
www.itbook.store/books/9781784398859

https://itbook.store/books/9781784398859

Learning Java by Building
Android Games

Get ready for a fun-filled experience of learning Java by
developing games for the Android platform

John Horton

BIRMINGHAM - MUMBAI

Learning Java by Building Android Games

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1230115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-885-9

www.packtpub.com

www.packtpub.com

Credits

Author
John Horton

Reviewers
Tony Atkins

Thorsten Harbig

Boon Hian Tek

Commissioning Editor
Pramila Balan

Acquisition Editor
Harsha Bharwani

Content Development Editor
Pooja Nair

Technical Editor
Shruti Rawool

Copy Editor
Vikrant Phadke

Project Coordinator
Leena Purkait

Proofreaders
Ting Baker

Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

John Horton is a technology enthusiast based in UK. When he is not writing apps,
books, or blog articles for www.gamecodeschool.com, he can usually be found playing
computer games or indulging in a Nerf war.

A very big thanks to all the reviewers. I would also like to express
my gratitude to the people at Packt Publishing who made this
book possible, including Priyanka Budkuley for getting the project
started, Pooja, Harsha, Shruti, Vikrant, Leena, Ting, Simran, Maria,
Ameesha, Paul, Monica, and Arvindkumar.

To Jo, Jack, James, Ray, Rita, and Skipper, I dedicate this book
to you.

www.gamecodeschool.com

About the Reviewers

Tony Atkins is a developer and entrepreneur focused on building assistive apps
with Android. He lives and works in Amsterdam.

He has reviewed the book, Sakai CLE Courseware Management: The Official Guide,
Packt Publishing.

I would like to thank my wife, Elaine, and son, Phillip, for bringing
joy to my life each day.

Thorsten Harbig was born on August 30, 1977. He grew up at Lake Constance
in southern Germany. He studied computer science, spent 7 months in Belgium
working on his diploma thesis, and finished his master's degree in energy savings on
mobile phones from Aalborg University in Denmark. Since then, he has worked as
a software consultant for companies in the finance and automotive sectors and as a
trainer for Java EE courses.

Since the last 3 years, Thorsten has shifted his focus to project management,
beginning with small software projects using agile methods, and lately working
on software and hardware projects, covering the entire process as follows: starting
with an idea, working on requirements, performing the design and realization, and
planning the manufacturing and packaging at the end.

Thorsten always looks for new, interesting topics to work on, and wants to share
new achievements with colleagues and others who are interested.

Boon Hian Tek is a Java developer who follows the "learn two languages a year"
advice. He is a polyglot of both spoken languages and programming languages. He
works with a group of talented (but demented) developers who together produce
and maintain some highly transactional web systems.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Why Java, Android, and Games? 7

Is this book for me? 8
If you just want to learn pure Java 8
If Android is your focus 9
Where this book will take you 9

Why build games to learn to program? 9
Why Android and Java? 10

Android is the fastest evolving and growing OS ever 11
Android developers have great prospects 11
Android is open source 12
Java is here to stay 12
Java is not just for Android 12
Java is fast and easy to use 13
A summary of Java and Android 13

Setting up our development environment 14
Installing the JDK 14
Android Studio 17

Installing Android Studio 18
Summary 20

Chapter 2: Getting Started with Android 21
Our first game project 22

Preparing Android Studio 22
Building the project 23

Exploring Android Studio 27
Using the Android Studio visual designer 29

Android UI types 31
TextView 31

Table of Contents

[ii]

Layout elements 33
ImageView widgets 33
ButtonView 34
Using the sample code 34

Making our game menu 35
Structuring our code for Android 38

Life cycle phases – what we need to know 38
Life cycle phases – what we need to do 39

Dividing our game into activities 40
Our first look at Java 41

Cleaning up our code 44
Building and installing our game 46

Emulators and devices 47
Creating an emulator 48
Running the emulator 48
Running our game on the emulator 50

Building our game 50
Installing the setup to a device 51
Future projects 52

Self-test questions 52
Summary 53

Chapter 3: Speaking Java – Your First Game 55
Java syntax 56

The compiler 57
Making code clear with comments 58

Storing data and using it with variables 59
Types of variables 60

Reference types 63
Declaration 64
Initialization 64

Expressing yourself in Java 67
Math game – asking a question 71

Creating the new game activity 72
Laying out the game screen UI 75
Coding a question in Java 79
Linking our game from the main menu 84

Decisions in Java 89
More operators 90
Decision 1 – If they come over the bridge, shoot them 91
Decision 2 – Else, do this 92
Switching to make decisions 93

Table of Contents

[iii]

Math game – getting and checking the answer 95
Self-test questions 102
Summary 103

Chapter 4: Discovering Loops and Methods 105
Looping with loops 106

While loops 107
Breaking out of a loop 109
The continue keyword 109

Do-while loops 110
For loops 110
Random numbers in Java 111

Methods 112
The structure of a method 112

Modifier 114
Return type 114
Name of a method 116
Parameters 117
Getting things done in the method body 117

Using methods 118
A working method 119
Exploring method overloading 124

Enhancing our math game 127
Enhancing the UI 127
The new Java code 129

Amending GameActivity 129
The methods 133
The setQuestion method 133
The updateScoreAndLevel method 137
The isCorrect method 140
Calling our new methods 142

Finishing touches 143
Going full screen and locking orientation 143
Adding a custom image (instead of the Android icon) 145

Self-test questions 145
Summary 146

Chapter 5: Gaming and Java Essentials 147
Java arrays – an array of variables 148

Arrays are objects 149
A simple example of an array 150

Getting dynamic with arrays 152
Dynamic array example 152

Entering the nth dimension with arrays 154
An example of a multidimensional array 154
Array-out-of-bounds exceptions 158

Table of Contents

[iv]

Timing with threads 158
A simple thread timer example with the Handler class 160

Beeps n buzzes – Android sound 164
Creating sound FX 164

Playing sounds in Android 167
Life after destruction – persistence 173

An example of persistence 173
The memory game 177

Phase 1 – the UI and the basics 180
Phase 2 – preparing our variables and presenting the pattern 184
Phase 3 – the player's response 193
Phase 4 – preserving the high score 197
Animating our game 200

UI animation in Android 200
Phase 5 – animating the UI 201

Self-test questions 204
Summary 204

Chapter 6: OOP – Using Other People's Hard Work 205
What is OOP? 206

Why do it like this? 207
Our first class and first object 207

Basic classes 210
More things we can do with our first class 213

Encapsulation 214
Controlling the use of classes with access modifiers 215

Class access in a nutshell 216
Controlling the use of variables with access modifiers 216

Variable access in a nutshell 217
Methods have access modifiers too 217

Method access in a nutshell 218
Accessing private variables with the getter and setter methods 219
Setting up our objects with constructors 222
Variables revisited 223

The stack and the heap 223
A quick break to throw out the trash 224
Access, scope, this, static, and constructors demo 225
A quick summary on stack and heap 230

Inheritance 230
An example of inheritance 232

Polymorphism 236
Abstract classes 237
Interfaces 238

Table of Contents

[v]

More about OOP and classes 240
Inner classes 240

Self-test questions 241
Summary 241

Chapter 7: Retro Squash Game 243
Drawing with Android Canvas 244

The Android coordinate system 245
Animating our pixels 246

Getting started with Canvas and Paint 246
Android Canvas demo app 247
Detecting touches on the screen 251
Preparing to make the retro squash game 252

The design of the game 252
The UI 253
Physics 253
The structure of the code 254

The four implementation phases in detail 255
Phase 1 – MainActivity and onCreate 256

Phase 1 code explained 260
Phase 2 – SquashCourtView part 1 264

Phase 2 code explained 268
Phase 3 – SquashCourtView part 2 275

Phase 3 code explained 278
Phase 4 – Remaining lifecycle methods 282
Good object-oriented design 284

Self-test questions 284
Summary 284

Chapter 8: The Snake Game 285
Game design 285
The coordinate system 287

Keeping track of the snake segments 288
Detecting collisions 289
Drawing the snake 289

The code structure 290
MainActivity 290
GameActivity 291

Tidying up onCreate 291
Animation, sprite sheets, and the Snake home screen 292

Animating with sprite sheets 294
Implementing the Snake home screen 295

Implementing the Snake game activity 302

Table of Contents

[vi]

Enhancing the game 318
Self-test questions 318
Summary 319

Chapter 9: Making Your Game the Next Big Thing 321
How to publish your app 322
Marketing your app 324
Adding leaderboards and achievements 327

Planning the Snake achievements 327
Step-by-step leaderboards and achievements 329

Installing the Google Play Services API on your PC 329
Configuring the Google Play developer console 330
Implementing the leaderboard in the Google Play developer console 334
Implementing the achievements in the Google Play developer console 336
Setting up the Snake project ready for implementation 337
Implementing the player's sign-in, achievements, and leaderboard buttons 342
Implementing the leaderboards in code 348
Implementing the achievements in code 350
Uploading the updated Snake game to Google Play 353

What next? 354
Getting a programmer's job 354
Building bigger and better games 355

Self-test questions 357
Summary 358

Appendix: Self-test Questions and Answers 359
Index 369

Preface
If you are completely new to any one of Java, Android, or game programming, and
are aiming at publishing Android games for fun or for a business purpose, but you
have no clue as to where to start, then this book is for you. This book also acts as a
refresher for those who already have experience in Java on other platforms.

Android is the fastest growing operating system, and Android devices can empower,
entertain, and educate the planet. Android uses one of the most popular programming
languages—Java, which is a high-performance, secure, and object-oriented language.

In each chapter, we will build on what you learned from the previous chapter,
steadily gaining an understanding of more advanced Java concepts and putting
them to work by building Android games.

What this book covers
Chapter 1, Why Java, Android, and Games?, tells us why we might choose Java,
Android, and games over other languages, platforms, and types of apps. Then we
quickly prepare our Android and Java development environment by installing the
Java Development Kit and Android Studio.

Chapter 2, Getting Started with Android, shows us how to design, build, and run a game
menu UI on a real Android device. This is the first part of our math game project.

Chapter 3, Speaking Java – Your First Game, covers the Java fundamentals and their use
in an Android environment to make a simple math quiz game.

Chapter 4, Discovering Loops and Methods, contains more Java fundamentals such as
decision-making and looping. Then we use them to add features to our math game.
This chapter also covers some basic Android game essentials such as locking and
handling screen rotation, and introduces the device sensors.

Preface

[2]

Chapter 5, Gaming and Java Essentials, takes us on a quick ride through some vital
essentials for any game. We also make the UI more exciting with animation and by
storing player scores. Demonstrated with a Simon-style memory game, storing
the sequence with Java arrays and a for loop.

Chapter 6, OOP – Using Other People's Hard Work, is the chapter where everything
you have learned so far is tied up with a pretty ribbon. You should find yourself
muttering phrases like, "Oh, I see" and "So that's how it works." We explore
object-oriented programming (OOP) in this chapter.

Chapter 7, Retro Squash Game, teaches us how to draw graphics pixel by pixel with the
Android Canvas class. We can then combine these new skills with what we already
know and make a retro, pong-style squash game.

Chapter 8, The Snake Game, covers the beginning of our most advanced game project—
an animated Snake-style arcade game. We will also be able to practice more of the
important Java fundamentals that you learned in the previous chapters.

Chapter 9, Making Your Game the Next Big Thing, puts the icing on the cake by teaching
you how to publish your game and add online leaderboards and achievements. This
will also let you examine the concept of Java libraries.

Appendix, Self-test Questions and Answers, contains all the answers to the questions to
test your understanding of the topic.

What you need for this book
You will need a modest version of Windows (XP, Vista, 7, or 8), and a Mac, Linux
PC, or laptop. Both 32-bit and 64-bit systems are compatible. All of the software
needed in excess of this is free and acquiring it is fully explained in the book.

Who this book is for
This book is for you if you are completely new to any one of Java, Android, or game
programming. As the book assumes no previous knowledge, it is also for you if you
are new to all three (Java, Android, and game programming).

If you want to publish Android games for fun or for business and are not sure where
to start, then this book will show you what to do, step by step from the start.

If you have experience in Java on another platform (perhaps PC or Mac), then this
book will be a good Java refresher, and will also show you how to apply your
existing skills in an Android context.

Preface

[3]

If you have previously programmed in another language but want to learn Java for
any platform from the start, then you will be able to learn from this book and move
through the practical examples more quickly.

The book does assume that you are fairly confident in using your operating system
of choice. The step-by-step tutorials are in Windows, but if you have a decent
understanding of Mac or Linux, you can probably follow along quite easily with
them too.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and explanations of
their meanings.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In
the Android Studio Project Explorer, double-click on the layout folder to reveal the
activity_main.xml file within it."

A block of code is set as follows:

import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

int partA = 9;
int partB = 9;
correctAnswer = partA * partB;
int wrongAnswer1 = correctAnswer - 1;
int wrongAnswer2 = correctAnswer + 1;

Any command-line input or output is written as follows:

info﹕ a = 10

info﹕ b = Alan Turing

info﹕ c = true

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "When
prompted to import another class, click on OK."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: http://www.packtpub.
com/sites/default/files/downloads/8859OS_ColoredImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/8859OS_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/8859OS_ColoredImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Why Java, Android,
and Games?

Welcome to Learning Java by Building Android Games, which I hope is just the
beginning of your exciting journey into designing and writing games. By the
end of this book, we will have made four complete games: a math quiz with
dynamically increasing difficulty, a memory game in the style of the classic
Simon toy, a pong-style squash game, and a clone of the classic Snake game.

Besides these games, we will build more than a dozen working apps to practice and
demonstrate individual concepts to aid our learning of Java, Android, and games.
Our games and apps will feature sound FX, graphics, and animations. We will learn
everything from using the standard Android User Interface (UI) designer to creating
smooth animations by plotting individual pixels.

Although I will encourage you to work with me and implement the specific projects
that are detailed step by step throughout the book, I fully expect that once you grasp
the different concepts, you will want to use them in your own unique creations
without delay. This is exactly what I hope you will be inspired to do.

The game projects themselves are not the objective of the book but the means to a
much loftier goal. By the end of the book, you will be able to design and implement
your own 2D Android games, to sell or just to give away, on Google Play.

There is a bit of ground work to cover first, but I promise it
won't take long and it won't be complicated either. Anyone
can learn to program.

Why Java, Android, and Games?

[8]

However, there are so many differing opinions among experts, which breeds
confusion among beginners concerning the best ways of learning to program. So it
is a good idea to look at why learning Java, Android, and games is an ideal pathway
for beginners. This will be the first thing we will discuss in this book.

Here is what we will learn in this chapter:

• Is this book for me?
• Why should I use games to learn to program?
• Why should I learn Java and Android?
• Setting up our development environment

Is this book for me?
If you have already decided that Java, Android, or games are what you want to
learn, then the next question might be, "Is this specific book for me?".

There are plenty of Java books for beginners and books by much more accomplished
authors and programmers than myself. I have read many of them and admire the
authors. However, when these books drift away—which they all do—to topics such
as Java-native interfaces, web browser applets, or server-side remote communication,
I sometimes find myself questioning their immediate relevance to me.

At this point, at least subconsciously, my commitment would wane and the learning
process would slow or stop.

If you just want to learn pure Java
If you just want to learn Java on its own, this book will be a solid start. Although the
Android stuff might be considered overhead to your pure Java learning, this is much
less than the multitude of potentially unnecessary topics that would be introduced
in any other Java book. The only caveat with this book is that the necessary overhead
is all at the beginning. But once this minimal overhead is cleared, we can focus quite
intently on Java.

With regard to the amount of overhead:

• It will take about six pages to set up our programming environment in
this chapter

• It will take Chapter 2, Getting Started with Android, to get familiar with the
Android tools, create your first working project, and glimpse your first real
Java code

• From then on, it will be nearly pure Java and building games

Chapter 1

[9]

You will soon see that the tiny amount of overhead is not excessive and is
well worthwhile.

If Android is your focus
If it was Android itself that made you look at this book, then I am proud to say this is
the first book that will teach you Android without assuming you have any prior Java
or programming knowledge whatsoever.

Where this book will take you
By the end of this book, you will be able to easily take one of many paths
including these:

• Learning Java at a higher level for any platform
• Intermediate level Android learning including pure game frameworks

(which will be covered in more detail in Chapter 9, Making Your Game the
Next Big Thing)

• A higher level of games development
• Much easier tackling of any modern object-oriented language for things

such as iOS, Windows, or web development

So if you know you want to learn Android or Java, hopefully, I have gone some way
to make you commit to the way this book will help you. But why games, Android, or
Java at all?

Why build games to learn to program?
Fun, of course! But there are other reasons too. Successfully running any program
we have written is immensely satisfying, even more so when it involves using some
code that we previously didn't understand.

But making our own games, as you will soon realize, creates a feeling of pleasure
that is not easy to describe—it has to be experienced. Then there are added bonuses
of sharing our creations with friends on a phone or tablet or even sharing them
publicly on the Google Play Store, and you might realize that once you start making
games, you can't stop.

As we create more complex games steadily, you'll realize that all techniques and
pieces of code can be rehashed to create other games, and you can then start
planning your very own unique masterpieces. This is exhilarating to say the least.

Why Java, Android, and Games?

[10]

And as with many subjects, the more we practice the better we get. So games are a
perfect way to start learning to program Java. However, most beginners' books for
Android games require a fairly high level of Java knowledge. But as we will see, it is
perfectly possible to keep the practical examples as fun game projects and still start
with the very basics of Java.

There is a slight trade-off in doing things this way. We will not always approach the
working game examples in a "by-the-book" manner. This is to avoid the problem of
doing cartwheels before mastering the forward roll.

The learning outcome priority will always be the Java programming concept,
followed by understanding the Android environment and game design principles.
Having said that, we will closely examine and practice plenty of Android and game
programming fundamentals.

Of course, from what we have just discussed, you can probably surmise that it would
have been possible to teach a bit more Java in the same number of pages if we hadn't
been making games.

This is true, but then we lose all the benefits that come with using games as the
subject matter. Making games really can be a joy, and when our brains are open and
eager for information, we will learn much faster. The minimal overhead of learning
this way is negated a hundred times over. If games don't interest you in the slightest,
then there are plenty of Java beginners' guides out there that take the traditional
approach. Just don't expect quite the same thrill as when you publish your first
game with online leaderboards and achievements.

Why Android and Java?
A part of successful learning is the commitment by the student, not just to do the
work, but in their belief that they are doing the right thing in the right way. So many
technology-based courses and books don't get that commitment from the reader, not
subconsciously anyway.

The problem is the students' belief that they might be, partly at least, wasting their
time with something that is or will soon become outdated or perhaps is not quite
right for them. This can be true to a large extent with programming. So why
should you spend your finite time learning Java, on Android?

Chapter 1

[11]

Android is the fastest evolving and growing
OS ever
At one time, Android updates emerged almost every two months. Even now, they
emerge about once in six months. By comparison, Windows takes years between
versions and even iOS updates come only yearly and usually change relatively
little between versions. Android is obviously evolving and improving at an
unprecedented rate.

Look at the history of Android versions since Version 1 at
http://www.cnet.com/news/history-of-android/.

The first humble version of Android was released in 2008, around the same time
when consumers were already quite excited about the then much flashier iPhone.
News stories were also reporting that developers were getting rich by selling apps
in the iTunes app store.

But in the last full year before this book was written, Samsung alone shipped more
Android units than Apple sold all iOS devices combined. I am not joining the war
on whose devices are best. I enjoy aspects of both Android and Apple, but purely
in terms of picking a platform to learn on, you are probably in the right place at the
right time with Android.

Android developers have great prospects
Now you might have picked up this book just for the fun and satisfaction that comes
with learning to program games. But if you decide to develop your learning further,
you will find that the demand for Android programmers is enormous and therefore
very lucrative too.

Some data suggests salaries in excess of 100,000 US dollars. For
more information, go to http://www.indeed.com/salary?
q1=Android+Developer&l1=United+States.

http://www.cnet.com/news/history-of-android/
http://www.indeed.com/salary?q1=Android+Developer&l1=United+States
http://www.indeed.com/salary?q1=Android+Developer&l1=United+States

Why Java, Android, and Games?

[12]

Android is open source
What open source means is that although Google develops all the flavors of Android
that are used on the newest devices, once the code is released, anybody can do
whatever they like with it. Google only exerts control for a limited amount of time.

In practice, most Android users have the pure Google OS or the modified
versions turned out by big manufacturers such as Samsung and HTC, but there
is nothing to stop anybody taking the OS and changing, adapting, or converting
it into whatever they like. In short, Android could never be taken away from the
programming community.

Java is here to stay
Okay, so we see Android isn't likely to disappear but could Java become redundant?
And will your significant time investment be wasted? On Android, as with most
platforms, you can use many languages and tools. Android, however, was designed
from the ground up to facilitate Java development. All other languages and tools are
not invalid but tend to serve a fairly specific purpose, rather than be a real alternative
to Java. In fact, as far as games are concerned, many of the alternatives to a pure
Java development environment are also Java-based and require a good level of skill
in Java to use. For example, the popular LibGDX game development library, which
allows you to simultaneously make games for Android, iOS, Windows, Linux, Mac
and even the Web, still uses Java! We will talk more about this in Chapter 9, Making
Your Game the Next Big Thing. The point is that Java and Android are tied together
and will likely thrive together.

Java is not just for Android
Java has been around a lot longer than Android, since the beginning of the 1990s in
fact. Although what Java has been used for has evolved and diversified over more
than two decades, the originally implemented strengths of the language itself remain
the same today.

Java was designed to be platform- or computer-independent. This is achieved by the
use of a virtual machine (VM). This is a program written in another language that
decodes the Java program that we write and interacts with the computer platform
it is running on. So as long as there is a VM for the computer you want to run your
Java program on, with a few caveats, your Java program will work. So if you learn
Java, you are learning a language that is used everywhere from the smart fridge to
the Web and most places in between.

Chapter 1

[13]

It is true, however, that the VM on each platform can and usually does implement
features to specifically suit the uses it is likely to be put to. A clear example of this
would be mobile-device-specific features such as sensors, GPS, or the built-in camera
on many Android devices. Using Java with Android, you can take photos, detect
the air pressure, and work out exactly where in the world you are. Most fridge VMs
probably will not do this. So you can't always just run a Java program designed for
device x on device y, but the language and syntax is the same. Learning Java on
Android prepares you in a large part for Java in any situation. So rest assured that
Java isn't going away any time soon.

Java is fast and easy to use
There is a decades-long debate over which language is the best overall or which
language is the best to learn programming. Critics of Java will likely say things
about Java's speed. It is true that the Java memory management along with the
VM interpretation process does have some speed cost. However, these things have
benefits; they significantly improve our productivity and the way that the Android
VM interacts with a device largely negates the minor speed penalty. And since
Android 4.4, it does so completely with Android Run Time (ART), which installs
apps written in Java as fully native applications. Now Java programmers can build
games in a friendly, interpreted language and have them run as if they were written
in a more challenging natively compiled language.

A summary of Java and Android
In a rapidly changing world, if you are worried about where to invest your precious
learning time, it is hard to have more confidence. Here we have a language (Java)
whose fundamentals have remained almost the same for nearly a quarter of a
century, and a platform (Android) that is backed by the biggest names in hardware,
software, and retail, and though it's admittedly hugely influenced, it's not actually
owned by anyone.

I am not an evangelist of any technology over another although it is true that I love
doing stuff on Android. But you can be sure in your mind that if you are considering
the best path to begin learning programming, there is a very strong argument that
Java and Android are the best choice.

If you want to learn Java for any of its numerous uses, then this is a very good place
to start. If you want to develop for Android or get into Android development of any
sort, then Java is the absolute fundamental way to start, and making games has the
enormous benefits we have already discussed.

Why Java, Android, and Games?

[14]

By the end of the book, you will be able to write Java code for almost any
Java-supported platform. You will be able use almost everything you learn
in this book, away from the Android environment.

If you are planning to pursue a career or business by making Android games or any
Android apps, then this book is possibly the only place to start for beginners.

If you are completely new to Java and want the easiest possible path to mastering
it—the fastest growing platform on the planet—then Learning Java by Building
Android Games will probably be just right for you.

So hopefully you are assured that the path this book will take to learn Java is as
easy, fun, and thorough as learning Java can be. Let's get set up so we can start
building games.

Setting up our development environment
The first thing we need to do is prepare our PC to develop for Android using Java.
Fortunately, this is made quite simple for us.

If you are learning on Mac or Linux, everything in this book
will still work. The next two tutorials have Windows-specific
instructions and screenshots. However, it shouldn't be too
difficult to vary the steps slightly to suit Mac or Linux.

All we need to do is:

1. Install a software package called the Java Development Kit (JDK), which
allows us to develop in Java.

2. Install Android Studio, a program designed to make Android development
fast and easy. Android Studio uses the JDK and some other Android-specific
tools that automatically get installed when we install Android Studio.

Installing the JDK
The first thing we need to do is get the latest version of the JDK. To complete this
guide, perform the following steps:

1. You need to be on the Java website, so visit http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 1

[15]

2. Find the three buttons shown in the following screenshot and click on the
one that says JDK (highlighted). They are on the right-hand side of the web
page. Click on the DOWNLOAD button under the JDK option:

3. You will be taken to a page that has multiple options to download the JDK.
In the Product/File description column, you need to click on the option that
matches your operating system. Windows, Mac, Linux and some other less
common options are all listed.

4. A common question here is, "do I have 32- or 64-bit windows?". To find out,
right-click on your My Computer (This PC on Windows 8) icon, click on the
Properties option, and look under the System heading in the System type
entry, as shown in the following screenshot:

5. Click on the somewhat hidden Accept License Agreement checkbox:

Why Java, Android, and Games?

[16]

6. Now click on the download option for your OS and system type as
previously determined. Wait for the download to finish.

7. In your Downloads folder, double-click on the file you just downloaded. The
latest version at time of writing this for a 64-bit Windows PC was jdk-8u5-
windows-x64. If you are using Mac/Linux or have a 32-bit OS, your filename
will vary accordingly.

8. In the first of several install dialogs, click on the Next button and you will see
the next dialog box:

9. Accept the defaults shown in the previous screenshot by clicking on Next.
In the next dialog box, you can accept the default install location by clicking
on Next.

10. Next is the last dialog of the Java installer. Click on Close.
The JDK is now installed. Next we will make sure that Android Studio is able
to use the JDK.

Chapter 1

[17]

11. Right-click on your My Computer (This PC on Windows 8) icon and
navigate to Properties | Advanced system settings | Environment variables
| New (under System variables, not under User variables). Now you can
see the New System Variable dialog, as shown in the following screenshot:

12. Type JAVA_HOME for Variable name and enter C:\Program Files\
Java\jdk1.8.0_05 for the Variable value field. If you installed the JDK
somewhere else, then the file path you enter in the Variable value: field
will need to point to wherever you put it. Your exact file path will likely
have a different ending to match the latest version of Java at the time you
downloaded it.

13. Click on OK to save your new settings. Now click on OK again to clear the
Advanced system settings dialog.

Now we have the JDK installed on our PC. We are about half way towards starting
to learn Java programming, but we need a friendly way to interact with the JDK and
to help us make Android games in Java.

Android Studio
We learned that Android Studio is a tool that simplifies Android development and
uses the JDK to allow us to write and build Java programs. There are other tools
you can use instead of Android Studio. There are pros and cons in them all. For
example, another extremely popular option is Eclipse. And as with so many things
in programming, a strong argument can be made as to why you should use Eclipse
instead of Android Studio. I use both, but what I hope you will love about Android
Studio are the following elements:

• It is a very neat and, despite still being under development, a very refined
and clean interface.

• It is much easier to get started compared to Eclipse because several Android
tools that would otherwise need to be installed separately are already
included in the package.

Why Java, Android, and Games?

[18]

• Android Studio is being developed by Google, based on another product
called IntelliJ IDEA. There is a chance it will be the standard way to develop
Android in the not-too-distant future.

If you want to use Eclipse, that's fine; all of the code in this
book will work. However, some the keyboard shortcuts
and user interface buttons will obviously be different. If
you do not have Eclipse installed already and have no
prior experience with Eclipse, then I even more strongly
recommend you to go ahead with Android Studio.

Installing Android Studio
So without any delay, let's get Android Studio installed and then we can begin our
first game project. To do this, let's visit https://developer.android.com/sdk/
installing/studio.html.

1. Click on the button labeled Download Android Studio to start the Android
studio download. This will take you to another web page with a very
similar-looking button to the one you just clicked on.

2. Accept the license by checking in the checkbox, commence the download by
clicking on the button labeled Download Android Studio for Windows, and
wait for the download to complete. The exact text on the button will probably
vary depending on the current latest version.

3. In the folder in which you just downloaded Android Studio, right-click on
the android-studio-bundle-135.12465-windows.exe file and click on
Run as administrator. The end of your filename will vary depending upon
the version of Android Studio and your operating system.

4. When asked if you want to Allow the following program from an unknown
publisher to make changes to your computer, click on Yes. On the next
screen, click on Next.

5. On the screen shown in the following screenshot, you can choose which users
of your PC can use Android Studio. Choose whatever is right for you as all
options will work, and then click on Next:

https://developer.android.com/sdk/installing/studio.html
https://developer.android.com/sdk/installing/studio.html

Chapter 1

[19]

6. In the next dialog, leave the default settings and then click on Next.
7. Then on the Choose start menu folder dialog box, leave the defaults and

click on Install.
8. On the Installation complete dialog, click on Finish to run Android Studio

for the first time.
9. The next dialog is for users who have already used Android Studio, so

assuming you are a first time user, select the I do not have a previous version
of Android Studio or I do not want to import my settings checkbox, and then
click on OK:

That was the last piece of software we needed. The simple nine-step process we just
went through has actually set up a whole range of Android tools that we will begin
to use in the next chapter.

Why Java, Android, and Games?

[20]

Summary
We discussed why games, Java, and Android are not only extremely exciting but
also arguably the best way to learn to program. This is because games can be an
extremely motivating subject matter and Java and Android have enormous strengths
with regards to popularity and longevity, and are open to all of us to use for free.

We also set up the Java development kit and installed Android Studio, getting ready
for the next chapter where we will actually create a part of a working game and take
our first look at some Java code.

Getting Started with Android
In this chapter, we will take a roller coaster ride through all the Android topics that
you need to learn in order to get started with Java. It won't just be theoretical though.
We will be designing a user interface (UI) of a game menu and we will see and edit
our first Java code as well.

In addition, we will see how we can run our apps in either an Android emulator on
our PC/Mac or on a real Android device if we have one.

Some of what we will cover in this chapter will be the tip of the iceberg. That is,
there is a lot more below the surface to some of the topics we discuss than would
be appropriate for the second chapter of a learning Java book. Sometimes, we
might need to take a bit of information on faith.

This will then enable us to actually design and run our very own Android app by
the end of this chapter. Then we can start learning Java for real at the beginning of
the next chapter.

If this chapter seems a little tough, then don't worry; keep going because each
subsequent chapter lifts the lid a bit more from some of the less clear topics.

For this chapter and the next two, we will be building a math game. We will start
simply and by the end of Chapter 4, Discovering Loops and Methods, we will scale to
game features that use significant Java skills.

Getting Started with Android

[22]

In this chapter, we will:

• Start our first game project
• Explore Android Studio
• Use the Android Studio visual designer to make our game UI
• Learn about structuring our code for Android
• Take our first look at some Java code
• Build and install our game on an emulator and a real device

Our first game project
Now we will get straight down to actually doing something with Android Studio.
Run Android Studio by double-clicking on the Android Studio icon either on your
desktop's start menu or in the folder where you installed it.

If you get any errors in a dialog box mentioning Privilege
elevation, then try running Android Studio with administrator
privileges. To do this, find the Android Studio icon by clicking
on the Windows Start button and searching for Android
Studio. Now right-click on the icon and click on Run as
administrator. Do this every time you run Android Studio.

Preparing Android Studio
So with Android Studio and Java installed, we just need to add the latest versions of
the Android API that we will use to make our first game. Here is what to do to install
the API:

1. From the menu bar at the top of the Android Studio UI, navigate to Tools
| Android | SDK Manager. Scroll down in the Android SDK Manager
window and select the checkbox for Android 4.4.2 (API 19).

Note that because Android is evolving so quickly, by the time you read
this chapter, there might be APIs newer than 19—20, 21, and so on. If
this is the case for you, select the newer (higher numbered) API instead.

Chapter 2

[23]

2. Click on Install Packages.
3. On the next screen, click on the Accept license checkbox and then click

on the Install button. Android Studio will download and install the
appropriate packages.

What we just did was setting up Android Studio to make available the latest,
prewritten code called an API that we will interact with throughout the book.

Building the project
1. Click on New Project... as indicated in the following screenshot:

Getting Started with Android

[24]

2. The Create New Project configuration window will appear. Fill in the
Application name field with Math Game Chapter 2 and Company Domain
with packtpub.com (or you could use your own company website name
here), as shown in the following screenshot:

Chapter 2

[25]

3. Now click on the Next button. On the next screen, check that the Phone and
Tablet checkbox has a tick in it. Now we have to choose the earliest version
of Android we want to build our app for. Go ahead and play with a few
options in the drop-down selector. You will see that the earlier the version
we select, the greater is the percentage of devices our app can support.
However, the trade-off here is that the earlier the version we select, the fewer
are the cutting-edge Android features available in our apps. A good balance
is to select API 8: Android 2.2 (Froyo). Go ahead and do that now as shown
in the next screenshot:

Getting Started with Android

[26]

4. Click on Next. Now select Blank Activity as shown in the next screenshot
and click on Next again:

5. On the next screen, simply change Activity Name to MainActivity and
click on Finish.

By default, Android Studio shows a Tip of the day dialog every time
it starts. Some of the tips might not make sense while you are still
learning Java but many of them are really useful and reveal great
shortcuts and other time savers. It is well worth taking a few seconds
to read them when they show up. As already discussed, Android
Studio is built from IntelliJ IDEA, and you can find a complete list
of keyboard shortcuts at http://www.jetbrains.com/idea/
webhelp/keyboard-shortcuts-you-cannot-miss.html.

6. Clear Tip of the day by clicking on Close.

Chapter 2

[27]

If you are completely new to programming, then the code, options, and files
might seem a bit daunting. Don't worry; stick to them as we don't need to concern
ourselves with most of them in order to learn Java. When the time does come to
interact with the finer details, we will do things one step at a time.

It might be hard to believe that at this stage, but we have just created our first
working app. We could build and run it on an Android device, and soon we will.

Let's take a deeper look at Android Studio before we progress with our game.

Exploring Android Studio
Android Studio is a very deep tool, but it is only necessary to learn one part at a time
in order to get started. What might be useful for us is naming a few parts of the UI so
that we can refer to them easily as we progress through the book.

Take a look at this numbered diagram and a quick explanation of some of the key
parts of Android Studio. If you can, try and memorize the parts to make future
discussions of them easier for you.

Getting Started with Android

[28]

Here is a handy table that you can quickly refer to and remember which part of
Android Studio we are referring to. What follows is a more detailed explanation
of each area.

Number Name

1 Project Explorer

2 The editor

3 Menu bar

4 Toolbar

5 Navigation bar

6 Important tool windows

• Project Explorer (1): This is shown as 1 in the screenshot and is a bit like
Windows Explorer. It shows us all the files and folders that have been
generated for our project. We will do a number of things from here as the book
continues. Actually, if you delve into the files and folders that Android Studio
creates, the Project Explorer is not an exact mapping. It is slightly simplified
and highlighted to make managing and exploring our project easier.

• The Editor (2): As the name suggests, we will edit our Java code files here
in the editor. However, as we will soon see, the Editor window changes
depending on the type of file we are editing. We will also be viewing and
editing UI designs here.

• Menu bar (3): Like most programs, the Menu bar gives us access to the full
functionality of Android Studio.

• Tool bar (4): This contains lots of really useful one-click options to do things
such as deploying and debugging our games. Hover the mouse cursor over
an icon to get a pop-up tip and gain greater insight into each toolbar icon.

• Navigation bar (5): Like a file path, this shows exactly where the file that is
currently in the editor is located within the project.

• Important tool windows (6): These are a number of tabs that can be popped
up and popped down again by clicking on them. If you like, try some of them
now to see how they work.

Let's talk a bit more about the parts of the Android Studio UI and how the editor
window can transform itself into a visual UI designer. After that, when we are
familiar enough, we will look at building a simple menu screen for our math game.

Chapter 2

[29]

Using the Android Studio visual designer
The Android Studio editor window is a very dynamic area. It presents different file
types in the most useful way possible. A little earlier, when we created our project,
it also made a basic UI for us. UIs in Android can be built-in Java code or, as we
will see, in a visual designer without the need for a single line of Java. However, as
we will investigate after we have built the UI of our game menu, to get the UI to do
anything useful, we need to interact with it. This interaction is always done with Java
code. The visual designer also generates the UI code for us. We will take a very quick
look at that too.

As the book progresses, we will mainly shy away from Android UI development,
as that is a staple of more non-game apps. We will instead spend more time looking
at directly drawing pixels and images to make our games. Nonetheless, the regular
Android UI has its uses, and the Android Studio visual designer is the quickest way
to get started.

Let's have a look at that now:

1. In the Android Studio Project Explorer, double-click on the layout folder
to reveal the activity_main.xml file within it. This should be easy to see
unless you have collapsed the directories. If you can't see the layout folder,
navigate to it using the Project Explorer. It can be found at Math Game
Chapter2/src/main/res/layout via the Android Studio Project Explorer,
as shown in the following screenshot:

Getting Started with Android

[30]

2. Now double-click on activity_main.xml to open it in the editor window.
After a brief loading time, you will see something very similar to the next
screenshot. The following screenshot shows the entire contents of what
previously contained just our code. As you can see, what was just a text
window now has multiple parts. Let's take a closer look at this screenshot:

In the preceding screenshot labeled (1), called Palette, you can choose from
the available Android UI elements and simply click and drag them onto your
UI design. Area (2) is the visual view of the UI you are building, where you
will click and drag elements from the palette. To the right of the visual UI
view, you will see the Component Tree area (3). The component tree allows
you to examine the structure of the complex UI and select specific elements
more easily. Under this tree is the Properties panel (4). Here you can adjust
the properties of the currently selected UI element. These can be simple
things such as color and size or much more advanced properties.

Chapter 2

[31]

Note the tabs labelled (5). These tabs allow you to switch between
the two main views that Android Studio provides for this type
of layout file. These views, as you can see, are Design and Text.
The design view is the default view and is shown in the previous
screenshot. The text view also shows your under-construction UI,
but it shows the code that has been autogenerated for us instead
of the Palette element and the component tree.
We don't need to worry about this code as it is all handled for
us. It can be good to look on this tab from time to time so that we
can begin to understand what the design tool generates for us.
But it is not necessary to do this to learn Java. This code is called
eXtensible Markup Language (XML).

3. Take a quick look at the Text tab, click on the Design tab when you're done,
and we will move on.

Now we have seen an overview of the visual designer and an even briefer glimpse of
the automatically generated code that it generates for us. We can take a closer look at
some of the actual UI elements that we will be using in our project.

Android UI types
We will now take a whirlwind tour of some really useful Android UI elements,
a few key properties, and how to add them together to make a UI. These will
introduce us to some of the possibilities as well as how to use them. We will
then quickly use what we know to make our menu.

TextView
On the visual UI area, click on the words Hello world!. What we have just selected
is a widget known as a TextView. TextViews can be small text like this one or
large heading type text, which might be useful in our game menu.

Getting Started with Android

[32]

Let's try dragging and dropping another TextView onto our visual UI:

1. Directly under the Widgets heading in our palette, you can see there are
multiple types of TextView. They are presented in the palette as Plain
TextView, Large Text, Medium Text and Small Text. Drag and drop a Large
Text widget onto our visual design. Don't let go straightaway. As you drag
it around the image of the phone, notice how Android Studio graphically
shows you different positioning options. In the following screenshot, you
can see what the designer looks like when the widget being dragged is
positioned at the center:

Chapter 2

[33]

2. Let go of the left mouse button where you want the widget to go. If you let
go when it is positioned as shown in the previous screenshot, then the text
will appear in the center as expected.

3. Now we can play with the properties. In the Properties window, click just
to the right of textSize. You might need to scroll to find it. Type 100sp as
the value and press the Enter key. Notice that the text gets much larger. We
can refine the size of our text by increasing and decreasing the value entered
here. The unit sp stands for scaled pixels, and is simply a measuring system
that attempts to scale the text to an appropriate equivalent actual size across
different screen densities.

4. Play with some more properties if you like and when you're done, click on
the TextView we just created in the visual designer to highlight it. Then tap
on the Delete key to get rid of it. Now delete the TextView that was present
when we started—the one that says Hello world!.

Layout elements
Now you have an apparently empty screen. However, if you click anywhere on
the design preview, you will see that we still have some options in the Properties
window. This element is called a RelativeLayout. It is one of several layout element
types provided as a base to control and align the layout widgets such as buttons,
text, and so on. If you look at the top of the Palette window, you will see the main
layout options. We will use this layout element when we actually build our game
menu in a moment.

ImageView widgets
ImageViews unsurprisingly are for displaying images. In the standard Android UI,
this is a really quick way to add our designers' artwork to our game:

1. Drag and drop an ImageView element onto the design in the same way as
you positioned the TextView a moment ago. The ImageView element can
be found below the Widgets heading. Now position it centrally as before or
play with the options by dragging it around the design. We will delete it in a
minute; we are just having a bit of an exploration before we do this for real.

2. In the Properties window, select the src property in the same way as you
selected the textSize property previously.

Getting Started with Android

[34]

3. Notice that after you select it, you have the option to click on ... to give you
more options. Click on ... and scroll to the bottom of the list of options. These
are all the image files that we can display in this ImageView. Just for fun,
scroll to the bottom of the list, choose ic_launcher, and click on OK. We can
make any image we like available and this is a simple, powerful way to build
an attractive game menu screen.

4. Change the layout:width property to 150dp and the layout:height property
to 150dp. The unit dp is a way of sizing elements and widgets that remains
relatively constant across devices with screens that have very different
numbers of pixels.

5. Delete the ImageView in exactly the same way as you deleted the other
views previously.

ButtonView
The use of ButtonView is probably given away by its name. Try to click and drag a
few buttons onto our layout. Notice that there are a few types of ButtonView, such as
Small Button, Button, and, if you look further down the Widget list, ImageButton.
We will be using the regular ButtonView, labelled simply as Button.

Now we will do something with each of these Android UI elements combined to
make our game menu.

You can download the entire sample from the code
download section of the book's companion website.

Using the sample code
All of the code in this book is organized in projects. If a project spans more than one
chapter, a project is provided for each chapter in its finished state. This helps you see
the progression and not just the end result. All you need to do to open the project in
Android Studio is explained as follows:

1. Download the code for this book.
2. In Android Studio from the menu bar, navigate to File | Close project.
3. Now create a new blank project as we did previously. Browse to where you

downloaded the code for this book.
4. Navigate to the Chapter2/MathGameChapter2 folder. Here you will find

the code for all the files we create in this chapter.
5. Open the code files using a plain text editor such as the free Notepad++.

Chapter 2

[35]

6. Copy and paste in your Android Studio project or just compare the code
as you see it.

Although every line of code required in this book is supplied for
your convenience, you still need to create each project for yourself
through Android Studio. You can then simply copy and paste
either the code in its entirety in the file with the matching name, or
just the part of the code that you might be struggling with. Keep
in mind that if you create a project with a different package name,
then you must omit the line of code that is the package name from
the supplied code files. The reasons for this will be clearer when
we talk more about packages later in the chapter.

Let's actually see how to do it all for ourselves.

Making our game menu
For now we will just make our game menu functional. Later in Chapter 5, Gaming
and Java Essentials, we will see how we can make it look good by adding some cool
animation to make the menu more visually interesting and fun.

Here is what we are aiming for in this tutorial:

Getting Started with Android

[36]

Before you start coding, you should design your layouts on paper first. However,
the Android Studio designer is so friendly there is a strong argument, especially
for simple layouts, to refine your design actually in the layout designer. Perform
the following steps to create the game menu:

1. Delete all widgets from your designer by clicking on them one at a time
and then tapping the Delete key on each in turn. Be careful not to delete the
RelativeLayout layout element as we are going to use it as a base for all the
other elements.

2. Click and drag a Large Text element from the palette to the top center of
the design area and give it the following properties. Remember that you
can change properties in the Properties panel by clicking to the right of the
property to be changed. Change the text property to My Math Game and size
to 30sp.

3. Click and drag an ImageView element from the palette to the center of the
design, slightly below the previous TextView. Change the layout:width
property to 150dp and the layout:height property to 150dp.

4. Now click and drag three buttons for Play, High Scores and Quit. Center
them vertically, below the previous ImageView and one below the other,
as per our design shown previously.

5. Click on the top button, configure the text property, and enter the
value Play.

6. Click on the middle button, configure the text property, and enter the
value High Scores.

7. Click on the lowest button, configure the text property, and enter the
value Quit.

8. As the buttons now contain different amounts of text relative to each other,
they will be of slightly different sizes. You can even them up to match the
intended layout by clicking and dragging the edges of the smaller buttons
to match the larger ones. This is done in mostly the same way as you might
resize an application window in Windows.

9. Save the project with Ctrl + S or by navigating to File | Save All.

Chapter 2

[37]

If you are going to be testing your games on a much larger or
much smaller screen than the Nexus 4 shown in the designer,
then you might like to adjust the values of the sp and dp
units used in this tutorial.
A full discussion of Android UI on multiple devices is beyond
the scope of this book and is not necessary to make any of the
games in this book. If you want to start designing for different
screens right away, take a look at http://developer.
android.com/training/multiscreen/index.html.

You can view what your menu looks like on other devices simply by selecting the
device from the drop-down menu shown in the following screenshot:

Before we make our menu come to life on an actual device, let's take a look at the
structure of an Android app and how we can use that structure when writing our
Java code.

Getting Started with Android

[38]

Structuring our code for Android
If you have ever used an Android device, you have probably noticed that it works
quite differently from many other operating systems. For example, you are using
an application—say you're checking what people are doing on Facebook. Then you
get an e-mail notification and you tap the e-mail icon to read it. Midway through
reading the e-mail, you might get a Twitter notification and because you're waiting
on important news from someone you follow, you interrupt your e-mail reading and
change the app to Twitter with a touch.

After reading the tweet, you fancy a game of Angry Birds, but midway through the
first daring fling, you suddenly remember that Facebook post. So you quit Angry
Birds and tap the Facebook icon.

Then you resume Facebook, probably at the same point you left it. You could have
resumed reading the e-mail, decided to reply to the tweet, or started an entirely new
app. All this backwards and forwards takes quite a lot of management on the part of
the operating system, apparently independent from the individual apps themselves.

The difference between a Windows PC and Android in the context we have just
discussed is that with Android, although the user decides which app they are using,
the Android OS decides if and when to actually close down (destroy) an application.
We just need to consider this when coding our games.

Life cycle phases – what we need to know
The Android system has different phases that any given app can be in. Depending
on the phase, the Android system determines how the app is viewed by the user or
whether it is viewed at all. Android has these phases so that it can decide which app
is in current use and then allocate the right amount of resources such as memory and
processing power. But also allow us as game developers to interact with these phases.
What if someone quits our game to answer a phone call? Will they lose their progress?

Android has a fairly complex system that, when simplified a little for the purpose
of explanation, ensures that every app on an Android device is in one of the
following phases:

• Being created
• Starting
• Resuming
• Running
• Pausing

Chapter 2

[39]

• Stopping
• Being destroyed

The list of phases will hopefully appear fairly logical. As an example, the user
presses the Facebook app icon and the app is created. Then it is started. All are fairly
straightforward so far but next in the list is resuming! It is not as illogical as it might
first appear if, for a moment, we can just accept that the app resumes after it starts,
and then all will become clear as we proceed.

After resuming, the app is running. This is when the Facebook app has control over
the screen and probably the greater share of system memory and processing power.
Now what about our example where we switched from the Facebook app to the
e-mail app?

As we tap to go to read our e-mail, the Facebook app will probably have entered
the paused phase, and the e-mail app will enter the being created phase followed
by resuming and then running. If we decide to revisit Facebook, as in the scenario
earlier, the Facebook app will probably then go straight to the resume phase and
then running again, most likely exactly on the post where we left it.

Note that at any time, Android can decide to stop or destroy an app, in which case,
when we run the app again, it will need to be created all over again. So had the
Facebook app been inactive long enough or had Angry Birds required so many system
resources that Android would have destroyed the Facebook app, then our experience of
finding the exact post we were previously reading might have been different.

Now, if all this phase stuff is starting to get confusing, then you will be pleased to
know that the only reasons to mention are as follows:

• You know it exists
• We occasionally need to interact with it
• We will take things step by step when we do

Life cycle phases – what we need to do
When we are making games, how do we possibly interact with this complexity?
The good news is that the Android code that was autogenerated when we created
our first project does most of the interaction for us.

All we have to do as game developers is make sure that Android knows what to
do with our app in each phase when it happens. Even more good news is that all of
these phases are handled by default, unless we override the default handling.

Getting Started with Android

[40]

This means we can go ahead with learning Java and making games until we come to
one of the few instances where we need to do something in our game, specifically in
one of the phases.

Dividing our game into activities
The Java code that we write will be divided into sections or parts called activities.
We can think of activities as different screens for our game. For example, during
the book, we will often create an activity for a home screen, an activity for the game
screen and an activity for the high score screen.

Each activity will have its own life cycle and will be further divided into parts that
will correspond to (go into) one of the Android phases we just discussed. The parts in
Java are known as methods. Methods are a significant concept in Java programming.

At this stage, however, all we need to know is that methods are used to
compartmentalize the Java code we write and that some methods are provided by the
Android system so that we can easily handle the otherwise complex Android life cycle.

The forthcoming list is a quick explanation of the methods provided by Android for
our convenience, to manage the phases of the life cycle. To clarify our discussion of
life cycle phases methods are listed next to their corresponding phases that we have
been discussing. However, as you will see, the method names make it fairly clear on
their own where they fit in.

In the list, there is also a brief explanation or suggestion about when we should use
a given method and thereby interact during a specific phase. We will meet most of
these methods as we progress through the book. We will see the onCreate method
later in this chapter. Here is the list:

• onCreate: This method is executed when the activity is being created.
Here we get everything ready for the game, including graphics, sound,
and perhaps the high scores.

• onStart: This method is executed when the app is in the starting phase.
• onResume: This method runs after onStart but can also be entered, perhaps

most logically, after our activity is resumed after being previously paused.
We might reload a previously saved game situation when the app had been
interrupted, perhaps by a phone call or the user running another app.

• onPause: This occurs when our app is pausing. Here we might want to save
the current game. You are probably getting the hang of these methods.

• onStop: This relates to the stopping phase. This is where we might undo
everything we did in onCreate. If we reach here, our activity will probably
get destroyed sometime soon.

Chapter 2

[41]

• onDestroy: This is when our activity is finally being destroyed—our last
chance to dismantle our game. If we reach here, we will definitely be going
through the phases of the life cycle from the beginning again.

All the method descriptions and their related phases should appear straightforward.
Perhaps, the only real question is about the running phase. As we will see, when
we write our code in other methods/phases, the onCreate, onStart, and onResume
methods will prepare the game, which persists, forming the running phase. The
onPause, onStop, and onDestroy methods will occur afterwards. Now we can
actually take a look at one of these methods and some other methods as well.

Our first look at Java
So what about all that code that Android Studio generated when we created our
new project earlier? This is the code that will bring our game menu to life. Let's
take a closer look. The very first line of code in the editor window is this:

package com.packtpub.mathgamechapter2;

This line of code defines the package that we named when we first created the
project. As the book progresses, we will write more complex code that spans more
than one file. All the code files we create will need the package they belong to,
clearly defined like the previous line of code, at the top. The code doesn't actually do
anything in our game. Notice also that the line ends with a semicolon (;). This is a
part of the Java syntax and it denotes the end of a line of code. Remove a semicolon
and you will get an error because Android Studio tries to make sense of two lines
together. Try it if you like.

Remember that if you are going to be copying and pasting the
code from the download bundle, this is the one line of code
that might vary depending on how you set up your project. If
the package name in the code file is different from the package
name you created, always use the package name from when
you created the project.

Getting Started with Android

[42]

To see the next four lines of code, you might need to click on the small + icon to
reveal them. Android Studio tries to be helpful by simplifying our view of the code.
Notice that there are several little - icons as well down the side of the editor window.
You can expand and collapse them to suit yourself without affecting the functionality
of the program. This is shown in the following screenshot:

Once you have expanded the code, you will see these four lines:

import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;

Notice that all the preceding lines start with the word import. This is an instruction
to include other packages in our game, not just our own. This is very significant
because it makes available to us all of the hard work of other programmers, the
Android development team in this case. It is precisely these imports that give us the
ability to use the methods we discussed earlier, and allow us to interact with the
Android life cycle phases. Notice again that all the lines end with a semicolon (;).

The next line introduces a fundamental building block of Java known as a class.
Classes are something that we will continually expand our knowledge and
understanding of throughout the book. For now, take a look at this line of code,
then we will discuss it in detail:

public class MainActivity extends ActionBarActivity {

Word by word, here is what is going on. The preceding line is saying: make
me a new public class called MainActivity and base it upon (extends)
ActionBarActivity.

You might remember that MainActivity is the name we chose while creating this
project. ActionBarActivity is the code (known as a class) written by the Android
development team that enables us to put our Java into Android.

Chapter 2

[43]

If you have a keen eye, you might notice there is no semicolon at the end of this
line. There is, however, an opening curly brace ({). This is because MainActivity
encompasses the rest of the code. In effect, everything is part of our MainActivity
class, which is built based on the ActionBarActivity class/code. If you scroll
down to the bottom of the editor window, you will see a closing curly brace (}). This
denotes the end of our class called MainActivity.

• We do not need to know how a class works yet
• We will use classes to access some methods contained within its code and

without doing any more, we are already, by default, taking advantage of the
Android life cycle methods we discussed earlier

• We can now pick and choose if, when, and which methods defined in these
classes we wish to override or leave as default

So, it is the ActionBarActivity class that contains the methods that enable us
to interact with the Android life cycle. Actually, there are a number of different
classes that enable us to do this and in a moment, we will change from using
ActionBarActivity to a more appropriate class that also does all the things
just mentioned.

It is not important at this point to properly understand Java
classes; just understand that you can import a package and a
package can contain one or more classes that you can then use
the functionality of or base your own Java programs on.
We will bump into classes regularly in the next few chapters.
Think of them as programming black boxes that do stuff. In
Chapter 6, OOP – Using Other People's Hard Work, we will open
the black box and really get to grips with them and we will
even start making our own classes.

Moving on with the code, let's look at what the code that is contained within our
class actually does.

Here is the code chunk directly after the crucial line we have just been discussing:

@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

Hopefully, some of this code will start to make sense now and tie in with what we
have already discussed. Although the precise syntax will still feel a little alien, we
can continue learning Java as long as we are aware of what is happening.

Getting Started with Android

[44]

The first thing we notice in the preceding code is the word @override. Remember
when we said that all the methods that interact with the Android life cycle were
implemented by default and we can pick and choose if and when to override them?
This is what we are doing here with the onCreate method.

The @override word says that the method that follows next is being overridden. The
protected void onCreate(Bundle savedInstanceState) { line contains the
method we are overriding. You might be able to guess that the action starts with the
opening { at the end of the line in question and ends with the closing } three lines later.

The somewhat odd-looking protected void before the method name onCreate
and (Bundle savedInstanceState) after the method name are unimportant at this
time because they are handled for us. It is to do with the data that travels between
various parts of our program. We just need to know that what happens here will
take place in the creating phase of the Android lifecycle. The rest will become
clear in Chapter 4, Discovering Loops and Methods. Let's move on to the line:

super.onCreate(savedInstanceState);

Here, the super keyword is referencing the code in the original onCreate method,
which is still there even though we can't see it. The code is saying: even though I am
overriding you, I want you to set things up, just like you normally do first. Then, after
onCreate has done loads of work that we don't see and don't need to see, the method
continues and we actually get to do something ourselves with this line of code:

setContentView(R.layout.activity_main);

Here we are telling Android to set the main content view (our users screen), which
is the cool game menu we created earlier. To be specific, we are stating it is an R or
resource in the layout folder and the file is called activity_main.

Cleaning up our code
The next two blocks of code were created by Android Studio on the assumption
that we would want to override another two methods. We don't, because they are
methods more often used in non-gaming apps:

1. Delete the entire content shown in the following code. Be careful not to delete
the closing curly brace of our MainActivity class:
@Override
 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar if
it is present.
 getMenuInflater().inflate(R.menu.main, menu);

Chapter 2

[45]

 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so
long
 // as you specify a parent activity in AndroidManifest.
xml.
 int id = item.getItemId();
 if (id == R.id.action_settings) {
 return true;
 }
 return super.onOptionsItemSelected(item);
 }

2. Now we can delete a couple of the @import statements. The reason for this is
that we just deleted the overridden methods of classes (imported earlier) we
no longer need. Notice that the following lines in the editor window are grey.
Note that the program would still work if you leave them in. Delete them
both now to make your code as clear as possible:
import android.view.Menu;
import android.view.MenuItem;

3. Some final amendments before our code is done: at this point, you might
be thinking that we have deleted and changed so much of our code that we
might as well have started from an empty page and typed it in. This is almost
true. But the process of having Android Studio create a new project for us
and then making these amendments is more thorough and also avoids quite
a few steps. Here are the last code changes. Change the import android.
support.v7.app.ActionBarActivity; line to import android.support.
app.Activity;.

4. Now you will get several red lines underlining our code and indicating
errors. This is because we are attempting to use a class we have not yet
imported. Simply amend the public class MainActivity extends
ActionBarActivity { line to public class MainActivity extends
Activity {.

What we did with those last two changes was using a slightly more appropriate
version of the Activity class. To do this, we also had to change what we imported.

Getting Started with Android

[46]

When you're done, your editor window should look exactly like this:

package com.packtpub.mathgamechapter2.mathgamechapter2;

import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;

public class MainActivity extends ActionBarActivity {

 @Override
 protected void onCreate(Bundle savedInstancePhase) {
 super.onCreate(savedInstancePhase);
 setContentView(R.layout.activity_main);
 }

}

Downloading the example code
You can download the example code fies from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the fies e-mailed directly to you.

Now that we know what's going on and our code is clean and lean, we can actually
take a look at the beginnings of our game in action!

If any of what we have just discussed seemed complicated,
there is no need for concern. Android forces us to work within
the Activity lifecycle, so the previous steps were unavoidable.
Even if you didn't follow all the explanations about classes and
methods and so on, you are still perfectly placed to learn Java
from here. All the classes and methods will seem much more
straightforward as the book progresses.

Building and installing our game
Soon, we will actually see our menu in action. But before we do that, we need to find
out how to use the Android emulators and how to build our game. Then we will
put these together and put our game into an emulator or real device to see it as our
players would.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 2

[47]

Emulators and devices
Now we have the first part of our game ready to run. We need to test it to check for
any errors, crashes, or anything else unintended. It is also important to ensure that it
looks good and runs correctly on the device types/sizes and that you want to target.

We will not go into any details about handling different device
types. All our games are fullscreen and we will later lock the
orientation and dynamically calculate aspects such as screen
resolution. So we can get away with writing for a single device type
and focus on learning Java.
It might be useful to know for now that you can create a different
layout file for any screen size categorization or pixel density.
All you need to do is place the layout file using exactly the same
filename in the appropriate folder. The Android device will then
know the most appropriate layout for it to use. For a detailed
discussion, see the Google developers website at http://
developer.android.com/guide/practices/screens_
support.html.
Note that you do not need to understand any of the information at
the preceding link to learn Java and publish your first games.

There are a few options to do this and we will look at two. First, we will use Android
Studio and the Android Development Tools to make a device emulator so that we
can use, test, and debug our games on a wide range of device emulators on the same
PC/Mac we are developing on. So we don't need to own a device. This will allow us
to get crash reports from our games.

