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Preface
FreeSWITCH is increasingly becoming the "serious choice" for companies to base their 
products and offerings on. Its usage is widespread, scaling from Raspberry Pis to "Big Irons"  
in the data center.

There is a growing need for books and training, and with Packt Publishing, we decided 
to begin serving this burgeoning demand. This cookbook is a primer; then there will be a 
Mastering FreeSWITCH book, followed by a new edition of the classic FreeSWITCH book.

Obviously, nothing can beat a training camp or codeveloping in collaboration with an old  
hand, but these FreeSWITCH titles will form the basis on which a company or a consultant  
can begin embracing, deploying, and implementing FreeSWITCH.

This book is a complete update, rewrite, and integration of the old FreeSWITCH cookbook.  
This new edition covers FreeSWITCH 1.6.x, and a lot of new ground.

All the examples here have been updated and tested with the new FreeSWITCH series, while 
a new section has been added about connecting to Skype, and two entire chapters are on 
WebRTC and Lua programming.

Anthony Minessale II, Giovanni Maruzzelli

July 5 2015

What this book covers
Chapter 1, Routing Calls, shows that getting calls from one endpoint to another is the primary 
function of FreeSWITCH. This chapter discusses techniques of efficiently routing calls between 
phones and service providers.

Chapter 2, Connecting Telephones and Service Providers, assists in quickly getting your 
FreeSWITCH server connected to other VoIP devices. Telephones and service providers  
have specific requirements for connecting to FreeSWITCH.
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Chapter 3, Processing Call Detail Records, discusses a number of ways to extract CDR data 
from your FreeSWITCH server. Call detail records, or CDRs, are very important for businesses.

Chapter 4, External Control, presents a number of real-world examples of controlling FreeSWITCH 
from an external process. FreeSWITCH can be controlled externally by the powerful and versatile 
event socket interface.

Chapter 5, PBX Functionality, is the largest chapter in this book. This chapter shows how 
to deploy features such as voicemail, conference calls, faxing, IVRs, and more, which most 
telephone systems have, in a FreeSWITCH server.

Chapter 6, WebRTC and Mod_Verto, features the new disruptive technology that allows 
real-time audio/video/data-secure communication from hundreds of millions of browsers. 
FreeSWITCH is ready to serve as a gateway and an application server.

Chapter 7, Dialplan Scripting with Lua, covers Lua, the scripting language of choice for 
programming complex logic in FreeSWITCH. Accessing databases, calling web servers,  
and interacting with user's choices now becomes easy.

What you need for this book
FreeSWITCH 1.6 Cookbook is an essential addition to any VoIP administrator's or WebRTC 
developer's library. PBX implementers will also gain from the thoroughly distilled recipes 
presented here.

Whether you are a FreeSWITCH expert or are just getting started, this book will take your skills 
to the next level.

Who this book is for
FreeSWITCH 1.6 Cookbook is written for anyone who wants to learn more about using 
FreeSWITCH in production. The information is presented in such a way that you can get up 
and running quickly. The cookbook approach eschews much of the foundational concepts, 
and instead focuses on discrete examples that illustrate specific features. If you need to 
implement a particular feature as quickly as possible, then this book is for you.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, 
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use the following sections.
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Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or 
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make you more 
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of 
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, 
dummy URLs, user input, and Twitter handles are shown as follows: "Many of the techniques 
employed in Local_Extension are discussed in this chapter."

A block of code is set as follows:

<include>
  <extension name="public_did">
    <condition field="destination_number" 
    expression="^(8005551212)$">
      <action application="set" data="domain_name=$${domain}"/>
      <action application="transfer" data="1000 XML default"/>
    </condition>
  </extension>
</include>
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When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

<include>
  <extension name="public_did">
    <condition field="destination_number" 
    expression="^(8005551212)$">
      <action application="set" data="domain_name=$${domain}"/>
      <action application="transfer" data="1000 XML default"/>
    </condition>
  </extension>
</include>

Any command-line input or output is written as follows:

perl -MCPAN -e 'install Regexp::Assemble'

New terms and important words are shown in bold. Words that you see on the screen,  
for example, in menus or dialog boxes, appear in the text like this: "You should see an 
application named directory in the list."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles 
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the 
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com 
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, 
you can visit http://www.packtpub.com/support and register to have the files e-mailed 
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used 
in this book. The color images will help you better understand the changes in the output.  
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/B04231_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you could report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the Errata Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our website or 
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.  
At Packt, we take the protection of our copyright and licenses very seriously. If you come 
across any illegal copies of our works in any form on the Internet, please provide us with  
the location address or website name immediately so that we can pursue a remedy.
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Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at  
questions@packtpub.com, and we will do our best to address the problem.
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1
Routing Calls

In this chapter, we will discuss routing calls in various scenarios, as follows:

ff Internal calls

ff Incoming DID (also known as DDI) calls

ff Outgoing calls

ff Ringing multiple endpoints simultaneously

ff Ringing multiple endpoints sequentially (simple failover)

ff Advanced multiple endpoint calling with enterprise originate

ff Time-of-day routing

ff Manipulating SIP To: headers on registered endpoints to reflect DID numbers

Introduction
Routing calls is at the core of any FreeSWITCH server. There are many techniques for 
accomplishing the surprisingly complex task of connecting one phone to another. However,  
it is important to make sure that you have the basic tools necessary to complete this task.

The most basic component of routing calls is the dialplan, which is essentially a list of actions 
to perform depending upon which digits were dialed (as we will see in some of the recipes 
in this book, there are other factors that can affect routing of calls). The dialplan is broken 
down into one or more contexts. Each context is a group of one or more extensions. Finally, 
each extension contains specific actions to be performed on the call. The dialplan processor 
uses regular expressions, which are a pattern-matching system used to determine which 
extensions and actions to execute.

To make best use of the recipes in this chapter, it is especially important to understand how to 
use regular expressions and the three contexts in the default configuration.
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Regular expressions
FreeSWITCH uses Perl-compatible regular expressions (PCRE) for pattern matching. 
Consider this dialplan excerpt:

<extension name="example">
<condition field="destination_number" expression="^(10\d\d)$">
<action application="log" data="INFO dialed number is [$1]"/>

This example demonstrates the most common uses of regular expressions in the dialplan: 
matching against the destination_number field (that is, the digits that the user dialed) 
and capturing, using parentheses, the matched value in a special variable named $1. Let's 
say that a user dials 1025. Our example extension will match 1025 against the ^(10\d\d)$ 
pattern and determine that this is indeed a match. All actions inside the condition tag 
will be executed. The action tag in our example will execute the log application. The log 
application will then print a message to the console, using the INFO log level, which will be in 
green text by default. The value in $1 is expanded (or interpolated) when printed:

2015-02-22 15:15:50.664585 [INFO] mod_dptools.c:1628 dialed number is 
[1025]

Understanding these basic principles will help you create effective dialplan extensions.

For more tips on using regular expressions, be sure to visit 
http://freeswitch.org/confluence/display/
FREESWITCH/Regular+Expression.

Important dialplan contexts in the default configuration
Contexts are logical groups of extensions. The default FreeSWITCH configuration contains 
three contexts:

ff default

ff public

ff features

Each of these contexts serves a purpose, and knowing about them will help you leverage their 
value for your needs.
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The default context
The most used context in the default configuration is the default context. All users whose 
calls are authenticated by FreeSWITCH will have their calls passing through this context, 
unless there have been modifications. Some common modifications include using ACLs or 
disabling authentication altogether (see the The public context section that follows). The 
default context can be thought of as internal in nature; that is, it services users who are 
connected directly to the FreeSWITCH server, as opposed to outside callers (again, see the 
The public context section).

Many characteristics related to PBX (Private Branch Exchange) are defined in the default 
context, as are various utility extensions. It is good to open conf/dialplan/default.
xml and study the extensions there. Start with simple extensions such as show_info, which 
performs a simple info dump to the console, and vmain, which allows a user to log in to 
their voicemail box.

A particularly useful extension to review is Local_Extension. This extension does many 
things, as follows:

ff Routes calls between internal users

ff Sends calls to the destination user's voicemail on a no-answer condition

ff Enables several in-call features with bind_meta_app

ff Updates (via "hash" commands) the local calls database to allow call return and  
call pickup

Many of the techniques employed in Local_Extension are discussed in this chapter (see the 
The features context section for a discussion on the in-call features found in this extension).

The public context
The public context is used to route incoming calls that originate from outside the local 
network. Calls that initially come to the public context are treated as untrusted. If they are not 
specifically routed to an extension in the default context, then they are simply disconnected. 
As mentioned before, disabling authentication or using ACLs to let calls into the system will 
route them into the public context (this is a security precaution, which can be overridden if 
absolutely required). We will use the public context in the Incoming DID (also known as DDI) 
calls recipe.

The features context
The features context is used to make certain features available for calls that are in progress. 
Consider this excerpt from Local_Extension in conf/dialplan/default.xml:

<action application="bind_meta_app" data="1 b s  
execute_extension::dx XML features"/>
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This is just one of several features that are enabled for the recipient of the call. The 
bind_meta_app application listens on the audio stream for a touch-tone * followed by a 
single digit. The preceding example is a blind transfer. If the called user dials *1, then the 
execute_extension::dx XML features command is executed. In plain words, this 
command says, "Go to the features context of the XML dialplan and execute the extension 
whose destination number is dx." In conf/dialplan/features.xml, there is the  
following extension:

<extension name="dx">
<condition field="destination_number" expression="^dx$">
  ...

The dx extension accepts some digits from the user and then transfers the caller to the 
destination that the user keyed in.

This process demonstrates several key points:

ff Calls can be transferred from one dialplan context to another

ff The features context logically isolates several extensions that supply  
in-call features

ff The bind_meta_app dialplan application is one of the means of allowing  
in-call features

Understanding that calls can flow from one context to another even after they are in progress 
is an important concept to grasp when addressing your call routing scenarios.

Internal calls
Calling local extensions is very simple once you know what needs to happen. In this case,  
we will see how to add a new user and make their phone available for calling.

Getting ready
If you are using the default configuration, then users 1000 through 1019 are preconfigured, 
both in the directory and the dialplan. To add a user beyond this range to the directory, it is 
generally easier to run the add_user script, found in the FreeSWITCH source directory under 
scripts/perl. For example, to add user 1020 to the directory, launch this script from the 
FreeSWITCH source directory, specifying the user ID on the command line:

scripts/perl/add_user 1020

You can also specify a range of users:

scripts/perl/add_user –-users=1020-1029
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You will see a note about the number of users added to the directory. If you have the 
Regexp::Assembly CPAN module installed, then the script will also generate a couple of 
sample regular expression patterns, which you can then use in the dialplan. For our example, 
we added a range of users from 1020 to 1029 to the directory, and then we'll add them to  
the dialplan.

How to do it...
1.	 Open the conf/dialplan/default.xml file in a text editor. Locate the Local_

Extension entry:
<extension name="Local_Extension">
<condition field="destination_number"
expression="^(10[01][0-9])$">

2.	 Edit the expression in the <condition> tag to account for our new users.  
The ^(10[012][0-9])$ expression pattern will do what we need (look closely  
to see the difference). The new line will be as follows:
<condition field="destination_number"
expression="^(10[012][0-9])$">

3.	 Save the file and then execute reloadxml from fs_cli.

Downloading the example code
You can download the example code files for all Packt Publishing 
books you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the 
files e-mailed directly to you.

How it works...
Local_Extension is the default dialplan entry that allows directory users to be called. 
Remember that simply adding a user to the directory does not mean that the user can be 
dialed. (However, it does usually mean that the user can make outbound calls.) So, in order 
for your new user to be reachable, you need to add their user ID to the dialplan. By default, 
Local_Extension has a regular expression that will match 1000, 1001, and so on up to 
1019. After adding that number range, it is necessary to modify the regular expression to 
account for those new numbers. In our example, we added user IDs 1020 through 1029,  
so we need to match these. We use this regular expression:

^(10[012][0-9])$
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This matches 1000 through 1029. Let's say we have added another block of user IDs with the 
range from 1030 to 1039. We can modify our regular expression to catch them as well:

^(10[0123][0-9])$

It is considered best practice not to add a large range of dialable numbers to Local_
Extension without having the corresponding users in the directory. Doing so can make 
troubleshooting dialplan issues more difficult.

As a reminder, be sure to execute the reloadxml command each time you modify the regular 
expression (the changes you make to your XML configuration files will not take effect until they 
are loaded into the memory, which is what the reloadxml command does).

See also
ff The Creating users section in Chapter 5, PBX Functionality

Incoming DID (also known as DDI) calls
Phone calls coming in from the Public Switched Telephone Network (PSTN) are often called 
DID or DDI calls. DID stands for Direct Inward Dialing, while DDI means Direct Dial In; both 
acronyms refer to the same thing. DID numbers are delivered by your telephone service 
provider. They can be delivered over VoIP connections (such as a SIP trunk) or via traditional 
telephone circuits, such as PRI lines. These phone numbers are sometimes called DID 
numbers or external phone numbers.

Getting ready
Routing a call requires two pieces of information: the phone number being routed and a 
destination for that phone number. In our example, we will use a DID number 8005551212. 
Our destination will be user 1000. Replace these sample numbers with the appropriate values 
for your setup.

How to do it...
1.	 Create a new file in conf/dialplan/public/ named 01_DID.xml. Add this text 

to it:
<include>
<extension name="public_did">
<condition field="destination_number" 
    expression="^(8005551212)$">
<action application="set" data="domain_name=$${domain}"/>
<action application="transfer" data="1000 XML default"/>
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</condition>
</extension>
</include>

2.	 Save the file and then execute reloadxml from fs_cli.

How it works...
All calls that come in to the FreeSWITCH server from outside (as well as internal calls that 
are not authenticated) are initially handled in the public context (dialplan contexts were 
discussed in more detail in this chapter's introduction) of the XML dialplan. Once the call hits 
the public context, we try to match the destination_number field. The destination_
number is generally the DID number (see the There's more… section for some caveats). Once 
we match the incoming number, we set the domain_name channel variable to the default 
domain value, and then transfer the call to user 1000. (FreeSWITCH is domain-based in a 
way similar to e-mails. Most systems have only a single domain, though FreeSWITCH supports 
multiple domains.) The actual transfer happens with this dialplan entry:

<action application="transfer" data="1000 XML default"/>

In plain words, this tells FreeSWITCH to transfer the call to extension 1000 in the default 
context of the XML dialplan. The default context contains the Local_Extension that 
matches "1000" as destination_number and handles the calls to users' telephones.

There's more...
Keep in mind that the expression for destination_number must match what the provider 
sends to FreeSWITCH, not necessarily what the calling party actually dialed. There are 
providers that send DID information in various formats, such as these:

ff 8005551212

ff 18005551212

ff +18005551212

The expression must match what the provider sends. One way to accomplish this is to have a 
few optional characters in the pattern. This pattern matches all three formats you just saw:

<condition field="destination_number"  
expression="^\+?1?(8005551212)$">

The \+? value means "optionally match the literal + character," and the 1? value means 
"optionally match the literal digit 1." Now our pattern will match all of the three formats that 
are commonly used in North America. (Technically, our pattern will also match +8005551212, 
but we are not concerned about that. However, the pedantic admin might be, so they can use 
the ^(\+1)?1?(8005551212)$ pattern instead.)
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See also
ff The Configuring a SIP gateway section in Chapter 2, Connecting Telephones and 

Service Providers

Outgoing calls
In order to make your system useful, you need a way to dial out to the "real world". This recipe 
will cover dialing out to the PSTN and allow you to connect to landlines, cellular phones, and 
so on. In this recipe, we'll make an extension that will allow an outbound call to any valid US 
number. We'll attempt to complete the call using the gateway named our_sip_provider 
(see the Configuring an SIP Gateway section in Chapter 2, Connecting Telephones and  
Service Providers).

Getting ready
Making outbound calls requires you to know the numbering format that your provider requires. 
For example, do they require all 11 digits for US dialing? Or will they accept 10? In our 
example, we're going to assume that our provider will accept a 10-digit format for US dialing 
(for example, without the international prefix "1").

How to do it...
Routing outbound calls is simply a matter of creating a dialplan entry:

1.	 Create a new file in conf/dialplan/default/ named outbound_calls.xml. 
then add the following text:
<include>
<extension name="outbound_calls">
<condition field="destination_number"  
    expression="^1?([2-9]\d{2}[2-9]\d{6})$">
<action application="bridge" data="sofia/gateway/our_sip_
provider/$1"/>
</condition>
</extension>
</include>

2.	 Save your XML file and issue the reloadxml command at fs_cli.
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How it works...
Assuming you have a phone set up on the default context, your regular expression will 
match any destination_number that follows the US dialing format (10 or 11 digits), and 
send the call to our_sip_provider in a 10-digit format. The format in regexp is as follows: 
optional "1", then one digit between 2 and 9, then two digits, then one digit between 2 and 9, 
and finally six digits. Only the part after the optional digit "1" is captured by the parentheses 
and passed down in the $1 variable.

There's more...
The regular expression matching in FreeSWITCH allows the privilege of having very powerful 
conditions. You can also match caller_id_number to route calls from a user calling from 
extension 1011 out to the second gateway called our_second_sip_provider, while 
everyone else will be sent through our_sip_provider. Consider the following alternative 
outbound_calls.xml file:

<include>
<extension name="outbound_calls_from_1011">
<condition field="caller_id_number" expression="^1011$"/>
<condition field="destination_number"
   expression="^1?([2-9]\d{2}[2-9]\d{6})$">
<action application="bridge"  
      data="sofia/gateway/our_second_sip_provider/$1"/>
</condition>
</extension>
<extension name="outbound_calls">
<condition field="destination_number"
    expression="^1?([2-9]\d{2}[2-9]\d{6})$">
<action application="bridge"  
      data="sofia/gateway/our_sip_provider/$1"/>
</condition>
</extension>
</include>

Note that we have two extensions. The first one tries to match the caller_id_number 
field to the value 1011. If it matches 1011, then the call gets sent to the our_second_
sip_provider gateway. Otherwise, the next extension is matched and the call goes to the 
our_sip_provider gateway. Note that we use $1 to capture the matching value in the 
conditions' expressions. In each case, we capture exactly 10 digits, which correspond to the 
area code (three digits), exchange (three digits), and phone number (four digits). These are 
North American Numbering Plan (NANP) numbers. The regular expressions used to capture 
the format of dialed digits vary, depending upon the country.
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Regular expressions can be a challenge. There are a number of examples 
with explanations on the FreeSWITCH wiki. See http://freeswitch.
org/confluence/display/FREESWITCH/Regular+Expression 
for further details.

See also
ff The Configuring an SIP phone to register with FreeSWITCH and Configuring an SIP 

gateway sections in Chapter 2, Connecting Telephones and Service Providers

Ringing multiple endpoints simultaneously
FreeSWITCH makes it easy to ring multiple endpoints simultaneously within a single command.

Getting ready
Open conf/dialplan/default.xml in a text editor or create a new XML file in the  
conf/dialplan/default/ subdirectory.

How to do it...
Add a comma-separated list of endpoints to your bridge (or originate) application.  
For example, to ring userA@local.pbx.com and userB@local.pbx.com simultaneously, 
use an extension like this:

<extension name="ring_simultaneously">
<condition field="destination_number" expression="^(2000)$">
<action application="bridge"  
    data="{ignore_early_media=true}sofia/internal/ 
userA@local.pbx.com,sofia/internal/userB@local.pbx.com"/>
</condition>
</extension>

How it works...
Putting comma-separated endpoints into the argument to bridge causes all the endpoints 
in that list to be dialed simultaneously. It sounds simple; however, there are several factors 
to consider when ringing multiple devices simultaneously in a real environment. The bridge 
application will connect the call to whoever sends the media first. This includes early media 
(ringing). To put this in other words, if you bridge a call to two parties and one party starts 
sending a ringing signal back to you, that will be considered media and the call will be 
connected to that party. Ringing of the other phones will cease.
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If you notice that calls always go to a specific number on your list of endpoints versus ringing 
all numbers, or that all phones ring for a moment before ringing only a single number, it means 
that your call may be getting bridged prematurely because of early media. Notice that we added 
ignore_early_media=true at the beginning of the dial string. As its name implies, ignore_
early_media tells the bridge application not to connect the calling party to the called party 
when receiving early media (such as a ringing or busy signal). Instead, bridge will only connect 
the calling party to the called party who actually answers the call. In most cases, it is useful to 
ignore early media when ringing multiple endpoints simultaneously.

There's more...
In some scenarios, you may also wish to ring specific devices for a limited amount of time.  
You can apply the leg_timeout parameter to each leg of the bridge to specify how long to 
ring each endpoint like this:

<action application="bridge"  
data="[leg_timeout=20]sofia/internal/userA@local.pbx.com, 
[leg_timeout=30]sofia/internal/userB@local.pbx.com"/>

In this example, the userA user's phone will ring for a maximum of 20 seconds, while the 
userB user's phone will ring for a maximum of 30 seconds.

Call legs and the leg_timeout variable
The leg_timeout variable is unique in the sense that it implies 
the ignoring of early media. When using the leg_timeout variable 
on each call leg in a bridge attempt, there is no need to explicitly 
use {ignore_early_media=true} in the bridge argument. 
For a more thorough discussion of using { and } (curly brackets) 
versus [ and ] (square brackets), see http://freeswitch.org/
confluence/display/FREESWITCH/Channel+Variables#C
hannelVariables-ChannelVariablesinDialstrings.

This method of calling multiple parties works well for a small number of endpoints. However,  
it does not scale to dozens or more users. Consider using a FIFO queue in such an environment 
(FreeSWITCH's mod_fifo is discussed at length at http://freeswitch.org/confluence/
display/FREESWITCH/mod_fifo).

See also
ff The Ringing multiple endpoints sequentially (simple failover) recipe that follows for an 

example of ringing a group of endpoints one at a time, which includes an expanded 
discussion of using call timeouts
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Ringing multiple endpoints sequentially 
(simple failover)

Sometimes it is necessary to ring additional endpoints, but only if the first endpoint fails to 
connect. The FreeSWITCH XML dialplan makes this very simple.

Getting ready
Open conf/dialplan/default.xml in a text editor or create a new XML file in the  
conf/dialplan/default/ subdirectory.

How to do it...
Add a pipe-separated list of endpoints to your bridge (or originate) application.  
For example, to ring userA@local.pbx.com and userB@local.pbx.com sequentially,  
use an extension like this:

<extension name="ring_sequentially">
<condition field="destination_number" expression="^(2001)$">
<action application="bridge"  
    data="{ignore_early_media=true}sofia/internal/ 
userA@local.pbx.com|sofia/internal/userB@local.pbx.com"/>
</condition>
</extension>

How it works...
Putting pipe-separated endpoints in the argument to bridge (or originate) causes all the 
endpoints in that list to be dialed sequentially. The first endpoint on the list that is successfully 
connected will be bridged, and the remaining endpoints will not be dialed. There are several 
factors to consider when ringing multiple devices sequentially.

Notice that we added ignore_early_media=true at the beginning of the dial string. As its 
name implies, ignore_early_media tells the bridge application not to connect the calling 
party to the called party when receiving early media (such as a ringing or busy signal). Instead, 
bridge will only connect the calling party if the called party actually answers the call. In most 
cases, you will need to ignore early media when dialing multiple endpoints.

There's more...
Handling different failure conditions can be a challenge. FreeSWITCH has a number of options 
that let you tailor bridge and originate to your specific requirements.
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Handling busy and other failure conditions
For example, when calling a user who is on the phone, one service provider might return 
SIP message 486 (USER_BUSY), whereas many providers might simply send a SIP 183 with 
SDP and a media stream with a busy signal. In the latter, how will the bridge application 
know that there is a failure if it is ignoring the early media that contains the busy signal? 
FreeSWITCH gives us a tool that allows us to monitor early media even while "ignoring" it.

Consider two very common examples of failed calls where the failure condition is  
signaled in-band:

ff Calling a line that is in use

ff Calling a disconnected phone number

These conditions are commonly communicated to the caller via specific sounds: busy signals 
and special information tones, or SIT tones. In order for the early media to be meaningful,  
we need to be able to listen for specific tones or frequencies. Additionally, we need to be able 
to specify that certain frequencies mean different kinds of failure conditions (this becomes 
important for reporting, as in call detail records or CDRs). The tool that FreeSWITCH provides 
us with is a special channel variable called monitor_early_media_fail. Its use is best 
illustrated with an example:

<action application="bridge" data="{ignore_early_media=true, 
monitor_early_media_fail=user_busy:2:480+620! 
destination_out_of_order:2:1776.7}sofia/internal/ 
userA@local.pbx.com|sofia/internal/userB@local.pbx.com"/>

Here, we have a bridge application that ignores early media and sets two failure conditions: 
one for busy and one for destination_out_of_order. We specify the name of the 
condition we are checking, the number of hits, and the frequencies to detect. The format  
for monitor_early_media_fail is as follows:

condition_name:number_of_hits:tone_detect_frequencies

The user_busy condition is defined as user_busy:2:480+620. This condition looks for 
both 480 Hz and 620 Hz frequencies (which is the USA busy signal), and if they are detected 
twice, then the call will fail. The exclamation mark (!) is the delimiter between the conditions. 
The destination_out_of_order condition is defined like this:

destination_out_of_order:2:1776.7.

This looks for two occurrences of 1776.7 Hz, which is a common SIT tone frequency in the 
USA (there is a nice introductory article on SIT tones at http://en.wikipedia.org/
wiki/Special_information_tones). If 1776.7 Hz is heard twice, then the call will fail  
as destination out of order.

When using monitor_early_media_fail, only the designated frequencies are detected. 
All other tones and frequencies are ignored.
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Handling no-answer conditions
Handling a no-answer condition is different from busy and other in-band errors. In some 
cases, the service provider will send back SIP message 480 (NO_ANSWER), whereas others 
will send a ringing signal (SIP 183) in the early media until the caller decides to hang up.  
The former scenario is handled automatically by the bridge application. The latter can  
be customized with the use of special timeout variables:

ff call_timeout: Sets the call timeout for all legs when using bridge

ff originate_timeout: Sets the call timeout for all legs when using originate

ff leg_timeout: Sets a different timeout value for each leg

ff originate_continue_on_timeout: Specifies whether or not the entire bridge 
or originate operation should fail if a single call leg times out

By default, each call leg has a timeout of 60 seconds and bridge, or originate, will stop 
after any leg times out. The three timeout variables allow you to customize the timeout settings 
for the various call legs. Use call_timeout when using the bridge application, and use 
originate_timeout when using the originate API. Use leg_timeout if you wish to have a 
different timeout value for each dial string. In that case, use the [leg_timeout=###] square 
bracket notation for each dial string:

<action application="bridge" data="[leg_timeout=10]sofia/internal/ 
userA@local.pbx.com|[leg_timeout=15]sofia/internal/userB@local.pbx.
com"/>

Use originate_continue_on_timeout to force bridge or originate to continue 
dialing even if one of the endpoints fails with a timeout:

<action application="bridge"  
data="{originate_continue_on_timeout=true}[leg_timeout=10] 
sofia/internal/userA@host|[leg_timeout=15]sofia/internal/ 
userB@host"/>

Keep in mind that by default, a timeout (that is, a no answer) will end the entire bridge or 
originate if you do not set originate_continue_on_timeout to true.

Another thing to keep in mind is handling cases where you are calling a phone number that 
has voicemail. For example, if you are trying to implement a type of "find me, follow me" 
and one of the numbers being called is a mobile phone with voicemail, you need to decide 
whether you want that phone's voicemail to answer your call. If it does answer, then the 
bridge will be completed. If you do not want the voicemail to answer and end the bridge 
(so that your bridge will keep dialing the remaining endpoints), then be sure to set leg_
timeout to a relatively low value. If the voicemail picks up after 15 seconds, then you may 
wish to set leg_timeout=12. In most cases, you will need to make several test calls to find 
the best timeout values for your various endpoints.
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Using individual bridge calls
In some cases, you may find that it is helpful to make a dial attempt to a single endpoint and 
then do some processing prior to dialing the next endpoint. In these cases, the pipe-separated 
list of endpoints will not suffice. However, the FreeSWITCH XML dialplan allows you to do this 
in another way. Consider this excerpt:

<extension name="ring_sequentially">
<condition field="destination_number" expression="^(2001)$">
<action application="set" data="continue_on_fail=true"/>
<action application="set" data="hangup_after_bridge=true"/>
<action application="bridge" data="{ignore_early_media=true} 
sofia/internal/userA@local.pbx.com"/>
<action application="log" data="INFO call to userA failed."/>
<action application="bridge" data="{ignore_early_media=true} 
sofia/internal/userB@local.pbx.com"/>
<action application="log" data="INFO call to userB failed."/>
</condition>
</extension>

Key to this operation are the highlighted lines. In the first of them, we set continue_on_fail 
to true. This channel variable tells FreeSWITCH to keep processing the actions in the extension 
even if a bridge attempt fails. After each bridge attempt, you can do some processing. Note, 
however, that we set hangup_after_bridge to true. This is done so that the dialplan does 
not keep processing after a successful bridge attempt (for example, if the call to userA was 
successful, we would not want to call userB after userA hung up). You may add as many 
additional bridge endpoints as you need.

See also
ff The Ringing multiple endpoints simultaneously and Advanced multiple endpoint 

calling with enterprise originate recipe in this chapter
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Advanced multiple endpoint calling with 
enterprise originate

You've seen many ways of ringing multiple destinations with many options, but in some cases 
even this is not good enough. Say you want to call two destinations at once, but each of those 
two destinations is a separate set of simultaneous or sequential destinations.

