu@ip-172-31-21-44:~$

Now, the new image is available in the local repository. You can now retrieve
this image from the local registry and run the container. This task is left for
you to complete.

Organizations and teams on the
Docker Hub
One of the useful aspects of private repositories is that you can share them only
with members of your organization or team. The Docker Hub lets you create
organizations, where you can collaborate with your colleagues and manage private
repositories. You can learn how to create and manage an organization.

The first step is to create an organization on the Docker Hub, as shown in the
following screenshot:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 4

[73]

Inside your organization, you can add more organizations, and then add members
to it:

The members of your organization and group can collaborate with the organization
and teams. This feature would be more useful in case of a private repository.

The REST APIs for the Docker Hub
The Docker Hub provides a REST API to integrate the Hub capabilities through
programs. The REST API is supported for both user as well as repository
management.

User management supports the following features:

• User Login: This is used for user login to the Docker Hub:
GET /v1/users

$ curl --raw -L --user vinoddandy:password
https://index.docker.io/v1/users

4

"OK"

0

$

• User Register: This is used for registration of a new user:
POST /v1/users

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Publishing Images

[74]

• Update user: This is used to update the user's password and e-mail:

PUT /v1/users/(usename)/

Repository management supports the following features:

• Create a user repository: This creates a user repository:
PUT /v1/repositories/(namespace)/(repo_name)/

$ curl --raw -L -X POST --post301 -H "Accept:application/json"
-H "Content-Type: application/json" --data-ascii '{"email":
"singh_vinod@yahoo.com", "password": "password", "username":
"singhvinod494" }' https://index.docker.io/v1/users

e

"User created"

0

After you create repositories, your repositories will be listed here, as shown
in this screenshot:

• Delete a user repository: This deletes a user repository:
DELETE /v1/repositories/(namespace)/(repo_name)/

• Create a library repository: This creates the library repository, and it is
available only to Docker administrators:
PUT /v1/repositories/(repo_name)/

• Delete a library repository: This deletes the library repository, and it is
available only to Docker administrators:
DELETE /v1/repositories/(repo_name)/

• Update user repository images: This updates the images of a user's
repository:
PUT /v1/repositories/(namespace)/(repo_name)/images

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 4

[75]

• List user repository images: This lists the images of a user's repository:
GET /v1/repositories/(namespace)/(repo_name)/images

• Update library repository images: This updates the images of a library
repository:
PUT /v1/repositories/(repo_name)/images

• List library repository images: This lists the images of a library repository:
GET /v1/repositories/(repo_name)/images

• Authorize a token for a library repository: This authorizes a token for a
library repository:
PUT /v1/repositories/(repo_name)/auth

• Authorize a token for a user repository: This authorizes a token for a
user's repository:

PUT /v1/repositories/(namespace)/(repo_name)/auth

Summary
Docker images are the most prominent building blocks used for deriving
real-world Docker containers that can be exposed as a service over any network.
Developers can find and check images for their unique capabilities, and use
them accordingly for their own purposes in bringing up highly usable, publicly
discoverable, network-accessible, and cognitively composable containers. All the
crafted images need to be put in a public registry repository. In this chapter, we
clearly explained how to publish images in a repository. We also talked about the
trusted repositories and their distinct characteristics. Finally, we demonstrated how
the REST API for the repository can be leveraged to push in and play around with
Docker images and user management programmatically.

The Docker images need to be stored in a public, controlled, and network-accessible
location to be readily found and leveraged by worldwide software engineers and
system administrators. The Docker Hub is being touted as the best-in-class method
for centrally aggregating, curating, and managing Docker images, originating from
Docker enthusiasts (internal as well as external). However, enterprises cannot
afford to keep their Docker images in a public domain, and hence, the next chapter
is dedicated to expose the steps needed for image deployment and management in
private IT infrastructures.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[77]

Running Your Private Docker
Infrastructure

In Chapter 4, Publishing Images, we discussed Docker images and clearly understood
that Docker containers are the runtime implementations of Docker images. Docker
images and containers are in plenty these days, as the containerization paradigm has
taken the IT domain by storm. Therefore, there is a need for worldwide enterprises
to keep their Docker images in their own private infrastructure for security
considerations. So, the concept of deploying a Docker Hub to our own infrastructure
has emerged and evolved. Docker Hubs are paramount and pertinent to register
and then deposit the growing array of Docker images. Primarily, a Docker Hub is
specially made to centralize and centrally manage information on:

• User accounts
• Checksums of the images
• Public namespaces

This chapter is developed with an a focus on providing all the relevant information
to enable you and Docker container crafters to design, populate, and run their own
private Docker Hubs in their own backyards. This chapter covers the following
important topics:

• The Docker registry and index
• Docker registry use cases
• Run your own index and registry
• Push the image to a newly created registry

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Your Private Docker Infrastructure

[78]

The Docker registry and index
Typically, a Docker Hub consists of a Docker index and registry. Docker clients can
connect and interact with the Docker Hubs over a network. The registry has the
following characteristics:

• It stores the images and graphs for a set of repositories
• It does not have user accounts data
• It has no notion of user accounts or authorization
• It delegates the authentication and authorization to the Docker Hub

Authentication service
• It supports different storage backends (S3, cloud files, local filesystem,

and so on)
• It doesn't have a local database
• It has a source code associated with it

The advanced features of the Docker registry include bugsnag, new relic, and
cors. The bugsnag feature detects and diagnoses crashes in applications, new relic
encapsulates the registry and monitors performance, and cors can be enabled to
share resources outside our own registry domain. It is recommended that you deploy
the registry to production environments using a proxy, such as nginx. You can also
run the Docker registry directly on Ubuntu and Red Hat Linux-based systems.

Currently, the firm in charge of developing the Docker platform has released the
Docker registry as an open source service on GitHub at https://github.com/
docker/docker-registry. It is important to note that the Docker index is only a
recommendation and nothing has been released by Docker as an open source project
at the time of writing this book. In this chapter, we will start with a use case of the
Docker registry, and then start with the actual deployment of the index elements and
the Docker registry from GitHub.

Docker registry use cases
The following are the use cases of the Docker registry:

1. Pull or download an image
2. Push an image
3. Delete an image

www.itbook.store/books/9781784397937

https://github.com/docker/docker-registry
https://github.com/docker/docker-registry
https://itbook.store/books/9781784397937

Chapter 5

[79]

We will now go through each of these use cases in detail:

1. Pull or download an image: The user requests an image using the Docker
client from the index, the index, in turn responds back to the user with the
registry details. Then, the Docker client will directly request the registry to
get the required image. The registry authenticates the user with an index
internally. As shown in the following diagram, image pulling is accomplished
with the collaboration of the client, index, and registry modules:

Pull Image 3. Respond with registry
location and token

1. Request to
download an image 5. Respond true/false

4. Confirm token with
Index

6. Allows user to
download image

2. Respond with registry
location and token

RegistryDocker Client Index

2. Push an image: A user requests to push the image, gets the registry
information from the index, and then pushes the image directly to the
registry. The registry authenticates the user with the index and, finally,
responds to the user. The control flow is illustrated in the following diagram:

Pull Image 3. Push Image to Registry

1. Request to
download an image 5. Validate Token

4. Verify Token

6. Reads the image
streaming

2. Respond with
temporary token

RegistryDocker Client Index

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Your Private Docker Infrastructure

[80]

3. Delete an image: The user can also request to delete an image from
the repository.

The user has the option to use the registry with or without the index. Use
of the registry, without the index, is best suited for storing private images.

Run your own index and registry
In this section, we will perform the following steps to run our own index and
registry, and finally, push the image:

1. Deployment of the index components and the registry from GitHub.
2. Configuration of nginx with the Docker Registry.
3. Set up SSL on the web server for secure communication.

Step 1 – Deployment of the index components
and the registry from GitHub
The index components include apache-utils and ngnix for password
authentication and the SSL feature for HTTPS support. The user must note that the
current version of the Docker registry supports only HTTP to connect to the registry.
So, it is mandatory for the user to deploy and use Secure Sockets Layer (SSL) to
secure the data. SSL creates an encrypted connection between a web server and the
client's web browser that allows private data to be transmitted without the issues of
eavesdropping, data tampering, or message forgery. This is a proven way of securing
the data using SSL certificates that is widely accepted.

The Docker registry is a Python application, and we can install Python on the local
Ubuntu machine from https://github.com/docker/docker-registry, using the
following command:

$ sudo apt-get -y install build-essential python-dev \

 libevent-dev python-pip liblzma-dev swig libssl-dev

Now, install the Docker registry:

$ sudo pip install docker-registry

This will update the Docker registry in the Python package and update the
configuration file in the following path:

$ cd /usr/local/lib/python2.7/dist-
packages/config/

www.itbook.store/books/9781784397937

https://github.com/docker/docker-registry
https://itbook.store/books/9781784397937

Chapter 5

[81]

Copy the config_sample.yml file to config.yml:

$ sudo cp config_sample.yml config.yml

Docker, by default, saves its data in the /tmp directory, which can create problems
because the /tmp folder is cleared on reboot on many Linux systems. Let's create a
permanent folder to store our data:

$ sudo mkdir /var/docker-registry

Let's update our preceding config.yml file for this updated path for the following
two locations. The updated code for the first location will look like this:

sqlalchemy_index_database:
 _env:SQLALCHEMY_INDEX_DATABASE:sqlite:////var/docker-
registry/docker-registry.db

The following is the code for the second location:

local: &local
 storage: local
 storage_path: _env:STORAGE_PATH:/var/docker-registry/registry

The other default configuration of the config.yml file works fine.

Now, let's start the Docker registry using gunicorn. Gunicorn, also known as
Green Unicorn, is a Python Web Server Gateway Interface (WSGI) HTTP server
for Linux systems:

$ sudo gunicorn --access-logfile - --debug -k gevent -b \

 0.0.0.0:5000 -w 1 docker_registry.wsgi:application

01/Dec/2014:04:59:23 +0000 WARNING: Cache storage disabled!

01/Dec/2014:04:59:23 +0000 WARNING: LRU cache disabled!

01/Dec/2014:04:59:23 +0000 DEBUG: Will return docker-
registry.drivers.file.Storage

Now, the Docker registry is up and running as a process on the user's local machine.

We can stop this process using Ctrl + C.

We can start a Linux service as follows:

1. Make a directory for the docker-registry tool:
$ sudo mkdir -p /var/log/docker-registry

2. Create and update the file for the Docker registry configuration:
$ sudo vi /etc/init/docker-registry.conf

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Your Private Docker Infrastructure

[82]

3. Update the following content in the file:
description "Docker Registry"
start on runlevel [2345]
stop on runlevel [016]
respawn
respawn limit 10 5
script
exec gunicorn --access-logfile /var/log/docker-
registry/access.log --error-logfile /var/log/docker-
registry/server.log -k gevent --max-requests 100 --
graceful-timeout 3600 -t 3600 -b localhost:5000 -w 8
docker_registry.wsgi:application
end script

4. After saving the file, run the Docker registry service:
$ sudo service docker-registry start

docker-registry start/running, process 25760

5. Now secure this registry using apache-utils, by enabling the password
protected feature, as shown here:
$ sudo apt-get -y install nginx apache2-utils

6. The user creates a login ID and password to access the Docker registry:
$ sudo htpasswd -c /etc/nginx/docker-registry.htpasswd vinod1

7. Enter the new password when prompted. At this point, we have the login ID
and password to access the Docker registry.

Step 2 – Configuration of nginx with the
Docker registry
Next, we need to tell nginx to use that authentication file (created in step 6 and step 7
of the previous section) to forward requests to our Docker registry.

We need to create the nginx configuration file. To do this, we need to follow
these steps:

1. We create the ngnix configuration file by running the following command:
$ sudo vi /etc/nginx/sites-available/docker-registry

Update the file with the following content:

upstream docker-registry {
 server localhost:5000;

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 5

[83]

}
server {
 listen 8080;
 server_name my.docker.registry.com;
 # ssl on;
 # ssl_certificate /etc/ssl/certs/docker-registry;
 # ssl_certificate_key /etc/ssl/private/docker-registry;
 proxy_set_header Host $http_host; # required for
Docker client sake
 proxy_set_header X-Real-IP $remote_addr; # pass on real
client IP
 client_max_body_size 0; # disable any limits to avoid HTTP
413 for large image uploads
 # required to avoid HTTP 411: see Issue #1486
(https://github.com/dotcloud/docker/issues/1486)
 chunked_transfer_encoding on;
 location / {
 # let Nginx know about our auth file
 auth_basic "Restricted";
 auth_basic_user_file docker-registry.htpasswd;
 proxy_pass http://docker-registry;
 } location /_ping {
 auth_basic off;
 proxy_pass http://docker-registry;
 } location /v1/_ping {
 auth_basic off;
 proxy_pass http://docker-registry;
 }
}

2. Make the soft link and restart the ngnix service:
$ sudo ln -s /etc/nginx/sites-available/docker-registry \

 /etc/nginx/sites-enabled/docker-registry

$ sudo service nginx restart

3. Let's check whether everything works fine. Run the following command,
and we should get this output:

$ sudo curl localhost:5000

"\"docker-registry server\""

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Your Private Docker Infrastructure

[84]

Great! So now we have the Docker registry running. Now, we have to check whether
nginx worked as we expected it to. To do this, run the following command:

$ curl localhost:8080

This time, we will get an unauthorized message:

<html>
<head><title>401 Authorization Required</title></head>
<body bgcolor="white">
<center><h1>401 Authorization Required</h1></center>
<hr><center>nginx/1.4.6 (Ubuntu)</center>
</body>
</html>

Let's log in using the password created earlier:

$ curl vinod1:vinod1@localhost:8080

"\"docker-registry server\""ubuntu@ip-172-31-21-44:~$

This confirms that your Docker registry is password protected.

Step 3 – Set up SSL on the web server for
secure communication
This is the final step to set up SSL on a local machine, which hosts the web server
for the encryption of data. We create the following file:

$sudo vi /etc/nginx/sites-available/docker-registry

Update the file with the following content:

server {
 listen 8080;
 server_name mydomain.com;
 ssl on;
 ssl_certificate /etc/ssl/certs/docker-registry;
 ssl_certificate_key /etc/ssl/private/docker-registry;

Note that my Ubuntu machine is available on the Internet with the name
mydomain.com and SSL is set up with the path for a certificate and key.

Let's sign the certificate as follows:

$ sudo mkdir ~/certs

$ sudo cd ~/certs

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 5

[85]

The root key is generated using openssl, using the following command:

$ sudo openssl genrsa -out devdockerCA.key 2048

Generating RSA private key, 2048 bit long modulus

..........+++

....................+++

e is 65537 (0x10001)

Now we have the root key, let's generate a root certificate (enter whatever
you'd like to at the Command Prompt):

$ sudo openssl req -x509 -new -nodes -key devdockerCA.key -days \

 10000 -out devdockerCA.crt

Then, generate a key for our server:

$ sudo openssl genrsa -out dev-docker-registry.com.key 2048

Now, we have to make a certificate signing request. Once we run the signing
command, ensure that Common Name is our server name. This is mandatory
and any deviation will result in an error:

$ sudo openssl req -new -key dev-docker-registry.com.key -out \

 dev-docker-registry.com.csr

Here, Common Name looks like mydomain.com. This is an Ubuntu VM running
on AWS.

The output of the preceding command is shown as follows:

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:mydomain.com

Email Address []:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Your Private Docker Infrastructure

[86]

The challenge password input is kept blank, and the user is also free to
populate this. Then, we need to sign the certificate request, by running
the following command:

$ sudo openssl x509 -req -in dev-docker-registry.com.csr -CA \

 devdockerCA.crt -CAkey devdockerCA.key -CAcreateserial -out \

 dev-docker-registry.com.crt -days 10000

Now that we've generated all the files we need for our certificate to work,
we need to copy these files to the correct places.

First, copy the certificate and key to the paths where nginx is expecting them to be:

$ sudo cp dev-docker-registry.com.crt /etc/ssl/certs/docker-registry

$ sudo chmod 777 /etc/ssl/certs/docker-registry

$ sudo cp dev-docker-registry.com.key /etc/ssl/private/docker-registry

$ sudo chmod 777 /etc/ssl/private/docker-registry

Note that we have created self-signed certificates, and they are signed by any
known certificate authority, so we need to inform the registry that this is a
legitimate certificate:

$ sudo mkdir /usr/local/share/ca-certificates/docker-dev-cert

$ sudo cp devdockerCA.crt /usr/local/share/ca-certificates/docker-
dev-cert

$ sudo update-ca-certificates

Updating certificates in /etc/ssl/certs... 1 added, 0 removed; done.

Running hooks in /etc/ca-certificates/updated....done.

ubuntu@ip-172-31-21-44:~/certs$

Let's restart nginx to reload the configuration and SSL keys:

$ sudo service nginx restart

Now, we will test the SSL certificate to check whether it works fine. Since
mydomain.com is not an Internet address, add the entry in /etc/hosts file:

172.31.24.44 mydomain.com

Now run the following command:

$ sudo curl https://vinod1:vinod1@mydomain.com:8080

"\"docker-registry server\""ubuntu@ip-172-31-21-44:~$

So if all went well, you should see something like this:

"docker-registry server"

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 5

[87]

Push the image to the newly created
Docker registry
Finally, push the image to the Docker registry. So, let's create an image on the local
Ubuntu machine:

$ sudo docker run -t -i ubuntu /bin/bash

root@9593c56f9e70:/# echo "TEST" >/mydockerimage

root@9593c56f9e70:/# exit

$ sudo docker commit $(sudo docker ps -lq) vinod-image

e17b685ee6987bb0cd01b89d9edf81a9fc0a7ad565a7e85650c41fc7e5c0cf9e

Let's log in to the Docker registry created locally on the Ubuntu machine:

$ sudo docker --insecure-registry=mydomain.com:8080 \

 login https://mydomain.com:8080

Username: vinod1

Password:

Email: vinod.puchi@gmail.com

Login Succeeded

Tag the image before pushing it to the registry:

$ sudo docker tag vinod-image mydomain.com:8080/vinod-image

Finally, use the push command to upload the image:

$ sudo docker push \

mydomain.com:8080/vinod-image

The push refers to a repository [mydomain.com

:8080/vinod-image] (len: 1)

Sending image list

Pushing repository mydomain.com:8080/vi

nod-image (1 tags)

511136ea3c5a: Image successfully pushed

5bc37dc2dfba: Image successfully pushed

--

e17b685ee698: Image successfully pushed

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Your Private Docker Infrastructure

[88]

Pushing tag for rev [e17b685ee698] on {https://mydomain.com

:8080/v1/repositories/vinod-image/tags/latest}

$

Now, remove the image from the local disk and pull it from the Docker registry:

$ sudo docker pull mydomain.com:8080/vinod-image

Pulling repository mydomain.com:8080/vi

nod-image

e17b685ee698: Pulling image (latest) from mydomain.com

17b685ee698: Download complete

dc07507cef42: Download complete

86ce37374f40: Download complete

Status: Downloaded newer image for mydomain.com:8080/vinod-image:latest

$

Summary
The Docker engine allows every value-adding software solution to be containerized,
indexed, registered, and stocked. Docker is turning out to be a great tool for
systematically developing, shipping, deploying, and running containers everywhere.
While docker.io lets you upload your Docker creations to their registry for free,
anything you upload there is publicly discoverable and accessible. Innovators and
companies aren't keen on this and therefore, insist on for private Docker Hubs.
In this chapter, we explained all the steps, syntaxes, and semantics for you in an
easy-to-understand manner. We saw how to retrieve images to generate Docker
containers and described how to push our images to the Docker registry in a
secure manner in order to be found and used by authenticated developers. The
authentication and authorization mechanisms, a major part of the whole process,
have been explained in detail. Precisely speaking, this chapter is conceived and
concretized as a guide for setting up your own Docker Hubs. As world organizations
are showing exemplary interest in having containerized clouds, private container
hubs are becoming more essential.

In the next chapter, we will dive deep into containers, which is the natural
progression from images. We will demonstrate the capability to run services,
such as a web server in a Docker container, and its interaction with the host
machine and the outside world.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[89]

Running Services in a
Container

We've reached so far, brick by brick, laying a strong and stimulating foundation on
the fast-evolving Docker technology. We talked about the important building blocks
of the highly usable and reusable Docker images. Further on, you can read the easy-
to-employ techniques and tips on how to store and share Docker images through a
well-designed storage framework. As usual, images will have to go through a series
of verifications, validations, and refinements constantly in order to make them more
right and relevant for the aspiring development community. In this chapter, we are
going to take our learning to the next level by describing the steps towards creating
a small web server, run the same inside a container, and connect to the web server
from the external world.

In this chapter, we will cover the following topics:

• Container networking
• Container as a Service (CaaS)—building, running, exposing, and

connecting to container services
• Publishing and retrieving container ports
• Binding a container to a specific IP address
• Auto-generating the Docker host port
• Port binding using the EXPOSE and -P options

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Services in a Container

[90]

A brief overview of container networking
Like any computing node, the Docker containers need to be networked, in order
to be found and accessible by other containers and clients. In a network, generally,
any node is being identified through its IP address. Besides, the IP address is a
unique mechanism for any client to reach out to the services offered by any server
node. Docker internally uses Linux capabilities to provide network connectivity to
containers. In this section, we are going to learn about the container's IP address
assignment and the procedure to retrieve the container's IP address.

The Docker engine seamlessly selects and assigns an IP address to a container with
no intervention from the user, when it gets launched. Well, you might be puzzled on
how Docker selects an IP address for a container, and this puzzle is answered in two
parts, which is as follows:

1. During the installation, Docker creates a virtual interface with the name
docker0 on the Docker host. It also selects a private IP address range, and
assigns an address from the selected range to the docker0 virtual interface.
This selected IP address is always outside the range of the Docker host IP
address in order to avoid an IP address conflict.

2. Later, when we spin up a container, the Docker engine selects an unused IP
address from the IP address range selected for the docker0 virtual interface.
Then, the engine assigns this IP address to the freshly spun container.

Docker, by default, selects the IP address 172.17.42.1/16, or one of the IP
addresses that is within the range 172.17.0.0 to 172.17.255.255. Docker will
select a different private IP address range if there is a direct conflict with the
172.17.x.x addresses. Perhaps, the good old ifconfig (the command to display
the details of the network interfaces) comes in handy here to find out the IP address
assigned to the virtual interface. Let's just run ifconfig with docker0 as an
argument, as follows:

$ ifconfig docker0

The second line of the output will show the assigned IP address and its netmask:

inet addr:172.17.42.1 Bcast:0.0.0.0 Mask:255.255.0.0

Apparently, from the preceding text, 172.17.42.1 is the IP address assigned to the
docker0 virtual interface. The IP address 172.17.42.1 is one of the addresses in the
private IP address range from 172.17.0.0 to 172.17.255.255.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 6

[91]

It's now imperative that we learn how to find the IP address assigned to a container.
The container should be launched in an interactive mode using the -i option. Of
course, we can easily find the IP by running the ifconfig command within the
container, as shown here:

$ sudo docker run -i -t ubuntu:14.04 /bin/bash

root@4b0b567b6019:/# ifconfig

The ifconfig command will display the details of all the interfaces in the Docker
container, as follows:

eth0 Link encap:Ethernet HWaddr e6:38:dd:23:aa:3f

 inet addr:172.17.0.12 Bcast:0.0.0.0 Mask:255.255.0.0

 inet6 addr: fe80::e438:ddff:fe23:aa3f/64 Scope:Link

 UP BROADCAST RUNNING MTU:1500 Metric:1

 RX packets:6 errors:0 dropped:2 overruns:0 frame:0

 TX packets:7 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:488 (488.0 B) TX bytes:578 (578.0 B)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Evidently, the preceding output of the ifconfig command shows that the Docker
engine has virtualized two network interfaces for the container, which are as follows:

• The first one is an eth0 (Ethernet) interface for which the Docker engine
assigned the IP address 172.17.0.12. Obviously, this address also falls
within the same IP address range of the docker0 virtual interface. Besides,
the address assigned to the eth0 interface is used for intra-container
communication and host-to-container communication.

• The second interface is the lo (Loopback) interface for which the Docker
engine assigned the loopback address 127.0.0.1. The loopback interface is
used for local communication within a container.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Services in a Container

[92]

Easy, isn't it? However, the retrieval of an IP address gets complicated when the
container is launched in the detached mode, using the -d option in the docker run
subcommand. The primary reason for this complication in the detached mode is
that there is no shell prompt to run the ifconfig command. Fortunately, Docker
provides a docker inspect subcommand, which is as handy as a Swiss army knife,
and allow us to dive deep into the low-level details of the Docker container or image.
The docker inspect subcommand generates the requested details in the JSON
array format.

Here is a sample run of the docker inspect subcommand on the interactive
container that we previously launched. The 4b0b567b6019 container ID is taken
from the prompt of the container:

$ sudo docker inspect 4b0b567b6019

This command generates quite a lot of information about the container. Here, we
show some excerpts of the container's network configuration from the output of the
docker inspect subcommand:

"NetworkSettings": {

 "Bridge": "docker0",

 "Gateway": "172.17.42.1",

 "IPAddress": "172.17.0.12",

 "IPPrefixLen": 16,

 "PortMapping": null,

 "Ports": {}

 },

Here, the network configuration lists out the following details:

• Bridge: This is the bridge interface to which the container is bound
• Gateway: This is the gateway address of the container, which is the address

of the bridge interface as well
• IPAddress: This is the IP address assigned to the container
• IPPrefixLen: This is the IP prefix length, another way of representing the

subnet mask
• PortMapping: This is the port mapping field, which is now being deprecated,

and its value is always null
• Ports: This is the ports field that will enumerate all the port binds, which is

introduced later in this chapter

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 6

[93]

There is no doubt that the docker inspect subcommand is quite convenient for
finding the minute details of a container or an image. However, it's a tiresome job to
go through the intimidating details and to find the right information that we are
keenly looking for. Perhaps, you can narrow it down to the right information, using
the grep command. Or even better, the docker inspect subcommand, which
helps you pick the right field from the JSON array using the --format option of the
docker inspect subcommand.

