
www.itbook.store/books/9781785289729

https://itbook.store/books/9781785289729

Mastering Python

Master the art of writing beautiful and powerful Python
by using all of the features that Python 3.5 offers

Rick van Hattem

BIRMINGHAM - MUMBAI

www.itbook.store/books/9781785289729

https://itbook.store/books/9781785289729

Mastering Python

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1270416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-972-9

www.packtpub.com

www.itbook.store/books/9781785289729

www.packtpub.com
https://itbook.store/books/9781785289729

Credits

Author
Rick van Hattem

Reviewers
Randall Degges

Dave de Fijter

I. de Hoogt

Commissioning Editor
Sarah Crofton

Acquisition Editor
Reshma Raman

Content Development Editor
Arun Nadar

Technical Editors
Ryan Kochery

Tanmayee Patil

Copy Editor
Vikrant Phadke

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

About the Author

Rick van Hattem is an experienced programmer, entrepreneur, and
software/database architect with over 20 years of programming experience,
including 15 with Python. Additionally, he has a lot of experience with
high-performance architectures featuring large amounts of concurrent users
and/or data.

Rick has founded several start-ups and has done consulting for many companies,
including a few Y Combinator start-ups and several large companies. One of the
startups he founded, Fashiolista.com, is one of the largest social networks for fashion
in the world, featuring millions of users and the performance challenges
to accompany those.

Rick was one of the reviewers on the book PostgreSQL Server Programming,
Packt Publishing.

Thanks to my family, in particular Marloes, who supported me every
step of the way; and my mother and sister, who have always been
there for me.

About the Reviewers

Randall Degges is a happy programmer, speaker, author, and amateur
bodybuilder living in California.

Growing up in Los Angeles, he was intensely interested in building command-
line programs and writing quality software. His love of programming eventually
propelled him into a successful career in software development.

Randall has been a life-long open source developer and has contributed to
hundreds of popular projects in Python, Node.js, and Go. He's also the author of
several popular libraries, which you can find on his public GitHub account
at https://github.com/rdegges.

At 23, he cofounded an extremely popular API service in the telephony industry:
OpenCNAM (https://www.opencnam.com). At 25, he joined Stormpath
(https://stormpath.com) as the head of developer evangelism, whereby he
writes open source security libraries full time and travels the world giving technical
talks about building secure software.

In his free time, Randall writes and edits technical books, runs a security podcast
called Stormcast (https://www.stormca.st), posts blogs on his personal website
(https://www.rdegges.com), and tries to spend time with his high-school
sweetheart, Samantha.

https://github.com/rdegges
https://www.opencnam.com
https://stormpath.com
https://www.stormca.st
https://www.rdegges.com

Dave de Fijter is a Python developer from the Netherlands. He always knew he
would end up "doing something with computers." At a young age, he went to the
library to read books about them even though he had no computer at that time.
This obsession never really ended. In 2001, aged 14, he started his first part-time job,
creating dynamic websites in PHP for a local web development company, and there
he found his calling.

In 2007, he finished his bachelor's degree in ICT while already working full time as a
PHP developer for over a year. In 2008, he switched from PHP to Python and Django
for web development and loved this new technology stack so much that he never
looked back.

After working as a Python developer for various start-ups and established
companies, Dave used this experience to start his own business called Indentity
(https://indentity.nl) in 2010, focusing on Python/Django development and
advice. Up until now, he runs this company and mainly spends his time helping out
start-ups with designing and building technologically advanced web applications
from the ground up as an interim CTO/technical cofounder.

I. de Hoogt, with some basic experience wrought from university assignments in the
field of modeling of multi-phase flows, got himself started in software development.
His main experience in programming in Python stems from an internship at a
company dealing in 3D printing software, where a package resulting in optimized
object orientation and guaranteed mathematical mesh validity was created.

Other projects that he's been involved with have dealt with control systems such as
self-parking cars, multi-legged robots, and quadcopters, but his current job is in the
field of data analysis.

https://indentity.nl

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface	 xi
Chapter 1: Getting Started – One Environment per Project	 1

Creating a virtual Python environment using venv	 2
Creating your first venv	 3
venv arguments	 4
Differences between virtualenv and venv	 6

Bootstrapping pip using ensurepip	 7
ensurepip usage	 7
Manual pip install	 7

Installing C/C++ packages	 8
Debian and Ubuntu	 9
Red Hat, CentOS, and Fedora	 9
OS X	 9
Windows	 10

Summary	 11
Chapter 2: Pythonic Syntax, Common Pitfalls, and Style Guide	 13

Code style – or what is Pythonic code?	 14
Formatting strings – printf-style or str.format?	 15
PEP20, the Zen of Python	 15

Beautiful is better than ugly	 16
Explicit is better than implicit	 17
Simple is better than complex	 18
Flat is better than nested	 20
Sparse is better than dense	 20
Readability counts	 21
Practicality beats purity	 21
Errors should never pass silently	 22
In the face of ambiguity, refuse the temptation to guess	 24
One obvious way to do it	 24
Now is better than never	 25

Table of Contents

[ii]

Hard to explain, easy to explain	 25
Namespaces are one honking great idea	 25
Conclusion	 26

Explaining PEP8	 27
Duck typing	 27
Differences between value and identity comparisons	 29
Loops	 30
Maximum line length	 31

Verifying code quality, pep8, pyflakes, and more	 32
flake8	 32
Pylint	 35

Common pitfalls	 35
Scope matters!	 36

Function arguments	 36
Class properties	 37
Modifying variables in the global scope	 38

Overwriting and/or creating extra built-ins	 39
Modifying while iterating	 41
Catching exceptions – differences between Python 2 and 3	 42
Late binding – be careful with closures	 44
Circular imports	 45
Import collisions	 47

Summary	 48
Chapter 3: Containers and Collections – Storing Data the
Right Way	 49

Time complexity – the big O notation	 50
Core collections	 51

list – a mutable list of items	 52
dict – unsorted but a fast map of items	 55
set – like a dict without values	 57
tuple – the immutable list	 59

Advanced collections	 62
ChainMap – the list of dictionaries	 62
counter – keeping track of the most occurring elements	 64
deque – the double ended queue	 66
defaultdict – dictionary with a default value	 68
namedtuple – tuples with field names	 71
enum – a group of constants	 72
OrderedDict – a dictionary where the insertion order matters	 74
heapq – the ordered list	 75
bisect – the sorted list	 76