For instance, you want to call Bill and Susan at the same time, but Bill prefers that you try  
his cell first, and then try all of his landlines at the same time. Susan, however, prefers that 
you call her desk first, then her cell, and finally her home. This is a complicated problem,  
and the solution to it is called enterprise originate. The term "enterprise" is used to indicate 
an increased level of indirection, dimension, or scale. Basically, you are doing everything  
the originate syntax has to offer, but you are doing entire originates in parallel in a sort of 
"super originate".

Getting ready
The first thing you need to do to take advantage of enterprise originate is to fully understand 
regular originate. Originate is the term used to indicate making an outbound call. Although 
there is an originate command that can be used at fs_cli, the method by which you 
mostly use the originate command is with the bridge dialplan application.

The bridge application versus the originate command
Why do we talk about a regular originate when discussing 
the bridge application? Are the bridge application and the 
originate command not completely different? No! This is a common 
misconception. The bridge application is used in the dialplan, but it 
does exactly the same thing that the originate command does—it 
creates a new call leg. In fact, bridge and originate use exactly 
the same code in the FreeSWITCH core. The only difference between 
the two is where they are used. The originate command is used 
in fs_cli to create a new call leg. The bridge application is used 
in the dialplan to create a new call to which an existing call leg can be 
connected or bridged.

You will need to open conf/dialplan/default.xml in a text editor or edit a new XML file 
in the conf/dialplan/default/ subdirectory.
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How to do it...
The usage of enterprise originate is similar to the ring simultaneously example, but an 
alternate delimiter (:_:) is used:

<extension name="enterprise_originate">
<condition field="destination_number" expression="^(2000)$">
<action application="bridge"  
    data="{ignore_early_media=true}sofia/internal/ 
userA@local.pbx.com:_:{myoption=true}sofia/internal/ 
userB@local.pbx.com"/>
</condition>
</extension>

<extension name="enterprise_originate2">
<condition field="destination_number" expression="^(2001)$">
<action application="bridge"  
    data="{ignore_early_media=true}sofia/internal/ 
userA@local.pbx.com,sofia/internal/ 
userB@local.pbx.com:_:sofia/internal/ 
userC@local.pbx.com,sofia/internal/userD@local.pbx.com"/>
</condition>
</extension>

How it works...
The entire input string is broken down into smaller strings based on the :_: symbol.

Each of those smaller strings is fed to the regular originate engine in parallel, and the first 
channel to answer will be bridged to the caller. Once one endpoint answers, the rest of the 
calls in the enterprise will be canceled.

There's more...
Enterprise originate has a few special aspects to consider when using it to place calls.
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Setting variables in enterprise originate
As you know, you can use the {var=val} syntax to define special variables to be set on all 
the channels produced by originate, and [var=val] to define variables per leg in a call 
with many simultaneous targets. Enterprise originate uses these as well, but remember that 
each string separated by the :_: delimiter is its own self-contained instance of originate, so 
{var=val} becomes local only to that single originate string. If you want to define variables 
to be set on every channel of every originate, you must define them at the very beginning of 
the string, using the <var=val> notation. This indicates that you should pass these variables to 
every leg inside every originate. Consider the following enterprise originate:

<action application="bridge" data="<ignore_early_media=true> 
{myvar=inner1}[who=userA]sofia/internal/userA@local.pbx.com, 
[who=userB]sofia/internal/userB@local.pbx.com:_:{myvar=inner2} 
[who=userC]sofia/internal/userC@local.pbx.com,[who=userD]sofia/
internal/userD@local.pbx.com"/>

At first glance, this may seem confusing, but when you break it down, you can see what the 
values of the variables are for each channel. This table shows the values:

Channel ${ignore_early_media} ${myvar} ${who}
userA@local.pbx.com true inner1 userA

userB@local.pbx.com true inner1 userB

userC@local.pbx.com true inner2 userC

userD@local.pbx.com true inner2 userD

Once you know which syntax to use, it becomes a simple thing to set the channel variables for 
individual legs inside originates, or the entire enterprise originate.

Ringback
Unlike the regular originate, signaling cannot be passed back from one of the inner originates, 
because there are too many call paths open to properly handle it. Therefore, when using bridge 
with enterprise originate, you must define the ringback variable if you want to send a ringtone 
back to the caller.

See also
To learn more about originate and enterprise originate, look at some other examples in 
this chapter and study the default dialplan distributed with FreeSWITCH. There are several 
examples of the many things you can do when placing outbound calls found in conf/
dialplan/default.xml.
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Time-of-day routing
It is common for routing of calls to be different, depending on the time of day or day of the 
week. The FreeSWITCH XML dialplan has a number of parameters to allow this functionality.

Getting ready
Determine the parameters for your routing. In this example, we will define business hours as 
Monday through Friday from 8:00 a.m. to 5:00 p.m. Additionally, we will include a day_part 
variable to reflect morning (midnight to noon), afternoon (noon to 6:00 p.m.), and evening 
(6:00 p.m. to midnight).

How to do it...
Start at the beginning of your dialplan by following these steps:

1.	 Add this extension to the beginning of your context:
<extension name="Time of day, day of week setup" continue="true">
<condition wday="2-6" hour="8-16" break="never">
<action application="set" data="office_status=open" 
    inline="true"/>
<anti-action application="set"  
    data="office_status=closed" inline="true"/>
</condition>
<condition hour="0-11" break="never">
<action application="set" data="day_part=morning"  
    inline="true"/>
</condition>
<condition hour="12-17" break="never">
<action application="set" data="day_part=afternoon"  
    inline="true"/>
</condition>
<condition hour="18-23" break="never">
<action application="set" data="day_part=evening"  
    inline="true"/>
</condition>
</extension>
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2.	 Later in your dialplan, you can use the office_status and day_part variables. 
The office_status variable will contain either "open" or "closed", and day_part 
will contain "morning", "afternoon", or "evening". A typical usage would be to play 
different greetings to the caller, depending on whether or not the office is open.  
Add these dialplan extensions, which will accomplish the task:
<extension name="tod route, 5001_X">
<condition field="destination_number" expression="^(5001)$">
<action application="execute_extension"  
    data="5001_${office_status}"/>
</condition>
</extension>
<extension name="office is open">
<condition field="destination_number"  
    expression="^(5001_open)$">
<action application="answer"/>
<action application="sleep" data="1000"/>
<action application="playback" data="ivr/ivr- 
      good_${day_part}.wav"/>
<action application="sleep" data="500"/>
<!-- play IVR for office open -->
</condition>
</extension>
<extension name="office is closed">
<condition field="destination_number"  
    expression="^(5001_closed)$">
<action application="answer"/>
<action application="sleep" data="1000"/>
<action application="playback" data="ivr/ivr- 
      good_${day_part}.wav"/>
<action application="sleep" data="500"/>
<!-- play IVR for office closed -->
</condition>
</extension>

3.	 Save your XML file and issue the reloadxml command at fs_cli.
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How it works...
The Time of day, day of week setup extension defines two channel variables, 
namely office_status and day_part. Note the use of inline="true" in our set 
applications. These allow immediate use of the channel variables in later dialplan condition 
statements. Every call that hits this dialplan context will now have these two channel variables 
set (they will also show up in CDR records if you need them). You may have also noticed 
continue="true" in the extension tag and break="never" in the condition tags. These 
tell the dialplan parser to keep looking for more matches when it would otherwise stop 
doing so. For example, without continue="true", when the dialplan matches one of the 
conditions in the Time of day, day of week setup extension, it stops looking at any 
more extensions in the dialplan. In a similar way, the break="never" attribute tells the 
parser to keep looking for more conditions to match within the current extension (by default, 
when the parser hits a failed condition, it stops processing any more conditions within the 
current extension).

A detailed discussion of dialplan processing can be found in 
Packt Publishing's FreeSWITCH 1.2 book.

Our sample extension number is 5001. Note the action it takes:

<action application="execute_extension"  
data="5001_${office_status}"/>

This sends the call back through the dialplan looking for a destination_number of 5001_
open or 5001_closed. We have defined these destinations with the "office is open" and 
"office is closed" extensions respectively. Now we can play different greetings to the caller: 
one when the office is open and a different one when the office is closed. As a nice touch, for 
all calls, we play a sound file that says "Good morning", "Good afternoon", or "Good evening", 
depending on what the value in the day_part channel variable is.

The execute_extension and transfer dialplan applications
These two applications tell FreeSWITCH to execute another part of 
the dialplan. The primary difference is that execute_extension 
will return after executing another portion of the dialplan, whereas 
transfer will send control to the target extension. In programming 
parlance, execute_extension is like a gosub command and 
transfer is like a goto command. The former comes back, but 
the latter does not.
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There's more...
You may be wondering why we did not simply use a condition to test office_status 
for the open value, and then use action tags for "office open" and anti-action tags for 
"office closed". There is nothing preventing us from doing this. However, what if you need 
to have an office status other than "open" or "closed"? For example, what if you have an 
office that needs to play a completely different greeting during lunch time? This is difficult to 
accomplish with only anti-action tags, but with our example, it is very simple. Let's make 
it a bit more challenging by adding a lunch period that runs from 11:30 a.m. to 12:30 p.m. 
We cannot use hour="11.5-12.5", but we do have another value we can test — time-
of-day. This parameter lets us define periods in the day at a granularity of minutes, or 
even seconds. The value range can be 00:00 through 23:59 or 00:00:00 through 23:59:59. 
Consider this new Time of day, day of week setup snippet:

<extension name="Time of day, day of week setup" continue="true">
<condition wday="2-6" hour="8-16 break="never">
<action application="set" data="office_status=open"  
    inline="true"/>
<anti-action application="set" data="office_status=closed"  
    inline="true"/>
</condition>
<condition wday="2-6" time-of-day="11:30-12:30" break="never">
<action application="set" data="office_status=lunch"  
    inline="true"/>
</condition>
      ....

Notice that we need to explicitly define the weekend, since we cannot rely on a simple 
Boolean "open" or "closed" condition. However, we now have a new office_status of 
"lunch" available to us. We define an additional extension to handle this case:

<extension name="office is at lunch">
<condition field="destination_number"  
  expression="^(5001_lunch)$">

Add the specific dialplan actions for handling calls during the office's lunch hour, and you are 
done. You can add as many new office statuses as you need.

See also
ff Refer to the XML dialplan page at http://freeswitch.org/confluence/

display/FREESWITCH/XML+Dialplan for more information on the usage  
of the break, continue, and inline attributes.
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Manipulating SIP To: headers on registered 
endpoints to reflect DID numbers

Sometimes, when routing calls to endpoints that are registered with your system, you 
would want to utilize custom SIP To: headers. For example, if you are routing DIDs to a 
PBX or switch, the device you are sending the call to might expect the phone number you 
wish to reach in the To: SIP header. However, the customer or PBX may have only a single 
registration to your service that represents multiple DIDs that need to be sent to them.

By default, no flags exist for changing the To: header to match the DID when calling a registered 
endpoint. Since the registration to your server is typically done via a generic username that 
is not related to the DID, you must program your dialplan to retrieve a user's registration 
information and parse out the username portion of the To: header, replacing it with your own. 
Care must be taken to replace only the username portion and keep the remaining parameters 
(after @) intact, especially if the NAT traversal is expected to continue operating.

Getting ready
Be sure that you have your DIDs and users configured. In this example, we will use  
testuser as the username, with a phone number of 4158867999, and our domain  
will be my.phoneco.test.

How to do it...
Create a dialplan extension specifically for handling calls to the DID number, and use some 
regular expression syntax to parse out the information. Here is an example:

<extension name="call_4158867999">
<condition field="destination_number"  
  expression="^\+?1?4158867999$"/>
<condition field="${sofia_contact(testuser@local.pbx.com)}"  
  expression="^[^\@]+(.*)">
<action application="bridge"  
    data="sofia/external/4158867999$1"/>
</condition>
</extension>
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How it works...
You would typically send calls to testuser using the bridge command with an argument of 
user/testuser. In this scenario, however, you would wish to call the testuser's registered 
endpoint and replace testuser with a phone number, which is 4158867999 in our example. 
To do this, you must retrieve the testuser's current dial string and remove the username, 
replacing it with the DID number.

In this example, we leverage the sofia_contact API and some regular expression magic. 
The first condition simply matches the user's DID phone number. We only want to act if the 
destination number is 4158867999. The interesting stuff happens in the second condition. 
The field is ${sofia_contact(testuser@local.pbx.com)}. By wrapping an API call in 
${}, the dialplan literally executes the API and uses the result as the field value. If we go to 
fs_cli and type sofia_contacttestuser@local.pbx.com, we get the result, which is 
something like this:

sofia/external/johndoe@12.34.56.7;fs_nat=yes

The ^[^\@]+(.*) regular expression pattern is applied against this value. The result is 
that everything after, and including, the @ sign is placed in the $1 variable. In our example, 
$1 contains @12.13.56.7;fs_nat=yes. Finally, we execute bridge with the sofia/
external/4158867999$1 dial string. With $1 expanded, our destination is as follows:

sofia/external/4158867999@12.34.56.7;fs_nat=yes

We have successfully replaced testuser with 4158867999, while preserving the necessary IP 
address and parameters for contacting the server, and sent the call to the proper destination.
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2
Connecting Telephones 

and Service Providers

In this chapter, we will cover these recipes:

ff Configuring an SIP phone to register with FreeSWITCH

ff Connecting to Skype

ff Configuring an SIP gateway

ff Codec configuration

Introduction
As its name implies, FreeSWITCH will "switch" or "connect" various endpoints together.  
A part of this switching involves making semi-permanent connections to individual telephones 
or telephone service providers. Service providers are usually telephone companies (telcos),  
or Internet Telephony Service Providers (ITSP). Continue reading to learn more about the 
many ways in which FreeSWITCH can connect your telephone to the world.

The recipes in this chapter will delve into the various ways to connect FreeSWITCH to telephones 
and service providers. FreeSWITCH can also connect to Skype using mod_skypopen. The last 
recipe is for advanced users, and discusses the subject of codec negotiation.
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Configuring an SIP phone to register  
with FreeSWITCH

SIP phones, or any SIP devices with the ability to register, are essential in most FreeSWITCH 
installations for allowing users to communicate with each other. A registration is when  
a phone or other device informs FreeSWITCH that it is active, and provides information 
(such as an IP address and port) on how to reach the phone across the network or Internet. 
FreeSWITCH stores this information for later use to contact that phone.

In this recipe, you will be registering a phone to FreeSWITCH. You will need to enter your 
credentials into your phone as well as into FreeSWITCH itself (both sides must match).

Getting ready
Ensure that the mod_sofia module is already compiled and loaded (Sofia is the SIP stack). 
You may also want to know on which IP address your registrations are being accepted.

Follow these steps:

1.	 Launch the FreeSWITCH command line interface.

2.	 To view the current ports and IPs that you are listening on, type
sofia status.

3.	 Review the output, specifically the lines listed as internal and external,  
as follows:
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external is the profile that is generally used to receive incoming calls, and to send outgoing 
traffic to our provider (from which we'll go to the destinations), and internal is the profile 
to which your internal phones and the phones of your users are registered to. Profiles are 
associated with a specific port and IP address. In this example, internal is associated with the 
192.168.1.124 IP, implicitly port 5060. In essence, this means that the registrations that go 
to and fro from FreeSWITCH, for the internal profile, should occur on that address and port.

How to do it...
From an SIP standpoint, a real hardware phone or a software that runs on your desktop  
(or your cellphone) is exactly the same.

So, first of all, if you don't own a hardware SIP phone, install an SIP softphone. In this recipe 
we'll use X-Lite from CounterPath (http://www.counterpath.com/x-lite), but you can 
use whatever other SIP softphone suits your operating environment. For a list of softphones, 
check the FreeSWITCH documentation at https://freeswitch.org/confluence/
display/FREESWITCH/Softphones.

If you own a hardware SIP phone, you'll find that configuring it will require the same information.

The following steps will show you how to configure an SIP phone:

1.	 Decide on a new username and password that you wish to register with.

2.	 Create and edit the new file called directory/default/USERNAME.xml in the 
FreeSWITCH configuration directory (usually /usr/local/freeswitch/conf or  
/etc/freeswitch). Replace USERNAME with a name or an extension number  
that is not yet there (such as 2000).

3.	 Add the following content to the file and save it:
<include>
  <user id="2000">
    <params>
      <param name="password" value="PASS"/>
    </params>
  </user>
</include>

Replace 2000 and PASS in the code with a username and password of your choosing.

4.	 Load the FreeSWITCH CLI being used.

5.	 Reload the in-memory configuration in FreeSWITCH's CLI by typing:
reloadxml
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You will now be able to configure your softphone or device to register with FreeSWITCH.  
To do this, set the username as 2000 as shown, and keep the password as PASS within  
your softphone or device. Set to register to the IP address (and port, if not the standard  
5060) that you identified earlier.

For example, if you created the username 2000 and password PASS, you would enter the 
following into your softphone:

How it works...
Let's see what you've done.

You've defined an SIP Username in the <user id=""> field. This username is used for the 
authentication of the SIP packets.
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You've added this option in a file within the directory/default/ folder, which includes it 
as part of the default directory domain. This domain, by default, is your server's domain name 
(probably an IP address on your system).

There's more...
The SIP registration shown earlier was extremely basic. It doesn't specify a context for their 
calls to be placed in, it doesn't set the Caller ID for the device/user, and it doesn't add any 
extra variables to the account. Let's talk about these options, as they are common additions 
to any registration and directory entry. Also, if you don't specify the context, FreeSWITCH will 
put the incoming call in the "public" context by default, and that context will just drop the call  
if not otherwise customized.

Context
Calls received by FreeSWITCH will be directed, by default, to the context that is associated 
with the port and IP that a call comes in on. For example, calls received on port 5060 that 
are authenticated are assumed to be from an "in-house phone", and get to use the default 
context. If, for some reason, you want to override the default for a particular device with a 
special context selection, you can do so by adding an additional variable.

Customizing caller ID
You want user 2000 to have a specific caller ID using the previous example. You can make  
this happen by defining a variable within the user's definition.

The example sets the Caller ID Name to Mary Sue and the Caller ID Number to 2000.  
Note that, if you choose to, you can further override this setting within the dialplan:
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In the user definition, adding the user_context variable will route all the calls from this 
device to the context named as "default" NB: actually, "default" is a name (of an interesting 
context: try calling 5000). The default context is named "public").

See also
ff Chapter 4, External Control

Connecting to Skype
SkypeTM is often the first experience of VoIP for many users, and many of them continue to 
use it as a voice, chat, and video medium to communicate. While many of its features are 
available in many other kinds of network and technologies (both proprietary and open), the 
sheer power of ease of use and installed base makes Skype a mainstay of communication.

FreeSWITCH can be made to fully interact with the Skype Network, for both incoming and 
outgoing voice calls, and for chat messaging. 

Getting ready
The mod_skypopen module is already compiled for Windows users when using the Visual 
Studio 2008/2010 solution files with the FreeSWITCH source code. Linux users will need to 
enable mod_skypopen in their FreeSWITCH installation (mod_skypopen is not available for 
Mac and *BSDs at the moment). To do this, follow these steps:

1.	 Install and configure all the prerequisites ("required packages") for your Linux 
distribution as per http://freeswitch.org/confluence/display/
FREESWITCH/mod_skypopen. There are a lot of prerequisites, but they can  
all be installed in a big scoop by copying and pasting from the link.

2.	 Open modules.conf in the FreeSWITCH source directory, and remove the comment 
on the #endpoints/mod_skypopen line. Save the file and exit.

3.	 Compile mod_skypopen using the following command:
make mod_skypopen -install

4.	 Use the interactive installer to download and setup all the ancillary software needed 
by mod_skypopen. The interactive installer will ask you questions, and then will 
create all needed directories, configuration files, scripts, and more. Again, if in doubt, 
please check the documentation page. Remember to use a specific Skype account 
for mod_skypopen; for example, a skypename that is not used by you or anybody 
else. You can create a new skypename (account) from your desktop Skype client  
after signing out from your own account. We used the "gmaruzz5" Skype account  
for mod_skypopen.
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5.	 Execute the script that has been created by the interactive installer (sh /usr/
local/freeswitch/skypopen/skype-clients-startup-dir/start_
skype_clients.sh). It will start the X servers and Skype clients that are needed  
by mod_skypopen.

6.	 If you want to have mod_skypopen loaded automatically each time you start 
FreeSWITCH, then edit conf/autoload_configs/modules.conf.xml and 
uncomment the following line:
<!-- <load module="mod_skypopen"/> -->

7.	 Save the file and exit.

8.	 If you do not load mod_skypopen automatically, then simply load it using the 
following command from fs_cli:

load mod_skypopen

Once mod_skypopen is loaded, you are ready to make and receive Skype audio calls and chat.

How to do it...
The first thing to do is to become familiar with the sk command—sk being short for Skypopen.

1.	 At fs_cli, type sk list, and press Enter. You will see a list of all the skypopen 
interfaces (or channels) that you have configured, and their status. In this case, we 
configured (at installation time via the interactive installer) 6 skypopen interfaces. 
This FreeSWITCH server can manage at most 6 concurrent Skype voice calls.
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2.	 We've seen that we have 6 interfaces, all of them idle (not serving a call). We can 
test the full functionality making an outbound Skype voice call from the FreeSWITCH 
server to our own "usual" desktop. If your personal Skype account is "gmaruzz4",  
then from fs_cli, type:
freeswitch@internal> bgapi originate skypopen/ANY/gmaruzz4 5000

3.	 FreeSWITCH will originate in background (bgapi) a call to "gmaruzz4" using "ANY". 
This is one of the skypopen available interfaces. Then, when answered, it will connect 
that call to the 5000 extension of the default dialplan.

4.	 You will receive a call on your personal Skype account ("gmaruzz4") from the account 
that you assigned to mod_skypopen with the interactive installer (in our case, 
"gmaruzz5"). When you answer the call, you'll be connected to the standard FreeSWITCH 
IVR (at extension 5000). You can then ask your desktop Skype client to show you the 
dialpad numeric keyboard (from the call menu), and navigate the voice tree.

How it works...
Skypopen allows FreeSWITCH to use local skype clients, running in the background on Xvfb 
"fake" Xservers as endpoints. Mod_skypopen exchanges commands with the local Skype 
client (as it would similarly to a modem), and redirect the audio streams from and to the 
local Skype client and FreeSWITCH. For example, mod_skypopen acts as a "remote control" 
of the local Skype client. From FreeSWITCH's standpoint, mod_skypopen is just another 
endpoint, and can be used for both, receiving the inbound Skype calls and for originating the 
outbound voice calls (and messaging chats). If the Skype account used by mod_skypopen 
has "credits", then you can also send an SMS (cellphone text message), and originate national 
and international PSTN and mobile calls. From fs_cli, type the following (substitute your 
cellphone number to the dummy):

freeswitch@internal> bgapi originate skypopen/ANY/+12125551212 5000
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There's more...
Mod_skypopen can also receive calls (and chats).

From your own desktop (or smartphone) Skype account, call the account that you have 
assigned to mod_skypopen, with the interactive installer (in our case, "gmaruzz5").
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FreeSWITCH will receive your call and will route it to the standard IVR (extension 5000). In our 
example, after a while, we type 3 on the Skype desktop dialpad, and we'll get transferred to 
music on hold.

This 5000 destination was set up at installation.

Incoming Skype calls connected to an SIP softphone
To change the destination of inbound Skype calls, you can edit the /usr/local/
freeswitch/conf/autoload_configs/skypopen.conf.xml file (it was created  
by the interactive installer). Look at the first line and you'll see:

<param name="destination" value="5000"/>

You can change this value to be an arbitrary extension in the dialplan.

Let's change it to "2000". From fs_cli, enter the reload mod_skypopen command to 
make skypopen aware of the modified configuration.

However, an extension "2000" does not yet exist in the dialplan. Let's add it so that it will 
connect the incoming call to the softphone that we've registered in the previous paragraph. 
Edit the /usr/local/freeswitch/conf/dialplan/default.xml file, and find "Local 
Extension" in it. Modify the line that follows "Local Extension" from:

<condition field="destination_number"  
expression="^(10[01][0-9])$">

To:

<condition field="destination_number"  
expression="^(20[01][0-9])$">
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For example, change the first 1 and make it 2.

Then, from fs_cli, issue the reloadxml command (so that it makes the modification to the 
dialplan). Now, if you call "gmaruzz5" from your desktop Skype, you will be connected to your 
SIP softphone!

Incoming SIP calls connected to Skype destinations
Let's modify the dialplan again. This time, we will add an extension that will allow the calls 
to Skype destinations. We will then go to that extension from our SIP softphone, reopen the 
dialplan file that we just modified, and at the beginning of it find the line:

<context name="default">

Immediately below it, insert the following lines:

<!-- dial echo123 via skypopen using ANY interface to go out -->
<extension name="skypopen">
  <condition field="destination_number" expression="^2909$">
    <action application="bridge" data="skypopen/ANY/echo123"/>
  </condition>
</extension>

Then, again from fs_cli, issue the reloadxml command. Now if you call "2909" from your 
SIP softphone, you will be connected to the Skype test ("echo123" Skype account).

Configuring an SIP gateway
Configuring an SIP gateway allows you to connect with outside carriers or other SIP machines. 
You can connect with other FreeSWITCH or Asterisk boxes, or upstream carrier SIP trunks.

SIP gateways have many, many options—too many to list here; so, we'll review just a few.

Getting ready
First, you'll need to gather some information about the remote server to which you want to 
connect. The list generally includes the following:

ff The IP address (or hostname) and a port (the standard port is 5060) of the server 
that to which you are being connected

ff The username and password (if any)

ff How the carrier/gateway expects Caller ID to be handled (which SIP header the  
Caller ID should be placed in)

ff Whether registration is required
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You'll also need to know the phone number format that your carrier expects when you send 
calls to them, and in which format they'll send calls to you.

Finally, you'll need to decide which of your existing SIP profiles you want to tie this gateway to. 
All gateways must be associated with an SIP profile (port and IP address). Note that, in most 
cases, a gateway can be utilized on multiple SIP profiles if desired.

Some carriers use SIP registration to figure out how to send calls to you, 
while other carriers map IP and port addresses permanently to deliver 
calls to you. Some carriers also allow DNS-based records to be used. 
You should find out what your provider utilizes. You may be allowed to 
tweak these options within the provider's configuration interface.

How to do it...
Gateways are associated with SIP profiles, because FreeSWITCH needs to know which IP and 
port to send traffic to and from in relation to the carrier.

First, you'll need to add a gateway to your SIP profile. Let's assume you're using the default 
FreeSWITCH configuration. In this case, we'll create a gateway that is attached to the default 
external profile.

1.	 Create a file in the conf/sip_profiles/external/ directory named after your 
gateway (that is, cheap_tel.xml).

2.	 Add the following content (note that even if you are not registering, a username  
and a password are required) and replace the highlighted items with your own 
provider data:
<include>
  <gateway name="providerA">
    <param name="realm" value="sip.2600hz.com"/>
    <param name="username" value="darren"/>
    <param name="password" value="test"/>
    <param name="register" value="true"/>
  </gateway>
</include>

3.	 You will access the gateway by using the bridge application with sofia/gateway/
providerA/number, such as sofia/gateway/providerA/4158867999. You 
can do this in any dialplan that you are using. In this example, edit your dialplan 
(typically, the default dialplan in conf/dialplan/default.xml) and add the 
following code to utilize the gateway:
    <extension name="dial-10-digit-numbers">
      <condition field="destination_number"
                 expression="^(\d{10})$">
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        <action application="bridge"
                data="sofia/gateway/providerA/$1"/>
      </condition>
    </extension>

4.	 Issue a reloadxml command in your FreeSWITCH CLI after making the  
mentioned changes.

5.	 Issue sofia profile external rescan to instruct FreeSWITCH to find any new 
gateways or settings on the profile external.

Sofia profile rescan versus reload
When making changes to your SIP configuration files, you will have to 
tell FreeSWITCH's SIP module ("Sofia") that you want these changes 
to take effect. Simply reloading the XML configuration in memory 
(reloadxml) does not force sofia to apply it. Instead, you will need 
to tell sofia profile to rescan or reload.
The reload option will completely stop the sofia profile, dropping 
all calls in progress, and will then restart the profile with the new 
changes that are applied. The rescan option is much less intrusive. 
Instead of stopping the profile altogether, it simply looks for the 
changes made in the XML configuration, and selectively applies 
them. Changes to a gateway only require a rescan. However, 
changes made to the sofia profile parameters require reload.

How it works...
In step 2, you defined in the profile a very basic gateway containing a gateway name, a server 
name, a username, and a password. In step 3, you added to the dialplan a condition that 
matched destination numbers that were composed of no more and no less than 10 digits 
(long-distance in the USA numbering plan), and bridged the calls to such numbers using your 
new gateway.

Note that in the bridge application in step 3, you utilized $1 as a variable that contains, 
which was captured before by the parenthesis in your regular expression to pass along the 
number that was dialed.

Step 4 and step 5 tell FreeSWITCH to load your new profile into memory and activate it.

There's more...
Connecting to a provider is usually the first step in configuring outbound calls. The following 
sections provide additional information on how to make your FreeSWITCH gateways more 
effective.
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Adding prefixes to dial strings
You can add prefixes to the bridge dial strings in multiple ways. In the simplest form,  
you might want to add a country or area code to the beginning of a number. In the example,  
if you modify the bridge string from sofia/gateway/providerA/$1 to sofia/gateway/
providerA/+1$1, your calls will now be completed with a prefix of +1 (the USA international 
prefix) in front of the 10-digit (the USA long-distance format) number. The complete number, 
made by the international prefix, then the long distance prefix, then the number, is commonly 
referred to as E.164 format.