Notably, in the following example, we use the --format option of the docker
inspect subcommand to retrieve just the IP address of the container. The IP address
is accessible through the .NetworkSettings.IPAddress field of the JSON array:

$ sudo docker inspect \

 --format='{{.NetworkSettings.IPAddress}}' 4b0b567b6019

172.17.0.12

Envisaging the Container as a Service
We laid a good foundation of the fundamentals of the Docker technology.
In this section, we are going to focus on crafting an image with the HTTP service,
launch the HTTP service inside the container using the crafted image, and then,
demonstrate the connectivity to the HTTP service running inside the container.

Building an HTTP server image
In this section, we are going to craft a Docker image in order to install Apache2 on
top of the Ubuntu 14.04 base image, and configure a Apache HTTP Server to run as
an executable, using the ENTRYPOINT instruction.

In Chapter 3, Building Images, we illustrated the concept of the Dockerfile to craft
an Apache2 image on top of the Ubuntu 14.04 base image. Here, in this example,
we are going to extend this Dockerfile by setting the Apache log path and setting
Apache2 as the default execution application, using the ENTRYPOINT instruction.
The following is a detailed explanation of the content of Dockerfile.

We are going to build an image using ubuntu:14.04 as the base image, using the
FROM instruction, as shown in the Dockerfile snippet:

###
Dockerfile to build an apache2 image
###

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Services in a Container

[94]

Base image is Ubuntu
FROM ubuntu:14.04

Set authors' detail using MAINTAINER instruction

Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>

Using one RUN instruction, we will synchronize the apt repository source list,
install the apache2 package, and then clean the retrieved files:

Install apache2 package
RUN apt-get update && \
 apt-get install -y apache2 && \
 apt-get clean

Set the Apache log directory path using the ENV instruction:

Set the log directory PATH
ENV APACHE_LOG_DIR /var/log/apache2

Now, the final instruction is to launch the apache2 server using the
ENTRYPOINT instruction:

Launch apache2 server in the foreground
ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

In the preceding line, you might be surprised to see the FOREGROUND argument.
This is one of the key differences between the traditional and the container
paradigm. In the traditional paradigm, the server applications are usually
launched in the background either as a service or a daemon because the host
system is a general-purpose system. However, in the container paradigm, it is
imperative to launch an application in the foreground because the images are
crafted for a sole purpose.

Having prescribed the image building instruction in the Dockerfile, now let's move
to the next logical step of building the image using the docker build subcommand
by naming the image as apache2, as shown here:

$ sudo docker build -t apache2 .

Let's now do a quick verification of the images using the docker images
subcommand:

$ sudo docker images

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 6

[95]

As we have seen in the previous chapters, the docker images command displays the
details of all the images in the Docker host. However, in order to illustrate precisely
the images created using the docker build subcommand, we highlight the details
of apache2:latest (the target image) and ubuntu:14.04 (the base image) from the
complete image list, as shown in the following output snippet:

apache2 latest d5526cd1a645 About a
minute ago 232.6 MB

ubuntu 14.04 5506de2b643b 5 days
ago 197.8 MB

Having built the HTTP server image, now let's move on to the next session to learn
how to run the HTTP service.

Running the HTTP server Image as a Service
In this section, we are going to launch a container using the Apache HTTP server
image, we crafted in the previous section. Here, we launch the container in the
detached mode (similar to a UNIX daemon process) using the -d option of the
docker run subcommand:

$ sudo docker run -d apache2

9d4d3566e55c0b8829086e9be2040751017989a47b5411c9c4f170ab865afcef

Having launched the container, let's run the docker logs subcommand to see
whether our Docker container generates any output on its STDIN (standard input)
or STDERR (standard error):

$ sudo docker logs \
9d4d3566e55c0b8829086e9be2040751017989a47b5411c9c4f170ab865afcef

As we have not fully configured the Apache HTTP server; you will find the
following warning, as the output of the docker logs subcommand:

AH00558: apache2: Could not reliably determine the server's fully
qualified domain name, using 172.17.0.13. Set the 'ServerName'
directive globally to suppress this message

From the preceding warning message, it is quite evident that the IP address assigned
to this container is 172.17.0.13.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Services in a Container

[96]

Connecting to the HTTP service
In the preceding section, from the warning message, we found out that the IP
address of the container is 172.17.0.13. On a fully configured HTTP server
container, no such warning is available, so let's still run the docker inspect
subcommand to retrieve the IP address using the container ID:

$ sudo docker inspect \

--format='{{.NetworkSettings.IPAddress}}' \
9d4d3566e55c0b8829086e9be2040751017989a47b5411c9c4f170ab865afcef

172.17.0.13

Having found the IP address of the container as 172.17.0.13, let's quickly run a
web request on this IP address from the shell prompt of the Docker host, using the
wget command. Here, we choose to run the wget command with -qO- in order to
run in the quiet mode and also display the retrieved HTML file on the screen:

$ wget -qO - 172.17.0.13

Here, we are showcasing just the first five lines of the retrieved HTML file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <!--
 Modified from the Debian original for Ubuntu
 Last updated: 2014-03-19

Awesome, isn't it? We got our first service running in a container, and we are able to
reach out to our service from our Docker host.

Furthermore, on a plain vanilla Docker installation, the service offered by one
container is accessible by any other container within the Docker host. You can go
ahead, launch a new Ubuntu container in the interactive mode, install the wget
package using apt-get, and run the same wget -qO - 172.17.0.13 command,
as we did in the Docker host. Of course, you will see the same output.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 6

[97]

Exposing container services
So far, we have successfully launched an HTTP service and accessed the service
from the Docker host as well as another container within the same Docker host.
Furthermore, as demonstrated in the Build images from containers section of Chapter
2, Handling Docker Containers, the container is able to successfully install the wget
package by making a connection to the publicly available apt repository over the
Internet. Nonetheless, the outside world cannot access the service offered by a
container by default. At the outset, this might seem like a limitation in the Docker
technology. However, the fact of the matter is, the containers are isolated from the
outside world by design.

Docker achieves network isolation for the containers by the IP address assignment
criteria, as enumerated:

1. Assign a private IP address to the container, which is not reachable from an
external network.

2. Assign an IP address to the container outside the host's IP network.

Consequently, the Docker container is not reachable, even from the systems that are
connected to the same IP network as the Docker host. This assignment scheme also
provides protection from an IP address conflict that might otherwise arise.

Now, you might wonder how to make the services run inside a container that is
accessible to the outside world, in other words, exposing container services. Well,
Docker bridges this connectivity gap in a classy manner by leveraging the Linux
iptables functionality under the hood.

At the frontend, Docker provides two different building blocks to bridge this
connectivity gap for its users. One of the building blocks is to bind the container port
using the -p (publish a container's port to the host interface) option of the docker
run subcommand. Another alternative is to use the combination of the EXPOSE
Dockerfile instruction and the -P (publish all exposed ports to the host interfaces)
option of the docker run subcommand.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Services in a Container

[98]

Publishing container ports – the -p option
Docker enables you to publish a service offered inside a container by binding the
container's port to the host interface. The -p option of the docker run subcommand
enables you to bind a container port to a user-specified or auto-generated port of
the Docker host. Thus, any communication destined for the IP address and the port
of the Docker host would be forwarded to the port of the container. The -p option,
actually, supports the following four formats of arguments:

• <hostPort>:<containerPort>

• <containerPort>

• <ip>:<hostPort>:<containerPort>

• <ip>::<containerPort>

Here, <ip> is the IP address of the Docker host, <hostPort> is the Docker host port
number, and <containerPort> is the port number of the container. Here, in this
section, we present you with the -p <hostPort>:<containerPort> format and
introduce other formats in the succeeding sections.

In order to understand the port binding process better, let's reuse the apache2 HTTP
server image that we crafted previously, and spin up a container using a -p option of
the docker run subcommand. The port 80 is the published port of the HTTP service,
and as the default behavior, our apache2 HTTP server is also available on port 80.
Here, in order to demonstrate this capability, we are going to bind port 80 of the
container to port 80 of the Docker host, using the -p <hostPort>:<containerPort>
option of the docker run subcommand, as shown in the following command:

$ sudo docker run -d -p 80:80 apache2

baddba8afa98725ec85ad953557cd0614b4d0254f45436f9cb440f3f9eeae134

Now that we have successfully launched the container, we can connect to our HTTP
server using any web browser from any external system (provided it has network
connectivity) to reach our Docker host. So far, we have not added any web pages to
our apache2 HTTP server image.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 6

[99]

Hence, when we connect from a web browser, we will get the following
screen, which is nothing but the default page that comes along with the
Ubuntu Apache2 package:

Network Address Translation for containers
In the previous section, we saw how a -p 80:80 option did the magic, didn't it?
Well, in reality, under the hood, the Docker engine achieves this seamless
connectivity by automatically configuring the Network Address Translation (NAT)
rule in the Linux iptables configuration files.

To illustrate the automatic configuration of the NAT rule in Linux iptables,
let's query the Docker hosts iptables for its NAT entries, as follows:

$ sudo iptables -t nat -L -n

The ensuing text is an excerpt from the iptables NAT entry, which is automatically
added by the Docker engine:

Chain DOCKER (2 references)

target prot opt source destination

DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp
dpt:80 to:172.17.0.14:80

From the preceding excerpt, it is quite evident that the Docker engine has effectively
added a DNAT rule. The following are the details of the DNAT rule:

• The tcp keyword signifies that this DNAT rule applies only to the TCP
transport protocol.

• The first 0.0.0.0/0 address is a meta IP address of the source address. This
address indicates that the connection can originate from any IP address.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Services in a Container

[100]

• The second 0.0.0.0/0 address is a meta IP address of the destination
address on the Docker host. This address indicates that the connection
could be made to any valid IP address in the Docker host.

• Finally, dpt:80 to:172.17.0.14:80 is the forwarding instruction used to
forward any TCP activity on port 80 of the Docker host to the IP address
172.17.0.17, the IP address of our container and port 80.

Therefore, any TCP packet that the Docker host receives on port 80 will be
forwarded to port 80 of the container.

Retrieving the container port
The Docker engine provides at least three different options to retrieve the containers
port binding details. Here, let's first explore the options, and then, move on to dissect
the retrieved information. The options are as follows:

• The docker ps subcommand always displays the port binding details of a
container, as shown here:
$ sudo docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

baddba8afa98 apache2:latest "/usr/sbin/apache2ct
26 seconds ago Up 25 seconds 0.0.0.0:80->80/tcp
furious_carson

• The docker inspect subcommand is another alternative; however, you
have to skim through quite a lot of details. Run the following command:
$ sudo docker inspect baddba8afa98

The docker inspect subcommand displays the port binding related
information in three JSON objects, as shown here:

 ° The ExposedPorts object enumerates all ports that are exposed
through the EXPOSE instruction in Dockerfile, as well as the
container ports that are mapped using the -p option in the docker
run subcommand. Since we didn't add the EXPOSE instruction in our
Dockerfile, what we have is just the container port that was mapped
using -p80:80 as an argument to the docker run subcommand:
"ExposedPorts": {

 "80/tcp": {}

 },

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 6

[101]

 ° The PortBindings object is part of the HostConfig object, and this
object lists out all the port binding done through the -p option in
the docker run subcommand. This object will never list the ports
exposed through the EXPOSE instruction in the Dockerfile:
"PortBindings": {

 "80/tcp": [

 {

 "HostIp": "",

 "HostPort": "80"

 }

]

 },

 ° The Ports object of the NetworkSettings object has the same level
of detail, as the preceding PortBindings object. However, this
object encompasses all ports that are exposed through the EXPOSE
instruction in Dockerfile, as well as the container ports that are
mapped using the -p option in the docker run subcommand:

"NetworkSettings": {

 "Bridge": "docker0",

 "Gateway": "172.17.42.1",

 "IPAddress": "172.17.0.14",

 "IPPrefixLen": 16,

 "PortMapping": null,

 "Ports": {

 "80/tcp": [

 {

 "HostIp": "0.0.0.0",

 "HostPort": "80"

 }

]

 }

 },

Of course, the specific port field can be filtered using the --format option of
the docker inspect subcommand.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Services in a Container

[102]

• The docker port subcommand enables you to retrieve the port binding on
the Docker host by specifying the container's port number:

$ sudo docker port baddba8afa98 80

0.0.0.0:80

Evidently, in all the preceding output excerpts, the information that stands out is
the IP address 0.0.0.0 and the port number 80. The IP address 0.0.0.0 is a meta
address, which represents all the IP addresses configured on the Docker host. In
effect, the containers port 80 is bound to all the valid IP addresses on the Docker
host. Therefore, the HTTP service is accessible through any of the valid IP addresses
configured on the Docker host.

Binding a container to a specific IP address
Until now, with the method that we have learnt, the containers always get bound to
all the IP addresses configured in the Docker host. However, you may want to offer
different services on different IP addresses. In other words, a specific IP address and
port would be configured to offer a particular service. We can achieve this in Docker
using the -p <ip>:<hostPort>:<containerPort> option of the docker run
subcommand, as shown in the following example:

$ sudo docker run -d -p 198.51.100.73:80:80 apache2

92f107537bebd48e8917ea4f4788bf3f57064c8c996fc23ea0fd8ea49b4f3335

Here, the IP address must be a valid IP address on the Docker host. If the specified
IP address is not a valid IP address on the Docker host, the container launch will fail
with an error message, as follows:

2014/11/09 10:22:10 Error response from daemon: Cannot start
container
99db8d30b284c0a0826d68044c42c370875d2c3cad0b87001b858ba78e9de53b:
Error starting userland proxy: listen tcp 198.51.100.73:80: bind:
cannot assign requested address

Now, let's quickly review the port mapping as well as the NAT entry for the
preceding example.

The following text is an excerpt from the output of the docker ps subcommand
that shows the details of this container:

92f107537beb apache2:latest "/usr/sbin/apache2ct About
a minute ago Up About a minute 198.51.100.73:80->80/tcp
boring_ptolemy

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 6

[103]

The following text is an excerpt from the output of the iptables -n nat -L -n
command that shows the DNAT entry created for this container:

DNAT tcp -- 0.0.0.0/0 198.51.100.73 tcp dpt:80
to:172.17.0.15:80

After reviewing both the output of the docker run subcommand and the DNAT
entry of iptables, you will realize how elegantly the Docker engine has configured
the service offered by the container on the IP address 198.51.100.73 and port 80 of
the Docker host.

Auto-generating the Docker host port
The Docker containers are innately lightweight and due to their lightweight nature,
you can run multiple containers with the same, or different services on a single
Docker host. Particularly, auto scaling of the same service across several containers
based on demand, is the need of IT infrastructure today. Here, in this section, you
will be informed about the challenge in spinning up multiple containers with the
same service, and also Docker's way of addressing this challenge.

Earlier in this chapter, we launched a container using apache2 http server by
binding it to port 80 of the Docker host. Now, if we attempt to launch one more
container with the same port 80 binding, the container would fail to start with an
error message, as you can see in the following example:

$ sudo docker run -d -p 80:80 apache2

6f01f485ab3ce81d45dc6369316659aed17eb341e9ad0229f66060a8ba4a2d0e

2014/11/03 23:28:07 Error response from daemon: Cannot start
container
6f01f485ab3ce81d45dc6369316659aed17eb341e9ad0229f66060a8ba4a2d0e:
Bind for 0.0.0.0:80 failed: port is already allocated

Obviously, in the preceding example, the container failed to start because the
previous container is already mapped to 0.0.0.0 (all the IP addresses of the Docker
host) and port 80. In the TCP/IP communication model, the combination of the IP
address, port, and the Transport Protocols (TCP, UDP, and so on) has to be unique.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Services in a Container

[104]

We could have overcome this issue by manually choosing the Docker host port
number (for instance, -p 81:80 or -p 8081:80). Though this is an excellent solution,
it does not perform well to auto-scaling scenarios. Instead, if we give the control
to Docker, it would auto-generate the port number on the Docker host. This port
number generation is achieved by underspecifying the Docker host port number,
using the -p <containerPort> option of the docker run subcommand,
as shown in the following example:

$ sudo docker run -d -p 80 apache2

ea3e0d1b18cff40ffcddd2bf077647dc94bceffad967b86c1a343bd33187d7a8

Having successfully started the new container with the auto-generated port, let's
review the port mapping as well as the NAT entry for the preceding example:

• The following text is an excerpt from the output of the docker ps
subcommand that shows the details of this container:
ea3e0d1b18cf apache2:latest "/usr/sbin/apache2ct
5 minutes ago Up 5 minutes 0.0.0.0:49158->80/tcp
nostalgic_morse

• The following text is an excerpt from the output of the iptables -n nat -L
-n command that shows the DNAT entry created for this container:

DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:49158
to:172.17.0.18:80

After reviewing both the output of the docker run subcommand and the DNAT entry
of iptables, what stands out is the port number 49158. The port number 49158 is
niftily auto-generated by the Docker engine on the Docker host, with the help of the
underlying operating system. Besides, the meta IP address 0.0.0.0 implies that the
service offered by the container is accessible from outside, through any of the valid
IP addresses configured on the Docker host.

You may have a use case where you want to auto-generate the port number.
However, if you still want to restrict the service to a particular IP address of
the Docker host, you can use the -p <IP>::<containerPort> option of the
docker run subcommand, as shown in the following example:

$ sudo docker run -d -p 198.51.100.73::80 apache2

6b5de258b3b82da0290f29946436d7ae307c8b72f22239956e453356532ec2a7

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 6

[105]

In the preceding two scenarios, the Docker engine auto-generated the port number
on the Docker host and exposed it to the outside world. The general norm for
network communication is to expose any service through a predefined port number
so that anybody can know the IP address, and the port number can easily access the
offered service. Whereas, here, the port numbers are auto-generated and as a result,
the outside world cannot directly reach the offered service. So, the primary purpose
of this method of container creation is to achieve auto-scaling, and the container
created in this fashion would be interfaced with a proxy or load balance service
on a predefined port.

Port binding using EXPOSE and the -P option
So far, we have discussed the four distinct methods to publish a service running
inside a container to the outside world. In all these four methods, the port binding
decision is taken during the container launch time, and the image has no information
about the ports on which the service is being offered. It has worked well so far
because the image is being built by us, and we are pretty much aware of the port
in which the service is being offered. However, in the case of third-party images,
the port usage inside a container has to be published unambiguously. Besides, if
we build images for third-party consumption or even for our own use, it is a good
practice to explicitly state the ports in which the container offers its service. Perhaps,
the image builders could ship a readme document along with the image. However, it
is even better to embed the port details in the image itself so that you can easily find
the port details from the image both manually as well as through automated scripts.

The Docker technology allows us to embed the port information using the EXPOSE
instruction in the Dockerfile, which we introduced in Chapter 3, Building Images.
Here, let's edit the Dockerfile we used to build the apache2 HTTP server image
earlier in this chapter, and add an EXPOSE instruction, as shown in the following
code. The default port for the HTTP service is port 80, hence port 80 is exposed:

###
Dockerfile to build an apache2 image
###
Base image is Ubuntu
FROM ubuntu:14.04
Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>
Install apache2 package
RUN apt-get update && \

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Services in a Container

[106]

 apt-get install -y apache2 && \
 apt-get clean
Set the log directory PATH
ENV APACHE_LOG_DIR /var/log/apache2
Expose port 80
EXPOSE 80
Launch apache2 server in the foreground
ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

Now that we have added the EXPOSE instruction to our Dockerfile, let's move to the
next step of building the image using the docker build command. Here, let's reuse
the image name apache2, as shown here:

$ sudo docker build -t apache2 .

Having successfully built the image, let's inspect the image to verify the effects of the
EXPOSE instruction to the image. As we learnt earlier, we can resort to the docker
inspect subcommand, as shown here:

$ sudo docker inspect apache2

On close review of the output generated by the preceding command, you will realize
that Docker stores the exposed port information in the ExposedPorts field of the
Config object. The following is an excerpt to show how the exposed port information
is being displayed:

"ExposedPorts": {

 "80/tcp": {}

 },

Alternatively, you can apply the format option to the docker inspect subcommand
in order to narrow down the output to very specific information. In this case, the
ExposedPorts field of the Config object is shown in the following example:

$ sudo docker inspect --format='{{.Config.ExposedPorts}}' \

 apache2

map[80/tcp:map[]]

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 6

[107]

To resume our discussion on the EXPOSE instruction, we can now spin up containers
using an apache2 image, that we just crafted. Yet, the EXPOSE instruction by itself
cannot create port binding on the Docker host. In order to create port binding for the
port declared using the EXPOSE instruction, the Docker engine provides a -P option
in the docker run subcommand.

In the following example, a container is launched from the apache2 image, which
was rebuilt earlier. Here, the -d option is used to launch the container in the
detached mode, and the -P option is used to create the port binding in the Docker
host for all the ports declared, using the EXPOSE instruction in the Dockerfile:

$ sudo docker run -d -P apache2

fdb1c8d68226c384ab4f84882714fec206a73fd8c12ab57981fbd874e3fa9074

Now that we have started the new container with the image that was created using
the EXPOSE instruction, like the previous containers, let's review the port mapping as
well as the NAT entry for the preceding example:

• The following text is an excerpt from the output of the docker ps
subcommand that shows the details of this container:
ea3e0d1b18cf apache2:latest "/usr/sbin/apache2ct
5 minutes ago Up 5 minutes 0.0.0.0:49159->80/tcp
nostalgic_morse

• The following text is an excerpt from the output of the iptables -t nat -L
-n command that shows the DNAT entry created for this container:

DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:49159
to:172.17.0.19:80

The -P option of the docker run subcommand does not take any additional
arguments, such as an IP address or a port number; consequently, fine tuning of the
port binding is not possible, such as the -p option of the docker run subcommand.
You can always resort to the -p option of the docker run subcommand if fine tuning
of the port binding is critical to you.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Running Services in a Container

[108]

Summary
Containers do not deliver anything in an isolated or solo way substantially.
They need to be systematically built and provided with a network interface along
with a port number. This leads to a standardized exposition of containers to the
outside world, facilitating other hosts or containers to find, bind, and leverage their
unique capabilities on any network. Thus, network-accessibility is paramount for
containers to get noticed and utilized in innumerable ways. This chapter is dedicated
to showcasing how containers are being designed and deployed as a service, and
how the aspect of container networking comes in handy by precisely and profusely
empowering the peculiar world of container services as the days unfold. In the
forthcoming chapters, we will deal and dwell at length on the various capabilities of
Docker containers in software-intensive IT environments.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[109]

Sharing Data with Containers
Do one thing at a time and do it well, is one of the successful mantras of the
information technology (IT) sector for quite a long time now. This widely used tenet
fits nicely with the building and exposing of Docker containers too and is being
prescribed as one of the best practices to avail the originally envisaged benefits
of the Docker-inspired containerization paradigm. That is, inscribe a single
application along with its direct dependencies and libraries inside a Docker
container in order to ensure the container's independence, self-sufficiency,
and maneuverability. Let's see why containers are that important:

• The temporal nature of containers: The container typically lives as long
as the application lives and vice versa. However, this has some negative
implications for the application data. It is natural that applications go
through a variety of changes in order to accommodate both businesses, as
well as technical changes, even in their production environments. There are
other causes, such as application malfunction, version changes, application
maintenance, and so on, for applications to be updated and upgraded
consistently. In the case of a general-purpose computing model, even when
an application dies for any reason, the persistent data associated with this
application would be preserved in the filesystem. However, in the case of
the container paradigm, the application upgrades are usually performed
by crafting a new container with the newer version of the application, by
discarding the old one. Similarly, when an application malfunctions, a new
container needs to be launched and the old one has to be discarded. To sum
it up, containers are temporal in nature.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Sharing Data with Containers

[110]

• The need for business continuity: In the container landscape, the
complete execution environment, including its data files are usually
bundled and encapsulated inside the container. For any reason, when a
container gets discarded, the application data files also perish along with the
container. However, in order to provide a seamless service, these application
data files must be preserved outside the container and passed on to the
container that will be continuing with the service. Some application data files,
such as the log files, need to be accessed outside the container for various
posterior-analyses. The Docker technology addresses this file persistence
issue very innovatively through a new building block called data volume.

In this chapter, we will cover the following topics:

• Data volume
• Sharing host data
• Sharing data between containers
• The avoidable common pitfalls

The data volume
The data volume is the fundamental building block of data sharing in the Docker
environment. Before getting into the details of data sharing, it is imperative to gain
a good understanding of the Data Volume concept. Until now, all the files that
we created in an image or a container are part and parcel of the Union filesystem.
However, the data volume is part of the Docker host filesystem, and it simply gets
mounted inside the container.

A data volume can be inscribed in a Docker image using the VOLUME instruction of
the Dockerfile. Also, it can be prescribed during the launch of a container using
the -v option of the docker run subcommand. Here, in the following example, the
implication of the VOLUME instruction in the Dockerfile is illustrated in detail, in the
following steps:

1. Create a very simple Dockerfile with the instruction of the base image
(ubuntu:14.04) and the data volume (/MountPointDemo):
FROM ubuntu:14.04
VOLUME /MountPointDemo

2. Build the image with the name mount-point-demo using the docker build
subcommand:
$ sudo docker build -t mount-point-demo .

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 7

[111]

3. Having built the image, let's quickly inspect the image for our data volume
using the docker inspect subcommand:
$ sudo docker inspect mount-point-demo

[{

 "Architecture": "amd64",

... TRUNCATED OUTPUT ...