Then we will install the game directly to a real device so that we can see exactly what
the owner of that device will see when they download our app.

There are more options. For example, you can connect a real device via USB and
debug directly on the device with the errors and syntactical feedback in Android
Studio. The process for this might vary for different devices and since we won't be
focusing on anything but basic debugging, we will not cover that in this book.

Getting Started with Android

[48]

Creating an emulator
Let's get our emulator up and emulating:

1. On the right-hand side of the Android Studio quick launch bar, find the
AVD manager icon:

2. Click on the icon to start the Android Virtual Device Manager. Then click on
the Create Virtual Device... button on the bottom-left side to bring up the
Virtual Device Configuration window.

3. Now click on the Nexus 4 option and then click on Next.
4. Now we need to choose the version of Android we will use to build and test

our games on. The latest version (at time of writing) is Lollipop - 21 - x86. It
is the only option where we don't need to complete a download to continue.
So select it (or whatever the default is at the time you are reading this) and
then click on Next to continue.

5. On the next screen we can leave all the default settings. So click on Finish.

We now have a ready-to-run Android emulator.

Running the emulator
Now we will launch (switch on) our virtual device then actually run our game that
we made earlier by performing the following steps:

1. Click on Nexus 4 API 21 under the Name column. Now click on the
triangular play icon to the right of the description of our emulator.

Android emulators take a long time to start. Even on
a high-specification PC. Expect to wait at least a few
minutes or even 10.

Chapter 2

[49]

2. Once it has started, unlock the device by clicking and dragging anywhere on
the screen of the emulated device. This is analogous to swiping to unlock a
real Nexus 4. Here is what our Nexus 4 virtual device looks like when it is
running and unlocked:

You can play with this emulator in almost the same way as you can a real Android
device. However, you cannot download apps from Google Play. You might notice
that the emulator is a bit slow compared to a real device, even compared to an old
one. Shortly, we will look at running our apps on a real device.

Getting Started with Android

[50]

Running our game on the emulator
Once the emulator is running, it's usually best to leave it running so that each time
we want to use it, we don't have to wait for it to start. Let's use the emulator:

1. Launch the emulator if it is not already running and make sure the device is
unlocked as described previously.

2. Click on the run icon in the toolbar (shown next) to run your app. You can
achieve the same thing by navigating to Run | Math Game Chapter 2 from
the menu bar:

3. After a pause while Android Studio builds our application, a pop-up dialog
will ask you which device you want to run the app on. Choose the device
with Nexus 4 API 21 in the description. This is the already running device
that we created earlier. Now press OK.

4. Notice at this point that the useful Android window appears at the bottom
section of Android Studio. In the unlikely event of you having any problems,
just check for typos in the code. If things really don't work out, just go back
to the Using the sample code section to compare with or copy and paste the
supplied code.

After another pause, our game menu screen will appear on the emulator. Of course,
it doesn't do anything yet, but it is running and the buttons can be pressed.

When you're done, you can press the back or home icons to quit the application, just
as you would on a real Android device.

Now we have seen one of the ways we can test our app by running it in the Android
emulator. Let's find out how to make our code into an app we can distribute and use
on a real device.

Building our game
To run our game on a real Android device, we need to create a .apk file, that is, a file
that ends with the extension .apk. A .apk file is a compressed archive of files and
folders that the Android system uses to run and install our app. These are the steps
to use Android Studio to make a .apk of our game:

1. From the menu bar, navigate to Build | Generate Signed APK.

Chapter 2

[51]

2. A slightly verbose window will pop up and say: For Gradle-based projects,
the signing configuration should be specified in the Gradle build scripts.
You can safely dismiss this window by clicking on OK.

3. Next up is the Generate Signed APK Wizard dialog. Here, we are creating
a key that identifies the key holder as authorized to distribute the APK. At
the end of this process, you will have a .keys file that you can use each time
you build a .apk file. So this step can be missed out in future. Click on the
Create new button.

4. In the Key Store Path field, type or go to a location on your hard drive where
you would like to store your key. You will then be prompted to choose a
filename for the keystore. This is arbitrary. Type MyKeystore and click on OK.

5. Type a password in the Password field and then retype it in the Confirm
field. This is the password to a store that will help protect your key.

6. Next, in the Alias field, type a memorable alias. You can think of this as a
kind of username for your key. Again type a password in the Password field
and then retype it in the Confirm field. This is the password to your key.

7. Leave the Validity Years dropdown at the default of 25.
8. You can then fill out your Name and organization details (if any) and click

on OK.
9. Now our key and keystore are complete, and we can click on OK on the

Generate Signed APK wizard dialog.
10. We are then prompted to select Run Proguard. Encrypting and optimizing

our .apk is unnecessary at this time. So just click on Finish to generate our
app's .apk file.

11. The generated .apk file will be put in the same directory that you chose to
put the project files. For example, MathGameChapter2/app.

We have now built a .apk file that can be run on any Android device that was
specified when we first created the project.

Installing the setup to a device
So we have our .apk file and we know were to find it. Here is how we will run it on
our Android device.

Getting Started with Android

[52]

We can use one of a number of methods to get the .apk file into the device. The
method I find one of the easiest is the use of a cloud storage service such as Dropbox.
You can then simply click and drag the .apk file to your Dropbox folder and you're
done. Alternatively, your Android device probably came with PC synchronization
software that allows you to drag and drop files to and from your device. After you
have placed the .apk file on your Android device, continue with the tutorial.

Most Android phones are set not to install apps from anywhere except the Google
Play Store. So we need to change this. The exact menus you will navigate to might
vary very slightly on your device but the following options tend to be almost the
same on most devices, old and new:

1. Find and tap the Settings app. Most Android phones also have a Settings
menu option. Either will do. Now select Security and scroll down to the
Unknown sources option. Tap the Unknown sources checkbox to allow
apps to be installed from unknown sources.

2. Locate the file on your Android device using the Dropbox app or your
devices file browser depending on the method you chose to put the APK on
your device. Tap the MathGameChapter2.apk file.

3. You can now install the app just like any other. When prompted, press
Install and then Open. The game will now be running on your device.

Hold your device in a portrait orientation as this is how the UI was designed.
Congratulations on running your very own Android app on your own device.
In a later version of the math game, we will lock the orientation to make this more
user friendly.

Future projects
Throughout the book, we will test and run our game projects. It is entirely up to
you which of the methods we discussed you prefer. If you are getting crashes or
unexplained bugs, then you will need to use an emulator. If all is working well, then
the quickest and probably most pleasing way will be to run it on a device you own.

Self-test questions
Q1) What should you do if all this talk of life cycles, classes, and methods is
a bit bemusing?

Q2) What exactly is a Java class?

Q3) What is the difference between a method and a class?

Chapter 2

[53]

Q4) Take a look at the Android developer site and its more technical explanation
of the phases of the life cycle at http://developer.android.com/reference/
android/app/Activity.html. Can you see the phase and its related method that
we haven't discussed? When would it be triggered in an app? What is the precise
pathway an activity takes from creation to destruction?

Summary
We discussed that so far, it has not been not important to completely understand
exactly how the code works. This is because it will act just as a container for the
code we write in the rest of the book. However, as we cover in detail topics such
as methods in Chapter 4, Discovering Loops and Methods, and classes in Chapter 6,
OOP – Using Other People's Hard Work, we will begin to make sense of all of the
code in our games.

We discussed the somewhat complex Android life cycle in detail. We learned that all
we need to understand at this stage is that we must write our code within the correct
methods that relate to different phases of the life cycle. Then we will have no trouble
making good progress with learning Java. As with classes and methods, all will be
explained along the way and become clearer with practice.

We also learned the key areas of the Android Studio UI. We built our start menu for
our math game using the Android Studio designer. Furthermore, we created the Java
code necessary to make the game appear on the player's device. This was achieved
mainly by modifying the code that was automatically generated for us.

This was probably the most difficult chapter of the book because it was necessary to
introduce a few things such as Java classes, Java methods, and the Android life cycle.
We did this because we need to know what is going on around us as we learn Java.

From now on, however, we can take things a step at a time in a very logical manner.
If you have reached this point, you will have no problem completing the toughest of
the projects in this book.

If this chapter made your brain ache a little, rest assured that the fact that you have
made it this far is a very good indication that you are going to be a Java ace someday
soon. Starting from the basics, let's learn some Java now.

Speaking Java – Your
First Game

In this chapter, we will start writing our very own Java code at the same time as we
begin understanding Java syntax. We will learn how to store, retrieve, and manipulate
different types of values stored in the memory. We will also look at making decisions
and branching the flow of our code based on the values of this data.

In this order, we will:

• Learn some Java syntax and see how it is turned into a running app
by the compiler

• Store data and use it with variables
• Learn how to express yourself in Java with expressions
• Continue with the math game by asking a question
• Learn about decisions in Java
• Continue with the math game by getting and checking the answer

Speaking Java – Your First Game

[56]

Acquiring the preceding Java skills will enable us to build the next two phases of
our math game. This game will be able to ask the player a question on multiplication,
check the answer and give feedback based on the answer given, as shown in the
following screenshot:

Java syntax
Throughout this book, we will use plain English to discuss some fairly technical
things. You will never be asked to read a technical explanation of a Java or Android
concept that has not been previously explained in a non-technical way.

Occasionally, I might ask or imply that you accept a simplified explanation in order
to offer a fuller explanation at a more appropriate time, like the Java class as a black
box; however, you will never need to scurry to Google in order to get your head
around a big word or a jargon-filled sentence.

Chapter 3

[57]

Having said that, the Java and Android communities are full of people who speak
in technical terms and to join in and learn from these communities, you need to
understand the terms they use. So the approach this book takes is to learn a concept
or appreciate an idea using an entirely plain speaking language, but at the same
time, it introduces the jargon as part of the learning.

Then, much of the jargon will begin to reveal its usefulness, usually as a way of
clarification or keeping the explanation/discussion from becoming longer than it
needs to be.

The very term, "Java syntax," could be considered technical or jargon. So what is it?
The Java syntax is the way we put together the language elements of Java in order
to produce code that works in the Java/Dalvik virtual machine. Syntax should also
be as clear as possible to a human reader, not least ourselves when we revisit our
programs in the future. The Java syntax is a combination of the words we use and
the formation of those words into sentence like structures.

These Java elements or words are many in number, but when taken in small chunks
are almost certainly easier to learn than any human-spoken language. The reason
for this is that the Java language and its syntax were specifically designed to be as
straightforward as possible. We also have Android Studio on our side, which will
often let us know if we make a mistake and will even sometimes think ahead and
prompt us.

I am confident that if you can read, you can learn Java; because learning Java is very
easy. What then separates someone who has finished an elementary Java course from
an expert programmer? The same things that separate a student of language from a
master poet. Mastery of the language comes through practice and further study.

In the last chapter, I will show you the right direction if you want to go on to master
Java yourself.

The compiler
The compiler is what turns our human-readable Java code into another piece of code
that can be run in a virtual machine. This is called compiling. The Dalvik virtual
machine will run this compiled code when our players tap on our app icon. Besides
compiling Java code, the compiler will also check for mistakes. Although we might
still have mistakes in our released app, many discovered when our code is compiled.

Speaking Java – Your First Game

[58]

Making code clear with comments
As you become more advanced in writing Java programs, the solutions you use to
create your programs will become longer and more complicated. Furthermore, as
we will see in later chapters, Java was designed to manage complexity by having
us divide our code into separate chunks, very often across multiple files.

Comments are a part of the Java program that do not have any function in the
program itself. The compiler ignores them. They serve to help the programmer
to document, explain, and clarify their code to make it more understandable to
themselves at a later date or to other programmers who might need to use or
modify the code.

So, a good piece of code will be liberally sprinkled with lines like this:

//this is a comment explaining what is going on

The preceding comment begins with the two forward slash characters, //. The
comment ends at the end of the line. It is known as a single-line comment. So
anything on that line is for humans only, whereas anything on the next line
(unless it's another comment) needs to be syntactically correct Java code:

//I can write anything I like here
but this line will cause an error

We can use multiple single-line comments:

//Below is an important note
//I am an important note
//We can have as many single line comments like this as we like

Single-line comments are also useful if we want to temporarily disable a line of code.
We can put // in front of the code and it will not be included in the program. Recall
this code, which tells Android to load our menu UI:

//setContentView(R.layout.activity_main);

In the preceding situation, the menu will not be loaded and the app will have a
blank screen when run, as the entire line of code is ignored by the compiler. There is
another type of comment in Java—the multiline comment. This is useful for longer
comments and also to add things such as copyright information at the top of a code
file. Also like the single-line comment, it can be used to temporarily disable code, in
this case usually multiple lines.

Chapter 3

[59]

Everything in between the leading /* signs and the ending */ signs is ignored by the
compiler. Here are some examples:

/*
This program was written by a Java expert
You can tell I am good at this because my
code has so many helpful comments in it.
*/

There is no limit to the number of lines in a multiline comment. Which type of
comment is best to use will depend upon the situation. In this book, I will always
explain every line of code explicitly but you will often find liberally sprinkled
comments within the code itself that add further explanation, insight or clarification.
So it's always a good idea to read all of the code:

/*
The winning lottery numbers for next Saturday are
9,7,12,34,29,22
But you still want to learn Java? Right?
*/

All the best Java programmers liberally sprinkle their
code with comments.

Storing data and using it with variables
We can think of a variable as a labeled storage box. They are also like a programmer's
window to the memory of the Android device, or whatever device
we are programming. Variables can store data in memory (the storage box), ready
to be recalled or altered when necessary by using the appropriate label.

Computer memory has a highly complex system of addressing that we, fortunately,
do not need to interact with in Java. Java variables allow us to make up convenient
names for all the data that we want our program to work with; the JVM will handle
all the technicalities that interact with the operating system, which in turn, probably
through several layers of buck passing, will interact with the hardware.

So we can think of our Android device's memory as a huge warehouse. When we
assign names to our variables, they are stored in the warehouse, ready when we
need them. When we use our variable's name, the device knows exactly what we are
referring to. We can then tell it to do things such as "get box A and add it to box C,
delete box B," and so on.

Speaking Java – Your First Game

[60]

In a game, we will likely have a variable named as something along the lines of
score. It would be this score variable that we use to manage anything related
to the user's score, such as adding to it, subtracting or perhaps just showing it to
the player.

Some of the following situations that might arise:

• The player gets a question right, so add 10 to their existing score
• The player views their stats screen, so print score on the screen
• The player gets the best score ever, so make hiScore the same as their

current score

These are fairly arbitrary examples of names for variables and as long as you
don't use any of the characters keywords that Java restricts, you can actually call
your variables whatever you like. However, in practice, it is best to adopt a naming
convention so that your variable names will be consistent. In this book, we will use
a loose convention of variable names starting with a lowercase letter. When there
is more than one word in the variable's name, the second word will begin with an
uppercase letter. This is called "camel casing."

Here are some examples of camel casing:

• score

• hiScore

• playersPersonalBest

Before we look at some real Java code with some variables, we need to first look at
the types of variables we can create and use.

Types of variables
It is not hard to imagine that even a simple game will probably have quite a
few variables. In the previous section, we introduced the hiScore variable as
an example. What if the game has a high score table that remembers the names
of the top 10 players? Then we might need variables for each player.

And what about the case when a game needs to know if a playable character is
dead or alive, or perhaps has any lives/retries left? We might need code that tests
for life and then ends the game with a nice blood spurt animation if the playable
character is dead.

Another common requirement in a computer program, including games, is the right
or wrong calculation: true or false.

Chapter 3

[61]

To cover these and many other types of information you might want to keep track
of, Java has types. There are many types of variables and, as we will see in Chapter 6,
OOP – Using Other People's Hard Work, we can also invent our own types or use other
people's types. But for now, we will look at the built-in Java types. To be fair, they
cover just about every situation we are likely to run into for a while. Some examples
are the best way to explain this type of stuff.

We have already discussed the hypothetical but highly likely score variable. The
variable score is likely to be a number, so we have to convey this (that the score
is a number) to the Java compiler by giving the score an appropriate type. The
hypothetical but equally likely playerName will, of course, hold the characters that
make up the player's name. Jumping ahead a couple of paragraphs, the type that
holds a regular number is called int, and the type that holds name-like data is called
String. And if we try and store a player name, perhaps "Ada Lovelace" in score,
which is meant for numbers, we will certainly run into trouble.

The compiler says no! Actually, the error would say this:

As we can see, Java was designed to make it impossible for such errors to make it to
a running program. Did you also spot in the previous screenshot that I had forgotten
the semicolon at the end of the line? With this compiler identifying our errors, what
could possibly go wrong?

Here are the main types in Java. Later, we will see how to start using them:

• int: This type is used to store integers. It uses 32 pieces (bits) of memory
and can therefore store values with a magnitude a little in excess of 2 billion,
including negative values.

• long: As the name hints at, this data type can be used when even larger
numbers are required. A long data type uses 64 bits of memory and 2 to the
power of 63 is what we can store in this type. If you want to see what that
looks like, try this: 9,223,372,036,854,775,807. Perhaps surprisingly,
there are uses for long variables but if a smaller variable will do, we should
use it so that our program uses less memory.

Speaking Java – Your First Game

[62]

You might be wondering when you might use numbers of this
magnitude. The obvious examples would be math or science
applications that do complex calculations but another use might
be for timing. When you time how long something takes, the Java
Date class uses the number of milliseconds since January 1, 1970.
The long data type could be useful to subtract a start time from
an end time to determine an elapsed time. We will use long in
Chapter 5, Gaming and Java Essentials.

• float: This is for floating-point numbers, that is, numbers where there is
precision beyond the decimal point. As the fractional part of a number takes
memory space just as the whole number portion, the range of numbers
possible in a float is therefore decreased compared to non-floating-point
numbers. So, unless our variable will definitely use the extra precision, float
would not be our data type of choice.

• double: When the precision in float is not enough we have double.
• short: When even an int data type is overkill, the super-skinny short fits

into the tiniest of storage boxes, but we can only store around 64,000 values,
from -32,768 to 32,767.

• byte: This is an even smaller storage box than a short type. There is plenty of
room for these in memory but a byte can only store values from -128 to 127.

• boolean: We will be using plenty of Booleans throughout the book.
A Boolean variable can be either true or false—nothing else. Perhaps
Booleans answer questions such as:

 ° Is the player alive?
 ° Has a new high score been reached?
 ° Are two examples for a Boolean variable enough?

• char: This stores a single alphanumeric character. It's not going to change
anything on its own but it could be useful if we put lots of them together.

I have kept this discussion of data types to a practical level that is
useful in the context of this book. If you are interested in how a data
type's value is stored and why the limits are what they are, visit the
Oracle Java tutorials site at http://docs.oracle.com/javase/
tutorial/java/nutsandbolts/datatypes.html. Note
that you do not need any more information than we have already
discussed to continue with this book.

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Chapter 3

[63]

As we just learned, each type of data that we might want to store will require a
specific amount of memory. So we must let the Java compiler know the type of
the variable before we begin to use it.

The preceding variables are known as the primitive types. They use predefined
amounts of memory and so, using our storage analogy, fit into predefined sizes of
the storage box.

As the "primitive" label suggests, they are not as sophisticated as the reference types.

Reference types
You might have noticed that we didn't cover the String variable type that we
previously used to introduce the concept of variables.

Strings are a special type of variable known as a reference type. They quite simply
refer to a place in memory where the storage of the variable begins, but the reference
type itself does not define a specific amount of memory. The reason for this is fairly
straightforward: we don't always know how much data will need to be stored until
the program is actually run.

We can think of strings and other reference types as continually expanding and
contracting storage boxes. So won't one of these String reference types bump
into another variable eventually? If you think about the devices memory as a huge
warehouse full of racks of labeled storage boxes, then you can think of the Dalvik
virtual machine as a super-efficient forklift truck driver that puts the different types
of storage boxes in the most appropriate place.

And if it becomes necessary, the virtual machine will quickly move stuff around in
a fraction of a second to avoid collisions. It will even incinerate unwanted storage
boxes when appropriate. This happens at the same time as constantly unloading new
storage boxes of all types and placing them in the best place, for that type of variable.
Dalvik tends to keep reference variables in a part of the warehouse that is different
from the part for the primitive variables, and we will learn more details about this in
Chapter 6, OOP – Using Other People's Hard Work.

So strings can be used to store any keyboard character, like a char data type but of
almost any length. Anything from a player's name to an entire book can be stored in
a single string. We will be using strings regularly including in this chapter.

There are a couple more reference types we will explore. Arrays are a way to store
lots of variables of the same type, ready for quick and efficient access. We will look
at arrays in Chapter 5, Gaming and Java Essentials.

Speaking Java – Your First Game

[64]

Think of an array as an aisle in our warehouse with all the variables of a certain type
lined up in a precise order. Arrays are reference types, so Dalvik keeps these in the
same part of the warehouse as strings.

The other reference type is the mysterious object or class that we will look at in
Chapter 6, OOP – Using Other People's Hard Work.

So we know that each type of data that we might want to store will require an
amount of memory. Hence, we must let the Java compiler know the type of the
variable before we begin to use it.

Declaration
That's enough of theory. Let's see how we would actually use our variables and
types. Remember that each primitive type requires a specific amount of real device
memory. This is one of the reasons that the compiler needs to know what type a
variable will be of. So we must first declare a variable and its type before we attempt
to do anything with it.

To declare a variable of type int with the name score, we would type:

int score;

That's it! Simply state the type, in this case int, then leave a space, and type the
name you want to use for this variable. Also note the semicolon on the end of the
line as usual to show the compiler that we are done with this line and what follows,
if anything, is not part of the declaration.

For almost all the other variable types, declaration would occur in the same way.
Here are some examples. The variable names are arbitrary. This is like reserving
a labeled storage box in the warehouse:

long millisecondsElapsed;
float gravity;
double accurateGravity;
boolean isAlive;
char playerInitial;
String playerName;

Initialization
Here, for each type, we initialize a value to the variable. Think about placing a value
inside the storage box, as shown in the following code:

score = 0;
millisecondsElapsed = 1406879842000;//1st Aug 2014 08:57:22

Chapter 3

[65]

gravity = 1.256;
double accurateGravity =1.256098;
isAlive = true;
playerInitial = 'C';
playerName = "Charles Babbage";

Notice that the char variable uses single quotes (') around the initialized value while
the String uses double quotes (").

We can also combine the declaration and initialization steps. In the following snippet
of code, we declare and initialize the same variables as we did previously, but in one
step each:

int score = 0;
long millisecondsElapsed = 1406879842000;//1st Aug 2014 08:57:22
float gravity = 1.256;
double accurateGravity =1.256098;
boolean isAlive = true;
char playerInitial = 'C';
String playerName = "Charles Babbage";

Whether we declare and initialize separately or together is probably
dependent upon the specific situation. The important thing is that we
must do both:

int a;

//The line below attempts to output a to the console
Log.i("info", "int a = " + a);

The preceding code would cause the following result:
Compiler Error: Variable a might not have been
initialized

There is a significant exception to this rule. Under certain
circumstances variables can have default values. We will see this in
Chapter 6, OOP – Using Other People's Hard Work. But it is good practice
to both declare and initialize variables.

Speaking Java – Your First Game

[66]

Changing variables with operators
Of course, in almost any program, we are going to need to do something with these
values. Here is a list of perhaps the most common Java operators that allow us to
manipulate variables. You do not need to memorize them as we will look at every
line of code when we use them for the first time:

• The assignment operator (=): This makes the variable to the left of the
operator the same as the value to the right. For example, hiScore = score;
or score = 100;.

• The addition operator (+): This adds the values on either side of the
operator. It is usually used in conjunction with the assignment operator,
such as score = aliensShot + wavesCleared; or score = score
+ 100;. Notice that it is perfectly acceptable to use the same variable
simultaneously on both sides of an operator.

• The subtraction operator (-): This subtracts the value on the right side of the
operator from the value on the left. It is usually used in conjunction with the
assignment operator, such as lives = lives - 1; or balance = income -
outgoings;.

• The division operator (/): This divides the number on the left by the number
on the right. Again, it is usually used in conjunction with the assignment
operator, as shown in fairShare = numSweets / numChildren; or
recycledValueOfBlock = originalValue / .9;.

• The multiplication operator (*): This multiplies variables and numbers, such
as answer = 10 * 10; or biggerAnswer = 10 * 10 * 10;.

• The increment operator (++): This is a really neat way to add 1 to the value
of a variable. The myVariable = myVariable + 1; statement is the same
as myVariable++;.

• The decrement operator (--): You guessed it: a really neat way to subtract 1
from something. The myVariable = myVariable -1; statement is the same
as myVariable--;.

The formal names for these operators are slightly different from the
names used here for explanation. For example, the division operator
is actually one of the multiplicative operators. But the preceding
names are far more useful for the purpose of learning Java and if you
used the term "division operator", while conversing with someone
from the Java community, they would know exactly what you mean.

Chapter 3

[67]

There are actually many more operators than these in Java. We will see a whole
bunch later in this chapter when we learn about decisions in Java.

If you are curious about operators there is a complete list of them
on the Java website at http://docs.oracle.com/javase/
tutorial/java/nutsandbolts/operators.html. All the
operators required to complete the projects in this book will be fully
explained in this book. The link is provided for the curious among us.

Expressing yourself in Java
Let's try using some declarations, assignments and operators. When we bundle
these elements together into some meaningful syntax, we call it an expression.
So let's write a quick app to try some out.

Here we will make a little side project so we can play with everything we have
learned so far. We will need to create a new project, just as we did in the previous
chapter but we will not need a UI this time.

Instead, we will simply write some Java code and examine its effects by outputting
the values of variables to the Android console, called logcat. We will see exactly
how this works by building the simple project and examining the code and the
console output:

The following is a quick reminder of how to create a new project.

1. Close any currently open projects by navigating to File | Close Project.
2. Click on Start a new Android Studio project.
3. The Create New Project configuration window will appear. Fill in the

Application name field and Company Domain with packtpub.com
or you could use your own company website name here instead.

4. Now click on the Next button. On the next screen, make sure the Phone and
Tablet checkbox has a tick in it. Now we have to choose the earliest version
of Android we want to build our app for. Go ahead and play with a few
options in the drop-down selector. You will see that the earlier the version
we select, the greater is the percentage of devices our app can support.
However, the trade-off here is that the earlier the version we select fewer
cutting-edge Android features will be available in our apps. A good balance
is to select API 8: Android 2.2 (Froyo).

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Speaking Java – Your First Game

[68]

5. Click on Next. Now select Blank Activity and click on Next again.
6. On the next screen, simply change Activity Name to MainActivity and click

on Finish.
7. As we did in Chapter 2, Getting Started with Android, to keep our code clear and

simple, you can delete the two unneeded methods (onCreateOptionsMenu
and onOptionsItemSelected) and their associated @override and @import
statements. However, this is not necessary for the example to work.

For a detailed explanation and images of creating a
new project, see Chapter 2, Getting Started with Android.

As with all the examples and projects in this book, you can copy or review the code
from the download bundle. You will find the code for this tutorial in the Chapter3/
ExpressionsInJava/MainActivity.java file. Just create the project as described
previously and paste the code from MainActivity.java file from the download
bundle to the MainActivity.java file that was generated when you created the
project in Android Studio. Just ensure that the package name is the same as the one
you chose when the project was created. However, I strongly recommend going
along with the tutorial so that we can learn how to do everything for ourselves.

As this app uses the logcat console to show its output, you should
run this app on the emulator only and not on a real Android device.
The app will not harm a real device, but you just won't be able to see
anything happening.

1. Create a new blank project called Expressions In Java.
2. Now, in the onCreate method just after the line where we use the

setContentView method, add this code to declare and initialize
some variables:
//first we declare and initialize a few variables
int a = 10;
String b = "Alan Turing";
boolean c = true;

Chapter 3

[69]

3. Now add the following code. This code simply outputs the value of our
variables in a form where we can closely examine them in a minute:
//Let's look at how Android 'sees' these variables
//by outputting them, one at a time to the console
Log.i("info", "a = " + a);
Log.i("info", "b = " + b);
Log.i("info", "c = " + c);

4. Now let's change our variables using the addition operator and another new
operator. See if you can work out the output values for variables a, b, and c
before looking at the output and the code explanation:
//Now let's make some changes
a++;
a = a + 10;
b = b + " was smarter than the average bear Booboo";
b = b + a;
c = (1 + 1 == 3);//1 + 1 is definitely 2! So false.

5. Let's output the values once more in the same way we did in step 3, but this
time, the output should be different:
//Now to output them all again
Log.i("info", "a = " + a);
Log.i("info", "b = " + b);
Log.i("info", "c = " + c);

6. Run the program on an emulator in the usual way. You can see the output
by clicking on the Android tab from our "useful tabs" area below the
Project Explorer.

Here is the output, with some of the unnecessary formatting stripped off:

info﹕ a = 10

info﹕ b = Alan Turing

info﹕ c = true

info﹕ a = 21

info﹕ b = Alan Turing was smarter than the average bear Booboo21

info﹕ c = false

Speaking Java – Your First Game

[70]

Now let's discuss what happened. In step 2, we declared and initialized three variables:

• a: This is an int that holds the value 10
• b: This is a string that holds the name of an eminent computer scientist.
• c: This is a Boolean that holds the value false

So when we output the values in step 3, it should be no surprise that we get
the following:

info﹕ a = 10

info﹕ b = Alan Turing

info﹕ c = true

In step 4, all the fun stuff happens. We add 1 to the value of our int a using the
increment operator like this: a++;. Remember that a++ is the same as a = a + 1.

We then add 10 to a. Note we are adding 10 to a after having already added 1. So we
get this output for a 10 + 1 + 10 operation:

info﹕ a = 21

Now let's examine our string, b. We appear to be using the addition operator on
our eminent scientist. What is happening is what you could probably guess. We are
adding together two strings "Alan Turing" and "was smarter than the average
bear Booboo." When you add two strings together it is called concatenating and
the + symbol doubles as the concatenation operator.

Finally, for our string, we appear to be adding int a to it. This is allowed and the
value of a is concatenated to the end of b.

info﹕ b = Alan Turing was smarter than the average bear Booboo21

This does not work the other way round; you cannot add a string
to an int. This makes sense as there is no logical answer.
a = a + b

Chapter 3

[71]

Finally, let's look at the code that changes our Boolean, c, from true to false: c =
(1+1=3);. Here, we are assigning to c the value of the expression contained within
the brackets. This would be straightforward, but why the double equals (==)? We
have jumped ahead of ourselves a little. The double equals sign is another operator
called the comparison operator.

So we are really asking, does 1+1 equal 3? Clearly the answer is false. You might ask,
"why use == instead of =?" Simply to make it clear to the compiler when we mean to
assign and when we mean to compare.

Inadvertently using = instead of == is a very common error.
The assignment operator (=) assigns the value on the right to the
value on the left, while the comparison operator (==) compares the
values on either side.
The compiler will warn us with an error when we do this but at
first glance you might swear the compiler is wrong. We will learn
more on this comparison operator and others later in the chapter
and throughout the book.

Now let's use everything we know and a bit more to make our math game project.

Math game – asking a question
Now that we have all that knowledge under our belts, we can use it to improve
our math game. First, we will create a new Android activity to be the actual game
screen as opposed to the start menu screen. We will then use the UI designer to lay
out a simple game screen so that we can use our Java skills with variables, types,
declaration, initialization, operators, and expressions to make our math game
generate a question for the player. We can then link the start menu and game
screens together with a push button.

If you want to save typing and just review the finished project, you can use the code
downloaded from the Packt Publishing website. If you have any trouble getting any
of the code to work, you can review, compare, or copy and paste the code from the
already completed code provided in the download bundle.

The completed code is in the following files that correspond to the filenames we will
be using in this tutorial:

• Chapter3/MathGameChapter3a/java/MainActivity.java

• Chapter3/MathGameChapter3a/java/GameActivity.java

• Chapter3/MathGameChapter3a/layout/activity_main.xml

• Chapter3/MathGameChapter3a/layout/activity_game.xml

Speaking Java – Your First Game

[72]

As usual, I recommend following this tutorial to see how we can create all of the
code for ourselves.

Creating the new game activity
We will first need to create a new Java file for the game activity code and a related
layout file to hold the game activity UI.

1. Run Android Studio and select your Math Game Chapter 2 project that we
built in Chapter 2, Getting Started with Android. It might have been opened by
default. Now we will create the new Android activity that will contain the
actual game screen, which will run when the player taps the Play button on
our main menu screen.

2. To create a new activity, we now need another layout file and another Java
file. Fortunately Android Studio will help us do this. To get started with
creating all the files we need for a new activity, right-click on the src folder
in the Project Explorer and then go to New | Activity. Now click on Blank
Activity and then on Next.

3. We now need to tell Android Studio a little bit about our new activity by
entering information in the above dialog box. Change the Activity Name
field to GameActivity. Notice how the Layout Name field is automatically
changed for us to activity_game and the Title field is automatically
changed to GameActivity.

4. Click on Finish. Android Studio has created two files for us and has also
registered our new activity in a manifest file, so we don't need to concern
ourselves with it.

5. If you look at the tabs at the top of the editor window, you will see that
GameActivity.java has been opened up ready for us to edit, as shown
in the following screenshot:

6. Ensure that GameActivity.java is active in the editor window by clicking
on the GameActivity.java tab shown previously.

Chapter 3

[73]

7. Back in Chapter 2, Getting Started with Android, we talked about how Android
overrides some methods for us by default, and that most of them were not
necessary. Here again, we can see the code that is unnecessary. If we remove
it, then it will make our working environment simpler and cleaner. You
might also remember from Chapter 2, Getting Started with Android, that the
process of deleting and amending sections of code, although not complex,
is a fairly long process. To avoid this here, we will simply use the code from
MainActivity.java as a template for GameActivity.java. We can then
make some minor changes.

8. Click on the MainActivity.java tab in the editor window. Highlight all of the
code in the editor window using Ctrl + A on the keyboard.

9. Now copy all of the code in the editor window using the Ctrl + C on
the keyboard.

10. Now click on the GameActivity.java tab.
11. Highlight all of the code in the editor window using Ctrl + A on

the keyboard.
12. Now paste the copied code and overwrite the currently highlighted code

using Ctrl + V on the keyboard.
13. Notice that there is an error in our code denoted by the red underlining

as shown in the following screenshot. This is because we pasted the code
referring to MainActivity in our file that is called GameActivity.

Simply change the text MainActivity to GameActivity and the error will
disappear. Take a moment to see if you can work out what other minor
change is necessary, before I tell you.

Speaking Java – Your First Game

[74]

14. Remember that setContentView loads our UI design. Well what we need
to do is change setContentView to load the new design (that we will build
next) instead of the home screen design. Change setContentView(R.layout.
activity_main); to setContentView(R.layout.activity_game);.

15. Save your work and we are ready to move on.

Note the Project Explorer where Android Studio puts the two new files it created for
us. I have highlighted two folders in the next screenshot. In future, I will simply refer
to them as our java code folder or layout files folder.

You might wonder why we didn't simply copy and paste the
MainActivity.java file to begin with and saved going through
the process of creating a new activity? The reason is that Android
Studio does things behind the scenes. Firstly, it makes the layout
template for us. It also registers the new activity for use through
a file we will see later, called AndroidManifest.xml. This is
necessary for the new activity to be able to work in the first place.
All things considered, the way we did it is probably the quickest.

Chapter 3

[75]

The code at this stage is exactly the same as the code for the home menu screen.
We state the package name and import some useful classes provided by Android:

package com.packtpub.mathgamechapter3a.mathgamechapter3a;

import android.app.Activity;
import android.os.Bundle;

We create a new activity, this time called GameActivity:

public class GameActivity extends Activity {

Then we override the onCreate method and use the setContentView method
to set our UI design as the contents of the player's screen. Currently, however,
this UI is empty:

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

We can now think about the layout of our actual game screen.

Laying out the game screen UI
As we know, our math game will ask questions and offer the player some multiple
choices to choose answers from. There are lots of extra features we could add, such as
difficulty levels, high scores, and much more. But for now, let's just stick to asking a
simple, predefined question and offering a choice of three predefined possible answers.

Keeping the UI design to the bare minimum suggests a layout. Our target UI will
look somewhat like this:

Speaking Java – Your First Game

[76]

The layout is hopefully self-explanatory, but let's ensure that we are really clear; when
we come to building this layout in Android Studio, the section in the mock-up that
displays 2 x 2 is the question and will be made up of three text views (both numbers,
and the = sign is also a separate view). Finally, the three options for the answer are
made up of Button layout elements. We used all of these UI elements in the previous
chapter, but this time, as we are going to be controlling them using our Java code, there
are a few extra things we need to do to them. So let's go through it step by step:

1. Open the file that will hold our game UI in the editor window. Do this by
double-clicking on activity_game.xml. This is located in our UI layout
folder, which can be found in the project explorer.

2. Delete the Hello World TextView, as it is not required.
3. Find the Large Text element on the palette. It can be found under the

Widgets section. Drag three elements onto the UI design area and arrange
them near the top of the design as shown in the next screenshot. It does not
have to be exact; just ensure that they are in a row and not overlapping, as
shown in the following screenshot:

4. Notice in the Component Tree window that each of the three TextViews has
been assigned a name automatically by Android Studio. They are textView ,
textView2, and textView3:

Chapter 3

[77]

5. Android Studio refers to these element names as an id. This is an important
concept that we will be making use of. So to confirm this, select any one of
the textViews by clicking on its name (id), either in the component tree as
shown in the preceding screenshot or directly on it in the UI designer shown
previously. Now look at the Properties window and find the id property.
You might need to scroll a little to do this:

Notice that the value for the id property is textView. It is this id that we will
use to interact with our UI from our Java code. So we want to change all the
IDs of our TextViews to something useful and easy to remember.

6. If you look back at our design, you will see that the UI element with the
textView id is going to hold the number for the first part of our math
question. So change the id to textPartA. Notice the lowercase t in text, the
uppercase P in Part, and the uppercase A. You can use any combination of
cases and you can actually name the IDs anything you like. But just as with
naming conventions with Java variables, sticking to conventions here will
make things less error-prone as our program gets more complicated.

7. Now select textView2 and change id to textOperator.
8. Select the element currently with id textView3 and change it to textPartB.

This TextView will hold the later part of our question.
9. Now add another Large Text from the palette. Place it after the row of the

three TextViews that we have just been editing.
This Large Text will simply hold our equals to sign and there is no plan to
ever change it. So we don't need to interact with it in our Java code. We don't
even need to concern ourselves with changing the ID or knowing what it is.
If this situation changed, we could always come back at a later time and edit
its ID.

10. However, this new TextView currently displays Large Text and we want
it to display an equals to sign. So in the Properties window, find the text
property and enter the value =. We have changed the text property before
in Chapter 2, Getting Started with Android, and you might also like to change
the text property for textPartA, textPartB, and textOperator. This is
not absolutely essential because we will soon see how we can change it via
our Java code; however, if we change the text property to something more
appropriate, then our UI designer will look more like it will when the game
runs on a real device.

Speaking Java – Your First Game

[78]

11. So change the text property of textPartA to 2, textPartB to 2, and textOperator
to x. Your UI design and Component tree should now look like this:

12. For the buttons to contain our multiple choice answers, drag three buttons in
a row, below the = sign. Line them up neatly like our target design.

13. Now, just as we did for the TextViews, find the id properties of each
button, and from left to right, change the id properties to buttonChoice1,
buttonChoice2, and buttonChoice3.

14. Why not enter some arbitrary numbers for the text property of each button so
that the designer more accurately reflects what our game will look like, just
as we did for our other TextViews? Again, this is not absolutely essential as
our Java code will control the button appearance.

15. We are now actually ready to move on. But you probably agree that the UI
elements look a little lost. It would look better if the buttons and text were
bigger. All we need to do is adjust the textSize property for each TextView
and for each Button. Then, we just need to find the textSize property for
each element and enter a number with the sp syntax. If you want your
design to look just like our target design from earlier, enter 70sp for each of
the TextView textSize properties and 40sp for each of the Buttons textSize
properties. When you run the game on your real device, you might want to
come back and adjust the sizes up or down a bit. But we have a bit more to
do before we can actually try out our game.

16. Save the project and then we can move on.

Chapter 3

[79]

As before, we have built our UI. This time, however, we have given all the important
parts of our UI a unique, useful, and easy to identify ID. As we will see we are now
able to communicate with our UI through our Java code.

Coding a question in Java
With our current knowledge of Java, we are not yet able to complete our math game
but we can make a significant start. We will look at how we can ask the player a
question and offer them some multiple choice answers (one correct and two incorrect).

At this stage, we know enough of Java to declare and initialize some variables that
will hold the parts of our question. For example, if we want to ask the times tables
question 2 x 2, we could have the following variable initializations to hold the values
for each part of the question:

int partA = 2;
int partB = 2;

The preceding code declares and initializes two variables of the int type, each to the
value of 2. We use int because we will not be dealing with any decimal fractions.
Remember that the variable names are arbitrary and were just chosen because they
seemed appropriate. Clearly, any math game worth downloading is going to need to
ask more varied and advanced questions than 2 x 2, but it is a start.

Now we know that our math game will offer multiple choices as answers. So, we
need a variable for the correct answer and two variables for two incorrect answers.
Take a look at these combined declarations and initializations:

int correctAnswer = partA * partB;
int wrongAnswer1 = correctAnswer - 1;
int wrongAnswer2 = correctAnswer + 1;

Note that the initialization of the variables for the wrong answers depends on the
value of the correct answer, and the variables for the wrong answers are initialized
after initializing the correctAnswer variable.

Speaking Java – Your First Game

[80]

Now we need to put these values, held in our variables, into the appropriate elements
on our UI. The question variables (partA and partB) need to be displayed in our UI
elements, textPartA and textPartB, and the answer variables (correctAnswer,
wrongAnswer1, and wrongAnswer2) need to be displayed in our UI elements with the
following IDs: buttonChoice1, buttonChoice2, and buttonChoice3. We will see
how we do this in the next step-by-step tutorial. We will also implement the variable
declaration and initialization code that we discussed a moment ago:

1. First, open GameActivity.java in the editor window. Remember that
you can do this by double-clicking on GameActivity in our java folder
or clicking on its tab above the editor window if GameActivity.java is
already open.

2. All of our code will go into the onCreate method. It will go after the
setContentView(R.layout.activity_game); line but before the closing
curly brace } of the onCreate method. Perhaps, it's a good idea to leave
a blank line for clarity and a nice explanatory comment as shown in the
following code. We can see the entire onCreate method as it stands after the
latest amendments. The parts in bold are what you need to add. Feel free to
add helpful comments like mine if you wish:
@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //The next line loads our UI design to the screen
 setContentView(R.layout.activity_game);

 //Here we initialize all our variables
 int partA = 9;
 int partB = 9;
 int correctAnswer = partA * partB;
 int wrongAnswer1 = correctAnswer - 1;
 int wrongAnswer2 = correctAnswer + 1;

 }//onCreate ends here

Chapter 3

[81]

3. Now we need to add the values contained within the variables to the
TextView and Button of our UI. But first, we need to get access to the UI
elements we created. We do that by creating a variable of the appropriate
class and linking it via the ID property of the appropriate UI element. We
already know the class of our UI elements: TextView and Button. Here is
the code that creates our special class variables for each of the necessary
UI elements. Take a close look at the code, but don't worry if you don't
understand all of it now. We will dissect the code in detail once everything
is working. Enter the code immediately after the code entered in the
previous step. You can leave a blank line for clarity if you wish. Just before
you proceed, note that at two points while typing in this code, you will be
prompted to import another class. Go ahead and do so on both occasions:
/*Here we get a working object based on either the button
or TextView class and base as well as link our new objects
directly to the appropriate UI elements that we created
previously*/

TextView textObjectPartA =
 (TextView)findViewById(R.id.textPartA);

TextView textObjectPartB =
 (TextView)findViewById(R.id.textPartB);

Button buttonObjectChoice1 =
 (Button)findViewById(R.id.buttonChoice1);

Button buttonObjectChoice2 =
 (Button)findViewById(R.id.buttonChoice2);

Button buttonObjectChoice3 =
 (Button)findViewById(R.id.buttonChoice3);

In the preceding code, if you read the multiline comment, you
will see that I used the term object. When we create a variable
type based on a class, we call it an object. Once we have an object
of a class, we can do anything that that class was designed to do.
This is very powerful and is explored thoroughly in Chapter 6,
OOP – Using Other People's Hard Work.

Speaking Java – Your First Game

[82]

4. Now we have five new objects linked to the elements of our UI that we need
to manipulate. What precisely are we going to do with them? We need to
display the values of our variables in the text of the UI elements. We can use
the objects we just created combined with a method provided by the class,
and use our variables as values for that text. As usual, we will dissect this
code further at the end of this tutorial. Here is the code to enter directly after
the code in the previous step. Try and work out what is going on before we
look at it together:
//Now we use the setText method of the class on our objects
//to show our variable values on the UI elements.
//Just like when we output to the console in the exercise -
//Expressions in Java, only now we use setText method
//to put the values in our variables onto the actual UI.
textObjectPartA.setText("" + partA);
textObjectPartB.setText("" + partB);

//which button receives which answer, at this stage is arbitrary.

buttonObjectChoice1.setText("" + correctAnswer);
buttonObjectChoice2.setText("" + wrongAnswer1);
buttonObjectChoice3.setText("" + wrongAnswer2);

5. Save your work.

If you play with the assignment values for partA and partB, you can make them
whatever you like and the game adjusts the answers accordingly. Obviously, we
shouldn't need to reprogram our game each time we want a new question and we
will solve that problem soon. All we need to do now is link the game section we have
just made to the start screen menu. We will do that in the next tutorial.

Now let's explore the trickier and newer parts of our code in more detail.

In step 2, we declared and initialized the variables required so far:

//Here we initialize all our variables
int partA = 2;
int partB = 2;
int correctAnswer = partA * partB;
int wrongAnswer1 = correctAnswer - 1;
int wrongAnswer2 = correctAnswer + 1;

Then in step 3, we got a reference to our UI design through our Java code. For the
TextViews, it was done like this:

TextView textObjectPartA = (TextView)findViewById(R.id.textPartA);

Chapter 3

[83]

For each of the buttons, a reference to our UI design was obtained like this:

Button buttonObjectChoice1 =
 Button)findViewById(R.id.buttonChoice1);

In step 4, we did something new. We used a the setText method to show the
values of our variables on our UI elements (TextView and Button) to the player.
Let's break down one line completely to see how it works. Here is the code that
shows the correctAnswer variable being displayed on buttonObjectChoice1.

buttonObjectChoice1.setText("" + correctAnswer);

By typing buttonObjectChoice1 and adding a period, as shown in the following
line of code, we have access to all the preprogrammed methods of that object's class
type that are provided by Android:

buttonObjectChoice1.

The power of Button and the Android API
There are actually lots of methods that we can perform on an object of
the Button type. If you are feeling brave, try this to get a feeling of just
how much functionality there is in Android.
Type the following code:

buttonObjectChoice1.

Be sure to type the period on the end. Android Studio will pop up a list
of possible methods to use on this object. Scroll through the list and get
a feel of the number and variety of options:

If a mere button can do all of this, think of the possibilities for our
games once we have mastered all the classes contained in Android. A
collection of classes designed to be used by others is collectively known
as an Application Programmers Interface (API). Welcome to the
Android API!

Speaking Java – Your First Game

[84]

In this case, we just want to set the button's text. So, we use setText and concatenate
the value stored in our correctAnswer variable to the end of an empty string, like this:

setText("" + correctAnswer);

We do this for each of the UI elements we require to show our variables.

Playing with autocomplete
If you tried the previous tip, The power of Button and the Android API, and
explored the methods available for objects of the Button type, you will
already have some insight into autocomplete. Note that as you type,
Android Studio is constantly making suggestions for what you might
like to type next. If you pay attention to this, you can save a lot of time.
Simply select the correct code completion statement that is suggested
and press Enter. You can even see how much time you saved by selecting
Help | Productivity Guide from the menu bar. Here you will see
statistics for every aspect of code completion and more. Here are a few
entries from mine:

As you can see, if you get used to using shortcuts early on, you can save
a lot of time in the long run.

Linking our game from the main menu
At the moment, if we run the app, we have no way for the player to actually arrive at
our new game activity. We want the game activity to run when the player clicks on
the Play button on the main MainActivity UI. Here is what we need to do to make
that happen:

1. Open the file activity_main.xml, either by double-clicking on it in the
Project Explorer or by clicking on its tab in the editor window.

2. Now, just like we did when building the game UI, assign an ID to the Play
button. As a reminder, click on the Play button either on the UI design
or in the component tree. Find the id property in the Properties window.
Assign the buttonPlay value to it. We can now make this button do stuff by
referring to it in our Java code.

3. Open the file MainActivity.java, either by double-clicking on it in the
Project Explorer or clicking on its tab in the editor window.

Chapter 3

[85]

4. In our onCreate method, just after the line where we setContentView, add
the following highlighted line of code:
setContentView(R.layout.activity_main);
Button buttonPlay = (Button)findViewById(R.id.buttonPlay);

5. We will dissect this code in detail once we have got this working. Basically
we are making a connection to the Play button by creating a reference
variable to a Button object. Notice that both words are highlighted in red
indicating an error. Just as before, we need to import the Button class to make
this code work. Use the Alt + Enter keyboard combination. Now click on
Import class from the popped-up list of options. This will automatically add
the required import directive at the top of our MainActivity.java file.

6. Now for something new. We will give the button the ability to listen to the user
clicking on it. Type this immediately after the last line of code we entered:
buttonPlay.setOnClickListener(this);

7. Notice how the this keyword is highlighted in red indicating an error.
This introduces another Java feature that will be more thoroughly explored
in Chapter 6, OOP – Using Other People's Hard Work. Setting that aside, we
need to make a modification to our code now in order to allow the use of an
interface that is a special code element that allows us to add a functionality,
such as listening for button clicks. Edit the line as follows. When prompted to
import another class, click on OK:
public class MainActivity extends Activity {

to
public class MainActivity extends Activity implements View.
 OnClickListener{

Now we have the entire line underlined in red. This indicates an error
but it's where we should be at this point. We mentioned that by adding
implements View.OnClickListener, we have implemented an interface.
We can think of this like a class that we can use but with extra rules. The
rules of the OnClickListener interface state that we must implement/use
one of its methods. Notice that until now, we have optionally overridden/
used methods as and when they have suited us. If we wish to use the
functionality this interface provides, namely listening for button presses,
then we have to add/implement the onClick method.

Speaking Java – Your First Game

[86]

8. This is how we do it. Notice the opening curly brace, {, and the closing
curly brace, }. These denote the start and end of the method. Notice that the
method is empty and it doesn't do anything, but an empty method is enough
to comply with the rules of the OnClickListener interface, and the red line
indicating that our code has an error has gone. The syntax of these methods
we have been using, as promised, will be explained in the next chapter when
we start to write our own methods. Make sure that you type the following
code, outside the closing curly brace (}) of the onCreate method but inside
the closing curly brace of our MainActivity class:
@Override
 public void onClick(View view) {

 }

9. Notice that we have an empty line between { and } of the onClick method.
We can now add code in here to make the button actually do something.
Type the following highlighted code between { and } of onClick:
@Override
 public void onClick(View view) {
 Intent i;
 i = new Intent(this, GameActivity.class);
 startActivity(i);
 }

10. OK, so that code is a bit of a mouthful to comprehend all at once. See
if you can guess what is happening. The clue is in the method named
startActivity and the hopefully familiar term, GameActivity. Notice that
we are assigning something to i. We will quickly get our app working and
then diagnose the code in full. Its understanding will be complete when we
explore how classes work in Chapter 6, OOP – Using Other People's Hard Work.

11. Notice that we have an error: all instances of the word Intent are red. We
can solve this by importing the classes required to make Intent work. As
before press Alt + Enter.

12. Run the game in the emulator or on your device.

Chapter 3

[87]

Our app will now work. This is what the new game screen looks like after pressing
Play on the menu screen:

Almost every part of our code has changed a little and we have added a lot to it as
well. Let's go over the contents of MainActivity.java and look at it line by line.
For context, here it is in full:

package com.packtpub.mathgamechapter3a.mathgamechapter3a;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

Speaking Java – Your First Game

[88]

import android.widget.Button;

public class MainActivity extends Activity implements View.
 OnClickListener{

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 final Button buttonPlay =
 (Button)findViewById(R.id.buttonPlay);
 buttonPlay.setOnClickListener(this);
 }

 @Override
 public void onClick(View view) {
 Intent i;
 i = new Intent(this, GameActivity.class);
 startActivity(i);
 }

}

We have seen much of this code before, but let's just go over it a chunk at a time
before moving on so that it is absolutely clear. The code works like this:

package com.packtpub.mathgamechapter3a.mathgamechapter3a;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

You would probably remember that this first block of code defines what our package
is called and makes available all the Android API stuff we need for Button, TextView,
and Activity.

From our MainActivity.java file, we have this:

public class MainActivity extends Activity implements View.
 OnClickListener{

Our MainActivity declaration with our new bit of code implements View.
OnClickListener that gives us the ability to detect button clicks.

Chapter 3

[89]

Next in our code is this:

@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

This previous bit of code hasn't changed since Chapter 2, Getting Started with Android.
It is at the start of our onCreate method where we first ask the hidden code of
onCreate to do its stuff using super.onCreate(savedInstanceState);. Then we
set our UI to the screen with setContentView(R.layout.activity_main);.

Next, we get a reference to our button with an ID of buttonPlay:

Button buttonPlay = (Button)findViewById(R.id.buttonPlay);
buttonPlay.setOnClickListener(this);

Finally, our onClick method uses the Intent class to send the player to our
GameActivity class and the related UI when the user clicks on the Play button:

 @Override
 public void onClick(View view) {
 Intent i;
 i = new Intent(this, GameActivity.class);
 startActivity(i);
 }

If you run the app, you will notice that we can now click on the Play button and our
math game will ask us a question. Of course, we can't answer it yet. Although we
have very briefly looked at how to deal with button presses, we need to learn more
of Java in order to intelligently react to them. We will also reveal how to write code
to handle presses from several buttons. This will be necessary to receive input from
our multiple-choice-centric game_activity UI.

Decisions in Java
We can now summon enough of Java prowess to ask a question but a real math game
must obviously do much more than this. We need to capture the player's answer,
and we are nearly there with that—we can detect button presses. From there, we
need to be able to decide whether their answer is right or wrong. Then, based on this
decision, we have to choose an appropriate course of action.

Let's leave the math game aside for now and look at how Java might help us by
learning some more fundamentals and syntax of the Java language.

Speaking Java – Your First Game

[90]

More operators
Let's look at some more operators: we can already add (+), take away (-), multiply
(*), divide (/), assign (=), increment (++), compare (==), and decrement (--) with
operators. Let's introduce some more super-useful operators, and then we will go
straight to actually understanding how to use them in Java.

Don't worry about memorizing every operator given here. Glance
at them and their explanations and then move quickly on to the
next section. There, we will put some operators to use and they will
become much clearer as we see a few examples of what they allow
us to do. They are presented here in a list just to make the variety
and scope of operators plain from the start. The list will also be
more convenient to refer back to when not intermingled with the
discussion about implementation that follows it.

• ==: This is a comparison operator we saw this very briefly before. It tests
for equality and is either true or false. An expression like (10 == 9);, for
example, is false.

• !: The logical NOT operator. The expression, ! (2+2==5).), is true because
2+2 is NOT 5.

• !=: This is another comparison operator, which tests if something is NOT
equal. For example, the expression, (10 != 9);), is true, that is, 10 is not
equal to 9.

• >: This is another comparison operator, which tests if something is greater
than something else. The expression, (10 > 9);), is true. There are a few
more comparison operators as well.

• <: You guessed it. This tests whether the value to the left is less than the
value to the right or not. The expression, (10 < 9);, is false.

• >=: This operator tests whether one value is greater than or equal to the
other, and if either is true, the result is true. For example, the expression, (10
>= 9);, is true. The expression, (10 >= 10);, is also true.

• <=: Like the preceding operator, this operator tests for two conditions but
this time, less than and equal to. The expression, (10 <= 9);, is false. The
expression, (10 <= 10);, is true.

• &&: This operator is known as logical AND. It tests two or more separate
parts of an expression and all parts must be true in order for the result to be
true. Logical AND is usually used in conjunction with the other operators to
build more complex tests. The expression, ((10 > 9) && (10 < 11));, is
true because both parts are true. The expression, ((10 > 9) && (10 < 9));,
is false because only one part of the expression is true and the other is false.

Chapter 3

[91]

• ||: This operator is called logical OR. It is just like logical AND except
that only one of two or more parts of an expression need to be true for the
expression to be true. Let's look at the last example we used but replace the
&& sign with ||. The expression, ((10 > 9) || (10 < 9));, is now true
because one part of the expression is true.

All of these operators are virtually useless without a way of properly using them
to make real decisions that affect real variables and code. Let's look at how to make
decisions in Java.

Decision 1 – If they come over the bridge,
shoot them
As we saw, operators serve hardly any purpose on their own but it was probably
useful to see just a part of the wide and varied range available to us. Now, when
we look at putting the most common operator, ==, to use, we can start to see the
powerful yet fine control that operators offer us.

Let's make the previous examples less abstract using the Java if keyword and a few
conditional operators with a fun story and some code.

The captain is dying and, knowing that his remaining subordinates are not very
experienced, he decides to write a Java program to convey his last orders after he
has died. The troops must hold one side of a bridge while awaiting reinforcements.

The first command the captain wants to make sure his troops understand is this: If
they come over the bridge, shoot them.

So how do we simulate this situation in Java? We need a Boolean variable
isComingOverBridge. The next bit of code assumes that the isComingOverBridge
variable has been declared and initialized.

We can then use it like this:

if(isComingOverBridge){
 //Shoot them
}

If the isComingOverBridge Boolean is true, the code inside the opening and
closing curly braces will run. If not, the program continues after the if block
without running it.

Speaking Java – Your First Game

[92]

Decision 2 – Else, do this
The captain also wants to tell his troops what to do (stay put) if the enemy is not
coming over the bridge.

Now we introduce another Java keyword, else. When we want to explicitly do
something and the if block does not evaluate to true, we can use else.

For example, to tell the troops to stay put if the enemy is not coming over the bridge,
we use else:

if(isComingOverBridge){
 //Shoot them
}else{
 //Hold position
}

The captain then realized that the problem wasn't as simple as he first thought. What
if the enemy comes over the bridge and has more troops? His squad will be overrun.
So, he came up with this code (we'll use some variables as well this time):

boolean isComingOverTheBridge;
int enemyTroops;
int friendlyTroops;
//Code that initializes the above variables one way or another

//Now the if
if(isComingOverTheBridge && friendlyTroops > enemyTroops){
 //shoot them
}else if(isComingOverTheBridge && friendlyTroops < enemyTroops) {
 //blow the bridge
}else{
 //Hold position
}

Finally, the captain's last concern was that if the enemy came over the bridge
waving the white flag of surrender and were promptly slaughtered, then his men
would end up as war criminals. The Java code needed was obvious. Using the
wavingWhiteFlag Boolean variable he wrote this test:

if (wavingWhiteFlag){
 //Take prisoners
}

Chapter 3

[93]

But where to put this code was less clear. In the end, the captain opted for the
following nested solution and changing the test for wavingWhiteFlag to logical
NOT, like this:

if (!wavingWhiteFlag){//not surrendering so check everything else
 if(isComingOverTheBridge && friendlyTroops > enemyTroops){
 //shoot them
 }else if(isComingOverTheBridge && friendlyTroops <
 enemyTroops) {
 //blow the bridge
 }
}else{//this is the else for our first if
 //Take prisoners
{
//Holding position

This demonstrates that we can nest if and else statements inside of one another to
create even deeper decisions.

We could go on making more and more complicated decisions but what we have
seen is more than sufficient as an introduction. Take the time to reread this if
anything is unclear. Who knows, there might even be a tricky logic question in the
self-test at the end of the chapter. It is also important to point out that very often,
there are two or more ways to arrive at the solution. The right way will usually be
the way that solves the problem in the clearest and simplest manner.