Another common strategy is to add an account code or customer code to the beginning of a 
number. To do this, you can add a prefix that is based on a channel variable. In this scenario, 
let's say you have a customer with the account code 38234, and a customer with the account 
code 93289. Each customer makes calls from a specific IP address. You might have an XML 
dialplan that looks like this:

<extension name="check_customer_1">
  <condition field="network_addr" expression="^2\.3\.4\.5$">
    <action application="set" data="accountcode=38234"
            inline="true"/>
  </condition>
</extension>

<extension name="check_customer_2">
  <condition field="network_addr" expression="9\.8\.7\.6$">
    <action application="set" data="accountcode=93289"
            inline="true"/>
  </condition>
</extension>

<extension name="dial-10-digit-numbers">
  <condition field="accountcode" expression="^.$"/>
  <condition field="destination_number" expression="^(\d{10})$">
    <action application="bridge"
            data="sofia/gateway/providerA/${accountcode}$1"/>
  </condition>
</extension>
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In the example, we first set the appropriate $accountcode variable (inline) during the 
dialplan, processing to identify the client (if you set a variable in dialplan and want to check it 
during the same dialplan "pass", then you must declare it as "inline" or it will be available only 
in the next "pass".)

Then, if the accountcode variable is empty, we do nothing and exit the extension (implicitly 
hanging up), because the condition that matches the empty accountcode variable - "^.$" - is 
closed at the end, and does not contain any actions. So, exit. If that condition is not matched, 
we check the next one. So, we bridge to the provider only if the accountcode variable is set 
(if it was empty we would not even reach the line that contains the bridge action), and utilize 
accountcode as a prefix in the dial string (see the bold portion of the bridge command).

Monitoring gateways
There are many additional parameters available on your gateway profile. One such parameter 
is the OPTIONS ping setting. This tells FreeSWITCH to send periodically (to "ping") the OPTIONS 
SIP packets to the gateway, and check the answer to ensure it's up. This is useful in ensuring 
that if the gateway is marked "down", you do not hangup while trying to reach it, and can instead 
do error handling and/or move on to another gateway/carrier.

To implement OPTIONS pings, add this parameter to your gateway definition (step 2 in How to 
do it):

<param name="ping" value="25"/>

This will ping the gateway every 25 seconds to ensure it's up. If the gateway is marked "down" 
because it has not responded to pings, FreeSWITCH will continue sending OPTIONS pings at 
the specified interval, and will mark it "up" as soon as it responds.

Codec configuration
Codec configuration is very versatile in FreeSWITCH. In IP telephony, there are several differing 
scenarios for negotiating and choosing codecs. To meet the varying demands, FreeSWITCH 
has several configurable modes of operation as well as runtime variables that can influence 
how codec negotiation takes place. Typically, the goal should be to reduce transcoding or 
resampling as much as possible. Transcoding is the case where two sides of the call have 
different codecs and audio flowing in either direction, which has to be completely decoded 
and re-encoded to the opposite channel's format. Resampling is similar, but it is required 
when each side of the call is running at a different sample rate, and the audio has to be 
"resampled" to the correct rate. One or both of these can be necessary, depending on where 
you direct your calls to, and how you have your codec configuration set.
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Getting ready
The biggest decision to make upfront is late-negotiation or early-negotiation. This setting 
tells FreeSWITCH to either validate the codec before the channel even hits the dialplan, or  
wait until the moment where media is absolutely necessary to perform codec negotiation.  
This gives you a chance to decide on a codec from your dialplan logic, or even from the  
result of a separate outgoing call that you intend to bridge.

With early-negotiation, there is not much you can do to control the codec behavior of inbound 
calls. So, for this recipe, we will work with late-negotiation. To prepare, follow these steps:

1.	 Open internal sofia profile conf/sip_profiles/internal.xml in a text editor 
and look for this line:
<!--<param name="inbound-late-negotiation"  
value="true"/>-->

2.	 Uncomment this parameter to enable late-negotiation for all calls.

3.	 Save the file and exit. At fs_cli, issue the reloadxml command, and then issue 
the sofia profile internal restart command.

You are now ready to experiment with codec late-negotiation.

How to do it...
Late-negotiation gives you the possibility of trying your best to ensure that the two legs of a 
call use the same codec (for example, no transcoding occurs). You can activate this possibility 
by setting the inherit_codec variable. This variable will see the list of codecs proposed by 
leg A (delaying the decision on which one to accept), then it will arrange the order of that list 
(to suit its own preferences), and then it will propose it to leg B. Leg B will choose, and the FS 
will choose the same for leg A:

1.	 Add the following extension to your dialplan. Create conf/dialplan/default/01_
codec_negotiation.xml and add these lines:
<include>
  <extension name="example">
    <condition field="destination_number" expression="^1234$">
      <action application="set" data="inherit_codec=true"/>
      <action application="bridge"
              data="sofia/internal/1234@cluecon.com"/>
    </condition>
  </extension>
</include>

2.	 Save the file and exit. At fs_cli, issue the reloadxml command.
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How it works...
First, let's see how to explicitly dictate codec negotiation. Once the late-negotiation parameter 
is set, you can set a special channel variable called absolute_codec_string. This variable 
is in the same format as all other codec parameters inside FreeSWITCH, and contains a 
comma-separated list of codec names with modifiers to choose the rate or interval, such as 
G729, PCMU@30i, or speex@16000h. The @i sets the interval (milliseconds of audio per 
packet) and the @h sets the hertz (sampling rate) of the codec. A simple dialplan that sets 
absolute_codec_string, and then places an outbound call can demonstrate how to 
explicitly choose a codec using late-negotiation:

    <extension name="example">
      <condition field="destination_number" expression="^888$">
        <action application="set"
                data="absolute_codec_string=PCMU@30i"/>
        <action application="conference" data="888@default"/>
      </condition>
    </extension>

Let's take it a step further. Say you are placing an outbound call to one or more servers and 
you want to avoid transcoding, but you don't know what codecs that outbound call will be 
offered, and it is too late at this point to set absolute_codec_string. The solution is to 
use inherit_codec. This variable, when set to true, tells FreeSWITCH to automatically set 
absolute_codec_string to the value of the codec that was negotiated by the outbound 
leg in the case of a bridged call. This way, you can allow the outbound call to negotiate a 
codec, and then pass that decided value back to the inbound leg before media is established. 
This will then force the inbound leg to request the same codec as the outbound leg, and try to 
eliminate transcoding.

When calling the example extension, the call hits the XML dialplan and executes the 
instructions contained in the action tags. First, the inherit_codec variable is set to true, 
and then the call is bridged to 1234@cluecon.com over SIP. Because we previously enabled 
the inbound-late-negotiation parameter in the profile, the codec has not yet been 
chosen for the inbound leg. The outbound leg then proceeds to connect to http://cluecon.
com/, where a codec will be chosen when the far-end answers or establishes media. At this 
point, the FreeSWITCH call origination engine will take the codec from the outbound leg and 
set it as absolute_codec_string on the inbound leg. Next, the media indication is passed 
across that will prompt the inbound leg to negotiate media and offer the same codec as the 
outbound leg.
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There's more...
You can also limit the codecs that you offer to the outbound leg with another special variable 
called ep_codec_string. The ep_codec_string variable contains the list of codecs offered 
by the calling endpoint (A leg). This variable is the same one used by the inherit_codec 
behavior, and can be used on an inbound call to make sure that you only offer codecs on the 
outbound leg that were initially offered to the inbound leg. Here is the previous example with  
this extra functionality enabled:

    <extension name="example">
      <condition field="destination_number" expression="^1234$">
        <action application="set" data="inherit_codec=true"/>
        <action application="export"
         data="nolocal:absolute_codec_string=${ep_codec_string}"/>
        <action application="bridge"
                data="sofia/internal/1234@cluecon.com"/>
      </condition>
    </extension>

The export application sets the desired variable on the inbound leg just as the set 
application, but marks it to be copied to (that is, "exported" to) any outbound call legs generated 
by the channel on which it is set. The nolocal: syntax prevents the variable from applying 
to the channel on which it was set, but still copies it to any outbound legs. So in this case, we 
use export to set nolocal:absolute_codec_string to the current value of ep_codec_
string for any outbound calls. This means that when we bridge to 1234@cluecon.com, our 
absolute_codec_string will be set to exactly what codecs the inbound leg was offered.

Further information and techniques for codec negotiation in FreeSWITCH:  
http://freeswitch.org/confluence/display/FREESWITCH/Codec+Negotiation

Avoiding codec negotiation altogether
It's also possible to route your calls to a script or some other application that does not 
require media, and uses logic to influence the absolute_codec_string in similar ways 
to what was demonstrated earlier. If you want to try to be completely uninvolved with the 
codec negotiation, you can try setting the bypass_media variable to true before you call 
the bridge application. FreeSWITCH will present the inbound SDP to the outbound leg and 
vice-versa, completely eliminating FreeSWITCH from the media path, but still keeping it in the 
signaling path. This, however, does not work well under NAT conditions.
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3
Processing Call  
Detail Records

In this chapter, we will cover these recipes:

ff Using CSV CDRs

ff Using XML CDRs

ff Inserting CDRs into a backend database

ff Using a web server to handle XML CDRs

ff Using the event socket to handle CDRs

ff Directly inputting CDRs into various databases in real time

Introduction
Call detail records (CDR) are an important part of the accounting process of any phone 
system. They are also an invaluable resource for troubleshooting. FreeSWITCH provides 
several different methods for the generation of CDRs. The most common method is to create 
plain-text comma-separated values (CSV) files. Each line in a CSV file represents one phone 
call or, more accurately, one call leg. (A call is often made by two "legs": one leg, called leg 
A, is incoming from the caller to FreeSWITCH; the other leg, called leg B, is outbound from 
FreeSWITCH to the callee. FreeSWITCH "bridges" the audio of the two call legs so that the 
caller and callee can talk to each other.) There are other options for processing CDRs, most 
notably using mod_xml_cdr to store more detailed information about calls, as well as using 
the event socket to process CDR information.

www.itbook.store/books/9781785280917

https://itbook.store/books/9781785280917


Processing Call Detail Records

44

Using CSV CDRs
It is a simple thing to store CDRs in CSV format. This recipe describes the steps necessary to 
store call records in plain-text CSV files.

Getting ready
In the default configuration, mod_cdr_csv is compiled and enabled by default. CDR data 
is stored in the log/cdr-csv/ directory. To review the options available, open the conf/
autoload_configs/cdr_csv.conf.xml file. Here are the parameters available in the 
settings section:

<settings>
    <!-- 'cdr-csv' will always be appended to log-base -->
    <!--<param name="log-base" value="/var/log"/>-->
    <param name="default-template" value="example"/>
    <!-- This is like the info app but after the call  
     is hung up -->
    <!--<param name="debug" value="true"/>-->
    <param name="rotate-on-hup" value="true"/>
    <!-- may be a b or ab -->
    <param name="legs" value="a"/>
    <!-- Only log in Master.csv -->
    <!-- <param name="master-file-only" value="true"/> -->
</settings>

We will review some of these options in the following section.

How to do it...
The easiest way to see a new CDR is to use a utility such as cat in Linux/Unix or type in 
Windows. Alternatively, if you are in a Linux/Unix environment, you can use the tail utility 
to see in real time what is appended to the end of a text file. (Windows does not ship with a 
tail utility, but there are free and open source options available. Also, take a look at Cygwin, 
a complete and open source Unix/Linux-like environment for Windows.)

Here are the steps you can follow in a Linux/Unix environment:

1.	 Change the directory to /usr/local/freeswitch/log/cdr-csv/.

2.	 Execute tail -f Master.csv to display new CDR entries as they are written.

3.	 Make a test call, perhaps from one phone to another.

4.	 Hang up the test call and note the new CDR, which is appended to Master.csv.

5.	 Press Ctrl + C to exit the tail command.
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Here are two sample CDRs. The first one is from a call made by gmaruzz4 to 2000, and the 
second is from a call made by 2000 to 2909:

"Giovanni Maruzzelli","gmaruzz4","2000","defau
lt","2015-03-15 03:47:06","2015-03-15 03:47:10","2015-03-15 
03:47:20","14","10","NORMAL_CLEARING","55232714-a5a2-4278-b53d-
7f266d73314e","4ac1721f-09ed-4c45-9436-36f8618003ca","","L16","L16"

"2000","2000","2909","default","2015-03-15 04:06:34","2015-03-15 
04:06:36","2015-03-15 04:07:27","53","51","NORMAL_CLEARING","4e048b90-
78e9-47b8-8ee0-db3c26b09a92","769c594f-0c67-4daf-8a59-
e0c641d8709c","","opus","opus"

How it works...
By watching the Master.csv file, we can observe new CDRs being written to the disk. While 
not particularly useful in a production system, doing this helps you learn about CDRs and the 
information they contain. Furthermore, it is a simple troubleshooting tool you can use down 
the road.

There's more...
There are a number of things to keep in mind when using CSV CDRs. The following sections 
will help you make the best use of them.

File names and locations
If you perform a directory listing of log/cdr-csv, you may see a number of files in addition 
to Master.csv. For example, using the default configuration, if you make a call from 
1001 to 1007, you will see a file named 1001.csv. The reason is that those two users are 
defined by the files in the /usr/local/freeswitch/conf/directory/default/*.
xml directory, and inside their definition, we can find an "accountcode" parameter. Each 
"accountcode" will generate its own .csv file, which contains all the CDRs made by users 
sharing that accountcode. In the default configuration, each directory user is defined with its 
own accountcode (for example, user 1001 has the accountcode 1001), but you can set up 
multiple users sharing the same accountcode (for example, both 1001 and 1007 have the 
accountcode "sales"). These files are in addition to Master, and are a feature that can be 
disabled in conf/autoload_configs/cdr_csv.conf.xml by setting this parameter:

<param name="master-file-only" value="true"/>

You may see other files with date stamps and time stamps in their names, like this:

Master.csv.2015-04-06-01-48-32
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These files are created when a log rotate is requested by giving the "cdr_csv rotate" 
command from fs_cli, or by sending an HUP signal to the FreeSWITCH process (for  
example, "killall -HUP freeswitch"). This behavior can be changed by setting the 
following parameter:

<param name="rotate-on-hup" value="false"/>

Finally, you can specify the path where the cdr-csv/ directory will be created using the log-
base parameter. For example, setting <param name="log-base" value="/var/log"/> 
will force all CSV CDR files to be written to the /var/log/cdr-csv/ directory. (You cannot 
change the directory's name, which is "cdr-csv". You can change only the location in which it 
will be created.)

When changing parameters in cdr_csv.conf.xml, be sure to save 
your changes and then issue the reload mod_cdr_csv command 
at fs_cli in order for the changes to take effect.

Other options
There are a few other options in the settings section of cdr_csv.conf.xml. The first one is 
the debug parameter. Setting this to true will cause each call to dump all channel variables 
(like the info dialplan application) when the call hangs up. Note that this will dump to both 
fs_cli and the FreeSWITCH log file, so be aware of the disk space.

The other option is called legs. This will determine which call leg (or legs) gets a CDR. By 
default, only the A leg (that is, the calling leg) gets a CDR. You can set this parameter to "b" to 
log only the B leg (that is, the called leg), or you can set it to "ab" so that you receive a CDR for 
each leg. Handling A and B legs is discussed later in this chapter.

CDR CSV templates
The default-template parameter determines which CDR template is used when creating 
the CDR record. Notice the <templates> section of cdr_csv.conf.xml. There are various 
templates that you can use or edit. You may also create your own templates. By default, we 
use the example template. Feel free to change or edit the default-template parameter 
to use a different template. The asterisk template will output CDRs in the format used by 
Asterisk PBX. The sql template will output records in a particularly useful format, which we 
will discuss in the Inserting CDRs into a backend database recipe.

Templates have another feature that allows custom behavior. When a channel has the 
accountcode variable set to the same name as that of a template, that call's CDR will  
be formatted in the specified template. You can test this behavior by editing a directory  
user and setting their accountcode:

1.	 Open conf/directory/default/1007.xml and set this value:
<variable name="accountcode" value="sql"/>
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2.	 Save the file and exit. Issue reloadxml at fs_cli.

3.	 Make a test call from 1007 to another phone, answer, and then hang up.

4.	 You will now have a file named sql.csv in your cdr-csv/ directory. It contains  
CDR formatted as per the sql template defined in cdr_csv.conf.xml.

This technique can be used to customize the kinds of data that are stored. For example,  
you may have a client whose records need to have custom channel variables included in the 
CDR file, but you may not want every call in your system to include that information. Using an 
accountcode and a CDR CSV template allows you to tailor the behavior as needed.

See also
ff Refer to the Inserting CDRs into a backend database recipe later in this chapter

Using XML CDRs
FreeSWITCH generates a wealth of information for each call that cannot be easily represented  
in a traditional CSV flat file format. XML gives us all the flexibility to store structured information. 
In this recipe, we will enable mod_xml_cdr and discuss a few of its configuration options.

Getting ready
In the default configuration, mod_xml_cdr is compiled but not enabled. Follow these steps to 
enable it:

1.	 Open conf/autoload_configs/modules.conf.xml.

2.	 Uncomment this line:
<!-- <load module="mod_xml_cdr"/> -->

3.	 Save the file and exit.

Now mod_xml_cdr will load automatically when FreeSWITCH starts. However, if FreeSWITCH 
is already running, we need to load it manually. Issue the load mod_xml_cdr command at 
fs_cli. The XML CDR data will now be stored in the log/xml_cdr/ directory.

XML CDRs have many options. To review them, open the conf/autoload_configs/xml_
cdr.conf.xml file. We will be discussing some of these options later in this recipe.
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How to do it...
The easiest way to see a new XML CDR is to use a utility such as cat in Linux/Unix or  
type in Windows. Alternatively, you can use a utility such as less to page through the 
contents of a file. Both Windows and Linux/Unix support piping the output to more to  
achieve the same effect.

Here are the steps you can follow in a Linux/Unix environment:

1.	 Change the directory to /usr/local/freeswitch/log/xml_dr/.

2.	 List the directory contents with the ls command.

3.	 Make a test call, perhaps from one phone to another.

4.	 Hang up the test call and note the new XML CDR, named a_<uuid>.cdr.xml.

5.	 Type less a_<uuid>.cdr.xml and press Enter to see the content of the XML  
CDR file.

How it works...
By watching the log/xml_cdr/ directory, we can observe new CDRs being written to the 
disk. While not particularly useful in a production system, doing this helps you learn about 
XML CDRs and the information they contain. Furthermore, it is a simple troubleshooting tool 
you can use in the future.

What is a UUID?
When dealing with CDRs, and especially XML CDRs, you will be presented with 
many UUIDs. UUID stands for Universally Unique Identifier. It is a string of 32 
hexadecimal digits divided into five groups separated by hyphens. An example 
UUID is 678a195f-8431-4d77-8f10-550f7435f18e. Each call leg receives a 
UUID in order to keep it distinct from all other call legs.

There's more...
The mod_xml_cdr module can do many things, not least posting new XML CDR information 
to a web server. The web server can then process the XML CDR, whether it means updating  
a database or performing other billing functions. These are discussed further in the Using a 
web server to handle XML CDRs recipe later in this chapter.
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File names and locations
In the conf/autoload_configs/xml_cdr.conf.xml file, there are two parameters in 
the <settings> section that affect filenames and locations. The first parameter is called 
prefix-a-leg. When set to true, the A leg XML CDRs will have "a_" prefixed to the filename.  
This makes it easier to distinguish between A leg and B leg files.

The other parameter is log-dir. When set to an absolute path, it will change the location  
of /xml_dr/. Here is an example:

<param name="log-dir" value="/var/log"/>

This will cause all XML CDRs to be written to the /var/log/xml_cdr/ directory (you can 
also set it to a relative path, but that is rarely used).

When changing parameters in xml_cdr.conf.xml, be sure to save 
your changes and then issue the reload mod_xml_cdr command at 
fs_cli in order for the changes to take effect.

Logging the B leg
By default, mod_xml_cdr only logs the A leg (that is, the calling leg) of the call. If you wish to 
log the B leg (that is, the called leg), then set this parameter:

<param name="log-b-leg" value="true"/>

This will cause the B leg XML CDRs to be written. Note that the B leg CDRs will always be 
named <uuid>.cdr.xml, where <uuid> is the actual UUID of the call. There is no option  
to prefix the filename with "b_" as there is with the A leg.

See also
ff Refer to the Using a web server to handle XML CDRs recipe later in this chapter

Inserting CDRs into a backend database
Frequently, it is necessary to put CDR information into a database such as PostgreSQL or 
other SQL and NoSQL databases. FreeSWITCH has various modules for writing CDRs directly 
to many databases, but the preferred architecture is writing CDRs to the disk or posting them 
to a web server, and then processing them so that they can be inserted into a database. Many 
engineering reasons lead to this architecture (for example, avoiding dependence on direct, 
real-time interaction with the database), and most of them relate it to integrity and resilience. 
This recipe discusses the recommended method of writing SQL-based CSV files and then 
using those to update a backend database.
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Getting ready
Of course, you will need a database in which to store your CDRs. Any SQL-compliant database 
will work as long as you can use the command line to execute SQL statements. Create a 
database for your CDRs, and allow any necessary access. This is completely dependent upon 
the type of database you have. Consult your database documentation for specific instructions.

You will also need a table for the CDRs. The following CREATE TABLE syntax for a PostgreSQL 
database will work for the existing sql template in cdr_csv.conf.xml:

CREATE TABLE cdr (
  caller_id_name character varying(30),
  caller_id_number character varying(30),
  destination_number character varying(30),
  context character varying(20),
  start_stamp timestamp without time zone,
  answer_stamp timestamp without time zone,
  end_stamp timestamp without time zone,
  duration integer,
  billsec integer,
  hangup_cause character varying(50),
  uuid uuid,
  bleg_uuid uuid,
  accountcode character varying(10),
  read_codec character varying(20),
  write_codec character varying(20)
);

A similar CREATE TABLE command works for MySQL, as follows:

CREATE TABLE cdr (
  caller_id_name varchar(30) DEFAULT NULL,
  caller_id_number varchar(30) DEFAULT NULL,
  destination_number varchar(30) DEFAULT NULL,
  context varchar(20) DEFAULT NULL,
  start_stamp datetime DEFAULT NULL,
  answer_stamp datetime DEFAULT NULL,
  end_stamp datetime DEFAULT NULL,
  duration int(11) DEFAULT NULL,
  billsec int(11) DEFAULT NULL,
  hangup_cause varchar(50) DEFAULT NULL,
  uuid varchar(100) DEFAULT NULL,
  bleg_uuid varchar(100) DEFAULT NULL,
  accountcode varchar(10) DEFAULT NULL,
  domain_name varchar(100) DEFAULT NULL
);
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All the examples in this recipe will use a database name of cdr and a table name of  
cdr as well. The last thing to do is to set the sql template as the default CDR template. 
Follow these steps:

1.	 Open conf/autoload_configs/cdr_csv.conf.xml.

2.	 Change the default-template parameter to <param name="default-
template" value="sql"/>.

3.	 Save the file and exit. Issue the reload mod_cdr_csv command at fs_cli.

4.	 Issue the fsctl send_sighup command at fs_cli to rotate the log files.

You are now ready to create and process CDRs.

How to do it...
Follow these steps to get a call record into your new database table:

1.	 Make a test call from one phone to another, answer, wait a moment, and then hang 
up (you should now have at least one record in Master.csv).

2.	 Issue the fsctl send_sighup command at fs_cli (or cdr-csv rotate).

3.	 List the contents of your log/cdr-csv/ directory, and note the presence of a 
rotated Master.csv file. For example: Master.csv.2015-04-06-03-37-51.

4.	 The rotated Master.csv file is the one to use to insert records into your database. 
You will need to use your specific database's command-line client to insert the 
records. For PostgreSQL, use a command like this:
cat Master.csv.2015-04-06-03-37-51  | tr \" \' |  
psql -U postgres cdr

5.	 Confirm the presence of the record in the cdr table with a simple SQL query,  
such as SELECT * FROM cdr. Then delete the rotated Master.csv file.

How it works...
The mod_cdr_csv sql template writes CDRs in the format of a single INSERT SQL 
statement per line. A sample record looks like this:

INSERT INTO cdr VALUES ("Giovanni Maruzzelli","1002","1005","d
efault","2015-04-06 03:46:00","2015-04-06 03:46:01","2015-04-06 
03:46:11","11","10","NORMAL_CLEARING","06d18352-52f3-4d90-836c-
d385a10ea6e3","0a32de98-3318-43aa-8439-c64ddfa9c212", "1002");
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These INSERT statements can be piped into a database's command-line client. Note the use 
of tr for conversion of double quotes into single quotes for compatibility with PostgreSQL.

Your production environment may have specific requirements when it comes 
to things such as single versus double quotes in PostgreSQL. Using the tr 
Unix command is one method of handling the issue. You can also modify the 
template to use single quotes instead of double quotes.

Finally, after confirming that the CDR was successfully inserted into the database, we deleted 
the rotated file. We can also archive those to another disk volume as a backup.

There's more...
In fact, you can set up a CDR database on a completely separate machine, and use basic 
tools such as fs_cli to rotate logs and scp or ftp to pull the files to the local database 
server. An intelligent script can then notify the system administrator of any issues. Also, as 
long as there is disk space on the FreeSWITCH server, no CDR records will be lost in the event 
of a failed connection between the CDR server and the FreeSWITCH server. CDRs will continue 
to be written to the disk on the FreeSWITCH server, and can be collected and processed when 
connectivity is re-established.

See also
ff Refer to the Getting familiar with the "fs_cli" interface recipe in Chapter 4,  

External Control

Using a web server to handle XML CDRs
One feature of FreeSWITCH's mod_xml_cdr is that it can use HTTP POST actions to send 
CDR data to a web server, which in turn can process them, and perhaps put them into a 
database. This mechanism has several advantages:

ff Modern web servers can handle enormous amounts of traffic

ff Multiple FreeSWITCH servers can post to a single CDR Server

ff Multiple web servers can be set up to allow failover and redundancy

It will automatically retry in the event of a failure, on the same web server or on another web 
server. Eventually, if all the retries on all the web servers fail, it will write to the disk so that the 
record can be processed later.

The recipe presented here will focus on the steps needed to get a web server set up to process 
incoming POST requests with XML CDR data.
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Getting ready
You will need an operational web server that you control. Most Linux/Unix and Windows systems 
can get an Apache web server installed. Detailed instructions on configuring a web server are 
beyond the scope of this book, but such instructions are available in numerous books and 
on the Internet. This recipe will assume a clean installation of the Apache web server, but the 
principles apply to other servers as well, such as Lighttpd and Nginx. For this example, we will 
assume that the Apache server is on the same machine as your FreeSWITCH installation.

How to do it...
Enable mod_xml_cdr on your server (refer to the Using XML CDRs recipe earlier in this 
chapter). Next, follow these steps:

1.	 Open conf/autoload_configs/xml_cdr.conf.xml and locate this line:
<!-- <param name="url"
       value="http://localhost/cdr_curl/post.php"/> -->

2.	 Change it to the following:
<param name="url" value="http://localhost/cgi-bin/cdr.pl"/>

3.	 Save the file and exit.

4.	 In your system's cgi-bin directory, create a new file named cdr.pl (the cgi-bin 
directory is usually at /usr/lib/cgi-bin, but it may be different on older systems). 
Add these lines to the file:
#!/usr/bin/perl
  use strict;
  use warnings;
  use CGI;
  $|++;
    my $q = CGI->new;
    my $raw_cdr = $q->param('cdr');
    open (FILEOUT,'>','/tmp/cdr.txt');
    print FILEOUT $raw_cdr;
  close(FILEOUT);
print $q->header();

5.	 Save the file and exit.

6.	 Make the file executable with this command:
chmod +x /usr/lib/cgi-bin/cdr.pl
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7.	 Log in to fs_cli and issue the reloadxml command. Also, use "reload mod_
xml_cdr.".

8.	 Make a test call. You should see the XML CDR contents in the /tmp/cdr.txt file.

How it works...
This is a simple Perl-based CGI script. All it does is pull the cdr parameter out of the POST 
data that is submitted by mod_xml_curl. Once it has this value (in the $raw_cdr variable)  
it dumps the CDR into a temporary file named /tmp/cdr.txt.

While this example is not particularly useful for production, it demonstrates the minimal 
steps required to get the POSTed CDR data into the system. If you are more comfortable with 
another scripting language, such as PHP, Python, or Ruby, you may just as easily process the 
CDRs with that language. Here is a simple version in PHP:

$raw_cdr = $_POST['cdr'];
$writefile = fopen('/tmp/dump.txt',"w");
fwrite($writefile, $raw_cdr);
fclose($writefile);

Once you have the data in your program, you can choose how to process it.

There's more...
A common practice with handling XML CDR data with a CGI script (or Fast CGI, or some other 
appropriate method to handle an HTTP POST request) is to process the data and then put it 
into a database. This section describes how to insert the CDR into the same database table 
that we created in the previous recipe, Inserting CDRs into a backend database.

Assume that you have a database named cdr, with a table also named cdr. You can use this 
modified cdr.pl script to insert the records right into the database.