Summary	 79

Table of Contents

[iii]

Chapter 4: Functional Programming – Readability Versus Brevity	 81
Functional programming	 82
list comprehensions	 82
dict comprehensions	 85
set comprehensions	 86
lambda functions	 86

The Y combinator	 87
functools	 89

partial – no need to repeat all arguments every time	 90
reduce – combining pairs into a single result	 91

Implementing a factorial function	 91
Processing trees	 93

itertools	 95
accumulate – reduce with intermediate results	 95
chain – combining multiple results	 95
combinations – combinatorics in Python	 96
permutations – combinations where the order matters	 97
compress – selecting items using a list of Booleans	 98
dropwhile/takewhile – selecting items using a function	 98
count – infinite range with decimal steps	 98
groupby – grouping your sorted iterable	 100
islice – slicing any iterable	 101

Summary	 102
Chapter 5: Decorators – Enabling Code Reuse by Decorating	 103

Decorating functions	 104
Why functools.wraps is important	 105
How are decorators useful?	 107
Memoization using decorators	 109
Decorators with (optional) arguments	 111
Creating decorators using classes	 115

Decorating class functions	 116
Skipping the instance – classmethod and staticmethod	 116
Properties – smart descriptor usage	 121

Decorating classes	 125
Singletons – classes with a single instance	 125
Total ordering – sortable classes the easy way	 126

Useful decorators	 130
Single dispatch – polymorphism in Python	 130
Contextmanager, with statements made easy	 133
Validation, type checks, and conversions	 135

Table of Contents

[iv]

Useless warnings – how to ignore them	 138
Summary	 140

Chapter 6: Generators and Coroutines – Infinity, One Step
at a Time	 141

What are generators?	 142
Advantages and disadvantages of generators	 145
Pipelines – an effective use of generators	 146
tee – using an output multiple times	 148
Generating from generators	 149
Context managers	 151

Coroutines	 154
A basic example	 154
Priming	 155
Closing and throwing exceptions	 156
Bidirectional pipelines	 158
Using the state	 162

Summary	 166
Chapter 7: Async IO – Multithreading without Threads	 167

Introducing the asyncio library	 168
The async and await statements	 168

Python 3.4	 169
Python 3.5	 169
Choosing between the 3.4 and 3.5 syntax	 170

A simple example of single-threaded parallel processing	 171
Concepts of asyncio	 172

Futures and tasks	 172
Event loops	 174
Processes	 180

Asynchronous servers and clients	 185
Basic echo server	 185

Summary	 188
Chapter 8: Metaclasses – Making Classes (Not Instances)
Smarter	 189

Dynamically creating classes	 190
A basic metaclass	 191
Arguments to metaclasses	 193
Accessing metaclass attributes through classes	 193

Abstract classes using collections.abc	 194
Internal workings of the abstract classes	 195
Custom type checks	 199
Using abc.ABC before Python 3.4	 201

Table of Contents

[v]

Automatically registering a plugin system	 201
Importing plugins on-demand	 204
Importing plugins through configuration	 205
Importing plugins through the file system	 206

Order of operations when instantiating classes	 207
Finding the metaclass	 208
Preparing the namespace	 208
Executing the class body	 208
Creating the class object (not instance)	 209
Executing the class decorators	 209
Creating the class instance	 209
Example	 209

Storing class attributes in definition order	 212
The classic solution without metaclasses	 212
Using metaclasses to get a sorted namespace	 213

Summary	 215
Chapter 9: Documentation – How to Use Sphinx and
reStructuredText	 217

The reStructuredText syntax	 218
Getting started with reStructuredText	 219
Inline markup	 219
Headers	 221
Lists	 223

Enumerated list	 223
Bulleted list	 224
Option list	 225
Definition list	 225
Nested lists	 226

Links, references, and labels	 227
Images	 229
Substitutions	 231
Blocks, code, math, comments, and quotes	 232
Conclusion	 233

The Sphinx documentation generator	 233
Getting started with Sphinx	 234

Using sphinx-quickstart	 234
Using sphinx-apidoc	 239

Sphinx directives	 243
The table of contents tree directive (toctree)	 243
Autodoc, documenting Python modules, classes, and functions	 244

Sphinx roles	 247

Table of Contents

[vi]

Documenting code	 249
Documenting a class with the Sphinx style	 250
Documenting a class with the Google style	 252
Documenting a class with the NumPy style	 253
Which style to choose	 254

Summary	 255
Chapter 10: Testing and Logging – Preparing for Bugs	 257

Using examples as tests with doctest	 258
A simple doctest example	 258
Writing doctests	 263
Testing with pure documentation	 264
The doctest flags	 267

True and False versus 1 and 0	 268
Normalizing whitespace	 269
Ellipsis	 270

Doctest quirks	 271
Testing dictionaries	 271
Testing floating-point numbers	 273
Times and durations	 273

Testing with py.test	 274
The difference between the unittest and py.test output	 275
The difference between unittest and py.test tests	 280

Simplifying assertions	 281
Parameterizing tests	 286
Automatic arguments using fixtures	 287
Print statements and logging	 291
Plugins	 293

Mock objects	 302
Using unittest.mock	 302
Using py.test monkeypatch	 304

Logging	 305
Configuration	 306

Basic logging configuration	 306
Dictionary configuration	 307
JSON configuration	 308
Ini file configuration	 309
The network configuration	 310

Logger	 314
Usage	 315

Summary	 317
Chapter 11: Debugging – Solving the Bugs	 319

Non-interactive debugging	 320
Inspecting your script using trace	 321

Table of Contents

[vii]

Debugging using logging	 325
Showing call stack without exceptions	 327
Debugging asyncio	 329
Handling crashes using faulthandler	 331

Interactive debugging	 332
Console on demand	 332
Debugging using pdb	 333

Breakpoints	 335
Catching exceptions	 338
Commands	 340

Debugging using ipdb	 341
Other debuggers	 343
Debugging services	 343

Summary	 344
Chapter 12: Performance – Tracking and Reducing Your
Memory and CPU Usage	 345

What is performance?	 346
Timeit – comparing code snippet performance	 347
cProfile – finding the slowest components	 351