Switching to make decisions
We have seen the vast and virtually limitless possibilities of combining the Java
operators with if and else statements. But sometimes a decision in Java can be
better made in other ways.

When we have to make a decision based on a clear list of possibilities that doesn't
involve complex combinations, then switch is usually the way to go.

We start a switch decision like this:

switch(argument){

}

Speaking Java – Your First Game

[94]

In the previous example, an argument could be an expression or a variable. Then
within the curly braces, we can make decisions based on the argument with case
and break elements:

case x:
 //code to for x
 break;

case y:
 //code for y
 break;

You can see that in the previous example, each case states a possible result and
each break denotes the end of that case as well as the point at which no further
case statements should be evaluated. The first break encountered takes us out
of the switch block to proceed with the next line of code.

We can also use default without a value to run some code if none of the case
statements evaluate to true, like this:

default://Look no value
 //Do something here if no other case statements are true
break;

Supposing we are writing an old-fashioned text adventure game—the kind of game
where the player types commands such as "Go East", "Go West", "Take Sword",
and so on. In this case, switch could handle that situation like this example code and
we could use default to handle the case of the player typing a command that is not
specifically handled:

//get input from user in a String variable called command
switch(command){

 case "Go East":":
 //code to go east
 break;

 case "Go West":
 //code to go west
 break;
 case "Take sword":
 //code to take the sword

Chapter 3

[95]

 break;

 //more possible cases

 default:
 //Sorry I don't understand your command
 break;

}

In the next section, we will use switch so that our onClick method can handle the
different multiple-choice buttons of our math game.

Java has even more operators than we have covered here. We
have looked at all the operators we are going to need in this book
and probably the most used in general. If you want the complete
lowdown on operators, take a look at the official Java documentation
at http://docs.oracle.com/javase/tutorial/java/
nutsandbolts/operators.html.

Math game – getting and checking the
answer
Here we will detect the right or wrong answer and provide a pop-up message
to the player. Our Java is getting quite good now, so let's dive in and add these
features. I will explain things as we go and then, as usual, dissect the code
thoroughly at the end.

The already completed code is in the download bundle, in the following files
that correspond to the filenames we will create/autogenerate in Android Studio
in a moment:

• Chapter3/MathGameChapter3b/java/MainActivity.java

• Chapter3/MathGameChapter3b/java/GameActivity.java

• Chapter3/MathGameChapter3b/layout/activity_main.xml

• Chapter3/MathGameChapter3b/layout/activity_game.xml

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Speaking Java – Your First Game

[96]

As usual, I recommend following this tutorial step by step to see how we can create
all of the code for ourselves.

1. Open the GameActivity.java file visible in the editor window.
2. Now we need to add the click detection functionality to our GameActivity,

just as we did for our MainActivity. However, we will go a little further
than the last time. So let's do it step by step as if it is totally new. Once again,
we will give the buttons the ability to listen to the user clicking on them.
Type this immediately after the last line of code we entered in the onCreate
method but before the closing }. This time of course, we need to add some
code to listen to three buttons:
buttonObjectChoice1.setOnClickListener(this);
buttonObjectChoice2.setOnClickListener(this);
buttonObjectChoice3.setOnClickListener(this);

3. Notice how the this keyword is highlighted in red indicating an error.
Again, we need to make a modification to our code in order to allow the use
of an interface, the special code element that allows us to add functionalities
such as listening to button clicks. Edit the line as follows. When prompted to
import another class, click on OK. Consider this line of code:
public class GameActivity extends Activity {

Change it to the following line:
public class GameActivity extends Activity implements
 View.OnClickListener{

4. Now we have the entire preceding line underlined in red. This indicates an
error but it is where we should be at this point. We mentioned that by adding
implements View.OnClickListener, we have implemented an interface.
We can think of this like a class that we can use, but with extra rules. One of
the rules of the OnClickListener interface is that we must implement one of
its methods, as you might remember. Now we will add the onClick method.

Chapter 3

[97]

5. Type the following code. Notice the opening curly brace, {, and the closing
curly brace, }. These denote the start and end of the method. Notice that the
method is empty; it doesn't do anything but an empty method is enough to
comply with the rules of the OnClickListener interface and the red line
that indicated an error has gone. Make sure that you type the following code
outside the closing curly brace (}) of the onCreate method but inside the
closing curly brace of our MainActivity class:
@Override
 public void onClick(View view) {

 }

6. Notice that we have an empty line between the { and } braces of our onClick
method. We can now put some code in here to make the buttons actually do
something. Type the following in between { and } of onClick. This is where
things get different from our code in MainActivity. We need to differentiate
between the three possible buttons that could be pressed. We will do this with
the switch statement that we discussed earlier. Look at the case criteria; they
should look familiar. Here is the code that uses the switch statements:
switch (view.getId()) {

 case R.id.buttonChoice1:
 //button 1 stuff goes here
 break;

 case R.id.buttonChoice2:
 //button 2 stuff goes here
 break;

 case R.id.buttonChoice3:
 //button 3 stuff goes here
 break;

 }

Speaking Java – Your First Game

[98]

7. Each case element handles a different button. For each button case, we
need to get the value stored in the button that was just pressed and see if
it matches our correctAnswer variable. If it does, we must tell the player
they got it right, and if not, we must tell them they got it wrong. However,
there is still one problem we have to solve. The onClick method is separate
from the onCreate method and the Button objects. In fact, all the variables
are declared in the onCreate method. If you try typing the code from step
9 now, you will get lots of errors. We need to make all the variables that
we need in onClick available in onClick. To do this, we will move their
declarations from above the onCreate method to just below the opening
{ of GameActivity. This means that these variables become variables of
the GameActivity class and can be seen anywhere within GameActivity.
Declare the following variables like this:
int correctAnswer;
Button buttonObjectChoice1;
Button buttonObjectChoice2;
Button buttonObjectChoice3;

8. Now change the initialization of these variables within onCreate as follows.
The actual parts of code that need to be changed are highlighted. The rest is
shown for context:
//Here we initialize all our variables
int partA = 9;
int partB = 9;
correctAnswer = partA * partB;
int wrongAnswer1 = correctAnswer - 1;
int wrongAnswer2 = correctAnswer + 1;

and

TextView textObjectPartA =
 (TextView)findViewById(R.id.textPartA);

TextView textObjectPartB =
 (TextView)findViewById(R.id.textPartB);

buttonObjectChoice1 = (Button)findViewById(R.id.buttonChoice1);

buttonObjectChoice2 = (Button)findViewById(R.id.buttonChoice2);

buttonObjectChoice3 = (Button)findViewById(R.id.buttonChoice3);

Chapter 3

[99]

9. Here is the top of our onClick method as well as the first case statement for
our onClick method:
@Override
 public void onClick(View view) {
 //declare a new int to be used in all the cases
 int answerGiven=0;
 switch (view.getId()) {

 case R.id.buttonChoice1:
 //initialize a new int with the value contained in
 buttonObjectChoice1
 //Remember we put it there ourselves previously
 answerGiven = Integer.parseInt("" +
 buttonObjectChoice1.getText());

 //is it the right answer?
 if(answerGiven==correctAnswer) {//yay it's the
 right answer
 Toast.makeText(getApplicationContext(),
 "Well done!",
 Toast.LENGTH_LONG).show();
 }else{//uh oh!
 Toast.makeText(getApplicationContext(),"Sorry
 that's wrong", Toast.LENGTH_LONG).show();
 }
 break;

10. Here are the rest of the case statements that do the same steps as the code in
the previous step except handling the last two buttons. Enter the following
code after the code entered in the previous step:
 case R.id.buttonChoice2:
 //same as previous case but using the next button
 answerGiven = Integer.parseInt("" +
 buttonObjectChoice2.getText());
 if(answerGiven==correctAnswer) {
 Toast.makeText(getApplicationContext(), "Well
 done!", Toast.LENGTH_LONG).show();
 }else{
 Toast.makeText(getApplicationContext(),"Sorry
 that's wrong", Toast.LENGTH_LONG).show();
 }
 break;

 case R.id.buttonChoice3:

Speaking Java – Your First Game

[100]

 //same as previous case but using the next button
 answerGiven = Integer.parseInt("" +
 buttonObjectChoice3.getText());
 if(answerGiven==correctAnswer) {
 Toast.makeText(getApplicationContext(), "Well
 done!", Toast.LENGTH_LONG).show();
 }else{
 Toast.makeText(getApplicationContext(),"Sorry
 that's wrong", Toast.LENGTH_LONG).show();
 }
 break;

 }

11. Run the program, and then we will look at the code carefully, especially
that odd-looking Toast thing. Here is what happens when we click on
the leftmost button:

This is how we did it: In steps 1 through 6, we set up handling for our multi-choice
buttons, including adding the ability to listen to clicks using the onClick method
and a switch block to handle decisions depending on the button pressed.

In steps 7 and 8, we had to alter our code to make our variables available in
the onClick method. We did this by making them member variables of our
GameActivity class.

Chapter 3

[101]

When we make a variable a member of a class, we call it
a field. We will discuss exactly when a variable should be
a field and when it shouldn't in Chapter 6, OOP – Using
Other People's Hard Work.

In steps 9 and 10, we implemented the code that actually does the work in our switch
statement in onClick. Let's take a line-by-line look at the code that runs when button1
is pressed.

case R.id.buttonChoice1:

First, the case statement is true when the button with an id of buttonChoice1 is
pressed. Then the next line of code to execute is this:

answerGiven = Integer.parseInt(""+ buttonObjectChoice1.getText());

The preceding line gets the value on the button using two methods. First, getText
gets the number as a string and then Integer.parseInt converts it to an integer.
The value is stored in our answerGiven variable. The following code executes next:

if(answerGiven==correctAnswer) {//yay it's the right answer
 Toast.makeText(getApplicationContext(), "Well done!",
 Toast.LENGTH_LONG).show();
}else{//uh oh!
 Toast.makeText(getApplicationContext(),"Sorry that's wrong",
 Toast.LENGTH_LONG).show();
 }

The if statement tests to see if the answerGiven variable is the same as
correctAnswer using the == operator. If so, the makeText method of the Toast
object is used to display a congratulatory message. If the values of the two variables
are not the same, the message displayed is a bit more negative one.

The Toast line of code is possibly the most evil thing we have seen
thus far. It looks exceptionally complicated and it does need a greater
knowledge of Java than we have at the moment to understand. All we
need to know for now is that we can use the code as it is and just change
the message, and it is a great tool to announce something to the player.
By the end of Chapter 6, OOP – Using Other People's Hard Work, the code
for Toast will be clear. If you really want an explanation now, you can
think of it like this: when we made button objects, we got to use all the
button methods. But with Toast, we used the class directly to access
its makeText method without creating an object first. We can do this
process when the class and its methods are designed to allow it.

Speaking Java – Your First Game

[102]

Finally, we break out of the whole switch statement as follows:

break;

Now that we have improved the project as far as we can with what we learned in
this chapter, why not test your understanding of everything you've learned so far?

Self-test questions
Q1) What does this code do?

// setContentView(R.layout.activity_main);

Q2) Which of these lines causes an error?

String a = "Hello";
String b = " Vinton Cerf";
int c = 55;
a = a + b
c = c + c + 10;
a = a + c;
c = c + a;

Q3) We talked a lot about operators and how different operators can be used
together to build complicated expressions. Expressions, at a glance, can sometimes
make the code look complicated. However, when looked at closely, they are not as
tough as they seem. Usually, it is just a case of splitting the expressions into smaller
pieces to work out what is going on. Here is an expression that is more convoluted
than anything else you will ever see in this book. As a challenge, can you work out:
what will x be?

int x = 10;
int y = 9;
boolean isTrueOrFalse = false;
isTrueOrFalse = (((x <=y)||(x == 10))&&((!isTrueOrFalse) ||
(isTrueOrFalse)));

Chapter 3

[103]

Summary
We covered a lot in this chapter. We went from knowing nothing about Java syntax
to learning about comments, variables, operators, and decision making.

As with any language, mastery of Java can be achieved by simply practicing,
learning, and increasing our vocabulary. At this point, the temptation might be to
hold back until mastery of the current Java syntax has been achieved, but the best
way is to move on to new syntax at the same time as revisiting what we have already
begun to learn.

In the next chapter, we will finally finish our math game by adding random
questions of multiple difficulties as well as using more appropriate and random
wrong answers for the multiple choice buttons.

To enable us to do this, we will first learn some more Java.

Discovering Loops
and Methods

In this chapter, we will learn how to repeatedly execute portions of our code in a
controlled and precise way by looking at different types of loops in Java. These
include while loops, do-while loops, and for loops. We will learn about the best
occasions to use the different types of loops.

Then we will briefly cover the topic of random numbers. We will also see how the
Java Random class can be used. This will obviously be of great help in enhancing our
math game.

Next, we will look at methods. They allow us to compartmentalize our code into
more manageable blocks. We will then see how to share data between methods and
divide programming tasks to simplify problems.

We will then use all that we have learned about loops, random numbers and
methods on our math game project. For example, we will make the game change
the question after each time we attempt the answer.

We will also add question difficulty levels and random questions within a range
appropriate for a given difficulty level. We will show and update our score. The
score goes up faster depending upon the difficulty level of the question answered
(correctly). Eventually, even the best mathematicians among us should be beaten
by the game. Nevertheless, most of us will hopefully get a bit further than what is
shown in the next screenshot.

Discovering Loops and Methods

[106]

If the player gets a question wrong, the difficulty goes back to the easiest level and
the score to zero. This is what the game will look like when we are done:

In this chapter we will:

• Learn about looping in multiple types of loops
• Learn how to generate random numbers in Java
• Learn everything about Java methods, including how to write and call them
• Significantly enhance our math game

Looping with loops
It would be completely reasonable to ask what loops have to do with programming,
but they are exactly what the name implies. They are a way of performing the
same part of the code more than once, or looping over the same part of code, but
potentially for a different outcome each time.

Chapter 4

[107]

This can simply mean doing the same thing until the code being looped over
prompts the loop to end. It could prompt the loop after a predetermined number
of times as specified by the loop code itself. It could also prompt the loop when a
predetermined situation or condition is met. Or there could be a combination of
more than one of these ways of prompting the loop to end. Along with if, else,
and switch, loops are part of the Java control flow statements.

We will look at all the major types of loop that Java offers us to control our code,
and after we have looked at methods, we will use some of them to implement the
enhancements to our math game. Let's proceed to our first type of loop.

While loops
A while loop has the simplest syntax. Recollect the if statements in Chapter 3,
Speaking Java – Your First Game. We can put virtually any combination of operators
and variables in the conditional expression of the if statement. If the expression
evaluated to true, then the code in the body of the if block is executed. Similarly, in
the while loop, we put an expression that can evaluate to true or false, as shown in
this code:

int x = 10;

while(x > 0){
 x--;
 //x decreases by one each pass through the loop
}

What is happening here is that outside the while loop, an integer, x, is declared
and initialized to 10. Then the while loop begins. Its condition is x > 0, so it will
continue looping through the code in its body until the condition evaluates to false.
Hence, the code will execute 10 times.

On the first pass, x is equal to 10, then 9, then 8, and so on. But once x becomes equal
to 0, it is obviously no longer greater than 0. So the program will exit the while loop
and continue with the first line of code after the loop.

Just like an if statement, it is possible that the while loop will not execute even once.
Take a look at this example of a while loop that never executes:

int x = 10;

while(x > 10){
 //more code here.
 //but it will never run unless x is greater than 10.
}

Discovering Loops and Methods

[108]

Moreover, there is no limit to the complexity of the condition expression or the
amount of code that can be written in the loop body:

int playerLives = 3;
int alienShips = 10;

while(playerLives >0 && alienShips >0){
 //Entire game code here.
 //...
 //...
 //etc.
}
//continue here when either playerLives or alienShips = 0

The preceding while loop would continue to execute until either playerLives or
alienShips becomes equal to or less than zero. As soon as one of these conditions
occurs, the expression evaluates to false and the program continues to execute from
the first line of code after the while loop.

It is worth noting that once the body of the loop has been entered, it will always
complete, even if the expression evaluates to false somewhere in between, as the
condition is not checked again until the code tries to start another pass:

int x = 1;

while(x > 0){
 x--;
 //x is now 0 so the condition is false
 //But this line still runs
 //and this one
 //and me!

}

The preceding loop body will execute exactly once. We can also set a while loop that
will run forever (which is unsurprisingly called an infinite loop), like this:

int x = 0;

while(true){
 x++; //I am going to get mighty big!
}

Chapter 4

[109]

Breaking out of a loop
We might use an infinite loop like the loop in the preceding example so that we can
decide when to exit the loop from within its body. We would do this using the break
keyword when we are ready to leave the loop body, as shown in the following code:

int x = 0;

while(true){
 x++; //I am going to get mighty big!
 break; //No you're not haha.
 //code doesn't reach here
}

You might have been able to guess that we can combine any of the decision making
tools like if, else, and switch within our while loops and the rest of the loops we
will look at in a minute:

int x = 0;
int tooBig = 10;

while(true){
 x++; //I am going to get mighty big!
 if(x == tooBig){
 break;
 } //No you're not haha.

 //code reaches here only until x = 10
}

It would be simple to go on for many more pages demonstrating the versatility
of while loops, but at some point, we want to get back to doing some real
programming. So here is one last concept, combined with while loops.

The continue keyword
The continue keyword acts in a way similar to break—up to a point. The continue
keyword will break out of the loop body but will also check the condition expression
afterwards, so the loop could run again. The following example will show the use
of continue:

int x = 0;
int tooBig = 10;
int tooBigToPrint = 5;

while(true){

Discovering Loops and Methods

[110]

 x++; //I am going to get mighty big!
 if(x == tooBig){
 break;
 } //No your not haha.

 //code reaches here only until x = 10

 if(x >= tooBigToPrint){
 //No more printing but keep looping
 continue;
 }
 //code reaches here only until x = 5

 //Print out x

}

Do-while loops
A do-while loop is very much the same as a while loop with the exception that it
evaluates its expression after the body. This means that a do-while loop will always
execute at least once, as demonstrated in the following code:

int x= 0;
do{
 x++;
}while(x < 10);
//x now = 10

The break and continue keywords can also be used
in do-while loops.

For loops
A for loop has a slightly more complicated syntax than a while and do-while loop
as it take three parts to initialize. Take a look at the following for loop first. Then we
will break it apart:

for(int i = 0; i < 10; i++){
 //Something that needs to happen 10 times goes here
}

Chapter 4

[111]

The apparently obscure form of the for loop is clearer when put like this:

for(declaration and initialization; condition; change after each pass
through loop)

To clarify further, we have the following in a for loop:

• Declaration and initialization: We create a new int variable, i, and initialize
it to 0.

• Condition: Just like the other loops, this refers to the condition that must be
evaluated to true for the loop to continue.

• Change after each pass through loop: In the preceding example, i++ means
that 1 is added to i on each pass. We could also use i-- to reduce/decrement
i on each pass, which is shown in the following code:
for(int i = 10; i > 0; i--){
 //countdown
}
//blast off i = 0

Note that break and continue can also be used in for loops.

The for loop essentially takes control of initialization, condition evaluation, and the
control variable on itself. We will be using a for loop to enhance our math game
right after we take a look at random numbers and methods.

Random numbers in Java
Before we dive into methods, we will first take a look at how we can create random
numbers because this is how we will generate our random questions.

All the hard work is done for us by the Random class. First we need to create an object
of the Random type:

Random randInt = new Random();

Then we use our new object's nextInt method to generate a random number within
a certain range:

int ourRandomNumber = randInt.nextInt(10);

Discovering Loops and Methods

[112]

The range for the number that we enter starts from zero. So the preceding line of
code will generate a random number between 0 and 9. If we want a random number
between 1 and 10, we just do this:

ourRandomNumber++;

Often in these early chapters, we need to accept there is a bit of magic
going on in objects like Random. In Chapter 6, OOP – Using Other
People's Hard Work, we will be ripping open the black boxes and even
making our own. We will be able to write our own classes and our
own methods within those classes.

A good start is a look at regular vanilla methods, which we will do next.

Methods
So what exactly are Java methods? A method is a collection of variables, expressions,
and control flow statements. We have already been using lots of methods; we just
haven't looked inside any yet.

Learning about Java methods will be the last topic for this chapter before we get
practical and use what we have learned to enhance our math game.

The structure of a method
The first part of a method that we write is called the signature. Here is a made-up
example of a signature:

public boolean shootLazers(int number, string type)

Add an opening and closing pair of curly braces with some code that the method
performs, and we have a complete method, or a definition. Here is a made-up but
syntactically correct method:

private void setCoordinates(int x, int y){
 //code to set coordinates goes here
}

We could then use our new method from another part of our code, like this:

//I like it here

setCoordinates(4,6);//now I am going off to setCoordinates method

//Phew, I'm back again - code continues here

Chapter 4

[113]

At the point where we call setCoordinates, our program's execution would branch
to the code contained within that method, which would run until it reaches its end or
is told to return. Then the code would continue running from the first line after the
method call.

Here is another example of a method, complete with the code to make the method
return to the code that called it:

int addAToB(int a, int b){
 int answer = a + b;
 return answer;
}

The call to use the preceding method could look like this:

int myAnswer = addAToB(2,4);

Clearly, we don't need to write methods to add two int variables together, but the
preceding example helps us see a little more of the working of methods. First, we
pass the values 2 and 4. In the signature of the method, the value, 2, is assigned to
int a and the value, 4, is assigned to int b.

Within the method body, the a and b variables are added and used to initialize a new
variable, which is the int answer. The return answer line does just that. It returns
the value stored in answer to the calling code, causing myAnswer to be initialized
with the value of 6.

Notice that each of the method signatures in the preceding examples varies a little.
The reason for this is that the Java method signature is quite flexible, allowing us to
build exactly the methods we require.

Exactly how the method signature defines how the method must be called and how
a method must return a value, if it must, deserves further discussion. Let's give each
part of that signature a name so that we can break it into chunks and learn about the
parts separately.

Here is a method signature with its parts labeled and ready for
discussion. You can also take a look at the following table to further
identify which part of the signature is which. This will make the rest
of our discussion on methods straightforward.
Modifier | return type | name of the method (parameters)

Discovering Loops and Methods

[114]

Here are a few examples that we have used so far so that you can clearly identify the
part of the signature under discussion:

Part of signature Examples
Modifier public, private, and so on
Return type int, boolean, float, and so on, or any Java type, expression, or

object
Name of the method shootLazers, setCoordinates, addAToB, and so on
Parameters (int number, string type), (int x, int y), (int a, int b),

and so on

Modifier
In our previous examples, we only used a modifier twice, partly because the method
doesn't have to use the modifier. The modifier is a way of specifying which code can
use your method. Some of the types of modifiers are public and private. Actually,
regular variables can have modifiers too, such as these:

//Most code can see me
public int a;

//Code in other classes can't see me
private string secret = "Shhh, I am private";

Modifiers (for methods and variables) are an essential Java topic but they are best
dealt with when we discuss the other vital Java topic we have skirted around a few
times so far—objects and classes.

As previously promised, these mysterious objects will be revealed in
Chapter 6, OOP – Using Other People's Hard Work. However, as we can
see from our example methods and from the fact that all the examples
we have written so far work just fine, modifiers are not necessary to
facilitate our learning so far.

Return type
Next up is the return type. Like a modifier, a return type is also optional, although
it is more immediately useful to us. So let's look a bit closer. We have seen that our
methods can get anything done. But what if we need the result from what they have
done? The simplest example of a return type we have seen so far was this:

int addAToB(int a, int b){
 int answer = a + b;

Chapter 4

[115]

 return answer;
}

In this code, the return type in the signature is highlighted. So the return type is
int. The addAToB method sends back (returns) to the code that called it a value that
will fit in an int variable.

The return type can be any Java type we have seen so far. The method, however,
does not have to return a value at all. In this case, the signature must use the
void keyword as the return type. When the void keyword is used, the method
body must not attempt to return a value as this will cause a compiler error. It can,
however, use the return keyword without a value. Here are some combinations of
return type and uses of the return keyword that are valid:

void doSomething(){
 //our code

 //I'm done going back to calling code here
 //no return is necessary
}

Another combination of return and void is as follows:

void doSomethingElse(){
 //our code

 //I can do this as long as I don't try and add a value
 return;
}

The following code is yet another combination of return and void:

void doYetAnotherThing(){
 //some code
 if(someCondition){
 //if someCondition is true returning to calling code
 //before the end of the method body
 return;
 }
 //More code that might or might not get executed

 return;
 //As I'm at the bottom of the method body
 //and the return type is void, I'm
 //really not necessary but I suppose I make it
 //clear that the method is over.

Discovering Loops and Methods

[116]

}

String joinTogether(String firstName, String lastName){
 return firstName + lastName;
}

We can call each of the preceding methods one by one, like this:

//OK time to call some methods
doSomething();
doSomethingElse();
doYetAnotherThing();
String fullName = joinTogether("Jeff ","Minter")
//fullName now = Jeff Minter
//continue with code from here

The preceding code would execute all the code statements in each
method one by one. If the method signature had parameters, the
code that calls the method would look slightly different.

Name of a method
When we design our own methods, the method name is arbitrary, but there is a
convention to use verbs that clearly explain what the method will do. Another
convention is of the first letter of the first word in the name being lower case, and the
first letter of each of the subsequent words being uppercase. This is called camel case
because the shape the name can form has a hump in it:

XGHHY78802c(){
 //code here
}

This name is perfectly legitimate and will work. However, let's take a look at a much
clearer example that uses the conventions:

doSomeVerySpecificTask(){
 //code here
}

getMySpaceShipHealth(){
 //code here
}

startNewGame(){
 //code here
}

Chapter 4

[117]

These are much clearer method names.

Now let's take a look at parameters.

Parameters
We know that a method can return a result to the calling code. What if we need
to share some data values from the calling code with the method? Parameters
allow us to share values with the method. We have already seen an example with
parameters when looking at return types. We will look at the same example but a
little more closely:

int addAToB(int a, int b){
 int answer = a + b;
 return answer;
}

The parameters in this code are highlighted. Notice that in the first line of the
method body, we use a + b as if they are already declared and initialized. Well,
that's because they are. The parameters of the method signature is their declaration,
and the code that calls the method initializes them:

int returnedAnswer = addAToB(10,5);

Also, as we have partly seen in previous examples, we don't have to use int in our
parameters. We can use any Java type, including types we design ourselves. We can
mix and match types as well. We can also use as many parameters as necessary to
solve our problem. An example of mixed Java types might help:

void addToAddressBook(char firstInitial, String lastName, String city,
 int age){
 //all the parameters are now living breathing,
 //declared and initialized variables

 //code to add details to address book goes here
}

It's now time to get serious about our body.

Getting things done in the method body
The body is the part we have been avoiding so far with comments like this:

//code here
 //some code

Discovering Loops and Methods

[118]

But actually, we know exactly what to do here already. Any Java syntax we have
learned so far will work in the body of a method. In fact, if we look back, all of the
code we have written so far has been in a method, albeit somebody else's method.
For example, we wrote code in the onCreate and onClick methods.

The best thing we can do next is write some methods that actually do something in
the body.

Using methods
We don't have to mess around with our math game project. We will quickly create a
new blank project for each of the next two explorations into methods.

We also don't need to spend time making a UI. We will use the Android console to
view the results and discuss the implications of our examples of methods. As we are
using the Android console to view the results of our work with methods, we will
need to run all of these examples on the Android emulator, not on a real device.

It is possible to set up a real device to output to the console, but we
have not covered that in this book. If you want to find out more about
using your actual device for debugging, take a look at the article at
http://developer.android.com/tools/device.html.

As usual, you can open the already typed code files in the usual way. The next two
examples on methods can be found in the Packt Publishing code download in the
Chapter4 folder and the AWorkingMethod and ExploringMethodOverloading
subfolders.

The following is a quick reminder on how to create a
new blank project.

1. Close any currently open projects by navigating to File | Close Project.
2. Click on New Project....
3. The Create New Project configuration window will appear. Fill in the

Application name field and Company Domain with packtpub.com,
or you could use your own company website's name here instead.

http://developer.android.com/tools/device.html

Chapter 4

[119]

4. Now click on the Next button. On the next screen, ensure that the Phone
and tablet checkbox has a tick in it. Now we have to choose the earliest
version of Android we want to build our app for. Go ahead and play with
a few options in the drop-down selector. You will see that the earlier the
version we select, the greater the percentage of devices our app can support.
However, the trade-off here is that the earlier the version we select, the fewer
cutting-edge Android features we can have in our apps. A good balance is to
select API 8: Android 2.2 (Froyo). Go ahead and do that now as shown in the
next screenshot.

5. Click on Next. Now select Blank Activity and click on Next again.
6. On the next screen, simply change Activity Name to MainActivity and click

on Finish.
7. As we did in Chapter 2, Getting Started with Android, to keep our code clear and

simple, you can delete the two unneeded methods (onCreateOptionsMenu
and onOptionsItemSelected) and their associated @override and @import
statements, but this is not necessary for the example to work.

For a detailed explanation and images of creating a new project, see Chapter 2, Getting
Started with Android.

A working method
First, let's make ourselves a simple working method, complete with return types and
a fully functioning body.

This method will take three numbers as parameters and return a true or false value
to the calling code depending upon whether one of the three numbers was randomly
generated within the method or not:

1. Create a new blank project called A Working Method.
2. In this method, we will use the Random class we saw earlier and its randInt

method as a part of the demonstration. Copy the code for this method
after the closing bracket of onCreate but before the closing bracket of
MainActivity. When you are prompted to import any classes, simply click
on OK:
 boolean guessANumber(int try1, int try2, int try3){
 //all the Log.i lines print to the Android console
 Log.i("info", "Hi there, I am in the method body");
 //prove our parameters have arrived in the method
 //By printing them in the console
 Log.i("info", "try1 = " + try1);
 Log.i("info", "try2 = " + try2);
 Log.i("info", "try3 = " + try3);

Discovering Loops and Methods

[120]

3. Now we declare a Boolean variable called found and initialize it to false.
We will change found to true if and when we guess the random number
correctly. Next, we declare our random number and print some useful
values to the console:
 //we use the found variable to store our true or false
 //setting it to false to begin with
 boolean found = false;

 //Create an object of the Random class so we can use it
 Random randInt = new Random();
 //Generate a random number between 0 and 5
 int randNum = randInt.nextInt(6);
 //show our random number in the console
 Log.i("info", "Our random number = " + randNum);

4. The last portion of code in our method tests to see whether there is a
match for any of our passed-in parameters, prints some output, and then
returns true or false using the found variable to the calling code in the
onCreate method:
 //Check if any of our guesses are the same as randNum
 if(try1 == randNum || try2 == randNum || try3 ==
 randNum){
 found = true;
 Log.i("info", "aha!");
 }else{
 Log.i("info", "hmmm");
 }

 return found;
 }

5. Now write this code just before the closing bracket of the onCreate method
to call the code and print some values to the Android console:
//all the Log.i lines print to the Android console
Log.i("info", "I am in the onCreate method");

//Call guessANumber with three values
//and if true is returned output - Found it!
if(guessANumber(1,2,3)) {
 Log.i("info", "Found It!");
}else{//guessANumber returned false -didn't find it

Chapter 4

[121]

 Log.i ("info", "Can't find it");
}

//continuing with the rest of the program now
Log.i("info", "Back in onCreate");

6. Launch an emulator.
7. Run the app on the emulator.
8. All our console messages have a tag called info. The console window will

already have appeared underneath the editor window. We can filter its
contents to only show our messages by typing info in the search box, as
shown in the following screenshot:

In the preceding screenshot, you can see the search filter and the console output. We
will now run through the code and explain the output.

For clarity, here is the precise console output, without the extraneous date, time, and
package name added to the beginning of each line. Remember that we are dealing
with a random number, so your output may vary:

info﹕ I am in the onCreate method

info﹕Hi there, I am in the method body

info﹕try1 = 1

info﹕try2 = 2

info﹕try3 = 3

info﹕Our random number = 0

Discovering Loops and Methods

[122]

info﹕hmmm

info﹕Can't find it

info﹕Back in onCreate

Here is what is happening. In step 2, we started writing our first method. We called
it guessANumber. It has three int parameters and will return a Boolean. Remember
that these three int parameters become fully initialized variables. First of all,
however, in our method, we simply output the values of the new variables passed
in as parameters as well as a message confirming that the code in our method is
currently being executed:

boolean guessANumber(int try1, int try2, int try3){
 //all the Log.i lines print to the Android console
 Log.i("info", "Hi there, I am in the method body");
 //prove our parameters have arrived in the method
 //By printing them in the console
 Log.i("info", "try1 = " + try1);
 Log.i("info", "try2 = " + try2);
 Log.i("info", "try3 = " + try3);

In step 3, we added more code to our method. We declared and initialized a Boolean
variable called found, which we will use to return a value to the calling code and let
the calling code know whether one of the parameters passed in was the same as the
random number:

//we use the found variable to store our true or false
//setting it to false to begin with
boolean found = false;

Next (still in step 3), we generated a random number in the same way as we did
earlier in the chapter. We also used Log to output the random number so that we
can examine what went on:

//Create an object of the Random class so we can use it
Random randInt = new Random();
//Generate a random number between 0 and 5
int randNum = randInt.nextInt(6);
//show our random number in the console
Log.i("info", "Our random number = " + randNum);

In step 4, we used an if statement with the logical OR operator to detect whether
any of the passed-in parameters matches the random number we just generated,
as shown in the following code:

//Check if any of our guesses are the same as randNum
if(try1 == randNum || try2 == randNum || try3 == randNum){

Chapter 4

[123]

If the condition is true, that is, if any of try1, try2, or try3 equals randNum, then
the following code is run. Our found Boolean value is set to true and a message
is printed:

found = true;
Log.i("info", "aha!");

If the condition is not true, the else statement is executed, a different message is
printed, and the found variable is left the same as it was—false:

}else{
 Log.i("info", "hmmm");
}

Finally, in our method, we return the found variable, which will be either true or
false, to the calling code:

 return found;
 }

Now we look at step 5, which is the code in the onCreate method, which calls our
guessANumber method in the first place. We start by simply printing a message
saying that we are in onCreate at the moment:

//all the Log.i lines print to the Android console
Log.i("info", "I am in the onCreate method");

Then we make the call to guessANumber with the three parameters. In this case, we
use 1, 2, and 3, but any int values would have worked. However, we wrap the call
in an if statement. This means that the return value from the method will be used
to evaluate the if statement. Simply put, if true is returned, the if statement will be
executed and "Found It!" will be printed:

//Call guessANumber with three values
//and if true is returned output - Found it!
if(guessANumber(1,2,3)){
 Log.i("info", "Found It!");
 }

On the contrary, if false is returned, the else statement gets executed and "Can't
find it" is printed:

else{//guessANumber returned false -didn't find it
 Log.i ("info", "Can't find it");
}

//continuing with the rest of the program now
Log.i("info", "Back in onCreate");

Discovering Loops and Methods

[124]

Remember that we are dealing with random numbers, so you might need to run it a
few times before you see this output:

Of course, you should note that the guesses sent to the function as parameters are
arbitrary. As long as all the numbers are between 0 and 5 and are not duplicated,
they will together have a 50 percent chance of finding the random number.

On a closing note, if you've to read only one tip in this whole book, it should be
this one.

Printing variable values to the console is a great way to
examine what is going on inside your game and to find bugs.

Let's look at another example of methods.

Exploring method overloading
As we are learning, methods are really diverse and deep as a topic, but hopefully,
taking a step at a time, we will see they are not daunting in any way. We will be
using what we have learned about methods when we enhance our math game. We
will be exploring methods even more deeply in Chapter 6, OOP – Using Other People's
Hard Work. For now, however, it will serve us well to look at one more topic on
methods. Let's create a new project to explore method overloading.

As we will now see, we can create more than one method with the same name,
provided the parameters are different. The code in this project is vastly simpler
than that of the last project. It is how this code works that might appear slightly
curious until we analyze it later:

1. Create a new blank project called Exploring Method Overloading.

Chapter 4

[125]

2. In the first method, we will simply call it printStuff and pass an int variable
via a parameter to be printed. Copy the code for this method after the closing
bracket of onCreate but before the closing bracket of MainActivity. When
you are prompted to import any classes, simply click on OK:
void printStuff(int myInt){
 Log.i("info", "This is the int only version");
 Log.i("info", "myInt = "+ myInt);
}

3. We will also call the second method printStuff but pass a string variable
to be printed. Copy the code for this method after the closing bracket of
onCreate but before the closing bracket of MainActivity. Again, when you
are prompted to import any classes, simply click on OK:
void printStuff(String myString){
 Log.i("info", "This is the String only version");
 Log.i("info", "myString = "+ myString);
}

4. Yet again, we will call this third method printStuff but pass a string
variable and an int variable to be printed. As before, copy the code for this
method after the closing bracket of onCreate but before the closing bracket
of MainActivity:
void printStuff(int myInt, String myString){
 Log.i("info", "This is the combined int and String
 version");
 Log.i("info", "myInt = "+ myInt);
 Log.i("info", "myString = "+ myString);
}

5. Now write this code just before the closing bracket of the onCreate method
to call the methods and print some values to the Android console:
//declare and initialize a String and an int
int anInt = 10;
String aString = "I am a string";

//Now call the different versions of printStuff
//The name stays the same, only the parameters vary
printStuff(anInt);
printStuff(aString);
printStuff(anInt, aString);

6. Launch an emulator.
7. Run the app on the emulator.

Discovering Loops and Methods

[126]

Here is the console output:

info﹕ This is the int only version

info﹕ myInt = 10

info﹕ This is the String only version

info﹕ myString = I am a string

info﹕ This is the combined int and String version

info﹕ myInt = 10

info﹕ myString = I am a string

As you can see, Java has treated three methods with the same name as totally
different methods. This, as we have just demonstrated, can be really useful.
It is called method overloading.

Method overloading and overriding confusion
Overloading and overriding are defined as follows:

• Overloading occurs when we have more than one method with
the same name but different parameters

• Overriding occurs when we essentially replace a method with
the same name and the same parameter list

We know enough about overloading and overriding to complete this
book, but if you are brave and your mind is wandering, you can override
an overloaded method. However, that is something for another time.

This is how the preceding code works. In each of the three steps (2, 3, and 4), we
create a method called printStuff, but each printStuff method has different
parameters, so each is a different method that can be called individually:

void printStuff(int myInt){
...
}

void printStuff(String myString){
...
}

void printStuff(int myInt, String myString){
...
}

The body of each of the methods is simple. It just prints the passed-in parameters
and confirms which version of the method is being called currently.

Chapter 4

[127]

The next important part of our code is when we make it plain which method we
want to call, using the appropriate parameters. In step 5, we call each of them in turn,
using the appropriate parameters so that Java knows the exact method required:

printStuff(anInt);
printStuff(aString);
printStuff(anInt, aString);

Now we know more than enough about methods, loops, and random numbers to
make some improvements to our math game.

Enhancing our math game
We are going to add some features to our math game using what we have just
learned about methods and loops.

As usual, the code is available for copying in the Chapter4 folder of the code
download. The project is in the MathGameChapter4 subfolder and encompasses all
the remaining phases of improvement covered in this chapter, including enhancing
the UI, amending our game activity, setQuestion, updateScoreAndLevel,
isCorrect, and calling our new methods.

We will make the game change the question after each time we attempt the answer.

We will also add difficulty levels to questions and random questions but within a
range appropriate for that difficulty level.

We will show and update our score. The score goes up faster depending on the
difficulty level of the question answered correctly.

If the player gets a question wrong, the difficulty goes back to the easiest level and
the score to zero.

Enhancing the UI
Let's get on with modifying our math game UI to incorporate our new game features.
We will be adding a TextView to display the score and another TextView to display
the level.

1. Open the activity_game.xml file in the editor window. We will add a new
TextView to the very bottom of our UI for our score.

2. Drag a Large Text element from Palette and place it to the left, below our
three answer buttons.

Discovering Loops and Methods

[128]

3. Now we need to change the id property so that we can access our new
TextView from our Java code. Ensure that the new TextView is selected
by clicking on it. Now, in the Properties window, change the id property
to textScore.

4. For the sake of clarity (although this step serves no use in programming),
change the text property to Score:999.

5. Now put another Large Text element to the right of the one we just configured
and change the id property to textLevel. The lower part of our UI should
now look like this:

6. Once again, for the sake of clarity (although this step serves no use in
programming), change the text property to Level:4.

7. Save the project.

We have just added two new TextView elements and assigned them both an ID that
we can refer to in our Java code.

You have probably realized by now that the precise layout and size of
our UI elements are unimportant as far as getting the game to work
is concerned. This gives us a lot of flexibility in designing layouts
for different screen sizes. As long as each layout for each screen size
contains the same element types with the same IDs, the same Java
code will work for different layouts. If you want to know more about
designing for multiple screen sizes, take a look at http://developer.
android.com/training/multiscreen/screensizes.html.

Now that we have our enhanced UI and an understanding of how the Java Random
class works, we can add the Java code to implement our new features.

http://developer.android.com/training/multiscreen/screensizes.html
http://developer.android.com/training/multiscreen/screensizes.html

Chapter 4

[129]

The new Java code
As previously explained, the project code is available in the Chapter4 folder of the
downloadable code. The project is called MathGameChapter4 and encompasses all
the improvements covered in this chapter.

In this phase, we will be adding lots of new code, moving some existing code, and
modifying some existing code too. As so much is changing, we are going to approach
the code from the very beginning. The new code will be explained completely, the
code that has moved will be pointed out with a reason, and the code that has stayed
the same and in the same place will have the least explanation.

We will first make some modifications and deletions to our existing code. We will
then look at designing and implementing each of our new methods to improve our
code and add our new features.

Amending GameActivity
First, let's perform the necessary amendments and deletions to our current code:

1. Open the GameActivity.java file in the editor window.
2. We now need to consider the scope of the objects that represent our UI

elements. Both textObjectPartA and textObjectPartB need to be
accessible from the methods we will be creating soon. So let's move their
declarations, as we did with the multi-choice buttons in the previous chapter,
out of the onCreate method so that they are accessible everywhere in our
GameActivity class. The following code shows all our declarations so far.
They are present immediately after the start of the GameActivity class.
The recently added (or moved) declarations are highlighted. Notice that
we have also added declarations for our two new TextViews and for the
score and level displays. In addition, there are two new int variables that
we can manipulate for our score and to keep track of our level. They are
currentScore and currentLevel:
public class GameActivity extends Activity implements View.
OnClickListener{

 int correctAnswer;
 Button buttonObjectChoice1;
 Button buttonObjectChoice2;
 Button buttonObjectChoice3;
 TextView textObjectPartA;
 TextView textObjectPartB;
 TextView textObjectScore;

Discovering Loops and Methods

[130]

 TextView textObjectLevel;

 int currentScore = 0;
 int currentLevel = 1;

3. All of the code that assigns text to our Buttons or TextViews objects, and the
code that initializes the parts of our question and assigns the values for our
wrong answers, are now going to change and move, so we need to delete it
all. Everything shown in the following code is to be deleted:
//Here we initialize all our variables
int partA = 9;
int partB = 9;
correctAnswer = partA * partB;
int wrongAnswer1 = correctAnswer - 1;
int wrongAnswer2 = correctAnswer + 1;

4. The following code snippet needs to be deleted too:
//Now we use the setText method of the class on our objects
//to show our variable values on the UI elements.
textObjectPartA.setText("" + partA);
textObjectPartB.setText("" + partA);

//which button receives which answer, at this stage is arbitrary.
buttonObjectChoice1.setText("" + correctAnswer);
buttonObjectChoice2.setText("" + wrongAnswer1);
buttonObjectChoice3.setText("" + wrongAnswer2);

5. For clarity and context, here is the entire onCreate method as it currently
stands. There is nothing new here, but you can see your code, which links
our Button and TextView objects that we declared in step 2. Again, this code
includes our two new TextViews, which are highlighted, but everything else,
which is described in steps 3 and 4, is deleted. As before, there is a piece of
code that makes our game listen to button clicks:
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //The next line loads our UI design to the screen
 setContentView(R.layout.activity_game);

 /*Here we get a working object based on either the button
 or TextView class and base as well as link our new
 objects

Chapter 4

[131]

 directly to the appropriate UI elements that we created
 previously*/
 textObjectPartA = (TextView)findViewById(R.id.textPartA);

 textObjectPartB = (TextView)findViewById(R.id.textPartB);

 textObjectScore = (TextView)findViewById(R.id.textScore);

 textObjectLevel = (TextView)findViewById(R.id.textLevel);

 buttonObjectChoice1 = (Button)findViewById(R.
 id.buttonChoice1);

 buttonObjectChoice2 = (Button)findViewById(R.
 id.buttonChoice2);

 buttonObjectChoice3 = (Button)findViewById(R.
 id.buttonChoice3);

 buttonObjectChoice1.setOnClickListener(this);
 buttonObjectChoice2.setOnClickListener(this);
 buttonObjectChoice3.setOnClickListener(this);

}//onCreate ends here

6. Now we will delete some more code that we don't need because we are going
to make it more efficient by compartmentalizing it into our new methods
and adding our new features at the same time. So in our onClick method,
in each case of our switch statement, we want to delete the if and the else
statements. We will be completely rewriting these, but we will leave in place
the code that initializes our answerGiven variable. Our onClick method will
now look like this:
@Override
 public void onClick(View view) {
 //declare a new int to be used in all the cases
 int answerGiven=0;
 switch (view.getId()) {

 case R.id.buttonChoice1:
 //initialize a new int with the value contained in
 buttonObjectChoice1
 //Remember we put it there ourselves previously

Discovering Loops and Methods

[132]

 answerGiven = Integer.parseInt("" +
 buttonObjectChoice1.getText());

 break;

 case R.id.buttonChoice2:
 //same as previous case but using the next button
 answerGiven = Integer.parseInt("" +
 buttonObjectChoice2.getText());

 break;

 case R.id.buttonChoice3:
 //same as previous case but using the next button
 answerGiven = Integer.parseInt("" +
 buttonObjectChoice3.getText());

 break;

 }

 }

7. Save your project.

Wow! That was a lot of code, but as we saw along the way, there were no new
concepts. In step 2, we simply moved the initialization of our Button and TextView
objects to a place where they will now be visible from anywhere within our class.

In steps 3 and 4, we did a fair bit of deletion because we will no longer be making the
question or populating the multi-choice buttons in onCreate, as this is not flexible
enough. We will soon see how we improve on this.

In step 6, we deleted the code that tested whether the answer was correct or
incorrect. However, as we saw, we still initialized the answerGiven variable in the
same way—in the appropriate case of our switch statement in the onClick method.

Great! Now we are ready to consider and design some new methods to
compartmentalize our code, avoid repetitions in it, and add our extra features.
Consider the following methods that we will soon implement.

Chapter 4

[133]

The methods
We will now walk through writing some methods. As we will see, the methods will
compartmentalize our code and prevent the implementation of our new features
from causing the code to become too long and sprawling:

• We will write a setQuestion method to prepare a question of appropriate
difficulty.

• We will write an updateScoreAndLevel method that will do just that. We
will also write an isCorrect method that one of our other methods will use
to evaluate the correctness of the answer.

• Then we will strategically place the code that calls our new methods.

We will do each of these tasks one at a time and explain the code along the way, as
leaving the explanation to the end will make referring to individual steps cumbersome.

We will use many of the features of Java that we learned in this chapter and the
previous chapter. These include the following:

• Methods
• A for loop
• The switch control structure

So let's get started with our first method.

The setQuestion method
We determined that we needed a method to prepare a question for us; setQuestion
seems like a decent name for such a method. Every time our player gives an answer by
tapping one of the three multi-choice buttons, a new question will need to be prepared.

This method will need to generate values for our partA and partB variables as
well as show them in our TextViews referenced by the textObjectPartA and
textObjectPartB objects. In addition, the method will need to assign the new
correct answer to our correctAnswer variable, which will then be used to calculate
some suitable incorrect answers. Finally, the method will show both the correct and
incorrect answers on our multi-choice buttons.

Discovering Loops and Methods

[134]

Furthermore, our setQuestion method will need to take into account the level held
in currentLevel to determine the range or difficulty of the question it will ask. Let's
go through the code. If you want to type this code as we go, then just make sure you
place it after the closing bracket of onClick but before the closing bracket of our
GameActivity class:

1. First of all, we have the method signature and the opening curly brace before
the body of our method:
void setQuestion(){

2. This tells us that the return type is void, so setQuestion will not return a
value to the code that calls it. Also, there are no parameters here, so it does
not need any value passed for it to work. Let's see what it does. Now we
enter the code to generate the two parts of the question:
//generate the parts of the question
int numberRange = currentLevel * 3;
Random randInt = new Random();

int partA = randInt.nextInt(numberRange);
partA++;//don't want a zero value

int partB = randInt.nextInt(numberRange);
partB++;//don't want a zero value

3. In the previous step, we declared a new int variable, numberRange, and
initialized it by multiplying the player's currentLevel value by 3. Then we
got a new Random object called randInt and used it to generate new values
based on numberRange. We did this to the partA and partB variables. As
the value of currentLevel increases, so potentially does the difficulty of the
question. Now, just as we have written in the past, we write this:
correctAnswer = partA * partB;
int wrongAnswer1 = correctAnswer-2;
int wrongAnswer2 = correctAnswer+2;

textObjectPartA.setText(""+partA);
textObjectPartB.setText(""+partB);

4. We assigned the answer of our new multiplication question to
correctAnswer. Then we declared and assigned two incorrect answers to
the new int variables, wrongAnswer1 and wrongAnswer2. We also used
the setText method of our TextView objects to display the question to
the player. Notice that we have not yet displayed the correct and incorrect
answers. Here it is. Try to work out what is happening here:
//set the multi choice buttons

Chapter 4

[135]

//A number between 0 and 2
int buttonLayout = randInt.nextInt(3);
switch (buttonLayout){

case 0:
buttonObjectChoice1.setText(""+correctAnswer);
buttonObjectChoice2.setText(""+wrongAnswer1);
buttonObjectChoice3.setText(""+wrongAnswer2);
 break;

case 1:

buttonObjectChoice2.setText(""+correctAnswer);
buttonObjectChoice3.setText(""+wrongAnswer1);
buttonObjectChoice1.setText(""+wrongAnswer2);
 break;

case 2:
buttonObjectChoice3.setText(""+correctAnswer);
buttonObjectChoice1.setText(""+wrongAnswer1);
buttonObjectChoice2.setText(""+wrongAnswer2);
 break;
 }

}

5. In the preceding code, we used our Random object, randInt, to generate a
number between 0 and 2, and assigned the value to a new int variable called
buttonLayout. We then used buttonLayout to switch between all its possible
values: 0, 1, or 2. Each case statement sets the correct and incorrect answers
to the multi-choice buttons in a slightly different order, so the player can't
just keep tapping the same button over and over to achieve a massive score.
Notice the extra closing bracket after the closing bracket of the switch. This is
the end of our setQuestion method.

We explained the code fairly thoroughly as we went through it but it might be
worthwhile to just take a closer look at some parts again.

Discovering Loops and Methods

[136]

In step 1, we saw our method signature with a void return type and no parameters.
In step 2, we generated some random numbers that will be within a certain range.
This range isn't as obvious as it might seem at first. First, we assigned, declared,
and initialized numberRange like this:

int numberRange = currentLevel * 3;

So if the player is at the first question, then currentLevel will hold the value 1
and numberRange will be initialized as 3. Then we made a new Random object as
previously discussed and entered this line of code:

int partA = randInt.nextInt(numberRange);

What occurs here is that the nextInt method of the Random object, randInt, will
return a value of either 0, 1, or 2 because we have given it a seed of 3. We don't want
any zeros in our game because they result in very easy multiplication, so we enter this:

partA++;//don't want a zero value

This operator, which you probably remember from Chapter 3, Speaking Java – Your
First Game, when we discussed operators, adds 1 to partA. We then do exactly the
same to our partB variable, which means that assuming that the player is still on
level 1, they will have a question that will be one of the following:

1 x 1, 1 x 2, 1 x 3, 2 x 1, 2 x 2, 2 x 3, 3 x 1, 3 x 2, or 3 x 3

As the level increases, the potential range of the question increases significantly. So
at level 2, the options are that either part of the question could be from 1 to 6; for
level 3, from 1 to 9; and so on. It is still possible to get an easy question on a higher
level but it becomes less likely as the levels advance. Finally in this step, we display
the question to the player using the setText method.

In step 3, we have seen before but this time we varied it slightly. We calculate and
assign a value for correctAnswer, and declare and assign values to wrongAnswer1
and wrongAnswer2, which will hold the wrong answer choices for our buttons.

Part 3 varies very slightly from what we did in onCreate in the previous chapter
because we subtract and add 2 to wrongAnswer1 and wrongAnswer2, respectively.
This makes guessing the answer to multiplication questions a little harder because
you can't eliminate answers based on whether they are odd or even.

Step 4 simply randomizes which buttons the correct and incorrect answers will
be placed on. We don't need to keep track of this because when the time comes to
compare the value on the button pressed with the correct answer, we can simply use
our Java code to discover it as we did in Chapter 3, Speaking Java – Your First Game.

Chapter 4

[137]

The updateScoreAndLevel method
The name of this method speaks for itself. Because the keeping of the score is
not simple and because we want higher levels to yield higher scores, we will
compartmentalize the code to keep our program readable. If we then want to
make modifications to the scoring system, they can all take place in there.

Let's write the code.

1. This code can go anywhere within the opening and closing braces of
GameActivity {}, but it is good practice to place them in the approximate
order they will be used. So why not start adding your code after the
closing brace of setQuestion but obviously before the closing brace of
GameActivity? Here is the method signature with the opening brace:
void updateScoreAndLevel(int answerGiven){

2. This tells us that our method does not return a value but that it does receive
an int, which it will require to do its stuff. The name of the parameter is a
big clue to what we will be passing. We will see that in action in the body
in a minute, but if passing the player's answer to this method instead of the
isCorrect method is a bit confusing, we will see things become clearer in
the next chunk of code. Here is the next part of the code to add:
if(isCorrect(answerGiven)){
 for(int i = 1; i <= currentLevel; i++){
 currentScore = currentScore + i;
 }

 currentLevel++;
}

3. There is a lot happening here, so we will dissect it more once we have the
method completed. Basically, it calls the isCorrect method (which we will
write soon) and if the response is true, adds to the player's score in a for
loop. After that, the method adds 1 to currentLevel. Here comes the
else part of the code in case the response from isCorrect is false:
else{
 currentScore = 0;
 currentLevel = 1;
}

Discovering Loops and Methods

[138]

4. If the response is false, that is, if the player got the answer wrong, the
currentScore variable is set to 0 and the level back to 1. Finally for this
method, we type the following:
 //Actually update the two TextViews
 textObjectScore.setText("Score: " + currentScore);
 textObjectLevel.setText("Level: " + currentLevel);
}

5. In the previous step, we updated the actual TextViews that the player
sees with the newly determined score and level. The method then
ended and the control of the program returned to the code that called
updateScoreAndLevel to begin with. Save your project.

We explained most of the code as we went but it might be good to quickly review
it and dig a bit deeper into certain parts, especially the call to isCorrect in that
odd-looking if statement.

In step 1, we began with the method signature. Then in step 2, we began with the
aforementioned curious if:

if(isCorrect(answerGiven)){

We have seen this type of statement before in the A working method example in the
Methods section of this chapter. What is happening here is that the call to isCorrect
is replacing the statement to be evaluated, or rather it is the statement to be
evaluated. So isCorrect is called with the answerGiven variable. The answerGiven
variable, as you might remember, was passed to updateScoreAndLevel. This time,
it is passed to the isCorrect method, which will do some work with it and perhaps
a few other things. Then it will return to the if statement a value of true or false.
The value will be true if the question is answered correctly and false if not.

Assuming the if statement evaluates to true, the program runs this bit of code (also
from step 2):

for(int i = 1; i <= currentLevel; i++){
 currentScore = currentScore + i;
}

currentLevel++;

The code enters a for loop where the starting variable i is initialized to 1 like this:
int i = 1;. Furthermore, the loop is instructed to continue as long as i is less than
or equal to our currentLevel variable. Then within the for loop, we add i to the
current score. As an example, let's assume that the player has just got a question
correct and we enter the for loop with currentLevel at 1. The player's score is still
at 0 because this is their first correct answer.

Chapter 4

[139]

At pass 1, we get the following:

• i = 1, so it is equal to currentLevel, which is also 1. So we enter the for
loop

• i = 1, so currentScore equals 0
• We add i, which is 1, to currentScore
• Our currentScore variable is now equal to 1

At pass 2, the following steps take place:

• i is incremented to 2, so it is now greater than currentLevel, which is 1
• The for loop condition evaluates to false and we continue with the code

after the for loop
• currentLevel is increased by 1 to 2

Now let's look at that for loop again assuming that the player gets the next question
correct as well, and we are back in updateScoreAndLevel. This time, isCorrect has
evaluated true and we enter the for loop but with a slightly different situation than
the last time.

At pass 1, the following steps take place:

• i = 1, so i is less than currentLevel is 2 and we enter the for loop
• i = 1, currentScore = 1
• We add i, which is equal to 1, to currentScore
• Our currentScore variable is now equal to 2

At pass 2, we have the following steps happening:

• i is incremented to 2 and it is now equal to currentLevel, which is also 2
• i = 2, currentScore = 2
• We add i, which is now equal to 2, to currentScore
• Our currentScore variable is now equal to 4

At pass 3, the following steps take place:

• i is incremented to 3 and it is now greater than currentLevel, which is 2.
• The for loop condition evaluates to false and we continue with the code after

the for loop.
• The value of currentLevel is increased by 1 to 3. So the next time, we will

have an extra pass through our for loop.

Discovering Loops and Methods

[140]

What is happening is that with each level, the player is being rewarded with another
pass through the for loop, and each pass through the for loop adds a greater value to
their score. To summarize what happens in the for loop, here is a brief table of values
showing how the player's score is increased based on the currentLevel variable:

currentLevel Added to currentScore currentScore after for loop
1 1 1
2 3 (1 + 2) 4
3 6 (1 + 2 + 3) 10
4 10 (1 + 2 + 3 + 4) 20
5 15 (1 + 2 + 3 + 4 + 5) 35

Of course, we could have kept it really simple and not used a for
loop. We could just use currentScore = currentScore + level
perhaps, but that doesn't offer an ever increasing reward in the same
way as our current solution does and we wouldn't have been able to
practice our for loops either.

If if(isCorrect(answerGiven)) evaluates to false, it simply resets the score to 0
and the level to 1 in step 3. Step 4 then updates our TextViews for the score and the
level using the variables we have just discussed.

Now we have just one more method to write. Of course, this is the isCorrect
method, which we just called.

The isCorrect method
This method is nice and simple because we have seen all of the relevant code before.
It is just the method signature and the return value that we need to look at carefully:

1. Enter the code just after the closing brace of the updateScoreAndLevel
method but before the closing brace of the GameActivity class. Type the
method signature like this:
boolean isCorrect(int answerGiven){

Chapter 4

[141]

2. Here we can see that the method must return a Boolean value, true or false.
If it doesn't, then the program won't compile. This guarantees that when we
use this method as the evaluation expression in the updateScoreAndLevel
method, we will definitely get a result. It can be true or false. The signature
also shows us the answerGiven variable passed in, ready for us to use. Type
this code, which will determine that result:
boolean correctTrueOrFalse;
if(answerGiven == correctAnswer){//YAY!
 Toast.makeText(getApplicationContext(), "Well done!",
 Toast.LENGTH_LONG).show();
 correctTrueOrFalse=true;
}else{//Uh-oh!
 Toast.makeText(getApplicationContext(), "Sorry",
 Toast.LENGTH_LONG).show();
 correctTrueOrFalse=false;
}

3. We have seen almost all of the preceding code before. The exception is that we
declare a Boolean variable, correctTrueOrFalse, which we assign to true if
the player answers correctly and to false if not. We know whether the player
is correct or not because we compare answerGiven to correctAnswer in the
if statement. Notice that we have also triggered the appropriate Android
pop-up toast message as we did before. Finally, we do this:
 return correctTrueOrFalse;
}

We just returned whatever value is contained within correctTrueOrFalse. So the
critical if statement in updateScoreAndLevel, which we discussed in detail, will
know what to do next.