You will need to use the cpan tool to install the DBI module and 
the DBD driver for your database. Common ones are DBD::mysql 
and DBD::PgPP. This example assumes DBD::PgPP, the Postgres 
"pure Perl" database driver.

The modified cdr.pl script is as follows:

#!/usr/bin/perl
  use strict;
  use warnings;
  use CGI;
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  use DBI;
  use Data::Dump qw(dump);
  $|++;
    my $q = CGI->new;
    my $raw_cdr = $q->param('cdr');
    my @all_fields = qw(caller_id_name caller_id_number  
    destination_number context start_stamp answer_stamp end_stamp  
    duration billsec hangup_cause uuid bleg_uuid
    accountcode read_codec write_codec);
      my @fields;
      my @values;
      foreach my $field (@all_fields) {
        next unless $raw_cdr =~ m/$field>(.*?)</;
        push @fields, $field;
        push @values, "'" . urldecode($1) . "'";
      }
      my $cdr_line;
      my $query = sprintf(
      "INSERT INTO %s (%s) VALUES (%s);",
      'cdr', join(',', @fields), join(',', @values)
      );
    my $db = DBI->connect('DBI:PgPP:dbname=cdr;host=localhost',  
    'postgres', 'postgres');
    $db->do($query);
  print $q->header();
  sub urldecode {
    my $url = shift;
    $url =~ s/%([a-fA-F0-9]{2,2})/chr(hex($1))/eg;
    return $url;
  }

This script is a simple example of inserting records into the database. The @all_fields 
array is a list of every field in the cdr table. We cycle through this list looking for the 
corresponding values. If we find one, we use urldecode and then add the field name to the 
@fields list, while its value goes into @values. From there, we create a query string using 
the @fields and @values arrays, and then insert them into the database.

See also
ff Refer to the Using XML CDRs and Inserting CDRs into a backend database recipes 

covered earlier in this chapter
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Using the event socket to handle CDRs
Sometimes, you need alternative ways to get CDR information. FreeSWITCH accommodates 
those needs with the powerful event socket. This recipe will describe how to receive CDR 
information about the event socket. You will find more useful information about the event 
socket interface in the following chapter.

Getting ready
This recipe relies on the event socket interface to FreeSWITCH. There are many different 
ways of connecting to the event socket. We will use a simple Perl script with the event socket 
library (ESL) to demonstrate the principles involved. Any language that supports ESL can use 
the techniques demonstrated here.

Follow the steps in the Setting up the event socket library recipe found in Chapter 4, External 
Control. Specifically, build the Perl module in order to run the example script.

How to do it...
Enter this script (or download it from the Packt Publishing website at http://www.
packtpub.com):

# Connect to event socket, listen for CHANNEL_HANGUP_COMPLETE events
# Uses event data to create custom CDRs
use strict;
use warnings;
use lib '/usr/src/freeswitch.git/libs/esl/perl';
use ESL;
my $host = "localhost";
my $port = "8021";
my $pass = "ClueCon";
my $con  = new ESL::ESLconnection($host, $port, $pass);
if ( ! $con ) {
        die "Unable to establish connection to FreeSWITCH.\n";
}
## Listen for events, filter in only CHANNEL_HANGUP_COMPLETE
$con->events('plain','all');
$con->filter('Event-Name','CHANNEL_HANGUP_COMPLETE');
print "Connected to FreeSWITCH $host:$port and waiting for
events...\n\n";
while (1) {
        my $e = $con->recvEvent();
        my @raw_data = split "\n",$e->serialize();
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        my %cdr;
        foreach my $item ( @raw_data ) {
                #print "$item\n";
                my ($header, $value) = split ': ', $item;
                $header =~ s/^variable_//;
                $cdr{$header} = $value;
        }
        # %cdr contains a complete list of channel variables
        print "New CDR: ";
        print $cdr{uuid} . ', ' . $cdr{direction} . ', ';
        print $cdr{answer_epoch} . ', ' . $cdr{end_epoch} . ', ';
        print $cdr{hangup_cause} . "\n";
}

Run this script and make a test call. An abbreviated CDR will be printed to the screen.  
Press Ctrl + C to exit the script.

How it works...
The basic principles involved are as follows:

ff Establish an ESL connection to FreeSWITCH

ff Subscribe to the CHANNEL_HANGUP_COMPLETE events using a filter

ff Process each event as an individual CDR

If you are more familiar with PHP, Python, or Ruby, you should be able to translate these 
concepts from our demonstration script.

There's more...
Here are a few tips to help you make the most of using the event socket for CDRs.

ESL considerations
Keep in mind that the script will need to be able to find the ESL library. Note this line:

use lib '/usr/src/freeswitch.git/libs/esl/perl';

This tells Perl to look in the specified directory when using additional modules. Without it,  
the use of the ESL directive will fail (alternatively, you can install the requisite ESL files in  
your system's site Perl directory).

Another important point is that this method will receive two events for a normal bridged call. 
The A leg and the B leg each generate a CHANNEL_HANGUP_COMPLETE event. The value in 
$cdr{direction} will be inbound for the A leg and outbound for the B leg.
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Finally, keep in mind that this line is blocking:

my $e = $con->recvEvent();

It will block the entire script until a new event arrives. See the Filtering events recipe in 
Chapter 4, External Control to see an example of the recvEventTimed() method that  
does not block.

Receiving XML CDRs
It is possible to receive the CDRs over the event socket in XML format. This is controlled on a 
per-call basis using the hangup_complete_with_xml channel variable. Set this variable to 
true in your dialplan as follows:

<action application="set" data="  
hangup_complete_with_xml=true"/>

See also
ff Refer to the Using XML CDRs recipe in this chapter for more information on  

XML-based CDRs

ff Refer to the Setting up the event socket library and Filtering events recipes  
in Chapter 4, External Control

Directly inputting CDRs into various 
databases in real time

Although various engineering reasons militate against it, many in the community felt the need 
for FreeSWITCH to directly write CDRs to database tables.

How to do it...
Various modules give you flexibility of SQL and NoSQL data storage:

ff mod_cdr_mongodb: This saves detailed CDR data in a MongoDB database,  
in a format similar to mod_json_cdr.

ff mod_odbc_cdr: This saves any channel variable from the call to an ODBC  
database of your choice.

ff mod_cdr_pg_csv : This logs call detail records (CDRs) directly to a PostgreSQL 
database, using the schema defined in the config file.
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ff mod_cdr_sqlite: This saves directly in a sqlite DB with the variables you specify in 
a template.

ff mod_json_cdr: This saves in the file or POSTs a JSON representation of the channel 
variable and call flow. It can post directly to CouchDB.

ff mod_radius_cdr: This is the RADIUS CDR module.

There's more...
As always, you can find plenty of information on the FreeSWITCH documentation site, starting 
off from http://freeswitch.org/confluence/display/FREESWITCH/CDR.

www.itbook.store/books/9781785280917

http://freeswitch.org/confluence/display/FREESWITCH/CDR
https://itbook.store/books/9781785280917


www.itbook.store/books/9781785280917

https://itbook.store/books/9781785280917


Chapter 4

61

4
External Control

In this chapter, we will cover the following recipes:

ff Getting familiar with the fs_cli interface

ff Setting up the event socket library

ff Establishing an inbound event socket connection

ff Establishing an outbound event socket connection

ff Using fs_ivrd to manage outbound connections

ff Filtering events

ff Launching a call with an inbound event socket connection

ff Using the ESL connection object for call control

ff Using the built-in web interface

Introduction
One of the most powerful features of FreeSWITCH is the ability to connect to it and control it 
from an external resource. This is made possible by the powerful FreeSWITCH event system 
and its connection to the outside world—the event socket. The event socket interface is a 
simple TCP-based connection that programmers can use to connect to the inner workings  
of a FreeSWITCH server. Furthermore, the developers of FreeSWITCH have also created the 
Event Socket Library (ESL), which is an abstraction layer meant to make programming with 
the event socket a lot simpler. The following languages are supported by ESL:

ff C/C++

ff Lua

ff Perl
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ff PHP

ff Python

ff Ruby

ff Java

ff Managed

ff TCL

Keep in mind that ESL is only an abstraction library. You can connect to the event socket with 
any socket-capable application, including telnet!

The tips in this chapter will focus mostly on using the event socket for some common use cases. 
The last tip, however, will introduce a particularly interesting way to connect to FreeSWITCH 
externally without using the event socket, that is, using the built-in web server that is enabled 
when you install mod_xml_rpc. Regardless of how you wish to control FreeSWITCH, it is highly 
recommended that you read the first recipe in this chapter, Getting familiar with the fs_cli 
interface, as this will serve you well in all aspects of working with FreeSWITCH.

Getting familiar with the fs_cli interface
The preferred method of connecting to the FreeSWITCH console is by using the fs_cli 
program, where fs_cli stands for FreeSWITCH Command-line Interface. This program 
comes with FreeSWITCH as part of the default installation, and works with Linux/Unix, Mac OS 
X, and Windows. What is less known about fs_cli is that it is an excellent example of an ESL 
program. Beyond that, anything that you can do with fs_cli can also be done with ESL and 
the event socket.

Keep in mind that when you are logged in to fs_cli, you can do 
anything that you can do on the FreeSWITCH console, including shutting 
down the system and disconnecting any calls. So, exercise appropriate 
caution when using fs_cli.

Naturally, the first step in mastering external control of FreeSWITCH is to become familiar with 
fs_cli. Indeed, it is one of the most important tools for interacting with your FreeSWITCH 
server.

If you're familiar with C programming, then you might appreciate the 
source code for fs_cli. It is found in libs/esl/fs_cli.c under 
the FreeSWITCH source directory.
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Getting ready
The only prerequisites for running fs_cli are access to your system's command line and 
a running FreeSWITCH server with mod_event_socket enabled (in the case of a default 
installation, mod_event_socket is always enabled). However, you may find it convenient to 
allow fs_cli to be launched from any directory on your system. In a Linux/Unix environment, 
you can add a symbolic link, such as this:

ln –s /usr/local/freeswitch/bin/fs_cli /usr/local/bin/fs_cli

Windows users can add the FreeSWITCH binary directory to their system's PATH variable.

How to do it...
Follow these steps:

1.	 Launch fs_cli by typing fs_cli (or in Windows, fs_cli.exe) and pressing Enter. 
A simple welcome screen will appear, as follows:

At this point, you are in fs_cli and can issue commands.
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2.	 Try a simple command; type /help and press Enter. You will see a number of 
commands that you can enter. All commands that begin with a forward slash (/)  
are specific to the fs_cli program (that is, do not go to the FreeSWITCH server).

3.	 You can also issue FreeSWITCH API commands. Type show api and press Enter.  
You will see quite a long list of available FreeSWITCH API commands.

4.	 Finally, type status and press Enter to see a brief status report about your 
FreeSWITCH server.

How it works...
The fs_cli emulates the behavior of the FreeSWITCH console, which is available when 
FreeSWITCH is run in the foreground, that is, without the –nc flag ("nc" stands for "no 
console"). However, technically speaking, fs_cli is merely an event socket program. 
Everything sent and received with fs_cli is done over the FreeSWITCH event socket. 
Therefore, just about everything that you can do from fs_cli can also be done with an  
event-socket-based program. Keep in mind that the "slash" commands are specific to  
fs_cli (that is, don't communicate with FreeSWITCH) and don't necessarily have an  
event socket equivalent, such as /help and /exit.

There are numerous ways to exit the fs_cli program. There are 
three equivalent "slash" commands, namely /exit, /quit, and 
/bye. You can also type three periods (...) and press Enter.  
On some systems, you can press Ctrl + D.

There's more...
Now that you are familiar with the general usage of fs_cli, it will be good to learn about 
some of the more useful commands.

Important commands for listing information
FreeSWITCH administration frequently means getting information from the server. Here is a list 
with brief descriptions of some commands that you will, no doubt, want to use. Feel free to try 
any of these on your system. They won't "break" anything! They will simply give you information.

Command Description
sofia status Display general SIP information
sofia status profile internal Display SIP information about the 

"internal" profile
help List the available commands (equivalent 

to show api)
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Command Description
show channels List individual call legs
show calls List bridged calls
/log 6 Set the log level to INFO (this prevents 

the numerous "debug" messages from 
being displayed)

/log 7 Set the log level to DEBUG (all the 
"debug" messages are displayed)

Useful command-line options
The fs_cli program has a number of command-line options. You can view them all by 
executing fs_cli –h (or fs_cli.exe –h in Windows). The following are descriptions  
of some of the more useful options:

Option Description
-x Execute a command and then exit.
-r Retry the connection until it succeeds (This is useful if you have just 

restarted FreeSWITCH. It will retry until FS completes startup and  
answers you).

-R This will automatically reconnect if unwillingly disconnected.
-u Include the uuid in the output (for example, which call uuid generated the 

output line).
-s Include the short uuid in the output (such as -u, uuid in shortened format).
-H Specify the FreeSWITCH server hostname or IP address to connect to.
-P Specify the FreeSWITCH server port to connect to.

The –x option is particularly useful for doing things from the command line and quick scripts. 
For example, try this command from your system's Command Prompt:

fs_cli –x "show channels"

You will receive the output from the show channels command and then come back to the 
command shell.

See the online documentation for fs_cli at http://freeswitch.
org/confluence/display/FREESWITCH/Command-
Line+Interface+fs_cli. It includes descriptions of all the fs_cli 
commands, as well as the handy .fs_cli_conf configuration file.
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Viewing events
Event-based programming can be a daunting challenge at first. As a brief introduction, it is 
good just to look at the events that come over the event socket. The fs_cli can do this very 
easily. At fs_cli, enter these two commands:

/log 0

/event plain all

Watch your screen for a few seconds, and you will eventually see some events come in. 
Whenever a call is handled on the system, there will be numerous events. There are events 
for changes in the call state, as well as new calls being set up and existing calls being torn 
down. If anything happens, then there will be at least periodic HEARTBEAT and RE_SCHEDULE 
events. Issue the /noevents command to stop seeing the events come through.

Remember that you can always use fs_cli as an additional monitor 
for events when you're interacting via ESL.

The rest of this chapter contains a great deal of information about event socket programming.

See also
ff Refer to the Filtering events recipe in this chapter

Setting up the event socket library
Most event socket programming is not usually done in C, but rather in one of the more common 
scripting languages, such as Perl, PHP, Python, Ruby, and so on. The Event Socket Library (ESL) 
is available as a tool for abstracting the nitty-gritty of socket interacting.

Getting ready
The most difficult part about using ESL with a scripting language is making sure that the 
necessary development libraries have been installed. This process varies among operating 
systems and languages. The instructions presented here are for Debian or Red Hat Linux 
variants. If your operating system is not among these, then it is recommended that you  
check with the website for your language and look for instructions on how to install the 
development libraries.
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Debian/Ubuntu
Debian variants (such as Ubuntu) generally use the apt package manager. The development 
libraries can be installed with these commands:

apt-get install libxml2-dev libpcre3-dev libcurl4-openssl-dev libgmp3-
dev libaspell-dev python-dev php5-dev libonig-dev libqdbm-dev libedit-dev 
libperl-dev

Red Hat/CentOS
Red Hat Linux variants (RHEL, CentOS, and Fedora) generally use the yum package manager. 
The development libraries can be installed with these commands:

yum install libxml2-devel pcre-devel bzip2-devel curl-devel gmp-devel 
aspell-devel libtermcap-devel gdbm-devel db4-devel libedit-devel php-
devel ruby-devel lua-devel perl-devel python-devel

How to do it...
All the libraries and tools must be installed before the initial configuration of the FreeSWITCH 
sources (that is, before compiling FS). If you add them later, you must ignore the error if 
config.cache does not exist:

cd /usr/src/freeswitch

rm config.cache

./config.status --recheck && ./config.status

Once you have the necessary library files installed for your language of choice, you are ready 
to do the actual build of ESL. Open a terminal and change the directory to your FreeSWITCH 
source directory. From there, execute these commands:

cd libs/esl

make

This will confirm that your system's ESL libraries are ready to be used. From here, you can 
install the library for your language of choice. In our example, we'll use Perl. Execute this 
command:

make perlmod-install

You can also use other languages using one of the following commands:

ff make phpmod-install

ff make pymod-install

ff make rubymod-install

Once the installation is complete, you can start using ESL in your scripts.
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How it works...
The make install commands will compile ESL for each language, and then install the 
necessary files on the language's include path. If you have a nonstandard installation,  
then you may have to install these files yourself. Once the files are installed, you can use  
one of the test scripts for your language. For example, you can change the directory to the 
perl/ subdirectory, and run the single_command.pl script for testing:

cd perl

perl single_command.pl status

The other languages have sample scripts as well. Run a sample script to confirm that your  
ESL is working. From here, you can move on to perform other ESL-related tasks.

If you get an error such as Can't call method "getBody" on an 
undefined value, then it means that FreeSWITCH is most likely 
not running. Make sure that FreeSWITCH is running and also 
that you can connect to it using fs_cli.

Establishing an inbound event socket 
connection

An inbound event socket connection means that an external script or program is connecting  
to a FreeSWITCH server. The connection is inbound from the server's point of view. In fact, 
every time you run the fs_cli utility, you are making an inbound event socket connection.

Getting ready
Be sure that you have installed ESL for your preferred programming language (see the 
previous recipe, Setting up the event socket library). From there on, you will just need a text 
editor, command-line access, and a phone registered to your system. The examples presented 
here are in Perl. However, the accompanying code samples have corresponding examples in 
Python as well.

How to do it...
The following code is a simple inbound connection that sends the status command to 
FreeSWITCH. Add the code as follows:

1.	 Open scripts/ib_api.pl in a text editor and add these lines:
#!/usr/bin/perl
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use strict;
use warnings;
require ESL;

my $host = "127.0.0.1";
my $port = "8021";
my $pass = "ClueCon";
my $con  = new ESL::ESLconnection($host, $port, $pass);
if (! $con) {
    die "Unable to establish connection to $host:$port\n";
}
my $cmd  = "status";
my $args = "";
my $e    = $con->api($cmd, $args);

if ( $e ) {
    print "Result of $cmd $args command:\n\n";
    print $e->getBody();
} else {
    die "No response to $cmd command.\n";
}

2.	 Save the file and exit.

3.	 Linux/Unix users can make the script executable with this command:
chmod +x ib_api.pl

4.	 Run the script and you will see the output of the status command:

Linux/Unix:./ib_api.pl

Windows: perl.exe ib_api.pl
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How it works...
The script basically does these four things:

ff Uses (that is, requires) the ESL library

ff Connects to FreeSWITCH with the ESL::ESLconnection object

ff Issues the status command with the connection object's api() method

ff Prints the results with the event object's getBody() method

Change the $cmd and $args values to issue a different command. For example, to see the 
results of sofia status profile internal you have to set the variables as follows:

my $cmd  = "sofia";
my $args = "status profile internal";

Note that we also perform some very basic error checking. First, we confirm that we are 
getting a valid ESL::ESLconnection object. Secondly, we make sure that we receive an 
event object as a result of the $con->api call.

There's more...
The ESL event object has a number of methods. One of the most important is the getBody() 
method. However, not all events actually have a body—they simply have a list of headers.  
To see what the event headers look like, use the serialize() method, as follows:

print $e->serialize();

This will print a list of headers and their corresponding values. Try it! You can also get an 
individual header value with the getHeader() method:

print $e->getHeader('Event-Name');

Keep in mind that we are using the api() method, which blocks (that is, it waits for a 
response). This keeps things simple, but there are times when blocking is not desired.  
The ESL::ESLconnection object also has a bgapi() method for executing API  
commands in a non-blocking manner. The bgapi() method is discussed further in the 
Launching a call with an inbound event socket connection recipe later in this chapter.

See also
ff Refer to the Setting up the event socket library and Launching a call with an  

inbound event socket connection recipes in this chapter
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Establishing an outbound event socket 
connection

An outbound event socket connection lets you control a call leg from a program that sits and 
waits for a TCP connection on a specific port. The dialplan socket application sends control of 
the call to the process listening on the specified TCP port. This recipe will guide you through 
the steps necessary to get a simple call control script up and running. You may find it easier 
to understand the information presented here if you are at least somewhat familiar with the 
concept of TCP sockets.

Getting ready
You will need a text editor and a telephone connected to FreeSWITCH, as well as access to 
the fs_cli for your system. You will also need to have ESL compiled and working for your 
scripting language of choice (see Setting up the event socket library earlier in this chapter). 
The language used in this is example is Perl. However, the principles apply to all ESL-enabled 
languages. When we are through, we will have a simple script that will listen for a socket 
connection from FreeSWITCH, answer the call, play a file, wait for a DTMF digit, and then exit.

How to do it...
Start by creating an extension to dial:

1.	 Open conf/dialplan/default/01_Custom.xml in a text editor, and add this 
simple extension:
  <extension name="outbound event socket">
    <condition field="destination_number" data="^(5004)$">
      <action application="socket" data="127.0.0.1:8040 async"/>
    </condition>
  </extension>

2.	 Save the file and exit. Issue the reloadxml command at fs_cli.

Now create the script.

3.	 Create the scripts/outbound_socket.pl file in a text editor, and add these lines:
#!/usr/bin/perl
require ESL;
use IO::Socket::INET;

my $ip = "127.0.0.1";
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my $sock = new IO::Socket::INET ( LocalHost => $ip, 
                                  LocalPort => '8040', 
                                  Proto => 'tcp', 
                                  Listen => 1, 
                                  Reuse => 1 );
die "Could not create socket: $!\n" unless $sock;

for(;;) {
    my $new_sock = $sock->accept();
    my $pid = fork();
    if ($pid) {
        print "New child pid $pid created...\n";
        close($new_sock);
        next;
    }

    my $fd = fileno($new_sock);
    my $con = new ESL::ESLconnection($fd);
    my $info = $con->getInfo();
    my $uuid = $info->getHeader("unique-id");

    printf "Connected call %s, from %s\n", $uuid, 
           $info->getHeader("caller-caller-id-number");

    $con->sendRecv("myevents $uuid");
    $con->setEventLock("1");
    $con->execute("answer");
    $con->execute("start_dtmf");
    $con->execute("playback", 
                  "ivr/ivr-welcome_to_freeswitch.wav");
    $con->execute("sleep","500");
    $con->execute("playback", 
                  "ivr/ivr-finished_pound_hash_key.wav");

    while($con->connected()) {
        my $e = $con->recvEvent();
        if ($e) {
            my $name = $e->getHeader("event-name");
            print "EVENT [$name]\n";
            if ($name eq "DTMF") {
                my $digit = $e->getHeader("dtmf-digit");
                my $duration = $e->getHeader("dtmf-duration");
                print "DTMF digit $digit ($duration)\n";
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                $con->execute("hangup");
            }
        }
    }
    print "BYE\n";
    close($new_sock);
}

4.	 Save the file and exit.

5.	 Linux/Unix users make the script executable with this command:
chmod +x outbound_socket.pl

6.	 Launch the script, as follows:

Linux/Unix: ./outbound_socket.pl

Windows: perl.exe outbound_socket.pl

7.	 The script is now waiting for a connection. Dial 5004 from your phone and watch the 
script's output to see what it is doing.

outbound_socket.pl controlling an incoming call
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How it works...
The script opens a socket listener on the localhost IP address of 127.0.0.1 and TCP port 
8040. When you call 5004, it executes the socket application, which literally sends the control 
of the call over to port 8040. The socket application has no idea what is listening on that port 
or even whether there is anything listening (try dialing 5004 without the script running).

Once the socket connection is opened, the Perl script "forks" a "child process" and continues 
to listen for further connections (if we didn't do this, then the script would exit after the first 
call it handled, and we would need to restart it after each call). If the fork is successful, then 
the new child process executes the code, starting with this line:

  my $fd = fileno($new_sock);

Most of these lines are fairly obvious, but a few of them warrant some explanation. Let's start 
with these lines:

  my $fd  = fileno($new_sock);

  my $con = new ESL::ESLconnection($fd);

The $fd variable is a file descriptor for the socket connection that is opened. It is passed to 
the new method of the ESL::ESLconnection object class to ensure that the $con object 
communicates with the correct TCP stream from FreeSWITCH. Once we have the connection 
object ($con), we can get some information from it, with these lines:

  my $info = $con->getInfo();

  my $uuid = $info->getHeader("unique-id");

The $info object is a representation of the initial burst of information that FreeSWITCH sends 
to the script when the socket connection is first established. The $uuid variable is populated 
with the call leg's UUID, which is found in the unique-id header of the $info object.

This line is important for outbound socket connections:

  $con->sendRecv("myevents $uuid");

By default, the socket will not get any event. The myevents command is a special event 
socket directive that tells FreeSWITCH that this particular socket session will receive events 
only for this particular call leg. In effect, it filters out all FreeSWITCH events that do not pertain 
to that call leg (ask for "event plain ALL" instead to subscribe to ALL events). The sendRecv 
method sends an event socket command and waits for a response. Note that sendRecv 
is very different from the execute method. The execute method executes a dialplan 
application, whereas the sendRecv command sends an event socket command.

Then we find this:

    $con->setEventLock("1");
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The setEventLock is required here to respect the order of execution, which—because we're 
using an async socket—would be random. In this way, we can have all the advantages of an 
async execution and maintain the sequence of instructions.

We use the execute method to play a few sound files, and then we enter this important 
while loop:

  while($con->connected()) {
    my $e = $con->recvEvent();
    if ($e) {
      ...
      }
    }
  }

This control structure checks two things: the status of the connection, and whether or not 
an event has been received. If the caller hangs up, then $con->connected() will evaluate 
to false and the script will exit. Also, if the user presses a touch tone, then the script will 
receive an event. The script is receiving other events as well, but we ignore anything that is  
not a DTMF key press.

Finally, if we receive an event, then the $e object is populated. Now we can check whether it is 
a DTMF event:

      my $name = $e->getHeader("event-name");
      print "EVENT [$name]\n";
       if ($name eq "DTMF") {

For each event received, we print the name of the event. However, we act only upon receiving 
a DTMF event. We display some information about the DTMF that was received, and then hang 
up the call.

There's more...
When the event socket connection is first made, FreeSWITCH sends an initial burst of 
information to the script. To see what this looks like, add the following line right after the 
printf line:

print $info->serialize();

Make the call to 5004 again, while watching the script's output. You will see that there is a 
tremendous amount of information that FreeSWITCH sends when the call is first established. 
Use the getHeader() method to retrieve a specific value from the $info object, as we did 
with unique-id.
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See also
ff For an alternative way of handling multiple connections, see the Using fs_ivrd to 

manage outbound connections recipe in this chapter, which discusses a special 
utility to make the job easier

ff Also refer to the Setting up the event socket library and Using the ESL connection 
object for call control recipes in this chapter

Using fs_ivrd to manage outbound 
connections

FreeSWITCH supplies a tool that offers a simplified means of creating interactive scripts. 
Unlike the socket application presented in the Using the ESL connection object for call control 
recipe in this chapter, using fs_ivrd relieves the programmer from having to maintain 
socket connections and handle child processes. The fs_ivrd tool provides a simple interface 
using the STDIN and STDOUT file handles. The example Perl script presented here uses the 
ESL::IVR Perl module supplied with ESL.

Getting ready
This example requires that the ESL Perl module be properly compiled and installed. See the 
Setting up the event socket library recipe earlier in this chapter. Also, it is helpful to have at 
least two terminal windows open so that you can view the script as well as fs_cli. Note that 
fs_ivrd is not supported in Windows environments.

How to do it...
First, add a new extension to your dialplan by following these steps:

1.	 Edit or create a new file in conf/dialplan/default/ named 01_event_
socket.xml.

2.	 Add this extension to the new file:
  <extension name="fs_ivrd Example">
    <condition field="destination_number" expression="^(9950)$">
      <action application="log"
              data="INFO Starting fs_ivrd example..."/>
      <action application="set" data=
         "ivr_path=/usr/local/freeswitch/scripts/ivrd-example.pl"
        />
      <action application="socket" data="127.0.0.1:9090 full"/>
    </condition>
  </extension>
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3.	 Save the file, exit, and then issue reloadxml or press F6 at the fs_cli prompt.

This extension will call your fs_ivrd script when the user dials 9950. Create the 
following script, or download it from the Packt Publishing website:

4.	 Create a new file in scripts/ called ivrd-example.pl.

5.	 Add the following lines to it:
#!/usr/bin/perl
use strict;
use warnings;
use ESL::IVR;

$| = 1;        # Turn off buffering
select STDERR; # Use this stream for console output
print "Starting ivrd-example.pl...\n\n";

my $con = new ESL::IVR;
my $uuid = $con->{_uuid};
my $dest = $con->getVar('destination_number');

$con->execute('answer');
$con->execute('sleep','500');
$con->playback('ivr/ivr-welcome_to_freeswitch.wav');
my $digits = "1";
my $prompt = 'file_string://voicemail/vm-to_exit.wav';
$prompt .= '!voicemail/vm-press.wav!digits/9.wav';
my $badinput = 'ivr/ivr-that_was_an_invalid_entry.wav';

while( $con->{_esl}->connected() ) {
  while ( $con->{_esl}->connected() && $digits != "9" ) {
    $con->playAndGetDigits(
          "1 1 3 5000 # $prompt $badinput mydigits \\d+");
    $digits = $con->getVar('mydigits');
    print "Received digit $digits\n";
    $con->playback("ivr/ivr-you_entered.wav");
    $con->execute("say","en number pronounced $digits");
    $con->execute("sleep","1000");
    if ( $digits == "9" ) {
      $con->playback('voicemail/vm-goodbye.wav');
    }
  }
  $con->execute("hangup");
}
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6.	 Save the file and exit.