 "Volumes": {

 "/MountPointDemo": {}

 },

... TRUNCATED OUTPUT ...

Evidently, in the preceding output, the data volume is inscribed in the image
itself.

4. Now, let's launch an interactive container using the docker run
subcommand from the earlier crafted image, as shown in the following
command:
$ sudo docker run --rm -it mount-point-demo

From the container's prompt, let's check the presence of the data volume
using the ls -ld command:
root@8d22f73b5b46:/# ls -ld /MountPointDemo

drwxr-xr-x 2 root root 4096 Nov 18 19:22 /MountPointDemo

As mentioned earlier, the data volume is part of the Docker host filesystem
and it gets mounted, as shown in the following command:

root@8d22f73b5b46:/# mount

... TRUNCATED OUTPUT ...

/dev/disk/by-uuid/721cedbd-57b1-4bbd-9488-ec3930862cf5 on
/MountPointDemo type ext3
(rw,noatime,nobarrier,errors=remount-ro,data=ordered)

... TRUNCATED OUTPUT ...

5. In this section, we inspected the image to find out about the data volume
declaration in the image. Now that we have launched the container, let's
inspect the container's data volume using the docker inspect subcommand
with the container ID as its argument in a different terminal. We created a
few containers previously and for this purpose, let's take the container ID
8d22f73b5b46 directly from the container's prompt:

$ sudo docker inspect 8d22f73b5b46

... TRUNCATED OUTPUT ...

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Sharing Data with Containers

[112]

 "Volumes": {

 "/MountPointDemo":
"/var/lib/docker/vfs/dir/737e0355c5d81c96a99d41d1b9f540c2a2120
00661633ceea46f2c298a45f128"

 },

 "VolumesRW": {

 "/MountPointDemo": true

 }

}

Apparently, here, the data volume is mapped to a directory in the Docker host,
and the directory is mounted in read-write mode. This directory is created by the
Docker engine automatically during the container launch time.

So far, we have seen the implication of the VOLUME instruction in the Dockerfile,
and how Docker manages the data volume. Like the VOLUME instruction of the
Dockerfile, we can use the –v <container mount point path> option of the
docker run subcommand, as shown in the following command:

$ sudo docker run –v /MountPointDemo -it ubuntu:14.04

Having launched the container, we encourage you to try the ls -ld /
MountPointDemo and mount commands in the newly launched container, and then
also, inspect the container, as shown in the preceding step, step 5.

In both the scenarios described here, the Docker engine automatically creates the
directory under /var/lib/docker/vfs/ and mounts it to the container. When a
container is removed using the docker rm subcommand, the Docker engine does
not remove the directory that was automatically created during the container launch
time. This behavior is innately designed to preserve the state of the container's
application that was stored in the directory. If you want to remove the directory that
was automatically created by the Docker engine, you can do so while removing the
container by providing a -v option to the docker rm subcommand, on an already
stopped container:

$ sudo docker rm -v 8d22f73b5b46

If the container is still running, then you can remove the container as well as the
auto-generated directory by adding a -f option to the previous command:

$ sudo docker rm -fv 8d22f73b5b46

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 7

[113]

We have taken you through the techniques and tips to auto-generate a directory
in the Docker host and mount it to the data volume in the container. However,
with the -v option of the docker run subcommand, a user-defined directory
can be mounted to the data volume. In such cases, the Docker engine would
not auto-generate any directory.

The system-generated directory has a caveat of directory leak. In other
words, if you forget to delete the system-generated directories, you
may face some unwanted issues. For further information, you can read
the Avoiding common pitfalls section in this chapter.

Sharing host data
Earlier, we described the steps towards creating a data volume in a Docker image
using the VOLUME instruction in the Dockerfile. However, Docker does not provide
any mechanism to mount the host directory or file during the build time in order
to ensure the Docker images are portable. The only provision Docker provides is to
mount the host directory or file to a container's data volume during the container's
launch time. Docker exposes the host directory or file mounting facility through the
-v option of the docker run subcommand. The –v option has three different formats
enumerated as follows:

1. -v <container mount path>

2. -v <host path>/<container mount path>

3. -v <host path>/<container mount path>:<read write mode>

The <host path> is an absolute path in the Docker host, <container mount path>
is an absolute path in the container filesystem, and <read write mode> can be
either read-only (ro) or read-write (rw) mode. The first -v <container mount
path> format has already been explained in the Data Volume section in this chapter,
as a method to create a mount point during the container launch time. The second
and third options enable us to mount a file or directory from the Docker host to the
container mount point.

We would like to dig deeper to gain a better understanding of the host's data sharing
through a couple of examples. In the first example, we will demonstrate how to share
a directory between the Docker host and the container, and in the second example,
we will demonstrate file sharing.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Sharing Data with Containers

[114]

Here, in the first example, we mount a directory from the Docker host to a container,
perform a few basic file operations on the container, and verify these operations from
the Docker host, as detailed in the following steps:

1. First, let's launch an interactive container with the –v option of the docker
run subcommand to mount /tmp/hostdir of the Docker host directory to
/MountPoint of the container:
$ sudo docker run -v /tmp/hostdir:/MountPoint \

 -it ubuntu:14.04

If /tmp/hostdir is not found on the Docker host, the Docker
engine will create the directory itself. However, the problem is
that the system-generated directory cannot be deleted using the
-v option of the docker rm subcommand.

2. Having successfully launched the container, we can check the presence
of /MountPoint using the ls command:
root@4a018d99c133:/# ls -ld /MountPoint

drwxr-xr-x 2 root root 4096 Nov 23 18:28 /MountPoint

3. Now, we can proceed to checking the mount details using the
mount command:
root@4a018d99c133:/# mount

... TRUNCATED OUTPUT ...

/dev/disk/by-uuid/721cedbd-57b1-4bbd-9488-ec3930862cf5 on
/MountPoint type ext3 (rw,noatime,nobarrier,errors=remount-
ro,data=ordered)

... TRUNCATED OUTPUT ...

4. Here, we are going to validate /MountPoint, change to the /MountPoint
directory using the cd command, create a few files using the touch
command, and list the files using the ls command, as shown in the
following script:
root@4a018d99c133:/# cd /MountPoint/

root@4a018d99c133:/MountPoint# touch {a,b,c}

root@4a018d99c133:/MountPoint# ls -l

total 0

-rw-r--r-- 1 root root 0 Nov 23 18:39 a

-rw-r--r-- 1 root root 0 Nov 23 18:39 b

-rw-r--r-- 1 root root 0 Nov 23 18:39 c

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 7

[115]

5. It might be worth the effort to verify the files in the /tmp/hostdir Docker
host directory using the ls command on a new terminal, as our container is
running in an interactive mode on the existing terminal:
$ sudo ls -l /tmp/hostdir/

total 0

-rw-r--r-- 1 root root 0 Nov 23 12:39 a

-rw-r--r-- 1 root root 0 Nov 23 12:39 b

-rw-r--r-- 1 root root 0 Nov 23 12:39 c

Here, we can see the same set of files, as we can see in step 4. However,
you might have noticed the difference in the time stamp of the files.
This time difference is due to the time-zone difference between the
Docker host and the container.

6. Finally, let's run the docker inspect subcommand with the container ID
4a018d99c133 as an argument to see whether the directory mapping is set
up between the Docker host and the container mount point, as shown in the
following command:

$ sudo docker inspect \

 --format={{.Volumes}} 4a018d99c133

map[/MountPoint:/tmp/hostdir]

Apparently, in the preceding output of the docker inspect subcommand,
the /tmp/hostdir directory of the Docker host is mounted on the
/MountPoint mount point of the container.

For the second example, we can mount a file from the Docker host to a container,
update the file from the container, and verify these operations from the Docker host,
as detailed in the following steps:

1. In order to mount a file from the Docker host to the container, the file must
preexist in the Docker host. Otherwise, the Docker engine will create a new
directory with the specified name, and mount it as a directory. We can start
by creating a file on the Docker host using the touch command:
$ touch /tmp/hostfile.txt

2. Launch an interactive container with the –v option of the docker run
subcommand to mount the /tmp/hostfile.txt Docker host file to the
container as /tmp/mntfile.txt:
$ sudo docker run -v /tmp/hostfile.txt:/mountedfile.txt \

 -it ubuntu:14.04

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Sharing Data with Containers

[116]

3. Having successfully launched the container, now let's check the presence
of /mountedfile.txt using the ls command:
root@d23a15527eeb:/# ls -l /mountedfile.txt

-rw-rw-r-- 1 1000 1000 0 Nov 23 19:33 /mountedfile.txt

4. Then, proceed to check the mount details using the mount command:
root@d23a15527eeb:/# mount

... TRUNCATED OUTPUT ...

/dev/disk/by-uuid/721cedbd-57b1-4bbd-9488-ec3930862cf5 on
/mountedfile.txt type ext3
(rw,noatime,nobarrier,errors=remount-ro,data=ordered)

... TRUNCATED OUTPUT ...

5. Then, update some text to /mountedfile.txt using the echo command:
root@d23a15527eeb:/# echo "Writing from Container" \

 > mountedfile.txt

6. Meanwhile, switch to a different terminal in the Docker host, and print
the /tmp/hostfile.txt Docker host file using the cat command:
$ cat /tmp/hostfile.txt

Writing from Container

7. Finally, run the docker inspect subcommand with the container ID
d23a15527eeb as it's argument to see the file mapping between the Docker
host and the container mount point:

$ sudo docker inspect \

 --format={{.Volumes}} d23a15527eeb

map[/mountedfile.txt:/tmp/hostfile.txt]

From the preceding output, it is evident that the /tmp/hostfile.txt file
from the Docker host is mounted as /mountedfile.txt inside the container.

In the case of file sharing between the Docker host and container,
the file must exist before launching the container. However, in
the case of directory sharing, if the directory does not exist in the
Docker host, then the Docker engine would create a new directory
in the Docker host, as explained earlier.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 7

[117]

The practicality of host data sharing
In the previous chapter, we launched an HTTP service in a Docker container.
However, if you remember correctly, the log file for the HTTP service is still inside
the container, and it cannot be accessed directly from the Docker host. Here, in this
section, we elucidate the procedure of accessing the log files from the Docker host in
a step-by-step manner:

1. Let's begin with launching an Apache2 HTTP service container by
mounting the /var/log/myhttpd directory of the Docker host to the
/var/log/apache2 directory of the container, using the –v option of the
docker run subcommand. In this example, we are leveraging the apache2
image, which we had built in the previous chapter, by invoking the
following command:
$ sudo docker run -d -p 80:80 \

 -v /var/log/myhttpd:/var/log/apache2 apache2

9c2f0c0b126f21887efaa35a1432ba7092b69e0c6d
523ffd50684e27eeab37ac

If you recall the Dockerfile in Chapter 6, Running Services in a Container,
the APACHE_LOG_DIR environment variable is set to the /var/log/apache2
directory, using the ENV instruction. This would make the Apache2 HTTP
service route all log messages to the /var/log/apache2 data volume.

2. Once the container is launched, we can change the directory to /var/log/
myhttpd on the Docker host:
$ cd /var/log/myhttpd

3. Perhaps, a quick check of the files present in the /var/log/myhttpd
directory is appropriate here:
$ ls -1

access.log

error.log

other_vhosts_access.log

Here, the access.log contains all the access requests handled by the
Apache2 HTTP server. The error.log is a very important log file, where
our HTTP server records the errors it encounters while processing any HTTP
requests. The other_vhosts_access.log file is the virtual host log, which
will always be empty in our case.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Sharing Data with Containers

[118]

4. We can display the content of all the log files in the /var/log/myhttpd
directory using the tail command with the –f option:
$ tail -f *.log

==> access.log <==

==> error.log <==

AH00558: apache2: Could not reliably determine the server's
fully qualified domain name, using 172.17.0.17. Set the
'ServerName' directive globally to suppress this message

[Thu Nov 20 17:45:35.619648 2014] [mpm_event:notice] [pid
16:tid 140572055459712] AH00489: Apache/2.4.7 (Ubuntu)
configured -- resuming normal operations

[Thu Nov 20 17:45:35.619877 2014] [core:notice] [pid 16:tid
140572055459712] AH00094: Command line: '/usr/sbin/apache2 -D
FOREGROUND'

==> other_vhosts_access.log <==

The tail -f command will run continuously and display the content of
the files, as soon as they get updated. Here, both access.log and other_
vhosts_access.log are empty, and there are a few error messages on the
error.log file. Apparently, these error logs are generated by the HTTP
service running inside the container. The logs are then stocked in the Docker
host directory, which is mounted during the launch time of the container.

5. As we continue to run tail –f *, let's connect to the HTTP service from a
web browser running inside the container, and observe the log files:

==> access.log <==

111.111.172.18 - - [20/Nov/2014:17:53:38 +0000] "GET /
HTTP/1.1" 200 3594 "-" "Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.65
Safari/537.36"

111.111.172.18 - - [20/Nov/2014:17:53:39 +0000] "GET
/icons/ubuntu-logo.png HTTP/1.1" 200 3688
"http://111.71.123.110/" "Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.65
Safari/537.36"

111.111.172.18 - - [20/Nov/2014:17:54:21 +0000] "GET
/favicon.ico HTTP/1.1" 404 504 "-" "Mozilla/5.0 (Windows NT
6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/39.0.2171.65 Safari/537.36"

The HTTP service updates the access.log file, which we can manipulate
from the host directory mounted through the –v option of the docker run
subcommand.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 7

[119]

Sharing data between containers
In the previous section, we learnt how seamlessly the Docker engine enables
data sharing between the Docker host and the container. Even though it is a very
effective solution, it tightly couples the container to the host filesystem. These
directories might leave a nasty footprint because the user has to manually remove
them once their purpose is met. So, the Docker's prescription to solve this issue is
to create data-only containers as a base container, and then mount the Data Volume
of that container to other containers using the --volume-from option of the docker
run subcommand.

Data-only containers
The prime responsibility of a data-only container is to preserve the data. Creating
a data-only container is very similar to the method illustrated in the data volume
section. In addition, the containers are named explicitly for other containers to
mount the data volume using the container's name. The container's data volumes
are accessible from other containers even when the data-only containers are in the
stopped state. The data-only containers can be created in two ways, as follows:

• During the container's launch time by configuring the data volume and
container's name.

• The data volume can also be inscribed with Dockerfile during the
image-building time, and later the container can be named during the
container's launch time.

In the following example, we are launching a data-only container by configuring the
container launch with the –v and --name options of the docker run subcommand,
as shown here:

$ sudo docker run --name datavol \

 -v /DataMount \

 busybox:latest /bin/true

Here, the container is launched from the busybox image, which is widely used for
its smaller footprint. Here, we choose to execute the /bin/true command because
we don't intend to do any operations on the container. Therefore, we named the
container datavol using the --name option and created a new /DataMount data
volume using the -v option of the docker run subcommand. The /bin/true
command exits immediately with the exit status 0, which in turn will stop the
container and continue to be in the stopped state.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Sharing Data with Containers

[120]

Mounting data volume from other containers
The Docker engine provides a nifty interface to mount (share) the data volume
from one container to another. Docker makes this interface available through the
--volumes-from option of the docker run subcommand. The --volumes-from
option takes a container name or container ID as its input and automatically mounts
all the data volumes available on the specified container. Docker allows you to
mount multiple containers with the data volume using the --volumes-from option
multiple times.

Here is a practical example that demonstrates how to mount the data volume from
another container and showcases the data volume mount process, step by step.

1. We begin with launching an interactive Ubuntu container by mounting the
data volume from the data-only container (datavol), which we launched in
the previous section, as explained here:
$ sudo docker run –it \

 --volumes-from datavol \

 ubuntu:latest /bin/bash

2. Now from the container's prompt, let's verify the data volume mounts using
the mount command:
root@e09979cacec8:/# mount

. . . TRUNCATED OUTPUT . . .

/dev/disk/by-uuid/32a56fe0-7053-4901-ae7e-24afe5942e91 on
/DataMount type ext3 (rw,noatime,nobarrier,errors=remount-
ro,data=ordered)

. . . TRUNCATED OUTPUT . . .

Here, we successfully mounted the data volume from the datavol data-only
container.

3. Next, we need to inspect the data volume of this container from another
terminal using the docker inspect subcommand:

$ sudo docker inspect e09979cacec8

. . . TRUNCATED OUTPUT . . .

 "Volumes": {

 "/DataMount": "/var/lib/docker/vfs/dir/62f5a3314999e5aaf485fc6
92ae07b3cbfacb
ca9815d8071f519c1a836c0f01e"

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 7

[121]

},

 "VolumesRW": {

 "/DataMount": true

 }

}

Evidently, the data volume from the datavol data-only container is
mounted as if they were mounted directly on to this container.

We can mount a data volume from another container and also showcase the mount
points. We can make the mounted data volume work by sharing data between
containers using the data volume, as demonstrated here:

1. Let's reuse the container that we launched in the previous example and
create a /DataMount/testfile file in the data volume /DataMount by
writing some text to the file, as shown here:
root@e09979cacec8:/# echo \

 "Data Sharing between Container" > \

 /DataMount/testfile

2. Just spin off a container to display the text that we wrote in the previous step,
using the cat command:
$ sudo docker run --rm \

 --volumes-from datavol \

 busybox:latest cat /DataMount/testfile

The following is the typical output of the preceding command:

Data Sharing between Container

Evidently, the preceding output Data Sharing between Container of
our newly containerized cat command is the text that we have written in
/DataMount/testfile of the datavol container in step 1.

Cool, isn't it? You can share data seamlessly between containers by sharing the data
volumes. Here, in this example, we used data-only containers as the base container
for data sharing. However, Docker allows us to share any type of data volumes and
to mount data volumes one after another, as depicted here:

$ sudo docker run --name vol1 --volumes-from datavol \

 busybox:latest /bin/true

$ sudo docker run --name vol2 --volumes-from vol1 \

 busybox:latest /bin/true

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Sharing Data with Containers

[122]

Here, in the vol1 container, we can mount the data volume from the datavol
container. Then, in the vol2 container, we mounted the data volume from the
vol1 container, which is originally from the datavol container.

The practicality of data sharing between
containers
Earlier, in this chapter, we learnt the mechanism of accessing the log files of the
Apache2 HTTP service from the Docker host. Although it was fairly convenient to
share data by mounting the Docker host directory to a container, later we came to
realise that data can be shared between containers by just using the data volumes.
So here, we are bringing in a twist to the method of the Apache2 HTTP service log
handling by sharing data between containers. To share log files between containers,
we will spin off the following containers as enlisted in the following steps:

1. First, a data-only container that would expose the data volume to
other containers.

2. Then, an Apache2 HTTP service container leveraging the data volume
of the data-only container.

3. A container to view the log files generated by our Apache2 HTTP service.

NOTE: If you are running any HTTP service on the port number 80
of your Docker host machine, pick any other unused port number for
the following example. If not, first stop the HTTP service, then proceed
with the example in order to avoid any port conflict.

Now, we meticulously walk you through the steps to craft the respective images
and launch the containers to view the log files, as illustrated here:

1. Here, we begin with crafting a Dockerfile with the /var/log/apache2 data
volume using the VOLUME instruction. The /var/log/apache2 data volume
is a direct mapping to APACHE_LOG_DIR, the environment variable set in
the Dockerfile in Chapter 6, Running Services in a Container, using the ENV
instruction:
###
Dockerfile to build a LOG Volume for Apache2 Service
###

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 7

[123]

Base image is BusyBox
FROM busybox:latest
Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>
Create a data volume at /var/log/apache2, which is
same as the log directory PATH set for the apache image
VOLUME /var/log/apache2
Execute command true
CMD ["/bin/true"]

Since this Dockerfile is crafted to launch data-only containers, the default
execution command is set to /bin/true.

2. We will continue to build a Docker image with the name apache2log from
the preceding Dockerfile using docker build, as presented here:
$ sudo docker build -t apache2log .

Sending build context to Docker daemon 2.56 kB

Sending build context to Docker daemon

Step 0 : FROM busybox:latest

... TRUNCATED OUTPUT ...

3. Launch a data-only container from the apache2log image using the docker
run subcommand and name the resulting container log_vol, using the
--name option:
$ sudo docker run --name log_vol apache2log

Acting on the preceding command, the container will create a data volume in
/var/log/apache2 and move it to a stop state.

4. Meanwhile, you can run the docker ps subcommand with the -a option to
verify the container's state:
$ sudo docker ps -a

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

40332e5fa0ae apache2log:latest "/bin/true"
2 minutes ago Exited (0) 2 minutes ago
log_vol

As per the output, the container exits with the exit value 0.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Sharing Data with Containers

[124]

5. Launch the Apache2 HTTP service using the docker run subcommand.
Here, we are reusing the apache2 image we crafted in Chapter 6, Running
Services in a Container. In this container, we will mount the /var/log/
apache2 data volume from log_vol, the data-only container that we
launched in step 3, using the --volumes-from option:
$ sudo docker run -d -p 80:80 \

 --volumes-from log_vol \

 apache2

7dfbf87e341c320a12c1baae14bff2840e64afcd082dda3094e7cb0a002
3cf42

With the successful launch of the Apache2 HTTP service with the
/var/log/apache2 data volume mounted from log_vol, we can
access the log files using transient containers.

6. Here, we are listing the files stored by the Apache2 HTTP service
using a transient container. This transient container is spun off by
mounting the /var/log/apache2 data volume from log_vol, and
the files in /var/log/apache2 are listed using the ls command.
Further, the --rm option of the docker run subcommand is used to
remove the container once it is done executing the ls command:
$ sudo docker run --rm \

 --volumes-from log_vol

 busybox:latest ls -l /var/log/apache2

total 4

-rw-r--r-- 1 root root 0 Dec 5 15:27
access.log

-rw-r--r-- 1 root root 461 Dec 5 15:27
error.log

-rw-r--r-- 1 root root 0 Dec 5 15:27
other_vhosts_access.log

7. Finally, the error log produced by the Apache2 HTTP service is accessed
using the tail command, as highlighted in the following command:

$ sudo docker run --rm \

 --volumes-from log_vol \

 ubuntu:14.04 \

 tail /var/log/apache2/error.log

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 7

[125]

AH00558: apache2: Could not reliably determine the server's
fully qualified domain name, using 172.17.0.24. Set the
'ServerName' directive globally to suppress this message

[Fri Dec 05 17:28:12.358034 2014] [mpm_event:notice] [pid
18:tid 140689145714560] AH00489: Apache/2.4.7 (Ubuntu)
configured -- resuming normal operations

[Fri Dec 05 17:28:12.358306 2014] [core:notice] [pid 18:tid
140689145714560] AH00094: Command line: '/usr/sbin/apache2 -D
FOREGROUND'

Avoiding common pitfalls
Till now, we discussed how effectively data volumes can be used to share
data between the Docker host and the containers as well as between containers.
Data sharing using data volumes is turning out to be a very powerful and essential
tool in the Docker paradigm. However, it does carry a few pitfalls that are to be
carefully identified and eliminated. In this section, we make an attempt to list out
a few common issues associated with data sharing and the ways and means to
overcome them.

Directory leaks
Earlier in the data volume section, we learnt that the Docker engine automatically
creates directories based on the VOLUME instruction in Dockerfile as well as the
-v option of the docker run subcommand. We also understood that the Docker
engine does not automatically delete these auto-generated directories in order to
preserve the state of the application(s) run inside the container. We can force Docker
to remove these directories using the –v option of the docker rm subcommand. This
process of manual deletion poses two major challenges enumerated as follows:

1. Undeleted directories: There could be scenarios where you may intentionally
or unintentionally choose not to remove the generated directory while
removing the container.

2. Third-party images: Quite often, we leverage third-party Docker images that
could have been built with the VOLUME instruction. Likewise, we might also
have our own Docker images with VOLUME inscribed in it. When we launch
containers using such Docker images, the Docker engine will auto-generate
the prescribed directories. Since we are not aware of the data volume
creation, we may not call the docker rm subcommand with the -v option to
delete the auto-generated directory.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Sharing Data with Containers

[126]

In the previously mentioned scenarios, once the associated container is removed,
there is no direct way to identify the directories whose containers were removed.
Here are a few recommendations on how to avoid this pitfall:

• Always inspect the Docker images using the docker inspect subcommand
and check whether any data volume is inscribed in the image or not.

• Always run the docker rm subcommand with the -v option to remove
any data volume (directory) created for the container. Even if the data
volume is shared by multiple containers, it is still safe to run the docker rm
subcommand with the -v option because the directory associated with the
data volume will be deleted only when the last container sharing that data
volume is removed.

• For any reason, if you choose to preserve the auto-generated directory, you
must keep a clear record so that you can remove them at a later point of time.

• Implement an audit framework that will audit and find out the directories
that do not have any container association.

The undesirable effect of data volume
As mentioned earlier, Docker enables us to etch data volumes in a Docker image
using the VOLUME instruction during the build time. Nonetheless, the data volumes
should never be used to store any data during the build time, otherwise it will result
in an unwanted effect.

In this section, we will demonstrate the undesirable effect of using the data volume
during the build time by crafting a Dockerfile, and then showcase the implication
by building this Dockerfile:

The following are the details of Dockerfile:

1. Build the image using Ubuntu 14.04 as the base image:
Use Ubuntu as the base image
FROM ubuntu:14.04

2. Create a /MountPointDemo data volume using the VOLUME instruction:
VOLUME /MountPointDemo

3. Create a file in the /MountPointDemo data volume using the RUN instruction:
RUN date > /MountPointDemo/date.txt

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 7

[127]

4. Display the file in the /MountPointDemo data volume using the RUN
instruction:

RUN cat /MountPointDemo/date.txt

Proceed to build an image from this Dockerfile using the docker build
subcommand, as shown here:

$ sudo docker build -t testvol .