To make sure we understand what is happening in isCorrect, let's go through the
sequence of events in our code. In step 1 we have the method signature. We see that
we will return a true or false value and receive int.

In step 2, we declare a Boolean variable called correctTrueOrFalse to hold
the value we will soon return. Then we test for a right or wrong answer with
if(answerGiven == correctAnswer). If the two compared values match, a
congratulatory message pops up and we assign true to our Boolean variable. Of
course, if the if statement is false, we offer commiserations to the player and assign
false to our important Boolean.

Discovering Loops and Methods

[142]

Finally in step 3, we send back true or false so that the updateScoreAndLevel
method can proceed with its work.

We have now implemented all our methods. It's time to put them to work.

Calling our new methods
Of course, our shiny new methods won't do anything until we call them. So here is
the plan to call these methods:

1. When the game starts, we want to set a new question for the player.
Therefore, as the last line of code in our onCreate method, we can call
our setQuestion method like this:
 setQuestion();

}//onCreate ends here

2. Then we turn our attention to the onClick method, which already detects
which button has been pressed and loads the player's answer into our
answerGiven variable. So at the end of the onClick method, after the
closing brace of the switch statement, we just call this function:
updateScoreAndLevel(answerGiven);

3. This sends our player's attempted answer to updateScoreAndLevel, which
evaluates the answer using isCorrect, adds points, and increments the score
if the answer is correct or resets the score and level if not. All that we need
now is another question. Add this line. It will ask another question:

setQuestion();

So now what happens is that the player starts our math game by clicking on its icon
on their Android device. Our GameActivity class declares a few variables that we
need access to throughout:

int correctAnswer;
Button buttonObjectChoice1;
Button buttonObjectChoice2;
Button buttonObjectChoice3;
TextView textObjectPartA;
TextView textObjectPartB;
TextView textObjectScore;
TextView textObjectLevel;

int currentScore = 0;
int currentLevel = 1;

Chapter 4

[143]

Then onCreate initializes some variables and gets our buttons ready to receive
clicks from the player before asking the first question by calling setQuestion. The
game then waits for the player to attempt an answer. When the player attempts an
answer, it is dealt with by onClick, updateScoreAndLevel, and isCorrect. Then
the program control comes back to onClick again, setQuestion is called again, and
we wait for the player's answer once more.

Finishing touches
Our math game is coming along nicely. Unfortunately, we have to move on
soon. The project has served its purpose to demonstrate some fundamentals of
Java programming as well as some key Android features. Now we need to start
introducing some more game-related topics.

Before we go on, there are two really easy things to make our game a bit more cool
and complete. In case you are wondering about the High Scores button, we will see
how that can be implemented when we look at our next game project in Chapter 5,
Gaming and Java Essentials. You will then have enough information to easily come
back and implement high scores on your own.

The other feature that would really round off our game and make it more playable
is an overall or per question time limit. Perhaps even increasing the score based on
how quickly the correct answer is given will help. We need some new Java tricks up
our sleeves before we can do that, but we will see how we can measure and respond
to time in Chapter 5, Gaming and Java Essentials, when we talk about threads.

Now we will quickly learn two improvements:

• Locking the screen orientation
• Changing the home screen image

Going full screen and locking orientation
You might have noticed that if you rotate your device while the app is running,
not only does your game UI get distorted but the game progress is also lost. What
goes wrong is that when the device is rotated, the onPause and onStop methods are
called. Then the app is restarted. We could handle this by overriding the onPause
method and saving our data. We will do this later. For now we don't want the screen
to rotate anyway, so if we stop it we solve two problems in one.

Discovering Loops and Methods

[144]

While adding code to this file, Android Studio may try to "help" by adding extra
formatting. If you get red error indicators, you can compare your AndroidManifest.
xml file with the one in the code download in the Chapter4/MathGameChapter4
folder. Alternatively, you can simply replace the contents of your file with the
contents of the file in the download. The step-by-step changes are detailed in this
guide just to highlight what is changing:

1. This is the first step in locking the app to portrait. Open the
AndroidManifest.xml file. It is located directly below the res folder
in the Project Explorer. Find the first opening <activity in the code.

2. Enter a new line as follows:
android:screenOrientation="portrait"

3. Repeat step 2 after the second instance of <activity. We have now locked
both the menu and game screens in portrait mode.

4. To make the game full screen, in the same file, find the following text and
add the line in bold after it but before the closing > sign:
<activity
android:name="com.packtpub.mathgamechapter4.app.MainActivit
 y"
android:label="@string/app_name"
android﹕theme="@android﹕style/Theme.NoTitleBar.Fullscreen">

</activity>

5. Make the same change to the GameActivity activity like this. Again, here is
the code in context in order to avoid mistakes with these > signs:
<activity
android:name="com.packtpub.mathgamechapter4.app.GameActivit
 y"
android:label="@string/title_activity_game"
android﹕theme="@android﹕style/Theme.NoTitleBar.Fullscreen">
</activity>

6. Save the project.

Now, when you rotate the device during gameplay, the portrait orientation will
be fixed.

Chapter 4

[145]

Adding a custom image (instead of the
Android icon)
We probably don't want to have the Android image on our finished game home
screen, so here is the procedure to change it. This quick guide relies on you having
an image you would like to use:

1. First, we need to add the required image to the layout folder. Copy your
image file by clicking on it in Windows Explorer and using Ctrl + C.

2. Now find the drawable-mdpi folder in the Android Studio Project Explorer.
Click on the folder.

3. Paste the image to the folder using Ctrl + V.
4. Now the image is a part of our project. We simply need to choose it in

the same way as we chose the image of the Android robot previously.
Open activity_main.xml in the editor window and click on ImageView
(currently an Android robot).

5. In the Properties window, find the src property. Click on it and then on
6. Search for your image and select it.
7. Save your project.
8. You now have the image of your choice on the home screen.

Self-test questions
Q1) Guess what is wrong with this method:

void doSomething(){
 return 4;
}

Q2) What will x be equal to at the end of this code snippet?

int x=19;
do{
 x=11;
 x++;
}while(x<20)

Discovering Loops and Methods

[146]

Summary
We came a really long way in this chapter. You got a serious handle on Java loops
and took your first, fairly deep look into Java methods and how to use them. You
learned how to generate random numbers and significantly enhanced your math
game using all of the knowledge you gained.

As the chapters proceed, the games will get more and more real-game-like. In the
next chapter, we will make a game to test the player's memory. It will have sound,
animation and will actually save the player's high scores too.

Congratulations on your progress so far but let's keep going.

Gaming and Java Essentials
In this chapter, we will cover a diverse and interesting range of topics. We will learn
about Java arrays, which allow us to manipulate a potentially huge amount of data
in an organized and efficient manner.

Then, we will look at the role threads can play in games, in order to do more than
one thing apparently simultaneously.

If you thought that our math game was a bit on the quiet side, then we will look at
adding sound effects to our games as well as introducing a cool open source app to
generate authentic sound effects.

The last new thing we will learn will be persistence. This is what happens when the
player quits our game or even turns off their Android device. What happens to the
score then? How will we load the right level the next time they play?

Once we have done all this, we will use all the new techniques and knowledge along
with what we already know to create a neat memory game.

In this chapter, we will cover the following topics:

• Java arrays—an array of variables
• Timing with threads
• Creating and using beeps 'n' buzzes—Android sound
• A look at life after destruction—persistence
• Building the memory game

Gaming and Java Essentials

[148]

Java arrays – an array of variables
You might be wondering what happens when we have a game with lots of variables
to keep track of. How about a table of high scores with the top 100 scores? We could
declare and initialize 100 separate variables like this:

int topScore1;
int topScore2;
int topScore3;
//96 more lines like the above
int topScore100;

Straightaway, this can seem unwieldy, and what about the case when someone gets
a new top score and we have to shift the scores in every variable down one place?
A nightmare begins:

topScore100 = topScore99;
topScore99 = topScore98;
topScore98 = topScore97;
//96 more lines like the above
topScore1 = score;

There must be a better way to update the scores. When we have a large set of variables,
what we need is a Java array. An array is a reference variable that holds up to a fixed
maximum number of elements. Each element is a variable with a consistent type.

The following line of code declares an array that can hold int type variables, even a
high score table perhaps:

int [] intArray;

We can also declare arrays of other types, like this:

String [] classNames;
boolean [] bankOfSwitches;
float [] closingBalancesInMarch;

Each of these arrays would need to have a fixed maximum amount of storage space
allocated before it is used, like this:

intArray = new int [100];

Chapter 5

[149]

The preceding line of code allocates up to a maximum of 100 integer-sized storage
spaces. Think of a long aisle of 100 consecutive storage spaces in our variable
warehouse. The spaces would probably be labeled intArray[0], intArray[1],
intArray[2], and so on, with each space holding a single int value. Perhaps the
slightly surprising thing here is that the storage spaces start off at 0, not 1. Therefore,
in an array of size 100, the storage spaces would run from 0 to 99.

We can actually initialize some of these storage spaces like this:

intArray[0] = 5;
intArray[1] = 6;
intArray[2] = 7;

Note that we can only put the declared type into an array and the type that an array
holds can never change:

intArray[3]= "John Carmack";//Won't compile

So when we have an array of int types, what are each of the int variables called?
The array notation syntax replaces the name. We can do anything with a variable in
an array that we could do with a regular variable with a name:

intArray[3] = 123;

Here is another example of array variables being used like normal variables:

intArray[10] = intArray[9] - intArray[4];

We can also assign a value from an array to a regular variable of the same type,
like this:

int myNamedInt = intArray [3];

Note, however, that myNamedInt is a separate and distinct primitive variable, so any
changes made to it do not affect the value stored in the intArray reference. It has its
own space in the warehouse and is not connected to the array.

Arrays are objects
We said that arrays are reference variables. Think of an array variable as an address
to a group of variables of a given type. Perhaps, using the warehouse analogy,
someArray is an aisle number. So each of someArray[0], someArray[1], and
so on is the aisle number followed by the position number in the aisle.

Gaming and Java Essentials

[150]

Arrays are also objects. This means that they have methods and properties that we
can use:

int lengthOfSomeArray = someArray.length;

In the previous line of code, we assigned the length of someArray to the int variable
called lengthOfSomeArray.

We can even declare an array of arrays. This is an array that, in each of its elements,
stores another array, like this:

String[][] countriesAndCities;

In the preceding array, we could hold a list of cities within each country. Let's not
go array-crazy just yet. Just remember that an array holds up to a predetermined
number of variables of any predetermined type and their values are accessed using
this syntax:

someArray[someLocation];

Let's actually use some arrays to try and get an understanding of how to use them in
real code and what we might use them for.

A simple example of an array
Let's write a really simple working example of an array by performing the following
steps. You can get the complete code for this example in the downloadable code
bundle. It's at Chapter5/SimpleArrayExample/MainActivity.java:

1. Create a project with a blank activity, just as we did in Chapter 2, Getting
Started with Android. Also, clean up the code by deleting the unnecessary
parts, but this isn't essential.

2. First, we declare our array, allocate five spaces, and initialize some values to
each of the elements:
//Declaring an array
int[] ourArray;

//Allocate memory for a maximum size of 5 elements
ourArray = new int[5];

//Initialize ourArray with values
//The values are arbitrary as long as they are int
//The indexes are not arbitrary 0 through 4 or crash!

ourArray[0] = 25;
ourArray[1] = 50;

Chapter 5

[151]

ourArray[2] = 125;
ourArray[3] = 68;
ourArray[4] = 47;

3. We output each of the values to the logcat console. Notice that when we add
the array elements together, we are doing so over multiple lines. This is fine
because we have omitted a semicolon until the last operation, so the Java
compiler treats the lines as one statement:
//Output all the stored values
Log.i("info", "Here is ourArray:");
Log.i("info", "[0] = "+ourArray[0]);
Log.i("info", "[1] = "+ourArray[1]);
Log.i("info", "[2] = "+ourArray[2]);
Log.i("info", "[3] = "+ourArray[3]);
Log.i("info", "[4] = "+ourArray[4]);

//We can do any calculation with an array element
//As long as it is appropriate to the contained type
//Like this:
int answer = ourArray[0] +
 ourArray[1] +
 ourArray[2] +
 ourArray[3] +
 ourArray[4];

Log.i("info", "Answer = "+ answer);

4. Run the example on an emulator.

Remember that nothing will happen on the emulator display because the entire
output will be sent to our logcat console window in Android Studio. Here is the
output of the preceding code:

info﹕ Here is ourArray﹕

info﹕ [0] = 25

info﹕ [1] = 50

info﹕ [2] = 125

info﹕ [3] = 68

info﹕ [4] = 47

info﹕ Answer = 315

In step 2, we declared an array called ourArray to hold int variables, and allocated
space for up to five variables of that type.

Gaming and Java Essentials

[152]

Next, we assigned a value to each of the five spaces in our array. Remember that the
first space is ourArray[0] and the last space is ourArray[4].

In step 3, we simply printed the value in each array location to the console. From the
output, we can see that they hold the value we initialized in the previous step. Then
we added each of the elements in ourArray and initialized their value to the answer
variable. We then printed answer to the console and saw that all the values where
added together, just as if they were plain old int types stored in a slightly different
manner, which is exactly what they are.

Getting dynamic with arrays
As we discussed at the beginning of all this array stuff, if we need to declare
and initialize each element of an array individually, there isn't a huge amount of
benefit in an array over regular variables. Let's look at an example of declaring and
initializing arrays dynamically.

Dynamic array example
Let's make a really simple dynamic array by performing the following steps. You can
find the working project for this example in the download bundle. It is at Chapter5/
DynamicArrayExample/MainActivity.java:

1. Create a project with a blank activity, just as we did in Chapter 2, Getting
Started with Android. Also, clean up the code by deleting the unnecessary
parts, but this isn't essential.

2. Type the following between the opening and closing curly braces of
onCreate. See if you can work out what the output will be before we
discuss it and analyze the code:
//Declaring and allocating in one step
int[] ourArray = new int[1000];

//Let's initialize ourArray using a for loop
//Because more than a few variables is allot of typing!
for(int i = 0; i < 1000; i++){
 //Put the value of ourValue into our array
 //At the position determined by i.
 ourArray[i] = i*5;

 //Output what is going on
 Log.i("info", "i = " + i);
 Log.i("info", "ourArray[i] = " + ourArray[i]);
}

Chapter 5

[153]

3. Run the example on an emulator. Remember that nothing will happen on the
emulator display because the entire output will be sent to our logcat console
window in Android Studio. Here is the output of the preceding code:
info﹕ i = 0

info﹕ ourArray[i] = 0

info﹕ i = 1

info﹕ ourArray[i] = 5

info﹕ i = 2

info﹕ ourArray[i] = 10

I have removed 994 iterations of the loop for brevity:
info﹕ ourArray[i] = 4985

info﹕ i = 998

info﹕ ourArray[i] = 4990

info﹕ i = 999

info﹕ ourArray[i] = 4995

All the action happened in step 2. We declared and allocated an array called ourArray
to hold up to 1,000 int values. This time, however, we did the two steps in one line
of code:

int[] ourArray = new int[1000];

Then we used a for loop that was set to loop 1,000 times:

(int i = 0; i < 1000; i++){

We initialized the spaces in the array from 0 to 999 with the value of i multiplied
by 5, as follows:

ourArray[i] = i*5;

To demonstrate the value of i and the value held in each position of the array, we
output the value of i followed by the value held in the corresponding position in
the array as follows:

Log.i("info", "i = " + i);
Log.i("info", "ourArray[i] = " + ourArray[i]);

All of this happened 1,000 times, producing the output we saw.

Gaming and Java Essentials

[154]

Entering the nth dimension with arrays
We very briefly mentioned that an array can even hold other arrays at each of its
positions. Now, if an array holds lots of arrays that hold lots of some other type,
how do we access the values in the contained arrays? And why would we ever
need this anyway? Take a look at the next example of where multidimensional
arrays can be useful.

An example of a multidimensional array
Let's create a really simple multidimensional array by performing the following
steps. You can find the working project for this example in the download bundle.
It is at Chapter5/MultidimensionalArrayExample/MainActivity.java:

1. Create a project with a blank activity, just as we did in Chapter 2, Getting
Started with Android. Also, clean up the code by deleting the unnecessary
methods, but this isn't essential.

2. After the call to setContentView, declare and initialize a two-dimensional
array, like this:
//A Random object for generating question numbers later
Random randInt = new Random();
//And a variable to hold the random value generated
int questionNumber;

//We declare and allocate in separate stages for clarity
//but we don't have to
String[][] countriesAndCities;
//Here we have a 2 dimensional array

//Specifically 5 arrays with 2 elements each
//Perfect for 5 "What's the capital city" questions
countriesAndCities = new String[5][2];

//Now we load the questions and answers into our arrays
//You could do this with less questions to save typing
//But don't do more or you will get an exception
countriesAndCities [0][0] = "United Kingdom";
countriesAndCities [0][1] = "London";

countriesAndCities [1][0] = "USA";
countriesAndCities [1][1] = "Washington";

countriesAndCities [2][0] = "India";

Chapter 5

[155]

countriesAndCities [2][1] = "New Delhi";

countriesAndCities [3][0] = "Brazil";
countriesAndCities [3][1] = "Brasilia";

countriesAndCities [4][0] = "Kenya";
countriesAndCities [4][1] = "Nairobi";

3. Now we output the contents of the array using a for loop and a Random class
object. Note how we ensure that although the question is random, we can
always pick the correct answer:
//Now we know that the country is stored at element 0
//The matching capital at element 1
//Here are two variables that reflect this
int country = 0;
int capital = 1;

//A quick for loop to ask 3 questions
for(int i = 0; i < 3; i++){
 //get a random question number between 0 and 4
 questionNumber = randInt.nextInt(5);

 //and ask the question and in this case just
 //give the answer for the sake of brevity
 Log.i("info", "The capital of "
 +countriesAndCities[questionNumber][country]);

 Log.i("info", "is "
 +countriesAndCities[questionNumber][capital]);

}//end of for loop

Run the example on an emulator. Once again, nothing will happen on the emulator
display because the output will be sent to our logcat console window in Android
Studio. Here is the output of the previous code:

info﹕ The capital of USA

info﹕ is Washington

info﹕ The capital of India

info﹕ is New Delhi

info﹕ The capital of United Kingdom

info﹕ is London

Gaming and Java Essentials

[156]

What just happened? Let's go through this chunk by chunk so that we know exactly
what is going on.

We make a new object of the Random type, called randInt, ready to generate random
numbers later in the program:

Random randInt = new Random();

We declare a simple int variable to hold a question number:

int questionNumber;

Then we declare countriesAndCities, our array of arrays. The outer array
holds arrays:

String[][] countriesAndCities;

Now we allocate space within our arrays. The first outer array will be able to hold
five arrays and each of the inner arrays will be able to hold two strings:

countriesAndCities = new String[5][2];

Next, we initialize our arrays to hold countries and their corresponding capital cities.
Notice that with each pair of initializations, the outer array number stays the same,
indicating that each country/capital pair is within one inner array (a string array).
Of course, each of these inner arrays is held in one element of the outer array (which
holds arrays):

countriesAndCities [0][0] = "United Kingdom";
countriesAndCities [0][1] = "London";

countriesAndCities [1][0] = "USA";
countriesAndCities [1][1] = "Washington";

countriesAndCities [2][0] = "India";
countriesAndCities [2][1] = "New Delhi";

countriesAndCities [3][0] = "Brazil";
countriesAndCities [3][1] = "Brasilia";

countriesAndCities [4][0] = "Kenya";
countriesAndCities [4][1] = "Nairobi";

Chapter 5

[157]

To make the upcoming for loop clearer, we declare and initialize int variables to
represent the country and the capital from our arrays. If you glance back at the array
initialization, all the countries are held in position 0 of the inner array and all the
corresponding capital cities are held at position 1:

int country = 0;
int capital = 1;

Now we create a for loop that will run three times. Note that this number does not
mean we access the first three elements of our array. It is rather the number of times
we go through the loop. We could make it loop one time or a thousand times, but the
example would still work:

for(int i = 0; i < 3; i++){

Next, we actually determine which question to ask, or more specifically, which
element of our outer array. Remember that randInt.nextInt(5) returns a number
between 0 and 4. This is just what we need as we have an outer array with five
elements, from 0 to 4:

questionNumber = randInt.nextInt(5);

Now we can ask a question by outputting the strings held in the inner array,
which in turn is held by the outer array that was chosen in the previous line
by the randomly generated number:

 Log.i("info", "The capital of "
 +countriesAndCities[questionNumber][country]);

 Log.i("info", "is "
 +countriesAndCities[questionNumber][capital]);

}//end of for loop

For the record, we will not be using any multidimensional arrays in the rest of this
book. So if there is still a little bit of murkiness around these arrays inside arrays,
then that doesn't matter. You know they exist and what they can do, so you can
revisit them if necessary.

Gaming and Java Essentials

[158]

Array-out-of-bounds exceptions
An array-out-of-bounds exception occurs when we attempt to access an element of
an array that does not exist. Whenever we try this, we get an error. Sometimes, the
compiler will catch it to prevent the error from going into a working game, like this:

int[] ourArray = new int[1000];
int someValue = 1;//Arbitrary value
ourArray[1000] = someValue;//Won't compile as compiler knows this
won't work.
//Only locations 0 through 999 are valid

Guess what happens if we write something like this:

int[] ourArray = new int[1000];
int someValue = 1;//Arbitrary value
int x = 999;
if(userDoesSomething){
 x++;//x now equals 1000
}
ourArray[x] = someValue;
//Array out of bounds exception if userDoesSomething evaluates to
true! This is because we end up referencing position 1000 when the
array only has positions 0 through 999

//Compiler can't spot it and game will crash on player - yuck!

The only way we can avoid this problem is to know the rule. The rule is that arrays
start at zero and go up to the number obtained by subtracting one from the allocated
number. We can also use clear, readable code where it is easy to evaluate what we
have done and spot the problems.

Timing with threads
So what is a thread? You can think of threads in Java programming just like threads
in a story. In one thread of a story, we have the primary character battling the enemy
on the front line, and in another thread, the soldier's family are getting by, day to
day. Of course, a story doesn't have to have just two threads. We could introduce a
third thread. Perhaps the story also tells of the politicians and military commanders
making decisions. These decisions subtly, or not so subtly, affect what happens in the
other threads.

Chapter 5

[159]

Threads in programming are just like this. We create parts/threads in our program
and they control different aspects for us. We introduce threads to represent these
different aspects because of the following reasons:

• They make sense from an organizational point of view
• They are a proven way of structuring a program that works
• The nature of the system we are working on forces us to use them

In Android, we use threads for all of these reasons simultaneously. It makes sense, it
works, and we have to use it because of the design of the system.

In gaming, think about a thread that receives the player's button taps for "left",
"right", and "shoot", a thread that represents the alien thinking where to move next,
and yet another thread that draws all the graphics on the screen.

Programs with multiple threads can have problems. Like the threads of a story, if
proper synchronization does not occur, then things go wrong. What if our soldier
went into battle before the battle or even the war existed? Weird!

What if we have a variable, int x, that represents a key piece of data that say three
threads of our program use? What happens if one thread gets slightly ahead of
itself and makes the data "wrong" for the other two? This problem is the problem
of correctness, caused by multiple threads racing to completion, oblivious of each
other—because they are just dumb code after all.

The problem of correctness can be solved by close oversight of the threads and
locking. Locking means temporarily preventing execution in one thread to ensure
that things are working in a synchronized manner. It's like freezing the soldier from
boarding a ship to war until the ship has actually docked and the plank has been
lowered, avoiding an embarrassing splash.

The other problem with programs with multiple threads is the problem of deadlock,
where one or more threads become locked, waiting for the right moment to access x,
but that moment never comes and the entire program eventually grinds to a halt.

You might have noticed that it was the solution to the first problem (correctness) that
is the cause of the second problem (deadlock). Now consider all that we have just
been discussing and mix it in with the Android Activity lifecycle. It's possible that
you start to feel a little nauseous with the complexity.

Fortunately, the problem has been solved for us. Just as we use the Activity class
and override its methods to interact with the Android lifecycle, we can also use other
classes to create and manage our threads. Just as with Activity, we only need to
know how to use them, not how they work.

Gaming and Java Essentials

[160]

So why tell me all this stuff about threads when I didn't need to know, you would
rightly ask. It's simply because we will be writing code that looks different and is
structured in an unfamiliar manner. We will have no sweat writing our Java code
to create and work within our threads if we can do the following:

• Accept that the new concepts we will introduce are what we need to work
with in order to create an Android-specific solution to the problems related
to working with threads

• Understand the general concept of a thread, which is mostly the same as a
story thread that happens almost simultaneously

• Learn the few rules of using some of the Android thread classes

Notice that I said classes, plural, in the third bullet. Different thread classes work
best in different situations. You could write a whole book on just threads in Android.
We will use two thread classes in this book. In this chapter, we will use Handler.
In Chapter 7, Retro Squash Game, and Chapter 8, The Snake Game, we will use the
Runnable class. All we need to remember is that we will be writing parts of our
program that run at almost the same time as each other.

What do I mean by "almost"? What is actually happening is
that the CPU switches between threads in turn. However, this
happens so fast that we will not be able to perceive anything
but simultaneity.

A simple thread timer example with the
Handler class
After this example, we can heave a sigh of relief when we realize that threads are not
as complicated as first feared. When using threads in a real game, we will have to
add a bit of extra code alongside the code in this simple example, but it's not much,
and we will talk about it when we get to it.

As usual, you can simply use the complete code from the download bundle.
This project is located in Chapter5/SimpleThreadTimer/MainActivity.java.

Chapter 5

[161]

As the name suggests, we will be creating a timer—quite a useful feature in a lot
of games:

1. Create a project with a blank activity, just as we did in Chapter 2, Getting
Started with Android. Also, clean up the code by deleting the unnecessary
parts, but this isn't essential.

2. Immediately after the class declaration, enter the three highlighted lines:
public class MainActivity extends Activity {

 private Handler myHandler;
 boolean gameOn;
 long startTime;

3. Enter this code inside the onCreate method. It will create a thread with
something else going on in the if(gameOn) block:
//How many milliseconds is it since the UNIX epoch
 startTime = System.currentTimeMillis();

 myHandler = new Handler() {
 public void handleMessage(Message msg) {
 super.handleMessage(msg);

 if (gameOn) {
 long seconds = ((System.currentTimeMillis() -
 startTime)) / 1000;
 Log.i("info", "seconds = " + seconds);
 }

 myHandler.sendEmptyMessageDelayed(0, 1000);
 }

 };

 gameOn = true;
 myHandler.sendEmptyMessage(0);
 }

4. Run the app. Quit with the home or back button on the emulator. Notice that
it is still printing to the console. We will deal with this anomaly when we
implement our memory game.

Gaming and Java Essentials

[162]

When you run the example on an emulator, remember that nothing will happen
on the emulator display because all of the output will be sent to our logcat console
window in Android Studio. Here is the output of the previous code:

info﹕ seconds = 1

info﹕ seconds = 2

info﹕ seconds = 3

info﹕ seconds = 4

info﹕ seconds = 5

info﹕ seconds = 6

So what just happened? After 1-second intervals, the number of seconds elapsed was
printed to the console. Let's learn how this happened.

First, we declare a new object, called myHandler, of the Handler type. We then
declare a Boolean variable called gameOn. We will use this to keep track of when our
game is running. Finally, the last line of this block of code declares a variable of the
long type. You might remember the long type from Chapter 3, Speaking Java – Your
First Game. We can use long variables to store very large whole numbers, and this is
what we do here with startTime:

private Handler myHandler;
boolean gameOn;
long startTime;

Next, we initialized startTime using currentTimeMillis, a method of the System
class. This method holds the number of milliseconds since January 1, 1970. We will
see how we use this value in the next line of code.

startTime = System.currentTimeMillis();

Next is the important code. Everything up to if(gameOn) marks the code to define
our thread. Certainly, the code is a bit of a mouthful, but it is not as bad as it looks at
first glance. Also, remember that we only need to use the threads; we don't need to
understand every aspect of how they do their work.

Let's dissect the preceding code to demystify it a bit. The myHandler = new
Handler() line simply initializes our myHandler object. What is different from what
we have seen before is that we go on to customize the object immediately afterwards.
We override the handleMessage method (which is where we put our code that
runs in the thread) and then we call super.handleMessage, which calls the default
version of handleMessage before it runs our custom code. This is much like we do
for the onCreate method every time we call super.onCreate.

Chapter 5

[163]

Then we have the if(gameOn) block. Everything in that if block is the code that we
want to run in the thread. The if(gameOn) block simply gives us a way to control
whether we want to run our code at all. For example, we might want the thread up
and running but only sometimes run our code. The if statement gives us the power
to easily choose. Take a look at the code now. We will analyze what is happening in
the if block later:

myHandler = new Handler() {
 public void handleMessage(Message msg) {
 super.handleMessage(msg);

 if (gameOn) {
 long seconds = ((System.currentTimeMillis() -
 startTime)) / 1000;
 Log.i("info", "seconds = " + seconds);
 }

 myHandler.sendEmptyMessageDelayed(0, 1000);
 }

 };

Inside the if block, we declare and initialize another long variable called seconds,
and do a little bit of math with it:

long seconds = ((System.currentTimeMillis() - startTime)) / 1000;

First, we get the current number of milliseconds since January 1, 1970, and then
subtract startTime from it. This gives us the number of milliseconds since we
first initialized startTime. Then we divide the answer by 1000 and get a value
in seconds. We print this value to the console with the following line:

Log.i("info", "seconds = " + seconds);

Next, just after our if block, we have this line:

myHandler.sendEmptyMessageDelayed(0, 1000);

The previous line tells the Android system that we want to run the code in the
handleMessage method once every 1000 milliseconds (once a second).

Back in onCreate, after the closing curly braces of the handleMessage method and
the Handler class, we finally set gameOn to true so that it is possible to run the code
in the if block:

gameOn = true;

Gaming and Java Essentials

[164]

Then, this last line of the code starts the flow of messages between our thread and the
Android system:

myHandler.sendEmptyMessage(0);

It is worth pointing out that the code inside the if block can be as minimal or as
extensive as we need. When we implement our memory game, we will see much
more code in our if block.

All we really need to know is that the somewhat elaborate setup we have just seen
allows us to run the contents of the if block in a new thread. That's it! Perhaps
apart from brushing over that System class a bit quickly.

The System class has many uses. In this case, we use it to get the
number of milliseconds since January 1, 1970. This is a common system
used to measure time in a computer. It is known as Unix time, and the
first millisecond of January 1, 1970, is known as the Unix Epoch. We
will bump into this concept a few more times throughout the book.

Enough on threads, let's make some noise!

Beeps n buzzes – Android sound
This section will be divided into two parts—creating and using sound FX. So let's get
on with it.

Creating sound FX
Years ago, whenever I made a game, I would spend many hours trawling websites
offering royalty-free sound FX. Although there are many good ones out there, the
really great ones are always costly, and no matter how much you pay, they are never
exactly what you want. Then a friend pointed out a simple open source app called
Bfxr, and I have never wasted another moment looking for sound effects since. We
can make our own.

Here is a very fast guide to making your own sound effects using Bfxr. Grab a free
copy of Bfxr from www.bfxr.net.

www.bfxr.net

Chapter 5

[165]

Follow the simple instructions on the website to set it up. Try out a few of these
examples to make cool sound effects:

This is a seriously condensed tutorial. You can do much more
with Bfxr. To learn more, read the tips on the website at the
previous URL.

1. Run bfxr.exe:

Gaming and Java Essentials

[166]

2. Try out all the preset types, which generate a random sound of that type.
When you have a sound that is close to what you want, move to the next step:

3. Use the sliders to fine-tune the pitch, duration, and other aspects of your
new sound:

Chapter 5

[167]

4. Save your sound by clicking on the Export Wav button. Despite the name of
this button, as we will see, we can save in formats other than .wav.

5. Android likes to work with sounds in the OGG format, so when asked to
name your file, use the .ogg extension on the end of whatever you decide
to call it.

6. Repeat steps 2 to 5 as often as required.

Every project in this book that requires sound samples comes with
the sound samples provided, but as we have seen, it is much more
fun to make our own samples. All you need to do is to save them
with the same filename as the provided samples.

Playing sounds in Android
To complete this brief example, you will need three sound effects saved in the .ogg
format. So if you don't have them to hand, go back to the Creating sound FX section
to make some. Alternatively, you can use the sounds provided in the Chapter5/
PlayingSounds/assets folder of the code bundle. As usual, you can view or use the
already completed code at Chapter5/PlayingSounds/java/MainActivity.java
and Chapter5/PlayingSounds/layout/activity_main.xml. Now perform the
following steps:

1. Create a project with a blank activity, just as we did in Chapter 2, Getting
Started with Android. Also, clean up the code by deleting the unnecessary
parts, although this isn't essential.

2. Create three sound files and save them as sample1.ogg, sample2.ogg, and
sample3.ogg.

3. In the main folder in the Project Explorer window, we need to add a folder
called assets. So in the Project Explorer window, right-click on the main
folder and navigate to New | Directory. Type assets in the New Directory
dialog box.

4. Now copy and paste the three sound files to the newly created assets folder.
Alternatively, select the three files, right-click on them, and click on Copy.
Then click on the assets folder in the Android Studio Project Explorer. Now
right-click on the assets folder and click on Paste.

Gaming and Java Essentials

[168]

5. Open activity_main.xml in the editor window and drag three button
widgets onto your UI. It doesn't matter where they are or how they are
aligned. When you look at the id property in the Properties window for any
of our three new buttons, you will notice that they have automatically been
assigned id properties. They are button, button2, and button3. As we will
see, this is just what we need.

6. Let's enable our activity to listen to the buttons being clicked by implementing
onClickListener as we have done in all our other examples with buttons.
Open MainActivity.java in the editor window. Replace the public class
MainActivity extends Activity { line with the following line of code:
public class MainActivity extends Activity implements View.
 OnClickListener {

7. As before, we get an unsightly red underline on our new line of code. The
last time this happened, we typed in the empty body of the onClick method
that we must implement and all was well. This time, because we already
know what is going on here, we will learn a shortcut. Hover your mouse
cursor over the error and right-click on it. Now click on Generate... and then
select Implement methods.... In the Select Methods To Implement dialog
box, onClick(View):void will already be selected:

8. Select this option by clicking on OK. Now scroll to the bottom of your code
and see that Android Studio has very kindly implemented the onClick
method for you and the error is also gone.

Chapter 5

[169]

9. Type this code after the MainActivity declaration to declare some variables
for our sound effects:
private SoundPool soundPool;
int sample1 = -1;
int sample2 = -1;
int sample3 = -1;

10. Type this code in the onCreate method to load our sounds into memory:
soundPool = new SoundPool(10, AudioManager.STREAM_MUSIC,0);
 try{
 //Create objects of the 2 required classes
 AssetManager assetManager = getAssets();
 AssetFileDescriptor descriptor;

 //create our three fx in memory ready for use
 descriptor = assetManager.openFd("sample1.ogg");
 sample1 = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("sample2.ogg");
 sample2 = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("sample3.ogg");
 sample3 = soundPool.load(descriptor, 0);

 }catch(IOException e){
 //catch exceptions here
 }

11. Now add the code to grab a reference to the buttons in our UI and listen to
clicks on them:
 //Make a button from each of the buttons in our layout
 Button button1 =(Button) findViewById(R.id.button);
 Button button2 =(Button) findViewById(R.id.button2);
 Button button3 =(Button) findViewById(R.id.button3);

 //Make each of them listen for clicks
 button1.setOnClickListener(this);
 button2.setOnClickListener(this);
 button3.setOnClickListener(this);

Gaming and Java Essentials

[170]

12. Finally, type this code in the onClick method that we autogenerated:
switch (view.getId()) {

 case R.id.button://when the first button is pressed
 //Play sample 1
 soundPool.play(sample1, 1, 1, 0, 0, 1);
 break;

 //Now the other buttons
 case R.id.button2:
 soundPool.play(sample2, 1, 1, 0, 0, 1);
 break;

 case R.id.button3:
 soundPool.play(sample3, 1, 1, 0, 0, 1);
 break;
 }

Run the example on an emulator or on a real Android device. Notice that by clicking
on a button, you can play any of your three sound samples at will. Of course, sounds
can be played at almost any time, not just on button presses. Perhaps they can be
played from a thread as well. We will see more sound samples when we implement
the memory game later in the chapter.

This is how the code works. We started off by setting up a new project in the usual
way. In steps 2 to 5, however, we created some sounds with Bfxr, created an assets
folder, and placed the files within it. This is the folder where Android expects to find
sound files. So when we write the code in the next steps that refers to the sound files,
the Android system will be able to find them.

In steps 6 to 8, we enabled our activity to listen to button clicks as we have done
several times before. Only this time, we got Android Studio to autogenerate the
onClick method.

Then we saw this code:

private SoundPool soundPool;

First, we create an object of the SoundPool type, called soundPool. This object will be
the key to making noises with our Android device. Next, we have this code:

int sample1 = -1;
int sample2 = -1;
int sample3 = -1;

Chapter 5

[171]

The preceding code is very simple; we declared three int variables. However,
they serve a slightly deeper purpose than a regular int variable. As we will see in
the next block of code we analyze, they will be used to hold a reference to a sound
file that is loaded into memory. In other words, the Android system will assign a
number to each variable that will refer to a place in memory where our sound file
will reside.

We can think of this as a location in our variable warehouse. So we know the
name of the int variable, and contained within it is what Android needs to find
our sound. Here is how we load our sounds into memory and use the references
we've just been discussing.

Let's break the code in step 10 into a few parts. Take a close look and then we will
examine what is going on:

soundPool = new SoundPool(10, AudioManager.STREAM_MUSIC,0);

Here, we initialize our soundPool object and request up to 10 simultaneous streams
of sound. We should be able to really mash the app buttons and get a sound every
time. AudioManager.STREAM_MUSIC describes the type of stream. This is typical for
applications of this type. Finally, the 0 argument indicates we would like default
quality sound.

Now we see something new. Notice that the next chunk of code is wrapped into
two blocks, try and catch. This means that if the code in the try block fails, we
want the code in the catch block to run. As you can see, there is nothing but a
comment in the catch block.

We must do this because of the way the SoundPool class is designed. If you try to
write the code without the try and catch blocks, it won't work. This is typical of
Java classes involved in reading from files. It is a fail-safe process to check whether
the file is readable or even whether it exists. You could put a line of code to output
to the console that an error has occurred.

If you want to experiment with try/catch, then put a line of code
to output a message in the catch block and remove one of the sound
files from the assets folder. When you run the app, the loading will fail
and the code in the catch block will be triggered.

Gaming and Java Essentials

[172]

We will throw caution to the wind because we are quite sure that the files will be
there and will work . Let's examine what is inside the try block. Take a close look
at the following code and then we will dissect it:

 try{
 //Create objects of the 2 required classes
 AssetManager assetManager = getAssets();
 AssetFileDescriptor descriptor;

 //create our three fx in memory ready for use
 descriptor = assetManager.openFd("sample1.ogg");
 sample1 = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("sample2.ogg");
 sample2 = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("sample3.ogg");
 sample3 = soundPool.load(descriptor, 0);

 }catch(IOException e){
 //catch exceptions here
 }

First, we create an object called assetManager of the AssetManager type and an
AssetFileDescriptor object called descriptor. We then use these two objects
combined to load our first sound sample like this:

 descriptor = assetManager.openFd("sample1.ogg");
 sample1 = soundPool.load(descriptor, 0);

We now have a sound sample loaded in memory and its location saved in our int
variable called sample1. The first sound file, sample1.ogg, is now ready to use. We
perform the same procedure for sample2 and sample3 and we are ready to make
some noise!

In step 11, we set up our buttons, which we have seen several times before. In step
12, we have our switch block ready to perform a different action depending upon
which button is pressed. You can probably see that the single action each button
takes is the playing of a sound. For example, Button1 does this:

soundPool.play(sample1, 1, 1, 0, 0, 1);

Chapter 5

[173]

This line of code plays the sound that is loaded in memory at the location referred to
by int sample1.

The arguments of the method from left to right define the
following: the sample to play, left volume, right volume, priority
over other playing sounds, loop or not, rate of playback. You
can have some fun with these if you like. Try setting the loop
argument to 3 and the rate argument to perhaps 1.5.

We handle each button in the same way. Now let's learn something serious.

Life after destruction – persistence
Okay, this is not as heavy as it sounds, but it is an important topic when making
games. You have probably noticed that the slightest thing can reset our math game,
such as an incoming phone call, a battery that ran flat, or even tilting the device to a
different orientation.

When these events occur, we might like our game to remember the exact state
it was in so that when the player comes back, it is in exactly the same place as
they left off. If you were using a word-processing app, you would definitely
expect this type of behavior.

We are not going to go to that extent with our game, but as a bare minimum,
shouldn't we at least remember the high score? This gives the player something
to aim for, and most importantly, a reason to come back to our game.

An example of persistence
Android and Java have many different ways to achieve persistence of data, from
reading and writing to files to setting up and using whole databases through our
code. However, the neatest, simplest, and most suitable way for the examples in
this book is by using the SharedPreferences class.

In this example, we will use the SharedPreferences class to save data. Actually, we
will be reading and writing to files, but the class hides all of the complexity from us
and allows us to focus on the game.

Gaming and Java Essentials

[174]

We will see a somewhat abstract example of persistence so that we are familiar with
the code before we use something similar to save the high score in our memory
game. The complete code for this example can be found in the code bundle at
Chapter5/Persistence/java/MainActivity.java and Chapter5/Persistence/
layout/activity_main.xml:

1. Create a project with a blank activity, just as we did in Chapter 2, Getting
Started with Android. Also, clean up the code by deleting the unnecessary
parts, but this isn't essential.

2. Open activity_main.xml in the editor window and click and drag one
button from the palette to the design. The default ID of the button that is
assigned is perfect for our uses, so no further work is required on the UI.

3. Open MainActivity.java in the editor window. Implement View.
onClickListener and autogenerate the required onClick method, just as
we did in steps 6 and 7 of the Playing sound in Android example previously.

4. Type the following code just after the MainActivity declaration. This declares
our two objects that will do all the complex stuff behind the scenes: a bunch of
strings that will be useful and a button:
SharedPreferences prefs;
SharedPreferences.Editor editor;
String dataName = "MyData";
String stringName = "MyString";
String defaultString = ":-(";
String currentString = "";//empty
Button button1;

5. Add the next block of code to the onCreate method after the call
to setContentView. We initialize our objects and set up our button.
We will look closely at this code once the example is done:
//initialize our two SharedPreferences objects
prefs = getSharedPreferences(dataName,MODE_PRIVATE);
editor = prefs.edit();

//Either load our string or
//if not available our default string
currentString = prefs.getString(stringName, defaultString);

 //Make a button from the button in our layout
 button1 =(Button) findViewById(R.id.button);

 //Make each it listen for clicks

Chapter 5

[175]

 button1.setOnClickListener(this);

 //load currentString to the button
 button1.setText(currentString);

6. Now the action takes place in our onClick method. Add this code, which
generates a random number and adds it to the end of currentString. Then
it saves the string and sets the value of the string to the button as well:
//we don't need to switch here!
//There is only one button
//so only the code that actually does stuff

//Get a random number between 0 and 9
Random randInt = new Random();
int ourRandom = randInt.nextInt(10);

//Add the random number to the end of currentString
currentString = currentString + ourRandom;

//Save currentString to a file in case the user
//suddenly quits or gets a phone call
editor.putString(stringName, currentString);
editor.commit();

 //update the button text
 button1.setText(currentString);

Run the example on an emulator or a device. Notice that each time you press
the button, a random number is appended to the text of the button. Now quit
the app, or even shut down the device if you like. When you restart the app,
our cool SharedPreferences class simply loads the last saved string.

Here is how the code works. There is nothing we haven't seen several times before
until step 4:

SharedPreferences prefs;
SharedPreferences.Editor editor;

Gaming and Java Essentials

[176]

Here, we declare two types of SharedPreferences objects called prefs and editor.
We will see exactly how we use them in a minute.

Next, we declare the dataName and stringName strings. We do this because to use
the facilities of SharedPreferences, we need to refer to our collection of data, as well
as any individual pieces of data within it, using a consistent name. By initializing
dataName and stringName, we can use them as a name for our data store as well as
a specific item within that data store, respectively. The sad face in defaultString
gets used any time the SharedPreferences object needs a default because either
nothing has been previously saved or the loading process fails for some reason. The
currentString variable will hold the value of the string we will be saving and loading
as well as displaying to the user of our app. Our button is button1:

String dataName = "MyData";
String stringName = "MyString";
String defaultString = ":-(";
String currentString = "";//empty
Button button1;

In step 5, the real action starts with this code:

prefs = getSharedPreferences(dataName,MODE_PRIVATE);
editor = prefs.edit();

currentString = prefs.getString(stringName, defaultString);

The previous code does stuff that would take a lot more code if we didn't have
the useful SharedPreferences class. The first two lines initialize the objects and
the third loads the value from our data store item, whose name is contained in
stringName, to our currentString variable. The first time this happens, it uses the
defaultString value because nothing is stored there yet, but once there is a value
stored, this single line of code that will load up our saved string.

Chapter 5

[177]

At the end of step 5, we set up our button as we have done many times before.
Moving on to step 6 in the onClick method, there is no switch block because there
is only one button. So if a click is detected, it must be our button. Here are the first
three lines from onClick:

Random randInt = new Random();
int ourRandom = randInt.nextInt(10);
currentString = currentString + ourRandom;

We generate a random number and append it to the currentString variable. Next,
still in onClick, we do this:

editor.putString(stringName, currentString);
editor.commit();

This is like the opposite of the code that loaded our string in onCreate. The first
of the previous two lines identifies the place in the data store to write the value to
(stringName) and the value to be written there (currentString). The next line,
editor.commit();, simply says, "go ahead and do it."

The following line displays currentString as text on our button so that we can see
what is going on:

button1.setText(currentString);

For more on persistence, take a look at the second
question of the Self-test questions section at the end
of this chapter.

The memory game
The code in the memory game shouldn't challenge us too much because we have
done the background research on threads, arrays, sound, and persistence. There will
be some new-looking code and we will examine it in detail when it crops up.

Gaming and Java Essentials

[178]

Here is a screenshot of our finished game:

Chapter 5

[179]

This is the home screen. It shows the high score, which persists between play
sessions and when the device is shut down. It also shows a Play button, which will
take the player to the main game screen. Take a look at the following screenshot:

Gaming and Java Essentials

[180]

The game screen itself will play a sequence of sounds and numbers. The
corresponding button will wobble in time with the corresponding sound. Then the
player will be able to interact with the buttons and attempt to copy the sequence. For
every part of the sequence that the player gets right, they will be awarded points.

If the sequence is copied in its entirety, then a new and longer sequence will be
played and again the player will attempt to repeat the sequence. This continues until
the player gets a part of a sequence wrong.

As the score increases, it is displayed in the relevant TextView, and when a sequence
is copied correctly, the level is increased and displayed below the score.

The player can start a new game by pressing the Replay button. If a high score is
achieved, it will be saved to a file and displayed on the home screen.

The implementation of the game is divided into five phases. The end of a phase
would be a good place to take a break. Here are the different phases of the game:

• Phase 1: This implements the UI and some basics.
• Phase 2: This prepares our variables and presents the pattern (to be copied)

to the player.
• Phase 3: In this phase, we will handle the player's response when they try to

copy the pattern.
• Phase 4: Here, we will use what we just learned about persistence to maintain

the player's high score when they quit the game or turn off their device.
• Phase 5: At the end of phase 4, we will have a fully working memory game.

However, to add to our repertoire of Android skills, after we have discussed
Android UI animations near the end of this chapter, we will complete this
phase, which will enhance our memory game.

All the files containing the complete code and the sound files after all five stages
can be found in the download bundle in the Chapter5/MemoryGame folder. In this
project, however, there is a lot to be learned from going through each of the stages.

Phase 1 – the UI and the basics
Here, we will lay out a home menu screen UI and a UI for the game itself. We will
also configure some IDs for some of the UI elements so that we can control them in
our Java code later:

1. Create a new application called Memory Game and clean up the code if
you wish.

Chapter 5

[181]

2. Now we create a new activity and call it GameActivity. So right-click on the
java folder in Project Explorer, navigate to New | Activity, then click on
Next, name the activity as GameActivity, and click on Finish. For clarity,
clean up this activity in the same way as we cleaned up all our others.

3. Make the game fullscreen and lock the orientation as we did in the Going
fullscreen and locking orientation tutorial at the end of Chapter 4, Discovering
Loops and Methods.

4. Open the activity_main.xml file from the res/layout folder.

Let's quickly create our home screen UI by performing the following steps:

1. Open activity_main.xml in the editor and delete the Hello World TextView.
2. Click and drag the following: Large Text to the top center (to create our title

text), Image just below that, another LargeText below that (for our high
score), and a Button (for our player to click to play). Your UI should look a
bit like what is shown in the following screenshot:

Gaming and Java Essentials

[182]

3. Adjust the text properties of the two TextViews and the Button element
to make it plain what each will be used for. As usual, you can replace the
Android icon in the ImageView with any image you choose (as we did in
Chapter 4, Discovering Loops and Methods, in the Adding a custom image tutorial).

4. Tweak the sizes of the elements in the usual way to suit the emulator or
device you will be running the game on.

5. Let's make the ID for our Hi Score TextView more relevant to its purpose.
Left-click to select the Hi Score TextView, find its id property in the
Properties window, and change it to textHiScore. The IDs of the image and
the title are not required, and the existing ID of the play button is button,
which seems appropriate already. So there is nothing else to change here.

Let's wire up the Play button to create a link between the home and the game
screens, as follows:

1. Open MainActivity.java in the editor.
2. Add implements View.onClickListener to the end of the MainActivity

declaration so that it now looks like this:
 public class MainActivity extends Activity implements
 View.OnClickListener {

3. Now hover your mouse over the line you just typed and right-click on it.
Now click on Generate, then on Implement methods..., and then on OK to
have Android Studio autogenerate the onClick method we must implement.

4. At the end of our onCreate method, before the closing curly brace, enter the
following code to get a reference to our Play button and listen to clicks:
 //Make a button from the button in our layout
 Button button =(Button) findViewById(R.id.button);

 //Make each it listen for clicks
 button.setOnClickListener(this);

5. Scroll down to our onClick method and enter the following code in its body
to have the Play button take the player to our GameActivity, which we will
design soon:
 Intent i;
 i = new Intent(this, GameActivity.class);
 startActivity(i);

Chapter 5

[183]

At this point, the app will run and the player can click on the Play button to take
them to our game screen. So let's quickly create our game screen UI:

1. Open activity_game.xml in the editor and delete the Hello World TextView.
2. Drag three Large Text elements one below the other and center them

horizontally. Below them, add four buttons stacked one on top of the other,
and finally, add another button below that but offset it to the right-hand side
so that it looks like what is shown in the next screenshot. I have also adjusted
the text properties for the UI elements to make it clear what each will be
used for, but this is optional because our Java code will do all of the work for
us. You can also tweak the sizes of the elements in the usual way to suit the
emulator or device you will be running the game on.

Gaming and Java Essentials

[184]

3. Now let's assign some useful IDs to our UI elements so that we can do some
Java magic with them in the next tutorial. Here is a table that matches the UI
elements shown in the last screenshot with the id property value that you
need to assign. Assign the following id property values to the corresponding
UI elements:

Purpose Default id property New id to assign
Score indicator textView textScore
Difficulty indicator textView2 textDifficulty
Watch/go indicator textView3 textWatchGo
Button 1 button Leave at default
Button 2 button2 Leave at default
Button 3 button3 Leave at default
Button 4 button4 Leave at default
Replay button button5 buttonReplay

Now that we have our game menu and actual game UI ready to go, we can start to
make it work.

Phase 2 – preparing our variables and
presenting the pattern
Here, we will set up a whole load of variables and objects for us to use, both in this
phase and in the later phases. We will also implement the parts of the code that
present a pattern to the player. We will add code that enables the player to respond
in a later phase:

1. Open GameActivity.java in the editor window.
2. I made the sounds by finding a pleasing one then slowly increasing the

Frequency slider for each subsequent sample. You can use my sound from the
assets folder in the MemoryGame project or create your own sound using Bfxr.

3. In the main folder in the project explorer window, we need to add a folder
called assets. So in the project explorer window, right-click on the main
folder and navigate to New | Directory. Type assets in the New Directory
dialog box.

4. Now copy and paste the four sound files to the newly created assets folder.
You can do so like this: select the files, right-click on them, and then click
on Copy. Then click on the assets folder in the Android Studio project
explorer. Now right-click on the assets folder and click on Paste.

Chapter 5

[185]

Let's prepare GameActivity to listen to button clicks just as we did for
MainActivity, as follows:

1. Add implementsView.onClickListener to the end of the GameActivity
declaration so that it now looks like this:
 public class GameActivity extends Activity implements
 View.OnClickListener {

2. Now hover your mouse over the line you just typed and right-click on it. Now
click on Generate, then on Implement methods..., and then on OK to have
Android Studio autogenerate the onClick method that we will use shortly.

3. Let's declare some objects that we need to reference our UI and our int
references for the sound effects we will load soon. Write the code just after the
declaration for GameActivity. By putting them here, they will be available to
all parts of our code in GameActivity.java. Here is the code in context:
public class GameActivity extends Activity implements
 View.OnClickListener {

//Prepare objects and sound references

 //initialize sound variables
 private SoundPool soundPool;
 int sample1 = -1;
 int sample2 = -1;
 int sample3 = -1;
 int sample4 = -1;

 //for our UI
 TextView textScore;
 TextView textDifficulty;
 TextView textWatchGo;

 Button button1;
 Button button2;
 Button button3;
 Button button4;
 Button buttonReplay;

Gaming and Java Essentials

[186]

4. Now, after the last line of code from the previous step, enter the following code
snippet, which will declare and initialize some variables for use in our thread.
Notice that at the end, we also declare myHandler, which will be our thread,
and gameOn to control whether our code within the thread is executed:
//Some variables for our thread
int difficultyLevel = 3;
//An array to hold the randomly generated sequence
int[] sequenceToCopy = new int[100];

private Handler myHandler;
//Are we playing a sequence at the moment?
boolean playSequence = false;
//And which element of the sequence are we on
int elementToPlay = 0;

//For checking the players answer
int playerResponses;
int playerScore;
boolean isResponding;

5. Just after our call to setContentView in the onCreate method, we make our
sound effects ready to be played:
soundPool = new SoundPool(10, AudioManager.STREAM_MUSIC,0);
try{
 //Create objects of the 2 required classes
 AssetManager assetManager = getAssets();
 AssetFileDescriptor descriptor;

 //create our three fx in memory ready for use
 descriptor = assetManager.openFd("sample1.ogg");
 sample1 = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("sample2.ogg");
 sample2 = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("sample3.ogg");
 sample3 = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("sample4.ogg");
 sample4 = soundPool.load(descriptor, 0);

 }catch(IOException e){
 //catch exceptions here
 }

Chapter 5

[187]

6. Just after the code in the last step and still within the onCreate method, we
initialize our objects and set click listeners for the buttons:
//Reference all the elements of our UI
//First the TextViews
textScore = (TextView)findViewById(R.id.textScore);
textScore.setText("Score: " + playerScore);
textDifficulty = (TextView)findViewById(R.id.textDifficulty);

textDifficulty.setText("Level: " + difficultyLevel);
textWatchGo = (TextView)findViewById(R.id.textWatchGo);

//Now the buttons
button1 = (Button)findViewById(R.id.button);
button2 = (Button)findViewById(R.id.button2);
button3 = (Button)findViewById(R.id.button3);
button4 = (Button)findViewById(R.id.button4);
buttonReplay = (Button)findViewById(R.id.buttonReplay);

//Now set all the buttons to listen for clicks
button1.setOnClickListener(this);
button2.setOnClickListener(this);
button3.setOnClickListener(this);
button4.setOnClickListener(this);
buttonReplay.setOnClickListener(this);

7. Now, after the last line of the code from the previous step, enter the code
that will create our thread. We will add the details in the next step within
the if(playSequence) block. Notice that the thread is run every nine-tenths
of a second (900 milliseconds). Notice that we start the thread but do not set
playSequence to true. So it will not do anything yet:
//This is the code which will define our thread
myHandler = new Handler() {
 public void handleMessage(Message msg) {
 super.handleMessage(msg);

 if (playSequence) {
 //All the thread action will go here

 }

 myHandler.sendEmptyMessageDelayed(0, 900);
 }

Gaming and Java Essentials

[188]

};//end of thread

myHandler.sendEmptyMessage(0);

8. Before we look at the code that will run in our thread, we need a way to
generate a random sequence appropriate for the difficulty level. This situation
sounds like a candidate for a method. Enter this method just before the closing
curly brace of the GameActivity class:
public void createSequence(){
 //For choosing a random button
 Random randInt = new Random();
 int ourRandom;
 for(int i = 0; i < difficultyLevel; i++){
 //get a random number between 1 and 4
 ourRandom = randInt.nextInt(4);
 ourRandom ++;//make sure it is not zero
 //Save that number to our array
 sequenceToCopy[i] = ourRandom;
 }

}

9. We also need a method to prepare and start our thread. Type the following
method after the closing curly brace of createSequence:

Actually, the order of implementation of the methods is
unimportant. However, following along in order will mean
our code will look the same. Even if you are referring to the
downloaded code, the order will be the same.

public void playASequence(){
 createSequence();
 isResponding = false;
 elementToPlay = 0;
 playerResponses = 0;
 textWatchGo.setText("WATCH!");
 playSequence = true;
}

Chapter 5

[189]

10. Just before we look at the details of the thread code, we need a method to
tidy up our variables after the sequence has been played. Enter this method
after the closing curly brace of playASequence:
public void sequenceFinished(){
 playSequence = false;
 //make sure all the buttons are made visible
 button1.setVisibility(View.VISIBLE);
 button2.setVisibility(View.VISIBLE);
 button3.setVisibility(View.VISIBLE);
 button4.setVisibility(View.VISIBLE);
 textWatchGo.setText("GO!");
 isResponding = true;
 }

11. Finally, we will implement our thread. There is some new code in this
part, which we will go through in detail after we finish this phase of the
project. Enter this code between the opening and closing curly braces of the
if(playSequence){ } block:
if (playSequence) {
 //All the thread action will go here
 //make sure all the buttons are made visible
 button1.setVisibility(View.VISIBLE);
 button2.setVisibility(View.VISIBLE);
 button3.setVisibility(View.VISIBLE);
 button4.setVisibility(View.VISIBLE);

 switch (sequenceToCopy[elementToPlay]){
 case 1:
 //hide a button
button1.setVisibility(View.INVISIBLE);
 //play a sound
 soundPool.play(sample1, 1, 1, 0, 0, 1);
 break;

 case 2:
 //hide a button
button2.setVisibility(View.INVISIBLE)
 //play a sound
 soundPool.play(sample2, 1, 1, 0, 0, 1);
 break;

 case 3:
 //hide a button button3.setVisibility(View.INVISIBLE);

Gaming and Java Essentials

[190]

 //play a sound
 soundPool.play(sample3, 1, 1, 0, 0, 1);
 break;

 case 4:
 //hide a button
button4.setVisibility(View.INVISIBLE);
 //play a sound
 soundPool.play(sample4, 1, 1, 0, 0, 1);
 break;
 }

 elementToPlay++;
 if(elementToPlay == difficultyLevel){
 sequenceFinished();
 }
}

 myHandler.sendEmptyMessageDelayed(0, 900);
}

};

Just before the closing curly brace of onCreate, we could initiate a
sequence by calling our playASequence method, like this:

playASequence();

We could then run our app, click on Play on the home screen, and
watch as a sequence of four random buttons and their matching
sounds begins, with the sounds being played. In the next phase,
we will wire up the Replay button so that the player can start the
sequence when they are ready.