7.	 Make the file executable with this command:
chmod +x ivrd-example.pl

8.	 Finally, we need to launch the fs_ivrd daemon with this command:
/usr/local/freeswitch/bin/fs_ivrd –h 127.0.0.1 –p 9090

9.	 Test the script by dialing 9950 and following the prompts.

How it works...
The fs_ivrd daemon runs constantly. In fact, you can run it in the background using any bg 
command that is appropriate for your platform. When it receives a socket connection from 
FreeSWITCH, it launches whatever script is specified in the ivr_path channel variable, and 
handles all inter-process communications. The ivrd-example.pl script simply establishes 
an ESL connection using the ESL::IVR module. The resulting $con object is a superset of 
the standard ESL connection object.

Once the connection is made, the actual call control is quite simple: we answer the call, 
pause, and then greet the caller. We then enter an outer while loop that checks whether  
or not the caller has hung up. The inner while loop checks for two conditions:

ff Whether or not the caller has hung up

ff Whether the caller has dialed 9

If either case is true, then the script exits. Otherwise, we simply ask the caller to press a digit, 
read it back, and loop around again.

Building custom, interactive call control scripts with ESL::IVR is all but simple. Just use the 
ivrd-example.pl script as a template. Note that your script can also use any other Perl 
modules available on your system, such as the DBI module, for database access.

See also
ff The Establishing an outbound event socket connection and Using the ESL connection 

object for call control recipes in this chapter

Filtering events
Events are the lifeblood of the FreeSWITCH eventing system. FreeSWITCH throws events for 
virtually everything that happens. This can overwhelm a program (and indeed, the programmer) 
with a flood of information. The solution is to use the FreeSWITCH event filter feature.
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Getting ready
Learning about filters is very simple. Initially, we will just use an fs_cli connected to a 
FreeSWITCH server. Later, we will look at some simple programming examples using ESL.  
You will need a phone connected to your FreeSWITCH server and two terminal windows  
open so that you can look at your program in one session and fs_cli in another.

How to do it...
Consider a simple example. Here, we will compare the event socket output before and after 
using a filter:

1.	 Launch fs_cli and connect to a running FreeSWITCH server. Issue these two 
commands at fs_cli:
/log 0
/event plain all

2.	 Wait a few seconds. No doubt, you'll see some events, and possibly a lot of events.

3.	 From your phone, dial *98 and wait for the system to answer. Then hang up.  
You should see many events.

4.	 Let's filter out everything except the channel hang up events. Issue this command:
/filter Event-Name CHANNEL_HANGUP_COMPLETE

5.	 Repeat the call to *98 and then hang up. You should see only a single event.

How it works...
FreeSWITCH uses a filter in system (as opposed to a filter out system) to filter 
events. If no filters have been set, then the event socket shows all events. The command 
we issued means, in effect, "Show all CHANNEL_HANGUP_COMPLETE events." You may set 
additional filters, like this for example:

/filter Event-Name CHANNEL_HANGUP_COMPLETE

/filter Event-Name CHANNEL_EXECUTE

These commands add two filters. In effect, they mean, "Show all CHANNEL_HANGUP_
COMPLETE events and all CHANNEL_EXECUTE events." There is no limit to the number  
of filters you may set on an event socket connection.

The fs_cli is useful for looking at simple events and performing some basic debugging,  
but in practice you will probably need to apply filters from within a program.
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Consider this functional Perl script:

use ESL;
my $con = new ESL::ESLconnection("localhost", "8021", "ClueCon");
if ( !$con ) {
  die "Unable to connect to FreeSWITCH server; $!\n";
}
$con->events('plain','all');
while (1) {
my $e = $con->recvEventTimed(10);
next unless $e;
print $e->serialize();
}

Although not particularly useful, this Perl script demonstrates how to connect to the 
FreeSWITCH event socket using ESL and listening for events. When it receives an event,  
it will print it on the console. The $con variable is the ESL connection object, and $e is an 
event object. Run this script on your system, and you will see that it dumps every event.  
Let's add a filter and a few strategic print statements. Modify the script as follows:

$con->events('plain','all');
$con->filter('Event-Name','CHANNEL_STATE');
while (1) {
  my $e = $con->recvEventTimed(10);
  next unless $e;
  my $chan_state = $e->getHeader('Channel-State');
  my $chan_call_state = $e->getHeader('Channel-Call-State');
  my $chan_leg = $e->getHeader('Call-Direction') eq 'inbound' ? 'A' :  
  'B';
  my $chan_name = $e->getHeader('Channel-Name');
  print "($chan_leg Leg) $chan_state / $chan_call_state  
  [$chan_name]\n";
}

First, note that we add a filter on CHANNEL_STATE events. This will let us receive events only 
when there is a state change on a channel, for example, when a channel goes from "ringing" 
to "answered." We also create several Perl variables, as follows:

Variable Purpose
$chan_state Channel state (NEW, INIT, and ROUTING)
$chan_call_state Call state (RINGING, ACTIVE, HANGUP, and DOWN)
$chan_leg Call leg (A leg or B leg)
$chan_name Channel name
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Run this script on your system, and then make a call from one phone to another. Watch the 
output while the target phone is ringing, then when the target phone is answered, and finally 
when one of the phones hangs up. Observing this process will help you grasp the types of 
events that FreeSWITCH throws as calls traverse the system.

See also
ff The Setting up the event socket library recipe earlier in this chapter

Launching a call with an inbound event 
socket connection

Using an inbound event socket connection to launch a call is a common requirement for some 
applications, such as outbound IVRs. In a case such as this, it is advantageous to handle 
the generation of calls in a nonblocking manner using the ESL connection object's bgapi() 
method. This recipe discusses how to use the bgapi() method with the corresponding 
"Background-Job UUID."

Getting ready
Be sure that you have configured ESL for your system and that you have followed the  
steps in the Establishing an inbound event socket connection recipe earlier in this chapter. 
The examples here are written in Perl, but the principles apply to any ESL-enabled language.  
Of course, you will need a text editor and a SIP phone registered to your FreeSWITCH server  
in order to test this example.

How to do it...
Start by creating the new script:

1.	 Create the scripts/ib_bgapi.pl file in a text editor, and add these lines:
#!/usr/bin/perl
use strict;
use warnings;
require ESL;

my $host = "127.0.0.1";
my $port = "8021";
my $pass = "ClueCon";
my $con  = new ESL::ESLconnection($host, $port, $pass);
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if (! $con) { die "Unable to establish connection to 
$host:$port\n"; }
$con->events("plain","all");

my $target = shift;
my $uuid = $con->api("create_uuid")->getBody();
my $res =
  $con->bgapi("originate","{origination_uuid=$uuid}$target 9664");
my $job_uuid = $res->getHeader("Job-UUID");
print "Call to $target has Job-UUID of $job_uuid and call uuid of 
$uuid \n";

my $stay_connected = 1;
while ( $stay_connected ) {
  my $e = $con->recvEventTimed(30);
  if ( $e ) {
    my $ev_name = $e->getHeader("Event-Name");
    if ( $ev_name eq 'BACKGROUND_JOB' ) {
      my $call_result = $e->getBody();
      print "Result of call to $target was $call_result\n\n";
    } elsif ( $ev_name eq 'DTMF' ) {
      my $digit = $e->getHeader("DTMF-Digit");
      print "Received DTMF digit: $digit\n";
      if ( $digit =~ m/\D/ ) {
        print "Exiting...\n";
        $stay_connected = 0;
      }
    } else {
      # Some other event
    }
  } else {
    # do other things while waiting for events...
  }
}
$con->api("uuid_kill",$uuid);

2.	 Save the file and exit.

3.	 Linux/Unix users make the script executable with this command:
chmod +x ib_bgapi.pl

4.	 Launch the script, as follows:

Linux/Unix: ./ib_bgapi.pl user/1002

Windows: perl.exe ib_bgapi.pl user/1002

www.itbook.store/books/9781785280917

https://itbook.store/books/9781785280917


Chapter 4

83

Be sure to replace 1002 with the extension number for your phone. Your phone 
should ring; when you answer, you will hear some music. Watch the console as  
you answer the call and press the DTMF digits. Press * or # to exit the script.

How it works...
This script takes a dial string as an argument on the command line, and then makes a bgapi 
(background API) origination attempt to that dial string. Whenever bgapi is called, there will 
always be a "Job-UUID" response. The bgapi command is discussed a little later. We use the 
uuid_create method of the ESL connection object to create a UUID that we can assign to our 
outbound call leg. Normally, FreeSWITCH will assign a UUID value to each call leg. However, by 
preselecting the UUID value, we save ourselves some extra (unnecessary) parsing of events to 
try to recover the UUID.

At this point, we generate the outbound call, print some information about the call, and then 
enter our main event loop. Note these two lines:

my $stay_connected = 1;
while ( $stay_connected ) {

The $stay_connected variable is simply a flag, and as long as it evaluates to true, the event 
loop keeps running. The script then polls the event socket for events:

  my $e = $con->recvEventTimed(30);

The argument to recvEventTimed is the number of milliseconds to block while waiting for 
an event. The $e variable will evaluate to false if there are no events waiting:

  if ( $e ) {
    ...
  } else {
    # do other things while waiting for events...
  }
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The else block of this if statement can be used to let your code handle other operations 
while you are waiting for events to come. If an event does come in, we have this if block for 
checking the type of that event:

    my $ev_name = $e->getHeader("Event-Name");
    if ( $ev_name eq 'BACKGROUND_JOB' ) {
      my $call_result = $e->getBody();
      print "Result of call to $target was $call_result\n\n";
    } elsif ( $ev_name eq 'DTMF' ) {
      my $digit = $e->getHeader("DTMF-Digit");
      print "Received DTMF digit: $digit\n";
      if ( $digit =~ m/\D/ ) {
        print "Exiting...\n";
        $stay_connected = 0;
      }
    } else {
      # Some other event
    }

We examine the event name for BACKGROUND_JOB or DTMF in the if and elsif checks 
(highlighted). We also have a bare else block, where we can handle events of other types,  
if we choose to do so. When we receive our BACKGROUND_JOB event, we display the result of 
the originate command. The rest of the script is spent in the event loop waiting for DTMF 
events. When a DTMF event comes in, we display the key that the caller pressed. If the key is 
not a digit (* or #), then the script will exit, otherwise the event loop will keep on processing. 
Note that we explicitly hang up the channel using the uuid_kill command.

There's more...
You can learn more about the mechanics of using bgapi by issuing some simple commands 
at fs_cli. Open an fs_cli session and try these commands:

/log 0

bgapi status

You will see a reply, something similar to the following:

+OK Job-UUID: f719939a-ffa1-49ca-a8b6-7f080febc2dc
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You can manually watch for BACKGROUND_JOB events with this fs_cli command:

/event plain background_job

Now issue another bgapi status command. In addition to the reply, you will also see the 
actual BACKGROUND_JOB event. An abbreviated event looks like this:

Event-Name: [BACKGROUND_JOB]
...
Job-UUID: [f719939a-ffa1-49ca-a8b6-7f080febc2dc]
Job-Command: [status]
Content-Length: [177]
Content-Length: 177

UP 0 years, 0 days, 0 hours, 15 minutes, 2 seconds, 165 milliseconds, 
501 microseconds
1 session(s) since startup
0 session(s) 0/90
1000 session(s) max
min idle cpu 0.00/100.00

The status command returns the BACKGROUND_JOB event immediately. However, the 
originate command will not return a BACKGROUND_JOB event until the originate API 
has succeeded (the call is answered) or failed (busy, no answer, and so on). Try it with  
your phone:

bgapi originate user/1000 9664

Replace 1000 with the extension number of your phone. You will get the +OK reply immediately, 
but you won't get the BACKGROUND_JOB event until the call is answered or goes to voicemail. 
One thing to keep in mind is that by default, if the far end sends back early media, then the 
originate is considered successful, even if that early media is a busy signal, special information 
tone (SIT), or a ring with no answer. To avoid considering early media as a success, use this:

bgapi originate {ignore_early_media=true}user/1000 9664

See also
ff The Setting up the event socket library, Establishing an inbound event socket 

connection, and Getting familiar with the fs_cli interface recipes in this chapter
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Using the ESL connection object for call 
control

Sometimes, it is convenient (or even necessary) to control a call from a script. In such cases, 
you can use the ESL connection object to control a call from an ESL script. This recipe will 
demonstrate a simple script that will answer a call, play a prompt, accept some caller input, 
and then route the call based on that input. With these basic concepts demonstrated, you will 
be able to write custom scripts that meet your specific needs.

Getting ready
This recipe is an example of an "outbound" connection from the FreeSWITCH dialplan to  
an ESL script. As such, you should have read the Establishing an outbound event socket 
connection recipe earlier in this chapter. This recipe will require at least two terminal  
windows: one for fs_cli and one for the script. Although the script presented here is  
written in Perl, the connection object applies to all ESL-enabled languages.

How to do it...
First, add a new extension to your dialplan by following these steps:

1.	 Edit or create a new file in conf/dialplan/default/ named 02_event_
socket.xml.

2.	 Add this extension to the new file:
  <extension name="ESL Con Obj Example">
    <condition field="destination_number" expression="^(9960)$">
      <action application="log"
              data="INFO Starting ESL connection object example"/>
      <action application="socket"
              data="127.0.0.1:8040 sync full"/>
    </condition>
  </extension>

3.	 Save the file, exit, and then issue reloadxml at the fs_cli prompt.

This extension will call your event socket script when the user dials 9960. Create the 
following script, or download it from the Packt Publishing website.
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4.	 Create a new file called con_obj_example.pl in scripts/.

5.	 Add these lines to it:
#!/usr/bin/perl
use strict;
use warnings;
require ESL;
use IO::Socket::INET;
my $ip = "127.0.0.1";
my $sock = new IO::Socket::INET ( LocalHost => $ip, 
                                  LocalPort => '8040', 
                                  Proto => 'tcp', 
                                  Listen => 1, 
                                  Reuse => 1 );
die "Could not create socket: $!\n" unless $sock;
for(;;) {
  my $new_sock = $sock->accept();
  my $pid = fork();
  if ($pid > 0) {
    close($new_sock);
    next;
  } elsif ( $pid == 0 ) {
    my $host = $new_sock->sockhost();
    my $fd = fileno($new_sock);
    my $con = new ESL::ESLconnection($fd);
    my $info = $con->getInfo();
    my $uuid = $info->getHeader("unique-id");
    my $prompt = 'file_string://voicemail/vm-to_exit.wav';
    $prompt .= '!voicemail/vm-press.wav!digits/9.wav';
    $prompt .= ' ivr/ivr-that_was_an_invalid_entry.wav';
    $con->execute("answer");
    $con->execute("playback",  
                  "ivr/ivr-welcome_to_freeswitch.wav");
    my $digits = "1";
    while($con->connected()) {
      while ( $digits != "9" && $con->connected() ) {
        $con->execute("play_and_get_digits",  
                      "1 1 3 5000 # $prompt mydigits \\d+");
        my $e = $con->api("uuid_getvar","$uuid mydigits");
        $digits = $e->getBody();

www.itbook.store/books/9781785280917

https://itbook.store/books/9781785280917


External Control

88

        print "Received digit $digits\n";
        $con->execute("sleep","1000");
        $con->execute("playback","ivr/ivr-you_entered.wav");
        $con->execute("say","en number pronounced $digits");
        $con->execute("sleep","1000");
        if ( $digits == "9" ) {
          $con->execute("playback","voicemail/vm-goodbye.wav");
        }
      }
      $con->execute("hangup");
    }
    close($new_sock);
    exit(0);
  } else {
    die "Error forking new process: $!\n";
  }
}

6.	 Save the file and exit.

7.	 Make the script executable:
chmod +x con_obj_example.pl

8.	 Run the script with this command:
./con_obj_example.pl

9.	 Once the script is running, dial 9960 and follow the voice prompts.

How it works...
This script runs constantly—a daemon in Unix parlance—and waits for socket connections 
from FreeSWITCH on port 8040. As soon as a socket connection is established, the script 
forks a child process. This child process then creates the $con ESL connection object. Once 
the $con object is created, we say a greeting to the caller and then enter the outer while 
loop. This loop causes the script to exit if the caller hangs up. The inner while loop uses the 
play_and_get_digits application to actually play the prompt and collect the digits from 
the caller. We then read back to the caller the digit they pressed using the say application. 
Finally, if the caller dialed the digit 9, then we say "Goodbye" and hang up. The child process 
then exits, but the parent (the daemon) is still running. You can have multiple simultaneous 
calls existing, and each one of them will get its own process.
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You can use this script as a template to create your own interactive dialogs. All the caller 
interactions take place within the inner while loop, so focus your attention there. Also, if you 
plan to play various sound prompts to the caller, be sure to refer to the Use phrase macros to 
build sound prompts recipe in Chapter 5, PBX Functionality.

See also
ff The Setting up the event socket library, Establishing an outbound event socket 

connection, and Using fs_ivrd to manage outbound connections recipes in  
this chapter

Using the built-in web interface
FreeSWITCH comes with a built-in web interface. It is made available by mod_xml_rpc,  
which is not loaded by default and, therefore, goes unnoticed sometimes.

Getting ready
You will need to make sure that mod_xml_rpc is built and loaded before trying to connect 
to the web interface. The mod_xml_rpc module is already compiled when using the Visual 
Studio 2008/2010 solution files with the FreeSWITCH source code. Linux and Mac OS X users 
will need to enable mod_xml_rpc in their FreeSWITCH installation. Follow these steps:

1.	 Open modules.conf in the FreeSWITCH source directory, and remove the comment 
from the #xml_int/mod_xml_rpc line. Save the file and exit.

2.	 Compile mod_xml_rpc with this command:
make mod_xml_rpc-install

3.	 If you want to have mod_xml_rpc load automatically each time you start 
FreeSWITCH, then edit conf/autoload_configs/modules.conf.xml  
and uncomment this line:
<!-- <load module=" mod_xml_rpc "/> -->

Save the file and exit.

4.	 If you do not want to load mod_xml_rpc automatically, then simply load it with this 
command from fs_cli:
load mod_xml_rpc

Once mod_xml_rpc is loaded, you are ready to start using the web interface.
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How to do it...
Follow these steps:

1.	 Connect to the web interface with a browser by opening a URL such as  
http://x.x.x.x:8080, where x.x.x.x is the IP address of your  
FreeSWITCH server.

By default, the interface uses port 8080. When the server asks for a username  
and password, enter "freeswitch" and "works" respectively. You will see a simple  
page displayed, like this:

The files listed here are for the included Adobe Flash-based media player, which lets 
you listen to audio sound files right from your browser, and are not of particular note.

2.	 Let's send a simple command to FreeSWITCH. The syntax for sending commands is 
http://x.x.x.x:8080/webapi/cmd?args, where x.x.x.x is the IP address of 
FreeSWITCH, cmd is the API command to send, and args represents any arguments 
to the command. Assuming that your IP address is 127.0.0.1, you can get the status 
of FreeSWITCH with the URL as http://127.0.0.1:8080/webapi/status.
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3.	 To view calls in progress, use http://127.0.0.1:8080/webapi/show?channels.

Any API command that you can type at fs_cli can also be sent via the web interface.

How it works...
FreeSWITCH features a clever design that anticipates the possibility that commands 
have been issued from the web-based interface instead of the console or fs_cli utility. 
Commands that are "web aware" will respond with HTML-formatted data. For example, the 
help command will respond with formatted output. Try sending this command from your 
browser: http://127.0.0.1:8080/webapi/help. Notice the table and alternating 
background colors. The help command is one of these web-aware commands. Note that 
not all commands are like this, so if you issue a command and the response does not seem 
formatted properly, then try the api or txtapi alternatives (the api method uses some 
formatting for the output, whereas txtapi simply does a raw text dump for the output). 
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To get a better idea of the differences, issue each of these commands and see the response: 
http://127.0.0.1:8080/api/help and http://127.0.0.1:8080/txtapi/help. 
You have a number of options for sending and receiving data using the built-in web server.

Be sure to change the default username and password before putting 
this feature into production. Look for the auth-user and auth-pass 
parameters in conf/autoload_configs/xml_rpc.conf.xml.

There's more...
The built-in web server is used for several interesting features. The "XML RPC" in mod_xml_rpc.

This recipe focused entirely on using a web browser to communicate with FreeSWITCH. 
However, it is entirely possible to use traditional XML RPC clients in various programming 
languages. If you are familiar with XML RPC programming, then we recommend that you visit 
http://wiki.freeswitch.org/wiki/Freeswitch_XML-RPC to see some specific 
examples on using XML RPC. There is even an example for Drupal!

See also
ff The Accessing voicemail recipe in Chapter 5, PBX Functionality
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5
PBX Functionality

In this chapter, we will cover the following recipes:

ff Creating users

ff Accessing voicemail

ff The company directory

ff Using phrase macros to build sound prompts

ff Creating XML IVR menus

ff Music on hold

ff Creating conferences

ff Sending faxes

ff Receiving faxes

ff Basic text-to-speech with mod_flite

ff Advanced text-to-speech with mod_tts_commandline

ff Recording calls

Introduction
FreeSWITCH supports many features that are typically associated with a telephone system or 
Private Branch Exchange (PBX). The recipes in this chapter focus on a number of functions 
that are widely used in PBX systems, such as voicemail, faxing, call recording, IVR menus,  
and more.
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Creating users
Each FreeSWITCH system has a directory of users. In most cases, a user is literally a person who 
has a telephone. When we say that we are "adding a user," we mean that we are creating a user 
account in the directory of users. Each "user" has the SIP credentials for making outbound calls, 
as well as a PIN number for accessing the voicemail. In fact, you cannot have a voicemail box 
without having a corresponding user account.

Getting ready
As a minimum, you will need a terminal window to issue commands to your system. To use the 
add_user script, your system will need to have Perl installed.

How to do it...
There are two basic steps for creating a user. The steps are as follows:

1.	 Add the user to the directory.

2.	 Add the corresponding extension number to the dialplan.

Let's assume we have a fresh installation of FreeSWITCH, which means that we have user ID's 
1000 through 1019 (the Local_Extension in conf/dialplan/default.xml is set to 
route calls to these ID's).

Let's add a new user with these steps:

1.	 Open your terminal and perform cd to your FreeSWITCH source directory.

2.	 Linux users have to issue this command: ./scripts/perl/add_user 1020.

3.	 Windows users have to use perl scripts\perl\add_user 1020.
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You should see some output confirming that the new user has been created. Next, we need to 
modify the Local_Extension in the default context. Perform these steps:

1.	 Open conf/dialplan/default.xml in a text editor.

2.	 Locate the dialplan extension named Local_Extension.

3.	 Change the expression from ^(10[01][0-9])$ to ^(10[012][0-9])$.

4.	 Save the file and exit. Then issue a reloadxml command from fs_cli.

User 1020 is now ready for use. To test, have a SIP phone register as user "1020" and then 
call it from another phone.

How it works...
The add_user script simply adds a new file to the directory. In the case of user ID 1020,  
it created the conf/directory/default/1020.xml file. Once that file is created (and  
you have issued a reloadxml command from fs_cli), a SIP phone can register as that  
user and make calls. However, the dialplan isn't set up to handle someone dialing 1020  
by default, which is why we had to update the Local_Extension in default.xml.  
The default <condition> for Local_Extension is as follows:

<condition field="destination_number"
      expression="^(10[01][0-9])$">

This pattern matches 1000, 1001, and so on up to 1019. We changed the <condition> line 
to read as follows:

<condition field="destination_number"
      expression="^(10[012][0-9])$">

Our new pattern adds 1020, 1021, and so on up to 1029 to Local_Extension. But why  
the entire range instead of just "1020"? There is nothing preventing you from doing this,  
but it is quite common to add users in blocks and not one at a time. If you prefer, you can  
use the following pattern:

<condition field="destination_number"
      expression="^(10[01][0-9]|1020)$">
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However, as mentioned, this means that if you want to add user 1021, then you will need to 
come back and change this regular expression pattern again.

There's more...
The add_user script has many useful features (run add_user --help to see the full set of 
options). One such feature is adding a block of users. For example, if we want to complete the 
block of 1020, 1021, and so on up to 1029, we need not run the script for each user to add. 
Instead, we specify a range with the --users argument:

./scripts/perl/add_user --users=1020-1029

Note that the add_user script will not overwrite existing users.

See also
ff Refer to the Configuring an SIP phone to register with FreeSWITCH recipe in  

Chapter 2, Connecting Telephones and Service Providers

Accessing voicemail
Voicemail is a very common feature of PBX systems. This recipe shows how to access the 
voicemail for a user.

Getting ready
You will need at least one telephone registered on your system, though it is easier to test 
with two or more phones. Have another user call your registered extension. The destination 
extension should let the call go to the voicemail. Also, the caller should leave a message and 
hang up. Once a message is left, the target phone can access the voicemail.

How to do it...
The simplest way to access the voicemail is to simply dial *98 from the phone. The system 
will ask for the user ID and then the password (by default, the password is the same as the 
user ID). Let's assume that user 1001 is checking their voicemail messages. Then they would 
follow these steps:

1.	 Dial *98 and wait for the system to answer.

2.	 Enter the ID and press # (1001# in our example).

3.	 Enter the password and press # (1001# in our example).
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4.	 New messages are automatically played.

Simply hang up the phone to exit from voicemail.

How it works...
The voicemail system is really nothing more than a specific type of IVR system. In this case, 
the user can log in and has several choices. The main menu options are as follows:

Key Action
1 Listen to new messages
2 Listen to saved messages
5 Advanced options
# Exit the voicemail

While listening to new or saved messages, the user has these options:

Key Action
1 Listen to the message from the beginning
2 Save the message
4 Rewind
6 Fast forward
7 Delete
0 Reread from the beginning
* Skip the envelope information (date/time and sender)

After the message has been played, the options are as follows:

Key Action
1 Listen to the message from the beginning
2 Save the message
7 Delete

Here are the advanced menu options:

Key Action
1 Record a greeting
2 Choose a greeting
3 Record the name
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Key Action
6 Change the password
0 Main menu 

Most users will find the FreeSWITCH voicemail system very familiar, as it is modeled on the 
voicemail systems used by most of the major mobile phone carriers.

See also
ff Refer to the Configuring a SIP phone to register with FreeSWITCH recipe in Chapter 2, 

Connecting Telephones and Service Providers

The company directory
Most companies have some form of dial-by-name directory. This recipe will show you how to 
add a company directory to your FreeSWITCH installation using mod_directory.

How to do it...
Enable and build mod_directory by following these steps:

1.	 Open modules.conf in your FreeSWITCH source directory.

2.	 Uncomment this line:

#applications/mod_directory

3.	 Save the file and exit.

4.	 Linux/Unix users have to issue the proper make command:

make mod_directory-install

Allow mod_directory to be loaded when FreeSWITCH starts:

1.	 Open conf/autoload_configs/modules.conf.xml in a text editor.

2.	 Uncomment this line:
<!--<load module="mod_directory"/>-->

3.	 Save the file and exit.

4.	 Restart FreeSWITCH.

5.	 Start fs_cli and issue the command show application.
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You should see an application named directory in the list. Next, we need to add a simple 
dialplan extension that will let us test:

1.	 Open conf/dialplan/default/01_Custom.xml in a text editor.

2.	 Add these lines:
<include>
  <extension name="dial by name">
    <condition field="destination_number"
           expression="^(1411)$">
      <action application="directory"
          data="default ${domain}"/>
    </condition>
  </extension>
</include>

3.	 Save the file and exit.

The last thing to do is to make sure that at least one user in the directory has the 
directory_full_name or effective_caller_id_name variable set in the directory 
entry. For now, we will set directory_full_name on user 1000:

1.	 Open conf/directory/default/1000.xml in a text editor.

2.	 Add this line to the <variables> section:
<variable name="directory_full_name" value="Ada Lovelace"/>

3.	 Save the file and exit. Issue the reloadxml command from fs_cli.
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At this point, you are ready to test. Dial 1411 from your phone and listen to the options.  
For this test, dial the numbers corresponding to the first three letters of the last name  
(568 for "L-O-V"), and listen to the results.

How it works...
The directory application gets its information from the user directory. Using the 
directory_full_name variable, we specify the first and last names for the purpose of 
searching the user directory. You can also use the effective_caller_id_name variable if 
you wish. This variable controls the caller ID name displayed when the user makes outbound 
calls. If, for any reason, this is not the name you want searched, then use directory_
full_name, which will always supersede effective_caller_id_name for dial-by-name 
searches.

Most likely, in your initial test, you did not hear someone's voice saying, "Ada Lovelace." 
Instead, you heard the system spelling out the name. This is how mod_directory handles 
the case where the user has not recorded their name. If you log in to the voicemail system and 
record a name prompt (option 5 from the VM main menu and then option 3), then the system 
will use that recording instead of spelling out the user's name.

There's more...
You have two parameters that you can set for each user to customize the behavior of the 
directory application:

ff directory-visible: Set this parameter to false to prevent the user from being 
included in directory searches. This is useful for keeping the directory from being 
cluttered with entries such as "hallway phone", and "guest phone." It is also handy  
for keeping VIP extensions from being included.

ff directory-exten-visible: Set this parameter to false to prevent the 
directory application from voicing the target user's extension number (some 
operations prefer to keep extension numbers from being public).

Both of the preceding parameters default to true, so keep that in mind when you are building 
your user database.