First profiling run	 351
Calibrating your profiler	 353
Selective profiling using decorators	 356
Using profile statistics	 358

Line profiler	 361
Improving performance	 363

Using the right algorithm	 363
Global interpreter lock	 363
Try versus if	 364
Lists versus generators	 364
String concatenation	 364
Addition versus generators	 365
Map versus generators and list comprehensions	 366
Caching	 366
Lazy imports	 367
Using optimized libraries	 367
Just-in-time compiling	 368
Converting parts of your code to C	 368

Memory usage	 369
Tracemalloc	 369
Memory profiler	 370
Memory leaks	 372

Table of Contents

[viii]

Reducing memory usage	 378
Generators versus lists	 379
Recreating collections versus removing items	 380
Using slots	 380

Performance monitoring	 382
Summary	 383

Chapter 13: Multiprocessing – When a Single CPU Core Is
not Enough	 385

Multithreading versus multiprocessing	 385
Hyper-threading versus physical CPU cores	 388
Creating a pool of workers	 390
Sharing data between processes	 392
Remote processes	 393

Distributed processing using multiprocessing	 393
Distributed processing using IPyparallel	 396

ipython_config.py	 397
ipython_kernel_config.py	 397
ipcontroller_config.py	 397
ipengine_config.py	 399
ipcluster_config.py	 399

Summary	 402
Chapter 14: Extensions in C/C++, System Calls, and
C/C++ Libraries	 403

Introduction	 403
Do you need C/C++ modules?	 404
Windows	 404
OS X	 404
Linux/Unix	 405

Calling C/C++ with ctypes	 406
Platform-specific libraries	 406

Windows	 406
Linux/Unix	 407
OS X	 407
Making it easy	 408

Calling functions and native types	 408
Complex data structures	 410
Arrays	 410
Gotchas with memory management	 412

CFFI	 413
Complex data structures	 414
Arrays	 415
ABI or API?	 415

Table of Contents

[ix]

CFFI or ctypes?	 415
Native C/C++ extensions	 416

A basic example	 416
C is not Python – size matters	 419
The example explained	 421

static	 421
PyObject*	 422
Parsing arguments	 422

C is not Python – errors are silent or lethal	 424
Calling Python from C – handling complex types	 425

Summary	 427
Chapter 15: Packaging – Creating Your Own Libraries
or Applications	 429

Installing packages	 429
Setup parameters	 430
Packages	 434
Entry points	 434

Creating global commands	 434
Custom setup.py commands	 435

Package data	 438
Testing packages	 439

Unittest	 439
py.test	 440
Nosetests	 442

C/C++ extensions	 443
Regular extensions	 444
Cython extensions	 444

Wheels – the new eggs	 446
Distributing to the Python Package Index	 447

Summary	 449
Index	 451

[xi]

Preface
Python is a language that is easy to learn and both powerful and convenient from the
start. Mastering Python, however, is a completely different question.

Every programming problem you will encounter has at least several possible
solutions and/or paradigms to apply within the vast possibilities of Python. This
book will not only illustrate a range of different and new techniques but also explain
where and when a method should be applied.

This book is not a beginner's guide to Python 3. It is a book that can teach you about
the more advanced techniques possible within Python. Specifically targeting Python
3.5 and up, it also demonstrates several Python 3.5-only features such as async def
and await statements.

As a Python programmer with many years of experience, I will attempt to rationalize
the choices made in this book with relevant background information. These
rationalizations are in no way strict guidelines, however. Several of these cases boil
down to personal style in the end. Just know that they stem from experience and are,
in many cases, the solutions recommended by the Python community.

Some of the references in this book might not be obvious to you if you are not a fan
of Monty Python. This book extensively uses spam and eggs instead of foo and bar in
code samples. To provide some background information, I recommend watching the
"Spam" sketch by Monty Python. It is positively silly!

What this book covers
Chapter 1, Getting Started – One Environment per Project, introduces virtual Python
environments using virtualenv or venv to isolate the packages in your Python projects.

Chapter 2, Pythonic Syntax, Common Pitfalls, and Style Guide, explains what Pythonic
code is and how to write code that is Pythonic and adheres to the Python philosophy.

Preface

[xii]

Chapter 3, Containers and Collections – Storing Data the Right Way, is where we use
the many containers and collections bundled with Python to create code that is fast
and readable.

Chapter 4, Functional Programming – Readability Versus Brevity, covers functional
programming techniques such as list/dict/set comprehensions and lambda
statements that are available in Python. Additionally, it illustrates their similarities
with the mathematical principles involved.

Chapter 5, Decorators – Enabling Code Reuse by Decorating, explains not only how to
create your own function/class decorators, but also how internal decorators such as
property, staticmethod, and classmethod work.

Chapter 6, Generators and Coroutines – Infinity, One Step at a Time, shows how
generators and coroutines can be used to lazily evaluate structures of infinite size.

Chapter 7, Async IO – Multithreading without Threads, demonstrates the usage of
asynchronous functions using async def and await so that external resources no
longer stall your Python processes.

Chapter 8, Metaclasses – Making Classes (Not Instances) Smarter, goes deeper into the
creation of classes and how class behavior can be completely modified.

Chapter 9, Documentation – How to Use Sphinx and reStructuredText, shows how
you can make Sphinx automatically document your code with very little effort.
Additionally, it shows how the Napoleon syntax can be used to document function
arguments in a way that is legible both in the code and the documentation.

Chapter 10, Testing and Logging – Preparing for Bugs, explains how code can be tested
and how logging can be added to enable easy debugging in case bugs occur at a
later time.

Chapter 11, Debugging – Solving the Bugs, demonstrates several methods of hunting
down bugs with the use of tracing, logging, and interactive debugging.

Chapter 12, Performance – Tracking and Reducing Your Memory and CPU Usage, shows
several methods of measuring and improving CPU and memory usage.

Chapter 13, Multiprocessing – When a Single CPU Core Is Not Enough, illustrates that
the multiprocessing library can be used to execute your code, not just on multiple
processors but even on multiple machines.

Preface

[xiii]

Chapter 14, Extensions in C/C++, System Calls, and C/C++ Libraries, covers the calling of
C/C++ functions for both interoperability and performance using Ctypes, CFFI, and
native C/C++.