Phew! That was a long one. Actually, there is not much new there, but we did cram
in just about everything we ever learned about Java and Android into one place, and
we used it in new ways too. So we will look at it step by step and give extra focus to
the parts that might seem tricky.

Let's look at each new piece of code in turn.

From steps 1 to 7, we initialized our variables, set up our buttons, and loaded our
sounds as we have done before. We also put in the outline of the code for our thread.

Chapter 5

[191]

In step 8, we implemented the createSequence method. We used a Random object
to generate a sequence of random numbers between 1 and 4. We did this in a for
loop, which loops until a sequence the length of difficultyLevel has been created.
The sequence is stored in an array called sequenceToCopy, which we can later use to
compare to the player's response:

public void createSequence(){
 //For choosing a random button
 Random randInt = new Random();
 int ourRandom;
 for(int i = 0; i < difficultyLevel; i++){
 //get a random number between 1 and 4
 ourRandom = randInt.nextInt(4);
 ourRandom ++;//make sure it is not zero
 //Save that number to our array
 sequenceToCopy[i] = ourRandom;
 }

 }

In step 9, we implemented playASequence. First, we call createSequence to
load our sequenceToCopy array. Then we set isResponding to false because
we don't want the player to bash buttons while the sequence is still playing.
We set elementToPlay to 0 as this is the first element of our array. We also set
playerResponses to 0, ready to count the player's responses. Next, we set some
text on the UI to "WATCH!" to make it clear to the player that the sequence is playing.
Finally, we set playSequence to true, which allows the code in our thread to run
once every 900 milliseconds. Here is the code we have just analyzed:

public void playASequence(){
 createSequence();
 isResponding = false;
 elementToPlay = 0;
 playerResponses = 0;
 textWatchGo.setText("WATCH!");
 playSequence = true;

 }

Gaming and Java Essentials

[192]

In step 10, we handle sequenceFinished. We set playSequence to false, which
prevents the code in our thread from running. We set all the buttons back to visible
because, as we will see in the thread code, we set them to invisible to emphasize
which button comes next in the sequence. We set our UI text to GO! to make it
clear. It is time for the player to try and copy the sequence. For the code in the
checkElement method to run, we set isResponding to true. We will look at the
code in the checkElement method in the next phase:

public void sequenceFinished(){
 playSequence = false;
 //make sure all the buttons are made visible
 button1.setVisibility(View.VISIBLE);
 button2.setVisibility(View.VISIBLE);
 button3.setVisibility(View.VISIBLE);
 button4.setVisibility(View.VISIBLE);
 textWatchGo.setText("GO!");
 isResponding = true;
 }

In step 11, we implement our thread. It's quite long but not too complicated. First,
we set all the buttons to visible as this is quicker than checking which one of them is
currently invisible and setting just that one:

if (playSequence) {
 //All the thread action will go here
 //make sure all the buttons are made visible
 button1.setVisibility(View.VISIBLE);
 button2.setVisibility(View.VISIBLE);
 button3.setVisibility(View.VISIBLE);
 button4.setVisibility(View.VISIBLE);

Then we switch based on what number is next in our sequence, hide the appropriate
button, and play the appropriate sound. Here is the first case in the switch block
for reference. The other case elements perform the same function but on a different
button and with a different sound:

switch (sequenceToCopy[elementToPlay]){
 case 1:
 //hide a button
 button1.setVisibility(View.INVISIBLE);
 //play a sound
 soundPool.play(sample1, 1, 1, 0, 0, 1);
 break;

 //case 2, 3 and go here
 }

Chapter 5

[193]

Now we increment elementToPlay, ready to play the next part of the sequence
when the thread runs again in approximately 900 milliseconds:

 elementToPlay++;

Next, we check whether we have played the last part of the sequence. If we have,
we call our sequenceFinished method to set things up for the player to attempt
their answer:

 if(elementToPlay == difficultyLevel){
 sequenceFinished();
 }
}

Finally, we tell the thread when we would like to run our code again:

 myHandler.sendEmptyMessageDelayed(0, 900);
}

};

When you ran a sequence (see the previous tip), did you notice an imperfection/bug
with our game operation? This has to do with the way the last element of the sequence
is animated. It is because our sequenceFinished method makes all the buttons visible
so soon after the button has just been made invisible that looks like the button is never
made invisible at all. We will solve the problem of the button that doesn't stay invisible
long enough when we learn about UI animation in phase 5.

Now let's handle the player's response.

Phase 3 – the player's response
We now have an app that plays a random sequence of button flashes and matching
sounds. It also stores that sequence in an array. So what we have to do now is enable
the player to attempt to replicate the sequence and score points if successful.

We can do all of this in two phases. First, we need to handle the button presses,
which can pass all the hard work to a method that will do everything else.

Gaming and Java Essentials

[194]

Let's write the code and look at it as we go. Afterwards, we will closely examine the
less obvious parts:

1. Here is how we handle the button presses. We have the empty body of the
switch statement with an extra if statement that checks whether there is
a sequence currently being played. If there is a sequence, then no input is
accepted. We will start to fill the code in the empty body in the next step:
if(!playSequence) {//only accept input if sequence not playing
 switch (view.getId()) {
 //case statements here...
 }
}

2. Now, here is the code that handles button1. Notice that it just plays the
sound related to button1 and then calls the checkElement method, passing
a value of 1. This is all we have to do for the buttons 1 through 4: play a
sound and then tell our new method (checkElement) which numbered
button was pressed, and checkElement will do the rest:
case R.id.button:
 //play a sound
 soundPool.play(sample1, 1, 1, 0, 0, 1);
 checkElement(1);
 break;

3. Here is the near-identical code for buttons 2 through 4. Notice that the value
passed to checkElement and the sound sample that is played are the only
differences from the previous step. Enter this code directly after the code in
the previous step:
case R.id.button2:
 //play a sound
 soundPool.play(sample2, 1, 1, 0, 0, 1);
 checkElement(2);
 break;

case R.id.button3:
 //play a sound
 soundPool.play(sample3, 1, 1, 0, 0, 1);
 checkElement(3);
 break;

case R.id.button4:
 //play a sound
 soundPool.play(sample4, 1, 1, 0, 0, 1);
 checkElement(4);
 break;

Chapter 5

[195]

4. Here is the last part of the code in our onClick method. This handles the
Restart button. The code just resets the score and the difficulty level and then
calls our playASequence method, which does the rest of the work of starting
the game again. Enter this code directly after the code in the previous step:
case R.id.buttonReplay:
 difficultyLevel = 3;
 playerScore = 0;
 textScore.setText("Score: " + playerScore);
 playASequence();
 break;

5. Finally, here is our do-everything method. This is quite a long method
compared to most of our previous methods, but it helps to see its entire
structure. We will break this down line by line in a minute. Enter the following
code, after which you will actually be able to play the game and get a score:
public void checkElement(int thisElement){

if(isResponding) {
 playerResponses++;
 if (sequenceToCopy[playerResponses-1] == thisElement) { //
Correct
 playerScore = playerScore + ((thisElement + 1) * 2);
 textScore.setText("Score: " + playerScore);
 if (playerResponses == difficultyLevel) {//got the whole
sequence
 //don't checkElement anymore
 isResponding = false;
 //now raise the difficulty
 difficultyLevel++;
 //and play another sequence
 playASequence();
 }

} else {//wrong answer
 textWatchGo.setText("FAILED!");
 //don't checkElement anymore
 isResponding = false;
}
}

We covered the methods fairly comprehensively as we went through the tutorial.
The one elephant in the room, however, is the apparent sprawl of code in the
checkElement method. So let's go through all of the code in step 6, line by line.

Gaming and Java Essentials

[196]

First, we have the method signature. Notice that it does not return a value but it
receives an int value. Remember that it is the onClick method that calls this method
and it passes a 1, 2, 3, or 4, depending upon which button was clicked:

public void checkElement(int thisElement){

Next, we wrap the rest of this code into an if statement. Here is the if statement.
We enter the block when the isResponding Boolean is true, and isResponding is
set to true when the sequenceFinnished method completes, which is just what we
need so that the player can't mash the buttons until it is time to do so and our game
is ready to listen:

if(isResponding) {

Here is what happens inside the if block. We increment the number of the player's
responses received in the playerResponses variable:

playerResponses++;

Now we check whether the number passed to the checkElement method and stored
in thisElement matches the appropriate part of the sequence the player is trying to
copy. If it matches, we increase playerScore by an amount relative to the number of
correctly matched parts of the sequence so far. Then we set the score on the screen.
Notice that if the response does not match, there is an else block to go with this if
block that we will explain soon:

 if (sequenceToCopy[playerResponses-1] == thisElement) { //Correct
 playerScore = playerScore + ((thisElement + 1) * 2);
 textScore.setText("Score: " + playerScore);

Next, we have another if block. Note that this if block is nested inside the if
block we just described. So it will only be tested and potentially run if the player's
response was correct. This if statement checks whether it is the last part of the
sequence, like this:

 if (playerResponses == difficultyLevel) {

If it is the last part of the sequence, it executes the following lines:

//got the whole sequence
 //don't checkElement anymore
 isResponding = false;
 //now raise the difficulty
 difficultyLevel++;
 //and play another sequence
 playASequence();
 }

Chapter 5

[197]

What is happening inside the nested if statement, which checks whether the whole
sequence has been correctly copied, is the following: It sets isResponding to false,
so the player gets no response from the buttons. It then raises the difficulty level by
1 so that the sequence is a bit tougher next time. Finally, it calls the playSequence
method to play another sequence and the whole process starts again.

Here is the else block, which runs if the player gets part of the sequence wrong:

} else {
 //wrong answer
 textWatchGo.setText("FAILED!");
 //don't checkElement anymore
 isResponding = false;
 }
}

Here, we set some text on the screen and set isResponding to false.

Now let's use what we learned about the SharedPreferences class to preserve the
high scores.

Phase 4 – preserving the high score
This phase is nice and short. We will use what we learned earlier in the chapter to
save the player's score if it is a new high score, and then display the best score in
the hi-score TextView in our MainActivity:

1. Open MainActivity.java in the editor window.
2. Then we declare our objects used to read from a file just after the class

declaration, like this:
public class MainActivity extends Activity implements View.
OnClickListener{

 //for our hiscore (phase 4)
 SharedPreferences prefs;
 String dataName = "MyData";
 String intName = "MyString";
 int defaultInt = 0;
 //both activities can see this
 public static int hiScore;

Gaming and Java Essentials

[198]

3. Now, just after our call to setContentView in the onCreate method, we
initialize our objects, read from our file, and set the result to our hiScore
variable. We then display it to the player:
//for our high score (phase 4)
//initialize our two SharedPreferences objects
prefs = getSharedPreferences(dataName,MODE_PRIVATE);

//Either load our High score or
//if not available our default of 0
hiScore = prefs.getInt(intName, defaultInt);

//Make a reference to the Hiscore textview in our layout
TextView textHiScore =(TextView) findViewById(R.id.textHiScore);
//Display the hi score
textHiScore.setText("Hi: "+ hiScore);

4. Next, we need to go back to the GameActivity.java file.
5. We declare our objects to edit our file, this time like this:

//for our hiscore (phase 4)
SharedPreferences prefs;
SharedPreferences.Editor editor;
String dataName = "MyData";
String intName = "MyInt";
int defaultInt = 0;
int hiScore;

6. Just after the call to setContentView in the onCreate method, we instantiate
our objects and assign a value to hiScore:
//phase 4
//initialize our two SharedPreferences objects
prefs = getSharedPreferences(dataName,MODE_PRIVATE);
editor = prefs.edit();
hiScore = prefs.getInt(intName, defaultInt);

Chapter 5

[199]

7. The only thing that is different to what we have already learned is that we
need to consider where we put the code to test for a high score and where to
write to our file if appropriate. Consider this: eventually, every player must
fail. Furthermore, the point at which they fail is the point when their score is
at its highest, yet before it is reset when they try again. Place the following
code in the else block, which handles a wrong answer from the player. The
highlighted code is the new code; the rest is there to help you with the context:

} else {//wrong answer

 textWatchGo.setText("FAILED!");
 //don't checkElement anymore
 isResponding = false;

 //for our high score (phase 4)
 if(playerScore > hiScore) {
 hiScore = playerScore;
 editor.putInt(intName, hiScore);
 editor.commit();
 Toast.makeText(getApplicationContext(), "New Hi-
 score", Toast.LENGTH_LONG).show();
 }

}

Play the game and get a high score. Now quit the app or even restart the phone.
When you come back to the app, your high score is still there.

The code we added in this phase is nearly the same as the code we wrote in our
previous example of persistence, the only difference being that we wrote to the data
store when a new high score was achieved instead of when a button was pressed. In
addition, we used the editor.putInt method because we were saving an integer
instead of editor.putString when we were saving a string.

Gaming and Java Essentials

[200]

Animating our game
Before we go ahead, let's just think about animation. What is it exactly? The word
probably conjures up images of moving cartoon characters and in-game characters
of a video game.

We need to animate our buttons (make them move) to make it clear when they are
part of the sequence. We saw that simply making one disappear and then reappear
was inadequate.

The thought of controlling the movement of UI elements might make us imagine
complex for loops and per-pixel calculations.

Fortunately, Android provides us with the Animation class, which allows us to
animate UI objects without any such per-pixel awkwardness. Here is how it works.

Of course, to fully control the shape and size of in-game objects,
we must eventually learn to manipulate individual pixels and
lines. We will do so from Chapter 7, Retro Squash Game, onwards,
when we make a retro pong-style squash game.

UI animation in Android
Animations in the Android UI can be divided into three phases:

• Describing the animation in a file using a special syntax we will see shortly
• Referencing that animation by creating an object of it in our Java code
• Applying the animation to a UI element when the animation is required

to run

Let's take a look at some code that describes an animation. We will soon be reusing
this same code in our memory game. The purpose of showing it is not so much that
we understand each and every line of it. After all, learning Java should be enough
of an accomplishment without mastering this too. Moreover, the purpose is to
demonstrate that whatever animation you can describe can then be used in our
games using the same Java.

We can quickly search the Web to find the code to perform the following:

• Fading in and out
• Sliding
• Rotating

Chapter 5

[201]

• Expanding or shrinking
• Morphing color

Here is some code that causes a wobble effect. We will use it on a button, but you can
also use it on any UI element or even the whole screen:

<?xml version="1.0" encoding="utf-8"?>
<rotate xmlns:android="http://schemas.android.com/apk/res/android"
 android:duration="100"
 android:fromDegrees="-5"
 android:pivotX="50%"
 android:pivotY="50%"
 android:repeatCount="8"
 android:repeatMode="reverse"
 android:toDegrees="5" />

The first line simply states that this is a file written in XML format. The next states
that we will be performing a rotation. Then we state that the duration will be 100
milliseconds, the rotation will be from -5 degrees, the pivot will be on the x and y
axes by 50 percent, repeat eight times, and reverse to positive 5 degrees.

This is quite a mouthful, but the point is that it is easy to grab a template that works
and then customize it to fit our situation. We could save the preceding code with a
filename like wobble.xml.

Then we could simply reference it as follows:

Animation wobble = AnimationUtils.loadAnimation(this, R.anim.wobble);

Now we can play the animation like this on our chosen UI object, in this case our
button1 object:

button1.startAnimation(wobble);

Phase 5 – animating the UI
Let's add an animation that causes a button to wobble when a button sound is
played. At the same time, we can remove the code that makes the button invisible
and the code that makes it reappear. That wasn't the best way to do it, but it served
a purpose while developing the game:

1. We need to add a new folder to our project, called anim. So right-click on
the res folder in the Project Explorer window. Navigate to New | Android
resource directory and click on OK to create the new anim folder.

Gaming and Java Essentials

[202]

2. Now right-click on the anim folder and navigate to New | Animation
resource file. Enter wobble in the File name field and click on OK.
We now have a new file called wobble.xml open in the editor window.

3. Replace all but the first line of wobble.xml with this code:
<?xml version="1.0" encoding="utf-8"?>
<rotate xmlns﹕android="http﹕//schemas.android.com/apk/res/android"
 android﹕duration="100"
 android﹕fromDegrees="-5"
 android﹕pivotX="50%"
 android﹕pivotY="50%"
 android﹕repeatCount="8"
 android﹕repeatMode="reverse"
 android﹕toDegrees="5" />

4. Now switch to GameActivity.java.
5. Add the following code just after the declaration of our GameActivity class:

//phase 5 - our animation object
Animation wobble;

6. Just after the call to setContentView in our onCreate method, add this piece
of code:
//phase5 - animation
wobble = AnimationUtils.loadAnimation(this, R.anim.wobble);

7. Now, near the start of our thread code, find the calls to make our buttons
reappear. Comment them out like this:
//code not needed as using animations
//make sure all the buttons are made visible
//button1.setVisibility(View.VISIBLE);
//button2.setVisibility(View.VISIBLE);
//button3.setVisibility(View.VISIBLE);
//button4.setVisibility(View.VISIBLE);

8. Next, directly after our code in the previous step, within each of the four
case statements, we need to comment out the lines that call setVisibility
and replace them with our wobble animation. The following code is slightly
abbreviated but shows exactly where to comment and where to add the
new lines:
switch (sequenceToCopy[elementToPlay]){
 case 1:
 //hide a button - not any more
 //button1.setVisibility(View.INVISIBLE);
 button1.startAnimation(wobble);

Chapter 5

[203]

 ...
 ...
 case 2:
 //hide a button - not any more
 //button2.setVisibility(View.INVISIBLE);
 button2.startAnimation(wobble);
 ...
 ...
 case 3:
 //hide a button - not any more
 //button3.setVisibility(View.INVISIBLE);
 button3.startAnimation(wobble);
 ...
 ...
 case 4:
 //hide a button - not any more
 //button4.setVisibility(View.INVISIBLE);
 button4.startAnimation(wobble);

9. Finally, in our sequenceFinished method, we can comment out all the
setVisibility calls, just as we did in our thread, like this:
//button1.setVisibility(View.VISIBLE);
//button2.setVisibility(View.VISIBLE);
//button3.setVisibility(View.VISIBLE);
//button4.setVisibility(View.VISIBLE);

That was not too tough. We added the wobble animation to the anim folder, declared
an animation object, and initialized it. Then we used it whenever it was required on
the appropriate button.

There are obviously loads of improvements we could make to this game, especially
to its appearance. I'm sure you can think of more. And certainly, if this was to be
your app, you were trying to make it big on the Play Store. That is exactly what
you should do.

Constantly improve all aspects and strive to be the best in your genre. If you feel the
urge, then why not improve upon it?

Here are a few self-test questions that look at ways we could do more with some of
the examples from this chapter.

Gaming and Java Essentials

[204]

Self-test questions
Q1) Suppose that we want to have a quiz where the question could be to name the
president as well as capital city. How can we do this with multidimensional arrays?

Q2) In our Persistence example section, we saved a continually updating string to a
file so that it persisted after the app had been shut down and restarted. This is like
asking the user to click on a Save button. Summoning all your knowledge of Chapter
2, Getting Started with Android, can you think of a way to save the string without
saving it in the button click but just when the user quits the app?

Q3) Other than increasing the difficulty level, how could we increase the challenge of
our memory game for our players?

Q4) Using the plain Android UI with the dull grey buttons isn't very exciting. Take
a look at the UI elements in the visual designer and try and work out how we could
quickly improve the visual appearance of our UI.

Summary
That was a bit of a hefty chapter, but we learned lots of new techniques such as
storing and manipulating with arrays, creating and using sound effects, and saving
important data such as a high score, in our game. We also took a very brief look at
the powerful but simple-to-use Animation class.

In the next chapter, we will be taking a more theoretical approach, but we will have
plenty of working samples too. We will finally be opening the black box of Java
classes so that we can gain an understanding of what is going on when we declare
and use objects of a class.

OOP – Using Other
People's Hard Work

OOP stands for object-oriented programming. In this chapter, you don't need to
even try and remember everything. Why do I say this? Surely, that's what learning is.
The more important thing is to grasp the concepts and begin to understand the why
of OOP rather than memorize rules, syntax, and jargon.

The more important thing is to actually start to use some of the concepts, even
though you might have to keep referring back and your code might not properly
adhere to every OOP principal that we discuss. Neither does the code in this book.
The code in this chapter is here to help you explore and grasp the concepts of OOP.

If you try to memorize this chapter, you will have to make a lot of room in your brain,
and you will probably forget something really important in its place such as going to
work or thanking the author for telling you not to try and memorize this stuff.

A good goal will be to try and almost get it. Then we will start to recognize examples
of OOP in action so that our understanding becomes more rounded. You can then
often refer back to this chapter for a refresher.

So what is all this OOP stuff we will learn about? Actually, we have already learned
loads about OOP. Until now, we have been using classes such as Button, Random,
and Activity, overriding methods of classes (mainly onCreate) and using an
interface as well; remember implementing onClickListener a few times in the
first five chapters?

This chapter just helps to make sense of OOP and expands our understanding,
and finally, we will make our own classes.

OOP – Using Other People's Hard Work

[206]

Then we will be in a good position in the next two chapters to make two cool retro
arcade games using lots of other people's hard work. This chapter will be mainly
theory, but with a few practical console examples using LogCat so that we can see
OOP in action.

In this chapter, we will do the following:

• Look at what OOP is.
• Write our first class.
• Look at what encapsulation is and how we achieve it as well as look more

deeply at variables and the different types. We will also take a short break to
throw out the garbage.

• Learn about inheritance and how we can extend and even improve upon a
class before we use it.

• Take a look at polymorphism, which is a way of being more than one thing at
a time and is really useful in programming.

What is OOP?
OOP is a way of programming that involves breaking our requirements down into
chunks that are more manageable than the whole.

Each chunk is self-contained yet potentially reusable by other programs while
working together as a whole with the other chunks.

These chunks are what we have been referring to as objects. When we plan an object,
we do so with a class. A class can be thought of as the blueprint of an object.

We implement an object of a class. This is called an instance of a class. Think about a
house blueprint. You can't live in it, but you can build a house from it, which means
you build an instance of it. However, OOP is more than this. It is also a methodology
that defines best practices such as the following:

• Encapsulation: This means keeping the internal workings of your code
safe from interference from the programs that use it, and allowing only the
variables and methods you choose to be accessed. This means your code can
always be updated, extended, or improved without affecting the programs
that use it, as long as the exposed parts are still accessed in the same way.

• Inheritance: Just like it sounds, inheritance means we can harness all the
features and benefits of other people's hard work, including encapsulation
and polymorphism, while refining their code specifically for our situation.
Actually, we have done this already every time we used the extends keyword.

Chapter 6

[207]

• Polymorphism: This allows us to write code that is less dependent on
the types we are trying to manipulate, making our code clearer and more
efficient. Some examples later in the chapter will make this clear.

When we talk about using other people's hard work, we are not
talking about a magical way to abuse copyright and get away with it.
Some code is plain and simple, someone else's property. What we are
taking about is the vast array of free-to-use code, particularly in the
context of this book, in the Java and Android APIs. If you want some
code that does a certain thing, it has probably been done before. We
just have to find it, then use it or modify it.

Java was designed from the start with all of this in mind, so we are fairly significantly
constrained to using OOP. However, this is a good thing because we learn how to use
the best practices.

Why do it like this?
When written properly, all this OOP allows you to add new features without worrying
as much about how they interact with existing features. When you do have to change
a class, its self-contained nature means less, or perhaps zero, consequences for other
parts of the program. This is the encapsulation part.

You can use other people's code without knowing or perhaps even caring how it
works. Think about the Android lifecycle, buttons, threads, and so on. The Button
class is quite complicated, with nearly 50 methods—do we really want to write all
that just for a button?

OOP allows you to write apps for highly complex situations without breaking a sweat.
You can create multiple similar yet different versions of a class without starting the
class from scratch using inheritance, and you can still use the methods intended for
the original type of object with your new object because of polymorphism.

Makes sense, really! Let's write some classes and then make some objects out of them.

Our first class and first object
So what exactly is a class? A class is a bunch of code that can contain methods,
variables, loops, and all other types of Java syntax. A class is part of a package and
most packages will normally have multiple classes. Usually, but not always, each
new class will be defined in its own .java code file with the same name as the class.

OOP – Using Other People's Hard Work

[208]

Once we have written a class, we can use it to make as many objects from it as
we need. Remember, the class is the blueprint, and we make objects based on the
blueprint. The house isn't the blueprint just as the object isn't the class; it is an
object made from the class.

Here is the code for a class. We call it a class implementation:

public class Soldier {
 int health;
 String soldierType;

 void shootEnemy(){
 //bang bang
 }

}

The preceding snippet of code is a class implementation for a class called Soldier.
There are two variables, an int variable called health and a string variable
called soldierType.

There is also a method called shootEnemy. The method has no parameters and a
void return type, but class methods can be of any shape or size that we discussed
in Chapter 5, Gaming and Java Essentials.

When we declare variables in a class, they are known as fields. When the class is
instantiated into a real object, the fields become variables of the object itself, so we
call them instance variables. Whichever fancy name they are referred to by, they
are just variables of the class. However, the difference between fields and variables
declared in methods (called the local variables) becomes more important as we
progress. We will look at all types of variables again in the Variables revisited section.

Remember, this is just a class, not an object. It is a blueprint for a soldier, not an
actual soldier object. This is how we make an object of the Soldier type from
our Soldier class:

Soldier mySoldier = new Soldier();

In the first part of the code, Soldier mySoldier declares a new reference type
variable of type Soldier, called mySoldier, and in the last part of the code, new
Soldier() creates an actual Soldier object. Of course, the assignment operator, =, in
the middle of the two parts assigns the result of the second part to that of the first. Just
like regular variables, we could also have performed the preceding steps like this:

Soldier mySoldier;
mySoldier = new Soldier();

Chapter 6

[209]

This is how we would assign and use the variables:

mySoldier.health = 100;
mySoldier.soldierType = "sniper";
//Notice that we use the object name mySoldier.
//Not the class name Soldier.
//We didn't do this:
// Soldier.health = 100; ERROR!

In the preceding code snippet, the dot operator, ., is used to access the variables of
the class, and this is how we would call the method. Again, we use the object name
and not the class name, followed by the dot operator:

mySoldier.shootEnemy();

As a rough guide, a class's methods are what it can do and its
instance variables are what it knows about itself.

We can also go ahead by making another Soldier object and accessing its methods
and variables:

Soldier mySoldier2 = new Soldier();
mySoldier2.health = 150;
mySoldier2.soldierType = "special forces";
mySoldier2.shootEnemy();

It is important to realize that mySoldier2 is a totally separate object with totally
separate instance variables.

Also notice that everything is done on the object itself. We must create objects of
classes in order to make them useful.

As always, there are exceptions to this rule, but they are in the minority,
and we will look at the exceptions later in the chapter. In fact, we have
already seen an exception way back in Chapter 3, Speaking Java – Your
First Game. Think of Toast.

Let's explore basic classes a little more deeply.

OOP – Using Other People's Hard Work

[210]

Basic classes
What happens when we want an army of Soldier objects? We will instantiate
multiple objects. We will also demonstrate the use of the dot operator on variables
and methods, and show that different objects have different instance variables.

You can get the working project for this example in the code download. It is in the
chapter6 folder and is called simply BasicClasses. Or read on to create your own
working example:

1. Create a project with a blank activity, just as we did in Chapter 2, Getting
Started with Android. Clean up the code by deleting the unnecessary parts,
but this isn't essential. Call the application BasicClasses.

2. Now we create a new class called Soldier. Right-click on the com.
packtpub.basicclasses folder in the Project Explorer window. Click on
New, then on Java Class. In the Name field, type Soldier and click on
OK. The new class is created for us, with a code template ready to put our
implementation within, just like what is shown in the following screenshot:

3. Notice that Android Studio has put the class in the same package as the rest
of our app. Now we can write its implementation. Write the following class
implementation code within the opening and closing curly braces of the
Soldier class:
public class Soldier {
 int health;
 String soldierType;

 void shootEnemy(){
 //lets print which type of soldier is shooting

Chapter 6

[211]

 Log.i(soldierType, " is shooting");
 }
}

4. Now that we have a class, a blueprint for our future objects of the Soldier
type, we can start to build our army. In the editor window, click on the tab of
MainActivity.java. We will write this code, as so often, within the onCreate
method just after the call to setContentView:
//first we make an object of type soldier
 Soldier rambo = new Soldier();
 rambo.soldierType = "Green Beret";
 rambo.health = 150;// It takes a lot to kill Rambo

 //Now we make another Soldier object
 Soldier vassily = new Soldier();
 vassily.soldierType = "Sniper";
 vassily.health = 50;//Snipers have less armor

 //And one more Soldier object
 Soldier wellington = new Soldier();
 wellington.soldierType = "Sailor";
 wellington.health = 100;//He's tough but no green beret

This is a really good time to start taking advantage of the autocomplete
feature in Android Studio. Notice that after you have declared and
created a new object, all you have to do is begin typing the object's
name and all the autocomplete options will present themselves.

5. Now that we have our extremely varied and somewhat unlikely army, we
can use it and also verify the identity of each object. Type the following code
below the code in the previous step:
Log.i("Rambo's health = ", "" + rambo.health);
Log.i("Vassily's health = ", "" + vassily.health);
Log.i("Wellington's health = ", "" + wellington.health);

rambo.shootEnemy();
vassily.shootEnemy();
wellington.shootEnemy();

6. Now we can run our app on an emulator. Remember, all the output will be in
the LogCat console window.

OOP – Using Other People's Hard Work

[212]

This is how the preceding pieces of code work. In step 2, Android Studio created a
template for our new Soldier class. In step 3, we implemented our class in quite the
same way that we have before—two variables, an int and a string, called health
and soldierType, respectively.

We also have a method in our class called shootEnemy. Let's look at it again and
examine what is going on:

void shootEnemy(){
 //lets print which type of soldier is shooting
 Log.i(soldierType, " is shooting");
 }

In the body of the method, we print the soldierType string to the console first, and
then the arbitrary " is shooting" string. What's neat here is that the soldierType
string will be different depending on which object we call the shootEnemy method on.

In step 4, we declared, created, and assigned three new objects of type Soldier.
They where rambo, vassily, and wellington. In step 5, we initialized each with
a different value for health as well as soldierType.

Here is the output:

Rambo's health =﹕ 150

Vassily's health =﹕ 50

Wellington's health =﹕ 100

Green Beret﹕ is shooting

Sniper﹕ is shooting

Sailor﹕ is shooting

Notice that each time we access the health variable of each Soldier object, it is
printed to the value we assigned it, demonstrating that although the three objects
are of the same type, they are completely separate individual objects.

Perhaps more interesting are the three calls to shootEnemy. One call by each of
our Soldier objects' shootEnemy method is made, and we print the soldierType
variable to the console. The method has the appropriate value for each individual
object, further demonstrating that we have three distinct objects, albeit created from
the same Soldier class.

Chapter 6

[213]

More things we can do with our first class
We can treat a class much like other variables. Assuming we have already
implemented our Soldier class, we can make an array of Soldier objects like this:

//Declare an array called myArmy to hold 10 Soldier objects
Soldier [] myArmy = new Soldier[10];

//Then we can add the Soldier objects
//We use the familiar array notation on the left
//And the newly learnt new Soldier() syntax on the right
myArmy[0] = new Soldier();
myArmy[1] = new Soldier();
myArmy[2] = new Soldier();
myArmy[3] = new Soldier();
//Initialize more here
//..

Then we can use an object from an array using the same style of array notation as we
did for regular variables, like this:

myArmy[0].health = 125;
myArmy[0].soldierType = "Pilot";
myArmy[0].shootEnemy();
// Pilot: is shooting

We can also use a class as an argument in a method call. Here is a hypothetical call to
a healSoldier method:

healSoldier(rambo);
//Perhaps healSoldier could add to the health instance variable

Of course, the preceding example might raise questions like should the
healSoldier method be a method of a class?

someHospitalObjectPerhaps.healSoldier(rambo);

It could be or not (as shown in the previous example). It would depend
upon what is the best solution for the situation. We will look at more
OOP, and then the best solution for lots of similar conundrums should
present themselves more easily.

OOP – Using Other People's Hard Work

[214]

As you might have come to expect by now, we can use an object as the return value
of a method. Here is what the hypothetical healSoldier method might look like:

Soldier healSoldier(Soldier soldierToBeHealed){
 soldierToBeHealed.health++;

 return soldierToBeHealed;
}

All of this information will likely raise a few questions. OOP is like that, so to try and
consolidate all this class stuff with what we already know, let's take another look at
variables and encapsulation.

Encapsulation
So far, what we have really seen is what amounts to a kind of code-organizing
convention, although we did discuss the wider goals of all this OOP stuff. Now
we will take things further and begin to see how we actually manage to achieve
encapsulation with OOP.

Definition of encapsulation
As we have learned encapsulation means keeping the internal workings
of your code safe from interference from the programs that use it,
allowing only the variables and methods you choose to be accessed.
This means your code can always be updated, extended, or improved
without affecting the programs that use it, as long as the exposed parts
are still made available in the same way. It also allows the code that
uses your encapsulated code to be much simpler and easier to maintain
because much of the complexity of the task is encapsulated in your code.

But didn't I say that we don't have to know what is going on inside? So you might
question what we have seen so far. If we are constantly setting the instance variables
like this rambo.health = 100;, isn't it possible that eventually things could start to
go wrong, perhaps like the following line of code?

rambo.soldierType = "ballerina";

Chapter 6

[215]

Encapsulation protects your class from being used in a way that it wasn't meant
to be. By strictly controlling the way that your code is used, it can only ever do
what you want it to do, with values you can control. It can't be forced into errors
or crashes. Also, you are then free to make changes to the way your code works
internally, without breaking any programs that are using an older version of the
code or the rest of your program:

weighlifter.legstrength = 100;
weighlifter.armstrength = -100;
weightlifter.liftHeavyWeight();
//one typo and weightlifter rips own arms off

We can encapsulate our classes to avoid this, and here is how.

Controlling the use of classes with access
modifiers
The designer of the class controls what can be seen and manipulated by any
program that uses their class. We can add an access modifier before the class
keyword, like this:

public class Soldier{
 //Implementation goes here
}

There are two class access modifiers. Let's briefly look at each in turn:

• public: This is straightforward. A class declared as public can be seen by all
other classes.

• default: A class has default access when no access modifier is specified. This
will make it public but only to classes in the same package, and inaccessible
to all others.

Now we can make a start with this encapsulation thing. However, even at a glance,
the access modifiers described are not very fine-grained. We seem to be limited to
complete lockdown to anything outside the package or a complete free-for-all.

Actually, the benefits here are easily taken advantage of. The idea would be to
design a package that fulfills a set of tasks. Then all the complex inner workings of
the package, the stuff that shouldn't be messed with by anybody but our package,
should have default access (only accessible to classes within the package). We can
then provide a careful selection of public classes that can be used by others (or other
distinct parts of our program).

OOP – Using Other People's Hard Work

[216]

For the size and complexity of the games in this book,
multiple packages are almost certainly overkill.

Class access in a nutshell
A well-designed app will probably consist of one or more packages, each containing
only default or default and public classes.

In addition to class-level privacy controls, Java gives us very fine-grained controls,
but to use these controls, we have to look at variables in more detail.

Controlling the use of variables with access
modifiers
To build on class visibility controls, we have variable access modifiers. Here is a
variable with the private access modifier being declared:

private int myInt;

Note also that all of our discussion of variable access modifiers applies to object
variables too. For example, here is an instance of our Soldier class being declared,
created, and assigned. As you can see, the access specified in this case is public:

public Soldier mySoldier = new Soldier();

Before you apply a modifier to a variable, you must first consider the class visibility.
If class a is not visible to class b, say because class a has default access and class b is
in another package, then it doesn't make any difference what access modifiers you
use on the variables in class a; class b still can't see it.

Thus, it makes sense to show a class to another class when necessary, but you should
only expose the variables that are needed—not everything.

We have a bit more to cover on access modifiers, and then we will look at a few
examples to help clarify things. For now, here is an explanation of the different
variable access modifiers. They are more numerous and fine-grained than the class
access modifiers. Most of the explanations are straightforward, and the ones that
might raise questions will become clearer when we look at an example.

Chapter 6

[217]

The depth and complexity of access modification is not so much in the range of
modifiers, but by using them in smart ways, we can combine them to achieve the
worthy goals of encapsulation. Here are the variable access modifiers:

• public: You guessed it! Any class or method from any package can see this
variable. Use public only when you are sure that this is what you want.

• protected: This is the next least restrictive modifier after public. protected
Variables set as protected can be seen by any class and any method as long as
they are in the same package.

• default: This doesn't sound as restrictive as protected, but it is more so. A
variable has default access when no access is specified. The fact that default
is restrictive perhaps implies that we should be thinking on the side of hiding
our variables rather than exposing them. At this point, we need to introduce
a new concept. Do you remember that we briefly discussed inheritance, and
how we can quickly take on the attributes of a class and yet refine it using the
extends keyword? Just for the record, default access variables are not visible
to subclasses. This means that when we extend a class like we did with
Activity, we cannot see its default variables. We will look at inheritance in
more detail later in the chapter.

• private: These variables can only be seen within the class they are declared.
Like default access, they cannot be seen by subclasses (inherited classes).

Variable access in a nutshell
A well-designed app will probably consist of one or more packages, each containing
only default or default and public classes. Within these classes, variables will have
carefully chosen and most likely varied access modifiers.

There's one more twist in all this access modification stuff before we get practical
with it.

Methods have access modifiers too
It makes sense that methods are the things that our classes can do. We will want to
control what users of our class can and can't do. The general idea here is that some
methods will do things internally only and are therefore not needed by users of the
class, and some methods will be fundamental to how users use your class.

The access modifiers for methods are the same as those for the class variables. This
makes things easy to remember but suggests again that successful encapsulation is a
matter of design rather than any specific set of rules.

OOP – Using Other People's Hard Work

[218]

As an example, the method in the following code snippet, provided in a public class,
can be used by any other class:

public useMeEverybody(){
 //do something everyone needs to do here
}

However, the following method can only be used internally by the class that
created it:

private secretInternalTask(){
 //do something that helps the class function internally
 //Perhaps, if it is part of the same class,
 //useMeEverybody could use this method...
 //On behalf of the classes outside of this class.
 //Neat!
}

The next method has default visibility with no access specified. It can be used only
by other classes in the same package. If we extend the class containing this default
access method, the class will not have access to this method:

fairlySecretTask(){
 //allow just the classes in the package
 //Not for external use
}

Here is a last example before we move on. It contains a protected method, only
visible to the package, but usable by our classes that extend it:

protected familyTask(){
 //allow just the classes in the package
 //And you can use me if you extend me too
}

Method access in a nutshell
Method access should be chosen to best enforce the principles we have already
discussed. It should provide the users of your class with just the access they need,
and preferably nothing more. Thereby, we achieve our encapsulation goals such as
keeping the internal workings of your code safe from interference from the programs
that use it, for all the reasons we have discussed.

Chapter 6

[219]

Accessing private variables with the getter
and setter methods
So if it is best practice to hide our variables away as private, how do we allow access
to them without spoiling our encapsulation? What if an object of the Hospital class
wanted access to the health member variable from an object of type Soldier so that
it could increase it? The health variable should be private, right?

In order to be able to make as many member variables as possible private and yet
allow some kind of limited access to some of them, we use getters and setters.
Getters and setters are methods that just get and set variable values.

This is not some special or new Java thing we have to learn. It is just a convention
for the use of what we already know. Let's take a look at getters and setters using the
example of our Soldier and Hospital classes.

In this example, each of our two classes are created in their own file but the same
package. First of all, here is our hypothetical Hospital class:

class Hospital{
 private void healSoldier(Soldier soldierToHeal){
 int health = soldierToHeal.getHealth();
 health = health + 10;
 soldierToHeal.setHealth(health);
 }
}

Our implementation of the Hospital class has just one method, healSoldier. It
receives a reference to a Soldier object as a parameter, so this method will work on
whichever Soldier object is passed in: vassily, wellington, rambo, or whoever.

It also has a health variable. It uses this variable to temporarily hold and increase
the soldier's health. In the same line, it initializes the health variable to the Soldier
object's current health. The Soldier object's health is private, so the public getter
method is used instead.

Then health is increased by 10 and the setHealth setter method loads the new
health value back to the Soldier object.

The key here is that although a Hospital object can change a Soldier object's
health, it does so within the bounds of the getter and setter methods. The getter
and setter methods can be written to control and check for potentially erroneous
or harmful values.

OOP – Using Other People's Hard Work

[220]

Next comes our hypothetical Soldier class, with the simplest implementation
possible of it's getter and setter methods:

public class Soldier{
 private int health;
 public int getHealth(){
 return health;
 }

 public void setHealth(int newHealth){
 health = newHealth;
 }
}

We have one instance variable called health and it is private. Private means it can
only be changed by methods of the Soldier class. We then have a public getHealth
method, which unsurprisingly returns the value held in the private health variable
of the int type. As this method is public, anyone with access to the Soldier class
can use it.

Next, the setHealth method is implemented. Again it is public, but this time, it
takes int as a parameter and assigns whatever value is passed to the private health
variable. In a more life-like example, we would write some more code here to ensure
that the value passed is within the bounds we expect.

Now we will declare, create, and assign to make an object of each of our two new
classes and see how our getters and setters work:

Soldier mySoldier = new Soldier();
//mySoldier.health = 100;//Doesn't work private
//we can use the public setter setHealth()
mySoldier.setHealth(100);//That's better

Hospital militaryHospital = new Hospital();

//Oh no mySoldier has been wounded
mySoldier.setHealth(10);

//Take him to the hospital
//But my health variable is private
//And Hospital won't be able to access it
//I'm doomed - tell Laura I love her

//No wait- what about my public getters and setters?

Chapter 6

[221]

//We can use the public getters and setters from another class

militaryHospital.healSoldier(mySoldier);

//mySoldiers private variable health has been increased by 10
//I'm feeling much better thanks!

We see that we can call our public setHealth and getHealth methods directly on
our object of type Soldier. Not only that, we can also call the healSoldier method
of the Hospital object, passing in a reference to the Soldier object, which can use
the public getters and setters to manipulate the private health variable.

We see that the private health variable is simply accessible, yet totally within the
control of the designer of the Soldier class.

If you want to play around with this example, there is a working app in the code
bundle in the Chapter6 folder, called Getters And Setters. I have added a few
lines of code to print to the console. We deliberately covered this the way we did
to keep the key parts of the code as clear as possible. We will soon build some real
working examples that explore class, variable, and method access.

Getters and setters are sometimes referred to by their more
correct names, Accessors and Mutators. We will stick to
getters and setters. Just thought you might like to know.

Yet again, our example and the explanation are probably raising more questions.
That's good! Previously, I said that:

• There are two access modifiers for a class, default and public
• Objects of classes are a type of reference variable
• Variables (including objects) have even more access possibilities

We need to look more closely at reference and primitive variables as well as local
and instance variables. We will do so in a moment in the Variables revisited section. In
that section, we will consolidate our information further to get a tighter grip on this
OOP stuff. First let's remind ourselves of a bit about encapsulation.

Using encapsulation features (such as access control) is like signing a really
important deal about how to use and access a class, its methods, and its variables.
The contract is not just an agreement about the present but an implied guarantee for
the future. We will see that as we proceed through this chapter, there are more ways
that we refine and strengthen this contract.

OOP – Using Other People's Hard Work

[222]

It is perfectly possible to rewrite every example in this book without
thinking or caring about encapsulation. In fact, the projects in this book
outside of this chapter are quite lax about encapsulation.
Use encapsulation where it is needed or, of course, if you are being
paid to use it by an employer. Often encapsulation is overkill on small
learning projects, such as the games in this book, except when the topic
you are learning is encapsulation itself.
We are learning this Java OOP stuff under the assumption that you will
one day want to write much more complex apps, whether on Android
or some other platform that uses OOP.

Setting up our objects with constructors
With all of these private variables and their getters and setters, does it mean that we
need a getter and a setter for every private variable? What about a class with lots of
variables that need initializing at the start? Think about this:

mySoldier.name
mysoldier.type
mySoldier.weapon
mySoldier.regiment
...

We could go on like this. Some of these variables might need getters and setters,
but what if we just want to set things up when the object is first created to make the
object function correctly? Do we need two methods (a getter and a setter) for each?

For this, we have a special method called a constructor. Here, we create an object of
type Soldier and assign it to an object called mySoldier:

Soldier mySoldier = new Soldier();

There's nothing new here, but look at the last part of that line of code:

...Soldier();

This looks suspiciously like a method.

We have called a special method called a constructor that has been supplied
automatically for us by the compiler.

Chapter 6

[223]

However (and this is getting to the point now), like a method, we can override it,
which means we can do really useful things to set up our new object before it is
used and any of its methods are placed on the stack:

public Soldier(){
 health = 200;
 //more setup here
}

This is a constructor. It has a lot of syntactical similarities to a method. It can only
be run with the use of the new keyword. It is created for us automatically by the
compiler unless we create our own like in the previous code.

Constructors have the following properties:

• They have no return type
• They have the same name as the class
• They can have parameters
• They can be overloaded

We will play with constructors in the next demo.

Variables revisited
You probably remember, back in the math game project, that we kept changing
where we declared our variables. First, we declared some in onCreate, then we
moved them to just below the class declaration, and then we were making them
member or instance variables.

Because we didn't specify the access, they were of default access and visible to
the whole class, and as everything took place in the one class, we could access
them everywhere. For example, we could update our TextView type objects from
onClick, but why couldn't we do that when they were declared in onCreate?
Further explanation about when and how we can access different variables is
probably going to be useful.

The stack and the heap
The VM inside every Android device takes care of memory allocation to our games.
In addition, it stores different types of variables in different places.

Variables that we declare and initialize in methods are stored on the area of memory
known as the stack. We can stick to our warehouse analogy when talking about the
stack—almost. We already know how we can manipulate the stack.

OOP – Using Other People's Hard Work

[224]

Let's talk about the heap and what is stored there. All reference type objects, which
include objects (of classes) and arrays, are stored in the heap. Think of the heap as a
separate area of the same warehouse. The heap has lots of floor space for odd-shaped
objects, racks for smaller objects, lots of long rows with smaller sized cube-shaped
holes for arrays, and so on. This is where our objects are stored. The problem is that
we have no direct access to the heap.

Let's look again at what exactly a reference variable is. It is a variable that we refer
to and use via a reference. A reference can be loosely (but usefully) defined as an
address or location. The reference (address or location) of the object is on the stack.
When we use the dot operator, we are asking Dalvik to perform a task at a specific
location as stored in the reference.

Reference variables are just that—a reference. They are a way to access
and manipulate the object (variables or methods), but they are not the
actual variable. An analogy might be that primitives are right there (on
the stack) but references are an address, and we say what to do at the
address. In this analogy, all addresses are on the heap.

Why would we ever want a system like this? Just give me my objects on the
stack already!

A quick break to throw out the trash
Remember way back in the first chapter when I said Java was easier to learn than
some languages because it helps us manage the memory? Well, this whole stack
and heap thing does that for us.

As we know, the VM keeps track of all our objects for us and stores them in the
heap—a special area of our warehouse. Periodically, the VM will scan the stack,
or the regular racks of our warehouse, and match references to objects. If it finds
any objects without a matching reference, it destroys them. In Java terminology, it
performs garbage collection. Think of a very discriminating refuse vehicle driving
through the middle of our heap, scanning objects to match to references. No
reference? You're garbage now! After all, if an object has no reference variable, we
can't possibly do anything with it anyway. This system of garbage collection helps
our games run more efficiently by freeing unused memory.

So variables declared in a method are local, on the stack, and only visible within the
method they were declared. A member variable is on the heap and can be referenced
from any place where there is a reference to it, provided the access specification
allows the referencing.

Now we can take a closer look at the variable scope—what can be seen from where.

Chapter 6

[225]

There are more twists and turns to be learned with regard to variables. In the next
demo, we will explore all we have learned so far in this chapter and some new
ideas too.

We will look at the following topics:

• Static variables that are consistent (the same) across every instance of a class
• Static methods of a class where you can use the methods of a class without an

object of that class type
• We will demonstrate the scope of class and local variables, and where they

can and can't be seen by different parts of the program
• We will look at the this keyword, which allows us to write code that refers

to variables that belong to a specific instance of a class, but without keeping
track of which instance we are currently using

The following is the demo.

Access, scope, this, static, and constructors demo
We have looked at the intricate way by which access to variables and their scope
is controlled, and it would probably serve us well to look at an example of them in
action. These will not be very practical real-world examples of variable use, but more
of a demonstration to help understand access modifiers for classes, methods, and
variables, alongside the different types of variables such as reference (or primitive)
and local (or instance). Then we will cover the new concepts of static and final
variables and the this keyword. The completed project is in the Chapter6 folder of
the code download. It is called AccessScopeThisAndStatic. We will now perform
the following steps to implement it:

1. Create a new blank activity project and call it AccessScopeThisAndStatic.
2. Create a new class by right-clicking on the existing MainActivity class

in the Project Explorer and navigating to New | Class. Name the new
class AlienShip.

3. Now we declare our new class and some member variables. Note that
numShips is private and static. We will soon see how this variable is the same
across all instances of the class. The shieldStrength variable is private and
shipName is public:
public class AlienShip {
private static int numShips;
private int shieldStrength;
public String shipName;

OOP – Using Other People's Hard Work

[226]

4. Next is the constructor. We can see that the constructor is public, has no
return type, and has the same name as the class, as per the rules. In it,
we increment the private static numShips variable. Remember that this
will happen each time we create a new object of the AlienShip type. The
constructor also sets a value for the shieldStrength private variable using
the private setShieldStrength method:
public AlienShip(){
 numShips++;

 //Can call private methods from here because I am part
 //of the class
 //If didn't have "this" then this call might be less clear
 //But this "this" isn't strictly necessary
 this.setShieldStrength(100);
 //Because of "this" I am sure I am setting
 //the correct shieldStrength
}

5. Here is the public static getter method that classes outside AlienShip can
use to find out how many AlienShip objects are there. We will also see the
unusual way in which we use static methods:
 public static int getNumShips(){
 return numShips;

 }

6. The following code shows our private setShieldStrength method. We
could have just set shieldStrength directly from within the class, but this
code shows how we can distinguish between the shieldStrength local
variable/parameter and the shieldStrength member variable using the
this keyword:
private void setShieldStrength(int shieldStrength){
 //"this" distinguishes between the
 //member variable shieldStrength
 //And the local variable/parameter of the same name
 this.shieldStrength = shieldStrength;

}

7. This next method is the getter, so other classes can read but not alter the
shield strength of each AlienShip object:
public int getShieldStrength(){
 return this.shieldStrength;
}

Chapter 6

[227]

8. Now we have a public method that can be called every time an AlienShip
object is hit. It just prints to the console and then checks whether that
particular object's shieldStrength is zero. If it is zero, it calls the
destroyShip method, which we look at next:
public void hitDetected(){

 shieldStrength -=25;
 Log.i("Incomiming: ","Bam!!");
 if (shieldStrength == 0){
 destroyShip();
 }

}

9. Finally, we will look at the destroyShip method for our AlienShip class.
We print a message that indicates which ship has been destroyed, based on
its shipName, as well as increment the numShips static variable so that we can
keep track of the number of objects of the AlienShip type we have:
private void destroyShip(){
 numShips--;
 Log.i("Explosion: ", ""+this.shipName + " destroyed");
 }
}

10. Now we switch over to our MainActivity class and write some code that
uses our new AlienShip class. All of the code goes in the onCreate method
after the call to setContentView. First, we create two new AlienShip objects
called girlShip and boyShip:
//every time we do this the constructor runs
AlienShip girlShip = new AlienShip();
AlienShip boyShip = new AlienShip();

11. Look how we get the value in numShips. We use the getNumShips method as
we might expect. However, look closely at the syntax. We are using the class
name and not an object. We can also access static variables with methods that
are not static. We did it this way to see a static method in action:
//Look no objects but using the static method
Log.i("numShips: ", "" + AlienShip.getNumShips());

12. Now we assign names to our public shipName string variables:
//This works because shipName is public
girlShip.shipName = "Corrine Yu";
boyShip.shipName = "Andre LaMothe";

OOP – Using Other People's Hard Work

[228]

13. If we attempt to assign a value directly to a private variable, it won't work.
Therefore, we use the public getShieldStrength getter method to print the
value of shieldStrength, which was assigned to the constructor:
//This won't work because shieldStrength is private
//girlship.shieldStrength = 999;

//But we have a public getter
Log.i("girlShip shieldStrngth: ", "" + girlShip.
getShieldStrength());

Log.i("boyShip shieldStrngth: ", "" + boyShip.
getShieldStrength());

//And we can't do this because it's private
//boyship.setShieldStrength(1000000);

Finally, we get to blow some stuff up by playing with the hitDetected
method and occasionally checking the shield strength of our two objects:

//let's shoot some ships
girlShip.hitDetected();
Log.i("girlShip shieldStrngth: ", "" + girlShip.
getShieldStrength());

Log.i("boyShip shieldStrngth: ", "" + boyShip.
getShieldStrength());

boyShip.hitDetected();
boyShip.hitDetected();
boyShip.hitDetected();

Log.i("girlShip shieldStrngth: ", "" + girlShip.
getShieldStrength());

Log.i("boyShip shieldStrngth: ", "" + boyShip.
getShieldStrength());

boyShip.hitDetected();//ahhh

Log.i("girlShip shieldStrngth: ", "" + girlShip.
getShieldStrength());

Log.i("boyShip shieldStrngth: ", "" + boyShip.
getShieldStrength());

Chapter 6

[229]

14. When we think we have destroyed a ship, we again use our static
getNumShips method to check whether our static variable numShips
was changed by the destroyShip method:

Log.i("numShips: ", "" + AlienShip.getNumShips());

15. Run the demo and look at the console output.

Here is the output of the preceding blocks of code:

numShips﹕﹕ 2

girlShip shieldStrngth﹕﹕ 100

boyShip shieldStrngth﹕﹕ 100

Incomiming﹕﹕ Bam!!

girlShip shieldStrngth﹕﹕ 75

boyShip shieldStrngth﹕﹕ 100

Incomiming﹕﹕ Bam!!

Incomiming﹕﹕ Bam!!

Incomiming﹕﹕ Bam!!

girlShip shieldStrngth﹕﹕ 75

boyShip shieldStrngth﹕﹕ 25

Incomiming﹕﹕ Bam!!

Explosion﹕﹕ Andre LaMothe destroyed

girlShip shieldStrngth﹕﹕ 75

boyShip shieldStrngth﹕﹕ 0

numShips﹕﹕ 1

boyShip shieldStrngth﹕﹕ 0

numShips﹕﹕ 1

In the previous example, we saw that we can distinguish between local and member
variables of the same name using the this keyword. We can also use the this
keyword to write code that refers to the current object being acted upon.

We saw that a static variable, in this case numShips, is consistent across all
instances. Moreover, by incrementing it in the constructor and decrementing
it in our destroyShip method, we can keep track of the number of AlienShip
objects we created.

We also saw that we can use static methods by writing the class name with the dot
operator instead of an object.

OOP – Using Other People's Hard Work

[230]

Finally, we demonstrated how we could hide and expose certain methods and
variables using an access specifier.

Let's take a look at a quick review of the stack and the heap before we move on to
something new.

A quick summary on stack and heap
Let's look at what we learned about the stack and the heap:

• You don't delete objects but the VM sends the garbage collector when
it thinks it is appropriate. This is usually done when there is no active
reference to the object.

• Local variables and methods are on the stack, and local variables are local to
the specific method within which they were declared.

• Instance or class variables are on the heap (with their objects) but the
reference to the object (address) is a local variable on the stack.

• We control what goes inside the stack. We can use the objects on the heap but
only by referencing them.

• The heap is maintained by the garbage collector.
• An object is garbage collected when there is no longer a valid reference to it.

Therefore, when a reference variable, local or instance, is removed from the
stack, then its related object becomes viable for garbage collection, and when
the virtual machine decides the time is right (usually very promptly), it will
free the RAM memory to avoid running out.

• If we try to reference an object that doesn't exist, we will get a null pointer
exception and the game will crash.

Inheritance
We have seen how we can use other people's hard work by instantiating/creating
objects from the classes of an API such as that of Android, but this whole OOP thing
goes even further than that.

What if there is a class that has loads of useful functionality in it but not quite what
we want? We can inherit from the class and then further refine or add to how it
works and what it does.

Chapter 6

[231]

You might be surprised to hear that we have done this already. In fact, we have
done this with every single game and demo we looked at. When we use the extends
keyword, we are inheriting, for example, in this line of code:

public class MainActivity extends Activity ...

Here, we are inheriting the Activity class along with all its functionality, or more
specifically, all of the functionality that the class designers want us to have access to.
Here are some of the things we can do to classes we have extended.

We can override a method and still rely in part on the overridden method in the
class we inherit from. For example, we overrode the onCreate method every time
we extended the Activity class, but we also called the default implementation
provided by the class designers when we did this:

super.onCreate(...

In the next chapter, we will also be overriding some more methods of the Activity
class. Specifically, we'll override the methods that handle the lifecycle.

If we or the designer of a class wants to force us to inherit before we use their class,
they can declare a class as abstract. Then we cannot make an object from it. Therefore,
we must extend it first and make an object from the subclass. We will do this in our
inheritance example and discuss it further when we look at polymorphism.

We can also declare a method abstract, and that method must be overridden in any
class that extends the class with the abstract method. We will do this as well in our
inheritance example.

In our game projects, we will not be designing any classes that we will be extending.
We have no need of that in the context of learning about building simple games.
However, we will be extending classes designed by others in every future game.

We discuss inheritance mainly so that we understand what is going on around us
and as the first step towards being able to eventually design useful classes that we
or others can extend. With this in mind, let's make some simple classes and see how
we can extend them, just to play around with the syntax as a first step, and also to
be able to say we have done it. When we look at the last major topic of this chapter,
polymorphism, we will also dig a little deeper into inheritance.