See also
ff Refer to the Accessing voicemail and Creating users recipes in this chapter
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Using phrase macros to build sound prompts
It is frequently necessary to piece together smaller sound recordings to create longer ones. 
The FreeSWITCH phrase macro system is a very powerful tool for not only piecing together 
individual sound files, but also for adding a bit of logic so that your phrases are more than 
mere amalgamations of individual sound prompts.

In this recipe we will create a simple dialplan extension that will read back to the caller their 
extension number. We will use a phrase macro to handle the work of stitching together sound 
prompts and utilizing the say application to read back the caller's extension number.

Getting ready
You will need a text editor and at least one phone for this recipe. It is also recommended that 
you review the phrase file for your language. For English, this can be found in the FreeSWITCH 
source directory in docs/phrase/phrase_en.xml. The phrase_en.xml file contains  
both the filename of each prerecorded prompt as well as the actual spoken text. Prompts  
are divided into sections such as voicemail, ivr, currency, digits, and time. By far, 
the largest collection of sound prompts is in the ivr section.

How to do it...
Start by adding the extension to the dialplan:

1.	 Create or edit the conf/dialplan/default/02_Custom.xml file.

2.	 Add these lines:
<include>
<extension name="who's calling">
  <condition field="destination_number"
    expression="^(1500)$">
    <action application="answer"/>
    <action application="playback"
            data="phrase:whoami:${username}"/>
    <action application="hangup"/>
  </condition>
</extension>
</include>
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3.	 Save the file and exit.

Next, create the phrase macro:

1.	 Create or edit the conf/lang/en/ivr/custom.xml file.

2.	 Add the following lines:
<macro name="whoami">
  <input pattern="^(\d+)$">
    <match>
      <action function="play-file"
              data="ivr/ivr-extension_number.wav"/>
      <action function="sleep"
              data="100"/>
      <action function="say"
              data="$1"
              method="pronounced"
              type="number"/>
    </match>
    <nomatch>
      <action function="play-file"
         data="ivr/ivr-that_was_an_invalid_entry.wav"/>
    </nomatch>
  </input>
</macro>

3.	 Save and exit.

4.	 Issue the reloadxml command at fs_cli.
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Test the new extension by dialing 1500.

How it works...
The key to this operation is this line in the dialplan extension we created:

      <action application="playback"
        data="phrase:whoami:${username}"/>

The playback application normally takes a filename as an argument. However, if the 
argument begins with phrase:, then playback will look for a phrase macro instead of an 
audio file. In this case, we call a phrase macro named whoami and give it the argument of 
${username}, which contains the ID of the calling user. At this point, the phrase macro  
takes control.

The argument passed to the macro gets handled with this line:

    <input pattern="^(\d+)$">

The input value is matched against the regular expression in the pattern option.  
If ${username} contains only digits, our pattern will capture those into the $1 special variable. 
After the regular expression we have a bit of logic to help us decide what to do. If the input 
matches the pattern, then the actions inside the <match> node will be executed. If there is not 
a match because ${username} contains something else (spaces, letters, and so on) besides 
digits, then the actions inside the <nomatch> node will be executed (we simply play a message 
that says "That was an invalid entry").

You have probably figured out by now that the actions contained inside match (or nomatch) 
are executed sequentially. You can also see that phrase macros are not limited to playing 
individual sound files. You can call functions such as sleep and say to customize the way  
the prompt is played to the user. You can even call a text-to-speech application, if you have 
one installed.
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There's more...
It is possible to execute many different operations using phrase macros. In fact, the 
FreeSWITCH voicemail system uses phrase macros extensively. Look through conf/lang/
en/vm/sounds.xml to see all the different phrase macros that mod_voicemail uses. 
Keep in mind that you can use any of the phrase macros in sounds.xml as long as you call 
them with the correct arguments.

One particularly useful phrase macro is called voicemail_record_file_check. Consider 
the case where you have a custom application where you are asking the caller to record a 
prompt. This macro allows you to have a custom phrase that says something like "press 1 to 
listen, press 2 to save, press 3 to rerecord." As an example, you can use play_and_get_
digits to tell the caller what to do:

<action application="play_and_get_digits" data="1 1 3 4000 # 
phrase:voicemail_record_file_check:1:2:3 ivr/ivr-invalid_entry.wav 
selection \d"/>

The preceding action will tell the caller: "Press 1 to listen to the recording; press 2 to save the 
recording; press 3 to rerecord." It will then capture the input into the ${selection} channel 
variable. Note that the options voiced to the caller are customizable with this macro. Calling 
the macro with phrase:voicemail_record_file_check:4:5:6 will tell the caller: 
"Press 4 to listen to the recording; press 5 to save the recording; press 6 to rerecord".

A good way to learn more about phrase macros is to enter at the FreeSWITCH console fsctl 
loglevel 7, then enter console loglevel 7, and watch the console while calling to the 
voicemail. You will be able to see in real time how FreeSWITCH parses the phrase macro and 
performs the actions therein.

See also
ff Refer to the Basic text-to-speech with mod_flite and Advanced text-to-speech with 

mod_tts_commandline recipes later in this chapter
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Creating XML IVR menus
FreeSWITCH has a simple but flexible system for building IVR-style menus for caller interaction. 
In this recipe, we will create a custom menu that is very similar to the demo IVR that is part of 
the default FreeSWITCH configuration.

Getting ready
You will need a text editor and a telephone for testing. We will create a custom menu for 
extension number 5002, and use a generic greeting that comes with the FreeSWITCH sound 
files. To use the dial-by-name directory, be sure to complete the The company directory 
recipe covered earlier in this chapter.

How to do it...
Create the menu definition by following these steps:

1.	 Open a text editor and create a new file called conf/ivr_menus/custom_ivr.xml.

2.	 Add these lines:
<menu name="simple_greeting"
      greet-long="ivr/ivr-generic_greeting.wav"
      greet-short="ivr/ivr-generic_greeting.wav"
      invalid-sound="ivr/ivr-that_was_an_invalid_entry.wav"
      exit-sound="voicemail/vm-goodbye.wav"
      confirm-attempts="3"
      timeout="10000"
      inter-digit-timeout="2000"
      max-failures="3"
      max-timeouts="3"
      digit-len="4">
  <entry action="menu-exec-app" digits="9"
         param="directory default ${domain}"/>
  <entry action="menu-exec-app"
         digits="/^(10[01][0-9])$/"
         param="transfer $1 XML features"/>
  <entry action="menu-top" digits="*"/>
</menu>

3.	 Save the file.
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Next, we create a simple extension that lets us test our menu:

1.	 Open conf/dialplan/default/03_Custom.xml in a text editor.

2.	 Add this extension:
<include>
<extension name="sample greeting">
  <!-- Good morning 12am to 11:59 -->
  <condition hour="0-11" break="never">
    <action application="set" data="tod=morning"
        inline="true"/>
  </condition>
  <!-- Good afternoon 12pm to 17:59 -->
  <condition hour="12-17" break="never">
    <action application="set" data="tod=afternoon"
       inline="true"/>
  </condition>
  <!-- Good morning 18:00 to 23:59 -->
  <condition hour="18-23" break="never">
    <action application="set" data="tod=evening"
      inline="true"/>
  </condition>
  <condition field="destination_number"
      expression="^5002$">
    <action application="answer"/>
    <action application="sleep" data="1000"/>
    <action application="playback"
            data="ivr/ivr-good_${tod}.wav"/>
    <action application="sleep" data="500"/>
    <action application="ivr" data="simple_greeting"/>
  </condition>
</extension>

</include>

3.	 Save and exit.

4.	 Issue the reloadxml command at fs_cli.

Test your new extension by dialing 5002.
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There's more...
Often, it is beneficial to use a phrase macro with an IVR menu. For example, in our dialplan, 
we manually compute the time of day and voice it to the caller. We then launch the ivr 
application with our generic greeting. This is not optimal for a few reasons. First off, having a 
simple .wav file for our greeting means that we are stuck with whatever is recorded. Secondly, 
using a phrase macro gives us a bit more flexibility in how we use our macros. Let's improve 
our menu by using a phrase macro. Our goals will be as follows:

ff Add "To repeat these options, press *" to our greeting

ff Skip "Good morning/afternoon/evening" when repeating our options

ff Clean up the readability of our dialplan

As you will see, using a phrase macro accomplishes all of this, and more. First, let's clean up 
the dialplan. We open conf/dialplan/default/03_Custom.xml and edit our extension 
so that it has only these lines:

<extension name="sample greeting">
  <condition field="destination_number" expression="^5002$">
    <action application="answer"/>
    <action application="ivr" data="simple_greeting"/>
  </condition>
</extension>

Now let's create a separate extension that always gets executed at the beginning of the 
dialplan. Normally you do this at the beginning of the default context. Open conf/
dialplan/default.xml and add this as the first extension in the default context:

<extension name="set_tod" continue="true">
  <!-- Good morning 12am to 11:59 -->
  <condition hour="0-11" break="never">
    <action application="set"
            data="tod=morning"
            inline="true"/>
  </condition>
  <!-- Good afternoon 12pm to 17:59 -->
  <condition hour="12-17" break="never">
    <action application="set"
            data="tod=afternoon"
            inline="true"/>
  </condition>
  <!-- Good morning 18:00 to 23:59 -->
  <condition hour="18-23" break="never">
    <action application="set"
            data="tod=evening"
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            inline="true"/>
  </condition>
</extension>

Adding this extension to the dialplan allows all calls in the default context to have the tod 
channel variable set. This in turn lets any extension (or script, or phrase macro) get access to 
tod, not just our custom extension.

Next, we open conf/ivr_menus/custom_ivr.xml and change these two lines to use  
our macro:

    greet-long="phrase:simple_greeting:long"
    greet-short="phrase:simple_greeting:short"

Finally, add the new macro. It's a bit long; however, it accomplishes a lot for us. Open conf/
lang/en/ivr/custom.xml and add a new macro:

<macro name="simple_greeting">
  <input pattern="^(long)$" break-on-match="true">
    <match>
      <action function="sleep"
              data="1000"/>
      <action function="play-file"
              data="ivr/ivr-good_${tod}.wav"/>
      <action function="sleep"
              data="500"/>
      <action function="play-file"
              data="ivr/ivr-generic_greeting.wav"/>
      <action function="sleep"
              data="500"/>
      <action function="play-file"
              data="ivr/ivr-to_repeat_these_options.wav"/>
      <action function="sleep"
              data="250"/>
      <action function="play-file"
              data="voicemail/vm-press.wav"/>
      <action function="sleep"
              data="100"/>
      <action function="play-file"
              data="ascii/42.wav"/>
    </match>
  </input>
  <input pattern="^(short)$">
    <match>
      <action function="play-file"
              data="ivr/ivr-generic_greeting.wav"/>
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      <action function="sleep"
              data="500"/>
      <action function="play-file"
              data="ivr/ivr-to_repeat_these_options.wav"/>
      <action function="sleep"
              data="250"/>
      <action function="play-file"
              data="voicemail/vm-press.wav"/>
      <action function="sleep"
              data="100"/>
      <action function="play-file"
              data="ascii/42.wav"/>
    </match>
  </input>
</macro>

After saving all the files, issue the reloadxml command from fs_cli. Try calling 5002, 
and this time, press * to repeat the options. Upon repetition, the system will not say "Good 
morning", and so on. In addition to being more functional, the phrase macro method also 
makes it easier for you to make changes to the greeting that you play to your callers.

See also
ff Refer to the The company directory recipe earlier in this chapter

Music on hold
Music on hold (MOH) is a common feature of modern phone systems. FreeSWITCH allows you 
to have many different MOH selections.

Getting ready
You will need some music files if you wish to customize the MOH. Also, if you have MP3 files 
that you would like to use for MOH, then you will need a utility that can convert them into 
standard WAV files. A freely available tool can be found at http://www.mpg123.de.  
You will also need a text editor and a telephone connected to your FreeSWITCH server.

How to do it...
The first thing to do is to install the default MOH files from the FreeSWITCH download site. 
Linux/Unix users can issue the following command from the FreeSWITCH source directory:

make cd-moh-install
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On Windows, the sound files are installed automatically as part of the MSVC solution file.

Once the sounds are installed, you can confirm that they work by dialing 9664 (no  reloadxml 
or system restart is necessary).

How it works...
The make command you just issued installs the MOH files in 8 kHz, 16 kHz, 32 kHz, and 
48 kHz sampling rates (the Windows build automatically installs these as well). The default 
dialplan extension number 9664 (9MOH) will play the default music on hold files to the caller. 
The music is supplied by the mod_local_stream module. It is possible to customize the 
MOH on your system by adding other streams.

There's more...
Let's create an alternative MOH source and test it out. If you have a few MP3 or WAV files that 
you would like to use, then be ready to copy them to a new subdirectory on the FreeSWITCH 
server. In this example, we will download a few pieces of royalty-free music, along with an 
attribution sound clip, and then we will convert them into WAV files using the mpg123 tool.

The mpg123 tool can also be built automatically as part of mod_shout:

cd /usr/src/freeswitch

make mod_shout-install

/usr/src/freeswitch/libs/mpg123-1.13.2/src/mpg123

We start by creating a directory for our new sounds. In Linux/Unix, do this:

mkdir /usr/local/freeswitch/sounds/music/custom1

cd /usr/local/freeswitch/sounds/music/custom1

Copy your MP3 files to this directory. Alternatively, you can download some royalty-free music 
such as the following:

wget http://incompetech.com/music/royalty-free/mp3-royaltyfree/Skye%20
Cuillin.mp3 
wget http://incompetech.com/music/royalty-free/mp3-royaltyfree/
Parisian.mp3
wget http://incompetech.com/music/royalty-free/mp3-royaltyfree/
credits%20sounder.mp3
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Now convert your MP3 files into WAV files and remove the MP3 files:

for i in *.mp3; do mpg123 -m -r 8000 -w "`basename "$i" .mp3`".wav "$i"; 
done

rm *.mp3

You now have a set of 8 kHz WAV files that can be used as a music source. The next step is to 
create the actual file stream.

Open conf/autoload_configs/local_stream.conf.xml and add this new  
stream definition:

<directory name="custom1" path="$${sounds_dir}/music/custom1">
  <param name="rate" value="8000"/>
  <param name="shuffle" value="true"/>
  <param name="channels" value="1"/>
  <param name="interval" value="20"/>
  <param name="timer-name" value="soft"/>
</directory>

Save the file and close. Open conf/dialplan/default/04_Custom.xml and add  
this extension:

<include>
<extension name="hold_music">
  <condition field="destination_number" expression="^96642$">
    <action application="playback" data="${custom1}"/>
  </condition>
</extension>
</include>
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Save the file and close. Finally, we need to create the ${custom1} global variable that can be 
used wherever we want to play our custom MOH. Open conf/vars.xml in a text editor and 
add this line:

<X-PRE-PROCESS cmd="set"  
data="custom1=local_stream://custom1"/>

Save the file and exit.

Because we changed an X-PRE_PROCESS directive, 'which is read/executed once at 
FreeSWITCH startup, we need to restart FreeSWITCH.

When the module is reloaded, issue this command:

show_local_stream

Among the local streams listed, there should be your new custom1 stream:

custom1,/usr/local/freeswitch/sounds/music/custom1

Now you can dial 96642, and you should hear your new music source.

Now you can also use ${custom1} as the source of MOH and as a sound for ringback and 
transfer ringback operations.

Creating conferences
FreeSWITCH excels at letting multiple parties connect to a single conference "room" where 
they can all hear and speak to one another. The default configuration has some examples of 
conferences that we can use as a starting point. Keep in mind that in FreeSWITCH, there is no 
need explicitly to "create" a conference room—the conference dialplan application does all 
the work for us.

Getting ready
In addition to a text editor, you will need at least two phones for testing, and preferably 
another person or two so that you can verify that your conference rooms are working.  
Also, make sure that you have the default FreeSWITCH configuration installed and the  
sound and music files added.

How to do it...
Follow these steps:

1.	 Dial 3000 and listen. You will be put into a standard conference room, and if you are 
the only person there, then after the announcement, you will hear hold music.
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2.	 Dial 3000 from another phone, and both persons are in the same conference.

3.	 Add more parties by dialing 3000 from other phones.

How it works...
The default FreeSWITCH dialplan has conferences predefined and ready for use (note that the 
conferences are not actually "active" until at least one person calls). The default dialplan has 
these conference extensions:

Extension range Conference audio sampling rate
3000-3099 8 kHz
3100-3199 16 kHz
3200-3299 32 kHz
3300-3399 48 kHz

The sampling rate is the maximum sampling rate for all members. As an example, if you have 
a phone that uses G.722 at 16 kHz and you call 3000, then your audio will be resampled to 8 
kHz before being sent out to the other participants. If you have multiple parties whose phones 
support wide-band audio, then be sure to use a conference room with a higher sampling rate 
to take advantage of the higher quality audio.

If you simply need to have several people, each hearing all others, in a conference room,  
then use the conference extensions in the default dialplan, and modify the extension  
numbers as needed.

There's more...
Conferences support many features, such as caller controls and moderators. Read on for 
information about using these other features.

Caller controls
There are many controls that you can give to callers in a conference. The most common ones 
are as follows:

ff Talk volume: This is the volume of the audio that the caller sends (that is, gain control).

ff Listen volume: This is the volume of the audio that the caller hears.

ff Energy threshold: This is the minimum energy level of the audio from the caller 
required in order to be considered talking. Raising the energy level will cut down on 
background noise when a participant is in a noisy environment. For example, when 
FreeSWITCH "thinks" a person is not talking (sound from their microphone is below 
the threshold) they are muted, and are automatically unmuted when their sound  
goes above the threshold.
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To see the default controls, open conf/autoload_configs/conference.conf.xml and 
locate the following section:

<caller-controls>
  <group name="default">
    <control action="mute" digits="0"/>
    <control action="deaf mute" digits="*"/>
    <control action="energy up" digits="9"/>
    <control action="energy equ" digits="8"/>
    <control action="energy dn" digits="7"/>
    <control action="vol talk up" digits="3"/>
    <control action="vol talk zero" digits="2"/>
    <control action="vol talk dn" digits="1"/>
    <control action="vol listen up" digits="6"/>
    <control action="vol listen zero" digits="5"/>
    <control action="vol listen dn" digits="4"/>
    <control action="hangup" digits="#"/>
  </group>
</caller-controls>

The name of this call control group is "default" and it cannot be modified (a "default" group 
is always needed). However, you can define your own custom caller controls groups and then 
add them to your conference definitions. Each conference is defined by a "profile" in the 
<profiles> section of conference.conf.xml. Let's say you created a caller control  
group named "custom." To set the conference profile to use those controls, just add this 
parameter to the profile:

<param name="caller-controls" value="custom"/>

Now, all callers who join this conference will have your custom caller controls.
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Conference moderator and PIN
Some conferences have the concept of a "moderator" who has some level of control over the 
conference. In FreeSWITCH, the conference moderator is simply a conference member whose 
absence or presence can optionally affect the conference. There are primarily two ways by 
which the moderator affects the conference:

ff All members wait until the moderator arrives
ff The conference ends (all members are disconnected) when the moderator leaves

A moderator is created by modifying the conference application's argument in the dialplan. 
Compare these two lines:

<action application="conference" data="$1@default"/>
<action application="conference"
   data="$1@default+flags{moderator}"/>

Notice that we add +flags{moderator} to set the caller that comes from the extension that 
contains this action application as the moderator. You can have multiple flags separated by 
commas, for example, +flags{moderator,mute}.

Adding a PIN to the conference is simple as well. The same two conferences in the preceding 
code can have a PIN added, such as follows:

<action application="conference" data="$1@default+1234"/>
<action application="conference"
        data="$1@default+1234+flags{moderator}"/>

In both cases, the conference PIN is "1234," and the caller will not be allowed into the 
conference until they enter the correct PIN number.

Sending faxes
FreeSWITCH can transmit electronic documents to a destination fax machine. Only TIFF 
documents can be transmitted. However, it is possible to convert a number of formats (for 
example, PDF) to TIFF. This recipe will discuss some common and freely available tools.

Getting ready
In simple terms, sending a fax requires only a few things such as a TIFF file, gateway, and 
destination fax machine (for testing purposes, you can download a sample TIFF file from 
http://files.freeswitch.org/txfax-sample.tiff). Put your TIFF file into a known 
location. For our example, we will use /tmp/txfax-sample.tiff. The gateway is your 
connection to the PSTN, and the fax machine will simply be the device that answers your 
outbound phone call. Even, if you do not have a gateway or a fax machine handy, you can 
still try out this recipe by having FreeSWITCH send the fax to itself using the fax_receive 
extension in the default dialplan.

www.itbook.store/books/9781785280917

http://files.freeswitch.org/txfax-sample.tiff
https://itbook.store/books/9781785280917


PBX Functionality

116

How to do it...
In most cases involving fax transmissions, you will be making an outbound call to a fax machine 
(the A leg) and then execute the txfax dialplan application. Execute these steps to send a 
simple fax transmission to FreeSWITCH itself:

1.	 Launch fs_cli.

2.	 Execute this command:

originate loopback/9178 &txfax(/tmp/txfax-sample.tiff)

Watch the console. Eventually, the fax transmission should be successfully completed.

How it works...
The originate command creates the outbound leg of the fax call. In this example, we are 
literally making a call within our own FreeSWITCH server using the loopback channel. The 
target extension is "9178." In a real example, we would, of course, be dialing an external 
number. For example, we can do this:

originate sofia/gateway/my_gw/18005551212 &txfax(/tmp/txfax-sample.tiff)

In any case, once the A leg is answered, the txfax application is called. If all goes well,  
the fax transmission should go through (in the case of transmission to 9178 to ourselves,  
a received file will be found in /tmp/rxfax.tiff).

There's more...
Faxing can be tricky. The following sections offer some helpful suggestions.

Diagnosing fax issues
Fax problems are quite common, especially in a VoIP environment. When a fax transmission 
fails for some reason, it helps to know what happened. If you are using XML CDRs, you will 
automatically have a number of channel variables populated on every fax call, whether 
successful or not. Here is a sample:

<fax_v17_disabled>0</fax_v17_disabled>
<fax_ecm_requested>1</fax_ecm_requested>
<fax_filename>/tmp/txfax.tif</fax_filename>
<fax_success>1</fax_success>
<fax_result_code>0</fax_result_code>
<fax_result_text>OK</fax_result_text>
<fax_ecm_used>on</fax_ecm_used>
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<fax_local_station_id>SpanDSP%20Fax%20Ident</fax_local_station_id>
<fax_remote_station_id>SpanDSP%20Fax%20Ident</fax_remote_station_id>
<fax_document_transferred_pages>1</fax_document_transferred_pages>
<fax_document_total_pages>1</fax_document_total_pages>
<fax_image_resolution>8031x3850</fax_image_resolution>
<fax_image_size>24111</fax_image_size>
<fax_bad_rows>0</fax_bad_rows>
<fax_transfer_rate>14400</fax_transfer_rate>

Use this information to diagnose your fax issues. The <fax_result_text> is probably the 
most useful. It will report a description of error, if any.

Helpful software
There are numerous Free and Open Source Software (FOSS) packages that are available  
for help with handling PDF and TIFF files. Members of the FreeSWITCH community have  
had particular success with Ghostscript, which lets you convert to and from PDF and 
PostScript files.

A common operation is to convert a PDF file to TIFF before transmitting via fax. The following 
command will make a standard-resolution TIFF file from the source PDF:

gs -q -sDEVICE=tiffg3 -r204x98 -dBATCH -dPDFFitPage -dNOPAUSE  
-sOutputFile=out.tif in.pdf

For a higher resolution file, use this command:

gs -q -sDEVICE=tiffg3 -r204x196 -dBATCH -dPDFFitPage -dNOPAUSE  
-sOutputFile=out.tif in.pdf

All commands have been taken from http://www.soft-switch.org/spandsp_faq/
ar01s14.html, a guide to converting .pdf to .tiff to be faxed. This page is written by 
Steve Underwood, the godfather of fax and DSP.

The Ghost Script executable (gs) is suited quite well for shell scripting.

See also
ff Refer to the Receiving faxes recipe in this chapter

ff Refer to the Using XML CDRs recipe in Chapter 3, Processing Call Detail Records
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Receiving faxes
The preceding recipe described the process of sending a fax. This recipe will describe the 
process of receiving a fax.

Getting ready
In its simplest format, receiving a fax only requires that you route an incoming call to an 
extension, which then executes the rxfax dialplan application. As with the previous recipe, we 
can use our FreeSWITCH server to be both the sender and the receiver of the fax. For our test, 
we will use the same file we used in the Sending faxes recipe—/tmp/txfax-sample.tiff.

How to do it...
Execute these steps to carry out a simple fax transmission and reception:

1.	 Launch fs_cli.

2.	 Execute this command:
originate loopback/9178 &txfax(/tmp/txfax-sample.tiff)

Watch the console. Eventually, the fax transmission should be successfully completed.

How it works...
We use the fax_receive extension in the default dialplan to receive the fax transmission. 
This extension is quite simple:

<extension name="fax_receive">
  <condition field="destination_number" expression="^9178$">
    <action application="answer" />
    <action application="playback" data="silence_stream://2000"/>
    <action application="rxfax"  
data="$${temp_dir}/rxfax.tif"/>
    <action application="hangup"/>
  </condition>
</extension>
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The received fax is stored in /tmp/rxfax.tif. Feel free to modify the filename.  
For example, if you have a faxes/ subdirectory off the main freeswitch install  
directory you can do this:

<action application="rxfax" data="${base_dir}/faxes/${uuid}.tif"/>

Each incoming fax will have a unique filename and be stored in the faxes/ subdirectory.

There's more...
Receiving faxes is usually a part of a larger process or system. The following sections have 
some useful information about handling inbound fax transmissions.

Detecting inbound faxes
Let's say you have an automated attendant that answers all incoming calls and lets callers 
choose their destinations. Occasionally, a fax call may come in. Instead of disconnecting,  
you can detect the fax and send the call to a fax handler extension for processing.

This can be accomplished with the spandsp_start_fax_detect application. Consider this 
dialplan xml additional file:

<include>
  <extension name="fax detect test">
    <condition field="destination_number" expression="123456">
      <action application="answer"/>
      <action application="set"
           data="transfer_ringback=${us-ring}"/>}"/>}"/>}"/>
      <action application="spandsp_start_fax_detect"
           data="transfer '9178 XML default' 6"/>
      <action application="bridge" data="loopback/9664"/>
    </condition>
  </extension>
</include>
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Here, we tell the system to transfer to an extension (9178 for receiving fax) if we detect a fax 
tone, otherwise the bridge occurs normally (in this case, to a loopback that plays hold music, 
but you can perform a regular bridge to a phone). You can adapt this principle for use in your 
own dialplans. Simply create a "fax handler" extension and use spandsp_start_fax_
handler to transfer to the handler extension whenever a fax machine is detected.

Now the system will automatically handle incoming faxes.

Processing a received fax
Once a fax is received, it rarely needs to just sit somewhere in a directory. Usually, you will 
want a person to see it transmitted. A common practice is to convert the TIFF file into a PDF 
file and then email the PDF file as an attachment. Also, users appreciate it when caller ID 
information can be placed in the subject line of the e-mail. Keep in mind that this will work 
only if you have a properly configured mail transport agent MTA)—for example, sendmail  
or postfix—on your system. Create a fax receive extension, as follows:

<include>
<extension name="fax_receive">
  <condition field="destination_number"
             expression="^9999$">
    <action application="set"
            data="api_hangup_hook=system  
                  ${base_dir}/scripts/emailfax.sh 
                  ${fax_remote_station_id}  
                  ${base_dir}/faxes/${uuid}.tif"/>
    <action application="playback" data="silence_stream://2000"/>
    <action application="rxfax"
            data="${base_dir}/faxes/${uuid}.tif"/>
    <action application="hangup"/>
  </condition>
</extension> 
</include>

Note that we've added an api_hangup_hook to the fax receive extension. This will cause  
the emailfax.sh script to be executed. Create this script in a text editor and add these  
lines (you will need to install ghostscript and libtiff-tools for tiff2pdf):

#!/bin/bash
#
# $1 is the calling fax machine's station ID
# $2 is filename
tiff2pdf -t "Fax from $1" -f -o $2.pdf $2
mutt -n -f /dev/null -F ~/.muttrc -a $2.pdf -s "Fax from $1"  
user@domain.com < /dev/null
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Be sure to replace user@domain.com with a valid e-mail address. Finally, create the.
muttrc file in the home directory and add the following lines:

set from = 'sender@domain'
set realname = 'Organization or business name'
set folder = /dev/null

Received faxes will now be sent to the specified user with the calling fax machine's station ID.

Many scripting languages, such as Perl, Python, and Ruby, have libraries 
that allow you to send e-mails. Feel free to try replacing emailfax.sh 
with your own e-mail sender script.

See also
ff Refer to the Sending faxes recipe in this chapter

Basic text-to-speech with mod_flite
Sometimes, you need a fast, simple, and free text-to-speech implementation for some quick 
testing. In FreeSWITCH, you can use mod_flite for simple TTS testing. While it is not suitable 
for professional production environments, it meets the criteria of being quick, easy, and free.

Getting ready
Other than a phone and a text editor, there is not much that you need. Keep in mind that on 
Windows, the mod_flite module is prebuilt, but it is not automatically loaded. On Linux/Unix 
systems, you will need to perform a few steps, as follows.

How to do it...
If you are using Windows, then skip to step 3. If you have Linux/Unix, then follow these steps 
to enable mod_flite:

1.	 Open modules.conf in the FreeSWITCH source, and uncomment the line with 
#asr_tts/mod_flite by removing the # sign at the beginning of the line.