Sending build context to Docker daemon 2.56 kB

Sending build context to Docker daemon

Step 0 : FROM ubuntu:14.04

 ---> 9bd07e480c5b

Step 1 : VOLUME /MountPointDemo

 ---> Using cache

 ---> e8b1799d4969

Step 2 : RUN date > /MountPointDemo/date.txt

 ---> Using cache

 ---> 8267e251a984

Step 3 : RUN cat /MountPointDemo/date.txt

 ---> Running in a3e40444de2e

cat: /MountPointDemo/date.txt: No such file or directory

2014/12/07 11:32:36 The command [/bin/sh -c cat
/MountPointDemo/date.txt] returned a non-zero code: 1

In the preceding output of the docker build subcommand, you would have
noticed that the build fails at step 3 because it cannot find the file created in step
2. Apparently, the file that was created in step 2 vanishes when it reaches step 3.
This undesirable effect is due to the approach Docker uses to build its images. An
understanding of the Docker image-building process would unravel the mystery.

In the build process, for every instruction in a Dockerfile, the following steps
are followed:

1. Create a new container by translating the Dockerfile instruction to an
equivalent docker run subcommand

2. Commit the newly-created container to an image
3. Repeat step 1 and step 2, by treating the newly-created image as the base

image for step 1.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Sharing Data with Containers

[128]

When a container is committed, it saves the container's filesystem and, deliberately,
does not save the data volume's filesystem. Therefore, any data stored in the data
volume will be lost in this process. So never use a data volume as storage during the
build process.

Summary
For enterprise-scale distributed applications to be distinct in their operations
and outputs, data is the most important instrument and ingredient. With IT
containerization, the journey takes off in a brisk and bright fashion. IT as well
as business software solutions are intelligently containerized through the smart
leverage of the Docker engine. However, the original instigation is the need for a
faster and flawless realization of application-aware Docker containers, and hence,
the data is tightly coupled with the application within the container. However, this
closeness brings in some real risks. If the application collapses, then the data is also
gone. Also, multiple applications might depend on the same data and hence, data
has to be shared across.

In this chapter, we discussed the capabilities of the Docker engine in facilitating the
seamless data sharing between the Docker host and container as well as between
containers. The data volume is being prescribed as the foundational building block
for enabling data sharing among the constituents of the growing Docker ecosystem.
In the next chapter, we will explain the concept behind the container orchestration,
and see how this complicated aspect gets simplified through a few automated tools.
Orchestration is indispensable for realizing composite containers.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[129]

Orchestrating Containers
In the earlier chapters, we laid down a strong foundation for the need for container
networking, how to run a service inside a Docker container, and how to expose this
service to the outside world by opening up network ports and other prerequisites.
However, recently, there are advanced mechanisms being made available and a few
third-party orchestration platforms hitting the market for sagaciously establishing
dynamic and decisive linkages between distributed and differently enabled
containers in order to compose powerful containers for comprehensively, yet
compactly containing process-centric, multi-tiered, and enterprise-class distributed
applications. In this extremely diversified yet connected world, the concept of
orchestration cannot be kept away from its deserved prominence for long. This
chapter is precisely devoted for explaining the nitty-gritty of container orchestration,
and its direct role in picking up discrete containers to systematically compose
sophisticated containers that are more directly aligned to the varying business
expectations and expediencies.

In this chapter, we will discuss the details associated with the following topics:

• Linking containers
• Orchestrating containers
• Container orchestration using the docker-compose tool

As mission-critical applications are overwhelmingly being built through loosely
coupled, yet highly cohesive components/services destined to run on geographically
distributed IT infrastructures and platforms, the concept of composition is getting
a lot of attention and attraction. For sustaining the well-begun containerization
journey, the orchestration of containers is being prescribed as one of the most critical
and crucial requirements in the ensuing instant-on, adaptive, and smart IT era. There
are a few proven and promising methods and standards-compliant tools for enabling
the enigmatic orchestration goals.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Orchestrating Containers

[130]

Linking containers
One of the prominent features of the Docker technology is linking containers.
That is, cooperating containers can be linked together to offer complex and
business-aware services. The linked containers have a kind of source-recipient
relationship, wherein the source container gets linked to the recipient container,
and the recipient securely receives a variety of information from the source
container. However, the source container would know nothing about the recipients
to which it is linked to. Another noteworthy feature of linking containers, in a
secured setup, is that the linked containers can communicate using secured tunnels
without exposing the ports used for the setup, to the external world.

The Docker engine provides the --link option in the docker run subcommand to
link a source container to a recipient container.

The format of the --link option is as follows:

--link <container>:<alias>

Here, <container> is the name of the source container and <alias> is the name
seen by the recipient container. The name of the container must be unique in a
Docker host, whereas alias is very specific and local to the recipient container, and
hence, the alias need not be unique to the Docker host. This gives a lot of flexibility
towards implementing and incorporating functionalities with a fixed source alias
name inside the recipient container.

When two containers are linked together, the Docker engine automatically exports
a few environment variables to the recipient container. These environment variables
have a well-defined naming convention, where the variables are always prefixed
with capitalized form of the alias name. For instance, if src is the alias name given
to the source container, then the exported environment variables would begin with
SRC_. Docker exports three categories of environment variables, as enumerated here:

1. NAME: This is the first category of environment variables. This variable takes
the form of <ALIAS>_NAME, and it carries the recipient container's hierarchical
name as its value. For instance, if the source container's alias is src and the
recipient container's name is rec, then the environment variable and its value
would be SRC_NAME=/rec/src.

2. ENV: This is the second category of environment variables. These variables
export the environment variables configured in the source container by
the -e option of the docker run subcommand or the ENV instruction
of Dockerfile. This type of an environment variable takes the form of
<ALIAS>_ENV_<VAR_NAME>. For instance, if the source container's alias is src
and the variable name is SAMPLE, then the environment variable would be
SRC_ENV_SAMPLE.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 8

[131]

3. PORT: This is the final and third category of environment variables that is
used to export the connectivity details of the source container to the recipient.
Docker creates a bunch of variables for each port exposed by the source
container through the -p option of the docker run subcommand or the
EXPOSE instruction of the Dockerfile.

These variables take the form:
*<ALIAS>_PORT_<port>_<protocol>

This form is used to share the source's IP address, port, and protocol as
an URL. For example, if the source container's alias is src, the exposed
port is 8080, the protocol is tcp, and the IP address is 172.17.0.2,
then the environment variable and its value would be SRC_PORT_8080_
TCP=tcp://172.17.0.2:8080. This URL further splits into the following
three environment variables:

 ° <ALIAS>_PORT_<port>_<protocol>_ADDR: This form carries the IP
address part of the URL (For example: SRC_PORT_8080_TCP_ADDR=
172.17.0.2)

 ° <ALIAS>_PORT_<port>_<protocol>_PORT: This form carries the port
part of the URL (For example: SRC_PORT_8080_TCP_PORT=8080)

 ° <ALIAS>_PORT_<port>_<protocol>_PROTO: This form carries
the protocol part of the URL (For example: SRC_PORT_8080_TCP_
PROTO=tcp)

In addition to the preceding environment variables, the Docker engine exports
one more variable in this category, that is, of the form <ALIAS>_PORT, and its
value would be the URL of the lowest number of all the exposed ports of the
source container. For instance, if the source container's alias is src, the exposed
port numbers are 7070, 8080, and 80, the protocol is tcp, and the IP address
is 172.17.0.2, then the environment variable and its value would be
SRC_PORT=tcp://172.17.0.2:80.

Docker exports these auto-generated environment variables in a well-structured
format so that they can be easily discovered programmatically. Thus, it becomes
very easy for the recipient container to discover the information about the source
container. In addition, Docker automatically updates the source IP address and its
alias as an entry in the recipient's /etc/hosts file.

In this chapter, we will take you deep into the mentioned features provided by the
Docker engine for container linkage through a bevy of pragmatic examples.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Orchestrating Containers

[132]

To start with, let's choose a simple container linking example. Here, we will show
you how to establish a linkage between two containers, and transfer some basic
information from the source container to the recipient container, as illustrated in the
following steps:

1. We begin by launching an interactive container that can be used as a source
container for linking, using the following command:
$ sudo docker run --rm --name example -it busybox:latest

The container is named example using the --name option. In addition, the
--rm option is used to clean up the container as soon as you exit from the
container.

2. Display the /etc/hosts entry of the source container using the cat
command:
/ # cat /etc/hosts

172.17.0.3 a02895551686

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

Here, the first entry in the /etc/hosts file is the source container's IP
address (172.17.0.3) and its hostname (a02895551686).

3. We will continue to display the environment variables of the source
container using the env command:
/ # env

HOSTNAME=a02895551686

SHLVL=1

HOME=/root

TERM=xterm

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin

PWD=/

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 8

[133]

4. Having launched the source container, from another terminal of the same
Docker host, let's launch an interactive recipient container by linking it to our
source container using the --link option of the docker run subcommand,
as shown here:
$ sudo docker run --rm --link example:ex -it busybox:latest

Here, the source container named example is linked to the recipient
container with ex as its alias.

5. Let's display the content of the /etc/hosts file of the recipient container
using the cat command:
/ # cat /etc/hosts

172.17.0.4 a17e5578b98e

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

172.17.0.3 ex

Of course, as always, the first entry of the /etc/hosts file is the
container's IP address and its hostname. However, the noteworthy
entry in the /etc/hosts file is the last entry, where the source container's
IP address (172.17.0.3) and its alias (ex) are added automatically.

6. We will continue to display the recipient container's environment variable
using the env command:
/ # env

HOSTNAME=a17e5578b98e

SHLVL=1

HOME=/root

EX_NAME=/berserk_mcclintock/ex

TERM=xterm

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin

PWD=/

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Orchestrating Containers

[134]

Apparently, a new EX_NAME environment variable is added automatically
to /berserk_mcclintock/ex, as its value. Here EX is the capitalized form
of the alias ex and berserk_mcclintock is the auto-generated name of the
recipient container.

7. As a final step, ping the source container using the widely used ping
command for two counts, and use the alias name as the ping address:

/ # ping -c 2 ex

PING ex (172.17.0.3): 56 data bytes

64 bytes from 172.17.0.3: seq=0 ttl=64 time=0.108 ms

64 bytes from 172.17.0.3: seq=1 ttl=64 time=0.079 ms

--- ex ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 0.079/0.093/0.108 ms

Evidently, the source container's alias ex is resolved to the IP address 172.17.0.3,
and the recipient container is able to successfully reach the source. In the case of
secured container communication, pinging between containers is not allowed. We
have given more details on the aspect of securing containers in Chapter 11, Securing
Docker Containers.

In the preceding example, we could link two containers together, and also, observe
how elegantly, networking is enabled between the containers by updating the source
container's IP address in the /etc/hosts file of the recipient container.

The next example is to demonstrate how container-linking exports the source
container's environment variables, which are configured using the -e option of the
docker run subcommand or the ENV instruction of Dockerfile, to the recipient
container. For this purpose, we are going to craft a Dockerfile with the ENV
instruction, build an image, launch a source container using this image, and then
launch a recipient container by linking it to the source container:

1. We begin with composing a Dockerfile with the ENV instruction,
as shown here:
FROM busybox:latest
ENV BOOK="Learning Docker" \
 CHAPTER="Orchestrating Containers"

Here, we are setting up two environment variables BOOK and CHAPTER.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 8

[135]

2. Proceed with building a Docker image envex using the docker build
subcommand from the preceding Dockerfile:
$ sudo docker build -t envex .

3. Now, let's launch an interactive source container with the name example
using the envex image, we just built:
$ sudo docker run -it --rm \

 --name example envex

4. From the source container prompt, display all the environment variables
by invoking the env command:
/ # env

HOSTNAME=b53bc036725c

SHLVL=1

HOME=/root

TERM=xterm

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin

BOOK=Learning Docker

CHAPTER=Orchestrating Containers

PWD=/

In all the preceding environment variables, both the BOOK and the CHAPTER
variables are configured with the ENV instruction of the Dockerfile.

5. As a final step, to illustrate the ENV category of environment variables,
launch the recipient container with the env command, as shown here:

$ sudo docker run --rm --link example:ex \

 busybox:latest env

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin

HOSTNAME=a5e0c07fd643

TERM=xterm

EX_NAME=/stoic_hawking/ex

EX_ENV_BOOK=Learning Docker

EX_ENV_CHAPTER=Orchestrating Containers

HOME=/root

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Orchestrating Containers

[136]

This example is also available on GitHub at https://github.
com/thedocker/learning-docker/blob/master/chap08/
Dockerfile-Env.

Strikingly, in the preceding output, the variables that are prefixed with EX_ are the
outcomes of container-linking. The environment variables of interest are EX_ENV_
BOOK and EX_ENV_CHAPTER, which were originally set through the Dockerfile
as BOOK and CHAPTER but modified to EX_ENV_BOOK and EX_ENV_CHAPTER, as an
effect of container-linking. Though the environment variable names get translated,
the values stored in these environment variables are preserved as is. We already
discussed the EX_NAME variable name in the previous example.

In the preceding example, we could experience how elegantly and effortlessly Docker
exports the ENV category variables from the source container to the recipient container.
These environment variables are completely decoupled from the source and the
recipient, thus the change in the value of these environment variables in one container
does not impact the other. To be even more precise, the values the recipient container
receives are the values set during the launch time of the source container. Any changes
made to the value of these environment variables in the source container after its
launch has no effect on the recipient container. It does not matter when the recipient
container is launched because the values are being read from the JSON file.

In our final illustration of linking containers, we are going to show you how to
take advantage of the Docker feature to share the connectivity details between two
containers. In order to share the connectivity details between containers, Docker uses
the PORT category of environment variables. The following are the steps used to craft
two containers and share the connectivity details between them:

1. Craft a Dockerfile to expose port 80 and 8080 using the EXPOSE
instruction, as shown here:
FROM busybox:latest
EXPOSE 8080 80

2. Proceed to build a Docker image portex using the docker build
subcommand from the Dockerfile, we created just now, by running the
following command:
$ sudo docker build -t portex .

www.itbook.store/books/9781784397937

https://github.com/thedocker/learning-docker/blob/master/chap08/Dockerfile-Env
https://github.com/thedocker/learning-docker/blob/master/chap08/Dockerfile-Env
https://github.com/thedocker/learning-docker/blob/master/chap08/Dockerfile-Env
https://itbook.store/books/9781784397937

Chapter 8

[137]

3. Now, let's launch an interactive source container with the name,
example using the earlier built image portex:
$ sudo docker run -it --rm \

 --name example portex

4. Now that we have launched the source container, let's continue to create a
recipient container on another terminal by linking it to the source container,
and invoke the env command to display all the environment variables, as
shown here:

$ sudo docker run --rm --link example:ex \

 busybox:latest env

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin

HOSTNAME=c378bb55e69c

TERM=xterm

EX_PORT=tcp://172.17.0.4:80

EX_PORT_80_TCP=tcp://172.17.0.4:80

EX_PORT_80_TCP_ADDR=172.17.0.4

EX_PORT_80_TCP_PORT=80

EX_PORT_80_TCP_PROTO=tcp

EX_PORT_8080_TCP=tcp://172.17.0.4:8080

EX_PORT_8080_TCP_ADDR=172.17.0.4

EX_PORT_8080_TCP_PORT=8080

EX_PORT_8080_TCP_PROTO=tcp

EX_NAME=/prickly_rosalind/ex

HOME=/root

This example is also available on GitHub at https://github.
com/thedocker/learning-docker/blob/master/
chap08/Dockerfile-Expose.

From the preceding output of the env command, it is quite evident that, the Docker
engine exported a bunch of four PORT category environment variables for each port
that was exposed using the EXPOSE instruction in the Dockerfile. In addition,
Docker also exported another PORT category variable EX_PORT.

www.itbook.store/books/9781784397937

https://github.com/thedocker/learning-docker/blob/master/chap08/Dockerfile-Expose
https://github.com/thedocker/learning-docker/blob/master/chap08/Dockerfile-Expose
https://github.com/thedocker/learning-docker/blob/master/chap08/Dockerfile-Expose
https://itbook.store/books/9781784397937

Orchestrating Containers

[138]

Orchestration of containers
The pioneering concept of orchestration in the IT domain has been there for a
long time now. For instance, in the service computing (SC) arena, the idea of
service orchestration has been thriving in an unprecedented manner in order to
produce and sustain highly robust and resilient services. Discrete or atomic services
do not serve any substantial purpose unless, they are composed together in a
particular sequence to derive process-aware composite services. As orchestrated
services are more strategically advantageous for businesses in expressing and
exposing their unique capabilities in the form of identifiable/discoverable,
interoperable, usable, and composable services to the outside world; corporates are
showing exemplary interest in having an easily searchable repository of services
(atomic as well as composite). This repository, in turn, enables businesses in
realizing large-scale data as well as process-intensive applications. It is clear that
the multiplicity of services is very pivotal for organizations to grow and glow. This
increasingly mandated requirement gets solved using the proven and promising
orchestration capabilities, cognitively.

Now, as we are fast heading toward containerized IT environments; application and
data containers ought to be smartly composed to realize a host of new generation
software services.

However, for producing highly competent orchestrated containers, both
purpose-specific as well as agnostic containers need to be meticulously selected
and launched in the right sequence in order to create orchestrated containers. The
sequence can come from the process (control as well as data) flow diagrams. Doing
this complicated and daunting activity manually evokes a series of cynicisms and
criticisms. Fortunately, there are orchestration tools in the Docker space that come
in handy to build, run, and manage multiple containers to build enterprise-class
services. The Docker firm, which has been in charge of producing and promoting,
the generation, and assembling of, Docker-inspired containers, has come out with a
standardized and simplified orchestration tool (named as docker-compose) in order
to reduce the workloads of developers as well as system administrators.

The proven composition technique of the service computing paradigm is being
replicated here in the raging containerization paradigm in order to reap the
originally envisaged benefits of containerization, especially in building powerful
application-aware containers.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 8

[139]

The microservice architecture is an architectural concept that aims to decouple a
software solution by decomposing its functionality into a pool of discrete services. This
is done by applying the standard principles at the architectural level. The microservice
architecture is slowly emerging as a championed way to design and build large-scale
IT and business systems. It not only facilitates loose and light coupling and software
modularity, but it is also a boon to continuous integration and deployment for the agile
world. Any changes being made to one part of the application mandate has meant,
massive changes being made to the application. This has been a bane and barrier to
the aspect of continuous deployment. Micro services aim to resolve this situation,
and hence, the microservice architecture needs light-weight mechanisms, small,
independently deployable services, and ensures scalability and portability. These
requirements can be met using Docker-sponsored containers.

Micro services are being built around business capabilities and can be independently
deployed by fully automated deployment machinery. Each micro service can be
deployed without interrupting the other micro services, and containers provide
an ideal deployment and execution environment for these services along with
other noteworthy facilities, such as the reduced time of deployment, isolation
management, and a simple life cycle. It is easy to quickly deploy new versions of
services inside containers. All of these factors led to the explosion of micro services
using the features that Docker had to offer.

As explained, Docker is being posited as the next-generation containerization
technology, which provides a proven and potentially sound mechanism to distribute
applications in a highly efficient and distributed fashion. The beauty is that
developers can tweak the application pieces within the container, while maintaining
the overall integrity of the container. This has a bigger impact as the brewing trend
is that, instead of large monolithic applications hosted on a single physical or virtual
server, companies are building smaller, self-defined, easily manageable, and discrete
services to be contained inside standardized and automated containers. In short, the
raging containerization technology from Docker has come as a boon for the ensuing
era of micro services.

Docker was built and sustained to fulfill the elusive goal of run it once and run
it everywhere. Docker containers are generally isolated at process level, portable
across IT environments, and easily repeatable. A single physical host can host
multiple containers, and hence, every IT environment is generally stuffed with
a variety of Docker containers. The unprecedented growth of containers is to
spell out troubles for effective container management. The multiplicity and the
associated heterogeneity of containers are used to sharply increase the management
complexities of containers. Hence, the technique of orchestration and the
flourishing orchestration tools have come as a strategic solace for accelerating the
containerization journey in safe waters.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Orchestrating Containers

[140]

Orchestrating applications that span multiple containers containing micro services
has become a major part of the Docker world, via projects, such as Google's
Kubernetes or Flocker. Decking is another option used to facilitate the orchestration
of Docker containers. Docker's new offering in this area is a set of three orchestration
services designed to cover all aspects of the dynamic life cycle of distributed
applications from application development to deployment and maintenance. Helios
is another Docker orchestration platform used to deploy and manage containers
across an entire fleet. In the beginning, fig was the most preferred tool for container
orchestration. However, in the recent past, the company at the forefront of elevating
the Docker technology has come out with an advanced container orchestration
tool (docker-compose) to make life easier for developers working with Docker
containers, as they move through the container life cycle.

Having realized the significance of having the capability of container orchestration
for next generation, business-critical, and containerized workloads, the Docker
company purchased the company that originally conceived and concretized the fig
tool. Then, the Docker company appropriately renamed the tool as docker-compose
and brought in a good number of enhancements to make the tool more tuned to the
varying expectations of container developers and operation teams.

Here is a gist of docker-compose, which is being positioned as a futuristic
and flexible tool used for defining and running complex applications with
Docker. With docker-compose, you define your application's components
(their containers, configuration, links, volumes, and so on) in a single file, and
then, you can spin everything up with a single command, which does everything
to get it up and running.

This tool simplifies the container management by providing a set of built-in
tools to do a number of jobs that are being performed manually at this point
in time. In this section, we supply all the details for using docker-compose to
perform orchestration of containers in order to have a stream of next-generation
distributed applications.

Orchestrate containers using docker-compose
In this section, we will discuss the widely used container orchestration tool
docker-compose. The docker-compose tool is a very simple, yet powerful tool and
has been conceived and concretized to facilitate the running of a group of Docker
containers. In other words, docker-compose is an orchestration framework that lets
you define and control a multi-container service.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 8

[141]

It enables you to create a fast and isolated development environment as well as the
ability to orchestrate multiple Docker containers in production. The docker-compose
tool internally leverages the Docker engine for pulling images, building the images,
starting the containers in a correct sequence, and making the right connectivity/
linking among the containers/services based on the definition given in the
docker-compose.yml file.

Installing docker-compose
At the time of writing this book, the latest release of docker-compose is 1.2.0,
and it is recommended that you use it with Docker release 1.3 or above. You
can find the latest official release of docker-compose at the GitHub location
(https://github.com/docker/compose/releases/latest).

The Linux x86-64 binary for docker-compose version 1.2.0 is available at
https://github.com/docker/compose/releases/download/1.2.0/docker-
compose-Linux-x86_64, which you can directly install using either the wget
tool or the curl tool, as shown here:

• Using the wget tool:
$ sudo sh -c 'wget -qO-
https://github.com/docker/compose/releases/download/1.2.0/
docker-compose-'uname -s'-'uname -m' > /usr/local/bin/docker-
compose; chmod +x /usr/local/bin/docker-compose'

• Using the curl tool:

$ sudo sh -c 'curl -sSL
https://github.com/docker/compose/releases/download/1.2.0/
docker-compose-'uname -s'-'uname -m' > /usr/local/bin/docker-
compose; chmod +x /usr/local/bin/docker-compose'

Alternatively, docker-compose is also available as a Python package, which you can
install using the pip installer, as shown here:

$ sudo pip install -U docker-compose

Note that if pip is not installed on the system, please install the
pip package before the docker-compose installation.

www.itbook.store/books/9781784397937

https://github.com/docker/compose/releases/latest
https://github.com/docker/compose/releases/download/1.2.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.2.0/docker-compose-Linux-x86_64
https://itbook.store/books/9781784397937

Orchestrating Containers

[142]

Having successfully installed docker-compose, you can check the docker-compose
version, as shown here:

$ docker-compose --version

docker-compose 1.2.0

The docker-compose.yml file
The docker-compose tool orchestrates containers using the docker-compose.yml
file, in which you can define the services that need to be crafted, the relationships
between these services, and their runtime properties. The docker-compose.yml
file is a YAML Ain't Markup Language (YAML) format file, which is a
human-friendly data serialization format. The default docker-compose file
is docker-compose.yml, which can be changed using the -f option of the
docker-compose tool. The following is the format of the docker-compose.yml file:

<service>:
 <key>: <value>
 <key>:
 - <value>
 - <value>

Here, <service> is the name of the service. You can have more than one service
definition in a single docker-compose.yml file. The service name should be followed
by one or more keys. However, all the services must either have an image or a
build key, followed by any number of optional keys. Except the image and build
keys, the rest of the keys can be directly mapped to the options in the docker run
subcommand. The value can be either a single value or multiple values.

The following is a list of keys supported in the docker-compose version 1.2.0:

• image: This is the tag or image ID
• build: This is the path to a directory containing a Dockerfile
• command: This key overrides the default command
• links: This key links to containers in another service
• external_links: This key links to containers started either by some other

docker-compose.yml or by some other means (not by docker-compose)

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 8

[143]

• ports: This key exposes ports and specifies both the ports
HOST_port:CONTAINER_port

• expose: This key exposes ports without publishing them to the host machine
• volumes: This key mounts paths as volumes
• volumes_from: This key mounts all of the volumes from another container
• environment: This adds environment variables and uses either an array or a

dictionary
• env_file: This adds environment variables to a file
• extends: This extends another service defined in the same or different

configuration file
• net: This is the networking mode, which has the same values as the Docker

client --net option
• pid: This enables the PID space sharing between the host and the containers
• dns: This sets custom DNS servers
• cap_add: This adds a capability to the container
• cap_drop: This drops a capability of the container
• dns_search: This sets custom DNS search servers
• working_dir: This changes the working directory inside the container
• entrypoint: This overrides the default entrypoint
• user: This sets the default user
• hostname: This sets a container's host name
• domainname: This sets the domain name

• mem_limit: This limits the memory
• privileged: This gives extended privileges
• restart: This sets the restart policy of the container
• stdin_open: This enables the standard input facility
• tty: This enables text based control such as a terminal
• cpu_shares: This sets the CPU shares (relative weight)

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Orchestrating Containers

[144]

The docker-compose command
The docker-compose tool provides sophisticated orchestration functionality
with a handful of commands. All the docker-compose commands use the
docker-compose.yml file as the base to orchestrate one or more services.
The following is the syntax of the docker-compose command:

docker-compose [<options>] <command> [<args>...]