OOP – Using Other People's Hard Work

[232]

An example of inheritance
We have looked at the way we can create hierarchies of classes to model the system
that fits our game or software project, so let's try out some simple code that uses
inheritance. The completed project is in the Chapter6 folder of the code download.
It is called InheritanceExample. We will now perform the following steps:

1. Create three new classes in the usual way. Call one AlienShip, another
Fighter, and the last one Bomber.

2. Here is the code for the AlienShip class. It is very similar to our previous
AlienShip class demo. The differences are that the constructor now takes an
int parameter, which it uses to set the shield strength. The constructor also
outputs a message to the console so that we can see when it is being used.
The AlienShip class also has a new method, fireWeapon, that is declared
abstract. This guarantees that any class that subclasses AlienShip must
implement their own version of fireWeapon. Notice that the class has the
abstract keyword as part of its declaration. We have to do this because
one of its methods also uses the keyword abstract. We will explain the
abstract method when discussing this demo and the abstract class when
we talk about polymorphism:
public abstract class AlienShip {
 private static int numShips;
 private int shieldStrength;
 public String shipName;

 public AlienShip(int shieldStrength){
 Log.i("Location: ", "AlienShip constructor");
 numShips++;
 setShieldStrength(shieldStrength);
 }

 public abstract void fireWeapon();//Ahh my body

 public static int getNumShips(){
 return numShips;
 }

 private void setShieldStrength(int shieldStrength){
 this.shieldStrength = shieldStrength;
 }

 public int getShieldStrength(){
 return this.shieldStrength;

Chapter 6

[233]

 }

 public void hitDetected(){
 shieldStrength -=25;
 Log.i("Incomiming: ", "Bam!!");
 if (shieldStrength == 0){
 destroyShip();
 }

 }

 private void destroyShip(){
 numShips--;
 Log.i("Explosion: ", "" + this.shipName + " destroyed");
 }

}

3. Now we will implement the Bomber class. Notice the call to super(100). This
calls the constructor of the superclass with the value for shieldStrength.
We could do further specific Bomber initialization in this constructor, but
for now, we just print the location so that we can see when the Bomber
constructor is being executed. We also implement a Bomber class-specific
version of the abstract fireWeapon method because we must do so:
public class Bomber extends AlienShip {

 public Bomber(){
 super(100);
 //Weak shields for a bomber
 Log.i("Location: ", "Bomber constructor");
 }

 public void fireWeapon(){
 Log.i("Firing weapon: ", "bombs away");
 }
}

OOP – Using Other People's Hard Work

[234]

4. Now we will implement the Fighter class. Notice the call to
super(400). This calls the constructor of the superclass with the value of
shieldStrength. We could do further Fighter class-specific initialization
in this constructor, but for now, we just print the location so that we can
see when the Fighter constructor is being executed. We also implement a
Fighter specific version of the abstract fireWeapon method because we
must do so:
public class Fighter extends AlienShip{

 public Fighter(){
 super(400);
 //Strong shields for a fighter
 Log.i("Location: ", "Fighter constructor");
 }

 public void fireWeapon(){
 Log.i("Firing weapon: ", "lasers firing");
 }

}

5. Here is our code in the onCreate method of MainActivity. As usual, we
enter this code after the call to setContentView. This is the code that uses
our three new classes. It looks quite ordinary, but there's nothing new; it is
the output that is interesting:
Fighter aFighter = new Fighter();
Bomber aBomber = new Bomber();

//Can't do this AlienShip is abstract -
//Literally speaking as well as in code
//AlienShip alienShip = new AlienShip(500);

//But our objects of the subclasses can still do
//everything the AlienShip is meant to do
aBomber.shipName = "Newell Bomber";
aFighter.shipName = "Meier Fighter";

//And because of the overridden constructor
//That still calls the super constructor
//They have unique properties
Log.i("aFighter Shield:", ""+ aFighter.getShieldStrength());

Chapter 6

[235]

Log.i("aBomber Shield:", ""+ aBomber.getShieldStrength());

 //As well as certain things in certain ways
 //That are unique to the subclass
 aBomber.fireWeapon();
 aFighter.fireWeapon();

 //Take down those alien ships
 //Focus on the bomber it has a weaker shield
 aBomber.hitDetected();
 aBomber.hitDetected();
 aBomber.hitDetected();
 aBomber.hitDetected();

Here is the output of the preceding snippets of code:

Location﹕﹕ AlienShip constructor

Location﹕﹕ Fighter constructor

Location﹕﹕ AlienShip constructor

Location﹕﹕ Bomber constructor

aFighter Shield﹕﹕ 400

aBomber Shield﹕﹕ 100

Firing weapon﹕﹕ bombs away

Firing weapon﹕﹕ lasers firing

Incomiming﹕﹕ Bam!!

Incomiming﹕﹕ Bam!!

Incomiming﹕﹕ Bam!!

Incomiming﹕﹕ Bam!!

Explosion﹕﹕ Newell Bomber destroyed

We can see how the constructor of the subclass can call the constructor of the
superclass. We can also clearly see that the individual implementations of the
fireWeapon method work exactly as expected.

As if OOP where not useful enough already! We can now model real-world objects
and design them to interact with each other. We have also seen how we can make
OOP even more useful by subclassing/extending/inheriting from other classes. The
terminology we might like to learn here is that the class that is extended from is the
superclass and the class that inherits from the superclass is the subclass. We can also
call them parent and child classes.

OOP – Using Other People's Hard Work

[236]

As usual, we might find ourselves asking this question about
inheritance: Why? We can write common code once, in the parent
class, and we can update that common code. All the classes that
inherit from it are also updated. Furthermore, a subclass only inherits
public instance variables and methods. When designed properly, this
further enhances the goals of encapsulation.

Polymorphism
Polymorphism roughly means different forms. But what does it mean to us?

In the simplest words possible, any subclass can be used as a part of the code that
uses the superclass.

For example, if we have an array of animals, we could put any object that is of a type
that is a subclass of Animal in the Animal array, perhaps cats and dogs.

This means that we can write code that is simpler and easier to understand
and modify:

//This code assumes we have an Animal class
//And we have a Cat and Dog class that extends Animal
Animal myAnimal = new Animal();
Dog myDog = new Dog();
Cat myCat = new Cat();
Animal [] myAnimals = new Animal[10];
myAnimals[0] = myAnimal;//As expected
myAnimals[1] = myDog;//This is OK too
myAnimals[2] = myCat;//And this is fine as well

We can also write code for the superclass and rely on the fact that no matter how
many times it is subclassed, within certain parameters, the code will still work.
Let's continue our previous example:

//6 months later we need elephants
//with its own unique aspects
//As long as it extends Animal we can still do this
Elephant myElephant = new Elephant();
myAnimals[3] = myElephant;//And this is fine as well

You can also write methods with polymorphic return types and arguments:

Animal feedAnimal(Animal animalToFeed){
 //Feed any animal here
 return animalToFeed;
}

Chapter 6

[237]

So you can even write code today and make another subclass in a week, month, or
year, and the very same methods and data structures will still work.

Further, we can enforce on our subclasses a set of rules as to what they can and
cannot do, and also how they should do it. Thus, good design in one stage can
influence our subclasses at other stages.

If you do suddenly find yourself with a flappy-bird-sized phenomenon, and you
have a lot of OOP in your code, right from the start, it will be much easier to bring
in hired help to move the project forward and still maintain control of the project.

What if you have an idea for a game with lots of features but you want to get a
simple version of the game out as soon as possible? Smart, object-oriented design
would certainly be the solution. It could enable you to write the working bare bones
of a game and then gradually extend it.

Moving on, let's look at another OOP concept: abstract classes. We can now get to the
bottom of what was going on with that AlienShip code:

public abstract class AlienShip{...

Abstract classes
An abstract class is a class that cannot be instantiated, or cannot be made into an
object. We mentioned that AlienShip was abstract in the previous example. So is it
a blueprint that will never be used then? But that's like paying an architect to design
your home and then never building it! I kind of got the idea of an abstract method
but this is just silly!

It might seem like this at first. We make a class abstract by declaring it with the
abstract keyword, like this:

abstract class someClass{
 //All methods and variables here as usual
 //Just don't try and make an object out of me!
}

But why?

Sometimes, we want a class that can be used as a polymorphic type but we need
to ensure that it can never be used as an object. For example, Animal doesn't really
make sense on its own.

We don't talk about animals; we talk about types of animals. We don't say, "Ooh,
look at that lovely, fluffy, white animal", or "Yesterday, we went to the pet shop and
got an animal and an animal bed." It's just too abstract.

OOP – Using Other People's Hard Work

[238]

So an abstract class is like a template to be used by any class that extends it
(inherits from it).

We might want a Worker class and extend to make classes such as Miner,
Steelworker, OfficeWorker, and of course Programmer. But what exactly
does a plain Worker class do? Why would we ever want to instantiate one?

The answer is that we wouldn't want to instantiate it, but we might want to use
it as a polymorphic type so that we can pass multiple worker subclasses between
methods and have data structures that can hold all types of workers.

We call this type of class an abstract class, and when a class has even one abstract
method, like AlienShip did, it must be declared abstract itself. As we saw, all
abstract methods must be overridden by any class that extends the abstract class.
This means that the abstract class can provide some of the common functionality that
would be available in all its subclasses. For example, the Worker class might have the
height, weight, and age member variables.

It might have the getPayCheck method, which is the same in all the subclasses,
and the doWork method, which is abstract and must be overridden because all
the different types of worker do work very differently.

This leads us neatly on to another area of polymorphism that deserves an honorable
mention because we have been using it in every game so far.

Interfaces
An interface is like a class. Phew! Nothing complicated here then. However, it's like a
class that is always abstract and with only abstract methods.

We can think of an interface as an entirely abstract class with all its methods abstract
too. Okay, so you can just about wrap your head round an abstract class because it
can at least pass on some functionality in its methods that are not abstract and serve
as a polymorphic type.

But seriously, this interface seems a bit pointless. Bear with me.

To define an interface, we type the following code:

public interface myInterface{
 void someAbstractMethod();//omg I've got no body
 int anotherAbstractMethod();//Ahh! Me too

//Interface methods are always abstract and public implicitly

Chapter 6

[239]

//but we could make it explicit if we prefer

 public abstract explicitlyAbstractAndPublicMethod();//still no body
though

}

The methods of an interface have no body because they are abstract, but they can still
have return types and parameters, or not.

To use an interface, we use the implements keyword after the class declaration.
Yes, we already did this for onClickListener a few times:

public class someClass implements someInterface{

//class stuff here

//better implement the methods of the interface or the red error lines
will not go away
 public void someAbstractMethod(){
 //code here if you like but just an empty implementation will do
 }

 public int anotherAbstractMethod(){
 //code here if you like but just an empty implementation will do

 //Must have a return type though as that is part of the contract
 return 1;}
}

This enables us to use polymorphism with multiple different objects that are from
completely unrelated inheritance hierarchies. As long as it implements an interface,
the whole thing can be passed along as if it is that thing, which it is. We can even
have a class implement multiple different interfaces at the same time. Just add a
comma between each interface and list them after the implements keyword. Just be
sure to implement all the necessary methods.

Let's go back to the onClickListener interface. Any thing might like to know
when it is being clicked on; a Button, a TextView, and so on. We don't want
different onClick methods for every type.

OOP – Using Other People's Hard Work

[240]

When using Android, for games or for more regular GUI-based apps
(a bit like ours so far), 9 times out of 10, you will be implementing
interfaces rather than writing your own. However, knowing what is
happening is quite important, not so much from a point of view of
technical awareness, as we have just seen that the interface specifies a
contract and the compiler enforces it, but more as a matter of sanity in
knowing what is actually happening when you use the implements
keyword and write a method (or methods) with a name that you
didn't choose.

More about OOP and classes
It is possible to write a whole book on OOP, and many authors have already done
so, but the best way to learn OOP is probably to practice it; practice it before we
have learned all of the theory. Anyway, before we get on with some more practical
examples, here is one more slightly theoretical OOP example that will leave us
scratching our heads later if not mentioned.

Inner classes
When we looked at our basic classes demo app, we declared and implemented the
class in a separate file to our MainActivity class. That file had the same name as
the class.

We can also declare and implement a class within a class. The only question
remaining, of course, is why would we do this? When we implement an inner
class, the inner class can access the member variables of the enclosing class and
the enclosing class can access the members of the inner class. We will see this in
action in the next two chapters.

If you are not modeling deep or real-world systems, then inner classes are often the
way to go. In fact, all the classes we will write ourselves in the rest of this book will
be extended inner classes. This means that we will extend a type to make our own
class within our Activity class. This makes our code nice and simple.

Chapter 6

[241]

Self-test questions
Q1) Find out what is wrong with this class declaration:

 private class someClass{
 //class implementation goes here
 }

Q2) What is encapsulation?

Q3) I don't get it all, and actually, I have more questions now than I had at the start
of the chapter. What should I do?

Summary
In this chapter, we covered more theory than in any other chapter. If you
haven't memorized everything, then you have succeeded completely. If you just
understand that OOP is about writing reusable, extendable, and efficient code
through encapsulation, inheritance, and polymorphism, then you have the potential
to be a Java master. Simply put, OOP enables us to use other people's hard work
even when those people were not aware of exactly what we would be doing at the
time they did the work. All you have to do is keep practicing, so let's make a retro
game in the next chapter.

Retro Squash Game
This chapter is where the fun starts. Although a retro squash game is obviously a
step or two down from the latest big-budget game, it is the point when we start to
look at some fundamentals—drawing, detecting when objects we have drawn bump
into each other, and having animation that is actually controlled by us.

Once you can draw a pixel and move it, it only needs a bit of imagination and
work and you have the potential to draw anything. Then, when we combine this
knowledge with some really simple math to simulate the physics of collision and
gravity, we will be close to being able to implement our squash game.

Sadly, this book does not have the time to go into the mathematics
of turning a dot on the screen into realistic three-dimensional
characters moving around in a three-dimensional world. Certainly, the
technology and math behind big-budget titles is very advanced and
complicated. However, the basics of turning pixels into lines and lines
into triangles, texturing a triangle, building objects out of triangles,
and positioning them in a three-dimensional world are within the
grasp of anybody who has learned high-school-level math. Often, we
hear that great graphics don't make a great game, which is true, but
great graphics (at least for me) are one of the most exciting aspects
of video games, even when they are displayed on a game that could
be more fun to play by itself. If you want to see how to turn pixels
into magical worlds, and start to appreciate what goes on behind the
scenes of the top game engines and graphics libraries, you could start
with Computer Graphics: Mathematical First Steps, P.A. Egerton and W.S
Hall, Prentice Hall.

Retro Squash Game

[244]

In this chapter, we will cover the following topics:

• Explore the Android Canvas class, which makes drawing easy and fun
• Write a simple Canvas demo app
• Learn about detecting touches on the screen
• Create the retro squash game
• Implement the retro squash game

Drawing with Android Canvas
So far, we have been using the Android UI designer to implement all our graphics.
This is fine when all we need are objects such as buttons and text.

It is true that there is more to the Android UI elements than we have explored so far.
For example, we know we can do a lot more with the Animation class, and we very
briefly saw that we can assign any image we like to represent one of the UI elements.

As an example, we could assign game characters such as spaceships to UI elements
and animate them.

However, if we want smoothly moving spaceships with accurate collision detection,
cute characters, and gruesome baddies with multiframe, cartoon-like animation, then
we are going to need to move away from predefined UI elements.

We are going to need to start looking at and designing with individual pixels, lines,
bitmaps, and sprite sheets. Fortunately, as you might have guessed, Android has
some classes to make this nice and easy for us. We will be learning how to get started
with the Canvas and Paint classes.

Bitmaps and sprite sheets will be covered in the next chapter. In this chapter, we will
learn how to draw pixels and lines to make a simple, smoothly moving pong-style
game of squash.

To achieve this, we will learn about the coordinate system we use to draw our pixels
and lines. Then we will look at the Paint and Canvas classes themselves.

Chapter 7

[245]

The Android coordinate system
A pixel is the smallest graphical element we can manipulate using the Paint and
Canvas classes. It is essentially a dot. If your device resolution is 1920 x 1080, like
some of the newer Google-branded tablets or high-end Samsung phones, then
we have 1920 pixels across the longest length of the device and 1080 pixels
across the width.

We can therefore think of our screen on which we will be drawing as a grid. We
draw using the Canvas and Paint classes on a virtual canvas. We will do so by
plotting points (pixels), lines, shapes, and text using coordinates on this grid.

The coordinate system starts in the top-left corner of the screen.

As an example, take a look at this line of code:

drawPoint(0, 0); //Not actual syntax (but very close)

In this, we would plot a single pixel in the top-left corner of the screen. Now look at
the following code:

drawPoint(1920, 1080); //Not actual syntax (but very close)

If we use it like this, we could draw a point in the bottom-right corner of one of these
high-end devices (while in the landscape position).

We could also draw lines by specifying a start and end coordinate position,
a bit like this:

drawLine(0,0,1920, 1080); //Not actual syntax (but very close)

This would draw a line from the top-left corner of the screen to the bottom right.

You might have noticed some potential problems. Firstly, not all Android devices
have such a high resolution; in fact, most are significantly lower. Even devices with
high resolution will have totally different coordinates when held in landscape or
portrait positions. How will we write code that adapts to these devices regardless of
the screen resolution? We will see the solution soon.

Retro Squash Game

[246]

Animating our pixels
Drawing shapes, lines, and pixels is all very well, but how do we make them appear
to move? We will be using the same animation trick used in cartoons, movies, and
other video games:

1. Draw an object.
2. Rub it out.
3. Draw the object in its new position.
4. Repeat fast enough to trick the player's brain that the game objects are moving.

The theory makes all of this sound more complicated than it is. Let's take a quick
look at the Paint and Canvas classes and a quick introductory demo app. Then we
can implement our retro squash game for real.

Getting started with Canvas and Paint
The aptly named Canvas class provides just what you would expect—a virtual
canvas to draw our graphics on.

We can make a virtual canvas using the Canvas class from any Android UI element.
In our demo app, we will draw on an ImageView, and when we make our game, we
will draw straight on a special type of view, which will bring some extra advantages,
as we will see.

To get started, we need a view to draw on. We already know how to get a view from
our UI layout using Java code:

ImageView ourView = (ImageView) findViewById(R.id.imageView);

This line of code grabs a reference to an ImageView placed in the UI design and
assigns it to our object in our Java code. As we have seen, the ImageView in the UI
design has an assigned ID of imageView, and our controllable ImageView object in
our Java code is called ourView.

Now we need a bitmap. A bitmap itself has a coordinate system like the screen. We
are creating a bitmap to turn it into a canvas:

Bitmap ourBitmap = Bitmap.createBitmap(300,600, Bitmap.Config.
ARGB_8888);

Chapter 7

[247]

The previous line of code declares and creates an object of the Bitmap type. It will have
a size of 300 by 600 pixels. We will keep this in mind when we draw on it shortly.

The last argument in the createBitmap method, Bitmap.Config.
ARGB_8888, is simply a format, and we can create some great games
without getting into the different options for bitmap formats.

Now we can prepare our bitmap for drawing by creating a Canvas object from it:

Canvas ourCanvas = new Canvas(ourBitmap);

Next, we get ourselves an object of the Paint type. We can think of this object as the
brush and the paint for our virtual canvas:

Paint paint = new Paint();

At this point, we are ready to use our Paint and Canvas objects to do some drawing.
The actual code to draw a pixel in the top-left corner of the screen will look like this:

ourCanvas.drawPoint(0, 0, paint);//How simple is that?

Let's now look at a working example.

Android Canvas demo app
Let's make an app that uses the Canvas and Paint classes and do a bit of drawing.
This example will be completely static (no animation), so we can clearly see how to
use Canvas and Paint without cluttering the code with things we will learn later.

In this demo app, we use some conceptually helpful variable names to help us grasp
the role that each object is playing, but we will go through the whole thing at the end
to make sure we know exactly what is going on at each stage. Of course, you don't
have to type all of this. You can open the completed code files from the CanvasDemo
folder in the Chapter7 folder of the download bundle:

1. Start a new project and call it CanvasDemo. Tidy up the unnecessary imports
and overrides if you want to.

2. Open activity_main.xml in the editor. Drag an ImageView from the
palette to the layout. The ImageView has an ID by default, which is
imageView. Now we will use this ID in our code.

Retro Squash Game

[248]

3. Switch to MainActivity.java in the editor. First, we will create our Bitmap,
Canvas, and Paint objects as we discussed earlier. Here is the first part of the
code. Enter it directly after the call to the setContentView method:
//Get a reference to our ImageView in the layout
ImageView ourFrame = (ImageView) findViewById(R.id.imageView);

//Create a bitmap object to use as our canvas
Bitmap ourBitmap = Bitmap.createBitmap(300,600, Bitmap.Config.
ARGB_8888);
Canvas ourCanvas = new Canvas(ourBitmap);

//A paint object that does our drawing, on our canvas
Paint paint = new Paint();

4. Here, we try out some of the cool things we can draw. Enter the code directly
after the code in the previous step:
//Set the background color
ourCanvas.drawColor(Color.BLACK);

//Change the color of the virtual paint brush
paint.setColor(Color.argb(255, 255, 255, 255));

//Now draw a load of stuff on our canvas
ourCanvas.drawText("Score: 42 Lives: 3 Hi: 97", 10, 10, paint);
ourCanvas.drawLine(10, 50, 200, 50, paint);
ourCanvas.drawCircle(110, 160, 100, paint);
ourCanvas.drawPoint(10, 260, paint);

//Now put the canvas in the frame
 ourFrame.setImageBitmap(ourBitmap);

5. Run the demo on an emulator or a device.

Chapter 7

[249]

Your output will look like what is shown in the following screenshot:

Let's go through the code again. In steps 1 and 2, we created a new project and
placed an ImageView object with an ID of imageView on our UI layout.

Retro Squash Game

[250]

In step 3, we started by getting a reference to the ImageView object in our layout.
However, we have done this often, usually with TextViews and Buttons. We
named our ImageView ourFrame because it will hold our canvas:

ImageView ourFrame = (ImageView) findViewById(R.id.imageView);

Then we created a bitmap to be used to make a canvas:

Bitmap ourBitmap = Bitmap.createBitmap(300,600, Bitmap.Config.
ARGB_8888);
Canvas ourCanvas = new Canvas(ourBitmap);

After that, we created our new Paint object:

Paint paint = new Paint();

In step 4, we were ready to draw, and we did so in a few different ways. First, we
painted the entire canvas black:

ourCanvas.drawColor(Color.BLACK);

Then we chose the color with which we will be painting. (255, 255, 255, 255) is
a numerical representation of white with full opacity (no transparency):

paint.setColor(Color.argb(255, 255, 255, 255));

Now we see something new, but it is quite easy to understand. We can also draw
strings of text to the screen and position that text at precise screen coordinates, just
like we can with a pixel.

You will notice that with the drawText method and all other drawing methods of
the Canvas class, we always pass our Paint object as an argument. Just to make
what is going on in the next line of code absolutely clear, I am stating that "Score:
42 Lives:3 Hi: 97" is the string that will be drawn on the screen, 10, 10 are the
screen coordinates, and paint is our Paint object:

ourCanvas.drawText("Score: 42 Lives: 3 Hi: 97", 10, 10, paint);

Next, we draw a line. The argument list here can be described as follows: (start x
coordinate, start y coordinate, end x coordinate, end y coordinate, our Paint object):

ourCanvas.drawLine(10, 50, 200, 50, paint);

Now we see that we can draw circles. We can also draw other shapes. The argument
list here can be described as follows: (start x coordinate, start y coordinate, radius of
circle, our Paint object):

ourCanvas.drawCircle(110, 160, 100, paint);

Chapter 7

[251]

Then we draw a humble, lonely pixel (point). The arguments we use are in this
format: (x coordinate, y coordinate, Paint object):

ourCanvas.drawPoint(10, 260, paint);

Finally, we place our bitmap canvas on our ImageView frame:

ourFrame.setImageBitmap(ourBitmap);

We still need to get smarter with managing screen resolution and orientation, and
we will do so in our retro squash game. Also, we need to look for a system that will
allow us to rub out and redraw our images at a set interval to create the illusion of
movement. Actually, we already know one such system. Think about how we might
use threads to achieve this illusion. First of all, let's take a look at how the player will
control the game. After all, we are not going to have any handy UI buttons to press
for this game.

Detecting touches on the screen
In our retro squash game, we will have no UI buttons, so we cannot use the
OnClickListener interface and override the onClick method. This is not a problem,
however. We will just use another interface to suit our situation. We will use
OnTouchListener and override the onTouchEvent method. It works a bit differently,
so let's take a look at implementing it before we dive into the game code.

We must implement the OnTouchListener interface for the activity we want to listen
to touches in, like this:

public class MainActivity extends Activity implements View.
OnTouchListener{

Then we can override the onTouchEvent method, perhaps a bit like this.

@Override
public boolean onTouchEvent(MotionEvent motionEvent) {
 float x = motionEvent.getX();
 float y = motionEvent.getY();
 //do something with the x and y values
 return false;
}

Retro Squash Game

[252]

The x variable will hold the horizontal value of the position on the screen that
was touched, and y will hold the vertical position. It is worth noting that the
motionEvent object parameter contains lots of information as well as the x and y
location, for example, whether the screen was touched or released. We can make
some really useful switch statements with this information, as we will see later.

Knowing exactly how we use this to achieve our goals in the squash game requires
us to first consider the design of the game.

Preparing to make the retro squash game
Now we are ready to discuss the making of our next game. We actually know
everything we need to. We just need to think about how to use the different
techniques we have learned.

Let's first look at exactly what we want to achieve so that we have something to
aim for.

The design of the game
Let's look at a screenshot of the game as a good starting point. When you design your
own games, drawing sketches of the in-game objects and mechanics of the game will
be an invaluable part of the design process. Here, we can cheat a bit by taking a look
at the end result.

Chapter 7

[253]

The UI
Starting from the top, we have Score. Every time the player successfully hits the ball,
a point is added. Next, we have Lives. The player starts with three lives, and every
time they let a ball go past their racket, they lose one life. When the player has zero
lives, their score is set to zero, lives are set back to three, and the game begins again.
Next to this, we have FPS. FPS stands for frames per second. It would be nice if we
monitor on the screen the number of times our screen is being redrawn every second,
as this is the first time we are animating our very own graphics.

Approximately in the middle of the previous screenshot is the ball. It is a square ball,
in keeping with the traditional pong style. Squares are also easier when you have to
perform realistic-looking collision detection.

Physics
We will detect when the ball hits any of the four sides of the screen as well as when it
hits the racket. Depending on what the ball hits and its current direction at the time
of the collision, we will determine what happens to the ball. Here is a rough outline
of what each type of collision will do:

• Hit the top of the screen: The ball will maintain the same horizontal (x)
direction of travel but reverse the vertical (y) direction of travel.

• Hit either side of the screen: The ball will maintain its y direction of travel
but reverse its x direction.

• Hit the bottom of the screen: The ball will disappear and restart at the top
of the screen with a downward y direction of travel and a random x direction
of travel.

• Hit the player's racket: We will check whether the ball has hit the left or the
right of the racket and alter the x direction of travel to match. We will also
reverse the y direction of travel to send the ball back to the top again.

By enforcing these crude virtual rules of physics, we can simply create a ball that
behaves almost as we would expect a real ball to do. We will add a few properties
such as slightly increasing the ball speed after hitting the racket. These rules will
work just as well in portrait or landscape orientations.

The player's racket will be a simple rectangle that the player can slide left by holding
anywhere on the left half of the screen, and right by holding anywhere on the right
of the screen.

Retro Squash Game

[254]

For brevity, we will not be making a main menu screen to implement high scores.
In our final game, which we start in the next chapter, we will go ahead and have an
animated menu screen, online high scores, and achievements. However, this squash
game will simply restart when the player reaches zero lives.

The structure of the code
Here, we will take a quick theoretical look at some aspects of the implementation
that might be raising questions. When we finally get down to the implementation,
we should find most of the code quite straightforward, with only a few bits that
might need extra explanation.

We have discussed everything we need to know, and we will also discuss specifics in
the code as we go through the implementation. We will go over the trickier parts of
the code at the end of each phase of implementation.

As usual, all the completed code files can be found in the download bundle. The files
encompassing all the phases of this project are in the Chapter7/RetroSquash folder.

We have learned that in an application using classes and their methods, different
parts of the code will be dependent on other parts. Therefore, rather than jumping
back and forth in the code, we will lay it out from the first line to the last in order.
Of course, we will also refer to the related parts of code as we go along. I definitely
recommend studying the code in its entirety to fully grasp what is going on and
which parts of the code call which other parts.

To prevent this implementation from spreading into an enormous to-do list, it has
been broken into four phases. This should provide convenient places to stop and
take a break.

There is no layout file and only one .java file. This file is called MainActivity.
java. The MainActivity.java file has a structure as indicated in the following
overview of the code. I have indented some parts to show what parts are enclosed
within others. This is a high-level view, and it omits quite a lot of detail:

Package name and various import statements
MainActivity class starts{
 Declare some member variables
 OnCreate method{
 Initialization and setup
 }
 SquashCourtView class{
 Constructor

Chapter 7

[255]

 Multiple methods of SquashCourtView
 }
 Some Android lifecycle method overrides
}

As previously stated, we can see that everything is in the MainActivity.java file.
As usual, at the top of our file, we will have a package name and a load of imports
for the different classes we will be using.

Next, as per all our other projects, we have the MainActivity class. It encompasses
everything else, even the SquashCourtView class. This makes the SquashCourtView
class an inner class and will therefore be able to access the member variables of the
MainActivity class, which will be essential in this implementation.

Before the SquashCourtView class, however, comes the declaration of all the member
variables in the MainActivity class, followed by a fairly in-depth onCreate method.

We could implement the other Android lifecycle methods next, and you are welcome
to do so. However, the code within the other Android lifecycle methods will make
more sense once we have seen the code in the SquashCourtView class methods.

After onCreate, we will implement the SquashCourtView class. This has some fairly
long methods in it, so we will break it into phases 2 and 3.

Finally, we will implement the remaining Android lifecycle methods. They are short
but important.

The four implementation phases in detail
Let's take an even closer look at the implementation before we actually get to it. Here
is how we will divide the implementation into the four phases, this time with a bit
more detail as to what to expect in each:

• Phase 1 – MainActivity and onCreate: In this phase, we will create the
project itself as well as implement the following steps:

 ° We will add our imports and create the body of our MainActivity
class

 ° Within this, we will declare the member variables that the game needs
 ° We will implement our onCreate method, which does loads of setup

work but nothing that is hard to understand

Retro Squash Game

[256]

• Phase 2 – SquashCourtView part 1: In this phase, we will start work on our
key class, SquashCourtView. Specifically, we will:

 ° Implement the declaration of the SquashCourtView class and its
member variables.

 ° Write a simple constructor.
 ° Implement the run method to control the flow of the game.
 ° Implement the lengthy but fairly easy-to-understand updateCourt

method. This is the method that handles collision detection and keeps
track of our ball and racket.

• Phase 3 – SquashCourtView part 2: In this phase, we will finish the
SquashCourtView class by implementing the following:

 ° The drawCourt method, which unsurprisingly does all the drawing
 ° The controlFPS method, which makes the game run at similar

speeds on devices that have different CPUs
 ° Next, we will quickly write a couple of methods that help the

Android lifecycle methods with similar names—the pause and
resume methods

 ° Finally for this phase, we will easily handle the touch controls of the
game by overriding the onTouchEvent method we looked at earlier

• Phase 4 – Remaining lifecycle methods: In this short phase we will add the
finishing touches:

 ° Quickly implement what happens in the onPause, onResume, and
onStop methods by overriding them

 ° We will also handle what happens when the player presses the back
button on their phone or tablet

Phase 1 – MainActivity and onCreate
Now that we have seen what we will do in each of the phases, let's actually get
started with building our game by performing the following steps:

1. Create a new project, just as we have before, but with one slight difference.
This time, on the New Project dialog, change Minimum required SDK to
API 13: Android 3.2 (Honeycomb). Call the project RetroSquash. Delete the
unnecessary overridden methods if you like.

Chapter 7

[257]

2. Edit the AndroidManifest.xml file, just as we did at the end of Chapter 4,
Discovering Loops and Methods, to make the app use the full screen. Check
back for full details if needed. Note that we are not locking orientation
because this game is fun in both portrait and landscape. Here is the
line of code to add:
android:theme="@android:style/Theme.NoTitleBar.Fullscreen">

3. Make some sound effects using Bfxr, as we did in Chapter 5, Gaming and
Java Essentials. Four will be enough, but there is nothing stopping you from
adding more sounds. For authentic 1970s-style sounds, try the Blip/Select
button shown in the following screenshot. Name the samples sample1.
ogg, sample2.ogg, sample3.ogg, and sample4.ogg. Or you can just use my
samples. They are in the assets folder of the folder named RetroSquash in
the code bundle.

4. In Project Explorer, create a directory called assets within the main
directory. Copy the four sound files you created in the previous step
to the newly created assets folder.

5. Type the following import statements at the top of the MainActivity.java
file but just after your package name, as shown in the following code:
package com.packtpub.retrosquash.app;

import android.app.Activity;
import android.content.Context;
import android.content.res.AssetFileDescriptor;
import android.content.res.AssetManager;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Point;
import android.media.AudioManager;
import android.media.SoundPool;
import android.os.Bundle;
import android.view.Display;
import android.view.KeyEvent;
import android.view.MotionEvent;
import android.view.SurfaceHolder;
import android.view.SurfaceView;
import java.io.IOException;
import java.util.Random;

Retro Squash Game

[258]

6. Now type your class declaration and declare the following member variables.
We will discuss the member variables in detail at the end of this phase:
public class MainActivity extends Activity {

 Canvas canvas;
 SquashCourtView squashCourtView;

 //Sound
 //initialize sound variables
 private SoundPool soundPool;
 int sample1 = -1;
 int sample2 = -1;
 int sample3 = -1;
 int sample4 = -1;

 //For getting display details like the number of pixels
 Display display;
 Point size;
 int screenWidth;
 int screenHeight;

 //Game objects
 int racketWidth;
 int racketHeight;
 Point racketPosition;

 Point ballPosition;
 int ballWidth;

 //for ball movement
 boolean ballIsMovingLeft;
 boolean ballIsMovingRight;
 boolean ballIsMovingUp;
 boolean ballIsMovingDown;

 //for racket movement
 boolean racketIsMovingLeft;
 boolean racketIsMovingRight;

 //stats
 long lastFrameTime;
 int fps;
 int score;
 int lives;

Chapter 7

[259]

7. Next, we will enter the onCreate method in its entirety. We are initializing
many of the member variables that we declared in the previous step, as
well as creating an object from our SquashCourtView class, which we will
begin to implement in the next phase. Perhaps the most notable line in this
block of code is the somewhat different call to setContentView. Look at the
argument for setContentView. We will learn more about this argument at
the end of this phase. This phase also sets up SoundPool and loads the sound
samples. Type the first part of the onCreate code:
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 squashCourtView = new SquashCourtView(this);
 setContentView(squashCourtView);

 //Sound code
 soundPool = new SoundPool(10,
 AudioManager.STREAM_MUSIC, 0);
 try {
 //Create objects of the 2 required classes
 AssetManager assetManager = getAssets();
 AssetFileDescriptor descriptor;

 //create our three fx in memory ready for use
 descriptor =
 assetManager.openFd("sample1.ogg");
 sample1 = soundPool.load(descriptor, 0);

 descriptor =
 assetManager.openFd("sample2.ogg");
 sample2 = soundPool.load(descriptor, 0);

 descriptor =
 assetManager.openFd("sample3.ogg");
 sample3 = soundPool.load(descriptor, 0);

 descriptor =
 assetManager.openFd("sample4.ogg");
 sample4 = soundPool.load(descriptor, 0);

 } catch (IOException e) {
 //catch exceptions here
 }

Retro Squash Game

[260]

8. Now we initialize the variables we created earlier. Notice that there are some
good potential candidates for a bit of encapsulation. However, to keep the
code readable, we will not do so at this stage. Enter this code:
 //Could this be an object with getters and setters
 //Don't want just anyone changing screen size.
 //Get the screen size in pixels
 display = getWindowManager().getDefaultDisplay();
 size = new Point();
 display.getSize(size);
 screenWidth = size.x;
 screenHeight = size.y;

 //The game objects
 racketPosition = new Point();
 racketPosition.x = screenWidth / 2;
 racketPosition.y = screenHeight - 20;
 racketWidth = screenWidth / 8;
 racketHeight = 10;

 ballWidth = screenWidth / 35;
 ballPosition = new Point();
 ballPosition.x = screenWidth / 2;
 ballPosition.y = 1 + ballWidth;

 lives = 3;

 }

Phase 1 code explained
Let's look at what we did. From steps 1 to 4, we simply created a project and some
sound files. Then we added the sound files to the assets folder as we have done
before on other projects. In step 5, we added all the necessary imports for the classes
we will be using.

In step 6, we created a whole load of member variables. Let's take a closer look at
them. We declared an object of the Canvas type called canvas. We will use this object
to set up our drawing system. We also declared an instance of SquashCourtView
called squashCourtView. This will be underlined as an error because we haven't
implemented the class yet.

Chapter 7

[261]

Here, we declared and initialized variables to be references to our sound files, just as
we did in other projects. After this, we did something new:

//For getting display details like the number of pixels
Display display;
Point size;
int screenWidth;
int screenHeight;

We declared a Display object and a Point object. We see these in action in our
onCreate method in a minute, alongside the two int variables, screenWidth and
screenHeight. We use them to get the screen size in pixels so that we can make our
game work on a screen with any resolution.

Here, we declared some variables whose purpose is plain from their names.
Their actual usage becomes clearer when we initialize them in step 8 and use
them throughout our SquashCourtView class:

//Game objects
int racketWidth;
int racketHeight;
Point racketPosition;

Point ballPosition;
int ballWidth;

Here, we have a bunch of Boolean variables to control the logic of the movement
of both the racket and the ball. Notice that there is a variable for each possible
direction for both the racket and the ball. Notice also that the racket can move in two
directions—left and right—and the ball in four. Of course, the ball can travel in two
directions at the same time. All will become clear when we write the updateCourt
method in phase 2. Here is that code again:

//for ball movement
boolean ballIsMovingLeft;
boolean ballIsMovingRight;
boolean ballIsMovingUp;
boolean ballIsMovingDown;

//for racket movement
 boolean racketIsMovingLeft;
 boolean racketIsMovingRight;

Retro Squash Game

[262]

In the last part of step 6, we declared two fairly obvious variables, lives and score. But
what about lastFrameTime and fps? These will be used in the controlFPS method,
which we will write in phase 3. They will be used along with some local variables to
measure how fast our game loop runs. We can then lock it to run at a consistent rate so
that players on devices with different CPU speeds get a similar experience.

In step 7, we entered the onCreate method, but this time, things are different. We
initialize squashCourtView as a new SquashCourtView object. It's fine so far, but
then we seem to be telling setContentView to make this the entire view that the
player will see, instead of the usual view created in the Android Studio designer,
which we have become used to. We are not using any Android UI components in
this game, so the visual designer and all of its generated XML are of no use to us. As
you will see right at the start of phase 2, our SquashCourtView class extends (inherits
from) SurfaceView.

We created an object with all the facilities of a SurfaceView. We will just customize
it to play our squash game. Neat! Therefore, it is perfectly acceptable and logical to
set our squashCourtView object as the entire view that the player will see:

squashCourtView = new SquashCourtView(this);
setContentView(squashCourtView);

We then set up our sound effects as we have done before.

In step 8, we initialized many of the variables that we declared in step 6. Let's look at
the values and the order in which we initialized them. You might have noticed that
we don't initialize every variable here; some will be initialized later. Remember that
we don't have to initialize member variables and that they also have default values.

In the following code, we get the number of pixels (wide and high) for the device.
The display object holds the details of the display after the first line has been
executed. Then we create a new object called size of the Point type. We send size
as an argument to the display.getSize method. The Point type has an x and
y member variable, and so does the size object, which now holds the width and
height (in pixels) of the display. These values are then assigned to screenWidth
and screenHeight respectively. We will use screenWidth and screenHeight quite
extensively in the SquashCourtView class:

display = getWindowManager().getDefaultDisplay();
size = new Point();
display.getSize(size);
screenWidth = size.x;
screenHeight = size.y;

Chapter 7

[263]

Next, we initialize the variables that determine the size and position of the ball and
racket. Here, we initialize our racketPosition object, which is of the Point type.
Remember that it has an x and a y member variable:

racketPosition = new Point();

We initialize racketPosition.x to be whatever the current screen width in pixels
might be, but divided by two, so the racket will start in a horizontal and central
position regardless of the resolution of the screen:

racketPosition.x = screenWidth / 2;

In the next line of code, racketPosition.y is put at the bottom of the screen with a
small 20-pixel gap:

racketPosition.y = screenHeight - 20;

We make the width of the racket to one-eighth the width of the screen. We will see
when we get to run the game that this is a fairly effective size, but we could make
it bigger by dividing it by a lower number, or smaller by dividing it by a larger
number. The point is that it will be the same fraction of screenWidth regardless
of the resolution of the device:

racketWidth = screenWidth / 8;

In the following line of code, we choose an arbitrary height for our racket:

racketHeight = 10;

Then we make our ball as small as 1/35th of the screen. Again, we could make it
larger or smaller:

ballWidth = screenWidth / 35;

In the next line of code, we will create a new point object to hold the position of
the ball:

ballPosition = new Point();

As we did with the racket, we start the ball in the center of the screen, like this:

ballPosition.x = screenWidth / 2;

However, we set it to start at the top of the screen just far enough to see the top of
the ball:

ballPosition.y = 1 + ballWidth;

Retro Squash Game

[264]

The player starts the game with three lives:

lives = 3;

Phew! That was a fairly chunky section. Take a break if you like, and then we will
move on to phase 2.

Phase 2 – SquashCourtView part 1
Finally, we get to the secret weapon of our game—the SquashCourtView class.
The first three methods are presented here, and explained more fully once we
have implemented them:

1. Here is a class declaration that extends SurfaceView, giving our class all
the methods and properties of SurfaceView. It also implements Runnable,
which allows it to run in a separate thread. As you will see, we will put the
bulk of the functionality in the run method. After the declaration, we have
a constructor. Remember that the constructor is a method that has the same
name as the class and is called when we initialize a new object of its type.
The code in the constructor initializes some objects and then sends the ball
off in a random direction. We will look at that part in detail after we have
implemented this phase. Enter the following code before the closing curly
brace of the MainActivity class:
class SquashCourtView extends SurfaceView implements Runnable {
 Thread ourThread = null;
 SurfaceHolder ourHolder;
 volatile boolean playingSquash;
 Paint paint;

 public SquashCourtView(Context context) {
 super(context);
 ourHolder = getHolder();
 paint = new Paint();
 ballIsMovingDown = true;

 //Send the ball in random direction
 Random randomNumber = new Random();
 int ballDirection = randomNumber.nextInt(3);
 switch (ballDirection) {
 case 0:
 ballIsMovingLeft = true;
 ballIsMovingRight = false;

Chapter 7

[265]

 break;

 case 1:
 ballIsMovingRight = true;
 ballIsMovingLeft = false;
 break;

 case 2:
 ballIsMovingLeft = false;
 ballIsMovingRight = false;
 break;
 }

 }

2. Now we have this short and sweet overriding of the run method. Remember
that the run method contains the functionality of the thread. In this case, it
has three calls, one to each of updateCourt, drawCourt, and controlFPS, the
three key methods of our class. Enter this code:
@Override
 public void run() {
 while (playingSquash) {
 updateCourt();
 drawCourt();
 controlFPS();

 }

 }

3. We will implement just one more method in this phase (updateCourt),
but it is quite long. We will split it into chunks and briefly mention what is
going on in each chunk before we type the code. We will perform a closer
examination of how it works when the phase is implemented. In this next
chunk of code, we handle the left and right movement of the racket as well
as detecting and reacting when the ball hits either the left or the right of the
screen. Enter the following code after the code from the previous step:
public void updateCourt() {
 if (racketIsMovingRight) {
 racketPosition.x = racketPosition.x + 10;
 }

 if (racketIsMovingLeft) {

Retro Squash Game

[266]

 racketPosition.x = racketPosition.x - 10;
 }

 //detect collisions

 //hit right of screen
 if (ballPosition.x + ballWidth > screenWidth) {
 ballIsMovingLeft = true;
 ballIsMovingRight = false;
 soundPool.play(sample1, 1, 1, 0, 0, 1);
 }

 //hit left of screen
 if (ballPosition.x < 0) {
 ballIsMovingLeft = false;
 ballIsMovingRight = true;
 soundPool.play(sample1, 1, 1, 0, 0, 1);
 }

4. In this next chunk of code, we check whether the ball has hit the bottom of
the screen, that is, the player has failed to return the ball. Enter this code
directly after the code in the previous step:
//Edge of ball has hit bottom of screen
 if (ballPosition.y > screenHeight - ballWidth) {
 lives = lives - 1;
 if (lives == 0) {
 lives = 3;
 score = 0;
 soundPool.play(sample4, 1, 1, 0, 0, 1);
 }
 ballPosition.y = 1 + ballWidth;//back to top of
 screen

 //what horizontal direction should we use
 //for the next falling ball
 Random randomNumber = new Random();
 int startX =
 randomNumber.nextInt(screenWidth -
 ballWidth) + 1;
 ballPosition.x = startX + ballWidth;

 int ballDirection =
 randomNumber.nextInt(3);
 switch (ballDirection) {

Chapter 7

[267]

 case 0:
 ballIsMovingLeft = true;
 ballIsMovingRight = false;
 break;

 case 1:
 ballIsMovingRight = true;
 ballIsMovingLeft = false;
 break;

 case 2:
 ballIsMovingLeft = false;
 ballIsMovingRight = false;
 break;
 }
 }

5. In this chunk of code, we handle whether the ball has hit the top of the screen.
We also calculate all the possible movements of the ball for this frame. Now
type the following code:
//we hit the top of the screen
 if (ballPosition.y <= 0) {
 ballIsMovingDown = true;
 ballIsMovingUp = false;
 ballPosition.y = 1;
 soundPool.play(sample2, 1, 1, 0, 0, 1);
 }

 //depending upon the two directions we should
 //be moving in adjust our x any positions
 if (ballIsMovingDown) {
 ballPosition.y += 6;
 }

 if (ballIsMovingUp) {
 ballPosition.y -= 10;
 }

 if (ballIsMovingLeft) {
 ballPosition.x -= 12;
 }

 if (ballIsMovingRight) {
 ballPosition.x += 12;
 }

Retro Squash Game

[268]

6. Finally, we handle collision detection and the reaction of the racket and the
ball. We also close the updateCourt method, and this is the last chunk of code
for this phase. Enter the following after your code from the previous step:
//Has ball hit racket
 if (ballPosition.y + ballWidth >=
 (racketPosition.y - racketHeight / 2)) {
 int halfRacket = racketWidth / 2;
 if (ballPosition.x + ballWidth >
 (racketPosition.x - halfRacket)
 && ballPosition.x - ballWidth <
 (racketPosition.x + halfRacket)) {
 //rebound the ball vertically and play a sound
 soundPool.play(sample3, 1, 1, 0, 0, 1);
 score++;
 ballIsMovingUp = true;
 ballIsMovingDown = false;
 //now decide how to rebound the ball
 horizontally
 if (ballPosition.x > racketPosition.x) {
 ballIsMovingRight = true;
 ballIsMovingLeft = false;

 } else {
 ballIsMovingRight = false;
 ballIsMovingLeft = true;
 }

 }
 }
 }
}

Phase 2 code explained
The code in this phase was lengthy, but there is nothing too challenging when we
break it down. Possibly, the only challenge is in unravelling some of those nested if
statements. We will do this now.

In step 1, we declare our SquashCourView class. This implements the Runnable
interface. You might remember from Chapter 5, Gaming and Java Essentials, that
Runnable provides us with a thread. All we need to do is override the run method,
and whatever is within it will work in a new thread.

Chapter 7

[269]

Then we created a new Thread object called ourThread, and a SurfaceHolder object
to hold our surface and enable us to control or lock our surface for use within our
thread. Next, we have playingSquash of the boolean type. This wraps the inside of
our overridden run method to control when the game is running. The odd-looking
volatile modifier means that we will be able to change its value from the outside
and inside of our thread.

Lastly, for the currently discussed block of code, we declare an object of the Paint
type, called paint, to do our painting:

class SquashCourtView extends SurfaceView implements Runnable {
 Thread ourThread = null;
 SurfaceHolder ourHolder;
 volatile boolean playingSquash;
 Paint paint;

Next, we implemented the constructor of our class, so that when we initialized a new
SquashCourtView object back in onCreate, this is the code that runs. First, we see
that we run the constructor of the superclass. Then we initialize ourHolder using the
getHolder method. Next, we initialize our paint object:

 public SquashCourtView(Context context) {
 super(context);
 ourHolder = getHolder();
 paint = new Paint();

Now, still within the constructor, we get things moving. We set our
ballIsMovingDown variable to true. At the start of each game, we always want
the ball to be moving down. We will see soon that the updateCourt method will
perform the ball movement. Next, we send the ball in a random horizontal direction.
This is achieved by getting a random number between 0 and 2. We then switch for
each possible case: 0, 1, or 2. In each case statement, we set the Boolean variables that
control horizontal movement differently. In case 0, the ball moves left, and in case
1 and case 3, the ball will move right and straight down, respectively. Then we
close our constructor:

 ballIsMovingDown = true;

 //Send the ball in random direction
 Random randomNumber = new Random();
 int ballDirection = randomNumber.nextInt(3);
 switch (ballDirection) {
 case 0:
 ballIsMovingLeft = true;
 ballIsMovingRight = false;

Retro Squash Game

[270]

 break;

 case 1:
 ballIsMovingRight = true;
 ballIsMovingLeft = false;
 break;

 case 2:
 ballIsMovingLeft = false;
 ballIsMovingRight = false;
 break;
 }

 }

In step 2, we have some really simple code, but this is the code that runs everything
else. The overridden run method is what ourThread calls at defined intervals. As
you can see, the code is wrapped in a while block controlled by our playingSquash
variable of the boolean type. Then the code simply calls updateCourt, which controls
movement and collision detection; drawCourt, which will draw everything; and
controlFPS, which will lock our game to a consistent frame rate. That's it for run:

@Override
 public void run() {
 while (playingSquash) {
 updateCourt();
 drawCourt();
 controlFPS();

 }

 }

Then in step 3, we begin the updateCourt method. It was quite long, so we
broke it down into a few manageable chunks. The first two if blocks check to see
whether either the racketIsMovingRight or the racketIsMovingLeft Boolean
variables is true. If one of them is true, the blocks add 10 to or subtract 10 from
racketPosition.x. The effect of this will be seen by the player when the racket is
drawn in the drawCourt method. How the Boolean variables are manipulated in the
onTouchEvent method will be discussed soon:

public void updateCourt() {
 if (racketIsMovingRight) {
 racketPosition.x = racketPosition.x + 10;

Chapter 7

[271]

 }

 if (racketIsMovingLeft) {
 racketPosition.x = racketPosition.x - 10;
 }

Now, still in the updateCourt method, we detect and handle collisions with the
left and right side of the screen. Checking whether ballPosition.x is larger than
screenWidth would be enough to see whether the ball bounces back the other way.
However, by being a bit more precise and testing for ballPosition.x + ballWidth
> screenWidth, we are testing whether the right edge of the ball hits the right side
of the screen. This creates a much more pleasing effect as it looks more real. When a
collision occurs with the right side, we simply reverse the direction of our ball and
play a sound. The reason that the if code for the left-side detection is simpler is
because we have drawn the ball using drawRect, so ballPosition.x is the precise
left side of the ball. When the ball collides with the left side, we simply reverse its
direction and play a beep sound:

 //detect collisions

 //hit right of screen
 if (ballPosition.x + ballWidth > screenWidth) {
 ballIsMovingLeft = true;
 ballIsMovingRight = false;
 soundPool.play(sample1, 1, 1, 0, 0, 1);
 }

 //hit left of screen
 if (ballPosition.x < 0) {
 ballIsMovingLeft = false;
 ballIsMovingRight = true;
 soundPool.play(sample1, 1, 1, 0, 0, 1);
 }

In step 4, we implemented what happens when the ball hits the bottom of the
screen. This occurs when the player fails to return the ball, so a fair few things need
to happen here. However, there is nothing overly complicated in this section. First
comes the collision test. We check whether the underside of the ball has hit the
bottom of the screen:

//Edge of ball has hit bottom of screen
if (ballPosition.y > screenHeight - ballWidth) {

Retro Squash Game

[272]

If it has hit, we deduct a life. Then we check whether the player has lost all their lives:

 lives = lives - 1;
 if (lives == 0) {

If all lives are lost, we start the game again by resetting lives to 3 and score to 0. We
also play a low beep sound:

 lives = 3;
 score = 0;
 soundPool.play(sample4, 1, 1, 0, 0, 1);
 }

As of now, we are still within the if block because the ball hit the bottom of the
screen, but outside the if block for the player who has zero lives. Whether the
player has zero lives or still has some lives left, we need to put the ball back at the
top of the screen and send it in a downward trajectory and a random horizontal
direction. This code is similar to but not the same as the code we have seen in the
constructor to start the ball moving at the beginning of the game:

ballPosition.y = 1 + ballWidth;//back to top of screen
//what horizontal direction should we use
//for the next falling ball
Random randomNumber = new Random();
int startX = randomNumber.nextInt(screenWidth - ballWidth) + 1;
 ballPosition.x = startX + ballWidth;

 int ballDirection = randomNumber.nextInt(3);
 switch (ballDirection) {
 case 0:
 ballIsMovingLeft = true;
 ballIsMovingRight = false;
 break;

 case 1:
 ballIsMovingRight = true;
 ballIsMovingLeft = false;
 break;

 case 2:
 ballIsMovingLeft = false;
 ballIsMovingRight = false;
 break;
 }
 }

Chapter 7

[273]

In step 5, we handle the event of the ball hitting the top of the screen. Reverse the
values held by ballIsMovingDown and ballIsMovingUp to reverse the direction of
the ball. Tweak the ball position with ballPosition.y = 1. This stops the ball from
getting stuck and plays a nice beep:

//we hit the top of the screen
 if (ballPosition.y <= 0) {
 ballIsMovingDown = true;
 ballIsMovingUp = false;
 ballPosition.y = 1;
 soundPool.play(sample2, 1, 1, 0, 0, 1);
 }

Now, after all this collision detection and switching around of our Boolean variables,
we actually move the ball. For each direction that is true, we add to or subtract from
the ballPosition.x and ballPosition.y accordingly. Notice that the ball travels
up faster than it travels down. This is done to shorten the time the player is waiting
to get back into the action, and also crudely simulates the act of acceleration after the
ball is hit by the racket:

 //depending upon the two directions we should be
 //moving in adjust our x any positions
 if (ballIsMovingDown) {
 ballPosition.y += 6;
 }

 if (ballIsMovingUp) {
 ballPosition.y -= 10;
 }

 if (ballIsMovingLeft) {
 ballPosition.x -= 12;
 }

 if (ballIsMovingRight) {
 ballPosition.x += 12;
 }

You might have noticed that by hardcoding the number of pixels
the ball moves, we create an inconsistent speed for the ball between
high-resolution and low-resolution screens. Take a look at the self-test
questions at the end of the chapter to see how we can solve this.

Retro Squash Game

[274]

We have one last bit of collision detection to do. Has the ball hit the racket? This
detection is done in a couple of stages. First, we check whether the underside of the
ball has reached or gone past the top side of the racket:

if (ballPosition.y + ballWidth >= (racketPosition.y - racketHeight /
 2)) {

If this condition is true, we perform some more tests. First, we declare and initialize
an int variable called halfRacket to hold half the width of the racket. We will use
this in the upcoming tests:

int halfRacket = racketWidth / 2;

The next if block checks whether the right-hand side of the ball is greater than the
far left corner of the racket, and whether it is touching it. Using the AND operator
(&&), the block verifies that the ball's left edge is not past the far right of the racket.
If this condition is true, we definitely have a hit and can think about how to handle
the rebound:

if (ballPosition.x + ballWidth > (racketPosition.x - halfRacket)
 && ballPosition.x - ballWidth < (racketPosition.x + halfRacket)) {

The first bit of code inside the if block, which determined a definite hit, is simple.
Play a sound, increase the score, and set the ball on an upwards trajectory, like this:

//rebound the ball vertically and play a sound
 soundPool.play(sample3, 1, 1, 0, 0, 1);
 score++;
 ballIsMovingUp = true;
 ballIsMovingDown = false;

Now we have an if-else condition, which simply checks whether the left-hand
edge of the ball is past the center of the racket. If it is, we send the ball to the right.
Otherwise, we send the ball to the left:

 //now decide how to rebound the ball horizontally
 if (ballPosition.x > racketPosition.x) {
 ballIsMovingRight = true;
 ballIsMovingLeft = false;

 } else {
 ballIsMovingRight = false;
 ballIsMovingLeft = true;
 }

 }
 }
 }

Chapter 7

[275]

Phase 3 – SquashCourtView part 2
In this phase, we will complete our SquashCourtView class. There are two methods
remaining that are called from the run method, drawCourt and controlFPS. Then
there are a few short methods to interact with the Android lifecycle methods that we
will implement in the fourth and final phase:

1. Here is the code that draws, in the following order, the text at the top of the
screen, the ball, and the bat. All is contained within the drawCourt method,
which is called from the run method, right after the call to updateCourt.
Here is the code for drawCourt. Type the following code before the closing
curly brace of the SquashCourtView class:
public void drawCourt() {

 if (ourHolder.getSurface().isValid()) {
 canvas = ourHolder.lockCanvas();
 //Paint paint = new Paint();
 canvas.drawColor(Color.BLACK);//the background
 paint.setColor(Color.argb(255, 255, 255,
 255));
 paint.setTextSize(45);
 canvas.drawText("Score:" + score + "
 Lives:" + lives + " fps:" + fps, 20, 40,
 paint);

 //Draw the squash racket
 canvas.drawRect(racketPosition.x -
 (racketWidth / 2),
 racketPosition.y - (racketHeight / 2),
 racketPosition.x + (racketWidth / 2),
 racketPosition.y + racketHeight,
 paint);

 //Draw the ball
 canvas.drawRect(ballPosition.x,
 ballPosition.y,
 ballPosition.x + ballWidth, ballPosition.y
 + ballWidth, paint);

 ourHolder.unlockCanvasAndPost(canvas);
 }

 }

Retro Squash Game

[276]

2. And now the controlFPS method locks our frame rate to something
smooth and consistent. We will soon go through its exact working.
Type the following code after the code in the previous step:
public void controlFPS() {
 long timeThisFrame =
 (System.currentTimeMillis() - lastFrameTime);
 long timeToSleep = 15 - timeThisFrame;
 if (timeThisFrame > 0) {
 fps = (int) (1000 / timeThisFrame);
 }
 if (timeToSleep > 0) {

 try {
 ourThread.sleep(timeToSleep);
 } catch (InterruptedException e) {
 }

 }

 lastFrameTime = System.currentTimeMillis();
 }

3. Next, we write the code for pause and resume. These are called by their
related Android lifecycle methods (onPause and onResume). We ensure
that our thread is ended or started safely when the player has finished or
resumed our game, respectively. Now type this code after the code in the
previous step:
public void pause() {
 playingSquash = false;
 try {
 ourThread.join();
 } catch (InterruptedException e) {
 }

 }

 public void resume() {
 playingSquash = true;
 ourThread = new Thread(this);
 ourThread.start();
 }

Chapter 7

[277]

4. Finally, we have the method that controls what happens when the player
touches our customized SurfaceView. Remember that when we discussed
the design of the game, we said that a press anywhere on the left of the
screen would move the racket to the left, and a press anywhere on the right
will move the racket to the right. Type the following code after the code in
the preceding step:
@Override
 public boolean onTouchEvent(MotionEvent motionEvent) {

 switch (motionEvent.getAction() &
 MotionEvent.ACTION_MASK) {
 case MotionEvent.ACTION_DOWN:

 if (motionEvent.getX() >= screenWidth /
 2) {
 racketIsMovingRight = true;
 racketIsMovingLeft = false;
 } else {
 racketIsMovingLeft = true;
 racketIsMovingRight = false;
 }

 break;

 case MotionEvent.ACTION_UP:
 racketIsMovingRight = false;
 racketIsMovingLeft = false;
 break;
 }
 return true;
 }

 }

Retro Squash Game

[278]

Phase 3 code explained
In step 1, we do all the drawing. We have seen what all the different drawing methods
of the Canvas class can do, and their names are self-explanatory as well. However, the
manner in which we arrived at the coordinates needs some explanation. First, inside
drawCourt, we use ourHolder to get a drawing surface, and we check its validity
(usability). Then we initialize our canvas and paint objects:

public void drawCourt() {

 if (ourHolder.getSurface().isValid()) {
 canvas = ourHolder.lockCanvas();
 //Paint paint = new Paint();

Next, we clear the screen from the previous frame of drawing:

 canvas.drawColor(Color.BLACK);//the background

Now we set the paint color to white:

 paint.setColor(Color.argb(255, 255, 255, 255));

This is new but simple to explain—we set a size for our text:

 paint.setTextSize(45);

Now we can draw a line of text at the top of the screen. It shows the score and
lives variables. We have already seen how to control their values. It also shows
the value of the fps variable. We will see how we can assign a value to that when
we look at the next method, controlFPS:

 canvas.drawText("Score:" + score + " Lives:" + lives + " fps:" +
 fps, 20, 40, paint);

Then we draw the racket. Notice that we calculate the x start position by
subtracting half the racket width from racketPosition.x, and the x end position
by adding the width to x. This makes our collision detection code simple because
racketPosition.x refers to the center of the racket:

//Draw the squash racket
 canvas.drawRect(racketPosition.x - (racketWidth / 2),
 racketPosition.y - (racketHeight / 2),
 racketPosition.x + (racketWidth / 2),
 racketPosition.y + racketHeight, paint);

Chapter 7

[279]

Next, we draw the ball. Notice that the starting x and y coordinates are the same
as the values held in ballPosition.x and ballPosition.y. Therefore, these
coordinates correspond to the top-left corner of the ball. This is just what we
need for our simple collision detection code:

 //Draw the ball
 canvas.drawRect(ballPosition.x, ballPosition.y,
 ballPosition.x + ballWidth, ballPosition.y +
 ballWidth, paint);

This final line draws what we have just done to the screen:

 ourHolder.unlockCanvasAndPost(canvas);
 }

 }

In step 2, we essentially pause the game. We want to decide the number of times we
recalculate the position of our objects and redraw them. Here is how it works.