Chapter 15, Packaging – Creating Your Own Libraries or Applications, demonstrates
the usage of setuptools and setup.py to build and deploy packages on the Python
Package Index (PyPI).

What you need for this book
The only hard requirement for this book is a Python interpreter. A Python 3.5 or newer
interpreter is recommended, but many of the code examples will function in older
Python versions, such as 2.7, with a simple from __future__ import print_statement
added at the top of the file.

Additionally, Chapter 14, Extensions in C/C++, System Calls, and C/C++ Libraries requires
a C/C++ compiler, such as GCC, Visual Studio, or XCode. A Linux machine is by far
the easiest to execute the C/C++ examples, but these should function on Windows and
OS X machines without too much effort as well.

Who this book is for
If you are beyond the absolute Python beginner level, then this book is for you. Even
if you are already an expert Python programmer, I guarantee that you will find some
useful techniques and insights in this book.

At the very least, it will allow Python 2 programmers to learn a lot more about the
new features introduced in Python 3, and specifically Python 3.5.

Basic proficiency in Python is required as the installation of Python interpreters and
the basic Python syntax are not covered.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"It should be noted that the type() function has another use as well."

Preface

[xiv]

A block of code is set as follows:

import abc
import importlib

class Plugins(abc.ABCMeta):
 plugins = dict()

 def __new__(metaclass, name, bases, namespace):
 cls = abc.ABCMeta.__new__(
 metaclass, name, bases, namespace)

Any command-line input or output is written as follows where the >>> indicate the
Python console and the # indicates a regular Linux/Unix shell:

>>> class Spam(object):

… eggs = 'my eggs'

>>> Spam = type('Spam', (object,), dict(eggs='my eggs'))

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xv]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Also, the code for the book is hosted on GitHub at https://github.com/
mastering-python/code

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xvi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting Started – One
Environment per Project

There is one aspect of the Python philosophy that always has been, and always will
be, the most important in the entire language—readability, or Pythonic code. This
book will help you master writing Python the way it was meant to be: readable,
beautiful, explicit, and as simple as possible. In short, it will be Pythonic code. That
is not to say that complicated subjects will not be covered. Naturally, they will, but
whenever the philosophy of Python is at stake, you will be warned when and where
the technique is justified.

Most of the code within this book will function on both Python 2 and Python 3, but
the main target is Python 3. There are three reasons for doing this:

1.	 Python 3 was released in 2008, which is a very long time in the rapidly
changing software world. It's not a new thing anymore, it's stable, it's usable,
and, most importantly, it's the future.

2.	 Development for Python 2 effectively stopped in 2009. Certain features have
been backported from Python 3 to Python 2, but any new development will
be for Python 3 first.

3.	 Python 3 has become mature. While I have to admit that Python 3.2 and
older versions still had a few small issues that made it hard to write code
that functions on both Python 2 and 3, Python 3.3 did improve greatly in
that aspect, and I consider it mature. This is evidenced by the marginally
modified syntax in Python 3.4 and 3.5 and a lot of very useful features, which
are covered in this book.

Getting Started – One Environment per Project

[2]

To summarize, Python 3 is an improvement over Python 2. I have been a skeptic
for a very long time myself, but I do not see any reason not to use Python 3 for new
projects, and even porting existing projects to Python 3 is generally possible with
only minor changes. With cool new features such as async with in Python 3.5, you
will want to upgrade just to try it.

This first chapter will show you how to properly set up an environment, create a new
isolated environment, and make sure you get similar results when running the same
code on different machines. Most Python programmers are already using virtualenv
to create virtual Python environments, but the venv command, introduced in Python
3.3, is a very nice alternative. It is essentially a clone of the virtualenv package but
is slightly simpler and bundled with Python. While its usage is mostly analogous to
virtualenv, there are a few changes that are interesting to know.

Secondly, we will discuss the pip command. The pip command is automatically
installed when using venv through the ensurepip package, a package introduced
in Python 3.4. This package automatically bootstraps pip into an existing Python
library while maintaining independent versions of Python and pip. Before Python
3.4, venv came without pip and had to be installed manually.

Finally, we will discuss how packages created with distutils can be installed.
While pure Python packages are generally easy to install, it can get challenging when
C modules are involved.

In this chapter, the following topics are covered:

•	 Creating a virtual Python environment using venv
•	 Bootstrapping pip using ensurepip
•	 Installing packages based on distutils (C/C++) with pip

Creating a virtual Python environment
using venv
Most Python programmers are already be familiar with venv or virtualenv, but
even if you're not, it's never too late to start using it. The venv module is designed
to isolate your Python environments so that you can install packages specific to
your current project without polluting your global namespace. For example, having
a filename such as sys.py in your current directory can seriously break your code
if you expect to have the standard Python sys library—your local sys libraries
will be imported before the global one, effectively hiding the system library. In
addition, because the packages are installed locally, you don't need system (root/
administrator) access to install them.

Chapter 1

[3]

The result is that you can make sure you have exactly the same version of a package
on both your local development machine and production machines without
interfering with other packages. For example, there are many Django packages
around that require specific versions of the Django project. Using venv, you can
easily install Django 1.4 for project A and Django 1.8 for project B without them ever
knowing that there are different versions installed in other environments. By default,
the environments are even configured in such a way that the global packages are not
visible. The benefit of this is that to get an exact list of all installed packages within
the environment, simply a pip freeze will suffice. The downside is that some of
the heavier packages (for example, numpy) will have to be installed in every separate
environment. Needless to say, which choice is the best for your project depends
on the project. For most projects, I would keep the default setting of not having
the global packages, but when messing around with projects that have lots of C/
C++ extensions, it would be convenient to simply enable the global site packages.
The reason is simple; if you do not have a compiler available, installing the package
locally can be difficult, while the global install has an executable for Windows or an
installable package for Linux/Unix available.

The venv module (https://docs.python.org/3/library/
venv.html) can be seen as a slightly simplified version of the
virtualenv tool (https://virtualenv.pypa.io/), which
has been bundled with Python since version 3.3 (refer to PEP 0405
-- Python Virtual Environments: https://www.python.org/
dev/peps/pep-0405/).
The virtualenv package can generally be used as a drop-in
replacement for venv, which is especially relevant for older
Python versions (below 3.3) that do not come bundled with venv.