The docker-compose tool supports the following options:

• --verbose: This shows more output
• --version: This prints the version and exits
• -f, --file <file>: This specifies an alternate file for docker-compose

(default is the docker-compose.yml file)
• -p, --project-name <name>: This specifies an alternate project name

(default is the directory name)

The docker-compose tool supports the following commands:

• build: This builds or rebuilds services
• kill: This kills containers
• logs: This displays the output from the containers
• port: This prints the public port for a port binding
• ps: This lists the containers
• pull: This pulls the service images
• rm: This removes the stopped containers
• run: This runs a one-off command
• scale: This sets a number of containers for a service
• start: This starts services
• stop: This stops services
• up: This creates and starts containers

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 8

[145]

Common usage
In this section, with the help of an example, we are going to experience the power
of the orchestration feature provided by the Docker-Compose framework. For this
purpose, we are going to build a two-tiered web application that will receive your
inputs through a URL and respond back with the associated response text. This
application is built using the following two services, as enumerated here:

• Redis: This is a key-value database used to store a key and its
associated value

• Node.js: This is a JavaScript runtime environment used to implement
web server functionality as well as the application logic

Each of these services is packed inside two different containers that are stitched
together using the docker-compose tool. The following is the architectural
representation of the services:

Docker

Linux Kernel

Hardware

Redis
Docker Compose

Web App
(Node.js)

Here, in this example, we begin with implementing the example.js module,
a node.js file to realize the web server and the key lookup functionality. Further
on, we will craft the Dockerfile on the same directory as example.js to package
the node.js runtime environment, and then, define the service orchestration using
a docker-compose.yml file on the same directory as example.js.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Orchestrating Containers

[146]

The following is the example.js file, which is a node.js implementation of the
simple Request/Response web application. For demonstration purposes, in this
code, we restrict the build and kill docker-compose commands. For the code to
be self-explanatory, we added the comments in between the code:

// A Simple Request/Response web application

// Load all required libraries
var http = require('http');
var url = require('url');
var redis = require('redis');

// Connect to redis server running
// createClient API is called with
// -- 6379, a well-known port to which the
// redis server listens to
// -- redis, is the link name of the container
// that runs redis server
var client = redis.createClient(6379, 'redis');

// Set the key value pair in the redis server

// Here all the keys proceeds with "/", because
// URL parser always have "/" as its first character
client.set("/", "Welcome to Docker-Compose helper\nEnter the
docker-compose command in the URL for help\n", redis.print);
client.set("/build", "Build or rebuild services", redis.print);
client.set("/kill", "Kill contianers", redis.print);

var server = http.createServer(function (request, response) {
 var href = url.parse(request.url, true).href;
 response.writeHead(200, {"Content-Type": "text/plain"});

 // Pull the response (value) string using the URL
 client.get(href, function (err, reply) {
 if (reply == null) response.write("Command: " +
href.slice(1) + " not supported\n");
 else response.write(reply + "\n");
 response.end();
 });
});

console.log("Listening on port 80");
server.listen(80);

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 8

[147]

This example is also available at https://github.com/
thedocker/learning-docker/tree/master/chap08/
orchestrate-using-compose.

The following text is the content of Dockerfile that packs the node.js image,
the redis driver for node.js, and the example.js file as defined earlier:

###
Dockerfile to build a sample web application
###

Base image is node.js
FROM node:latest

Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>

Install redis driver for node.js
RUN npm install redis

Copy the source code to the Docker image
ADD example.js /myapp/example.js

This code is also available at https://github.com/
thedocker/learning-docker/tree/master/chap08/
orchestrate-using-compose.

The following text is from the docker-compose.yml file that the defines the service
orchestration for docker compose tool to act upon:

web:
 build: .
 command: node /myapp/example.js
 links:
 - redis
 ports:
 - 8080:80
redis:
 image: redis:latest

www.itbook.store/books/9781784397937

https://github.com/thedocker/learning-docker/tree/master/chap08/orchestrate-using-compose
https://github.com/thedocker/learning-docker/tree/master/chap08/orchestrate-using-compose
https://github.com/thedocker/learning-docker/tree/master/chap08/orchestrate-using-compose
https://github.com/thedocker/learning-docker/tree/master/chap08/orchestrate-using-compose
https://github.com/thedocker/learning-docker/tree/master/chap08/orchestrate-using-compose
https://github.com/thedocker/learning-docker/tree/master/chap08/orchestrate-using-compose
https://itbook.store/books/9781784397937

Orchestrating Containers

[148]

This example is also available at https://github.com/
thedocker/learning-docker/tree/master/chap08/
orchestrate-using-compose.

We defined two services in this docker-compose.yml file, wherein these services
serve the following purposes:

• The service named web is built using the Dockerfile in the current
directory. Also, it is instructed to launch the container by running the
node (the node.js runtime) with /myapp/example.js (web application
implementation), as its argument. The container is linked to the redis
container, and the container port 80 is mapped to the Docker host's port 8080.

• The service named redis is instructed to launch a container with the
redis:latest image. If the image is not present in the Docker host, the
Docker engine will pull it from the central repository or the private repository.

Now, let's continue with our example by building the Docker images
using the docker-compose build command, launch the containers using
the docker-compose up command, and connect with a browser to verify the
request/response functionality, as explained step by step here:

1. The docker-compose commands must be executed from the directory in
which the docker-compose.yml file is stored. The docker-compose tool
considers each docker-compose.yml file as a project, and it assumes the
project name from the docker-compose.yml file's directory. Of course, this
can be overridden using the -p option. So, as a first step, let's change the
directory, wherein the docker-compose.yml file is stored:
$ cd ~/example

2. Build the services using the docker-compose build command:
$ sudo docker-compose build

3. Proceed to bring up the services as indicated in the docker-compose.yml,
file using the docker-compose up command:
$ sudo docker-compose up

Creating example_redis_1...

Pulling image redis:latest...

latest: Pulling from redis

www.itbook.store/books/9781784397937

https://github.com/thedocker/learning-docker/tree/master/chap08/orchestrate-using-compose
https://github.com/thedocker/learning-docker/tree/master/chap08/orchestrate-using-compose
https://github.com/thedocker/learning-docker/tree/master/chap08/orchestrate-using-compose
https://itbook.store/books/9781784397937

Chapter 8

[149]

21e4345e9035: Pull complete

. . . TRUNCATED OUTPUT . . .

redis:latest: The image you are pulling has been verified.

Important: image verification is a tech preview feature and
should not be relied on to provide security.

Digest: sha256:dad98e997480d657b2c00085883640c747b04ca882d6da50760
e038fce63e1b5

Status: Downloaded newer image for redis:latest

Creating example_web_1...

Attaching to example_redis_1, example_web_1

. . . TRUNCATED OUTPUT . . .

redis_1 | 1:M 25 Apr 18:12:59.674 * The server is now ready to
accept connections on port 6379

web_1 | Listening on port 80

web_1 | Reply: OK

web_1 | Reply: OK

web_1 | Reply: OK

Since the directory name is example, the docker-compose tool has assumed
that the project name is example.

4. Having successfully orchestrated the services using the docker-compose
tool, let's invoke the docker-compose ps command from a different terminal
to list the containers associated with the example docker-compose project:
$ sudo docker-compose ps

 Name Command State
Ports

--

example_redis_1 /entrypoint.sh redis-server Up
6379/tcp

example_web_1 node /myapp/example.js Up
0.0.0.0:8080->80/tcp

Evidently, the two example_redis_1 and example_web_1 containers are up
and running. The container name is prefixed with example_, which is the
docker-compose project name.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Orchestrating Containers

[150]

5. Explore the functionality of our own request/response web application on a
different terminal of the Docker host, as illustrated here:

$ curl http://0.0.0.0:8080

Welcome to Docker-Compose helper

Enter the docker-compose command in the URL for help

$ curl http://0.0.0.0:8080/build

Build or rebuild services

$ curl http://0.0.0.0:8080/something

Command: something not supported

Here, we are directly connecting to the web service using
http://0.0.0.0:8080 because the web service is bound
to the Docker host on port 8080.

Cool, isn't it? With very minimal effort, and the help of the docker-compose.yml
file, we are able to compose two different services together and offer a
composite service.

Summary
This chapter has been incorporated in the book in order to provide all the probing
and prescribing details on seamlessly orchestrating multiple containers. We
extensively discussed the need for container orchestration and the tools that enable
us to simplify and streamline the increasingly complicated process of container
orchestration. In order to substantiate how orchestration is handy and helpful in
crafting enterprise-class containers, and to illustrate the orchestration process, we
took the widely followed route of explaining the whole gamut through a simple
example. We developed a web application and contained it within a standard
container. Similarly, we took a database container, which is a backend for the
frontend web application and the database was executed inside another container.
We saw how to make the web application container aware of the database, using
different technologies through the container-linkage feature of the Docker engine.
We used the open source tool (docker-compose) for this purpose.

In the next chapter, we will discuss how Docker facilitates software testing,
especially integration testing with a few pragmatic examples.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[151]

Testing with Docker
Undoubtedly, the trait of testing has been at the forefront of the software engineering
discipline. It is widely accepted that there is a deep and decisive penetration of
software into every kind of tangible object in our daily environments these days
in order to have plenty of smart, connected, and digitized assets. Also, with a
heightened focus on distributed and synchronized software, the complexity of the
software design, development, testing and debugging, deployment, and delivery
are continuously on the climb. There are means and mechanisms being unearthed
to simplify and streamline the much-needed automation of software building and
the authentication of software reliability, resiliency, and sustainability. Docker is
emerging as an extremely flexible tool to test a wide variety of software applications.
In this chapter, we are going to discuss how to effectively leverage the noteworthy
Docker advancements for software testing and its unique advantages in accelerating
and augmenting testing automation.

The following topics are discussed in this chapter:

• A brief overview of test-driven development (TDD)
• Testing your code inside Docker
• Integrating the Docker testing process into Jenkins

The emerging situation is that Docker containers are being leveraged to create
development and testing environments that are the exact replicas of the production
environment. Containers require less overhead when compared to virtual machines,
which have been the primary environments for development, staging, and
deployment environments. Let's start with an overview of test-driven development
of the next generation software and how the Docker-inspired containerization
becomes handy in simplifying the TDD process.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Testing with Docker

[152]

A brief overview of the test-driven
development
The long and arduous journey of software development has taken many turns
and twists in the past decades, and one of the prominent software engineering
techniques is nonetheless the TDD. There are more details and documents on
TDD at http://agiledata.org/essays/tdd.html.

In a nutshell, the test-driven development, also popularly known as TDD, is a
software development practice in which the development cycle begins with writing
a test case that would fail, then writes the actual software to make the test pass, and
continues to refactor and repeat the cycle till the software reaches the acceptable
level. This process is depicted in the following diagram:

Testing your code inside Docker
In this section, we will take you through a journey in which we will show you how
TDD is done using stubs, and how Docker can come handy in developing software
in the deployment equivalent system. For this purpose, we take a web application
use case that has a feature to track the visit count of each of its users. For this
example, we use Python as the implementation language and redis as the key-value
pair database to store the users hit count. Besides, to showcase the testing capability
of Docker, we limit our implementation to just two functions: hit and getHit.

www.itbook.store/books/9781784397937

http://agiledata.org/essays/tdd.html
https://itbook.store/books/9781784397937

Chapter 9

[153]

NOTE: All the examples in this chapter use python3 as the runtime
environment. The ubuntu 14.04 installation comes with python3
by default. If you don't have python3 installed on your system, refer
to the respective manual to install python3.

As per the TDD practice, we start by adding unit test cases for the hit and
getHit functionalities, as depicted in the following code snippet. Here, the test
file is named test_hitcount.py:

import unittest
import hitcount

class HitCountTest (unittest.TestCase):
 def testOneHit(self):
 # increase the hit count for user user1
 hitcount.hit("user1")
 # ensure that the hit count for user1 is just 1
 self.assertEqual(b'1', hitcount.getHit("user1"))

if __name__ == '__main__':
 unittest.main()

This example is also available at https://github.com/thedocker/
testing/tree/master/src.

Here, in the first line, we are importing the unittest Python module that
provides the necessary framework and functionality to run the unit test and
generate a detailed report on the test execution. In the second line, we are importing
the hitcount Python module, where we are going to implement the hit count
functionality. Then, we will continue to add the test code that would test the
hitcount module's functionality.

Now, run the test suite using the unit test framework of Python, as follows:

$ python3 -m unittest

www.itbook.store/books/9781784397937

https://github.com/thedocker/testing/tree/master/src
https://github.com/thedocker/testing/tree/master/src
https://itbook.store/books/9781784397937

Testing with Docker

[154]

The following is the output generated by the unit test framework:

E

==

ERROR: test_hitcount (unittest.loader.ModuleImportFailure)

--

Traceback (most recent call last):

...OUTPUT TRUNCATED ...

ImportError: No module named 'hitcount'

--

Ran 1 test in 0.001s

FAILED (errors=1)

As expected, the test failed with the error message ImportError: No module named
'hitcount' because we had not even created the file and hence, it could not import
the hitcount module.

Now, create a file with the name hitcount.py in the same directory as
test_hitcount.py:

$ touch hitcount.py

Continue to run the unit test suite:

$ python3 -m unittest

The following is the output generated by the unit test framework:

E

==

ERROR: testOneHit (test_hitcount.HitCountTest)

--

Traceback (most recent call last):

 File "/home/user/test_hitcount.py", line 10, in testOneHit

 hitcount.hit("peter")

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 9

[155]

AttributeError: 'module' object has no attribute 'hit'

--

Ran 1 test in 0.001s

FAILED (errors=1)

Again the test suite failed like the earlier but with a different error message
AttributeError: 'module' object has no attribute 'hit'. We are
getting this error because we have not implemented the hit function yet.

Let's proceed to implement the hit and getHit functions in hitcount.py,
as shown here:

import redis
connect to redis server
r = redis.StrictRedis(host='0.0.0.0', port=6379, db=0)

increase the hit count for the usr
def hit(usr):
 r.incr(usr)

get the hit count for the usr
 def getHit(usr):
 return (r.get(usr))

This example is also available on GitHub at https://github.
com/thedocker/testing/tree/master/src.
Note: To continue with this example, you must have the python3
compatible version of package installer (pip3).
The following command is used to install pip3:
$ wget -qO- https://bootstrap.pypa.io/get-pip.py |
sudo python3 -

In the first line of this program, we are importing the redis driver, which is
the connectivity driver of the redis database. In the following line, we are
connecting to the redis database, and then we will continue to implement
the hit and getHit function.

www.itbook.store/books/9781784397937

https://github.com/thedocker/testing/tree/master/src
https://github.com/thedocker/testing/tree/master/src
https://itbook.store/books/9781784397937

Testing with Docker

[156]

The redis driver is an optional Python module, so let's proceed to install the
redis driver using the pip installer, which is illustrated as follows:

$ sudo pip3 install redis

Our unittest will still fail even after installing the redis driver because we are not
running a redis database server yet. So, we can either run a redis database server
to successfully complete our unit testing or take the traditional TDD approach of
mocking the redis driver. Mocking is a testing approach wherein complex behavior
is substituted by predefined or simulated behavior. In our example, to mock the redis
driver, we are going to leverage a third-party Python package called mockredis. This
mock package is available at https://github.com/locationlabs/mockredis and
the pip installer name is mockredispy. Let's install this mock using the pip installer:

$ sudo pip3 install mockredispy

Having installed mockredispy, the redis mock, let's refactor our test code
test_hitcount.py (which we had written earlier) to use the simulated redis
functionality provided by the mockredis module. This is accomplished by the
patch method provided by the unittest.mock mocking framework, as shown
in the following code:

import unittest
from unittest.mock import patch

Mock for redis
import mockredis
import hitcount

class HitCountTest(unittest.TestCase):

@patch('hitcount.r',mockredis.mock_strict_redis_client(host='0.0.0.0',
port=6379,
db=0))
 def testOneHit(self):
 # increase the hit count for user user1
 hitcount.hit("user1")
 # ensure that the hit count for user1 is just 1
 self.assertEqual(b'1', hitcount.getHit("user1"))

if __name__ == '__main__':
 unittest.main()

www.itbook.store/books/9781784397937

https://github.com/locationlabs/mockredis
https://itbook.store/books/9781784397937

Chapter 9

[157]

This example is also available on GitHub at https://github.com/
thedocker/testing/tree/master/src.

Now, run the test suite again:

$ python3 -m unittest

.

-

Ran 1 test in 0.000s

OK

Finally, as we can see in the preceding output, we successfully implemented our
visitors count functionality through the test, code, and refactor cycle.

Running the test inside a container
In the previous section, we walked you through the complete cycle of TDD,
in which we installed additional Python packages to complete our development.
However, in the real world, one might work on multiple projects that might
have conflicting libraries and hence, there is a need for the isolation of runtime
environments. Before the advent of Docker technology, the Python community
used to leverage the virtualenv tool to isolate the Python runtime environment.
Docker takes this isolation a step further by packaging the OS, the Python tool chain,
and the runtime environment. This type of isolation gives a lot of flexibility to the
development community to use appropriate software versions and libraries as per
the project needs.

Here is the step-by-step procedure to package the test and visitor count
implementation of the previous section to a Docker container and perform the test
inside the container:

1. Craft a Dockerfile to build an image with the python3 runtime, the redis
and mockredispy packages, both the test_hitcount.py test file and the
visitors count implementation hitcount.py, and finally, launch the unit test:
###
Dockerfile to build the unittest container
###

www.itbook.store/books/9781784397937

https://github.com/thedocker/testing/tree/master/src
https://github.com/thedocker/testing/tree/master/src
https://itbook.store/books/9781784397937

Testing with Docker

[158]

Base image is python
FROM python:latest

Author: Dr. Peter
MAINTAINER Dr. Peter <peterindia@gmail.com>

Install redis driver for python and the redis mock
RUN pip install redis && pip install mockredispy

Copy the test and source to the Docker image
ADD src/ /src/

Change the working directory to /src/
WORKDIR /src/

Make unittest as the default execution
ENTRYPOINT python3 -m unittest

This example is also available on GitHub at https://github.
com/thedocker/testing/tree/master/src.

2. Now create a directory called src on the directory, where we crafted our
Dockerfile. Move the test_hitcount.py and hitcount.py files to the
newly created src directory.

3. Build the hit_unittest Docker image using the docker build
subcommand:
$ sudo docker build -t hit_unittest .

Sending build context to Docker daemon 11.78 kB

Sending build context to Docker daemon

Step 0 : FROM python:latest

 ---> 32b9d937b993

Step 1 : MAINTAINER Dr. Peter <peterindia@gmail.com>

 ---> Using cache

 ---> bf40ee5f5563

Step 2 : RUN pip install redis && pip install mockredispy

 ---> Using cache

 ---> a55f3bdb62b3

www.itbook.store/books/9781784397937

https://github.com/thedocker/testing/tree/master/src
https://github.com/thedocker/testing/tree/master/src
https://itbook.store/books/9781784397937

Chapter 9

[159]

Step 3 : ADD src/ /src/

 ---> 526e13dbf4c3

Removing intermediate container a6d89cbce053

Step 4 : WORKDIR /src/

 ---> Running in 5c180e180a93

 ---> 53d3f4e68f6b

Removing intermediate container 5c180e180a93

Step 5 : ENTRYPOINT python3 -m unittest

 ---> Running in 74d81f4fe817

 ---> 063bfe92eae0

Removing intermediate container 74d81f4fe817

Successfully built 063bfe92eae0

4. Now that we have successfully built the image, let's launch our container
with the unit testing bundle using the docker run subcommand, as
illustrated here:
$ sudo docker run --rm -it hit_unittest .

--

Ran 1 test in 0.001s

OK

Apparently, the unit test ran successfully with no errors because we already
packaged the tested code.

In this approach, for every change, the Docker image is built and then, the container
is launched to complete the test.

Using a Docker container as a runtime
environment
In the previous section, we built a Docker image to perform the testing. Particularly,
in the TDD practice, the unit test cases and the code go through multiple changes.
Consequently, the Docker image needs to be built over and over again, which is a
daunting job. In this section, we will see an alternative approach in which the Docker
container is built with a runtime environment, the development directory is mounted
as a volume, and the test is performed inside the container.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Testing with Docker

[160]

During this TDD cycle, if an additional library or update to the existing library is
required, then the container will be updated with the required libraries and the
updated container will be committed as a new image. This approach gives the
isolation and flexibility that any developer would dream of because the runtime
and its dependency live within the container, and any misconfigured runtime
environment can be discarded and a new runtime environment can be built from a
previously working image. This also helps to preserve the sanity of the Docker host
from the installation and uninstallation of libraries.

The following example is a step-by-step instruction on how to use the Docker
container as a nonpolluting yet very powerful runtime environment:

1. We begin with launching the Python runtime interactive container,
using the docker run subcommand:
$ sudo docker run -it \

 -v /home/peter/src/hitcount:/src \

 python:latest /bin/bash

Here, in this example, the /home/peter/src/hitcount Docker host
directory is earmarked as the placeholder for the source code and test files.
This directory is mounted in the container as /src.

2. Now, on another terminal of the Docker host, copy both the test_hitcount.
py test file and the visitors count implementation hitcount.py to /home/
peter/src/hitcount directory.

3. Switch to the Python runtime interactive container terminal, change the
current working directory to /src, and run the unit test:
root@a8219ac7ed8e:~# cd /src

root@a8219ac7ed8e:/src# python3 -m unittest

E

==
====

ERROR: test_hitcount (unittest.loader.ModuleImportFailure)

. . . TRUNCATED OUTPUT . . .

 File "/src/test_hitcount.py", line 4, in <module>

 import mockredis

ImportError: No module named 'mockredis'

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 9

[161]

Ran 1 test in 0.001s

FAILED (errors=1)

Evidently, the test failed because it could not find the mockredis
Python library.

4. Proceed to install the mockredispy pip package because the previous step
failed, as it could not find the mockredis library in the runtime environment:
root@a8219ac7ed8e:/src# pip install mockredispy

5. Rerun the Python unit test:
root@a8219ac7ed8e:/src# python3 -m unittest

E

===

ERROR: test_hitcount (unittest.loader.ModuleImportFailure)

. . . TRUNCATED OUTPUT . . .

 File "/src/hitcount.py", line 1, in <module>

 import redis

ImportError: No module named 'redis'

Ran 1 test in 0.001s

FAILED (errors=1)

Again, the test failed because the redis driver is not yet installed.

6. Continue to install the redis driver using the pip installer, as shown here:
root@a8219ac7ed8e:/src# pip install redis

7. Having successfully installed the redis driver, let's once again run the
unit test:
root@a8219ac7ed8e:/src# python3 -m unittest

.

Ran 1 test in 0.000s

OK

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Testing with Docker

[162]

Apparently, this time the unit test passed with no warnings or
error messages.

8. Now we have a runtime environment that is good enough to run our
test cases. It is better to commit these changes to a Docker image for reuse,
using the docker commit subcommand:

$ sudo docker commit a8219ac7ed8e python_rediswithmock

fcf27247ff5bb240a935ec4ba1bddbd8c90cd79cba66e52b21e1b48f984c7db2

From now on, we can use the python_rediswithmock image to launch new
containers for our TDD.

In this section, we vividly illustrated the approach on how to use the Docker
container as a testing environment, and also at the same time, preserve the sanity
and sanctity of the Docker host by isolating and limiting the runtime dependency
within the container.

Integrating Docker testing into Jenkins
In the previous section, we laid out a stimulating foundation on software testing,
how to leverage the Docker technology for the software testing, and the unique
benefits of the container technology during the testing phase. In this section, we will
introduce you to the steps required to prepare the Jenkins environment for testing
with Docker, and then, demonstrate how Jenkins can be extended to integrate and
automate testing with Docker using the well-known hit count use case.

Preparing the Jenkins environment
In this section, we will take you through the steps to install jenkins, GitHub plugin
for Jenkins and git, and the revision control tool. These steps are as follows:

1. We begin with adding the Jenkins' trusted PGP public key:
$ wget -q -O - \

 https://jenkins-ci.org/debian/jenkins-ci.org.key | \

 sudo apt-key add -

Here, we are using wget to download the PGP public key, and then we add
it to the list of trusted keys using the apt-key tool. Since Ubuntu and Debian
share the same software packaging, Jenkins provides a single common
package for both Ubuntu and Debian.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 9

[163]

2. Add the Debian package location to the apt package source list, as follows:
$ sudo sh -c \

 'echo deb http://pkg.jenkins-ci.org/debian binary/ > \

 /etc/apt/sources.list.d/jenkins.list'

3. Having added the package source, continue to run the apt-get command
update option to resynchronize the package index from the sources:
$ sudo apt-get update

4. Now, install jenkins using the apt-get command install option, as
demonstrated here:
$ sudo apt-get install jenkins

5. Finally, activate the jenkins service using the service command:
$ sudo service jenkins start

6. The jenkins service can be accessed through any web browsers by
specifying the IP address (10.1.1.13) of the system in which Jenkins
is installed. The default port number for Jenkins is 8080. The following
screenshot is the entry page or Dashboard of Jenkins:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Testing with Docker

[164]

7. In this example, we are going to use GitHub as the source code repository.
Jenkins does not support GitHub by default and hence, we need to install the
GitHub plugin. During the installation, sometimes Jenkins does not populate
the plugin availability list, and hence, you have to force it to download the
list of available plugins. You can do so by performing the following steps:

1. Select Manage Jenkins on the left-hand side of the screen,
which will take us to a Manage Jenkins page, as shown in the
following screenshot:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 9

[165]

2. On the Manage Jenkins page, select Manage Plugins and this
will take us to the Plugin Manager page, as shown in the
following screenshot:

3. Here, on the Plugin Manager page, select the Advanced tab, go to
the bottom of this page, and you will find the Check now button
in the right-hand side corner of the page. Click on the Check now
button to start the plugin updates. Alternatively, you can directly
go to the Check now button on the Advanced page by navigating
to http://<jenkins-server>:8080/pluginManager/advanced,
wherein <jenkins-server> is the IP address of the system in which
Jenkins is installed.