First, we enter the controlFPS method when it is called from the run method. We
declare and initialize a long variable with the time in milliseconds, and then take
away the time that the last frame took in milliseconds. The time is calculated in the
previous run through this method, at the end, as we will see:

public void controlFPS() {
long timeThisFrame = (System.currentTimeMillis() - lastFrameTime);

We then calculate how long we want to pause between frames, and initialize that
value to timeToSleep, a new long variable. Here is how the calculation works: 15
milliseconds of pause gives us around 60 frames per second, which works well for
our game and provides a very smooth animation. Therefore, 15 - timeThisFrame
equals the number of milliseconds we should pause for to make the frame last for
15 milliseconds:

long timeToSleep = 15 - timeThisFrame;

Of course, some devices will not cope with this speed. Neither do we want to pause
for a negative number, nor do we want to calculate the frames per second when
timeThisFrame is equal to zero. Next, we wrap the calculation of frames per second
within an if statement that prevents us from dividing by zero or a negative number:

 if (timeThisFrame > 0) {
 fps = (int) (1000 / timeThisFrame);
 }

Retro Squash Game

[280]

Likewise, we wrap the instruction to our thread to pause within a similar cautionary
if statement:

 if (timeToSleep > 0) {

 try {
 ourThread.sleep(timeToSleep);
 } catch (InterruptedException e) {
 }

 }

Finally, we see how we initialize lastFrameTime, ready for the next time
controlFPS is called:

 lastFrameTime = System.currentTimeMillis();
 }

In step 3, we quickly implement two methods. They are pause and resume.
These are not to be confused with the Android Activity lifecycle methods called
onPause and onResume. However, the pause and resume methods are called from
their near-namesakes. They handle stopping and starting ourThread, respectively.
We should always clean up our threads. Otherwise, they can keep running even after
the activity has finished:

public void pause() {
 playingSquash = false;
 try {
 ourThread.join();
 } catch (InterruptedException e) {
 }

 }

 public void resume() {
 playingSquash = true;
 ourThread = new Thread(this);
 ourThread.start();
 }

In step 4, we handle touches on the screen. This is how we initialize our
racketIsMovingLeft and racketIsMovingRight Boolean variables, which the
updateCourt method uses to decide whether to slide the player's racket left or right,
or to keep it still. We have talked about the onTouchEvent method before, but let's
see how we set the values in those variables.

Chapter 7

[281]

First, we override the method and switch to get the type of event and the x, y
coordinates of the event:

@Override
 public boolean onTouchEvent(MotionEvent motionEvent) {

 switch (motionEvent.getAction() & MotionEvent.ACTION_MASK) {

If the event type is ACTION_DOWN, that is, the screen has been touched, we enter
this case:

 case MotionEvent.ACTION_DOWN:

Then we handle the coordinates. If the player has touched a position on the screen
with an x coordinate greater than screenWidth / 2, then it means they have
touched the right-hand side of the screen, so we set isMovingRight to true and
isMovingLeft to false. The updateCourt method will handle changes in the
necessary coordinates, and the drawCourt method will draw the racket in the
appropriate place:

 if (motionEvent.getX() >= screenWidth / 2) {
 racketIsMovingRight = true;
 racketIsMovingLeft = false;

The else statement sets our two Boolean variables in the opposite manner because a
touch must have occurred on the left of the screen:

 } else {
 racketIsMovingLeft = true;
 racketIsMovingRight = false;
 }

 break;

Now we handle the case for the ACTION_UP event. But why do we care about
two events? With the buttons, we just cared about a click and that was all, but by
handling the ACTION_UP event, we can enable the functionality that allows our player
to hold the screen to slide left or right, just as we discussed in the section The design of
the game of this chapter. Thus, the ACTION_DOWN case sets the racket moving one way
or the other, and the ACTION_UP case simply stops the slide completely:

 case MotionEvent.ACTION_UP:
 racketIsMovingRight = false;
 racketIsMovingLeft = false;
 break;
 }

Retro Squash Game

[282]

 return true;
 }

 }

Notice that we don't care about the y coordinate. Anywhere on the left we go left,
anywhere on the right we go right.

Notice also that all of the code will work whether a device is held
in the portrait or landscape form, and will function the same
regardless of the resolution of the device. However (and it is quite
an important "however"), the game will be slightly harder on low-
resolution screens. The solution to this problem is quite complicated
and will not be discussed until the final chapter, but it might well
help us make some decisions about the future path to learn Android,
gaming, and Java.

Phase 4 – Remaining lifecycle methods
We are nearly there; just a few more steps and we will have a working retro squash
game. I can almost smell the nostalgia! As these remaining methods are quite
straightforward, we will explain them as we write them:

1. As we previously learned, the onStop method is called by the Android
system when the app is stopped. It is implemented for us already. The only
reason we override it here is to ensure that our thread is stopped. We do so
with the line highlighted. Enter the following code before the closing curly
brace of the MainActivity class:
@Override
 protected void onStop() {
 super.onStop();

 while (true) {
 squashCourtView.pause();
 break;
 }

 finish();
 }

Chapter 7

[283]

2. The onPause method is called by the Android system when the app is
paused. This too is implemented for us already, and the only reason we
override it here is to ensure that our thread is stopped. We do so with
the line highlighted. Enter this code after the preceding code:
@Override
 protected void onPause() {
 super.onPause();
 squashCourtView.pause();
 }

3. The onResume method is called by the Android system when the app is
resumed. Again, this method is implemented for us already. The only reason
we override it here is to ensure that our thread is resumed, and we do so
with the line highlighted. Enter the following code after the code in the
previous step:
@Override
 protected void onResume() {
 super.onResume();
 squashCourtView.resume();
 }

4. Finally, we do something completely new. We handle what happens should
the player press the back button on their device. As you might have guessed,
there is a method we can override to achieve this— onKeyDown. We pause
our thread, just as we did in the overridden lifecycle methods, and then call
finish(), which ends the activity and our app. Enter this code after the code
in the previous step:
public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_BACK) {
 squashCourtView.pause();
 finish();
 return true;
 }
 return false;
 }

We covered the code in this phase as we went through it, and this was the shortest
phase so far. So why didn't we encapsulate everything?

Retro Squash Game

[284]

Good object-oriented design
Perhaps simple games are not the best way to demonstrate good object-oriented
design in action, but a simple code design with fewer private variables actually
enhances the project. It certainly makes the teaching aspects of coding games
simpler to explain.

However, when a game becomes more complex and more people work on the code,
principles of object-oriented programming become more necessary.

Self-test questions
Q1) Can you explain how to make ball speed relative between different
screen resolutions?

Summary
I hope you enjoyed animating your first game. You achieved a lot to get to this
point. You learned not only all the Java topics but also the way the different
classes of Android can be used to make games relatively simple.

In the next chapter, we will move on to a new, more complex game. I hope you
are ready.

The Snake Game
In this chapter, we will get straight down to designing and implementing a clone of
the highly addictive Snake game. We will look at the design of the game and learn how
to animate some bitmaps. Then we will look at a few aspects of the code that are new,
such as our coordinate system. After that, we will whiz through the implementation of
the game. Finally, we will look at how we could enhance our game.

In this chapter, we will cover the following topics:

• Examine the design of our game
• Look at the coordinate system of our Snake game
• Examine the code structure so that when we come to implement the game,

it will be more straightforward
• Learn about animation with sprite sheets at the same time as implementing

the home screen of our game
• Break the code for the Snake game into manageable chunks and run through

its full implementation
• Enhance the game a little

Game design
If you haven't played the excellent Snake game before, here is an explanation of how
it works. You control a very small snake. In our version, there is just a head, one body
segment, and a tail. Here is a screenshot of our snake, made out of three segments:

The Snake Game

[286]

The following screenshot shows the three segments individually:

Now, here is the thing; our snake is very hungry and also a very quick grower. Every
time he eats an apple, he grows a body segment. This is a screenshot of the apple:

Life is great! Our snake just eats and grows! The problem that the player of our game
needs to solve is that the snake is a little hyperactive. It never stops moving! What
exacerbates this problem is that if the snake touches the side of the screen, it dies.

At first, this doesn't seem like too much of a problem, but as he grows longer and
longer, he can't just keep going around in circles because he will bump inevitably
into himself. This would again result in his demise:

Chapter 8

[287]

For each apple eaten, we add an increasingly large amount to the score. Here is
a sneak peek at what the game will look like after the basic implementation and
before the enhancements:

The player controls the snake by tapping on the left or the right side of the screen.
The snake will respond by turning left or right. The turn directions are relative to the
direction the snake is traveling, which adds to the challenge because the player needs
to think like a snake—kind of!

At the end of the chapter, we will also take a brief look at enhancing the game, use
that enhanced version in the next chapter to publish it to the Google Play Store, and
add leaderboards and achievements.

The coordinate system
In the previous chapter, we drew all our game objects directly to points on the
screen, and we used real screen coordinates to detect collisions, bounces, and so on.
This time, we will be doing things slightly differently. This is partly out of necessity,
but as we will see, collision detection and keeping track of our game objects will also
get simpler. This might be surprising when we think about the potential of our snake
to be many blocks long.

The Snake Game

[288]

Keeping track of the snake segments
To keep track of all the snake segments, we will first define a block size to define a
portion of a grid for the entire game area. Every game object will reside at an (x,y)
coordinate, based not on the pixel resolution of the screen but on a position within
our virtual grid. In the game, we define a grid that is 40 blocks wide, like this:

//Determine the size of each block/place on the game board
 blockSize = screenWidth/40;

So we know that:

numBlocksWide = 40;

The height of the game screen in blocks will then simply be calculated by dividing
the height of the screen in pixels by the previously determined value of blockSize
minus a bit of space at the top for the score:

numBlocksHigh = ((screenHeight - topGap))/blockSize;

This then allows us to keep track of our snake using two arrays for x and y coordinates,
where element zero is the head and the last used element is the tail, a bit like this:

//An array for our snake
snakeX = new int[200];
snakeY = new int[200];

As long as we have a system for moving the head, perhaps something similar to the
squash ball but based on our new game grid, we can do the following to make the
body follow the head:

//move the body starting at the back
for(int i = snakeLength; i >0 ; i--){
 snakeX[i] = snakeX[i-1];
 snakeY[i] = snakeY[i-1];
}

The previous code simply starts at the back section of the snake and creates its
location in the grid irrespective of what the section in front of it was. It proceeds
up the body doing the same until everything has been moved to the location of the
section that used to be just ahead of it.

This also makes collision detection (even for a very long snake) nice and easy.

Chapter 8

[289]

Detecting collisions
Using our grid based on blockSize, we can detect a collision, for example, with the
right side of the screen, like this:

if(snakeX[0] >= numBlocksWide)dead=true;

The previous code simply checks whether the first element of our array, which holds
the x coordinate of the snake, is equal to or greater than the width of our game grid
in blocks. Try to work out the code for collision with the left, top, and bottom before
we see it during the implementation.

Detecting the event of the snake bumping into itself is quick too. We just need
to check whether the first element of our array (the head) is in exactly the same
position as any of the other sections, like this:

//Have we eaten ourselves?
for (int i = snakeLength-1; i > 0; i--) {
 if ((i > 4) && (snakeX[0] == snakeX[i]) && (snakeY[0] ==
 snakeY[i])) {
 dead = true;
 }
}

Drawing the snake
We simply draw every section of the snake relative to its grid location multiplied by
the size in pixels of a block. The blockSize variable handles the entire challenge of
making the game work on different screen sizes, like this:

//loop through every section of the snake and draw it
//a block at a time.
canvas.drawBitmap(bodyBitmap, snakeX[i]*blockSize,
 (snakeY[i]*blockSize)+topGap, paint);

Admittedly, there are probably more questions about how our implementation will
work, but they are probably best answered by actually building the game.

Thus, we can easily follow along by either writing the code or just reading from the
completed project. Let's take a look at the overall structure of our code.

The Snake Game

[290]

The code structure
We will have two activities, one for the menu screen and one for the game screen.
The menu screen activity will be called MainActivity, and the game screen activity
will be called GameActivity. You can find all the completed code files as well as
all the assets such as images, sprite sheets, and sound files in the Chapter8/Snake
folder in the download bundle.

MainActivity
In contrast to our other projects, the menu screen will not have a UI designed in the
Android Studio UI designer. It will consist of an animated snake head, a title, and a
high score. The player will proceed to GameActivity by tapping anywhere on the
screen. As we need to accomplish animations and user interactions, even the home
screen will have a thread, a view object, and methods normally associated with our
game screens, like this:

MainActivity.java file
 Imports
 MainActivity class
 Declare some variables and objects
 onCreate
 SnakeAnimView class
 Constructor
 Run method
 Update method
 Draw method
 controlFPS method
 pause method
 resume method
 onTouchEvent method
 onStop method
 onResume method
 onPause method
 onKeyDown method

We will not go deeper into the menu screen for now because at the end of this
section, we will implement it line by line.

Chapter 8

[291]

GameActivity
The game screen structure has many similarities to our Squash game and to the
structure of the menu screen, although the internals of this structure vary a lot (as we
have discussed and as we will see). There are some differences towards the end of
the structure, most notably, a loadSound method and a configureDisplay method.
Here is the structure (we will see afterwards why the two extra methods are there):

MainActivity.java file
 Imports
 GameActivity class
 Declare some variables and objects
 onCreate
 SnakeView class
 Constructor
 getSnake method
 getApple method
 Run method
 updateGame method
 drawGame method
 controlFPS method
 pause method
 resume method
 onTouchEvent method
 onStop method
 onResume method
 onPause method
 onKeyDown method
 loadSOund method
 configureDisplay method

Tidying up onCreate
One of the first things you might notice when you examine the code from the
GameActivity class we will soon implement is just how short the onCreate
method is:

@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 loadSound();
 configureDisplay();
 snakeView = new SnakeView(this);
 setContentView(snakeView);

 }

The Snake Game

[292]

We have written two methods, loadSound and configureDisplay. They do most
of the initialization and setup present in our squash game. This makes our code less
cluttered. All that is left in onCreate is the initialization of our SnakeView object and
a call to setContentView.

We will look in detail at our loadSound and configureDisplay methods when we
implement them.

As we have had advanced sight of the structure as well as previous experience of
this type of implementation, we will just go through all of the implementation of
our game activity in one phase.

Let's quickly implement the menu screen.

Animation, sprite sheets, and the Snake
home screen
In the previous chapter, we used a bitmap to draw text, a circle, a line, and a single
pixel on the blank bitmap we created in Java code. We then displayed the bitmap
with all of its doodling using the Canvas class. Now we will look at a technique to
draw two dimensional images, sometimes referred to as sprites. These are made
from predrawn images. The images can be as simple as a plain pong ball or as
complex as a glorious two-dimensional character with muscle definition, elaborate
clothing, weapons, and hair.

So far, we have animated with unchanging objects, that is, we have moved a static
unchanging image around the screen. In this section, we will see how to not only
display a predrawn bitmap image on the screen but also continually alter it to create
the illusion of on-the-spot animation.

Of course, the ultimate combination would be to animate the bitmap both by
changing its image and moving it around at the same time. We will see that briefly
when we look at an enhanced version of this chapter's Snake game, but will not be
analyzing the code.

To do this on-the-spot bitmap animation, we need some bitmaps, as you might
expect. For example, to draw a snake's tail swishing back and forth, we would
need at least two frames of animation, showing the tail in different positions.
In the following screenshot, the flower's head is towards the left:

Chapter 8

[293]

In this screenshot, the flower has been flipped:

The Snake Game

[294]

If the two bitmaps were shown one after the other, repeatedly, they would create
the basic effect of a flower blowing in the wind. Of course, two frames of animation
aren't going to contest for any animation awards, and there is another problem with
these images as well, as we will learn, so we should add in more frames to make the
animation as life-like as is practical.

We have just one more thing to discuss before we make an animated snake head for
our game's home screen. How do we get Android to switch between these bitmaps?

Animating with sprite sheets
Firstly, we need to present the frames in a manner that is easy to manipulate in code.
This is where sprite sheets come in. The following image shows some frames from
a basic snake head animation that we will use on our game home screen. This time,
they are presented in a strip of frames. All of them are parts of the same image, a bit
like a series of images in a film. Also, notice in the following image that the frames
are centered relative to each other and are exactly equal in size:

If we were to actually show the two previous flower images consecutively, they
would not only would they sway but also jump around from one side to another
on their stems, which is probably not the effect we were looking for.

Thus, with regard to the snake sprite sheet, as long as we show one frame after
another, we will create a basic animation.

So how do we make our code jump from one part of the sprite sheet to the next?
Each frame is exactly the same size, 64 x 64 pixels in this case, so we just need a way
to display pixels from 0 to 63, then 64 to 127, then 128 to 192, and so on. As each
frame of the sprite sheet image is subtly different, it allows us to use one image file
with multiple frames to create our animation. Fortunately, we have a class to handle
this, which is nothing quite as luxurious as a specific sprite sheet class but almost.

Regarding sprite sheet classes, such a thing does exist, although
not in the regular Android classes. An API specifically designed
for two-dimensional games will usually contain classes for sprite
sheets. We will look at examples of this in the next chapter.

Chapter 8

[295]

The Rect class holds the coordinates of a rectangle. Here, we create a new object of
the Rect type, and initialize it to start at 0, 0 and end at 63, 63:

Rect rectToBeDrawn = new Rect(0, 0, 63, 63);

The Canvas class can then actually use our Rect object to define a portion of a
previously loaded bitmap:

canvas.drawBitmap(headAnimBitmap, rectToBeDrawn, destRect, paint);

The preceding code is much simpler than it looks. First, we see canvas.drawBitmap.
We are using the drawBitmap method of the Canvas class just as we have before.
Then we pass headAnimBitmap, which is our sprite sheet containing all the frames
we want to animate, as an argument. Rect rectToBeDrawn represents the coordinates
of the currently relevant frame within headAnimationBitmap. destRect simply
represents the screen coordinates at which we want to draw the current frame, and
of course, paint is our object of the Paint class.

All we have to do now is change the coordinates of rectToBeDrawn and control the
frame rate with a thread and we are done! Let's do that and create an animated home
screen for our Snake game.

Implementing the Snake home screen
With the background information we just covered and our detailed look at the
structure of the code we are about to write, there shouldn't be any surprises in this
code. We will break things up into chunks just to make sure we follow exactly what
is going on:

1. Create a new project of API level 13. Call it Snake.
2. Make the activity full screen as we have done before, and put your

graphics into the drawable/mdpi folder. Of course, you can use my
graphics as usual. They are supplied in the code download in the
graphics folder of the Snake project.

3. Here, you will find our MainActivity class declaration and member
variables. Notice the variables for our Canvas and Bitmap class as well, we
are declaring variables to hold frame size (width and height) as well as the
number of frames. We also have a Rect object to hold the coordinates of the
current frame of the sprite sheet. We will see these variables in action soon.
Type the following code:
public class MainActivity extends Activity {

 Canvas canvas;

The Snake Game

[296]

 SnakeAnimView snakeAnimView;

 //The snake head sprite sheet
 Bitmap headAnimBitmap;
 //The portion of the bitmap to be drawn in the current frame
 Rect rectToBeDrawn;
 //The dimensions of a single frame
 int frameHeight = 64;
 int frameWidth = 64;
 int numFrames = 6;
 int frameNumber;

 int screenWidth;
 int screenHeight;

 //stats
 long lastFrameTime;
 int fps;
 int hi;

 //To start the game from onTouchEvent
 Intent i;

4. The following is the implementation of the overridden onCreate method.
We get the screen dimensions in the usual way. We load our sprite sheet into
the headAnimBitmap Bitmap. Finally, we create a new SnakeAnimView and
set it as the content view. Type the following code after the code from the
previous step:
@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //find out the width and height of the screen
 Display display =
 getWindowManager().getDefaultDisplay();
 Point size = new Point();
 display.getSize(size);
 screenWidth = size.x;
 screenHeight = size.y;

 headAnimBitmap =
 BitmapFactory.decodeResource(getResources(),
 R.drawable.head_sprite_sheet);

 snakeAnimView = new SnakeAnimView(this);

Chapter 8

[297]

 setContentView(snakeAnimView);

 i = new Intent(this, GameActivity.class);

 }

5. Here is the declaration of our SurfaceView class, called SnakeAnimView,
along with its member variables. Notice that it extends SurfaceView and
implements Runnable. All its methods follow in the next steps. Type this
code after the code from the preceding step:
class SnakeAnimView extends SurfaceView implements Runnable {
 Thread ourThread = null;
 SurfaceHolder ourHolder;
 volatile boolean playingSnake;
 Paint paint;

6. Here is the constructor that gets the frameWidth value by dividing the
bitmap width by the number of frames, and the frameHeight value using
the getHeight method. Type this code after the code from the previous step:
public SnakeAnimView(Context context) {
 super(context);
 ourHolder = getHolder();
 paint = new Paint();
 frameWidth = headAnimBitmap.getWidth()/numFrames;
 frameHeight = headAnimBitmap.getHeight();
}

7. Now we implement the short but crucial run method. It calls each of the
key methods of this class one after the other. These three methods are
implemented in the following three steps after this step. Type the following
code after the code from the preceding step:
@Override
 public void run() {
 while (playingSnake) {
 update();
 draw();
 controlFPS();

 }

 }

The Snake Game

[298]

8. Here is the update method. It tracks and chooses the frame number
that needs to be displayed. Each time through the update method, we
calculate the coordinates of the sprite sheet to be drawn using frameWidth,
frameHeight, and frameNumber. If you are wondering why we subtract 1
from each horizontal coordinate, it is because like the screen coordinates,
bitmaps start their coordinates at 0, 0:
public void update() {

 //which frame should we draw
 rectToBeDrawn = new Rect((frameNumber * frameWidth)-1,
 0,(frameNumber * frameWidth +frameWidth)-1,
 frameHeight);

 //now the next frame
 frameNumber++;

 //don't try and draw frames that don't exist
 if(frameNumber == numFrames){
 frameNumber = 0;//back to the first frame
 }
}

9. Next is the draw method, which does nothing new until the end, when
it calculates the place on the screen to draw the bitmap by dividing the
screenHeight and screenWidth variables by 2. These coordinates are
then saved in destRect. Both destRect and rectToDraw are then passed
to the drawBitmap method, which draws the frame required at the location
required. Type this code after the code from the previous step:
public void draw() {

 if (ourHolder.getSurface().isValid()) {
 canvas = ourHolder.lockCanvas();
 //Paint paint = new Paint();
 canvas.drawColor(Color.BLACK);//the background
 paint.setColor(Color.argb(255, 255, 255, 255));
 paint.setTextSize(150);
 canvas.drawText("Snake", 10, 150, paint);
 paint.setTextSize(25);
 canvas.drawText(" Hi Score:" + hi, 10,
 screenHeight-50, paint);

 //Draw the snake head
 //make this Rect whatever size and location you
 like

Chapter 8

[299]

 //(startX, startY, endX, endY)
 Rect destRect = new Rect(screenWidth/2-100,
 screenHeight/2-100, screenWidth/2+100,
 screenHeight/2+100);

 canvas.drawBitmap(headAnimBitmap,
 rectToBeDrawn, destRect, paint);

 ourHolder.unlockCanvasAndPost(canvas);
 }

 }

10. Our trusty old controlFPS method ensures that our animation appears
at a sensible rate. The only change in this code is that the initialization of
timeTosleep is changed to create a 500-millisecond pause between each
frame. Type the following code after the code from the preceding step:
public void controlFPS() {
 long timeThisFrame =
 (System.currentTimeMillis() -
 lastFrameTime);
 long timeToSleep = 500 - timeThisFrame;
 if (timeThisFrame > 0) {
 fps = (int) (1000 / timeThisFrame);
 }
 if (timeToSleep > 0) {

 try {
 ourThread.sleep(timeToSleep);
 } catch (InterruptedException e) {
 }

 }

 lastFrameTime = System.currentTimeMillis();
 }

11. Next are our pause and resume methods, which work with the Android
lifecycle methods to start and stop our thread. Type this code after the
code from the previous step:
public void pause() {
 playingSnake = false;
 try {
 ourThread.join();
 } catch (InterruptedException e) {

The Snake Game

[300]

 }

 }

 public void resume() {
 playingSnake = true;
 ourThread = new Thread(this);
 ourThread.start();
 }

12. For our SnakeAnimView class and our onTouchEvent method, which simply
starts the game when the screen is touched anywhere, we enter the following
code. Obviously, we don't have a GameActivity yet:
@Override
 public boolean onTouchEvent(MotionEvent
 motionEvent) {

 startActivity(i);
 return true;
 }
}

13. Finally, back in the MainActivity class, we handle some Android
lifecycle methods. We also handle what happens when the player
presses the back button:
@Override
 protected void onStop() {
 super.onStop();

 while (true) {
 snakeAnimView.pause();
 break;
 }

 finish();
 }

 @Override
 protected void onResume() {
 super.onResume();
 snakeAnimView.resume();
 }

 @Override

Chapter 8

[301]

 protected void onPause() {
 super.onPause();
 snakeAnimView.pause();
 }

 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_BACK) {
 snakeAnimView.pause();
 finish();
 return true;
 }
 return false;
 }

14. Now you must temporarily comment out this line from step 4 to test the
animation. The reason for this is that it causes an error until we implement
the GameActivity class:
//i = new Intent(this, GameActivity.class);

15. Test the app.
16. Uncomment the line from step 14 when we have implemented the

GameActivity class. Here is our completed home screen:

The Snake Game

[302]

In this exercise, we set up a class that extended SurfaceView, just like we did for
our squash game. We had a run method, which controlled the thread, as well as an
update method, which calculated the coordinates of the current animation within
our sprite sheet. The draw method simply drew to the screen using the coordinates
calculated by the update method.

As in the squash game, we had an onTouchUpdate method, but the code this time
was very simple. As a touch of any type in any location was all we needed to detect,
we added just one line of code to the method.

Implementing the Snake game activity
Not all of this code is new. In fact, we have either used most of it before or discussed
it earlier in the chapter. However, I wanted to present every line to you in order and
in context with at least a brief explanation, even when we have seen it before. Having
said that, I haven't included the long list of imports as we will either be prompted to
add them automatically or we can just press Alt + Enter when needed.

This way, we can remind ourselves how the whole thing comes together without any
blanks in our understanding. As usual, I will summarize as we proceed through the
implementation, and go into a few bits of extra depth at the end:

1. Add an activity called GameActivity. Select a blank activity when asked.
2. Make the activity full screen as we have done before.
3. As usual, create some sound effects or use mine. Create an assets directory

in the main directory in the usual way. Copy and paste the sound files
(sample1.ogg, sample2.ogg, sample3.ogg, and sample4.ogg) into it.

4. Create individual non-sprite-sheet versions of graphics or use mine. Copy
and paste them in the res/drawable-mdpi folder.

5. Here is the GameActivity class declaration with the member variables.
There is nothing new here until we declare our arrays for our snake (snakeX
and snakeY). Also, notice our variables used to control our game grid
(blockSize, numBlocksHigh, and numBlocksWide). Now type this code:
public class GameActivity extends Activity {

 Canvas canvas;
 SnakeView snakeView;

 Bitmap headBitmap;
 Bitmap bodyBitmap;
 Bitmap tailBitmap;

Chapter 8

[303]

 Bitmap appleBitmap;

 //Sound
 //initialize sound variables
 private SoundPool soundPool;
 int sample1 = -1;
 int sample2 = -1;
 int sample3 = -1;
 int sample4 = -1;

 //for snake movement
 int directionOfTravel=0;
 //0 = up, 1 = right, 2 = down, 3= left

 int screenWidth;
 int screenHeight;
 int topGap;

 //stats
 long lastFrameTime;
 int fps;
 int score;
 int hi;

 //Game objects
 int [] snakeX;
 int [] snakeY;
 int snakeLength;
 int appleX;
 int appleY;

 //The size in pixels of a place on the game board
 int blockSize;
 int numBlocksWide;
 int numBlocksHigh;

6. As explained previously, our new, small onCreate method has very little to do
because much of the work is done in the loadSound and configureDisplay
methods. Type this code after the code from the previous step:
@Override
 protected void onCreate(Bundle savedInstanceState) {

The Snake Game

[304]

 super.onCreate(savedInstanceState);

 loadSound();
 configureDisplay();
 snakeView = new SnakeView(this);
 setContentView(snakeView);

 }

7. Here is the class declaration, member variables, and constructor for our
SnakeView class. We allocate 200 int variables to the snakeX and snakeY
arrays, and call the getSnake and getApple methods, which will place an
apple and our snake on the screen. This is just what we want when the class
is constructed:
 class SnakeView extends SurfaceView implements Runnable {
 Thread ourThread = null;
 SurfaceHolder ourHolder;
 volatile boolean playingSnake;
 Paint paint;

 public SnakeView(Context context) {
 super(context);
 ourHolder = getHolder();
 paint = new Paint();

 //Even my 9 year old play tester couldn't
 //get a snake this long
 snakeX = new int[200];
 snakeY = new int[200];

 //our starting snake
 getSnake();
 //get an apple to munch
 getApple();
 }

Chapter 8

[305]

8. Here is how we spawn a snake and an apple in our coordinate system. In the
getSnake method, we place the snake's head in the approximate center of
the screen by initializing snakeX[0] and snakeY[0] to the number of blocks
high and wide divided by 2. We then place a body segment and the tail
segment immediately behind. Notice that we don't need to make any special
arrangement for the different types of segments. As long as the drawing
code knows that the first segment is a head, the last segment is a tail, and
everything in between is a body, then that will do. In the getApple method,
the integer variables appleX and appleY are initialized to random locations
within our game grid. This method is called from the constructor, as we saw
in the previous step. It will also be called to place a new apple every time our
snake manages to eat an apple, as we will see. Type this code after the code
from the previous step:
public void getSnake(){
 snakeLength = 3;
 //start snake head in the middle of screen
 snakeX[0] = numBlocksWide / 2;
 snakeY[0] = numBlocksHigh / 2;

 //Then the body
 snakeX[1] = snakeX[0]-1;
 snakeY[1] = snakeY[0];

 //And the tail
 snakeX[1] = snakeX[1]-1;
 snakeY[1] = snakeY[0];
 }

 public void getApple(){
 Random random = new Random();
 appleX = random.nextInt(numBlocksWide-1)+1;
 appleY = random.nextInt(numBlocksHigh-1)+1;
 }

9. Next comes the run method, which controls the flow of the game. Type the
following code after the code from the previous step:
@Override
 public void run() {
 while (playingSnake) {
 updateGame();
 drawGame();
 controlFPS();

 }

 }

The Snake Game

[306]

10. Now we will look at updateGame, the most complex method of the entire
app. Having said that, it is probably slightly less complex than the same
method in our squash game. This is because of our coordinate system, which
leads to simpler collision detection. Here is the code for updateGame. Study it
carefully, and we will dissect it line by line at the end:
public void updateGame() {

 //Did the player get the apple
 if(snakeX[0] == appleX && snakeY[0] == appleY){
 //grow the snake
 snakeLength++;
 //replace the apple
 getApple();
 //add to the score
 score = score + snakeLength;
 soundPool.play(sample1, 1, 1, 0, 0, 1);
 }

 //move the body - starting at the back
 for(int i=snakeLength; i >0 ; i--){
 snakeX[i] = snakeX[i-1];
 snakeY[i] = snakeY[i-1];
 }

 //Move the head in the appropriate direction
 switch (directionOfTravel){
 case 0://up
 snakeY[0] --;
 break;

 case 1://right
 snakeX[0] ++;
 break;

 case 2://down
 snakeY[0] ++;
 break;

 case 3://left
 snakeX[0] --;
 break;
 }

 //Have we had an accident

Chapter 8

[307]

 boolean dead = false;
 //with a wall
 if(snakeX[0] == -1)dead=true;
 if(snakeX[0] >= numBlocksWide) dead = true;
 if(snakeY[0] == -1)dead=true;
 if(snakeY[0] == numBlocksHigh) dead = true;
 //or eaten ourselves?
 for (int i = snakeLength-1; i > 0; i--) {
 if ((i > 4) && (snakeX[0] == snakeX[i]) &&
 (snakeY[0] == snakeY[i])) {
 dead = true;
 }
 }

 if(dead){
 //start again
 soundPool.play(sample4, 1, 1, 0, 0, 1);
 score = 0;
 getSnake();

 }

 }

11. We have worked out where our game objects are on the screen, so now
we can draw them. This code is easy to understand as we have seen most
of it before:
public void drawGame() {

 if (ourHolder.getSurface().isValid()) {
 canvas = ourHolder.lockCanvas();
 //Paint paint = new Paint();
 canvas.drawColor(Color.BLACK);//the background
 paint.setColor(Color.argb(255, 255, 255, 255));
 paint.setTextSize(topGap/2);
 canvas.drawText("Score:" + score + " Hi:" + hi,
 10, topGap-6, paint);

 //draw a border - 4 lines, top right, bottom , left
 paint.setStrokeWidth(3);//3 pixel border
 canvas.drawLine(1,topGap,screenWidth-
 1,topGap,paint);
 canvas.drawLine(screenWidth-1,topGap,screenWidth-
 1,topGap+(numBlocksHigh*blockSize),paint);

The Snake Game

[308]

 canvas.drawLine(screenWidth-
 1,topGap+(numBlocksHigh*blockSize),1,topGap+
 (numBlocksHigh*blockSize),paint);
 canvas.drawLine(1,topGap,
 1,topGap+(numBlocksHigh*blockSize), paint);

 //Draw the snake
 canvas.drawBitmap(headBitmap, snakeX[0]*blockSize,
 (snakeY[0]*blockSize)+topGap, paint);
 //Draw the body
 for(int i = 1; i < snakeLength-1;i++){
 canvas.drawBitmap(bodyBitmap,
 snakeX[i]*blockSize,
 (snakeY[i]*blockSize)+topGap, paint);
 }
 //draw the tail
 canvas.drawBitmap(tailBitmap, snakeX[snakeLength-
 1]*blockSize, (snakeY[snakeLength-
 1]*blockSize)+topGap, paint);

 //draw the apple
 canvas.drawBitmap(appleBitmap, appleX*blockSize,
 (appleY*blockSize)+topGap, paint);

 ourHolder.unlockCanvasAndPost(canvas);
 }

 }

12. Here is the controlFPS method, unchanged from our squash game's
controlFPS method, except that we have a different target frame rate.
Type this code after the code from the preceding step:
public void controlFPS() {
 long timeThisFrame = (System.currentTimeMillis() -
 lastFrameTime);
 long timeToSleep = 100 - timeThisFrame;
 if (timeThisFrame > 0) {
 fps = (int) (1000 / timeThisFrame);
 }
 if (timeToSleep > 0) {

 try {
 ourThread.sleep(timeToSleep);

Chapter 8

[309]

 } catch (InterruptedException e) {
 }

 }

 lastFrameTime = System.currentTimeMillis();
 }

13. Here are our unchanged pause and resume methods. Type the following
code after the code from the previous step:
public void pause() {
 playingSnake = false;
 try {
 ourThread.join();
 } catch (InterruptedException e) {
 }

 }

 public void resume() {
 playingSnake = true;
 ourThread = new Thread(this);
 ourThread.start();
 }

14. Then we have the onTouchEvent method, similar to that of our squash
game. There are no new concepts here, but the way it works in this game
is as follows. We switch on the ACTION_UP event. This is broadly the same
as detecting a click. We then check whether the press was on the left or the
right. If it was on the right, we increment directionOfTravel. If it was
on the left, we decrement directionOfTravel. If you looked carefully at
the updateGame method, you would have seen that directionOfTravel
indicates the direction in which to move the snake. Remember, the snake
never stops. This is why we did it differently from our squash game. Type
this code after the code from the previous step:
@Override
 public boolean onTouchEvent(MotionEvent motionEvent) {

 switch (motionEvent.getAction() &
 MotionEvent.ACTION_MASK) {
 case MotionEvent.ACTION_UP:
 if (motionEvent.getX() >= screenWidth / 2) {
 //turn right
 directionOfTravel ++;

The Snake Game

[310]

 //no such direction

 if(directionOfTravel == 4)
 //loop back to 0(up)
 directionOfTravel = 0;
 }
 } else {
 //turn left
 directionOfTravel--;
 if(directionOfTravel == -1) {//no such direction
 //loop back to 0(up)
 directionOfTravel = 3;
 }
 }
 }
 return true;
 }

15. Back in the GameActivity class, we now handle the Android lifecycle
methods and the "back" button functionality. Type this code after the
code from the preceding step:
@Override
 protected void onStop() {
 super.onStop();

 while (true) {
 snakeView.pause();
 break;
 }

 finish();
 }

 @Override
 protected void onResume() {
 super.onResume();
 snakeView.resume();
 }

 @Override
 protected void onPause() {
 super.onPause();
 snakeView.pause();

Chapter 8

[311]

 }

 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_BACK) {

 snakeView.pause();

 Intent i = new Intent(this,
 MainActivity.class);
 startActivity(i);
 finish();
 return true;
 }
 return false;
 }

16. Here is our loadSound method, which simply tidies up the onCreate method
by moving all of the sound initialization to here. Type this code after the code
from the previous step:
public void loadSound(){
 soundPool = new SoundPool(10,
 AudioManager.STREAM_MUSIC, 0);
 try {
 //Create objects of the 2 required classes
 AssetManager assetManager = getAssets();
 AssetFileDescriptor descriptor;

 //create our three fx in memory ready for use
 descriptor = assetManager.openFd("sample1.ogg");
 sample1 = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("sample2.ogg");
 sample2 = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("sample3.ogg");
 sample3 = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("sample4.ogg");

The Snake Game

[312]

 sample4 = soundPool.load(descriptor, 0);

 } catch (IOException e) {
 //Print an error message to the console
 Log.e("error", "failed to load sound files);
 }
 }

17. Then we have the configureDisplay method, which is called from
onCreate and does the entire setup of bitmaps and screen size calculations.
We will look at this in more detail later. Type the following code after the
code from the previous step:
public void configureDisplay(){
 //find out the width and height of the screen
 Display display =
 getWindowManager().getDefaultDisplay();
 Point size = new Point();
 display.getSize(size);
 screenWidth = size.x;
 screenHeight = size.y;
 topGap = screenHeight/14;
 //Determine the size of each block/place on the game board
 blockSize = screenWidth/40;

 //Determine how many game blocks will fit into the
 //height and width
 //Leave one block for the score at the top
 numBlocksWide = 40;
 numBlocksHigh = ((screenHeight - topGap
))/blockSize;

 //Load and scale bitmaps
 headBitmap =
 BitmapFactory.decodeResource(getResources(),
 R.drawable.head);
 bodyBitmap =
 BitmapFactory.decodeResource(getResources(),
 R.drawable.body);
 tailBitmap =
 BitmapFactory.decodeResource(getResources(),
 R.drawable.tail);

Chapter 8

[313]

 appleBitmap =
 BitmapFactory.decodeResource(getResources(),
 R.drawable.apple);

 //scale the bitmaps to match the block size
 headBitmap = Bitmap.createScaledBitmap(headBitmap,
 blockSize, blockSize, false);
 bodyBitmap = Bitmap.createScaledBitmap(bodyBitmap,
 blockSize, blockSize, false);
 tailBitmap = Bitmap.createScaledBitmap(tailBitmap,
 blockSize, blockSize, false);
 appleBitmap =
 Bitmap.createScaledBitmap(appleBitmap,
 blockSize, blockSize, false);

 }

18. Now run the app. The game is much more playable on an actual device than
it is on the emulator.

We covered the code as we progressed, but as usual, here is a piece-by-piece dissection
of a few of the more complicated methods, starting with the updateGame method.

First, we check whether the player has eaten an apple. More specifically, is the
snake's head in the same grid location as the apple? The if statement checks whether
this has occurred, and then does the following:

• Increases the length of the snake
• Puts another apple on the screen by calling getApple
• Adds a value to the player's score, relative to the length of the snake, making

each apple worth more than the previous one
• Plays a beep

Here is the code for the actions that we have just described:

public void updateGame() {

 //Did the player get the apple
 if(snakeX[0] == appleX && snakeY[0] == appleY){
 //grow the snake
 snakeLength++;
 //replace the apple
 getApple();
 //add to the score
 score = score + snakeLength;
 soundPool.play(sample1, 1, 1, 0, 0, 1);
 }

The Snake Game

[314]

Now we simply move each segment of the snake, starting from the back, to the
position of the segment in front of it. We do this with a for loop:

 //move the body - starting at the back
 for(int i = snakeLength; i >0 ; i--){
 snakeX[i] = snakeX[i-1];
 snakeY[i] = snakeY[i-1];
 }

Of course, we better move the head too! We move the head last because the leading
section of the body would move to the wrong place if we move the head earlier. As
long as the entire move is made before any drawing is done, all will be well. Our run
method ensures that this is always the case. Here is the code to move the head in the
direction determined by directionOfTravel. As we saw, directionOfTravel is
manipulated by the player in the onTouchEvent method:

 //Move the head in the appropriate direction
 switch (directionOfTravel){
 case 0://up
 snakeY[0] --;
 break;

 case 1://right
 snakeX[0] ++;
 break;

 case 2://down
 snakeY[0] ++;
 break;

 case 3://left
 snakeX[0] --;
 break;
 }

Next, we check for a collision with a wall. We saw this code when we looked at
collision detection earlier. Here is the complete solution, starting with the left wall,
then right, then top, and then bottom:

 //Have we had an accident
 boolean dead = false;
 //with a wall
 if(snakeX[0] == -1)dead=true;
 if(snakeX[0] >= numBlocksWide)dead=true;
 if(snakeY[0] == -1)dead=true;
 if(snakeY[0] == numBlocksHigh)dead=true;

Chapter 8

[315]

Then we check whether the snake has collided with itself. Initially, this seemed
awkward, but as we previously saw, we just loop through our snake array to
check whether any of the segments are in the same place as the head, in both
x and y coordinates:

 //or eaten ourselves?
 for (int i = snakeLength-1; i > 0; i--) {
 if ((i > 4) && (snakeX[0] == snakeX[i]) && (snakeY[0]
 == snakeY[i])) {
 dead = true;
 }
 }

If any part of our collision detection code sets dead to true, we simply play a sound,
set the score to 0, and get a new baby snake:

 if(dead){
 //start again
 soundPool.play(sample4, 1, 1, 0, 0, 1);
 score = 0;
 getSnake();

 }

 }

Now we take a closer look at the drawGame method. First, we get ready to draw by
clearing the screen:

public void drawGame() {

 if (ourHolder.getSurface().isValid()) {
 canvas = ourHolder.lockCanvas();
 //Paint paint = new Paint();
 canvas.drawColor(Color.BLACK);//the background
 paint.setColor(Color.argb(255, 255, 255, 255));
 paint.setTextSize(topGap/2);

Now we draw the text for the player's score, just above topGap that we define in
configureDisplay:

 canvas.drawText("Score:" + score + " Hi:" + hi, 10, topGap-6,
 paint);

The Snake Game

[316]

Now, using drawLine, we draw a visible border around our game grid:

 //draw a border - 4 lines, top right, bottom, left
 paint.setStrokeWidth(3);//4 pixel border
 canvas.drawLine(1,topGap,screenWidth-
 1,topGap,paint);
 canvas.drawLine(screenWidth-1,topGap,screenWidth-
 1,topGap+(numBlocksHigh*blockSize),paint);
 canvas.drawLine(screenWidth-
 1,topGap+(numBlocksHigh*blockSize),1,topGap+
 (numBlocksHigh*blockSize),paint);
 canvas.drawLine(1,topGap,
 1,topGap+(numBlocksHigh*blockSize), paint);

Next, we draw the snake's head:

//Draw the snake
canvas.drawBitmap(headBitmap, snakeX[0]*blockSize,
 (snakeY[0]*blockSize)+topGap, paint);

The snake's head will be followed by all the body segments. Look at the condition of
the for loop. This starts at 1, which means it is not redrawing the head position, and
ends at snakeLength - 1, which means it is not drawing the tail segment. Here is
the code used to draw the body section:

//Draw the body
for(int i = 1; i < snakeLength-1; i++){
 canvas.drawBitmap(bodyBitmap, snakeX[i]*blockSize,
 (snakeY[i]*blockSize)+topGap, paint);
}

Here, we draw the tail of the snake:

//draw the tail
canvas.drawBitmap(tailBitmap, snakeX[snakeLength-
 1]*blockSize, (snakeY[snakeLength-1]*blockSize)+topGap, paint);

Finally, we draw the apple as follows:

 //draw the apple
 canvas.drawBitmap(appleBitmap, appleX*blockSize,
 (appleY*blockSize)+topGap, paint);

 ourHolder.unlockCanvasAndPost(canvas);
 }

 }

Chapter 8

[317]

Next, we will go through the configureDisplay method.

First, we get the screen resolution and store the results in screenWidth and
screenHeight as normal:

public void configureDisplay(){
 //find out the width and height of the screen
 Display display = getWindowManager().getDefaultDisplay();
 Point size = new Point();
 display.getSize(size);
 screenWidth = size.x;
 screenHeight = size.y;

Here, we define a gap called topGap. It will be a space at the top of the screen and
will not be a part of the game area. This gap is used for the score. We saw topGap
used fairly extensively in the drawGame method. After this, we calculate the width
and height of the remaining area in blocks:

 topGap = screenHeight/14;
 //Determine the size of each block/place on the game board
 blockSize = screenWidth/40;

 //Determine how many game blocks will fit into the height and
 width
 //Leave one block for the score at the top
 numBlocksWide = 40;
 numBlocksHigh = (screenHeight - topGap)/blockSize;

In the following part of the code, we load all our image files into Bitmap objects:

//Load and scale bitmaps
 headBitmap = BitmapFactory.decodeResource(getResources(),
 R.drawable.head);
 bodyBitmap = BitmapFactory.decodeResource(getResources(),
 R.drawable.body);
 tailBitmap = BitmapFactory.decodeResource(getResources(),
 R.drawable.tail);
 appleBitmap = BitmapFactory.decodeResource(getResources(),
 R.drawable.apple);

Finally, we scale each bitmap to be the same width and height as blockSize:

 //scale the bitmaps to match the block size
 headBitmap = Bitmap.createScaledBitmap(headBitmap, blockSize,
 blockSize, false);
 bodyBitmap = Bitmap.createScaledBitmap(bodyBitmap, blockSize,
 blockSize, false);

The Snake Game

[318]

tailBitmap = Bitmap.createScaledBitmap(tailBitmap, blockSize,
 blockSize, false);
appleBitmap = Bitmap.createScaledBitmap(appleBitmap,
 blockSize, blockSize, false);

 }

Now we can take a quick look at a few different ways we can improve the game.

Enhancing the game
Here is a series of questions and answers to lead us to an improved version of our
Snake game. It doesn't matter if you can't answer some (or even all) of the questions.
Just take a look at the questions and answers, after which you can take a look at the
new game and the code.

Self-test questions
Q1) What can be used to provide a visual improvement for our game screen? Can we
use a nice light green, grassy background instead of just black?

Q2) How about some nice flowers?

Q3) If you're feeling brave, make the flowers sway. Think about what we have
learned about sprite sheets. The theory is exactly the same as that of the animated
snake head. We just need a few lines of code to control the frame rate separately
from the game frame rate.

Q4) We could set up another counter and use our snake head animation in
GameActivity, but it wouldn't be that useful because the subtle tongue movements
would be barely visible at the smaller size. But could we swish the tail segment?

Q5) Here is a slightly trickier enhancement. You can't help notice that when the
snake sprites are headed in three out of the four possible directions, they don't
look right. Can you fix this?

Chapter 8

[319]

Summary
This is the end of yet another successful game project. You now know how to create
and animate sprite sheets to add more realism to our games. Now we have an
enhanced Snake game.

In the next chapter, we will see how simple it is to add leaderboards and achievements.
This will make our game social and compelling by letting the player see the high scores
and achievements of their friends and compare them with their own.

Making Your Game the
Next Big Thing

The day has finally come when we can publish our first game. This chapter, despite
being shorter than others, is probably the longest chapter to complete. It would be
a good idea to scan through the different exercises to see what is involved before
actually diving into them. Most of these tutorials are not suitable to do during the
advertisements of your favorite TV program or when you get in from work and you
are really tired.

Read the chapter and make a plan of when to perform each stage. The stages are
arranged so you should be able to leave the project in between each of them. If you
are really determined, have understood all the code until now, are confident with
files and folders, and have no interruptions, you can probably get the work in this
chapter completed in about a day.

As always, the completed code is in the relevant folder in the download bundle, in
this case the Chapter9 folder.

Note that because I cannot share the login credentials for my developer
account, had to mask some ID numbers within the code with a series of
black lines. You will see these in the code in this chapter when talking
about the ids.xml file which is NOT in the code bundle because of
its confidential nature. However, as you will see in the Setting up the
Snake project ready for implementation section, it is easy to get your own
ID codes. Also note that a lot of the work in this chapter involves set
up that takes place in your developer console. The leaderboards and
achievements will not function until you have completed the necessary
steps. However, you can review the entire code in the Chapter9 folder
and download the enhanced version of the game from Chapter 8, The
Snake Game, complete with working leaderboards and achievements
from Chapter 9, Making Your Game the Next Big Thing, from https://
play.google.com/store/apps/details?id=com.packtpub.
enhancedsnakegame.enhancedsnakegame.

https://play.google.com/store/apps/details?id=com.packtpub.enhancedsnakegame.enhancedsnakegame
https://play.google.com/store/apps/details?id=com.packtpub.enhancedsnakegame.enhancedsnakegame
https://play.google.com/store/apps/details?id=com.packtpub.enhancedsnakegame.enhancedsnakegame

Making Your Game the Next Big Thing

[322]

If you want to implement everything yourself and also want to start with the
enhanced version of the game, including all the improvements from the self-test
questions from the previous chapter, then grab the EnhancedSnakeGame code from
the Chapter8 folder, and update your working project from Chapter8.

In this chapter, you will learn the following topics:

• How to publish your app
• Marketing your app, including making it social with leaderboards and public

achievements
• Implementing leaderboards and achievements with the Google Play Game

Services API
• Looking at what to do next depending on what you want to achieve

How to publish your app
Some of the steps in this guide involve writing descriptions and supplying
screenshots, so you might like to read through the entire guide before
implementing any of the steps:

1. Create an icon. Exactly how to design an icon is beyond the scope of this book,
but simply put, you need to create a nice image for each of the Android screen
density categories. This is easier than it sounds. Using a simple image, such as
the snake head bitmap, you can customize and download a set from http://
romannurik.github.io/AndroidAssetStudio/icons-launcher.html.
There are many sites that offer a similar free service. Of course, you can just
use the images in the enhanced snake project, and skip this step and the next.

2. Once you have downloaded your .zip file from the preceding link, you can
simply copy the res folder from within the download to the main folder
within the project explorer. All icons at all densities will now be updated.

3. Before we proceed further, optionally you will need to prepare some
screenshots of the game. You will be prompted to upload a screenshot for
several screen types, but since the game is nearly identical on all screen
types, one image should do fine. You will also need an image of dimension
512 x 512 for a high-resolution icon and an image of dimension 1024 x 500
for a feature graphic. They don't need to be great, but you do need them to
proceed. Create your own or grab a copy of my very simple graphics in the
Chapter9 folder.

4. Now, unfortunately, you will need to spend $ 25 to open a Google Play
account. You can sign up at https://play.google.com/apps/publish/.

http://romannurik.github.io/AndroidAssetStudio/icons-launcher.html
http://romannurik.github.io/AndroidAssetStudio/icons-launcher.html
https://play.google.com/apps/publish/

Chapter 9

[323]

5. Once you have signed up, you can log in to your developer console at the
same URL as mentioned in the previous step.

6. Once in your console, click on the + Add new application button:

7. In the Add New Application dialog, type a name for your application, such
as Snake Game. Now click on Upload APK.

8. We now need to make our app into the release version. Open the
AndroidManifest.xml file and add the highlighted line of code in
the location shown:
<application
 android﹕debuggable="false"
 android:allowBackup="true"

9. Rebuild your signed APK for the latest version of the Snake game, as
discussed in Chapter 2, Getting Started with Android.

10. Now click on Upload your first APK to production.
11. Now go to your Snake game APK.
12. Wait for the APK to finish uploading. You can now see your game summary

screen. Notice the highlighted progress indicator to the top-left corner of
the next image. We have a green tick, indicating that the APK has been
uploaded successfully:

Making Your Game the Next Big Thing

[324]

13. The next thing we need to do is configure our Store Listing, so click on the
Store Listing link, just below the APK link.

14. Write a short description and a long description. Also upload your
screenshots, feature graphics, and high-resolution icon.

15. In the Application Type drop-down menu, select Games. In the Category
drop-down menu, Arcade is probably most appropriate. For Content Rating,
select Everyone, and for Privacy Policy, click on the checkbox for Not
submitting a privacy policy at this time.

16. Add your website and email address to the relevant boxes.
17. Back at the top of the web page, click on the Save button.
18. Now we are at the final stage of this guide. Click on the Pricing and

distribution link. It is just underneath the Store Listing link from step 13.
19. Click on the Free button at the top of the page.
20. Click on the checkbox of all the countries you want your game to be listed in.
21. Scroll down to the bottom of the page and click on the checkboxes for

Content guidelines and US Export laws.
22. Click on Save at the top of the page.
23. Finally, from the Ready to publish drop-down menu at the top right corner

of the page, click on Publish this app and you are done.

Congratulations! Your game will be live on Google Play somewhere between the
next 5 minutes and 24 hours.

Marketing your app
The temptation at this stage is to sit back and wait for our game to hit the top
position in the best-selling apps. This never happens.

Chapter 9

[325]

To ensure that our app achieves its full potential, we need to do the following
continuously:

Improve it

We have already made quite a few improvements to the Snake game but there
are many more, such as difficulty settings, music, debugging (did you see the
occasionally wonky body segments?), settings menu, and so on. You can pay a
professional to design backgrounds and sprites, or add more sound effects. When
you have improved your Android and Java skills further, you can rewrite the entire
game using a smoother engine and call it Version 2.

Promote it

This could be the subject of another book but there are so many ways we can spread
the word about our app. We can create a page/profile on all the social media
sites—Facebook, Twitter, Flickr, and so on. Add regular updates, announcements,
challenges (see compulsion). We can create a website to promote our app and
promote it in all the ways we would promote any other website. We can add a
message in the app itself asking players to rate it, perhaps pop up a message just
after they have got a high score or achievement. We can ask everyone we know and
everyone who visits our social media/website to give a rating and leave a review.
There are many more ways to promote an app as well. The secret to all of them is
this: keep doing it. For example, don't create a Facebook page and then expect it to
grow in popularity on its own. Keep adding to all of your channels of promotion.

Keep the players' level of compulsion

Besides improving the game in the ways we have briefly mentioned, we need to
give players a compelling reason to keep coming back to our game. One way might
be to add new levels. For example, it won't be hard to implement levels in our
Snake game. Each level could have walls in different places and the layouts could
get progressively more challenging. All we would need to do is make an array of
obstacles, draw them on the screen, and detect collisions. Then set a target for the
snake length for each level and move on to the next level when it is achieved.

We could offer different snake designs to be be unlocked for certain challenges. How
about the player saving all the apples they collect as a form of currency, and then
strategically spending that currency to get a chance to continue after they have died?

Making Your Game the Next Big Thing

[326]

How about offering time-limited challenges? For example, complete level 10 by
the end of the month to receive a thousand bonus apples. Perhaps, we could come
up with more things the apples could be spent on. Cool snake accessories or levels
that can only be unlocked with apples. The point is that all of this compulsion can
be added and updated at the same time as we upload our improvements. Nothing
mentioned in this discussion about compulsion would be unachievable with the
skills we have learned so far.

Probably, the most compelling aspect we can add to our game is online leaderboards
and achievements so that players can compare themselves to their friends and the
rest of the world. Google is aware of this and have done a lot of work to make it as
easy as possible to add leaderboards and achievements to games. We will see how
we can yet again take advantage of other people's hard work.

What's more, all the achievements that players of your game earn are fed into their
overall Google Play profile. Here is a screenshot of my rather poor Google Play
achievements profile:

You might have noticed a few Snake achievements in that lot. This feature makes
your game potentially even more compelling.

Chapter 9

[327]

Let's do a quick reality check—I am not actually suggesting that you
spend significant amounts of time trying to make a real business
out of our humble Snake game. It just serves as a useful example for
discussion. Also, if we can come up with so many ideas for a game
this old and simple, then we can surely come up with some really
amazing stuff for a game we are passionate about. When you have an
idea you are passionate about, then that would be the time to go for it
and expand the brief marketing plan we have discussed.

Adding leaderboards and achievements
So we know why leaderboards and achievements are a good thing. The first thing
we need to do here is plan our achievements. A leaderboard is a high score table,
and that's it! There isn't a great deal of things we can do to make them different.
The achievements, however, deserve some discussion.

Planning the Snake achievements
At first, it might seem that a really simple implementation of a really simple game,
like our Snake game, isn't deep enough to have many, or even any, achievements.
So what follows is a quick brainstorming session of achievement ideas:

• Score 10, 25, 50, 100, and so on: Simply unlock achievements at different
levels of high score.

• Snake length: Simply unlock achievements at different snake lengths.
• Cannibal: Unlock an achievement the first time the player collides with their

own tail segment.
• Collect x apples in total: Keep a tally of all the apples ever collected, and

unlock achievements at significant milestones.
• Play 10, 25, 50, 100 games: Reward the player for keeping on going. Whether

they win or lose, achievements are unlocked for effort.
• Treasure hunt: What if there was a hidden spot in every game? It could give

the player a reason to explore each level. They could be rewarded with points
and apples. They could then unlock real achievements, perhaps for every 5,
10, or 20 hidden spots that they find.

Making Your Game the Next Big Thing

[328]

Some of the achievements suggest that we would be required to keep a record of the
player's progress. Surprisingly, Google Play Game Services can actually do this for
us. These are known as incremental achievements. The number of apples collected in
total is a good example of an incremental achievement. Others, such as snake length,
are just dependent on the player's performance in any one game.

We will implement the total number of apples and the snake length achievements so
that we can see how to implement both types.

We can have five achievements for reaching each of the following snake lengths:
5, 10, 20, 35, and 50. There can also be five incremental achievements for the total
number of apples collected. Specifically, the player will get an achievement at 10, 25,
50, 100, 150, and 250 apples collected. Soon, we will see how to do it.

Finally, we need to decide how many points each achievement will be worth,
out of the 1,000-point limit per game. As I might come back and add some more
achievements later I am going to allocate 250 points to the apples' achievements,
like this:

Number of eaten apples Achievement points
10 10
20 30
50 40
100 70
250 100

I will also allocate 250 points to the snake length achievements, as shown in the
following table:

Length of snake Achievement points
5 10
10 30
25 40
35 70
50 100

Once you see how to implement these achievements in both the code and the
developer console, it will be fairly simple to design and implement your own
different achievements.