Creating your first venv
Creating an environment is quite easy. The basic command comes down to pyvenv
PATH_TO_THE_NEW_VIRTUAL_ENVIRONMENT, so let's give it a try. Note that this
command works on Linux, Unix, and Mac; the Windows command will follow shortly:

pyvenv test_venv

. ./test_venv/bin/activate

(test_venv) #

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://virtualenv.pypa.io/
https://www.python.org/dev/peps/pep-0405/
https://www.python.org/dev/peps/pep-0405/

Getting Started – One Environment per Project

[4]

Some Ubuntu releases (notably 14.04 LTS) maim the Python
installation by not including the full pyvenv package with
ensurepip. The standard workaround is to call pyvenv
--without-pip test_env, which requires a manual
pip installation through the get_pip.py file available on
the pip home page.

This creates an environment called test_venv, and the second line activates the
environment.

On Windows, everything is slightly different but similar overall. By default, the
pyvenv command won't be in your PATH, so running the command is slightly
different. The three options are as follows:

•	 Add the Python\Tools\Scripts\ directory to your PATH
•	 Run the module:

python -m venv test_venv

•	 Run the script directly:
python Python\Tools\Scripts\pyvenv.py test_venv

For convenience, I would recommend that you add the Scripts directory to your
PATH anyhow, since many other applications/scripts (such as pip) will be installed
there as well.

Here is the full example for Windows:

C:\envs>python -m venv test_venv

C:\envs>test_venv\Scripts\activate.bat

(test_venv) C:\envs>

When using Windows PowerShell, the environment can be
activated by using test_venv\Scripts\Activate.ps1
instead. Note that you really do need backslashes here.

venv arguments
So far, we have just created a plain and regular venv, but there are a few, really
useful flags for customizing your venv specifically to your needs.

Chapter 1

[5]

First, let's look at the venv help:

Parameter Description
--system-site-
packages

It gives the virtual environment access to the system-site-
packages directory

--symlinks
Try to use symlinks rather than copies when symlinks are not
the default for the platform

--copies
Try to use copies rather than symlinks even when symlinks are
the default for the platform

--clear
Delete the contents of the environment directory, if it exists, before
environment creation

--upgrade
Upgrade the environment directory to use this version of Python,
assuming that Python has been upgraded in-place

--without-pip
This skips installing or upgrading pip in the virtual environment
(pip is bootstrapped by default)

The most important argument to note is --system-site-packages, which enables
the global site packages within the environment. This means that if you have a
package installed in your global Python version, it will be available within your
environment as well. However, if you try to update it to a different version, it will be
installed locally. Whenever possible, I would recommend disabling the --system-
site-packages flag because it gives you a simple environment without too
many variables. A simple update of the system packages could break your virtual
environment otherwise, but worse, there is no way to know which packages are
needed locally and which ones are just installed for other purposes.

To enable this for an existing environment, you can simply run the environment
creation command again, but this time adding the --system-site-packages flag to
enable the global site packages.

To disable it again, you can simply run the environment creation command without
the flag. This will keep the locally (within the environment) installed packages
available but will remove the global packages from your Python scope.

When using virtualenvwrapper, this can also be done with
the toggleglobalsitepackages command from within the
activated environment.

Getting Started – One Environment per Project

[6]

The --symlinks and --copies arguments can generally be ignored, but it is
important to know the difference. These arguments decide whether the files will be
copied from the base python directory or whether they will be symlinked.

Symlinks are a Linux/Unix/Mac thing; instead of copying
a file it creates a symbolic link that tells the system where to
find the actual file.

By default, venv will try to symlink the files, and if that fails, it will fall back to
copying. Since Windows Vista and Python 3.2, this is also supported on Windows, so
unless you're using a very old system, you will most likely be using symlinks in your
environment. The benefit of symlinks is that it saves disk space and stays in sync
with your Python installation. The downside is that if your system's Python version
undergoes an upgrade, it can break the packages installed within your environment,
but that can easily be fixed by reinstalling the packages using pip.

Finally, the --upgrade argument is useful if your system Python version has been
upgraded in-place. The most common use case for this argument is for repairing
broken environments after upgrading the system Python with a copied (as opposed
to symlinked) environment.

Differences between virtualenv and venv
Since the venv module is essentially a simpler version of virtualenv, they are
mostly the same, but some things are different. Also, since virtualenv is a package
that is distributed separately from Python, it does have some advantages.

The following are the advantages of venv over virtualenv:

•	 venv is distributed with Python 3.3 and above, so no separate install
is needed

•	 venv is simple and straightforward with no features besides the bare
necessities

Advantages of virtualenv over venv:

•	 virtualenv is distributed outside of Python, so it can be updated separately.
•	 virtualenv works on old Python versions, but Python 2.6 or a higher

version is recommended. However, Python 2.5 support is possible with older
versions (1.9.x or lower).

•	 It supports convenient wrappers, such as virtualenvwrapper
(http://virtualenvwrapper.readthedocs.org/)

http://virtualenvwrapper.readthedocs.org/

Chapter 1

[7]

In short, if venv is enough for you, use it. If you are using an old Python version or
want some extra convenience, such as virtualenvwrapper, use virtualenv instead.
Both projects essentially do the same thing, and efforts have been made to easily
switch between them. The biggest and most significant difference between the two is
the wide variety of Python versions that virtualenv supports.

Bootstrapping pip using ensurepip
Slowly, the pip package manager has been replacing easy_install since its
introduction in 2008. Since Python 3.4, it has even become the default and is bundled
with Python. Since Python 3.4 onward, it is installed by default within both the
regular Python environment and that of pyvenv; before that, a manual install is
required. To automatically install pip in Python 3.4 and above, the ensurepip
library is used. This is a library that handles automatic installation and/or upgrades
of pip, so it is at least as recent as the one bundled with ensurepip.

ensurepip usage
The usage of ensurepip is fairly straightforward. Just run python -m ensurepip to
guarantee a pip version or python -m ensurepip --upgrade to make sure that pip
will be at least the version that is bundled with ensurepip.

In addition to installing the regular pip shortcut, this will also install the pipX and
pipX.Y links, which allow you to select a specific Python version. When using
Python 2 and Python 3 simultaneously, this allows you to install packages within
Python 2 and Python 3 with pip2 and pip3, respectively. This means that if you use
python -m ensurepip on Python 3.5 you will get pip, pip3, and pip3.5 commands
installed in your environment.