2.	 Save and exit. Then run the install command:
make mod_flite-install
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3.	 If you wish to have mod_flite load by default when FreeSWITCH starts, then open 
conf/autoload_configs/modules.conf.xml and uncomment this line:

<!-- <load module="mod_flite"/> -->

4.	 Save and exit. In fs_cli, issue the load mod_flite command.

At this point, mod_flite is active and ready to be used. Now let's add a simple dialplan 
extension that will let us test it:

1.	 Open conf/dialplan/default/066_Custom.xml and add this extension:
<include>
<extension name="mod_flite example">
  <condition field="destination_number"
     expression="^(5008)">
    <action application="answer"/>
    <action application="sleep" data="500"/>
    <action application="speak"
        data="flite|kal|Hello world. This is a FreeSWITCH test."/>
  </condition>
</extension>
</include>

2.	 Save the file and exit. Issue the reloadxml command from fs_cli.

You are now ready to test. Simply dial 5008 and listen to the voice.

How it works...
FreeSWITCH has a speak dialplan application that is used to access any installed TTS engine. 
It accepts pipe-delimited arguments. Note the line we used in the dialplan:

<action application="speak"
        data="flite|kal|Hello world. This is a FreeSWITCH  
test."/>

The first argument is the name of the TTS engine, the second argument is the name of the 
voice for the TTS engine, and the last argument is the actual text to be spoken. The sleep 
app is optional. However, in many cases, it is necessary to pause momentarily after answering 
a call to allow the media streams to be established.

Don't confuse the speak dialplan application (TTS) with the say application! 
The say application is convenient for saying things such as dates, times, 
numbers, currency, and so on using prerecorded sound prompts.

Flite comes with four voices that you can try out: awb, kal, rms, and slt.
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See also
ff Refer to the Advanced text-to-speech with mod_tts_commandline recipe in this chapter

Advanced text-to-speech with  
mod_tts_commandline

Text-to-speech (TTS) applications vary in their quality, complexity, and price. However, one 
thing that most high-end TTS engines have in common is a command-line interface for 
generating audio from text. FreeSWITCH's mod_tts_commandline module is designed to 
take advantage of this. While it is completely possible to create a separate module for each 
engine—and indeed this is the case for mod_flite—it is convenient to utilize a more generic 
interface that is somewhat agnostic to the exact TTS engine being used.

In this recipe, we will install mod_tts_commandline and then download a free TTS engine 
that has a command-line interface for use with it. We will also show command-line examples 
of using some commercial TTS engines.

Getting ready
This recipe has a few prerequisites. The most important one is to get a copy of the 
freeswitch-contrib git repository. The "contrib repo," as community members call it, 
contains a number of items given back freely to the FreeSWITCH community as a whole. One 
of these will assist us with installing the Pico TTS engine, which is part of the Android project. 
The basic command required to clone the git repository is:

git clone https://freeswitch.org/stash/scm/fs/freeswitch-contrib.git  
freeswitch-contrib

The subdirectory created will simply be referred to as freeswitch-contrib.

How to do it...
If you are using Windows, then skip to step 3. If you have Linux/Unix, then follow these steps 
to enable mod_tts_commandline:

1.	 Open modules.conf in the FreeSWITCH source, and uncomment the line with 
#asr_tts/mod_tts_commandline by removing the # sign at the beginning.

2.	 Save and exit. Next, run the install command:
make mod_tts_commandline-install

www.itbook.store/books/9781785280917

https://itbook.store/books/9781785280917


PBX Functionality

124

3.	 If you wish to have mod_tts_commandline load by default when FreeSWITCH 
starts, then open conf/autoload_configs/modules.conf.xml and 
uncomment this line:
<!-- <load module="mod_tts_commandline"/> -->

4.	 Save the file and close.

5.	 Open conf/autoload_configs/tts_commandline.xml and locate the line 
beginning with <param name="command"…. Change it to the following:
<param name="command" value="pico2wave -w ${file} ${text}  
"/>

6.	 For Windows, use pico2wave.exe instead of pico2wave.

7.	 Save the file and exit.

At this point, mod_tts_commandline is compiled and almost ready for use. Next, let's get 
the pico TTS engine. Debian/Ubuntu users have to follow these steps:

1.	 Enable the "non-free" repositories (add non-free at the end of each line in /etc/
apt/sources.list).

2.	 As root, (or sudo) execute this line:
apt-get install libttspico-utils

Windows users will need to locate the appropriate solution file in freeswitch-contrib\
grmt\mod_tts_commandline for Windows:

ff mod_tts_commandline.2008.vcproj for Visual Studio 2008

ff mod_tts_commandline.2010.vcxproj for Visual Studio 2010

Open the appropriate solution file and then rebuild.

You will now have the pico2wave (or pico2wave.exe in Windows) command-line utility.
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Now let's add a simple dialplan extension that will let us use tts_commandline and pico:

1.	 Create conf/dialplan/default/07_Custom.xml. Add this extension to it:
<extension name="mod_tts_commandline example">
  <condition field="destination_number"
     expression="^(5010)">
    <action application="answer"/>
    <action application="sleep" data="2000"/>
    <action application="speak"
data="tts_commandline|pico|Hello  
    world. This is a FreeSWITCH test."/>
  </condition>
</extension>

2.	 Save the file and exit. Issue the reloadxml command from fs_cli.

3.	 At fs_cli, issue the load mod_tts_commandline command.

You are now ready to test. Simply dial 5010 and listen to the voice.

How it works...
There are several elements that interact to make this work. We first built mod_tts_
commandline (just as we would in any other FreeSWITCH module), and then configured it to 
use pico2wave or pico2wave.exe. Next, we installed the pico2wave command-line utility. 
Finally, we created a simple dialplan to call the speak application and read our text.

Pico can read text in German, English (GB and US), Spanish, French, and Italian. You can 
specify in mod_tts_commandline.conf.xml which language to use, adding an option  
like "-l en-GB," as shown here:

<param name="command" value="pico2wave -l it-IT -w ${file}  
${text} "/>
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There's more...
The really interesting part of mod_tts_commandline occurs in the configuration file. 
The command parameter tells mod_tts_commandline what to execute when the speak 
application is called. Read on for some tricks that you can perform with tts_commandline.
conf.xml.

Modifying the audio stream
It is possible to use an intermediate program, such as Sound eXchange (SoX), to modify  
the audio that is output from pico2wave. An example of this is to resample the audio.  
By default, pico2wave generates mono 16 kHz wave files. If the audio you hear from mod_
tts_commandline sounds too fast or too slow, then try resampling with SoX. Open conf/
autoload_configs/tts_commandline.conf.xml, and modify the command parameter.

For Linux/Unix, use this entry:

<param name="command" value="pico2wave -w /tmp/$$.wav ${text}  
&& sox /tmp/$$.wav -r ${rate} ${file} && rm /tmp/$$.wav"/>

For Windows, use the following entry:

<param name="command" value="pico2wave.exe -w c:\\tmp\\$$.wav  
${text} && sox.exe C:\\tmp\\$$.wav -r ${rate} ${file} && del  
c:\\tmp\\$$.wav"/>

Ensure that C:\tmp exists, or use an appropriate folder on your Windows system.

You will need to issue reloadxml at fs_cli as well as reload mod_tts_commandline 
for the changes to take effect.

SoX can perform an amazing array of effects on an audio stream.  
You can learn more about it at http://sox.sourceforge.net/.

Other TTS engines
The FreeSWITCH community has tested mod_tts_commandline with a number of commercial 
TTS engines, mostly under Linux environments. If you have one of the following TTS engines, 
then use one of the command parameter entries listed in the next code block. In some cases, 
you will need to tweak your command-line parameters. A simple way to test is to manually run 
your command and generate a .wav file on the disk, such as /tmp/test.wav. Then use a 
simple dialplan snippet to play back the file:

<condition field="destination_number" expression="^(5010)$">
  <action application="answer"/>
  <action application="sleep" data="500"/>
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  <action application="playback" data="/tmp/test.wav"/>
</condition>

This is much easier than making repeated changes to tts_commandline.conf.xml and 
reloading mod_tts_commandline. Once you have perfected your command-line syntax, 
update the configuration file and test.

Configuration file examples
Examples of configuration files are as follows:

ff Festival: This is the same engine used in mod_flite:
<param name="command" value="echo ${text} | text2wave -f ${rate} > 
${file}"/>

ff Cepstral:
<param name="command" value="swift -n ${voice} ${text}  
-o ${file}"/>

ff Loquendo:

<param name="command" value="echo ${text} |
   TTSFileGenerator -v${voice} –o${file}"/>

See also
ff Refer to the Basic text-to-speech with mod_flite recipe earlier in this chapter

Recording calls
Many enterprises need to record calls for quality control purposes. This recipe describes 
how you can record inbound and outbound calls on your FreeSWITCH server. If you need 
assistance in getting calls into and out of your FreeSWITCH system, refer to Inbound DID  
(also known as DDI) calls and Outgoing calls, both in Chapter 1, Routing Calls.

Most countries and localities have laws related to recording of phone 
calls. Always consult a licensed legal professional in your jurisdiction 
before you start recording phone calls.

Getting ready
Recording calls is actually very simple. All you need is a text editor so that you can add a few 
lines to your dialplan.
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How to do it...
The record_session FreeSWITCH dialplan application is used to record calls, whether they 
are inbound or outbound (the call direction does not affect the record_session application).

For inbound calls, it is easiest to enable recording right on Local_Extension.  
Follow the steps:

1.	 Open conf/dialplan/default.xml and locate the Local_Extension dialplan 
entry. Add these lines right before the line with the first bridge application:
<action application="set"  
data="record_file_name=$${recordings_dir}/${strftime(%Y-%m-%d-%H-
%M-%S)}_${uuid}.wav" inline="true"/>
<action application="record_session"
  data="${record_file_name}"/>

2.	 Save the file. Then run fs_cli and r issue the reloadxml command.

Now, any call made to a local extension will be recorded (this includes internal calls from one 
phone extension to another).

For outbound calls, we need to do something a bit different, because we don't know for sure 
that the call will actually be answered:

1.	 Open the dialplan file that contains your outbound route. Add these lines right before 
your bridge application:
<action application="set"
   data="record_file_name=$${recordings_dir}/${strftime(%Y-%m-%d-
%H-%M-%S)}_${uuid}.wav" inline="true"/>
<action application="export"
     data="execute_on_answer=record_session ${record_file_name}"/>

2.	 Save the file, then run fs_cli, and issue the reloadxml command.

Now, any answered call made through this gateway will be recorded.
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How it works...
The record_session application will record the audio on the channel. Technically, this 
application is only running on one leg of the call. In the inbound example, it is running on the 
called leg (the B leg), but in the outbound example, it is running on the calling leg (the A leg). 
The record_session application records audio in both directions, and therefore, the entire 
call is recorded.

The filename is stored in the record_file_name channel variable. We piece together 
several bits of information to create the full path:

ff $${recordings_dir}: By default, this gets set to $${base_dir}/recordings/

ff strftime(%Y-%m-%d-%H-%M-%S): This produces a timestamp in the format of 
YYYY-MM-DD-hh-mm-ss

ff ${uuid}.wav: This adds the calls' unique ID to the filename

The net result is that our file has a complete and unique path and filename, as follows,  
this for example:

/usr/local/freeswitch/recordings/2015-05-29-06-54-16_34822476-aefb-4c6a-
b1ce-60752ad03768.wav

The strftime API is very handy for getting the current date and time in 
various formats. It uses the format strings found in the standard strftime 
Unix command. You can experiment with it in fs_cli. Try issuing different 
commands, such as strftime and strftime %Y-%m-%d-%H-%M-%S, 
to see what you get.

There's more...
You may have noticed that Local_Extension has a curious entry:

<action application="bind_meta_app" data="2 b s record_
session::$${recordings_dir}/${caller_id_number}.${strftime(%Y-%m-%d-
%H-%M-%S)}.wav"/>

By default, a user who receives a call can manually enable the call recording by pressing *2. 
By itself, this is a handy feature. However, in the case where we automatically record all calls, 
this feature is irrelevant. A much more useful feature would be the ability to turn off the call 
recording. This can easily be done by adding a few more lines to our dialplan. Note that we 
only want our telephone user (whom we usually call an "agent") to be able to control the call 
recording. This means that we need to enable a key combination only on the agent's leg of the 
call. The agent is the A leg on an outbound call and is the B leg on an inbound call. Fortunately, 
we already have separate dialplan entries for each call type. We simply need to add the 
appropriate bind_meta_app in each case.
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For inbound calls, we need to replace the aforementioned bind_meta_app entry .  
Open conf/dialplan/default.xml and replace the curious entry with this line:

<action application="bind_meta_app" data="2 b s
execute_extension::stop_recording_${dialed_extension} XML 
recordings"/>

Save the file and exit. For outbound calls, open the dialplan file to which you added the 
record_session application. Add the following line right before the bridge application:

<action application="bind_meta_app" data="2 a s execute_
extension::stop_recording_${caller_id_number} XML recordings"/>

Save the file and exit. The last step is to create a new dialplan file that will handle the "stop 
recording" action that we have implemented. Create a new file in conf/dialplan/ called 
recordings.xml, and add these lines:

<include>
  <context="recordings">
    <extension name="Stop Recording"/>
      <condition field="destination_number"  
      expression="^stop_recording_(.*)$">
        <action application="log" data="WARNING Agent $1 has stopped  
        a recording"/>
        <action application="stop_record_session"  
        data="${record_filename}"/>
        <action application="set" data="res=${uuid_broadcast
          ${uuid} ivr/ivr-recording_stopped.wav both}"/>
      </condition>
    </extension>
  </context>
</include>

Save the file and exit. Then open fs_cli and issue the reloadxml command. Now test the 
feature. Have an agent press *2 on an active call. The agent and caller/callee should hear, 
"Recording stopped." The console will show the stop_record_session application being 
executed. Now the call recording will be stopped.

See also
ff Refer to the Incoming DID (also known as DDI) calls and the Outgoing calls recipes in 

Chapter 1, Routing Calls
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WebRTC and Mod_Verto

In this chapter, we will cover, the following recipes:

ff Configuring FreeSWITCH for WebRTC

ff SIP signaling in JavaScript with SIP.js (WebRTC client)

ff Verto installation and setup

ff Verto signaling in JavaScript using Verto.js (Verto client)

Introduction
FreeSWITCH is both a WebRTC gateway and a WebRTC application server. It throws in the 
signaling plane too, with Verto. Let's introduce these concepts/functions:

ff FreeSWITCH is a WebRTC gateway because it's able to accept encrypted media 
from browsers, convert it, and exchange it with other communication networks that 
use different codecs and encryptions, for example, PSTN, mobile carriers, legacy 
systems, and others. FreeSWITCH can be a gateway between your SIP network and 
applications and billions of browsers on desktops, tablets, and smartphones.

ff FreeSWITCH is a WebRTC application server because it's able to directly provide native 
services to browsers, such as video conferences, IVRs, and call centers, without the use 
of any gateway or third-party. FreeSWITCH can directly provide services through Secure 
WebSocket (WSS), SRTP, and DTLS, the native WebRTC protocols.

6
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ff FreeSWITCH throws in the Signaling Plane because, with Verto, browsers can initiate 
or receive a voice call or video call in the easiest way, and they can chat, share the 
screen, and receive and send data in real time to backend applications. Verto is an 
alternative to XMPP and SIP in JavaScript. FreeSWITCH can serve in parallel and 
concurrently the same application to clients that use signaling in SIP and Verto.

Let's see the basic steps needed to activate WebRTC on FreeSWITCH.

Configuring FreeSWITCH for WebRTC
WebRTC is all about security and encryption. These are not an afterthought. They're intimately 
interwoven at the design level and are mandatory. For example, you cannot stream audio or 
video clearly (without encryption) via WebRTC.

Getting ready
To start with this recipe, you need certificates. These are the same kind of certificates used  
by web servers for SSL-HTTPS.

Yes, you can be your own Certification Authority and self-sign your own certificate. However, 
this will add considerable hassles; browsers will not recognize the certificate, and you will 
have to manually instruct them to make a security exception and accept it, or import your  
own Certification Authority chain to the browser. Also, in some mobile browsers, it is not 
possible to import self-signed Certification Authorities at all.

The bottom line is that you can buy an SSL certificate for less than $10, and in 5 minutes.  
(No signatures, papers, faxes, telephone calls… nothing is required. Only a confirmation  
email and a few bucks are enough.) It will save you much frustration, and you'll be able to 
cleanly showcase your installation to others.
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The same reasoning applies to DNS Full Qualified Domain Names (FQDN)—certificates 
belonging to FQDN's. You can put your DNS names in /etc/hosts, or set up an internal  
DNS server, but this will not work for mobile clients and desktops outside your control.  
You can register a domain, point an fqdn to your machine's public IP (it can be a Linode,  
an AWS VM, or whatever), and buy a certificate using that fqdn as Common Name (CN).

Don't try to set up the WebRTC server on your internal LAN behind the 
same NAT that your clients are into (again, it is possible but painful).

How to do it...
Once you have obtained your certificate (be sure to download the Certification Authority Chain 
too, and keep your Private Key; you'll need it), you must concatenate those three elements to 
create the needed certificates for mod_sofia to serve SIP signaling via WSS and media via 
SRTP/DTLS.

With certificates in the right place, you can now activate ssl in Sofia. Open /usr/local/
freeswitch/conf/vars.xml:

As you can see, in the default configuration, both lines that feature SSL are false. Edit them 
both to change them to true.
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How it works...
By default, Sofia will listen on port 7443 for WSS clients. You may want to change this port if 
you need your clients to traverse very restrictive firewalls. Edit /usr/local/freeswitch/
conf/sip-profiles/internal.xml and change the "wss-binding" value to 443. This 
number, 443, is the HTTPS (SSL) port, and is almost universally open in all firewalls. Also, 
WSS traffic is indistinguishable from https/ssl traffic, so your signaling will pass through  
the most advanced Deep Packet Inspection. Remember that if you use port 443 for WSS, 
you cannot use that same port for HTTPS, so you will need to deploy your secure web server 
on another machine.

There's more...
A few examples of such a configuration are certificates, DNS, and STUN/TURN.

Generally speaking, if you set up with real DNS names, you will not need to run your own STUN 
server; your clients can rely on Google STUN servers. But if you need a TURN server because 
some of your clients need a media relay (which is because they're behind and demented NAT 
got UDP blocked by zealous firewalls), install on another machine rfc5766-turn-server, 
and have it listen on TCP ports 443 and 80. You can also put certificates with it and use 
TURNS on encrypted connection. The same firewall piercing properties as per signaling.

SIP signaling in JavaScript with SIP.js 
(WebRTC client)

Let's carry out the most basic interaction with a web browser audio/video through WebRTC. 
We'll start using SIP.js, which uses a protocol very familiar to all those who are old hands  
at VoIP. 

A web page will display a click-to-call button, and anyone can click for inquiries. That call will  
be answered by our company's PBX and routed to our employee extension (1010). Our employee 
will wait on a browser with the "answer" web page open, and will automatically be connected to 
the incoming call (if our employee does not answer, the call will go to their voicemail).

Getting ready
To use this example, download version 0.7.0 of the SIP.js JavaScript library from  
www.sipjs.com.
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We need an "anonymous" user that we can allow into our system without risks, that is, a user 
that can do only what we have preplanned. Create an anonymous user for click-to-call in a file 
named /usr/local/freeswitch/conf/directory/default/anonymous.xml :

<include>
  <user id="anonymous">
    <params>
      <param name="password" value="welcome"/>
    </params>
    <variables>
      <variable name="user_context" value="anonymous"/>
      <variable name="effective_caller_id_name" value="Anonymous"/>
      <variable name="effective_caller_id_number" value="666"/>
      <variable name="outbound_caller_id_name" value="$${outbound_
caller_name}"/>
      <variable name="outbound_caller_id_number" value="$${outbound_
caller_id}"/>
    </variables>
  </user>
</include>

Then add the user's own dialplan to /usr/local/freeswitch/conf/dialplan/
anonymous.xml:

<include>
  <context name="anonymous">
    <extension name="public_extensions">
      <condition field="destination_number" expression="^(10[01][0-
9])$">
        <action application="transfer" data="$1 XML default"/>
      </condition>
    </extension>
    <extension name="conferences">
      <condition field="destination_number" expression="^(36\d{2})$">
        <action application="answer"/>
        <action application="conference" data="$1-${domain_name}@
video-mcu"/>
      </condition>
    </extension>
    <extension name="echo">
      <condition field="destination_number" expression="^9196$">
        <action application="answer"/>
        <action application="echo"/>
      </condition>
    </extension>
  </context>
</include>
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How to do it...
In a directory served by your HTPS server (for example, Apache with an SSL certificate),  
put all the following files.

Minimal click-to-call caller client
HTML (call.html):

<html>
<body>
        <button id="startCall">Start Call</button>
        <button id="endCall">End Call</button>
        <br/>
        <video id="remoteVideo"></video>
        <br/>
        <video id="localVideo" muted="muted" width="128px" 
height="96px"></video>
        <script src="js/sip-0.7.0.min.js"></script>
        <script src="call.js"></script>
</body>
</html>

JAVASCRIPT (call.js):

var session;

var endButton = document.getElementById('endCall');
endButton.addEventListener("click", function () {
        session.bye();
        alert("Call Ended");
}, false);

var startButton = document.getElementById('startCall');
startButton.addEventListener("click", function () {
        session = userAgent.invite('sip:1010@gmaruzz.org', options);
        alert("Call Started");
}, false);

var userAgent = new SIP.UA({
        uri: 'anonymous@gmaruzz.org',
        wsServers: ['wss://self2.gmaruzz.org:7443'],
        authorizationUser: 'anonymous',
        password: 'welcome'
});
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var options = {
        media: {
                constraints: {
                        audio: true,
                        video: true
                },
                render: {
                        remote: document.
getElementById('remoteVideo'),
                        local: document.getElementById('localVideo')
                }
        }
};

Minimal callee
HTML (answer.html):

<html>
<body>
        <button id="endCall">End Call</button>
        <br/>
        <video id="remoteVideo"></video>
        <br/>
        <video id="localVideo" muted="muted"  
width="128px" height="96px"></video>
        <script src="js/sip-0.7.0.min.js"></script>
        <script src="answer.js"></script>
</body>
</html>

JAVASCRIPT (answer.js):

var session;

var endButton = document.getElementById('endCall');
endButton.addEventListener("click", function () {
        session.bye();
        alert("Call Ended");
}, false);

var userAgent = new SIP.UA({
        uri: '1010@gmaruzz.org',
        wsServers: ['wss://self2.gmaruzz.org:7443'],
        authorizationUser: '1010',
        password: 'ciaociao'
});
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userAgent.on('invite', function (ciapalo) {
        session = ciapalo;
        session.accept({
                media: {
                        constraints: {
                                audio: true,
                                video: true
                        },
                        render: {
                                remote:  
document.getElementById('remoteVideo'),
                                local:  
document.getElementById('localVideo')
                        }

                }
        });
});

How it works...
Our employee (the callee, or the person who will answer the call) will sit tight with the 
answer.html web page open on their browser. Upon page load, JavaScript will have created 
the SIP agent and registered it with our FreeSWITCH server as SIP user "1010" (just as our 
employee was on their own regular SIP phone).
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Our customer (the caller, or the person who initiates the communication) will visit the  
call.html webpage (while loading, this web page will register as an SIP "anonymous"  
user with FreeSWITCH), and then click on the Start Call button. This clicking will activate  
the JavaScript that creates the communication session using the invite method of the  
user agent, passing as an argument the SIP address of our employee.

The Invite method initiates a call, and our FreeSWITCH server duly invites SIP user 1010.  
That happens to be the answer.html web page our employee is in front of.

The Invite method sent from FreeSWITCH to answer.html will activate the JavaScript local 
user agent, which will create the session and accept the call.

At this moment, the caller and callee are connected, and voice and video will begin to flow 
back and forth. The received audio or video stream will be rendered by the RemoteVideo  
tag in the web page, while its own stream (the video that is sent to the peer) will show up 
locally in the little localVideo tag. That's muted not to generate Larsen whistles.
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See also
The Configuring an SIP phone to register with FreeSWITCH recipe in Chapter 2, Connecting 
Telephones and Service Providers, and the documentation at http://sipjs.com/guides/.

Verto installation and setup
Verto is a web protocol that allows the presence of richer distributed applications, where 
audio, video, database, graphics, visualization, and augmented reality come through the  
same channel/tool set and converge in the browser for the user to interact with.

Verto can subscribe to data structures residing in the server, and have those structures  
bi-directionally updated and synchronized in real time.

It is deeply integrated with the FreeSWITCH events system, so it can access all of the  
data, primitives, statuses, and information that is available for a FreeSWITCH server-side 
application programmer.

Also, it's very easy to write a FreeSWITCH module that will make Verto exchange data 
structures and events with external sources and sinks, from databases to legacy systems  
and automation control to collaboration platforms.

Verto is an elegant weapon. It is depicted in the following diagram:

mod_verto is compiled by default in the standard installation, but you need to configure it.

In order not to add unwarranted complexities, and to communicate securely through WSS 
(Secure WebSockets), Verto uses the same SSL certificates as sofia, specifically /usr/
local/freeswitch/certs/wss.pem (that's a concatenation of all three elements—cert, 
key, and chain—in the given order).
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Here, I will not renew my enumeration of the reasons for favoring a real, bought SSL certificate 
over a self-signed one (see earlier, in this chapter). I'm a Cheap Charlie, and if I tell you that it 
is $10 well invested, trust me.

How to do it...
Edit the /usr/local/freeswitch/conf/autoload_configs/verto.conf.xml file,  
as depicted in the following screenshot:

How it works...
The most important parameters here are as follows:

ff debug: Set this to "10" if you need to follow the inner workings and see what the JSONs 
exchanged back and forth with the browsers. From registration to call initiation, and the 
"floor" status in conferences, it's all here.

ff bind-local, "secure=true": This is the port used for WSS listening.
ff ext-rtp-ip: This is the public IP address of FreeSWITCH. In a NATted, installation is  

not the IP address of the physical network interface, but the external address that  
the router or firewall then redirects here. You need to set this correctly (for example, 
in Amazon AWS or in your data center LAN).
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ff outbound and inbound codec strings: These define which codecs are negotiated 
(directly or via ICE) before exchanging media. In native WebRTC, there is a 
marked preference for the OPUS codec, but G711 (PCMU) is the lingua franca of 
interoperability with all communication worlds.

As always, after editing the configuration file, reload the module ("reload mod_verto" from 
fs_cli) or restart FreeSWITCH.

Verto signaling in JavaScript using Verto.js 
(Verto client)

Let's implement a click-to-call button that will allow anyone to click on a web page to join  
a conference in video-audio chat (more information about conferences is covered in the  
next chapter).

For security reasons, we need an "anonymous" user that we can allow into our system  
without risks, that is, a user that can do only what we have preplanned.

Create an anonymous user for click-to-call by adding to the directory and the dialplan as 
instructed in the SIP Signaling in JavaScript with SIP.js(WebRTC client) section. Then use 
reloadxml from fs_cli, or restart FreeSWITCH.