NOTE: If Jenkins does not update the available plugin list, it is
most likely a mirror site issue, so modify the Update Site field with
a working mirror URL.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Testing with Docker

[166]

8. Having updated the available plugin list, let's continue to install the GitHub
plugin, as depicted in the following substeps:

1. Select the Available tab in the Plugin Manager page, which will list
all the available plugins.

2. Type GitHub plugin as the filter, which will list just the GitHub
plugin, as shown in the following screenshot:

3. Select the checkbox, and click on Download now and install after
restart. You will be taken to a screen that will show you the progress
of the plugin installation:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 9

[167]

4. After all the plugins have successfully downloaded, go ahead and
restart Jenkins using http://< jenkins-server >:8080/restart,
where <jenkins-server> is the IP address of the system in which
Jenkins is installed.

9. Ensure that the git package is installed, otherwise install the git package
using the apt-get command:
$ sudo apt-get install git

10. So far, we have been running the Docker client using the sudo command,
but unfortunately, we could not invoke sudo inside Jenkins because
sometimes it prompts for a password. To overcome the sudo password
prompt issue, we can make use of the Docker group, wherein any user who
is part of the Docker group can invoke the Docker client without using the
sudo command. Jenkins installation always sets up a user and group called
jenkins and runs the Jenkins server using that user and group. So, we just
need to add the jenkins user to the Docker group to get the Docker client
working without the sudo command:
$ sudo gpasswd -a jenkins docker

Adding user jenkins to group docker

11. Restart the jenkins service for the group change to take effect using the
following command:

$ sudo service jenkins restart

 * Restarting Jenkins Continuous Integration Server jenkins
[OK]

We have set up a Jenkins environment that is now capable of automatically pulling
the latest source code from the http://github.com repository, packaging it as a
Docker image, and executing the prescribed test scenarios.

Automating the Docker testing process
In this section, we will explore how to automate testing using Jenkins and Docker.
As mentioned earlier, we are going to use GitHub as our repository. We have
already uploaded the Dockerfile, test_hitcount.py, and hitcount.py files of our
previous example to GitHub at https://github.com/thedocker/testing, which
we are to use in the ensuing example. However, we strongly encourage you to set up
your own repository at http://github.com, using the fork option that you can find
at https://github.com/thedocker/testing, and substitute this address wherever
applicable in the ensuing example.

www.itbook.store/books/9781784397937

http://github.com
https://github.com/thedocker/testing
http://github.com
https://github.com/thedocker/testing
https://itbook.store/books/9781784397937

Testing with Docker

[168]

The following are the detailed steps to automate the Docker testing:

1. Configure Jenkins to trigger a build when a file is modified in the GitHub
repository, which is illustrated in the following substeps:

1. Connect to the Jenkins server again.
2. Select either New Item or create new jobs:

3. In the following screenshot, give a name to the project (for example,
Docker-Testing), and select the Freestyle project radio button:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 9

[169]

4. In the next screenshot, select the Git radio button under Source
Code Management, and specify the GitHub repository URL in the
Repository URL text field:

5. Select Poll SCM under Build Triggers to schedule GitHub
polling for every 15 minute interval. Type the following line of code
H/15 * * * * in the Schedule textbox, as shown in the following
screenshot. For testing purposes, you can reduce the polling interval:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Testing with Docker

[170]

6. Scroll down the screen a little further, and select the Add build step
button under Build. In the drop-down list, select Execute shell and
type in the text, as shown in the following screenshot:

7. Finally, save the configuration by clicking on the Save button.

2. Go back to the Jenkins Dashboard, and you can find your test listed
on the dashboard:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 9

[171]

3. You can either wait for the Jenkins schedule to kick-start the build, or
you can click on the clock icon on the right-hand side of the screen to
kick-start the build immediately. As soon as the build is done, the Dashboard
is updated with the build status as a success or failure, and the build number:

4. If you hover the mouse closer to the build number, you will get a drop-down
button with options, such as Changes, Console Output, and so on, as shown
in the following screenshot:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Testing with Docker

[172]

5. The Console Output option will show the details highlighted for the build,
as follows:
Started by user anonymous

Building in workspace /var/lib/jenkins/jobs/Docker-Testing/
workspace

Cloning the remote Git repository

Cloning repository https://github.com/thedocker/testing/

. . . OUTPUT TRUNCATED . . .

+ docker build -t docker_testing_using_jenkins .

Sending build context to Docker daemon 121.9 kB

Sending build context to Docker daemon

Step 0 : FROM python:latest

. . . OUTPUT TRUNCATED . . .

Successfully built ad4be4b451e6

+ docker run --rm docker_testing_using_jenkins

.

--

Ran 1 test in 0.000s

OK

Finished: SUCCESS

6. Evidently, the test failed because of the wrong module name error_hitcount,
which we deliberately introduced. Now, let's experiment a negative scenario
by deliberately introducing a bug in test_hitcount.py and observe the effect
the on Jenkins build. As we have configured Jenkins, it faithfully polls the
GitHub and kick-starts the build:

Apparently, the build failed as we expected.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 9

[173]

7. As a final step, open Console Output of the failed build:

Started by an SCM change

Building in workspace /var/lib/jenkins/jobs/Docker-Testing/
workspace

. . . OUTPUT TRUNCATED . . .

ImportError: No module named 'error_hitcount'

--

Ran 1 test in 0.001s

FAILED (errors=1)

Build step 'Execute shell' marked build as failure

Finished: FAILURE

Evidently, the test failed because of the wrong module name
error_hitcount, which we deliberately introduced.

Cool, isn't it? We automated our testing using Jenkins and Docker. Besides, we are
able to experience the power of testing automation using Jenkins and Docker. In a
large-scale project, Jenkins and Docker can be combined together to automate the
complete unit testing needs, and thus, to automatically capture any defects and
deficiencies introduced by any developers.

Summary
The potential benefits of containerization are being discovered across the breadth
and the length of software engineering. Previously, testing sophisticated software
systems involved a number of expensive and hard-to-manage server modules and
clusters. Considering the costs and complexities involved, most of the software
testing is accomplished using mocking procedures and stubs. All of this is going
to end for good with the maturity of the Docker technology. The openness and
flexibility of Docker enables it to work seamlessly with other technologies to
substantially reduce the testing time and complexity.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Testing with Docker

[174]

For a long time, the leading ways of testing software systems included mocking,
dependency, injection, and so on. Usually, these mandate creating many
sophisticated abstractions in the code. The current practice for developing and
running test cases against an application is actually done on stubs rather than on the
full application. That is, with a containerized workflow, it is very much possible to
test against real application containers with all the dependencies. The contributions
of the Docker paradigm, especially for the testing phenomenon and phase are
therefore being carefully expounded and recorded in the recent past. Precisely
speaking, the field of software engineering is moving towards smart and sunnier
days with all the innovations in the Docker space.

In this chapter, we clearly expounded and explained a powerful testing framework
for integrated applications using the Docker-inspired containerization paradigm.
Increasingly for the agile world, the proven and potential TDD method is being
insisted as an efficient software building and sustenance methodology. This chapter
has utilized the Python unit test framework to illustrate how the TDD methodology
is a pioneering tool for software engineering. The unit test framework is tweaked to
be efficiently and elegantly containerized, and the Docker container is seamlessly
integrated with Jenkins, which is a modern day deployment tool for continuous
delivery, and is part and parcel of the agile programming world, as described in
this chapter. The Docker container source code is pre-checked before it enters into
the GitHub code repository. The Jenkins tool downloads the code from GitHub and
runs the test inside a container. In the next chapter, we shall will dive deep into,
and describe the theoretical aspects of, the process isolation through the container
technology and various debugging tools and techniques.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[175]

Debugging Containers
Debugging has been an artistic component in the field of software engineering. All
kinds of software building blocks individually, as well as collectively, need to go
through a stream of deeper and decisive investigations by software development
and testing professionals in order to ensure the security and safety of the resulting
software applications. As Docker containers are said to be key runtime environments
for next generation mission-critical software workloads, it is pertinent and
paramount for containers, crafters, and composers to embark on the systematic and
sagacious verification and validation of containers.

This chapter has been dedicatedly written to enable technical guys with all the
right and relevant information to meticulously debug applications running inside
containers and containers themselves. In this chapter, we will take a look at the
theoretical aspects of process isolation for processes running as containers. A Docker
container runs at a user-level process on host machines and typically has the same
isolation level as provided by the operating system. With the release of Docker 1.5,
many debugging tools are available, which can be efficiently used to debug your
applications. We will also cover the primary Docker debugging tools, such as Docker
exec, stats, ps, top, events, and logs. Finally, we will take a look at the nsenter
tool to log in to containers without running the Secure Shell (SSH) daemon.

The list of topics that will be covered in the chapter is as follows:

• Process level isolation for Docker containers
• Debugging a containerized application
• Installing and using nsenter

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Debugging Containers

[176]

Process level isolation for Docker
containers
In the virtualization paradigm, the hypervisor emulates computing resources and
provides a virtualized environment called a VM to install the operating system and
applications on top of it. Whereas, in the case of the container paradigm, a single
system (bare metal or virtual machine) is effectively partitioned to run multiple
services simultaneously without interfering with each other. These services must
be isolated from each other in order to prevent them from stepping on each other's
resources or dependency conflict (also known as dependency hell). The Docker
container technology essentially achieves process-level isolation by leveraging
the Linux kernel constructs, such as namespaces and cgroups, particularly, the
namespaces. The Linux kernel provides the following five powerful namespace
leavers to isolate the global system resources from each other. These are the
Interprocess Communication (IPC) namespaces used to isolate the interprocess
communication resources:

• The network namespace is used to isolate networking resources,
such as the network devices, network stack, port number, and so on

• The mount namespace isolates the filesystem mount points
• The PID namespace isolates the process identification number
• The user namespace is used to isolate the user ID and group ID
• The UTS namespace is used to isolate the hostname and the NIS

domain name

These namespaces add an additional level of complexity when we have to debug
the services running inside the containers, which we will learn more in detail in
the next chapter.

In this section, we will discuss how the Docker engine provides process isolation by
leveraging the Linux namespaces through a series of practical examples, and one of
them is listed here:

1. Start by launching an ubuntu container in an interactive mode using the
docker run subcommand, as shown here:
$ sudo docker run -it --rm ubuntu /bin/bash

root@93f5d72c2f21:/#

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 10

[177]

2. Proceed to find the process ID of the preceding container 93f5d72c2f21,
using the docker inspect subcommand in a different terminal:
$ sudo docker inspect \

 --format "{{ .State.Pid }}" 93f5d72c2f21

2543

Apparently, from the preceding output, the process ID of the container
93f5d72c2f21 is 2543.

3. Having got the process ID of the container, let's continue to see how
the process associated with the container looks in the Docker host,
using the ps command:
$ ps -fp 2543

UID PID PPID C STIME TTY TIME CMD

root 2543 6810 0 13:46 pts/7 00:00:00 /bin/bash

Amazing, isn't it? We launched a container with /bin/bash as its command,
and we have the /bin/bash process in the Docker host as well.

4. Let's go one step further and display the /proc/2543/environ file in the
Docker host using the cat command:
$ sudo cat -v /proc/2543/environ

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin^@HOSTNAME=93f5d72c2f21^@TERM=xterm^@HOME=/root^@$

In the preceding output, HOSTNAME=93f5d72c2f21 stands out from the other
environment variables because 93f5d72c2f21 is the container ID, as well as
the hostname of the container, which we launched previously.

5. Now, let's get back to the terminal, where we are running our interactive
container 93f5d72c2f21, and list all the processes running inside this
container using the ps command:

root@93f5d72c2f21:/# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 18:46 ? 00:00:00 /bin/bash

root 15 1 0 19:30 ? 00:00:00 ps -ef

Surprising, isn't it? Inside the container, the process ID of the bin/bash
process is 1, whereas outside the container, in the Docker host, the process ID
is 2543. Besides, the Parent Process ID (PPID) is 0 (zero).

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Debugging Containers

[178]

In the Linux world, every system has just one root process with the PID 1 and
PPID 0, which is the root of the complete process tree of that system. The Docker
framework cleverly leverages the Linux PID namespace to spin a completely new
process tree; thus, the processes running inside a container have no access to the
parent process of the Docker host. However, the Docker host has a complete view of
the child PID namespace spun by the Docker engine.

The network namespace ensures that all containers have independent network
interfaces on the host machine. Also, each container has its own loopback interface.
Each container talks to the outside world using its own network interface. You will
be surprised to know that the namespace not only has its own routing table, but also
has its own iptables, chains, and rules. The author of this chapter is running three
containers on his host machine. Here, it is natural to expect three network interfaces
for each container. Let's run the docker ps command:

$ sudo docker ps

41668be6e513 docker-apache2:latest "/bin/sh -c 'apachec

069e73d4f63c nginx:latest "nginx -g '

871da6a6cf43 ubuntu:14.04 "/bin/bash"

So here, three are three interfaces, one for each container. Let's get their details by
running the following command:

$ ifconfig

veth2d99bd3 Link encap:Ethernet HWaddr 42:b2:cc:a5:d8:f3

 inet6 addr: fe80::40b2:ccff:fea5:d8f3/64 Scope:Link

 UP BROADCAST RUNNING MTU:9001 Metric:1

veth422c684 Link encap:Ethernet HWaddr 02:84:ab:68:42:bf

 inet6 addr: fe80::84:abff:fe68:42bf/64 Scope:Link

 UP BROADCAST RUNNING MTU:9001 Metric:1

vethc359aec Link encap:Ethernet HWaddr 06:be:35:47:0a:c4

 inet6 addr: fe80::4be:35ff:fe47:ac4/64 Scope:Link

 UP BROADCAST RUNNING MTU:9001 Metric:1

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 10

[179]

The mount namespace ensures that the mounted filesystem is accessible only to the
processes within the same namespace. The container A cannot see the mount points
of the container B. If you want to check your mount points, you need to first log in to
your container using the exec command (described in the next section), and then go
to /proc/mounts:

root@871da6a6cf43:/# cat /proc/mounts

rootfs / rootfs rw 0 0/dev/mapper/docker-202:1-149807
871da6a6cf4320f625d5c96cc24f657b7b231fe89774e09fc771b3684bf405fb /
ext4 rw,relatime,discard,stripe=16,data=ordered 0 0 proc /proc proc
rw,nosuid,nodev,noexec,relatime 0 0

Let's run a container with a mount point that runs as the Storage Area Network
(SAN) or Network Attached Storage (NAS) device and access it by logging into the
container. This is given to you as an exercise. I have implemented this in one of my
projects at work.

There are other namespaces that these containers/processes can be isolated into,
namely, user, IPC, and UTS. The user namespace allows you to have root privileges
within the namespace without giving that particular access to processes outside the
namespace. Isolating a process with the IPC namespace gives it its own interprocess
communication resources, for example, System V IPC and POSIX messages. The UTS
namespace isolates the hostname of the system.

Docker has implemented this namespace using the clone system call. On the host
machine, you can inspect the namespace created by Docker for the container (with
pid 3728):

$ sudo ls /proc/3728/ns/

ipc mnt net pid user uts

In most industrial deployments of Docker, people are extensively using patched
Linux kernels to provide specific needs. Also, a few companies have patched
their kernels to attach arbitrary processes to the existing namespaces because
they feel that this is the most convenient and reliable way to deploy, control,
and orchestrate containers.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Debugging Containers

[180]

Control groups
Linux containers rely on control groups (cgroups), which not only track groups of
processes, but also expose metrics of the CPU, memory, and block I/O usage. You
can access these metrics and obtain network usage metrics as well. Control groups
are another important components of Linux containers. Control groups are around
for a while and are initially merged in the Linux kernel code 2.6.24. They ensure
that each Docker container will get a fixed amount of memory, CPU, and disk I/O,
so that any container will not able to bring the host machine down at any point of
time under any circumstances. Control groups do not play a role in preventing one
container from being accessed, but they are essential to fending off some Denial of
Service (DoS) attacks.

On Ubuntu 14.04, cgroup is implemented in the /sys/fs/cgroup path. The memory
information of Docker is available at the /sys/fs/cgroup/memory/docker/ path.

Similarly, the CPU details are made available in the /sys/fs/cgroup/cpu/docker/
path.

Let's find out the maximum limit of memory that can be consumed by the container
(41668be6e513e845150abd2dd95dd574591912a7fda947f6744a0bfdb5cd9a85).

For this, you can go to the cgroup memory path and check for the memory.max.
usage file:

/sys/fs/cgroup/memory/docker/41668be6e513e845150abd2dd95dd574591912a7
fda947f6744a0bfdb5cd9a85

$ cat memory.max_usage_in_bytes

13824000

So, by default, any container can use up to 13.18 MB memory only.

Similarly, CPU parameters can be found in the following path:

/sys/fs/cgroup/cpu/docker/41668be6e513e845150abd2dd95dd574591912a7fda
947f6744a0bfdb5cd9a85

Traditionally, Docker runs only one process inside the containers.
So typically, you have seen people running three containers each for PHP, nginx,
and MySQL. However, this is a myth. You can run all your three processes inside a
single container.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 10

[181]

Docker isolates many aspects of the underlying host from an application running in
a container without the root privileges. However, this separation is not as strong as
that of virtual machines, which run independent OS instances on top of a hypervisor
without sharing the kernel with the underlying OS. It's not a good idea to run
applications with different security profiles as containers on the same host, but
there are security benefits to encapsulate different applications into containerized
applications that would otherwise run directly on the same host.

Debugging a containerized application
Computer programs (software) sometimes fail to behave as expected. This is due
to faulty code or due to the environmental changes between the development,
testing, and deployment systems. Docker container technology eliminates the
environmental issues between development, testing, and deployment as much as
possible by containerizing all the application dependencies. Nonetheless, there could
be still anomalies due to faulty code or variations in the kernel behavior, which
needs debugging. Debugging is one of the most complex processes in the software
engineering world and it becomes much more complex in the container paradigm
because of the isolation techniques. In this section, we are going to learn a few tips
and tricks to debug a containerized application using the tools native to Docker, as
well as the tools provided by external sources.

Initially, many people in the Docker community individually developed their own
debugging tools, but later Docker started supporting native tools, such as exec, top,
logs, events, and many more. In this section, we will dive deep into the following
Docker tools:

• exec

• ps

• top

• stats

• events

• logs

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Debugging Containers

[182]

The Docker exec command
The docker exec command provided the much-needed help to users, who are
deploying their own web servers or other applications running in the background.
Now, it is not necessary to log in to run the SSH daemon in the container.

First, run the docker ps -a command to get the container ID:

$ sudo docker ps -a

b34019e5b5ee nsinit:latest "make local"

a245253db38b training/webapp:latest "python app.py"

Then, run the docker exec command to log in to the container.

$ sudo docker exec -it a245253db38b bash

root@a245253db38b:/opt/webapp#

It is important to note that the docker exec command can only access the running
containers, so if the container stops functioning, then you need to restart the stopped
container in order to proceed. The docker exec command spawns a new process
in the target container using the Docker API and CLI. So if you run the pe -aef
command inside the target container, it looks like this:

ps -aef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Mar22 ? 00:00:53 python app.py

root 45 0 0 18:11 ? 00:00:00 bash

root 53 45 0 18:11 ? 00:00:00 ps -aef

Here, python app.y is the application that is already running in the target container,
and the docker exec command has added the bash process inside the container. If
you run kill -9 pid(45), you will be automatically logged out of the container.

If you are an enthusiastic developer, and you want to enhance the exec functionality,
you can refer to https://github.com/chris-rock/docker-exec.

It is recommended that you use the docker exec command only for monitoring
and diagnostic purposes, and I personally believe in the concept of one process per
container, which is one of the best practices widely accentuated.

www.itbook.store/books/9781784397937

https://github.com/chris-rock/docker-exec
https://itbook.store/books/9781784397937

Chapter 10

[183]

The Docker ps command
The docker ps command, which is available inside the container, is used to
see the status of the process. This is similar to the standard ps command in the
Linux environment and is not a docker ps command that we run on the Docker
host machine.

This command runs inside the Docker container:

root@5562f2f29417:/# ps –s

 UID PID PENDING BLOCKED IGNORED CAUGHT STAT TTY
TIME COMMAND

 0 1 00000000 00010000 00380004 4b817efb Ss ?
0:00 /bin/bash

 0 33 00000000 00000000 00000000 73d3fef9 R+ ?
0:00 ps -s

root@5562f2f29417:/# ps -l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

4 S 0 1 0 0 80 0 - 4541 wait ? 00:00:00
bash

0 R 0 34 1 0 80 0 - 1783 - ? 00:00:00 ps

root@5562f2f29417:/# ps -t

 PID TTY STAT TIME COMMAND

 1 ? Ss 0:00 /bin/bash

 35 ? R+ 0:00 ps -t

root@5562f2f29417:/# ps -m

 PID TTY TIME CMD

 1 ? 00:00:00 bash

 - - 00:00:00 -

 36 ? 00:00:00 ps

 - - 00:00:00 -

root@5562f2f29417:/# ps -a

 PID TTY TIME CMD

 37 ? 00:00:00 ps

Use ps --help <simple|list|output|threads|misc|all> or ps --help
<s|l|o|t|m|a> for additional help text.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Debugging Containers

[184]

The Docker top command
You can run the top command from the Docker host machine using the
following command:

docker top [OPTIONS] CONTAINER [ps OPTIONS]

This gives a list of the running processes of a container without logging into the
container, as follows:

$ sudo docker top a245253db38b

UID PID PPID C

STIME TTY TIME CMD

root 5232 3585 0

Mar22 ? 00:00:53 python
app.py

$ sudo docker top a245253db38b -aef

UID PID PPID C

STIME TTY TIME CMD

root 5232 3585 0

Mar22 ? 00:00:53 python
app.py

The Docker top command provides information about the CPU, memory, and swap
usage if you run it inside a Docker container:

root@a245253db38b:/opt/webapp# top

top - 19:35:03 up 25 days, 15:50, 0 users, load average: 0.00,
0.01, 0.05

Tasks: 3 total, 1 running, 2 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 99.9%id, 0.0%wa, 0.0%hi,
0.0%si, 0.0%st

Mem: 1016292k total, 789812k used, 226480k free, 83280k
buffers

Swap: 0k total, 0k used, 0k free, 521972k
cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 1 root 20 0 44780 10m 1280 S 0.0 1.1 0:53.69 python

 62 root 20 0 18040 1944 1492 S 0.0 0.2 0:00.01 bash

 77 root 20 0 17208 1164 948 R 0.0 0.1 0:00.00 top

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 10

[185]

In case you get the error error - TERM environment variable not set
while running the top command inside the container, perform the following
steps to resolve it:

Run the echo $TERM command. You will get the result as dumb. Then, run the
following command:

$ export TERM=dumb

This will resolve the error.

The Docker stats command
The Docker stats command provides you with the capability to view the memory,
CPU, and the network usage of a container from a Docker host machine, as
illustrated here:

$ sudo docker stats a245253db38b

CONTAINER CPU % MEM USAGE/LIMIT MEM %

 NET I/O

a245253db38b 0.02% 16.37 MiB/992.5 MiB 1.65%

 3.818 KiB/2.43 KiB

You can run the stats command to also view the usage for multiple containers:

$ sudo docker stats a245253db38b f71b26cee2f1

In the latest release of Docker 1.5, Docker provides you access to container statistics
read only parameters. This will streamline the CPU, memory, network IO, and
block IO of your containers. This helps you choose the resource limits and also in
profiling. The Docker stats utility provides you with these resource usage details
only for running containers. You can get detailed information using the end point
APIs at https://docs.docker.com/reference/api/docker_remote_api_
v1.17/#inspect-a-container.

Docker stats is originally taken from Michael Crosby's code contribution, which can
be accessed at https://github.com/crosbymichael.

www.itbook.store/books/9781784397937

https://docs.docker.com/reference/api/docker_remote_api_v1.17/#inspect-a-container
https://docs.docker.com/reference/api/docker_remote_api_v1.17/#inspect-a-container
https://github.com/crosbymichael
https://itbook.store/books/9781784397937

Debugging Containers

[186]

The Docker events command
Docker containers will report the following real-time events: create, destroy, die,
export, kill, omm, pause, restart, start, stop, and unpause. The following are a
few examples that illustrate how to use these commands:

$ sudo docker pause a245253db38b

a245253db38b

$ sudo docker ps -a

a245253db38b training/webapp:latest "python app.py"
4 days ago Up 4 days (Paused) 0.0.0.0:5000->5000/tcp
sad_sammet

$ sudo docker unpause a245253db38b

a245253db38b

$ sudo docker ps -a

a245253db38b training/webapp:latest "python app.py"
4 days ago Up 4 days 0.0.0.0:5000->5000/tcp sad_sammet

The Docker image will also report the untag and delete events.