Manual pip install
The ensurepip package is great if you are using Python 3.4 or above. Below that,
however, you need to install pip manually. Actually, this is surprisingly easy. It
involves just two steps:

1.	 Download the get-pip.py file: https://bootstrap.pypa.io/get-pip.py.
2.	 Execute the get-pip.py file: python get-pip.py.

If the ensurepip command fails due to permission errors, it can
be useful to supply the --user argument. This allows you to
install pip inside the user specific site packages directory,
so root/admin access is not required.

https://bootstrap.pypa.io/get-pip.py

Getting Started – One Environment per Project

[8]

Installing C/C++ packages
Most Python packages are purely Python and blissfully easy to install, just as a
simple pip install packagename does the trick. However, there are cases where
compilation is involved and installation goes from a simple pip install to searching
for hours to see which dependencies are needed to install a certain package.

The specific error message will differ as per the project and environment, but there
is a common pattern in these errors, and understanding what you are looking at can
help a lot when searching for a solution.

For example, when installing pillow on a standard Ubuntu machine, you'll get a few
pages full of errors, warnings, and other messages that end like this:

 x86_64-linux-gnu-gcc: error: build/temp.linux-x86_64-3.4/libImaging/
Jpeg2KDecode.o: No such file or directory

 x86_64-linux-gnu-gcc: error: build/temp.linux-x86_64-3.4/libImaging/
Jpeg2KEncode.o: No such file or directory

 x86_64-linux-gnu-gcc: error: build/temp.linux-x86_64-3.4/libImaging/
BoxBlur.o: No such file or directory

 error: command 'x86_64-linux-gnu-gcc' failed with exit status 1

 --

Command "python3 -c "import setuptools, tokenize;__file__='/tmp/pip-
build-_f0ryusw/pillow/setup.py';exec(compile(getattr(tokenize, 'open',
open)(__file__).read().replace('\r\n', '\n'), __file__, 'exec'))" install
--record /tmp/pip-kmmobum2-record/install-record.txt --single-version-
externally-managed --compile --install-headers include/site/python3.4/
pillow" failed with error code 1 in /tmp/pip-build-_f0ryusw/pillow

Upon seeing messages like these, you might be tempted to search for one of the
lines such as x86_64-linux-gnu-gcc: error: build/temp.linux-x86_64-3.4/
libImaging/Jpeg2KDecode.o: No such file or directory. While this might give
you some relevant results, most likely it will not. The trick with installations like these
is to scroll up until you see messages about missing headers. Here is an example:

 In file included from libImaging/Imaging.h:14:0,

 from libImaging/Resample.c:16:

 libImaging/ImPlatform.h:10:20: fatal error: Python.h: No such file or
directory

 #include "Python.h"

 ^

 compilation terminated.

Chapter 1

[9]

The key message here is that Python.h is missing. These are part of the Python
headers and are needed for the compilation of most C/C++ packages within Python.
Depending on the operating system, the solutions will vary—unfortunately. So, I
recommend that you skip all parts of this paragraph that are not relevant for your case.

Debian and Ubuntu
In Debian and Ubuntu, the package to be installed is python3-dev or python2-dev if
you're still using Python 2. The command to execute is as follows:

sudo apt-get install python3-dev

However, this installs the development headers only. If you want the compiler and
other headers bundled with the install, then the build-dep command is also very
useful. Here is an example:

sudo apt-get build-dep python3

Red Hat, CentOS, and Fedora
Red Hat, CentOS, and Fedora are rpm-based distros that use the yum package
manager to install the requirements. Most development headers are available
through <package-name>-devel and are easily installable as such. To install the
Python 3 development headers, use this line:

sudo apt-get install python3-devel

To make sure you have all the requirements such as development headers and
compilers to build packages such as Python, the yum-builddep command is available:

yum-builddep python3

OS X
The install procedure on OS X consists of three steps before the actual package
can be installed.

First, you have to install Xcode. This can be done through the OS X App Store at
https://itunes.apple.com/en/app/xcode/id497799835?mt=12.

Then you have to install the Xcode command-line tools:

xcode-select --install

https://itunes.apple.com/en/app/xcode/id497799835?mt=12

Getting Started – One Environment per Project

[10]

Finally, you need to install the Homebrew package manager. The steps are available
at http://brew.sh/, but the install command is as follows:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/master/install)"

Other package managers, such as Macports, are also possible,
but Homebrew is currently the OS X package manager with the
most active development and community.

Once all of these steps have been completed, you should have a working Homebrew
installation. The working of Homebrew can be verified using the brew doctor
command. If there are no major errors in the output, then you should be ready to
install your first packages through brew. Now we simply need to install Python and
we're done:

brew install python3

Windows
On Windows, manual compilation of C Python packages is generally a non-trivial
task to say the least. Most packages have been written with Linux/Unix systems
in mind (OS X falls under the Unix category), and Windows is a nice-to-have
for developers. The result is that packages are difficult to compile on Windows
because there are few people testing them and many of the libraries require manual
installation, making it a very tedious task. So, unless you really have to, try and
stay away from manually compiling Python packages on Windows. Most packages
are available as installable binary downloads with a bit of searching, and there are
alternatives such as Anaconda that include binary packages for most important C
Python packages.

If you still feel inclined to manually compile C Python packages, then there is
another option, and it is generally an easier alternative. The Cygwin project
(http://cygwin.com/) attempts to make Linux applications run natively on
Windows. This is generally an easier solution than making packages work with
Visual Studio.

If you do wish to take the Visual Studio path, I would like to point you towards
Chapter 14, Extensions in C/C++, System Calls, and C/C++ Libraries, which covers
manual writing of C/C++ extensions and some information on which Visual Studio
versions you need for your Python version.

http://brew.sh/
http://cygwin.com/

Chapter 1

[11]

Summary
With the inclusion of packages such as pip and venv, I feel that Python 3 has become
a complete package that should suit most people. Beyond legacy applications, there
is no real reason not to choose Python 3 anymore. The initial Python 3 release in 2008
was definitely a bit raw compared to the well-rounded Python 2.6 version released
the same year, but a lot has changed in that aspect. The last major Python 2 release
was Python 2.7, which was released in 2010; within the software world, that is a
very, very long time. While Python 2.7 still receives maintenance, it will not receive
any of the amazing new features that Python 3 is getting—features such as Unicode
strings by default, dict generators (Chapter 6, Generators and Coroutines – Infinity,
One Step at a Time), and async methods (Chapter 7, Async IO – Multithreading
without Threads).