Chapter 9

[329]

Step-by-step leaderboards and achievements
This is probably the longest part of the book to complete. However, once you have
been through this process, it will be significantly easier the next time you do it.

Installing the Google Play Services API on your PC
First, we need to add the tools and the libraries needed to use the Game Services
classes. This is nice and easy with Android Studio:

1. Click on the SDK Manager icon in the Android Studio toolbar:

2. The SDK manager will start. It looks a bit like this:

Making Your Game the Next Big Thing

[330]

3. Scroll to the very bottom and underneath Extras, you will see Google
Play Services. Check the box that is shown as highlighted in the following
screenshot by clicking on it:

4. Now click on the checkbox for Google Repository, just below Google
Play Services.

5. Click on Install packages and wait for the packages to download and install.
6. Save your project and restart Android Studio.

We now have the tools installed to start developing Google Play Game Services apps.
Next, we need to set up our developer console to communicate with our app, ready
for the features we will soon write code for.

Configuring the Google Play developer console
Here, we will prepare your developer console by creating a new Game Services
application. This might sound a little counterintuitive; surely, Snake is our
application, isn't it? Yes, but Google Play is structured in such a way that you create
a Game Services application, and it is with this application that your actual games
(Snake in this case) will communicate. It is the Game Services application that will
have the achievements and leaderboards that we will award and display from our
Snake Game:

1. Log in to your Google Play developer console at https://play.google.
com/apps/publish/.

https://play.google.com/apps/publish/
https://play.google.com/apps/publish/

Chapter 9

[331]

2. Click on the Game services tab on the left of the web page.

3. Now click on the Add a new game button.
4. Enter Snake as the name of your game and choose Arcade from the

Category drop-down menu. Now click on Continue. All of this is
shown in the next screenshot:

Making Your Game the Next Big Thing

[332]

5. Now we can configure our game. Type a game description in the Description
field, and add the same high-resolution icon and feature graphic that we
added when we uploaded the game.

6. Click on the Save button at the top of the screen.
7. Now we will link our Snake Game Services app with our actual Snake game.

On the left of the web page, click on the Linked apps tab.

8. Google Play Game Services can be used with almost any platform, even
Apple. We are using it for Android here, so click on the Android button.

Chapter 9

[333]

9. All we need to do on this screen is click on the Package Name search box and
click on our Snake game option.

10. Click on Save and continue at the top of the screen.
11. We're nearing the end of this phase. Click on Authorize your app now and

review the information.

Making Your Game the Next Big Thing

[334]

12. Finally, click on Continue.

We now have a Google Game Services app set up, and linked to our Snake game.

Implementing the leaderboard in the Google Play
developer console
Now we need to create our leaderboard in our developer console so that we can later
interact with it in our Java code:

1. Log in to your developer console.
2. Click on Game Services, then on Snake, and then on Leaderboards.

Chapter 9

[335]

3. Now click on Add Leaderboard. This is the NEW LEADERBOARD screen:

4. This might look like a bit of a marathon ahead, but all we need to do is enter
a name (Snake will do) in the Name field, and we are done. It might seem
strange entering a name for our leaderboard, but this is because it is possible
to have multiple leaderboards for one game.

5. Read through all the options. You will see that they are just right for us and
no further action is required. Click on Save.

Our leaderboard is now ready to communicate with our Snake app.

Making Your Game the Next Big Thing

[336]

Implementing the achievements in the Google Play
developer console
Here, we will set up in our developer console the achievements that we
discussed previously.

You might like to prepare some graphics to represent each of these achievements.
They need to be 512 x 512 pixels each. Alternatively, you can use an enlarged
apple bitmap and perhaps a snake body segment for the apples and snake length
achievements, respectively:

1. Log in to your developer console. Click on Game Services, then on Snake,
and then on Achievements.

2. Click on Add Achievement and you will see the New Achievement screen:

Chapter 9

[337]

3. As we are implementing the incremental apple achievements, the first thing
to do is to enter something in the New Achievement form. In the Name field,
enter Apple Muncher 1.

4. In the Description field, enter Munch 10 apples.
5. Click on the Add Icon button and select your preferred 512 x 512 graphic.
6. Click on the Incremental achievements checkbox and enter 5 in the How

many steps are needed field. This is because the first achievement is for
eating 5 apples. This step is shown in the next screenshot:

7. Enter 10 for the number of achievement points in the Points field.
8. Click on Save and repeat steps 2 to 7 four more times for all the apple

achievements, varying the Name, Description, How many steps are needed?,
and Points fields as per our plans and tables of values for achievements.

9. Now we can move on to our snake length achievements. Click on New
Achievement. In the Name field, enter Super Snake 1.

10. In the Description field, enter Grow your snake to 5 segments.
11. Click on the Add Icon button and browse to your preferred image.
12. Finally, enter 10 for the number of achievement points in the Points field.
13. Click on Save and repeat steps 9 to 13 four more times for each of the snake

length achievements, varying the Name, Description, and Points fields as
per our plans and tables of values for achievements.

We have now set up our achievements, ready to be implemented in code.

Setting up the Snake project ready for
implementation
What we will do in this section is prepare our app to communicate with the Google
Play servers:

1. Add this highlighted code to the AndroidManifest.xml file, just before the
closing </application> tag:
<meta-data android﹕name="com.google.android.gms.games.APP_ID"
 android﹕value="@string/app_id" />

Making Your Game the Next Big Thing

[338]

<meta-data android﹕name="com.google.android.gms.version"
 android﹕value="@integer/google_play_services_version"/>

</application>

2. Create the ids.xml file in the values folder in the Project Explorer. Now you
need to get your unique code for your game to go to this file. Log in to your
developer console, click on Game Services, and then click on Snake. Now
click on Achievements.

3. Just below your list of achievements is a small Get resources link:

4. Click on the Get resources link.

Chapter 9

[339]

5. Copy and paste the code into the ids.xml file. Then click on the Finished
button in the developer console.

6. Now we need to get four code files from the Google Play Game Services
GitHub repository. We will copy and paste the files directly into our project.

7. Create three new empty files in the java folder. Right-click on GameActivity
in the project explorer and navigate to New | Java class file. Name the new
file BaseGameActivity. Repeat this step and name the file GameHelper.
Repeat this once more and name the file GameHelperUtils.

8. Now we will get the Java code to copy into the three files we just made.
To get the code for BaseGameActivity.java, visit https://github.
com/playgameservices/android-basic-samples/tree/master/
BasicSamples/libraries/BaseGameUtils/src/main/java/com/google/
example/games/basegameutils, where you can see further links to the code
for the three files we created in step 7:

9. Click on BaseGameActivity.java as shown in the preceding screenshot.
Select all of the code and copy and paste it into the identically named file that
we created in Android Studio. Note that when we created the file, Android
Studio created some basic template code. We need to delete all of this, except
our package name at the top. When we paste in the copied code, we need to
delete the Google package name.

10. Click on GameHelper.java, as shown in the previous screenshot, and
repeat step 9.

11. Click on GameHelperUtils.java, as shown in the preceding screenshot, and
repeat step 9.

12. There's one more file to create. Right-click on the values folder in the project
explorer. Navigate to New | File. Name the file gamehelper_strings.xml.

https://github.com/playgameservices/android-basic-samples/tree/master/BasicSamples/libraries/BaseGameUtils/src/main/java/com/google/example/games/basegameutils
https://github.com/playgameservices/android-basic-samples/tree/master/BasicSamples/libraries/BaseGameUtils/src/main/java/com/google/example/games/basegameutils
https://github.com/playgameservices/android-basic-samples/tree/master/BasicSamples/libraries/BaseGameUtils/src/main/java/com/google/example/games/basegameutils
https://github.com/playgameservices/android-basic-samples/tree/master/BasicSamples/libraries/BaseGameUtils/src/main/java/com/google/example/games/basegameutils

Making Your Game the Next Big Thing

[340]

13. Get the code that we need for this file in the same way as we did for
the previous three Java files from but from this link: https://github.
com/playgameservices/android-basic-samples/blob/master/
BasicSamples/libraries/BaseGameUtils/src/main/res/values/
gamehelper_strings.xml.

14. Paste the code in gamehelper_strings.xml, which we created in step 12.
15. Now change the MainActivity declaration in the MainActivity.java file.

Consider this code:
public class MainActivity extends Activity {

Change it to the following code so that we can now extend the version of
Activity that handles all the hard work of the Game Services API:
public class MainActivity extends BaseGameActivity {

16. Now check out the code in the GameActivity.java file:
public class GameActivity extends Activity {

Change the preceding code to the following code so that we can now
extend the version of Activity that handles all the hard work of the
Game Services API:
public class GameActivity extends BaseGameActivity {

17. Notice that for both Activities, we have an error in the class declaration we
just typed. If you hover the mouse cursor over the code we typed in the
previous step, you can see the reason. We need to implement some abstract
methods of a class we are using. Recall from Chapter 6, OOP – Using Other
People's Hard Work, that if a method in a class is declared abstract, then the
class that extends it must implement it. That's us! Let's perform an empty
implementation for now. Right-click on the line of code with the error and
navigate to Generate | Implement Methods. Now click on OK. Perform this
step for the MainActivity.java file and the GameActivity.java file. Our
empty methods are now ready for our code. We will write the code in the
next tutorial.

https://github.com/playgameservices/android-basic-samples/blob/master/BasicSamples/libraries/BaseGameUtils/src/main/res/values/gamehelper_strings.xml
https://github.com/playgameservices/android-basic-samples/blob/master/BasicSamples/libraries/BaseGameUtils/src/main/res/values/gamehelper_strings.xml
https://github.com/playgameservices/android-basic-samples/blob/master/BasicSamples/libraries/BaseGameUtils/src/main/res/values/gamehelper_strings.xml
https://github.com/playgameservices/android-basic-samples/blob/master/BasicSamples/libraries/BaseGameUtils/src/main/res/values/gamehelper_strings.xml

Chapter 9

[341]

18. Next, using the project explorer, find the build.gradle file. Be careful; there
are two files with the same name. The file that we need to find is a couple
of lines below the AndroidManifest.xml file. It is highlighted in the next
screenshot. Open it by double-clicking on the build.gradle file:

19. Find the section of code shown here and add the line that is highlighted. This
makes all the classes we downloaded in the previous guide available for use
in our Snake game:
dependencies {
 compile 'com.google.android.gms﹕play-services﹕+'
 compile 'com.android.support:appcompat-v7:+'
 compile fileTree(dir: 'libs', include: ['*.jar'])
}

Okay, I agree that was a fairly tough tutorial, but we are now ready to implement
our code in three final steps:

1. Player sign-in and buttons.
2. Leaderboards.
3. Achievements.

We will then be able to upload our updated app and use our new leaderboards
and achievements.

Making Your Game the Next Big Thing

[342]

Implementing the player's sign-in, achievements,
and leaderboard buttons
By the end of this section, players will be able to log in through the game to our
empty leaderboards and achievements. The guides that follow this section will
actually make the leaderboards and achievements work.

1. First, let's enable our Game Services. All of the work we have done so far in the
developer console needs to be published before we can use it. Log in to your
developer console. Navigate to Game Services | Snake | Ready to publish |
Publish game. Then you will be shown a Publish your game button. Click on
it. Finally, read the brief disclaimer and click on Publish now.

2. Now we need to build a UI that has Sign in, Sign out, Leaderboards, and
Achievements buttons. Open the layout_main.xml file and edit it on the
Text tab of the editor window by adding the following code. Obviously,
there is a lot to type. You might like to copy and paste the code from the
download package at Chapter9\EnhancedSnakeGame\layout. Here is
the code. Type it in or copy and paste it:
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context="com.packtpub.enhancedsnakegame.
 enhancedsnakegame.MainActivity">

 <Button

 android:id="@+id/llPlay"
 android:layout_width="140dp"
 android:layout_height="wrap_content"
 android:text="Leaderboards"
 android:layout_alignParentBottom="true"
 android:layout_alignParentRight="true"

Chapter 9

[343]

 android:layout_alignParentEnd="true"
 android:visibility="gone"/>

 <Button
 android:id="@+id/awardsLink"
 android:layout_width="140dp"
 android:layout_height="wrap_content"
 android:text="Achievements"
 android:layout_gravity="center_vertical"
 android:layout_alignTop="@+id/llPlay"
 android:layout_toLeftOf="@+id/llPlay"
 android:visibility="gone"/>

 <!-- sign-in button -->
 <com.google.android.gms.common.SignInButton
 android:id="@+id/sign_in_button"
 android:layout_width="140dp"
 android:layout_gravity="center_horizontal"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_alignParentRight="true"
 android:layout_alignParentEnd="true"
 />

 <!-- sign-out button -->
 <Button
 android:id="@+id/sign_out_button"
 android:layout_width="140dp"
 android:layout_height="wrap_content"
 android:text="Sign Out"
 android:layout_alignParentTop="true"
 android:layout_alignParentRight="true"
 android:layout_alignParentEnd="true"
 android:layout_gravity="center_horizontal"
 android:visibility="gone"
 />

</RelativeLayout>

Making Your Game the Next Big Thing

[344]

3. Explaining the code line by line is beyond the scope of the book, but this is
not much different from the code we have been autogenerating when using
the UI designer since Chapter 2, Getting Started with Android. Each block of the
code in the last step defines a button and its position on the screen. You can
switch to the design tab and move the buttons around to suit yourself. Note
that the reason some of the buttons are not visible in the designer is that they
are hidden until the player signs in. The reason we have done things this
way is to make sure we implement the sign in button in just the right way.
Note the id attribute for each of the buttons. We will be manipulating them
in our Java code next. With some buttons set to visibility = gone, we see
something like this:

4. With some buttons set to visibility = visible, we see something like
what is shown in the following screenshot:

Chapter 9

[345]

5. You might be wondering why we are designing a UI when SnakeAnimView
is what the user sees. We could have implemented all our own buttons with
bitmaps and used their screen coordinates to detect presses, but what we will
do now is load our UI on top of SnakeAnimView, which will greatly simplify
things. Switch to the MainActivity tab in the editor window.

6. First of all, we want to implement the onClickListener interface to handle
our button clicks. To achieve this, change the class declaration to this:
public class MainActivity extends BaseGameActivity implements
View.OnClickListener{

7. Now we can get Android Studio to quickly implement the required onClick
method by right-clicking on the class declaration, navigating to Add |
Implement methods, and then clicking on OK.

8. Immediately after the previous line of code, we declare our four new buttons.
Add this code after the code in the previous step:
//Our google play buttons
 Button llPlay;
 Button awardsLink;
 com.google.android.gms.common.SignInButton sign_in_button;
 Button sign_out_button;

9. In the onCreate method, just after the call to the setContent view, we
use an object of the LayoutInflater class to load our UI on top of our
SnakeAnimView. Add the highlighted code after the call to setContentView:
setContentView(snakeAnimView);

 //Load our UI on top of our SnakeAnimView
 LayoutInflater mInflater = LayoutInflater.from(this);
 View overView = mInflater.inflate(R.layout.activity_main,
 null);
 this.addContentView(overView, new
 ViewGroup.LayoutParams(ViewGroup.LayoutParams.MATCH_PARENT,
 ViewGroup.LayoutParams.MATCH_PARENT));

10. Immediately after the code in the previous step, we can get a reference to all
our buttons and listen to clicks in the usual way:
//game services buttons
 sign_in_button =
 (com.google.android.gms.common.SignInButton)
 findViewById(R.id.sign_in_button);
 sign_in_button.setOnClickListener(this);
 sign_out_button =
 (Button)findViewById(R.id.sign_out_button);
 sign_out_button.setOnClickListener(this);

Making Your Game the Next Big Thing

[346]

 awardsLink = (Button)
 findViewById(R.id.awardsLink);
 awardsLink.setOnClickListener(this);
 llPlay = (Button)findViewById(R.id.llPlay);
 llPlay.setOnClickListener(this);

11. Remember that in the previous guide, we overrode two abstract methods
that we inherited when we extended the BaseGameActivity class.
Now we will put some code into their implementation. The code is very
straightforward. We hide the sign out button and show the sign in button
when the sign-in fails, and we hide the sign in button and show all the other
three buttons when the sign-in succeeds. Here are the two methods in their
entirety. Type the highlighted code within the methods shown:
@Override
 public void onSignInFailed() {
 // Sign in failed. So show the sign-in button.
 sign_in_button.setVisibility(View.VISIBLE);
 sign_out_button.setVisibility(View.GONE);
 }

 @Override
 public void onSignInSucceeded() {
 // show sign-out button, hide the sign-in button
 sign_in_button.setVisibility(View.GONE);
 sign_out_button.setVisibility(View.VISIBLE);
 llPlay.setVisibility(View.VISIBLE);
 awardsLink.setVisibility(View.VISIBLE);
 }

12. Now we deal with the onClick method and what happens when the player
clicks on any one of our four buttons. First, we type the code for our switch
block. We will fill in the case statements in the next step:
switch (v.getId()) {

}

13. Here, we handle the sign in button. We simply call the
beginUserInitiatedSignIn method. It is implemented for us in the
BaseGameActivity class. Type this code in the switch block from the
previous step:
 case R.id.sign_in_button:
 // start the sign
 beginUserInitiatedSignIn();
 break;

Chapter 9

[347]

14. Now we handle what happens when the player signs out. We just call
signOut, which is implemented for us in the BaseGameActivity class.
We then hide all our buttons and show the sign in button again. Type the
following code after the code from the previous step:
case R.id.sign_out_button:
 // sign out.
 signOut();

 // show sign-in button, hide the sign-out button
 sign_in_button.setVisibility(View.VISIBLE);
 sign_out_button.setVisibility(View.GONE);
 llPlay.setVisibility(View.GONE);
 awardsLink.setVisibility(View.GONE);
 break;

15. Next, we handle what happens when the player clicks on the achievements
button. One line of code gives us all of the achievement functionality. This is
what OOP is all about—someone else's hard work doing everything for us.
Type this code after the preceding code:
case R.id.awardsLink:

 startActivityForResult(Games.Achievements.getAchie
vementsIntent(getApiClient()), 0);

 break;

16. Finally, we handle what happens when the player clicks on the Leaderboards
button. Again, one line of code gives us all of the leaderboard's functionality:
case R.id.llPlay:
 startActivityForResult(Games.Leaderboards.getLead
erboardIntent(getApiClient(), getResources().getString(R.string.
leaderboard_snake)),0);
 break;

We explained the code as we went, but let's summarize:

1. We designed a simple UI.
2. We loaded the UI on top of SnakeAnimView.
3. We got a reference to our four buttons and listened for clicks.
4. We handled what happens when people click on our buttons, which

amounted to nothing more than hiding and showing buttons as appropriate,
calling methods from BaseGameActivity, and using the Intent class to
implement all our leaderboard and achievement functionalities.

Making Your Game the Next Big Thing

[348]

You can actually run the Snake game and see the leaderboards and achievements
screens. Of course, at this point, nobody will have any achievements or high scores
yet. We will fix this now.

Implementing the leaderboards in code
Once more, we will witness the simplicity of using other people's well-designed
code. Admittedly, there was some complexity to arrive at this point, but once you
have set it all up, then your next game will take a fraction of the time you took
setting up:

1. We want to submit a score to the leaderboards at the end of a game. Google
Play will handle the process to check whether or not it is a high score. Google
Play will even determine if it is a new high score for the week or month.
Open the GameActivity.java file in the code editor window.

2. Find the updateGame method and add the highlighted code among all the
other things we do when the game is over (when dead equals true). We
wrap just one line of code within a check to ensure that the current player
is signed in:
if(dead){
 if (isSignedIn()) {
 Games.Leaderboards.submitScore(getApiClient(),
 getResources().getString(R.string.leaderboard_snake),
 score);
 }

3. That's it! Build the game and play it on a real Android device. You can now
visit the leaderboards on Google Play and see your high score.

Chapter 9

[349]

That was nice and easy. Here, we can see the login screen:

Then comes the welcome message and our Achievements and Leaderboards buttons
as shown in the following screenshot:

Making Your Game the Next Big Thing

[350]

Finally, we can see our new leaderboards with just one player—me.

Just in case you're wondering, I can do a lot better than 39.

Implementing the achievements in code
This brief tutorial will first set up our game to post incremental updates to the
progress of the apple achievements and the one-off achievement of the snake
segment length:

1. In the GameActivity.java file, add an applesMunchedThisTurn variable
just after the class declaration, as shown here:
public class GameActivity extends BaseGameActivity {

 int applesMunchedThisTurn;

2. Find the updateGame method.
3. Add a line of code to increment applesMunchedThisTurn each time an apple

is eaten by adding the highlighted line of code where it is shown:
//Did the player get the apple
 if(snakeX[0] == appleX && snakeY[0] == appleY){
 applesMunchedThisTurn++;
 //grow the snake
 snakeLength++;
 //replace the apple

Chapter 9

[351]

 getApple();
 //add to the score
 score = score + snakeLength;
 soundPool.play(sample1, 1, 1, 0, 0, 1);
 }

4. Notice that we place this highlighted line among the code that executes when
the player dies (the if(dead) block). We could do it at the point the player
eats an apple, but if we send five messages to the Google Play servers every
time the player eats an apple, we might risk Google considering it as spam.
We simply increment each achievement by the number of apples that have
been eaten, and then reset the applesMunchedThisTurn variable to zero. We
wrap our achievement method calls with a check that the player is signed
in and that applesMunchedThisTurn is greater than zero. Now add the
highlighted code:
if(dead){
//start again
if (isSignedIn())
if(applesMunchedTisTurn > 0){//can't increment zero
 Games.Achievements.increment(getApiClient(), getResources().
 getString(R.string.achievement_apple_muncher_1),
 applesMunchedThisTurn);
 Games.Achievements.increment(getApiClient(), getResources().
 getString(R.string.achievement_apple_muncher_2),
 applesMunchedThisTurn);
 Games.Achievements.increment(getApiClient(), getResources().
 getString(R.string.achievement_apple_muncher_3),
 applesMunchedThisTurn);
 Games.Achievements.increment(getApiClient(), getResources().
 getString(R.string.achievement_apple_muncher_4),
 applesMunchedThisTurn);
 Games.Achievements.increment(getApiClient(), getResources().
 getString(R.string.achievement_apple_muncher_5),
 applesMunchedThisTurn);
 applesMunchedThisTurn = 0;
}//end if(applesMunchedThisTurn > 0)

 Games.Leaderboards.submitScore(getApiClient(), getResources().
 getString(R.string.leaderboard_snake),score);

}//end if(isSignedIn)

Making Your Game the Next Big Thing

[352]

 soundPool.play(sample4, 1, 1, 0, 0, 1);
 score = 0;
 getSnake();

 }

 }

5. Now we will handle the segment length achievements. In the updateGame
method, in the part of the code that executes when the player eats an apple,
just after the line of code that increments snakeLength, we test for any of the
lengths that warrant a Super Snake achievement. When the desired length
is achieved (5, 10, 25, 35, or 50 segments), we ask Google Play to award it (if
it hasn't been awarded yet). We wrap our achievement method calls with a
check that the player is signed in and that at least one apple has been eaten.
The highlighted code is the new code to add:
//grow the snake
snakeLength++;
if (isSignedIn()){
if(applesMunchedThisTurn > 0) {//can't increment by zero
 //Are we long enough for a new SuperSnake
 achievement?
 if(snakeLength == 5){
 Games.Achievements.unlock(getApiClient(),
getResources().getString(R.string.achievement_super_snake_1));
 }
 if(snakeLength == 10){
 Games.Achievements.unlock(getApiClient(),
getResources().getString(R.string.achievement_super_snake_2));
 }
 if(snakeLength == 25){
 Games.Achievements.unlock(getApiClient(),
getResources().getString(R.string.achievement_super_snake_3));
 }
 if(snakeLength == 35){
 Games.Achievements.unlock(getApiClient(),
getResources().getString(R.string.achievement_super_snake_4));
 }
 if(snakeLength == 50){
 Games.Achievements.unlock(getApiClient(),
getResources().getString(R.string.achievement_super_snake_5));
 }
}

Chapter 9

[353]

6. That's it! You can now play the game and earn achievements:

Again, that was nice and easy. You can probably see how simple it would be to
implement all other achievement ideas that we discussed earlier in the chapter.
Let's move on and update our game on Google Play.

Uploading the updated Snake game to Google Play
This is nice and easy and is performed as follows:

1. First, we need to let Google Play know this is a new version. We do this by
changing the version number. Open the Build.gradle file and find these
lines of code:
versionCode 1
 versionName "1.0"
Change them to the following:
versionCode 2
 versionName "1.1"

2. Build your APK in the usual way.
3. Log in to your developer console.
4. Click on Snake Game 1.0, then on APK, and then on Upload new APK to

production.

Making Your Game the Next Big Thing

[354]

5. Go to your newly updated APK.
6. In the What's new in this version field, enter Added leaderboards and

achievements.
7. Click on Publish now to production.

From now onwards, everyone who downloads your game will get the updated
version. With our first game, complete with sprite sheet animations, leaderboards
and achievements, it is time to take a break and do a little theory.

What next?
You should be proud of your creations to date, especially if this was your first
attempt at programming. If some of the concepts, syntax, or projects are still not
clear, then consider revisiting them after a break.

The one thing we haven't talked about is the even more new skills we need to
progress further. The reason for this is that it very much depends on your initial
motivation for reading this book.

Getting a programmer's job
If you want to be a Java employee, that is, working full time with a professional
capacity for a medium or large company, then you will probably need a college
degree, and this book hopefully has given you a glimpse into the world of
programming and Java itself. If this describes you, then for further study, you could
consider a more formal Java book, followed by a pure OOP book about object-
oriented analysis and design. You could then move on to study design patterns.

Some of the best books that fit into these categories are Head First Object-Oriented
Analysis and Design: A Brain Friendly Guide to OOA&D, Brett McLaughlin and Gary
Pollice; Head First Design Patterns; Eric Freeman and Elisabeth Robson, O'Reilly; and
Design Patterns CD: Elements of Reusable Object-Oriented Software, Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides, Addison Wesley. The first two are
very beginner-friendly. The latter is highly regarded but a much more challenging
read for a beginner.

My guess is that most likely, you didn't pick up a beginners' book on games and Java
because you were headed in that direction, so let's consider our piece de resistance so
far—our Snake game.

Chapter 9

[355]

Building bigger and better games
If you compare our Snake game to a modern, professional title, even a two-dimensional
game, never mind a modern big-budget First Person Shooter (FPS), then we still have a
lot of learning to do. Let's consider some inadequacies of our Snake game compared to a
professional game.

Think about our flower and tail animations. They worked because we set up a crude
timing system within our controlFPS method. But what if we had a dozen or more
game objects that needed to be animated?

Then what if they all had different frame counts and frame rates? We can further
complicate things if some of the animations need to work on a loop and others need
to reverse through each frame before restarting.

Now imagine a character that has to jump. How do we synchronize whatever frame
happens to be displayed at the time the player jumps?

Actually, all of these problems and more are solvable with a quick web search and
some study. The point is that things are starting to get fairly complicated, and we
have only talked about animation.

What about physics? How will objects in our future games behave when they
bounce? We were able to cheat with our Squash game because the environment and
the objects were few and simple. What if the ball was round and there were lots of
objects of different sizes and shapes, some moving fast and some stationary? How
would we simulate this physics model?

Again, the answers are all out there but they add complexity. What about other
environmental factors such as light and shadow? What happens when our screen
needs to scroll to the left and right? What about up and down?

Now consider all of these problems and imagine implementing a solution in a virtual
three-dimensional world. Once again, the solutions are out there, but it would take
a determined beginner many months to implement their own solution using the raw
mathematics involved in three-dimensional calculations.

Next, imagine that you want your new three-dimensional, physics-based, superbly
animated game to be available on Android, Apple, and PC platforms.

If I have discouraged you from seeking some of these solutions but you are
fascinated to find out the answer, then my advice would be to go and find it out
anyway. It will definitely be a fascinating journey and make you a better game
developer. Think twice, however, before implementing any of this stuff for any
reason other than curiosity, self-improvement, or fun.

Making Your Game the Next Big Thing

[356]

The reason for this is because we are not the first people to have these and many
other problems—the solutions have already been implemented. And guess what?
We can use those solutions, often at no cost to ourselves.

For example, there is a library called OpenGL that has one purpose—drawing in a
three-dimensional coordinate system. It has classes and methods for everything you
will ever need. There is even a version of OpenGL for mobile, called OpenGL ES, that
you can program in Java. It is true that OpenGL has some complexities of its own, but
they can be learned in a logical and straightforward manner from easy to hard.

If you got this far with this book, take a quick refresher on Chapter 6, OOP – Using
Other People's Hard Work, and then grab a copy of OpenGL ES2 for Android, K.
Brothaler, Pragmatic Bookshelf. The book explores the code library and some of the
mathematics behind it, so it should satisfy both the curious and the purely practical
reader. Alternatively, you can check out loads of free tutorials at http://www.
learnopengles.com/.

If you just want to make more games and are not particularly fussed about
the three-dimensional features, then the next logical step would be a Java-based
game library. There are many, but one in particular uses pure Java to build games
on Android, iPhone, PC, and the Web.

Indeed, you can build one Java game and it will run on almost any device in the
world, even a web page. It also has classes that simplify the use of the aforementioned
OpenGL ES. The library is called LibGDX, and I had loads of fun making a platform
game following along with Learning Libgdx Game development (https://www.
packtpub.com/game-development/learning-libgdx-game-development).
LibGDX also solves all our animation, scrolling, and physics conundrums without
any math, although it doesn't really address three-dimensional features.

Note that both books have some quite in-depth OOP, but this is
not out of reach if you understood Chapter 6, OOP – Using Other
People's Hard Work, and are determined.

http://www.learnopengles.com/
http://www.learnopengles.com/
https://www.packtpub.com/game-development/learning-libgdx-game-development
https://www.packtpub.com/game-development/learning-libgdx-game-development

Chapter 9

[357]

If you want to go 3D straightaway, then a really fun option is the Unreal Engine.
Unreal Engine is used in lots of really big-budget games and can involve immense
complexity in another programming language. However, for a way to make
two-dimensional and three-dimensional games within a GUI development
environment, it is probably unbeatable. Unreal Engine 4 uses a system called
Blueprint, where you can drag and drop elements of flow chart-like elements,
instead of coding. It still uses all the concepts of OOP as well as loops and branching,
but you can do loads without a single line of real code. Take a look at the Unreal
Engine version of Flappy Bird created without a single line of code, at https://
play.google.com/store/apps/details?id=com.epicgames.TappyChicken.

Unreal Engine can also build games for multiple platforms, but unfortunately,
there is a small monthly fee, and most restrictively of all, any commercial project
you make will be subject to an agreement. Here, you pay 30 percent to Epic games,
but for learning and having fun, it probably can't be beaten.

Alternatively, take a look at my blog (www.gamecodeschool.com), where I regularly
add articles and fun game building guides aimed at beginner to intermediate game
programmers. My blog discusses lots of different programming languages, target
platforms, all the tools previously mentioned, and more.

Self-test questions
Q1) Try to implement local high scores on the device.

Q2) How many eminent computer scientists have made cameo appearances in the
code throughout this book?

Q3) As a final challenge, try to beat my high score on the Snake leaderboards.

https://play.google.com/store/apps/details?id=com.epicgames.TappyChicken
https://play.google.com/store/apps/details?id=com.epicgames.TappyChicken
www.gamecodeschool.com

Making Your Game the Next Big Thing

[358]

Summary
In this chapter, we covered a lot. We published our Snake game on Google Play.
Then we added some online leaderboards and achievements. We also updated our
publication. The process showed how very complicated tasks such as communication
over the Internet can be made really simple using an API.

While putting the finishing touches to this book, I watched a YouTube video of
a lecture from John Carmack, a software legend. He was a key engineer in the
development of the Doom game, which was published in June 1995. I had to laugh, as
did his audience, when he explained that while in school, he felt he was missing out
on the technology revolution, and by the time he was old enough to work, it would
all be over.

It is certainly true that lots of technology revolutions have come and many have
gone. At least, many of the early adopters' opportunities have faded. John Carmack
explained that there is always going to be another revolution just around the corner.

So you are probably going to develop your skills and watch out for the next big
thing. Or perhaps, you just want a bit of fun programming anything in any language
for any platform.

I hope you have enjoyed our journey through Android and Java, and that you will
continue this journey as well. I sincerely wish you well, whichever path you choose
for your future. Feel free to come and share your experiences and knowledge at
www.gamecodeschool.com. The perfect sequel to this book will be published
mid 2015 called Android Game Programming by Example.

www.gamecodeschool.com

Self-test Questions
and Answers

Here, we have included some questions you could ask yourself to see whether you
have understood each chapter. Don't worry! The answers are also included.

Chapter 2
Q1) What should you do if all this talk of life cycles, classes, and methods is a
bit confusing?

A) Don't worry about them. Understanding comes a bit at a time, and if they are not
entirely clear at this stage, it will not hold you back from thoroughly learning Java,
and all will become clearer as we progress.

Q2) What exactly is a Java class?

A) Classes are a fundamental building block of Java programs. They are like
containers for our Java code, and we can even use other people's classes to simplify
the programs we write, even without seeing or understanding the code contained
within those classes.

Q3) What is the difference between a method and a class?

A) Methods are contained within classes and represent the specific functionality of the
class, like another container within a container. As an example from a game, we might
have a Tank class with shoot, drive, and selfDestruct methods. We can use a class
and its methods by making our own class, as we will in Chapter 6, OOP – Using Other
People's Hard Work, or by using the @import statement as we did earlier in this chapter.

Self-test Questions and Answers

[360]

Q4) Take a look at the Android developer site and its more technical explanation
of the lifecycle phases, at http://developer.android.com/reference/android/
app/Activity.html. Can you see the phase and its related method that we haven't
discussed? When would it be triggered in an app? What is the precise pathway an
activity takes from creation to destruction?

A) It's the restarting phase. Its corresponding method is onRestart. It is triggered
when an app has been stopped and then restarted. We won't need the onRestart
method in this book, but this exercise hopefully helped clarify the concept of life
cycles. The precise pathway will vary; we just need to handle the phases that are
relevant to our game. So far, we have just tinkered with onCreate.

Chapter 3
Q1) What does this code do?

// setContentView(R.layout.activity_main);

A) Nothing, because it is commented out with //.

Q2) Which of these lines causes an error?

String a = "Hello";
String b = " Vinton Cerf";
int c = 55;
a = a + b
c = c + c + 10;
a = a + c;
c = c + a;

A) The fourth line, a = a + b, has no semicolon, so it will cause an error. The last
line, c = c + a;, will also cause an error because you cannot assign a string to an
int value.

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html

Appendix

[361]

Q3) We talked a lot about operators and how different operators can be used together
to build complicated expressions. Expressions, at a glance, can sometimes make code
look complicated. However, when looked at closely, they are not as tough as they
seem. Usually, it is just a case of splitting the expressions into smaller pieces to work
out what is going on. Here is an expression that is more convoluted than anything
else you will ever meet in this book. As a challenge, can you work out what x will be?

int x = 10;
int y = 9;
boolean isTrueOrFalse = false;
isTrueOrFalse = (((x <=y)||(x == 10))&&((!isTrueOrFalse) ||
(isTrueOrFalse)));

A) You can run the SelfTestC3Q3 project in the Chapter3 folder of the code
bundle to check out the answer in the console, but isTrueOrFalse evaluates
to true; here's why.

First, let's break down the nasty line into manageable sections defined by the brackets:

((x <=y)||(x == 10))

Previously, we were asking the question, "is x less than or equal to y or is x exactly
equal to 10?". Clearly, x is not equal to or less than y but x is exactly equal to 10, so
our use of the logical OR operator, ||, in the middle causes the entire part of the
expression to evaluate to true.

&&

Both sides of an && operator must evaluate to true for the overall expression to be
true. So let's look at the other side:

((!isTrueOrFalse) || (isTrueOrFalse)))

Well, isTrueOrFalse is a Boolean. It can only be true or false so this part of the
expression must be true because we are essentially asking, "is isTrueOrFalse false
or is isTrueOrFalse true?". It must be one or the other. So, regardless of how we
initialized isTrueOrFalse, the last part of the expression will be true.

So the overall expression evaluates to true, and true is assigned to isTrueOrFalse.

Self-test Questions and Answers

[362]

Chapter 4
Q1) What is wrong with this method?

void doSomething(){
 return 4;
}

A) It returns a value but has a void return type.

Q2) What will x be equal to at the end of this code snippet?

int x=19;
do{
 x=11;
 x++;
}while(x<20)

A) Okay, this was a slightly tricky question. Regardless of the value of x, the do block
always executes at least once. Then x is set to 11, and after that, it is incremented to
12. So when the while expression is evaluated, it is true and the do block executes
again. Once more, x is set to 11 and then incremented to 12. The program is stuck in
a never-ending (infinite) loop. This code is most likely a bug.

Chapter 5
Q1) Suppose we wanted to have a quiz where the question could be about
naming the president, the capital city, and so on. How would we do this with
multidimensional arrays?

A) We would just make the inner array hold three strings, perhaps like this:

String[][] countriesCitiesAndPresidents;
//now allocate like this
countriesAndCities = new String[5][3];
//and initialize like this
countriesCitiesAndPresidents [0][0] = "United Kingdom";
countriesCitiesAndPresidents [0][1] = "London";
countriesCitiesAndPresidents [0][3] = "Cameron";//at time of writing

Appendix

[363]

Q2) In our persistence example, we saved a continually updating string to a file so
that it persisted after the app had been shut down and restarted. This is like asking
the user to click on a Save button. Summoning all your knowledge of Chapter 2,
Getting Started with Android, can you think of a way to save the string without
saving it by the button click but just when the user quits the app?

A) Override the onPause life cycle method and put the code to save the string in
there, like this:

@Override
 protected void onPause() {
 editor.putString(stringName, currentString);
 editor.commit();
 }

Q3) Other than increasing the difficulty level, how could we make the memory
game harder?

A) We could simply alter the pause in our thread execution to mention a lower
number, giving the player less thinking time, like this:

myHandler.sendEmptyMessageDelayed(0, 450);
//This halves the players thinking time

Q4) Using the plain Android UI with the dull grey buttons isn't very exciting. Take
a look at the UI elements in the visual designer. Can you work out how to use an
image for our button background?

A) Simply add some .png graphics to the drawable-mdpi folder and then find
the background property in the Properties window while your button is selected.
Click to edit the property in the usual way and choose the graphic you added to the
drawable-mdpi folder.

Chapter 6
Q1) What is encapsulation?

A) Encapsulation is the way we pack our variables, code, and methods in a manner
that exposes just the parts and functionality we want to the parts of our app (or any
app that uses our classes) that we want.

Self-test Questions and Answers

[364]

Q2) I don't get all this, and actually, I have more questions now than I had at the start
of the chapter. What should I do?

A) You know enough about OOP to make significant progress with games and any
other type of Java programming. If you are desperate to know more OOP right now,
there are plenty of highly rated books that discuss nothing but OOP. However,
practice and familiarity with the syntax will go a long way to achieving the same
thing and will probably be more fun. The deciding factor in whether you rush off
and learn the intricate details of OOP now will really depend on your personal goals
and what you want to do with your programming skills in the future. Read the last
few pages of Chapter 9, Making Your Game the Next Big Thing, for more discussion.

Chapter 7
Q1) The speed of the ball is calculated in pixels. Different devices have different
numbers of pixels. Can you explain how to make the ball speed approximately the
same on different screen resolutions?

A) A simple way to accommodate different screen resolutions would be to devise
a system that that takes into account the number of pixels the screen has. We have
already done this for the racket and ball sizes. We could declare a member variable
like this:

int pixelsPerFrameX;
int pixelsPerFrameY;

We could then initialize these variables in onCreate after we have obtained the
screen dimensions:

pixelsPerFrameX = screenWidth/50;
pixelsPerFrameY = screenHeight/50;

Then we can move our ball a bit, like this:

//moving in adjust our x any positions
 if (ballIsMovingDown) {
 ballPosition.y += pixelsPerFrameX;
 }

 //etc...

Appendix

[365]

Chapter 8
Q1) What about a visual improvement for our game screen, perhaps a nice, light
green grassy background instead of just black?

A) You can use most graphics programs such as Gimp or Photoshop to get the
RGB value of a nice, light green grassy color. Alternatively, you can use an online
color picker such as http://www.colorpicker.com/. Then look at this line in our
drawGame method:

canvas.drawColor(Color.BLACK);//the background

Change it to the following line:

canvas.drawColor(Color.argb(255,186,230,177));//the background

Q2) How about adding some nice flowers to the background?

A) Here is the way to do this. Create a flower bitmap (or use mine), load it, and scale
it in the usual way, in the configureDisplay method. Decide how many flowers to
draw. Choose and store locations on the board in the SnakeView constructor (or write
and call a special method, perhaps plantFlowers).

Draw them before the snake and the apple in the drawGame method. This will ensure
that they can never hide an apple or a part of the snake. You can see my specific
implementation in the methods mentioned and a copy of the flower bitmap in the
EnhancedSnakeGame project in the Chapter8 folder.

Q3) If you're feeling brave, make the flowers sway. Think of sprite sheets. The theory
is exactly the same as that of the animated snake head. We just need a few lines of
code to control the frame rate separately from the game frame rate.

A) Take a look at the new code in the controlFPS method. We simply set up a new
counter for flower animations to switch flower frames once every six game frames.
You can also copy the sprite sheet from the EnhancedSnakeGame project in the
Chapter8 folder.

http://www.colorpicker.com/

Self-test Questions and Answers

[366]

Q4) We could set up another counter and use our snake head animation, but it
wouldn't be that useful because the subtle tongue movements would be barely visible
due to the smaller size. Nevertheless, we could quite easily swish the tail segment.

A) There is a two-frame tail bitmap in the EnhancedSnakeGame project in the
Chapter8 folder. As this is also two frames, we could use the same frame
timer as that used for the flower. Take a look at the implementation in the
EnhancedSnakeGame project in the Chapter8 folder. The only required
changes are in configureDisplay and drawGame.

Q5) Here is a slightly trickier enhancement. You can't help notice that when the
snake sprites are headed in three out of the four possible directions, they don't look
right. Can you fix this?

A) We need to rotate them depending upon the way they are heading. Android has
a Matrix class, which allows us to easily rotate Bitmaps, and the Bitmap class has
an overloaded version of the createBitmap method that takes a Matrix object as
an argument.

So we can create a matrix for each angle we need to handle, like this:

Matrix matrix90 = new Matrix();
matrix90.postRotate(90);

Then we can rotate a bitmap using the following code:

rotatedBitmap = Bitmap.createBitmap(regularBitmap , 0, 0,
regularBitmap .getWidth(), regularBitmap .getHeight(), matrix90,
true);

Another problem is that as the snake twists and turns, how do we keep track
of the individual orientation of each segment? We already have a direction finding
scheme: 0 is up, 1 is right, and so on. So we can just create another array for the
orientation of each segment that corresponds to a body segment in the snakeX and
snakeY arrays. Then all we need to do is to ensure that the head has the correct
direction, and update from the back on each frame just as we do for the snake's
coordinates. You can see this implemented in the EnhancedSnakeGame project in
the Chapter8 folder.

Appendix

[367]

The finished project with a few more enhancements is in the EnhancedSnakeGame
project in the Chapter8 folder. This is the version we will be using as a starting
point in the next and final chapter. You can also download the game from Google
Play at https://play.google.com/store/apps/details?id=com.packtpub.
enhancedsnakegame.enhancedsnakegame.

https://play.google.com/store/apps/details?id=com.packtpub.enhancedsnakegame.enhancedsnakegame
https://play.google.com/store/apps/details?id=com.packtpub.enhancedsnakegame.enhancedsnakegame

Self-test Questions and Answers

[368]

Chapter 9
Q1) Try to implement the local high scores on the device.

A) You already know how to do this. Just go back to Chapter 5, Gaming and Java
Essentials in case you are unsure. The implementation is in the code for this chapter's
project as well.

Q2) How many eminent computer scientists have made cameo appearances in the
code throughout this book?

A) 9

Ada Lovelace

Charles Babbage

Alan Turing

Vinton Cerf

Jeff Minter

Corrine Yu

André LaMothe

Gabe Newell

Sid Meier

Why not search on the Web for some of these names? There are some interesting
stories about each of them.

Index
A
abstract class 237, 238
access modifiers

classes use, controlling 215
for methods 217, 218
variables use, controlling 216, 217

AccessScopeThisAndStatic 225-229
achievements, snake game

adding 327
implementing, in Google Play developer

console 336, 337
in code, implementing 350-353
planning 327, 328

activities 40, 41
addition operator (+) 66
Android

about 9
benefits 11, 12
code, structuring 38
development environment 14
life cycle phases 38, 39
need for 10
sounds, playing 167-172
summary 13
versions, URL 11

Android Canvas
demo app 247-251
drawing 244

Android coordinate system
about 245
pixels, animating 246

Android Run Time. See ART
Android Studio

about 17, 18, 27, 28

installing 18, 19
preparing 22
reference link, for keyboard shortcuts 26
URL 18

Android Studio, key parts
Editor 28
important tool windows 28
Menu bar 28
Navigation bar 28
Project Explorer 28
Tool bar 28

Android Studio visual designer
Android UI 31
game menu, creating 35-37
sample code, using 34, 35
using 29-31

Android UI, on multiple devices
URL 37

Android UI, types
about 31
ButtonView 34
ImageView 33, 34
RelativeLayout 33
TextView 31-33

animation, snake game 292-294
array-out-of-bounds exception 158
arrays

and objects 149
array-out-of-bounds exception 158
dynamic array, example 152, 153
example 150, 151
nth dimension, entering 154

ART 13
assignment operator (=) 66

[370]

B
boolean type 62
ButtonView 34
byte type 62

C
camel case 116
canvas 246
char type 62
class

about 207
access, in nutshell 216
basic classes 210-212
code 208, 209
first class 213, 214
use with access modifiers, controlling 215

comments 58
comparison operator 71
compiling 57
constructors

objects, setting up with 222, 223
continue keyword 109
coordinate system, snake game

about 287
collisions, detecting 289
snake, drawing 289
snake segments, tracking 288

D
data

storing 59, 60
using, with variables 59, 60

deadlock 159
decisions

in Java 89
declaration

of variables 64
decrement operator (--) 66
development environment, Android

setting up 14
division operator (/) 66
double type 62
do-while loop 110
dynamic

with arrays 152

E
emulators

creating 48
game project, building 47
game project, running 50
running 48, 49

encapsulation
about 206, 214, 215
access modifiers, for methods 217, 218
classes with access modifiers,

controlling 215
method access, in nutshell 218
objects, setting up with constructors 222
private variables, accessing with getter

method 219-221
private variables, accessing with

setter method 219-221
variable access, in nutshell 217
variables with access modifiers,

controlling 216, 217
eXtensible Markup Language (XML) 31

F
fields 208
float type 62
for loop

about 110
Change after each pass through loop 111
Condition 111
Declaration and initialization 111

G
GameActivity

amending 129-132
GameActivity, snake game 291
game menu

creating 35-37
Java code 41-44
Java code, deleting 44-46

game project
about 22
Android Studio, preparing 22
building 46
building, on emulators 47
building, on real device 47-51

[371]

installing 46
installing, on real device 51, 52
new project, building 23-27
running, on emulators 50

games
about 355-357
building, need for 9, 10

getter method
used, for accessing private

variables 219-221
Google Play, snake game

developer console, configuring 330-334
Google Play Services API,

installing on PC 329, 330
uploading to 353, 354

H
heap 224, 230

I
ImageView 33, 34
increment operator (++) 66
inheritance

about 206, 230, 231
example 232-235

initialization, variable 64, 65
inner classes 240
instance

of class 206
variables 208

int type 61
interfaces 238, 239
isCorrect method 140-143

J
Java

about 8, 9, 12, 89
arrays 148, 149
benefits 13
decisions 91-93
decisions, making 93, 94
expressing in 67-71
need for 10
operators 90, 91
random numbers 111, 112

syntax 56, 57
summary 13
URL 14

Java, types
boolean 62
byte 62
char 62
double 62
float 62
int 61
long 61
primitive types 63
short 62

JDK
installing 14-17

L
leaderboards, snake game

adding 327
implementing, in Google Play developer

console 334, 335
in code, implementing 348-350

LibGDX library
URL 356

life cycle phases, Android
about 38, 39
being created 39
being destroyed 39
game, dividing into activities 40, 41
handling 39
pausing 39
reference link 53
resuming 39
running 39
starting 39
stopping 39

local variables 208
locking 159
LogCat 67
long type 61
loops

breaking out of 109
continue keyword 109
do-while loop 110
for loop 110, 111
Java, random numbers 111, 112

[372]

looping with 106
while loops 107, 108

M
MainActivity, snake game 290
Math game

about 71, 127
answer, checking 95-102
answer, obtaining 95-102
custom image, adding 145
GameActivity, amending 129-132
isCorrect method 140, 141
Java code 129
linking, from main menu 84-89
methods 133
new game activity, creating 72-75
new methods, calling 142, 143
question, coding in Java 79-84
screen orientation, locking 143, 144
screen UI, laying out 75-78
setQuestion method 133-136
touches, finishing 143
UI, enhancing 127, 128
updateScoreAndLevel method 137-140

memory game
about 177-180
animating 200
high score, preserving 197-199
pattern, presenting 184-193
players response 193-199
UI and basics 180-184
UI, animating 201-203
UI animation, in Android 200, 201
variables, preparing 184-193

method access
in nutshell 218

method name 116
method overloading 124-127
methods

about 40, 105, 112
onCreate 40
onDestroy 41
onPause 40
onResume 40
onStart 40
onStop 40

structure 112, 113
methods, structure

about 112, 113
body 117
method name 116, 117
modifier 114
parameters 117
return type 114-116

methods, using
about 118, 119
method overloading 124-126
working 119-124

modifier 114
multidimensional array

example 154-157
multiplication operator (*) 66

N
nth dimension

multidimensional array, example 154-157
null pointer exception 230
nutshell

method access 218

O
object 207
object-oriented design 284
object-oriented programming. See OOP
onCreate method 40
onDestroy method 41
onPause method 40
onResume method 40
onStart method 40
onStop method 40
OOP

about 205, 206, 240
and inner classes 240
encapsulation 206
inheritance 206
polymorphism 207

operators
used, for changing variables 66, 67

P
paint 246

[373]

parameters 114, 117
persistence

about 173
example 173-177

polymorphism
about 207, 236, 237
abstract classes 237, 238
interfaces 238, 239

primitive types 63

R
reference types 63, 64
RelativeLayout 33
retro squash game

about 243, 252
code, structure 254, 255
design 252
lifecycle, methods 282, 283
MainActivity 255-263
onCreate 255-263
phase, implementing 255
physics 253, 254
SquashCourtView part 1 256-274
SquashCourtView part 2 256-281
touches, detecting to screen 251, 252
UI 253

return type 114-116

S
screen resolution, Android device

reference link 47
setQuestion method 133-136
setter method

used, for accessing private
variables 219-221

short type 62
single-line comment 58
snake game

achievements, adding 327
achievements, implementing in Google Play

developer console 336, 337
achievements in code,

implementing 350-353
achievements, planning 327, 328
activity, implementing 302-318

animating with 294, 295
animation 292-294
app, marketing 324-326
app, publishing 322-324
code, structure 290
coordinate system 287
design 285-287
enhancing 318
Google Play account, URL 322
Google Play developer console,

configuring 330-334
Google Play Services API,

installing on PC 329, 330
home screen 295-302
home screen, implementing 295-302
implementation, setting up 337-341
leaderboard, implementing in Google Play

developer console 334, 335
leaderboards, adding 327
leaderboards in code,

implementing 348-350
players achievements,

implementing 342-347
players leaderboard buttons,

implementing 342-347
players sign-in, implementing 342-347
programmer's job, retrieving 354
snake segments, tracking 288
sprite sheets 292-294
sprite sheets, animating with 294
uploading, to Google Play 353, 354

snake game, code
about 290
GameActivity 291
MainActivity 290
onCreate, tidying up 291, 292

sound FX
about 164
creating 164-167

sounds
playing, in Android 167-172

sprite sheets, snake game 292, 294
stack 224, 230
string 61
subclass 235
subtraction operator (-) 66

[374]

T
TextView 31, 33
threads 158, 159, 160
thread timer

example, with Handler class 160-163

U
UI animation

in Android 200, 201
updateScoreAndLevel method 137, 138, 140
User Interface (UI) 7, 21

V
variables

about 223
access, in nutshell 217
AccessScopeThisAndStatic 225-230
changing, with operators 66, 67
declaration 64
initialization 64, 65
reference types 63
stack 223
stack and heap 230
trash 224, 225
types 60-62
use with access modifiers,

controlling 216, 217

W
while loops 107, 108

Thank you for buying
Learning Java by Building Android Games

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

JavaScript Mobile Application
Development
ISBN: 978-1-78355-417-1 Paperback: 332 pages

Create neat cross-platform mobile apps using Apache
Cordova and jQuery Mobile

1. Configure your Android, iOS, and Window
Phone 8 development environments.

2. Extend the power of Apache Cordova
by creating your own Apache Cordova
cross-platform mobile plugins.

3. Enhance the quality and the robustness of your
Apache Cordova mobile application by unit
testing its logic using Jasmine.

Testing and Securing Android
Studio Applications
ISBN: 978-1-78398-880-8 Paperback: 162 pages

Debug and secure your Android applications with
Android Studio

1. Explore the foundations of security and learn
how to apply these measures to create secure
applications using Android Studio.

2. Create effective test cases, unit tests, and
functional tests to ensure your Android
applications function correctly.

3. Optimize the performance of your app by
debugging and using high-quality code.

Please check www.PacktPub.com for information on our titles

Android SQLite Essentials
ISBN: 978-1-78328-295-1 Paperback: 110 pages

Develop Android applications with one of the most
widely used database engines, SQLite

1. Develop database-driven Android applications
and stay ahead of the curve.

2. Explore the best techniques to use cursors and
loaders to achieve optimum results.

3. A step-by-step approach to use SQLite for
building Android applications.

Learning Android Intents
ISBN: 978-1-78328-963-9 Paperback: 318 pages

Explore and apply the power of intents in Android
application development

1. Understand Android Intents to make
application development quicker and easier.

2. Categorize and implement various kinds of
Intents in your application.

3. Perform data manipulation within
Android applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Why Java, Android,
and Games?
	Is this book for me?
	If you just want to learn pure Java
	If Android is your focus
	Where this book will take you

	Why build games to learn to program?
	Why Android and Java?
	Android is the fastest evolving and growing OS ever
	Android developers have great prospects
	Android is open source
	Java is here to stay
	Java is not just for Android
	Java is fast and easy to use
	A summary of Java and Android

	Setting up our development environment
	Installing the JDK
	Android Studio
	Installing Android Studio

	Summary

	Chapter 2: Getting Started with Android
	Our first game project
	Preparing Android Studio
	Building the project

	Exploring Android Studio
	Using the Android Studio visual designer
	Android UI types
	TextView
	Layout elements
	ImageView widgets
	ButtonView
	Using the sample code

	Making our game menu

	Structuring our code for Android
	Life cycle phases – what we need to know
	Life cycle phases – what we need to do
	Dividing our game into activities

	Our first look at Java
	Cleaning up our code

	Building and installing our game
	Emulators and devices
	Creating an emulator
	Running the emulator
	Running our game on the emulator

	Building our game
	Installing the setup to a device
	Future projects
	Self-test questions

	Summary

	Chapter 3: Speaking Java – Your
First Game
	Java syntax
	The compiler
	Making code clear with comments

	Storing data and using it with variables
	Types of variables
	Reference types
	Declaration
	Initialization

	Expressing yourself in Java
	Math game – asking a question
	Creating the new game activity
	Laying out the game screen UI
	Coding a question in Java
	Linking our game from the main menu

	Decisions in Java
	More operators
	Decision 1 – If they come over the bridge, shoot them
	Decision 2 – Else, do this
	Switching to make decisions

	Math game – getting and checking the answer
	Self-test questions
	Summary

	Chapter 4: Discovering Loops
and Methods
	Looping with loops
	While loops
	Breaking out of a loop
	The continue keyword

	Do-while loops
	For loops
	Random numbers in Java

	Methods
	The structure of a method
	Modifier
	Return type
	Name of a method
	Parameters
	Getting things done in the method body

	Using methods
	A working method
	Exploring method overloading

	Enhancing our math game
	Enhancing the UI
	The new Java code
	Amending GameActivity
	The methods
	The setQuestion method
	The updateScoreAndLevel method
	The isCorrect method
	Calling our new methods

	Finishing touches
	Going full screen and locking orientation
	Adding a custom image (instead of the Android icon)

	Self-test questions
	Summary

	Chapter 5: Gaming and Java Essentials
	Java arrays – an array of variables
	Arrays are objects
	A simple example of an array

	Getting dynamic with arrays
	Dynamic array example

	Entering the nth dimension with arrays
	An example of a multidimensional array
	Array-out-of-bounds exceptions

	Timing with threads
	A simple thread timer example with the Handler class

	Beeps n buzzes – Android sound
	Creating sound FX
	Playing sounds in Android

	Life after destruction – persistence
	An example of persistence

	The memory game
	Phase 1 – the UI and the basics
	Phase 2 – preparing our variables and presenting the pattern
	Phase 3 – the player's response
	Phase 4 – preserving the high score

	Animating our game
	UI animation in Android
	Phase 5 – animating the UI

	Self-test questions
	Summary

	Chapter 6: OOP – Using Other
People's Hard Work
	What is OOP?
	Why do it like this?

	Our first class and first object
	Basic classes
	More things we can do with our first class

	Encapsulation
	Controlling the use of classes with access modifiers
	Class access in a nutshell

	Controlling the use of variables with access modifiers
	Variable access in a nutshell

	Methods have access modifiers too
	Method access in a nutshell

	Accessing private variables with the getter and setter methods
	Setting up our objects with constructors
	Variables revisited
	The stack and the heap
	A quick break to throw out the trash
	Access, scope, this, static, and constructors demo
	A quick summary on stack and heap

	Inheritance
	An example of inheritance

	Polymorphism
	Abstract classes
	Interfaces

	More about OOP and classes
	Inner classes

	Self-test questions
	Summary

	Chapter 7: Retro Squash Game
	Drawing with Android Canvas
	The Android coordinate system
	Animating our pixels

	Getting started with Canvas and Paint

	Android Canvas demo app
	Detecting touches on the screen
	Preparing to make the retro squash game
	The design of the game
	The UI
	Physics
	The structure of the code

	The four implementation phases in detail
	Phase 1 – MainActivity and onCreate
	Phase 1 code explained

	Phase 2 – SquashCourtView part 1
	Phase 2 code explained

	Phase 3 – SquashCourtView part 2
	Phase 3 code explained
	Phase 4 – Remaining lifecycle methods

	Good object-oriented design

	Self-test questions
	Summary

	Chapter 8: The Snake Game
	Game design
	The coordinate system
	Keeping track of the snake segments
	Detecting collisions
	Drawing the snake

	The code structure
	MainActivity
	GameActivity
	Tidying up onCreate

	Animation, sprite sheets, and the Snake home screen
	Animating with sprite sheets
	Implementing the Snake home screen

	Implementing the Snake game activity
	Enhancing the game
	Self-test questions

	Summary

	Chapter 9: Making Your Game the
Next Big Thing
	How to publish your app
	Marketing your app
	Adding leaderboards and achievements
	Planning the Snake achievements
	Step-by-step leaderboards and achievements
	Installing the Google Play Services API on your PC
	Configuring the Google Play developer console
	Implementing the leaderboard in the Google Play developer console
	Implementing the achievements in the Google Play developer console
	Setting up the Snake project ready for implementation
	Implementing the player's sign-in, achievements, and leaderboard buttons
	Implementing the leaderboards in code
	Implementing the achievements in code
	Uploading the updated Snake game to Google Play

	What next?
	Getting a programmer's job
	Building bigger and better games

	Self-test questions
	Summary

	Appendix: Self-test Questions
and Answers
	Index