Using multiple filters will be handled as an AND operation; for example, --filter
container= a245253db38b --filter event=start will display events for the
container a245253db38b and the event type is start.

Currently, the supported filters are container, event, and image.

The Docker logs command
This command fetches the log of a container without logging into the
container. It batch-retrieves logs present at the time of execution. These logs are
the output of STDOUT and STDERR. The general usage is shown in docker logs
[OPTIONS] CONTAINER.

The –follow option will continue to provide the output till the end, -t will provide
the timestamp, and --tail= <number of lines> will show the number of lines of
the log messages of your container:

$ sudo docker logs a245253db38b

 * Running on http://0.0.0.0:5000/

172.17.42.1 - - [22/Mar/2015 06:04:23] "GET / HTTP/1.1" 200 -

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 10

[187]

172.17.42.1 - - [24/Mar/2015 13:43:32] "GET / HTTP/1.1" 200 -

$

$ sudo docker logs -t a245253db38b

2015-03-22T05:03:16.866547111Z * Running on http://0.0.0.0:5000/

2015-03-22T06:04:23.349691099Z 172.17.42.1 - - [22/Mar/2015 06:04:23]
"GET / HTTP/1.1" 200 -

2015-03-24T13:43:32.754295010Z 172.17.42.1 - - [24/Mar/2015 13:43:32]
"GET / HTTP/1.1" 200 -

We also used the docker logs utility in Chapter 2, Handling Docker Containers and
Chapter 6, Running Services in a Container, to view the logs of our containers.

Installing and using nsenter
In any commercial Docker deployments, you may use various containers, such as
web application, database, and so on. However, you need to access these containers in
order to modify the configuration or debug/troubleshoot the issues. A simple solution
for this problem is to run an SSH server in each container. It is a not good way to access
the machines due to unanticipated security implications. However, if you are working
in any one of the world-class IT companies, such as IBM, DELL, HP, and so on, your
security compliance guy will never allow you to use SSH to connect to machines.

So, here is the solution. The nsenter tool provides you access to log in to your
container. Note that nsenter will be first deployed as a Docker container only.
Using this deployed nsenter, you can access your container. Follow these steps:

1. Let's run a simple web application as a container:
$ sudo docker run -d -p 5000:5000 training/webapp python
app.py

a245253db38b626b8ac4a05575aa704374d0a3c25a392e0f4f562df92bb98d
74

2. Test the web container:
$ curl localhost:5000

Hello world!

3. Install nsenter and run it as a container:
$ sudo docker run -v /usr/local/bin:/target jpetazzo/nsenter

Now, nsenter is up and running as a container.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Debugging Containers

[188]

4. Use the nsenter container to log in to the container (a245253db38b), that we
created in step 1.
Run the following command to get the PID value:

$ PID=$(sudo docker inspect --format {{.State.Pid}}
a245253db38b)

5. Now, access the web container:

$ sudo nsenter --target $PID --mount --uts --ipc --net --pid

root@a245253db38b:/#

Then, you can log in and start accessing your container. Accessing your
container in this way will make your security and compliance professionals
happy, and they will feel relaxed.

Since Docker 1.3, the Docker exec is a supported tool used for logging into
containers.

The nsenter tool doesn't enter cgroups and therefore evades resource limitations.
The potential benefit of this would be debugging and external audit, but for a remote
access, docker exec is the current recommended approach.

The nsenter tool is tested only on Intel 64-bit platforms. You cannot run nsenter
inside the container that you want to access, and hence, you need to run nsenter
on host machines only. By running nsenter on a host machine, you can access all of
the containers of that host machine. Also, you cannot use the running nsenter on a
particular host, say host A to access the containers on host B.

Summary
Docker provides you with the isolation of containers using the Linux container
technology, such as LXC and now libcontainer. Libcontainer is Docker's own
implementation in the Go programming language to access the kernel namespace
and control groups. This namespace is used for process-level isolation, while control
groups is used for restricting the resource usage of running containers. Since the
containers run as independent processes directly over the Linux kernel, the generally
available (GA) debugging tools are not fit enough to work inside the containers
to debug the containerized processes. Docker now provides you with a rich set of
tools to effectively debug the container, as well as processes inside the container
itself. Docker exec will allow you to log in to the container without running an SSH
daemon in the container.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 10

[189]

Docker stats provides information about the container's memory and CPU usage.
Docker events reports the events, such as create, destroy, kill, and so on. Similarly,
Docker logs fetch the logs from the container without logging into the container.

Debugging is the foundation that can be used to strategize other security
vulnerabilities and holes. The next chapter is therefore incorporated to expound
the plausible security threats of Docker containers and how they can be subdued
with a variety of security approaches, automated tools, best practices, key guidelines,
and metrics.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[191]

Securing Docker Containers
So far, we have talked a lot about the fast emerging Docker technology in this
book. It is not a nice and neat finish if Docker-specific security issues and solution
approaches are not articulated in detail to you. Hence, this chapter is specially
crafted and incorporated in this book in order to explain about the growing security
challenges of Docker-inspired containers. We also wanted to throw more light on
how lingering security concerns are being addressed through a host of pioneering
technologies, high-quality algorithms, enabling tools, and best practices.

In this chapter, we are going to deal with the following topics in detail:

• Are Docker containers secure?
• The security features of containers
• The emerging security approaches
• The best practices for container security

Ensuring unbreakable and impenetrable security for any IT system and business
services has been one of the prime needs and predominant challenges in the IT field
for decades. Brilliant minds can identify and exploit all kinds of security holes and
flaws being carelessly and unknowingly introduced at the system conceptualization
and concretization stages. This loophole ultimately brings innumerable breaches
and havocs during IT service delivery. Security experts and engineers, on the
other hand, try out every kind of trick and technique in order to stop hackers in
their evil journey. However, it has not been an outright victory so far. Here and
there, there are some noteworthy intrusions from unknown sources, resulting in
highly disconcerting IT slowdown and sometimes breakdown. Organizations and
governments across the globe are, therefore, investing heavily in security research
endeavors in order to completely decimate all security and safety-related incidents
and accidents.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Securing Docker Containers

[192]

There are plenty-of security-specific product vendors and managed security service
providers in order to minimize the irreparable and indescribable consequences
of security threats and vulnerabilities on IT systems. Precisely speaking, for any
existing and emerging technologies, security is the most crucial and critical aspect,
which is not to be taken lightly.

Docker is a fast-maturing containerization technology in the IT space, and in the
recent past, the aspect of security is being given prime importance, considering the
fact that the adoption and adaption of Docker containers is consistently on the rise.
Furthermore, a stream of purpose-specific and generic containers are moving into
production environments and hence, the security conundrum acquires a special
significance. Undoubtedly, there will be a lot focus on the security parameters in
future Docker platform releases, as the market and mind shares for this open source
Docker initiative are consistently on the climb.

Are Docker containers secure enough?
With Docker containers being meticulously evaluated for production IT
environments, there are questions being asked in different quarters about the
security vulnerabilities of containers. Therefore, there is a clarion call to researchers
and security experts for substantially strengthening container security in order to
boost the confidence of service providers and consumers. In this section, we are
going to describe where Docker containers stand as far as the security imbroglio is
concerned. As containers are being closely examined in synchronization with virtual
machines, we will start with a few security-related points of virtual machines (VMs)
and containers.

The security facets – virtual machines versus
Docker containers
Let's start with understanding how virtual machines differ from containers.
Typically, virtual machines are heavyweight, and hence bloated, whereas containers
are lightweight, and hence, slim and sleek.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 11

[193]

The following table captures the renowned qualities of VMs and containers:

Virtual Machines Containers
A few VMs can run together on a single
physical machine (low density).

Tens of containers can run on a single
physical or virtual machine (high density).

This ensures the complete isolation of
VMs for security.

This enables isolation at the process level
and provides additional isolation using
features, such as namespaces and cgroups.

Each VM has its own OS and the physical
resources are managed by an underlying
hypervisor.

Containers share the same kernel as their
Docker host.

For networking, VMs can be linked to
virtual or physical switches. Hypervisors
have buffer for I/O performance
improvement, NIC bonding, and so on.

Containers leverage standard IPC
mechanisms, such as signals, pipes, sockets,
and so on, for networking. Each container
gets its own network stack.

The following diagram clearly illustrates the structural differences between the
matured virtualization paradigm and the fast-evolving containerization idea:

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Securing Docker Containers

[194]

The debate on the security-side of VMs and containers is heating up. There are
arguments and counter arguments in favor of one or the other. The preceding
diagram helps us visualize, compare, and contrast the security implications in
both paradigms.

In the case of the virtualization paradigm, the hypervisors are the centralized and
core controllers of the virtual machines. Any kind of access to freshly provisioned
virtual machines needs to go through this hypervisor solution, which stands as a
solid wall for any kind of unauthenticated, unauthorized, and unethical purposes.
Therefore, the attack surface of a virtual machine is smaller in comparison to
containers. The hypervisor has to be hacked or broken into in order to impact
other VMs.

In contrast to the virtualization paradigm, the containers are placed directly
on top of the kernel of the host system. This lean and mean architecture gives a
much higher efficiency because it completely eliminates the emulation layer of a
hypervisor and also offers a much higher container density. However, unlike the
virtual machine paradigm, the container paradigm does not have many layers, so
one can easily gain access to the host and other containers if any of the containers is
compromised. Therefore, the attack surface of a container is larger in comparison to
virtual machines.

However, the designers of the Docker platform have given due consideration
to this security risk and designed the system to thwart most security risks. In the
ensuing sections, we will discuss the security that is innately designed in the system,
the solutions being prescribed to substantially enhance the container security, and
the best practices and guidelines.

The security features of containers
Linux containers, especially Docker containers, have a few interesting innate
security-fulfilling features. Therefore, the containerization movement is blessed
with decent security. In this section, we will discuss these security-related features
in detail.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 11

[195]

The Docker platform promotes a layered security approach to bring in more decisive
and deft security for containers, as shown in the following diagram:

As discussed, Docker uses a host of security barricades to stop breaches. That is, if
one security mechanism gets broken, other mechanisms quickly come in the way of
containers being hacked. There are a few key areas that are to be examined when
evaluating the security implications of Docker containers.

Resource isolation
As we all know, containers are being positioned for the era of the microservices
architecture. That is, in a single system, there can be multiple generic, as well as
purpose-specific, services that dynamically collaborate with one another for realizing
easy-to-sustain distributed applications. With the multiplicity and heterogeneity of
services in a physical system on the climb, it is unsurprising that security complexity
is bound to shoot up. Therefore, resources need to be clearly demarcated and isolated
in order to escape from any kind of perilous security breach. The widely accepted
security approach is to leverage the kernel feature of namespaces.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Securing Docker Containers

[196]

The kernel namespaces guarantee the much-needed isolation feature for Linux
containers. The Docker project has added a few additional namespaces for Docker
containers, and each distinct aspect of a container runs in its own namespace and
hence, does not have access outside it. The following is a list of namespaces that
Docker uses:

• The PID namespace: This is used for a series of actions taken in order to
achieve process-level isolation

• The Network namespace: This is used to have executive control over the
network interfaces

• The IPC namespace: This is used to maintain control over access to IPC
resources

• The Mount namespace: This is used to manage mount points
• The UTS namespace: This is used to segregate the kernel and version

identifiers

Kernel namespaces provide the first and foremost form of isolation. Processes
running in a container don't affect processes running in another container or in
the host system. The network namespace ensures that each container gets its own
network stack, thus restricting access to the interfaces of other containers. From the
network architecture point of view, all the containers on a given Docker host are
sitting on bridge interfaces. This means that they are just like physical machines
connected to a common Ethernet switch.

Resource accounting and control
Containers consume different physical resources in order to deliver their unique
capabilities. However, the resource consumption has to be disciplined, orderly,
and hence, critically regulated. When there is a deviation, there is a greater
possibility of invalidating the containers from performing their assigned tasks in
time. For example, Denial of Service (DoS) results if the resource usage is not
systematically synchronized.

The Linux containers leverage control groups (cgroups) to implement resource
accounting and auditing to run applications in a frictionless manner. As we all know,
there are multiple resources that contribute to running the containers successfully.
They provide many useful metrics and ensure that each container gets its fair share
of memory, CPU, and disk I/O.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 11

[197]

Furthermore, they guarantee that a single container cannot bring the system down
by exhausting any one of these resources. This feature helps you fend off some DoS
attacks. This feature helps in running containers as multi-tenant citizens in cloud
environments to ensure their uptime and performance. Any kind of exploitation by
other containers are identified proactively and nipped in the bud so that any kind of
misadventure gets avoided.

The root privilege – impacts and best
practices
The Docker engine efficiently protects the containers from any malicious activities
by leveraging the recently mentioned resource isolation and control techniques.
Nonetheless, Docker exposes a few potential security threats because the Docker
daemon runs with the root privilege. Here, in this section, we list a few security risks
and the best practices to mitigate them.

The trusted user control
Since the Docker daemon runs with the root privilege, it has the capability to mount
any directory from the Docker host to the container, without limiting any access
rights. That is, you can start a container, where the /host directory will be the /
directory on your host, and the container will be able to alter your host filesystem
without any restriction. This is just an example among a myriad of malicious uses.
Considering these activities, latter versions of Docker restrict access to the Docker
daemon through a Unix socket. Docker can be configured to access the daemon
through the REST API over HTTP, if you explicitly decide to do so. However, you
should ensure that it will be reachable only from a trusted network or VPN or
protected with stunnel and client SSL certificates. You can also secure them with
HTTPS and certificates.

Non-root containers
As mentioned previously, the Docker containers, by default, run with the root
privilege and so does the application that runs inside the container. This is another
major concern from a security perspective because hackers can gain root access to the
Docker host by hacking the application running inside the container. Do not despair,
Docker provides a simple yet powerful solution to change the container's privilege
to a non-root user, thus, thwarting malicious root access to the Docker host. This
change to non-root user can be accomplished using the -u or --user option of the
docker run subcommand or the USER instruction in the Dockerfile.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Securing Docker Containers

[198]

In this section, we will demonstrate this concept by showing you the default root
privilege of the Docker container and then, continue to modify the root privilege
to a non-root user using the USER instruction in the Dockerfile.

First, we demonstrate the default root privilege of the Docker container by running
a simple id command in a docker run subcommand, as shown here:

$ sudo docker run --rm ubuntu:14.04 id

uid=0(root) gid=0(root) groups=0(root)

Now, let's perform the following steps:

1. Craft a Dockerfile that creates a non-root privilege user and modify the
default root user to the newly-created non-root privilege user, as shown here:
###
Dockerfile to change from root to non-root privilege
###

Base image is Ubuntu
FROM ubuntu:14.04

Add a new user "peter" with user id 7373
RUN useradd -u 7373 peter

Change to non-root privilege
USER peter
uid=0(root) gid=0(root) groups=0(root)

2. Proceed to build the Docker image using the docker build subcommand,
as depicted here:
$ sudo docker build –t nonrootimage .

3. Finally, let's verify the current user of the container, using the id command
in a docker run subcommand:

$ sudo docker run --rm nonrootimage id

uid=7373(peter) gid=7373(peter) groups=7373(peter)

Evidently, the container's user, group, the groups are now changed to a
non-root user.

Modifying the default root privilege to a non-root privilege is a very effective
way of containing malevolent penetration into the Docker host kernel.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 11

[199]

Loading the Docker images and the security
implications
Docker typically pulls images from the network, which are usually curated and
verified at the source. However, for the purpose of backup and restore, the Docker
images can be saved using the docker save subcommand and loaded back using
the docker load subcommand. This mechanism can also be used to load third-party
images through unconventional means. Unfortunately, in such a practice, the Docker
engine cannot verify the source and hence, the images can carry malicious code.
So, as a first shield of safety, Docker extracts the image in a chrooted subprocess for
privilege separation. Even though Docker ensures the privilege separation, it is not
recommended to load arbitrary images.

The emerging security approaches
So far, we have discussed the unique security-related kernel characteristics and
capabilities. Most security holes can be closed down by understanding and applying
those kernel capabilities. Security experts and exponents, having considered the
faster and widespread adoption of the raging containerization idea in production
environments, have brought forth a few more additional security solutions,
which we will describe in detail. These security methods need to be given utmost
importance by developers as well as system administrators while developing,
deploying, and delivering enterprise-class containers in order to nullify any kind of
inside or outside security attack.

Security-Enhanced Linux for container
security
Security-Enhanced Linux (SELinux) is a brave attempt to clean up the security holes
in Linux containers and is an implementation of a Mandatory Access Control (MAC)
mechanism, Multi-Level security (MLS), and Multi-Category security (MCS) in
the Linux kernel. A new collaborative initiative referred to as Virtproject, is being
built on SELinux, and this is getting integrated with Libvirt to provide an adaptable
MAC framework for virtual machines, as well as containers. This new architecture
provides a sheltered separation and safety net for containers, as it primarily prevents
root processes within the container from interfacing and interfering with other
processes running outside this container. Docker containers are automatically
assigned to an SELinux context specified in the SELinux policy.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Securing Docker Containers

[200]

SELinux always checks for all the allowed operations after the standard
discretionary access control (DAC) is completely checked. SELinux can establish
and enforce rules on files and processes in a Linux system and on their actions
based on defined policies. As per SELinux specification, files, including directories
and devices, are referred to as objects. Similarly, processes, such as a user running
a command, are being termed as subjects. Most operating systems use a DAC
system that controls how subjects interact with objects and one another. Using DAC
on operating systems, users can control the permissions of their own objects. For
example, on a Linux OS, users can make their home directories readable, giving
users and subjects a handle to steal potentially sensitive information. However,
DAC alone is not a fool-proof security method and DAC access decisions are solely
based on user identity and ownership. Generally, DAC simply ignores other security
enabling parameters, such as the role of the user, the function, the trustworthiness of
the program, and the sensitivity and integrity of the data.

As each user typically has complete discretion over their files, ensuring a system-
wide security policy is difficult. Furthermore, every program run by a user simply
inherits all the permissions granted to the user, and the user is free to change the
access to his/her files. All these lead to a minimal protection against malicious
software. Many system services and privileged programs run with coarse-grained
privileges so that any flaw in any one of these programs can be easily exploited and
extended to gain catastrophic access to the system.

As mentioned at the beginning, SELinux adds Mandatory Access Control (MAC)
to the Linux kernel. This means that the owners of an object have no control or
discretion over access to an object. The kernel enforces MAC which is a general-
purpose MAC mechanism and it needs the ability to enforce administratively-set
security policies to all the processes and files in the system. These files and processes
will be used to base decisions on labels containing a variety of security-centric
information. MAC has the inherent capability to sufficiently protect the system.
Furthermore, MAC ensures application security against any willful hacking and
tampering. MAC also provides a strong separation of applications so that any
attacked and compromised application runs separately.

Next in line is the Multi-Category Security (MCS). MCS is mainly used to protect
containers from other containers. That is, any affected container does not have the
capability to bring down other containers in the same Docker host. MCS is based
on the Multi-Level Security (MLS) capability and uniquely takes advantage of the
last component of the SELinux label, the MLS Field. In general, when containers are
launched, the Docker daemon picks a random MCS label. The Docker daemon labels
all of the content in the container with that MCS label.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 11

[201]

When the daemon launches the container process, it tells the kernel to label the
processes with the same MCS label. The kernel only allows container processes
to read/write their own content as long as the process MCS label matches the
filesystem content MCS label. The kernel blocks the container processes from
reading/writing content that is labeled with a different MCS label. This way,
a hacked container process is prevented from attacking different containers.
The Docker daemon is responsible for guaranteeing that no containers use the
same MCS label. The cascading of errors among containers is prohibited through
the adroit usage of MCS.

SELinux-inspired benefits
SELinux is being positioned as one of the major improvements to bring foolproof
security to Docker containers. It is abundantly clear that there are several security-
related advantages with SELinux. As Docker containers natively run on Linux
systems, the core and critical advancements being made in Linux systems through
the elegant SELinux approach are easily replicated for Docker containers too. All
processes and files are accordingly labeled with a type. A type is capable of defining
and differentiating a domain for processes and a distinct domain for files. Processes
are fully separated from each other by running them in their own domains, and any
incursion into others is stringently monitored and nipped in the budding stage itself.
SELinux empowers us to establish and enforce policy rules to define how processes
interact with files and with each other. For example, any access is allowed only if
there is a clearly articulated SELinux policy to allow the desired and demarcated
access. Precisely speaking, SELinux can come handy in enforcing data confidentiality
and integrity. SELinux is also beneficial for protecting processes from untrusted
inputs. It comes with the following benefits:

• Fine-grained access control: SELinux access decisions are based on
considering all kinds of security-impacting information, such as a SELinux
user, role, type, and level. SELinux policy can be administratively defined,
enforced, and enacted at a system level. User discretion in loosening
and lightening security and access policies is totally eliminated with the
comprehensive leverage of the SELinux upgrade.

• Reduced vulnerability to privilege escalation attacks: These processes
generally run in domains and are therefore cleanly separated from each other.
SELinux policy rules define how processes can access files and other processes.
That is, if a process is advertently or unknowingly compromised, the attacker
only has access to the standard functions of that process and to the files the
process has been configured to have access to. For example, if a web server is
brought down, an attacker cannot use that process to read other files, unless a
specific SELinux policy rule was incorporated to allow such access.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Securing Docker Containers

[202]

• Process separation in SELinux: These processes are slated to run in their
own domains, preventing processes from accessing files used by other
processes, as well as preventing processes from accessing other processes.
For example, when running SELinux, an attacker cannot compromise a
server module (for instance, Samba Server) and then use that as an attack
vector to read and write to files used by other processes, such as backend
databases. SELinux comes in handy in substantially limiting the damage
made by improper configuration mistakes. Domain Name System (DNS)
servers often replicate information between each other and this is called as a
zone transfer. Attackers can use zone transfers to update DNS servers with
false information. SELinux prevents zone files being misused by any hackers.
We use two types of SELinux enforcement for Docker containers.

• Type enforcement: This protects the host from the processes within the
container. The default type for running Docker containers is svirt_lxc_
net_t. All container processes run with this type, and all the content
within the container is labeled with the svirt_sandbox_file_t type. The
svirt_lxc_net_t default type is allowed to manage any content labeled
with svirt_sandbox_file_t. Furthermore, svirt_lxc_net_t is also able to
read/execute most labels under /usr on the host.

• A security problem: If all container processes are run with svirt_lxc_
net_t and all the content is labeled with svirt_sandbox_file_t, container
processes may be allowed to attack processes running in other containers and
content owned by other containers. This is where Multi Category Security
(MCS) enforcement comes in handy.

• Multi-Category Security (MCS): This is a solid enhancement to SELinux that
allows users to label files with categories. These categories are actually used to
further constrain Discretionary Access Control (DAC) and Type Enforcement
(TE) logic. An example of a category is Company_Confidential. Only users with
access to this category can access files labeled with the category, assuming
that the existing DAC and TE rules also permit access. The term categories
refers to the same nonhierarchical categories used by Multi-Level Security
(MLS). Under MLS, objects and subjects are labeled with security levels.
These security levels consist of a hierarchical sensitivity value, such as Top
Secret, and zero or more nonhierarchical categories, such as Crypto. Categories
provide compartments within the sensitivity levels and enforce the need-to-
know security principle. MCS is an adaptation of MLS and represents a policy
change. Beyond the access control, MCS can be used to display the MCS
categories at the top and bottom of the printed pages. This may also include a
cover sheet to indicate the document handling procedures.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 11

[203]

• AppArmor: This is an effective and easy-to-use Linux application security
system. AppArmor proactively protects the OS and applications from
any external or internal threats, even zero-day attacks, by enforcing good
behavior and preventing even unknown application flaws from being
exploited. AppArmor security policies completely define what system
resources individual applications can access and with what privileges.
A number of default policies are included in AppArmor, and using a
combination of advanced static analysis and learning-based tools, AppArmor
policies, for even very complex applications, can be deployed successfully
in a matter of hours. AppArmor is available for Docker containers, on
systems that support it. AppArmor provides enterprise-class, host-intrusion
prevention, and protects the operating system and applications from the
harmful effects of internal or external attacks, malicious applications, and
viruses. As a result, businesses can protect mission-critical data, reduce
system administration costs, and ensure compliance with government
regulations. Comprehensive enterprise-wide network application security
requires attention to both users and applications. This is one prominent
option available to bring in impenetrable security for Docker containers and
applications present inside the containers. Policies are turning out to be a
powerful mechanism in ensuring container security. Policy formulation and
the automated enforcement of policies go a long way in guaranteeing the
safety of containers.