After finishing this chapter, you should be able to create a clean and recreatable virtual
environment and know where to look if an installation of C/C++ packages fails.

Here are the most important notes for this chapter:

•	 For a clean and simple environment, use venv. If compatibility with Python 2
is needed, use virtualenv.

•	 If C/C++ packages fail to install, look for the error about missing includes.

The next chapter covers the Python style guide, which rules are important, and
why they matter. Readability is one of the most important aspects of the Python
philosophy, and you will learn methods and styles for writing cleaner and more
readable Python code.

[13]

Pythonic Syntax, Common
Pitfalls, and Style Guide

The design and development of the Python programming language have always
been in the hands of its original author, Guido van Rossum, in many cases lovingly
referred to as the Benevolent Dictator For Life (BDFL). Even though van Rossum is
thought to have a time machine (he has repeatedly answered feature requests with
"I just implemented that last night": http://www.catb.org/jargon/html/G/Guido.
html), he is still just a human and needs help with the maintenance and development
of Python. To facilitate that, the Python Enhancement Proposal (PEP) process
has been developed. This process allows anyone to submit a PEP with a technical
specification of the feature and a rationale to defend its usefulness. After a discussion
on the Python mailing lists and possibly some improvements, the BDFL will make a
decision to accept or reject the proposal.

The Python style guide (PEP 8: https://www.python.org/dev/peps/pep-0008/)
was once submitted as one of those PEPs, and it is has been accepted and improved
regularly since. It has a lot of great and widely accepted conventions as well as a
few disputed ones. Especially, the maximum line length of 79 characters is a topic of
many discussions. Limiting a line to 79 characters does have some merits, however.
In addition to this, while just the style guide itself does not make code Pythonic, as
"The Zen of Python" (PEP 20: https://www.python.org/dev/peps/pep-0020/)
elegantly says: "Beautiful is better than ugly." PEP 8 defines how code should be
formatted in an exact way, and PEP 20 is more of a philosophy and mindset.

The common pitfalls are a list of common mistakes made, varying from beginner
mistakes to advanced ones. They range from passing a list or dictionary (which
are mutable) as arguments to late-binding problems in closures. An even more
important issue is how to work around circular imports in a clean way.

http://www.catb.org/jargon/html/G/Guido.html
http://www.catb.org/jargon/html/G/Guido.html
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0020/

Pythonic Syntax, Common Pitfalls, and Style Guide

[14]

Some of the techniques used in the examples in this chapter might be a bit too
advanced for such an early chapter, but please don't worry. This chapter is about
style and common pitfalls. The inner workings of the techniques used will be
covered in later chapters.

We will cover the following topics in this chapter:

•	 Code style (PEP 8, pyflakes, flake8, and more)
•	 Common pitfalls (lists as function arguments, pass by value versus pass by

reference, and inheritance behavior)

The definition of Pythonic code is highly subjective and mainly
reflects the opinion of this author. When working on a project,
it is more important to stay consistent with the coding styles of
that project than with the coding guidelines given by Python or
this book.

Code style – or what is Pythonic code?
Pythonic code—when you first hear of it, you might think it is a programming
paradigm, similar to object-oriented or functional programming. While some of
it could be considered as such, it is actually more of a design philosophy. Python
leaves you free to choose to program in an object-oriented, procedural, functional,
aspect-oriented or even logic-oriented way. These freedoms make Python a great
language to write in, but as always, freedom has the drawback of requiring a lot of
discipline to keep the code clean and readable. The PEP8 standard tells us how to
format code, but there is more to Pythonic code than syntax alone. That is what the
Pythonic philosophy (PEP20) is all about, code that is:

•	 Clean
•	 Simple
•	 Beautiful
•	 Explicit
•	 Readable

Most of these sound like common sense, and I think they should be. There are cases
however, where there is not a single obvious way to do it (unless you're Dutch, of
course, as you'll read later in this chapter). That is the goal of this chapter—to learn
what code is beautiful and why certain decisions have been made in the Python
style guide.

Chapter 2

[15]

Some programmers once asked Guido van Rossum whether
Python would ever support braces. Since that day, braces have
been available through a __future__ import:
>>> from __future__ import braces

 File "<stdin>", line 1

SyntaxError: not a chance

Formatting strings – printf-style or str.format?
Python has supported both printf-style (%) and str.format for a long time, so
you are most likely familiar with both already.

Within this book, printf-style formatting will be used for a few reasons:

•	 The most important reason is that it comes naturally to me. I have been using
printf in many different programming languages for about 20 years now.

•	 The printf syntax is supported in most programming languages, which
makes it familiar for a lot of people.

•	 While only relevant for the purposes of the examples in this book, it takes
up slightly less space, requiring less formatting changes. As opposed to
monitors, books have not gotten wider over the years.

In general most people recommend str.format these days, but it mainly comes
down to preference. The printf-style is simpler, while the str.format method is
more powerful.

If you wish to learn more about how printf-style formatting can be replaced with
str.format (or the other way around, of course), then I recommend the PyFormat
site at https://pyformat.info/.

PEP20, the Zen of Python
Most of the Pythonic philosophy can be explained through PEP20. Python has a
nice little Easter egg to always remind you of PEP20. Simply type import this in a
Python console and you will get the PEP20 lines. To quote PEP20:

"Long time Pythoneer Tim Peters succinctly channels the BDFL's guiding
principles for Python's design into 20 aphorisms, only 19 of which have been
written down."

https://pyformat.info/

Pythonic Syntax, Common Pitfalls, and Style Guide

[16]

The next few paragraphs will explain the intentions of these 19 lines.

The examples within the PEP20 section are not necessarily all
identical in working, but they do serve the same purpose. Many
of the examples here are fictional and serve no purpose other
than explaining the rationale of the paragraph.

For clarity, let's see the output of import this before we begin:

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

Beautiful is better than ugly
While beauty is quite subjective, there are some Python style rules to adhere to:
limiting line lengths, keeping statements on separate lines, splitting imports on
separate lines, and so on.