The end user does not need to log in or identify themselves; insert your name is there just  
for aesthetic purposes.
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A minimal click-to-call Verto client looks like this:

How to do it...
In a directory served by your HTPS server (for example, Apache with an SSL certificate),  
put these two files:

HTML (3.html):

<!DOCTYPE html>
<html>
 <head>
  <meta name="viewport" content="width=device-width, initial-scale=1, 
user-scalable=yes"/>
  <link rel="shortcut icon" href="favicon.ico" />
  <title>OpenTelecom.IT - WebRTC</title>
 </head>
 <body>
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  <center>
   <input type="hidden" id="hostname" value="self2.gmaruzz.org"/>
   <input type="hidden" id="wsURL" value="wss://self2.gmaruzz.
org:8082"/>
   <input type="hidden" id="login" value="anonymous"/>
   <input type="hidden" id="passwd" value="welcome"/>
   <input type="hidden" id="cidnumber" value="WebRTC"/>
   <input type="hidden" id="ext" value="3600"/>
   <video id="webcam" autoplay="autoplay" style="width:auto;height:aut
o;max-height:100%;max-width:100%;"></video>
   <br/>
   <input type="text" size="22" id="cidname" value="insert your name 
then call"/>
   <br/>
   <button data-inline="true"id="callbtn">Call Conference</button>
   <button data-inline="true" id="hupbtn">Hangup</button>
   <br/>
   <textarea id="chatwin" style="width:300px;height:100px;scrolling=au
to;"></textarea>
   <br/>
   <textarea id="chatmsg">your chat msg</textarea>
   <button id="chatsend">Send Msg</button>
  </center>
  <script type="text/javascript" src="js/jquery-2.1.1.min.js"></
script>
  <script type="text/javascript" src="js/jquery.json-2.4.min.js"></
script>
  <script type="text/javascript" src="js/jquery.cookie.js"></script>
  <script type="text/javascript" src="js/verto-min.js"></script>
  <script type="text/javascript" src="3.js"></script>
 </body>
</html>

JAVASCRIPT (3.js):

'use strict';
var cur_call = null;
var verto;
var chatting_with = false;

var callbacks = {
  onMessage: function(verto, dialog, msg, data) {
     console.error("msg ", msg);
     console.error("data ", data);

     switch (msg) {
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      case $.verto.enum.message.pvtEvent:
       if (data.pvtData) {
        console.error("data.pvtData ", data.pvtData);
        switch (data.pvtData.action) {
         case "conference-liveArray-join":
          chatting_with = data.pvtData.chatID;
          break;
        }
       }
       break;
      case $.verto.enum.message.info:
       var body = data.body;
       var from = data.from_msg_name || data.from;

       if (body.slice(-1) !== "\n") {
        body += "\n";
       }
       $('#chatwin')
        .append(from + ': ')
        .append(body)
        $('#chatwin').animate({"scrollTop": $('#chatwin')[0].
scrollHeight}, "fast");
       break;
      default:
       break;
     }
    },
  onEvent: function(v, e) {
   console.error("GOT EVENT", e);
  },
};

function docall() {
 if (cur_call) {
  return;
 }
 cur_call = verto.newCall({
  destination_number: $("#ext").val(),
  caller_id_name: $("#cidname").val(),
  caller_id_number: $("#cidnumber").val(),
  useVideo: true,
  useStereo: true,
  useCamera: $("#usecamera").find(":selected").val(),
  useMic: $("#usemic").find(":selected").val()
 });
}

$("#callbtn").click(function() {
  docall();
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});

$("#hupbtn").click(function() {
  verto.hangup();
  cur_call = null;
});

function setupChat() {
 $("#chatwin").html("");

 $("#chatsend").click(function() {
   if (!cur_call && chatting_with) {
   return;
 }
   cur_call.message({to: chatting_with,
     body: $("#chatmsg").val(),
     from_msg_name: cur_call.params.caller_id_name,
     from_msg_number: cur_call.params.caller_id_number
     });
   $("#chatmsg").val("");
 });

 $("#chatmsg").keyup(function (event) {
   if (event.keyCode == 13 && !event.shiftKey) {
   $( "#chatsend" ).trigger( "click" );
   }
 });
}

function init() {
 cur_call = null;

 verto = new $.verto({
 login: $("#login").val() + "@" + $("#hostName").val(),
 passwd: $("#passwd").val(),
 socketUrl: $("#wsURL").val(),
 tag: "webcam",
 iceServers: true
 },callbacks);

 $(document).keypress(function(event) {
  var key = String.fromCharCode(event.keyCode || event.charCode);
  var i = parseInt(key);

  if (key === "#" || key === "*" || key === "0" || (i > 0 && i <= 9)) 
{
   cur_call.dtmf(key);
  }
 });
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setupChat();
}

$(window).load(function() {
  $.verto.init({}, init);
});

How it works...
HTML is not complex. Let's start from beginning; the viewport line makes the page 
adaptable to both desktops and smartphones. We set some variables needed to log in as  
an "anonymous" user on our FreeSWITCH WebRTC server. We define the extension to be  
called in ext.

Then, the video tag will be the audio/video renderer of the stream we get from the 
server. The important values are those of id (referred to by the Verto constructor in 3.js), 
autoplay (you would want it to render the stream as soon as possible), and style (a 
carefully chosen size for adaptation to both desktops and phones).

There's input text for the nickname and a couple of buttons: one to start the call, and the 
other to hang up.

Then, there is a chat zone made by a textarea of suitable size to show the conversation,  
an input text for the message, and a button for sending it.

At the end, the JavaScript files we want to include are referenced.

The JavaScript file is longer than the HTML file, but I tried to keep it straightforward, yet 
functional. It will deliver a lot of useful output in the browser's JavaScript console.

Let's comment on it, starting from the end and going backward.

When the web page has finished loading, a verto object will be created and initialized from 
the variables we set in HTML. iceServers is true, so we'll use the default STUN server  
(we could have passed an array of STUN and TURN servers instead). The last argument for the 
initialization of the verto object is the callbacks variable. It is a structure of functions that 
the verto object executes to react to events. We will look at it in detail later. Then, the event 
function will send DTMFs to our call when 0-9, *, and # are pressed (if they're not input in the 
chat area). Note the compatibility of Firefox and Chrome.

The last line of the verto object initialization calls the setup of the chat-related variables and 
functions. Particularly, it will trigger the message() method of the current call, both when 
the button is pressed and when Enter is pressed in the chat input text area. The message() 
function will use variables set by the callbacks functions we gave to the verto object when 
we created it.
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Then, the two functions are executed when the Call Conference and Hangup buttons are 
pressed. The docall function gets the variables we set in HTML as arguments, and we 
hardcode some more. useCamera and useMic are set to the device the user has chosen 
when asked to give authorization by the browser.

Now, let's cover "callbacks". These are the functions that get automatically executed in real 
time at messages and events receiving. We are reacting only to conference-liveArray-
join to set the data structure we're synchronizing with, and to message.info in order  
to display the chat conversation's content. You can see in the browser's JavaScript console 
some other events and messages that are available for interaction.

See also
Verto is documented on the Confluence page at http://freeswitch.org/confluence/
display/FREESWITCH/mod_verto
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Dialplan Scripting  
with Lua

In this chapter, we will cover these recipes:

ff Creating a basic Lua script

ff User interaction and DTFM gathering

ff Using conditionals, loops, web calls, and regular expressions

ff Connecting to an external database

Introduction
An XML dialplan is the standard and most efficient way to describe how a call must be 
handled by FreeSWITCH. There are cases where you need loops, conditionals, and other 
call handling logic that is not easily expressed in XML. Enter scripting, and you can use your 
programming language of choice.

FreeSWITCH supports many scripting languages (almost all of them). These languages also 
allow you to use the same primitives and access the same variables, so they're all functionally 
equivalent. The difference lies in their efficiency and their ability to embed, for example, how 
much CPU they consume, and how much RAM they need to execute the same call logic.

FreeSWITCH's most efficient and embeddable scripting language is Lua (www.lua.org).

It is a very easy procedural language, reminiscent of C and Perl, so it will be immediately 
familiar to most of you.

7
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Creating a basic Lua script
In this recipe, we will be creating a script that uses the basic Lua functionalities.

Getting ready
You don't need to install or configure anything to be ready to execute Lua scripts to handle 
your calls. Lua is the standard and preferred FreeSWITCH scripting language, which is 
compiled and embedded by default.

The script will be called by a dialplan extension, and when the script is finished, the call will be 
automatically hung up (see the Using conditionals, loops, web calls, and regular expressions 
recipe later to learn how to change this behavior and have the dialplan continue handling 
after the Lua script ends).

Create a dialplan extension "12345," which will call our first Lua script. Edit the /usr/local/
freeswitch/conf/dialplan/default/01_basic_lua.xml file:

<include>
  <extension name="Basic Lua Script">
    <condition field="destination_number" expression="^(12345)$">
        <action application="lua" data="basic.lua"/>
    </condition>
  </extension>
</include>

Save the file and then, from fs_cli, reloadxml.

How to do it...
Edit the /usr/local/freeswitch/scripts/basic.lua file like this:

www.itbook.store/books/9781785280917

https://itbook.store/books/9781785280917


Chapter 7

151

You don't have to reload anything because, in FreeSWITCH, scripts are read from the 
filesystem and then executed each time anew. So, if you happen to make a mistake or want  
to change something in the script, just edit it. Your changes will be picked up the next time  
the script is executed.

Also, you don't need to make the script "executable." It's just text that will be read and 
executed by FreeSWITCH and has got a Lua interpreter embedded in it at compile time.

How it works...
The following sequence shows the working of our recipe.

1.	 When an incoming call hits FreeSWITCH, it will arrive in the dialplan, looking for an 
extension matching its destination number.

If the call's destination number is 12345, it will enter our newly created extension 
that will execute the application lua (the embedded Lua interpreter) with data from 
basic.lua.

2.	 FreeSWITCH will then look in the default scripts directory (/usr/local/
freeswitch/scripts/) for a basic.lua file to pass to the Lua interpreter.

3.	 Once the script file is found, Lua interpreter will begin executing it.

The first script line, session:answer(), will use the answer method of the 
session object. This object is automatically given to the script by FreeSWITCH,  
and represents the call leg.

4.	 The script will then make FreeSWITCH answer the call, for example, go off the hook.

5.	 Then FS will sleep for 2000 milliseconds (2 seconds), which is good practice, so the 
audio flow can stabilize between the caller and callee.

6.	 Then the execute method will be called. It will start an application, exactly as 
dialplan would have done, passing it arguments (the arguments would be data in 
dialplan). So, in our case, the playback application is called, with the ivr/ivr-
welcome_to_freeswitch.wav argument.

7.	 It will play the sound file to the caller.

8.	 After playing the sound file, the script will have finished its instructions, so it will exit.

9.	 When the script is finished, the call will be automatically hung (see later in the Using 
conditionals, loops, web calls, and regular expressions recipe to learn how to change 
this behavior, and have dialplan continue handling after the Lua script has ended).
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There's more...
The session object, our call leg, is not the only object given for free by FreeSWITCH.

The other one is the freeswitch object, which is always present—even if no call leg exists 
(for example, the script is executed by the FreeSWITCH administrator from the command line, 
not from the dialplan)—and it gives us access to various facilities, notably to the equivalent of 
fs_cli. From this, we can send commands to FS via the API method.

See also
Refer to Introduction in Chapter 1, Routing Calls, for a basic understanding of the XML dialplan.

User interaction and DTMF gathering
This recipe elaborates the interaction of the dialplan with the users.

Getting ready
This time, the dialplan extension that we add will do things before starting the Lua script.  
This is not necessary at all, but is being done here to let you know that the dialplan and 
scripting complement each other.

The best strategy for efficiency, counseled by FreeSWITCH developers, is 
to use the dialplan as much as you can. It is the most efficient (compiled 
in a tree in RAM) way to process your calls. Then, when things require 
logic (loops, conditionals, and so on) that does not fit well in XML, spawn 
a script.

Create a dialplan extension 12346. It will call our second Lua script. Edit the /usr/local/
freeswitch/conf/dialplan/default/02_interaction.xml file:

<include>
  <extension name="Interaction and DTMFs gathering">
    <condition field="destination_number" expression="^(12346)$">
        <action application="answer"/>
        <action application="sleep" data="2000"/>
        <action application="playback"  
data="ivr/ivr-welcome_to_freeswitch.wav"/>
        <action application="set" data="my_channel_variable='foo  
bar baz'"/>
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        <action application="lua" data="interaction.lua"/>
    </condition>
  </extension>
</include>

Save the file and then, from fs_cli, reloadxml.

How to do it...
Edit the /usr/local/freeswitch/scripts/interaction.lua file:

--Wait half seconds
session:sleep(500)

--Play a message to caller
session:execute("playback", "ivr/ivr-douche_telecom.wav");

--Wait half seconds
session:sleep(500)

--get the value set by dialplan into channel
variable_my_channel_variable = session:getVariable("my_channel_
variable");

--print that value on FreeSWITCH console and logfile
session:consoleLog("info", "dialplan set channel variable value to: " 
.. variable_my_channel_variable .. "\n");

--prompt the user to enter digits, manage input errors, transfer on 
final failure
digits = session:playAndGetDigits(4, 10, 3, 3000, "#",
"ivr/ivr-please_enter_the_number_where_we_can_reach_you.wav",
"ivr/ivr-invalid_extension_try_again.wav", "\\d+", "digits_received", 
1000,
"5000 XML default");

--print gathered digits on FreeSWITCH console and logfile
session:consoleLog("info", "Lua variable digits is: ".. digits .."\n")

--Wait half seconds
session:sleep(500)

--Play goodbye to caller
session:execute("playback", "ivr/ivr-thank_you.wav");

--End of script, will automatically hangup
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How it works...
The preceding recipe works in the following sequence:

1.	 We start with the dialplan, since the incoming call will go there first.

2.	 The extension we just created will match an incoming call for destination number 
12346, answer the call, wait for 2 seconds, and then play back a message.

3.	 When the playback is completed, the set application will create a channel variable 
with the name my_channel_variable, and assign it the value foo bar baz.

4.	 That newly created channel variable will be part of your call, like all other channel 
variables, and you can manipulate and use it; for example, it can be a part of custom 
CDRs (See Chapter 3, Processing Call Detail Records).

5.	 Then, the lua application will execute the embedded Lua interpreter, passing 
interaction.lua as the file containing the script.

Here, the dialplan extension has finished its steps, and the ball (actually the call) is passed to 
the Lua script.

Let's look into interaction.lua and follow it line by line:

1.	 The first script line, session:sleep(500), will use the sleep method of the 
session object.

2.	 The session object is automatically given to the script by FreeSWITCH, and 
represents the call leg.

3.	 The sleep method will wait for half a second, so there will be a pause between the 
message played by the dialplan and the message that will be played in the next script 
line. If we don't put this to sleep, the two messages here will be played continuously 
as if they were the same phrase, and that's not what we want.

4.	 Then, the execute method of the session object will activate the playback dialplan 
application, which will get ivr/ivr-douche_telecom.wav looking in the standard 
/usr/local/freeswitch/sounds/en/us/callie/ directory, choosing by the 
audio sampling frequency requested. For example, if the incoming call is from PSTN, 
it will use an 8,000 Hz audio sampling frequency (codec g711, or g729, and so on), 
and FreeSWITCH will automatically select the /usr/local/freeswitch/sounds/
en/us/callie/ivr/8000/ivr-douche_telecom.wav audio file.

5.	 The next line will be another pause.

6.	 Then, we see how to use session:getVariable to access the channel variables. 
The value of my_channel_variable, which was set by the dialplan, will be 
assigned to a Lua variable named variable_my_channel_variable. Now we  
can use it in our script.

7.	 And here we are, using it to construct one of the arguments to session:consoleLog.
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The consoleLog method is used to print both in the fs_cli console and in 
FreeSWITCH's log file. This method gets two arguments. The first one is the log level, 
and the second is the message that will belong to the log level. So, in our case, we 
choose the info log level. We construct the second argument to consoleLog, the 
message, as a string concatenation of Lua variable digits is:, the value of 
the variable_my_channel_variable Lua variable, and a final carriage return.

Note that .. is a Lua string concatenation operator, it will join 
two strings into one.

8.	 Then comes one of the workhorses of Lua FreeSWITCH's scripting: 
playAndGetDigits. We have implemented it here in its full glory, with all the 
optional arguments, albeit you will often be omitting some of them. Let's reproduce 
the entire line here, because it would be impractical to follow the explanation going 
back and forth over this book's pages:
digits = session:playAndGetDigits(4, 10, 3, 3000, "#",
"ivr/ivr-please_enter_the_number_where_we_can_reach_you.wav",
"ivr/ivr-invalid_extension_try_again.wav", "\\d+",  
"digits_received", 1000,
"5000 XML default");

Let's comment on this line from left to right:

�� digits: This is the Lua variable that will get (as a string) the DTMFs sent by 
the user.

�� 4: This is the minimum number of digits we'll accept.

�� 10: This is the maximum number of digits we'll accept (for example, upon 
receiving the tenth DTMF in this case, we call it a day).

�� 3: This is the number of times we'll try to get the digits from the user before 
declaring the final failure.

�� 3000: This is the number of milliseconds we wait for a digit (for example, 
timeout).

�� #: This is the digits terminator. The user will send it to signal that they have 
finished entering DTMFs (this is useful for entering digits less than the 
maximum number of digits possible, without waiting for timeout; for example, 
you can enter 1234#, and it will immediately be accepted).

�� Then there is the audio file that will be played as a prompt for the user.

�� Then you will find the audio file that will be played to the user if the input 
entered is invalid.
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�� "\\d+": This is a regular expression that defines what we consider a "valid 
input." In this case, all whatever digit in whatever quantity (note that the 
backslash needs to be escaped by another backslash).

�� digits_received: This is a channel variable that will be created and set to the 
digits string in the case of success, or to nil (the Lua null value) in the case 
of a failure or invalid input. This argument is optional.

�� 1000: This is the inter-digit timeout. Use it if you want to change the timeout 
after the first digit has been entered. This argument is optional, and defaults 
to the main timeout (which will be 3,000 milliseconds in our case).

�� The last optional argument is where the call leg is transferred in the event 
of a failure. The format is like this: extension kindofdialplan context. The 
default is no transfer; just continue.

Whoah, playAndGetDigits is powerful, isn't it?

9.	 In the next line, we again use consoleLog to print the contents of the Lua  
digits variable.

10.	 Then comes a pause.

11.	 Finally we say Thank you to our user and (because the script is finished) hang up.

This screenshot shows what an incoming call that inputs 3456# will look like in fs_cli:
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There's more...
The FreeSWITCH logging system has the concept of loglevels. Each log message is pertaining 
to a loglevel, and will be printed and/or displayed only if the facility (log file, console, and so 
on) has been set to accept that level (or lower levels). Log levels proceed from debug (which is 
of the lowest importance) to info, notice, warning, err, crit, and alert, alert being the 
level of maximum importance. For example, if we set our console to the notice log level, it 
will display the notice, warning, err, crit, and alert messages, but will not display the 
debug and info messages.

Using conditionals, loops, web calls, and 
regular expressions

This recipe helps us demonstrate the loops and other conditionals prevailing in Lua scripts. 
You will get also familiar with regular expressions and web calls.

Getting ready
Create a dialplan extension 12347 that will call our third Lua script. Edit the /usr/local/
freeswitch/conf/dialplan/default/03_advanced.xml file:

<include>
  <extension name="Advanced Lua Script">
    <condition field="destination_number" expression="^(12347)$">
        <action application="answer"/>
        <action application="sleep" data="1000"/>
        <action application="playback" data="ivr/ivr-welcome_to_
freeswitch.wav"/>
        <action application="sleep" data="500"/>
        <action application="lua" data="advanced.lua"/>
        <action application="playback" data="ivr/ivr-thank_you.wav"/>
        <action application="hangup"/>
    </condition>
  </extension>
</include>

Save the file and then, from fs_cli, reloadxml.
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How to do it...
Edit the /usr/local/freeswitch/scripts/advanced.lua file:

-- callback function, see session:setInputCallback below
function key_press(session, input_type, data, args)
        -- if we got DTMF
        if input_type == "dtmf" then
                -- print to console and logfile which key was pressed
                session:consoleLog("warning", "Key pressed: " .. 
data["digit"])
                -- set the "finished" variable to true
                finished = true
                -- returning "break" cause the interruption of media 
playing
                return "break"
        end
end

-------------------------------------------------------
-- set a function to be called on DTMFs
session:setInputCallback("key_press", "")
-- after script finish, go back to dialplan
session:setAutoHangup(false)
-- create the api object, to be used to emit fs_cli commands
api = freeswitch.API()

-- value we compare against the current price of Google stock
benchmark = 522
-- flag to break from playing and then from "while" loop
finished = false
-------------------------------------------------------

-- play a message
session:execute("playback", "ivr/ivr-when_finished_press_any_key.wav")

-- print message to console and logfile
session:consoleLog("warning", "BEFORE WHILE\n")

-- do until user hangup or variable "finished" is true
while( session:ready() == true and finished == false) do
        -- do an http query and store the result in "google_values" 
Lua variable
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        google_values=api:execute("curl", "http://download.finance.
yahoo.com/d/quotes.csv?s=GOOG&f=sl1po")
        -- print variable to console and logfile
        session:consoleLog("warning", "google_values is: " .. google_
values .. "\n")
        -- parse variable into components
        _,_,var1,var2,var3,var4 = string.find(google_
values,"(.-),(.-),(.-),(.*)")
        -- print components to console and logfile
        session:consoleLog("warning", "var1="..var1.." var2="..var2.." 
var3="..var3.." var4="..var4.."\n")
        -- "pronounce" component to user
        session:say(var2, "en", "currency", "pronounced")
        -- check if exit time
        if(finished==true)then break end

        -- evaluate if component is less than benchmark
        if(tonumber(var2) < benchmark) then
                -- if component is less than benchmark
                -- play a message
                session:execute("playback", "ivr/ivr-less_than.wav")
                -- check if exit time
                if(finished==true)then break end
        else
                -- if component is equal or more than benchmark
                -- play a message
                session:execute("playback", "ivr/ivr-more_than.wav")
                -- check if exit time
                if(finished==true)then break end
        end

        -- "pronounce" benchmark to user
        session:say(benchmark, "en", "currency", "pronounced")
        -- check if exit time
        if(finished==true)then break end
        -- pause half a second
        session:sleep(500)
end

-- print message to console and logfile
session:consoleLog("warning", "AFTER WHILE\n")

-- pause half seconds
session:sleep(500)

--End of script, we set autohangup to false, will go back to dialplan
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How it works...
The extension we just created and loaded into the dialplan will match the destination number 
12347, answer the incoming call, play an audio file to the caller, and then pass the call to our 
new advanced.lua script.

An interesting thing here is that the dialplan execution will continue even after the script is 
finished. This is because in the script, we have executed the setAutoHangup method with  
a false argument.

So, after the script exits, the dialplan will play another audio file to the caller, and only then 
hang up the call.

Let's look at the script now, from the beginning:

1.	 First of all, we declare a function that will be used immediately below, where we set it 
as a callback to be executed each time there is input.

The key_press function will check what has been thrown at it, and if a DTMF has 
been received, it will first print on the console and log file the digit that was received. 
Then it will assign the true value to the finished variable. If DTMF was received,  
the key_press function will exit, returning a break value.

2.	 An input callback function returning a break value will interrupt the playing of media. 
For example, if the session (the channel or the call leg; your mental representation 
can vary) is playing something to the caller (an audio file, music on hold, a tone 
stream, and so on) and the caller pressing a key activates the callback function that 
exits with break, then the playing will interrupt, and we'll proceed further to the next 
step in the script.

3.	 Then we call the session:setAutoHangup method with a false argument.  
This will change the default behavior of hanging up the call when the script has 
finished, and will instead return control to the dialplan.

4.	 We create an api object, which we'll use later, to give commands to FreeSWITCH  
as we did in fs_cli, and get back the result.

5.	 We set a couple of Lua variables: benchmark, which we'll use later to compare the 
current value of the Google stocks, and finished, which we'll use as a flag to know 
whether the caller has pressed a key (which means that they want to exit the loop).

6.	 Play ivr/ivr-when_finished_press_any_key.wav to the caller, and then log 
we're about to enter the while loop.

7.	 The while loop will run until the finished variable is no longer false, or until the 
result of the session:ready() method is no longer true.

The ready() method of the session can always be called, and will yield a value of 
true if the call leg is connected (that is, it has been answered and has not yet been 
hung up).
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You must always check the value of session:ready() when you enter a loop, 
because if you don't check and the caller hangs up, the script will run forever.

8.	 We then have this line:
google_values=api:execute("curl",  
"http://download.finance.yahoo.com/d/quotes.csv?s=GOOG&f=sl1po")

Here, we use the execute method of the api object we created before to send a 
command with its argument to FreeSWITCH (as we do in fs_cli). We put the string 
returned by FreeSWITCH into the google_values variable.

Then we duly print this variable.

9.	 Next, we want to parse this very google_values variable with a regular expression. 
We'll do it in the following line:
_,_,var1,var2,var3,var4 = string.find(google_
values,"(.-),(.-),(.-),(.*)")

The string.find function is a Lua function that returns the position of the first 
and last occurrence of a Lua regular expression in a string. Note that Lua regular 
expressions are different from POSIX and Perl regexes.

Our regular expression will use parentheses to "capture" four values. The first three 
values will be composed of the minimum number of whatever characters are present 
until a comma is found. The fourth captured value will stretch from the third comma 
to the end of the string.

So, in this case, string.find will return six values: the two indexes (we will discard 
them by putting them into the _ Lua dummy variables), and the four captured 
substrings that we will assign to the var1..var4 Lua variables.

10.	 We'll print those variables' contents.

11.	 We will then read the current Google stock price to the caller:
session:say(var2, "en", "currency", "pronounced")

The say method is used to have FreeSWITCH read values with some "artificial 
intelligence." The first argument is the string to be read, the language that has to 
be read, then which kind of string it is (for example, time, date, currency, e-mail 
address, persons, name spelled, and so on), and then comes the reading method 
(pronounced, iterated, counted, and so on). Say is a beautiful method, fully 
adapted to different languages, with plurals, genders, and so on. Check it out on 
FreeSWITCH's Confluence page.

12.	 After this line, we check whether the caller has just pressed a key, interrupting the 
variable reading and setting the finished variable to true. If that is what has 
happened, we break out from the Lua while loop.
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13.	 Then we check whether the numeric value of the current stock price string is lower 
than the benchmark numeric variable.

14.	 Depending on the conditional result, we read a less than or more than audio file 
to the caller.

15.	 We then say the benchmark to the caller, implicitly converting its value into a string.

16.	 Then comes a pause, and the while loop is ready to begin again.

17.	 When we break out from the while loop, we print a line to the console, then pause 
for half a second, and get back control of the call leg to the dialplan.

This is what a call to "12347" will look like in the fs_cli console when the caller listens to 
the loop for two times and half and then presses 5:

There's more...
Lua's regular expressions are less powerful than Perl's regexes. If you need the full power of 
PCRE, you can use this construct from the Lua script:

session:execute("set", "chan_variable=${regex(" .. my_variable  
.. "|^([0-9]{10})$)}")
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This will create a channel variable named chan_variable, and assign to it the result of the 
Perl compatible regex applied to the my_variable Lua variable.

You will then have to access this newly created channel variable:

variable_my_channel_variable =  
session:getVariable("chan_variable");

See also
Refer to the previous recipe to see how to set and access channel variables.

Connecting to an external database
Connecting to databases can be done using ODBC bindings for Lua, or native Lua drivers  
for databases.

Another way to connect to databases—the preferred way—is to create HTTP queries from Lua 
and leave the HTTP server (or servers) the burden of managing connection pools, scalability, 
concurrence, and so on with tried and true well-known techniques.

Here, we'll see this preferred way.

Getting ready
Create a dialplan extension "12348" that will call our last Lua script. Edit the /usr/local/
freeswitch/conf/dialplan/default/04_database.xml file:

<include>
  <extension name="Connect to DataBase">
    <condition field="destination_number" expression="^(12348)$">
        <action application="answer"/>
        <action application="sleep" data="1000"/>
        <action application="lua" data="database.lua"/>
    </condition>
  </extension>
</include>

Save the file and then, from fs_cli, reloadxml.
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Also, we need our HTTP server to query the database and send the results to the web clients. 
As an example, here is a completely unsecure, dangerous, and non-scalable CGI that will 
query a MySQL database on a Linux machine. Edit the db.sh file, make it readable and 
executable to the HTTP server's user, and put it into the cgi-bin directory of the server  
(on Debian Jessie, it is /usr/lib/cgi-bin/):

#!/bin/bash
#https://marc.waeckerlin.org/computer/blog/parsing_of_query_string_in_
bash_cgi_scripts
#Decodes an URL-string
function urlDec() {
  local value=${*//+/%20}                   # replace +-spaces by %20 
(hex)
  for part in ${value//%/ \\x}; do          # split at % prepend \x 
for printf
    printf "%b%s" "${part:0:4}" "${part:4}" # output decoded char
  done
}

echo "Content-type: text/plain"
echo ''

QUERY=$(urlDec "${QUERY_STRING#*=}")
# echo "QUERY = $QUERY"
# echo ''

/usr/bin/mysql -u root --password=rootpwd -B -N -e "$QUERY;"  
mysql 2>&1

How to do it...
Edit the /usr/local/freeswitch/scripts/database.lua file:

-- create the api object, to be used to send fs_cli like commands
api = freeswitch.API()

-- pause half a second
session:sleep(500)

-- do an http query to the database and store the result in "how_many_
users" Lua variable
how_many_users=api:execute("curl", "http://192.168.1.125/cgi-bin/db.sh
?query=select+count(*)+from+user")

-- print variable to console and logfile
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session:consoleLog("warning", "how_many_users is: |" .. how_many_users 
.. "|\n")

-- trim ending carriage return
how_many_users = string.sub(how_many_users,1,-2)

-- print variable to console and logfile
session:consoleLog("warning", "how_many_users is: |" .. how_many_users 
.. "|\n")

-- check number
if(tonumber(how_many_users) < 2) then
        -- play a sound file
        session:execute("playback", "ivr/ivr-there_are.wav")
else
        -- play a sound file
        session:execute("playback", "ivr/ivr-there_is.wav")
end

-- "pronounce" variable to user
session:say(how_many_users, "en", "number", "pronounced")

-- pause half a second
session:sleep(500)

--End of script, automatically hangup

How it works...
The working of this recipe can be elaborated as follows:

1.	 The extension we just created and loaded into the dialplan will match a destination 
number "12348", answer the incoming call, and then pass the call to the  
database.lua script.

2.	 We pause for half a second before making an HTTP call to our web server, with the 
SQL query URL encoded.

3.	 We put the HTTP server's answer in the how_many_users variable.

4.	 The next line prints the variable's content. This variable will contain the trailing 
carriage return that ends the string.

So, we use the string.sub Lua function to extract a string that will start from the 
first character of the original string, and end at two characters from the end of the 
original string. In simple words, we have just trimmed the trailing carriage return.
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5.	 Then we print it again, and based on its numeric value, we decide which audio file to 
play to the caller.

6.	 Next, we pronounce the variable as an English language number, wait for half a 
second, and exit the script, hanging up automatically.

This is what a call to "12348" will look like in the fs_cli console (notice that the first time it 
prints the value of how_many_users, it contains a trailing carriage return):

There's more...
Lua can connect to databases in many different ways. Check out FreeSWITCH's 
Confluence page (https://freeswitch.org/confluence/display/FREESWITCH/
FreeSWITCH+Explained) for full documentation.
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