The best practices for container security
There are robust and resilient security solutions to boost the confidence of providers,
as well as users, toward embracing the containerization journey with all the clarity
and alacrity. In this section, we provide a number of tips, best practices, and key
guidelines collected from different sources in order to enable security administrators
and consultants to tightly secure Docker containers. Essentially, if containers are
running in a multitenant system and you are not using the proven security practices,
then there are definite dangers lurking around the security front. As mentioned
previously, security breaches can happen at different service levels and hence,
security architects need to figure out what can go wrong and prescribe proven
and pioneering security-preserving methods. Security visionaries and luminaries
advise the following easy-to-understand-and-follow practices to reap the originally
envisaged benefits of containers:

• Do away with the privileged access
• Run your containers and services as non-root as much as possible

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Securing Docker Containers

[204]

The first and foremost advice is not to run random and untested Docker images
on your system. Strategize and leverage trusted repositories of Docker images and
containers to subscribe and use applications and data containers for application
development, packaging, shipping, deployment, and delivery. It is clear from past
experiences that any untrusted containers that are downloaded from the public
domain may result in malevolent and messy situations. Linux distributions, such as
Red Hat Enterprise Linux (RHEL), have the following mechanisms in place in order
to assist administrators to ensure the utmost security:

• A trusted repository of software to be downloaded and used
• Security updates and patches to fix vulnerabilities
• A security response team to find and manage vulnerabilities
• A team of engineers to manage/maintain packages and work on security

enhancements
• Common criteria certification to check the security of the operating system

As mentioned previously, the biggest problem is that not everything in Linux is
namespaced. Currently, Docker uses five namespaces to alter the process' view of
any system—process, network, mount, hostname, and shared memory. While these
give the users some level of security, it is by no means a comprehensive one such
as KVM. In a KVM environment, processes in a virtual machine do not talk to the
host kernel directly. They do not have any access to kernel filesystems. Device nodes
can talk to the VMs kernel, but not to hosts. Therefore, in order to have a privilege
escalation out of a VM, the process has to subvert the VM's kernel, find an enabling
vulnerability in the hypervisor, break through SELinux Controls (sVirt), and attack
the host's kernel. In the container landscape, the approach is to protect the host from
the processes within the container and to protect containers from other containers.
It is all about the combination or clustering together of multiple security controls to
defend containers and their contents.

Basically, we want to put in as many security barriers as possible to prevent any sort
of break out. If a privileged process can break out of one containment mechanism,
the idea is to block them with the next barrier in the hierarchy. With Docker, it is
possible to take advantage of as many security mechanisms of Linux as possible.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 11

[205]

The following are possible security measures that can be taken:

• Filesystem protections: Filesystems need to be read-only in order to escape
from any kind of unauthorized write. That is, privileged container processes
cannot write to them and do not affect the host system either. Generally,
most of the applications need not write anything to their filesystems. There
are several Linux distributions with read-only filesystems. It is therefore
possible to block the ability of the privileged container processes from
remounting filesystems as read and write. It is all about blocking the ability
to mount any filesystems within the container.

• Copy-on-write filesystems: Docker has been using Advanced Multi-
layered unification Filesystem (AuFS) as a filesystem for containers. AuFS
is a layered filesystem that can transparently overlay one or more existing
filesystems. When a process needs to modify a file, AuFS first creates a
copy of that file and is capable of merging multiple layers into a single
representation of a filesystem. This process is called copy-on-write, and this
prevents one container from seeing the changes of another container even
if they write to the same filesystem image. One container cannot change the
image content to affect the processes in another container.

• The choice of capabilities: Typically, there are two ways to perform
permission checks: privileged processes and unprivileged processes.
Privileged processes bypass all sorts of kernel permission checks, while
unprivileged processes are subject to full permission checking based on
the process's credentials. The recent Linux kernel divides the privileges
traditionally associated with the super-user into distinct units known as
capabilities, which can be independently enabled and disabled. Capabilities
are a per-thread attribute. Removing capabilities can bring forth several
positive changes in Docker containers. Invariably, capabilities decide the
Docker functionality, accessibility, usability, security, and so on. Therefore, it
requires much thought while embarking on the journey of addition, as well
as removal of capabilities.

• Keeping systems and data secure: Some security issues need to be addressed
before enterprises and service providers use containers in production
environments. Containerization will eventually make it easier to secure
applications for the following three reasons:

 ° A smaller payload reduces the surface area for security flaws
 ° Instead of incrementally patching the operating system, you can

update it
 ° By allowing a clear separation of concerns, containers help IT and

application teams collaborate purposefully

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Securing Docker Containers

[206]

The IT department is responsible for the security flaws associated with the
infrastructure. The application team fixes flaws inside the container and is
also responsible for runtime dependencies. Easing the tension between IT
and applications development teams helps smooth the transition to a hybrid
cloud model. The responsibilities of each team are clearly demarcated in
order to secure both containers and their runtime infrastructures. With
such a clear segregation, proactively identifying any visible and invisible
endangering security ordeals and promptly eliminating it in time, policy
engineering and enforcement, precise and perfect configuration, leveraging
appropriate security-unearthing and mitigation tools, and so on, are being
systematically accomplished.

• Leverage linux kernel capabilities: An average server (bare metal or
virtual machine) needs to run a bunch of processes as root. These typically
include ssh, cron, syslogd, hardware management tools (for example, load
modules), network configuration tools (for example, handling DHCP, WPA,
or VPNs), and so on. A container is very different because almost all of these
tasks are being handled by the infrastructures on which containers are to be
hosted and run. There are several best practices, key guidelines, technical
knowhow, and so on, on various blogs authored by security experts. You
can find some of the most interesting and inspiring security-related details at
https://docs.docker.com/articles/security/.

Digital signature verification
Docker, the popular open source container company, has announced that it has
added the digital signature verification to Docker images. This will ensure that when
you download a containerized application from an official Docker repository, you
get the real version. At this point in time, the Docker engine automatically checks
the provenance and integrity of all the images in the official repository using digital
signatures. A digital signature brings on an additional trust on Docker images. That
is, the particular Docker image was not tampered or twisted, and hence, it is ready to
be fully used with all the confidence and clarity.

This newly-added cryptographic verification is used to provide users with
an additional assurance of security. In the future, there will be features, such
as publisher authentication, image integrity and authorization, public key
infrastructure (PKI) management, and many more for both image publishers, as
well as consumers. If an official image is corrupted or tampered with, Docker will
instantaneously issue a warning. At this point in time, the Docker engine will not
prevent any affected images from running and nonofficial images are not verified
either. This will change the future versions as the Docker community hardens the
code and irons out the inevitable usability quirks.

www.itbook.store/books/9781784397937

 https://docs.docker.com/articles/security/
 https://docs.docker.com/articles/security/
https://itbook.store/books/9781784397937

Chapter 11

[207]

When developing an application, you sometimes need to take a look at it while it is
running. A number of tools, such as nsinit and nsenter, have sprung up recently
to help developers debug their containerized applications. Some users have taken
to running an init process to spawn sshd along with their application to allow them
access, which creates risk and overhead.

Secure deployment guidelines for Docker
Docker containers are increasingly hosted in production environments to be
publicly discovered and used by many. Especially, with the faster adoption of cloud
technologies, the IT environments of worldwide organizations and institutions
are getting methodically optimized and transformed to deftly and decisively host
a wider variety of virtual machines and containers. There are new improvements
and enablements, such as Flocker and Clocker, in order to speed up the process of
taking containers to cloud environments (private, public, hybrid, and community).
There are recommendations that have to be followed while deploying containers.
As we all know, containers remarkably reduce the overhead by allowing developers
and system administrators to seamlessly deploy containers for applications and
services required for business operations. However, because Docker leverages the
same kernel as the host system to reduce the need for resources, containers can be
exposed to significant security risks if not adequately configured. There are a few
carefully annotated guidelines to be strictly followed by both developers and system
administrators while deploying containers. For example, https://github.com/
GDSSecurity/Docker-Secure-Deployment-Guidelines elaborates in a tabular
form with all the right details.

It is an indisputable truth that the software flaws in distributed and complex
applications open the way for intelligent attackers and hackers to break into systems
that host critical, confidential, and customer data. Therefore, security solutions are
being insisted and ingrained across all the layers in the IT stack, and hence, there
arises many types of security vulnerabilities at different levels and layers. For
example, perimeter security solves only part of the problem because the changing
requirements are mandate for allowing network access to employees, customers, and
partners. Similarly, there are firewalls, intrusion detection and prevention systems,
application delivery controllers (ADCs), access controls, multifactor authentication
and authorization, patching, and so on. Then, for securing data while in transit,
persistence, and being used by applications, there are encryption, steganography,
and hybrid security models. All these are reactive and realistic mechanisms, but
the increasing tendency is all about virtual businesses insisting on proactive and
preemptive security methods. As IT is tending and trending toward the much-
anticipated virtual IT world, the security issues and implications are being given
extra importance by security experts.

www.itbook.store/books/9781784397937

https://github.com/GDSSecurity/Docker-Secure-Deployment-Guidelines
https://github.com/GDSSecurity/Docker-Secure-Deployment-Guidelines
https://itbook.store/books/9781784397937

Securing Docker Containers

[208]

The future
There will be many more noteworthy improvisations, transformations, and
disruptions in the containerization space in the days to come. Through a host of
innovations and integrations, the Docker platform is being positioned as the leading
one for strengthening the containerization journey. The following are the prime
accomplishments through the smart leverage of the Docker technology:

• Strengthening the distributed paradigm: While computing is going to
be increasingly distributed and federated, the microservices architecture
(MSA) will play a very decisive and deeper role in IT. Docker containers are
emerging as the most efficient ones for hosting and delivering a growing
array of microservices. With container orchestration technologies and tools
gaining greater recognition, microservices (specific, as well as generic) get
identified, matched, orchestrated, and choreographed to form business-
aware composite services.

• Empowering the cloud paradigm: The cloud idea is strongly gripping the
IT world to bring in the much-insisted IT infrastructure rationalization,
simplification, standardization, automation, and optimization. The
abstraction and virtualization concepts, which are the key to the
unprecedented success of the cloud paradigm, are penetrating into every
kind of IT module. Originally, it started with server virtualization and now, it
is all about storage and networking virtualization. With all the technological
advancements around us, there is a widespread keenness to realize software-
defined infrastructures (software-defined compute, storage, and networking).
The Docker engine, the core and critical portion of the Docker platform, is
duly solidified in order to bring in the necessary eligibility for containers to
run on software-defined environments without any hitch or hurdle.

• Enabling the IT elasticity, portability, agility, and adaptability:
Containers are emerging as the flexible and futuristic IT building blocks
for bringing in more resiliency, versatility, elegance, and suppleness. The
faster provisioning of IT resources to ensure higher availability and real-time
scalability, the easy elimination of all kinds of frictions between development
and operation teams, the guarantee of native performance of IT, the
realization of organized and optimized IT for enhanced IT productivity,
and so on are some of the exemplary things being visualized for Docker
containers toward the smarter IT.

Containers will be a strategic addition to virtual machines (VMs)
and bare metal servers in order to bring in deeper IT automation,
acceleration, and augmentation, thereby the much-hyped and hoped
business agility, autonomy, and affordability will be achieved.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Chapter 11

[209]

Summary
Security is definitely a challenge and an important aspect not to be sidestepped.
If a container gets compromised, then bringing down the container host is not a
difficult task. Thus, ensuring security for containers and then hosts is indispensable
to the flourishing of the containerization concept, especially when the centralization
and federation of IT systems is on the rise. In this chapter, we specifically focused
on the sickening and devastating security issues of Docker containers and explained
the ways and means of having foolproof security solutions for containers that host
dynamic, enterprise-class, and mission-critical applications. In the days to come,
there will be fresh security approaches and solutions in order to ensure impenetrable
and unbreakable security for Docker containers and hosts, as the security of
containers and their contents is of utmost importance to service providers,
as well as consumers.

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[211]

Index
Symbol
.dockerignore file 55

A
adaptability

enabling 208
ADD instruction 46
Advanced Multi-layered unification

Filesystem (AuFS) 205
agility

enabling 208
Amazon Web Services (AWS)

Docker container, running 13
Another Union File System (AUFS) 2

B
best practices, for container security

about 203, 204
security measures 205, 206

business continuity
need for 110

C
categories, docker images subcommand

CREATED 22
IMAGE ID 22
REPOSITORY 22
TAG 22
VIRTUAL SIZE 22

cloud paradigm
empowering 208

Cloud Service Providers (CSP) 1

CMD instruction 51, 52
code testing, in Docker

about 152
Docker container, using as runtime

environment 159-162
performing 152-157
running, inside container 157-159

common pitfalls, avoiding
directory leaks 125, 126
undesirable effect of data volume 126-128

Container as a Service (CaaS)
about 89
connecting, to HTTP service 96
envisaging 93
HTTP server image, building 93, 94
HTTP server image, running as service 95

containerization and virtualization
convergence 5
differences 4

containerization technologies
about 6
AIX Workload partitions (WPARs) 6
FreeBSD jail 6
LXC (Linux Containers) 6
OpenVZ 6
Solaris Containers 6

containerized application
debugging 181

container networking
about 90-93
network configuration lists 92

containers
linking 130-137
orchestration 138-140
best practices, security 203-206

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[212]

container services
-p option 98
container, building to specific IP

address 102
container port, publishing 98
container port, retrieving 100-102
Docker host port, auto-generating 103-105
exposing 97
Network Address Translation (NAT) 99
port binding, EXPOSE and -P option

used 105-107
control groups (cgroups) 180
COPY instruction 45
custom index and registry

index components, deploying from
GitHub 80-82

nginx, configuring with Docker
registry 82-84

registry, deploying from GitHub 80-82
running 80
SSL, setting up on web server 84-86

D
data sharing, between containers

about 119
data-only containers 119
data volume, mounting from

other containers 120, 121
practicality 122-124

data volume 110-112
Denial of Service (DoS) attacks 180
digital signature verification

about 206
secure deployment guidelines 207

directory leaks
avoiding 125
third-party images 125
undeleted directories 125

discretionary access control (DAC) 200
distributed paradigm

strengthening 208
Docker

about 2
future 208

latest version, installing 8, 9
on Linux 3
troubleshooting 14

docker attach subcommand 28
docker-compose command 144
docker-compose tool

-f, --file <file> option 144
-p, --project-name <name> option 144
--verbose option 144
--version option 144
about 140
build command 144
installing 141, 142
kill command 144
logs command 144
options 144
port command 144
ps command 144
pull command 144
rm command 144
run command 144
scale command 144
start command 144
stop command 144
up command 144
using 140

docker-compose version 1.2.0, keys
build 142
cap_add 143
cap_drop 143
command 142
cpu_shares 143
dns 143
dns_search 143
domainname 143
entrypoint 143
env_file 143
environment 143
expose 143
extends 143
external_links 142
hostname 143
image 142
links 142

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[213]

men_limit 143
net 143
pid 143
ports 143
privileged 143
restart 143
stdin_open 143
tty 143
user 143
volumes 143
volumes_from 143
working_dir 143

docker-compose.yml file 142
Docker container

about 2, 20
process level isolation, providing 176-179
running 12
running, on Amazon Web

Services (AWS) 13
securing 192
security facets 192-194
security features 194
using, as runtime environment 159-162

Docker engine
about 3
installing 7
installing, from Ubuntu package

repository 7, 8
Docker events command 186
Docker exec command 182
Dockerfile

about 42
best practices, for writing 58
syntax 42, 43

Dockerfile build instructions
.dockerignore file 55
about 43
ADD instruction 46
CMD instruction 51, 52
COPY instruction 45
ENTRYPOINT instruction 53, 54
ENV instruction 47
EXPOSE instruction 49
FROM instruction 44
MAINTAINER instruction 44

ONBUILD instruction 55
RUN instruction 49, 50
USER instruction 47, 48
VOLUME instruction 48
WORKDIR instruction 48

Docker Hub
about 3, 60-62
images, pushing to 63-67
organization, creating 72, 73
private repositories 71
REST APIs 73
Sign Up process 61
team, creating 72
URL 60

Docker Hub Registry
about 23
URL 68

Docker image
about 18-20
Debian distribution 19
Docker Hub Registry 23
downloading 12
searching 24
working with 21-23

Docker image management 56-58
docker images subcommand

categories 22
docker inspect subcommand 100
docker.io script

used, for installing latest Docker 8, 9
Docker layer 20
Docker logs command 186
docker logs subcommand 37
docker pause subcommand 32
docker port subcommand 102
docker ps subcommand

about 100
COMMAND 27
CONTAINER ID 27
CREATED 27
IMAGE 27
NAMES 27
PORTS 27
STATUS 27

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[214]

Docker registry
characteristics 78
features 78
index 78
reference 78
use cases 78

Docker Registry 20, 60
Docker Repository 21
docker run subcommand 37
Docker setup

about 9-11
client server communication 11

Docker's integrated image building
system 39-42

Docker stats command 185
Docker terms

Docker container 20
Docker image 18-20
Docker layer 20
Docker Registry 20
Docker Repository 21

Docker testing
automating 167-173
integrating, into Jenkins 162
Jenkins environment, preparing 162-167

Docker top command 184
docker unpause subcommand 32

E
ENTRYPOINT instruction 53, 54
ENV instruction 47
environment variables

ENV 130
NAME 130
PORT 131

ExposedPorts object 100
EXPOSE instruction 49

F
FROM instruction 44

H
host data

practicality, of host data-sharing 117, 118
sharing 113-116

I
image

automated build process,
implementing 68-70

pushing, to Docker Hub 63-67
pushing, to newly created Docker

registry 87, 88
interactive container

changes, tracking 28, 29
Docker containers, controlling 30-33
housekeeping containers 34, 35
images, building from 35, 36
launching, as daemon 37
working with 26, 27

Interprocess Communication (IPC)
namespaces 176

IT elasticity
enabling 208

J
Jenkins

Docker testing, integrating into 162
environment, preparing 162-167

K
kernel namespaces 196

M
MAINTAINER instruction 44
Mandatory Access Control (MAC) 199, 200
microservice architecture 139
mockredis

about 156
URL 156

Mount namespace 196
Multi-Category security (MCS) 199-201
Multi-Level security (MLS) 199

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[215]

N
Network Address Translation (NAT) 99
Network Attached Storage (NAS) 179
network configuration lists, container

networking
bridge 92
gateway 92
IP address 92
IPPrefixLen 92
PortMapping 92
ports 92

Network namespace 196
Node.js 145
nsenter

about 187
installing 187
using 188

O
ONBUILD instruction 55
orchestration, of containers

about 138-140
common usage 145-150
docker-compose command 144
docker-compose tool, installing 141, 142
docker-compose tool, used 140
docker-compose.yml file 142

P
Parent Process ID (PPID) 177
PID namespace 196
portability

enabling 208
PortBindings object 101
Ports object 101
private repositories, Docker Hub 71
process level isolation, for Docker

containers
about 176
control groups (cgroups) 180
providing 176-179

public key infrastructure (PKI) 206
Python Web Server Gateway Interface

(WSGI) HTTP server 81

R
Redis 145
repository management, Docker Hub

library repository, creating 74
library repository, deleting 74
library repository images, listing 75
library repository images, updating 75
token for library repository, authorizing 75
token for user repository, authorizing 75
user repository, creating 74
user repository, deleting 74
user repository images, listing 75
user repository images, updating 74

REST APIs, Docker Hub 73
restart command 32
root privilege

about 197
Docker images, loading 199
emerging security approaches 199
non-root containers 197, 198
security implications 199
trusted user control 197

RUN instruction 49-51

S
Secure Shell (SSH) daemon 175
Secure Sockets Layer (SSL) 80
security, Docker container

root privilege 197
Security-Enhanced Linux (SELinux)

about 199
benefits 201-203
for container security 199, 200

security features, Docker container
about 194
resource accounting and control 196, 197
resource isolation 195

service computing (SC) 138
SIGKILL signal 30
SIGTERM signal 30
Storage Area Network (SAN) 179

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

[216]

T
temporal nature of containers 109
test-driven development (TDD)

overview 152
reference 152

troubleshooting
Docker 14

U
use cases, Docker registry

delete an image 80
pull or download an image 79
push an image 79

USER instruction 47
user management, Docker Hub

update user 74
user login 73
user register 73

UTS namespace 196

V
virtual machines

versus Docker containers 192-194
VOLUME instruction 48

W
WORKDIR instruction 48

Y
YAML format file 142

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Thank you for buying
Learning Docker

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.itbook.store/books/9781784397937

www.packtpub.com
https://itbook.store/books/9781784397937

Orchestrating Docker
ISBN: 978-1-78398-478-7 Paperback: 154 pages

Manage and deploy Docker services to containerize
applications efficiently

1. Set up your own Heroku-like PaaS by
getting accustomed to the Docker ecosystem.

2. Run your applications on development
machines, private servers, or the cloud,
with minimal cost of a virtual machine.

3. A comprehensive guide to the smooth
management and development of Docker
containers and its services.

Kali Linux Cookbook
ISBN: 978-1-78328-959-2 Paperback: 260 pages

Over 70 recipes to help you master Kali Linux
for effective penetration security testing

1. Recipes designed to educate you extensively
on the penetration testing principles and Kali
Linux tools.

2. Learning to use Kali Linux tools, such as
Metasploit, Wire Shark, and many more
through in-depth and structured instructions.

3. Teaching you in an easy-to-follow style, full of
examples, illustrations, and tips that will suit
experts and novices alike.

Please check www.PacktPub.com for information on our titles

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

Linux Shell Scripting Cookbook
Second Edition
ISBN: 978-1-78216-274-2 Paperback: 384 pages

Over 110 practical recipes to solve real-world shell
problems, guaranteed to make you wonder how
you ever lived without them

1. Master the art of crafting one-liner command
sequence to perform text processing, digging
data from files, backups to sysadmin tools, and
a lot more.

2. And if powerful text processing isn't enough,
see how to make your scripts interact with the
web-services like Twitter, Gmail.

3. Explores the possibilities with the shell in a
simple and elegant way - you will see how to
effectively solve problems in your day to
day life.

Jenkins Continuous
Integration Cookbook
ISBN: 978-1-84951-740-9 Paperback: 344 pages

Over 80 recipes to maintain, secure, communicate,
text, build, and improve the software development
process with Jenkins

1. Explore the use of more than 40 best of
breed plugins.

2. Use code quality metrics, integration testing
through functional and performance testing
to measure the quality of your software.

3. Get a problem-solution approach enriched
with code examples for practical and
easy comprehension.

Please check www.PacktPub.com for information on our titles

www.itbook.store/books/9781784397937

https://itbook.store/books/9781784397937

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Docker
	An introduction to Docker
	Docker on Linux
	Differentiating between containerization and virtualization
	The convergence of containerization and virtualization
	Containerization technologies

	Installing the Docker engine
	Installing from the Ubuntu package repository
	Installing the latest Docker using docker.io script

	Understanding the Docker setup
	Client server communication

	Downloading the first Docker image
	Running the first Docker container
	Running a Docker container on Amazon Web Services
	Troubleshooting
	Summary

	Chapter 2: Handling Docker Containers
	Clarifying the Docker terms
	Docker images and containers
	A Docker layer
	A Docker container
	Docker Registry
	Docker Repository

	Working with Docker images
	Docker Hub Registry
	Searching Docker images

	Working with an interactive container
	Tracking changes inside containers
	Controlling Docker containers
	Housekeeping containers
	Building images from containers
	Launching a container as a daemon

	Summary

	Chapter 3: Building Images
	Docker's integrated image building system
	A quick overview of the Dockerfile's syntax
	The Dockerfile build instructions
	The FROM instruction
	The MAINTAINER instruction
	The COPY instruction
	The ADD instruction
	The ENV instruction
	The USER instruction
	The WORKDIR instruction
	The VOLUME instruction
	The EXPOSE instruction
	The RUN instruction
	The CMD instruction
	The ENTRYPOINT instruction
	The ONBUILD instruction
	The .dockerignore file

	A brief on the Docker image management
	Best practices for writing Dockerfiles
	Summary

	Chapter 4: Publishing Images
	Understanding the Docker Hub
	Pushing images to the Docker Hub
	Automating the building process for images
	Private repositories on the Docker Hub
	Organizations and teams on the
Docker Hub
	The REST APIs for the Docker Hub
	Summary

	Chapter 5: Running your Private Docker Infrastructure
	The Docker registry and index
	Docker registry use cases
	Run your own index and registry
	Step 1 – Deployment of the index components and the registry from GitHub
	Step 2 – Configuration of nginx with the Docker registry
	Step 3 – Set up SSL on the web server for secure communication

	Push the image to the newly created Docker registry
	Summary

	Chapter 6: Running Services in a Container
	A brief overview of container networking
	Envisaging the Container as a Service
	Building an HTTP server image
	Running the HTTP server Image as a Service
	Connecting to the HTTP service

	Exposing container services
	Publishing container ports – the -p option
	Network Address Translation for containers
	Retrieving the container port
	Binding a container to a specific IP address
	Auto-generating the Docker host port
	Port binding using EXPOSE and the -P option

	Summary

	Chapter 7: Sharing Data with Containers
	The data volume
	Sharing host data
	The practicality of host data-sharing

	Sharing data between containers
	Data-only containers
	Mounting data volume from other containers
	The practicality of data sharing between containers

	Avoiding common pitfalls
	Directory leaks
	The undesirable effect of data volume

	Summary

	Chapter 8: Orchestrating Containers
	Linking containers
	Orchestration of containers
	Orchestrate containers using docker-compose
	Installing docker-compose
	The docker-compose.yml file
	The docker-compose command
	Common usage

	Summary

	Chapter 9: Testing with Docker
	A brief on test-driven development
	Testing your code inside Docker
	Running the test inside a container
	Using a Docker container as a runtime environment

	Integrating Docker testing into Jenkins
	Preparing the Jenkins environment
	Automating the Docker testing process

	Summary

	Chapter 10: Debugging Containers
	Process level isolation for Docker containers
	Control groups

	Debugging a containerized application
	The Docker exec command
	The Docker ps command
	The Docker top command
	The Docker stats command
	The Docker events command
	The Docker logs command

	Installing and using nsenter
	Summary

	Chapter 11: Securing Docker Containers
	Are Docker containers secure enough?
	The security facets – virtual machines versus Docker containers
	The security features of containers
	Resource isolation
	Resource accounting and control

	The root privilege – impacts and best practices
	The trusted user control
	Non-root containers
	Loading the Docker images and the security implications
	The emerging security approaches

	Security-Enhanced Linux for container security
	SELinux-inspired Benefits

	The best practices for container security
	Digital signature verification
	Secure deployment guidelines for Docker
	The future

	Summary

	Index