Chapter 2

[17]

In short, instead of a somewhat complex function such as this:

 def filter_modulo(items, modulo):
 output_items = []
 for i in range(len(items)):
 if items[i] % modulo:
 output_items.append(items[i])
 return output_items

Or this:

filter_modulo = lambda i, m: [i[j] for i in range(len(i))
 if i[j] % m]

Just do the following:

def filter_modulo(items, modulo):
 for item in items:
 if item % modulo:
 yield item

Simpler, easier to read, and a bit more beautiful!

These examples are not identical in results. The first two
return lists whereas the last returns a generator. Generators
will be discussed more thoroughly in Chapter 6, Generators and
Coroutines – Infinity, One Step at a Time.

Explicit is better than implicit
Imports, arguments, and variable names are just some of the many cases where
explicit code is far easier to read at the cost of a little bit more effort and/or verbosity
when writing the code.

Here is an example:

from spam import *
from eggs import *

some_function()

Pythonic Syntax, Common Pitfalls, and Style Guide

[18]

While this saves you some typing, it becomes quite difficult to see where
some_function is defined. Is it defined in foo? In bar? Perhaps in both modules?
There are editors with advanced introspection that can help you here, but why not
keep it explicit so that everyone (even when simply viewing the code online) can see
what it's doing?

import spam
import eggs

spam.some_function()
eggs.some_function()

The added benefit is that we can explicitly call the function from either spam or eggs
here, and everyone will have a better idea what the code does.

The same goes for functions with *args and **kwargs. They can be very useful at
times, but they do have the downside of making it less obvious which arguments are
valid for a function:

def spam(egg, *args, **kwargs):
 processed_egg = process_egg(egg, *args, **kwargs)
 return Spam(processed_egg)

Documentation can obviously help for cases like these and I don't disagree with
the usage of *args and **kwargs in general, but it is definitely a good idea to keep
at least the most common arguments explicit. Even when it requires you to repeat
the arguments for a parent class, it just makes the code that much clearer. When
refactoring the parent class in future, you'll know whether there are subclasses that
still use some parameters.

Simple is better than complex
"Simple is better than complex. Complex is better than complicated."

The most important question to ask yourself when starting a new project is: how
complex does it need to be?

For example, let's assume that we've written a small program and now we need to
store a bit of data. What options do we have here?

•	 A full database server, such as PostgreSQL or MySQL
•	 A simple file system database, such as SQLite or AnyDBM
•	 Flat file storage, such as CSV and TSV

Chapter 2

[19]

•	 Structured storage, such as JSON, YAML, or XML
•	 Serialized Python, such as Pickle or Marshal

All of these options have their own use cases as well as advantages and
disadvantages depending on the use case:

•	 Are you storing a lot of data? Then full database servers and flat file storage
are generally the most convenient options.

•	 Should it be easily portable to different systems without any package
installation? That makes anything besides full database servers
convenient options.

•	 Do we need to search the data? This is much easier using one of the database
systems, both filesystem and full servers.

•	 Are there other applications that need to be able to edit the data? That
makes universal formats such as flat file storage and the structured storage
convenient options, but excludes serialized Python.

Many questions! But the most important one is: how complex does it need to be?
Storing data in a pickle file is something you can do in three lines, while connecting
to a database (even with SQLite) will be more complicated and, in many cases,
not needed:

import pickle # Or json/yaml
With open('data.pickle', 'wb') as fh:
 pickle.dump(data, fh, pickle.HIGHEST_PROTOCOL)

Versus:

import sqlite3
connection = sqlite3.connect('database.sqlite')
cursor = connection.cursor()
cursor.execute('CREATE TABLE data (key text, value text)')
cursor.execute('''INSERT INTO data VALUES ('key', 'value')''')
connection.commit()
connection.close()

These examples are far from identical, of course, as one stores a complete data object
whereas the other simply stores some key/value pairs within a SQLite database.
That is not the point, however. The point is that the code is far more complex while it
is actually less versatile in many cases. With proper libraries, this can be simplified,
but the basic premise stays the same. Simple is better than complex and if the
complexity is not needed, it's better to avoid it.

Pythonic Syntax, Common Pitfalls, and Style Guide

[20]

Flat is better than nested
Nested code quickly becomes unreadable and hard to understand. There are no
strict rules here, but generally when you have three levels of nested loops, it is time
to refactor.

Just take a look the following example, which prints a list of two-dimensional
matrices. While nothing is specifically wrong here, splitting it into a few more
functions might make it easier to understand the purpose and easier to test:

def print_matrices():
 for matrix in matrices:
 print('Matrix:')
 for row in matrix:
 for col in row:
 print(col, end='')
 print()
 print()

The somewhat flatter version is as follows:

def print_row(row):
 for col in row:
 print(col, end='')

def print_matrix(matrix):
 for row in matrix:
 print_row(row)
 print()

def print_matrices(matrices):
 for matrix in matrices:
 print('Matrix:')
 print_matrix(matrix)
 print()

This example might be a bit convoluted, but the idea is sound. Having deeply nested
code can easily become very unreadable.

Sparse is better than dense
Whitespace is generally a good thing. Yes, it will make your files longer and your
code will take more space, but it can help a lot with readability if you split your
code logically:

>>> def make_eggs(a,b):'while',['technically'];print('correct');\
... {'this':'is','highly':'unreadable'};print(1-a+b**4/2**2)

Chapter 2

[21]

...
>>> make_eggs(1,2)
correct
4.0

While technically correct, this is not all that readable. I'm certain that it would take
me some effort to find out what the code actually does and what number it would
print without trying it:

>>> def make_eggs(a, b):
... 'while', ['technically']
... print('correct')
... {'this': 'is', 'highly': 'unreadable'}
... print(1 - a + ((b ** 4) / (2 ** 2)))
...
>>> make_eggs(1, 2)
correct
4.0

Still, this is not the best code, but at least it's a bit more obvious what is happening in
the code.

Readability counts
Shorter does not always mean easier to read:

fib=lambda n:reduce(lambda x,y:(x[0]+x[1],x[0]),[(1,1)]*(n-2))[0]

Although the short version has a certain beauty in conciseness, I personally find the
following far more beautiful:

def fib(n):
 a, b = 0, 1
 while True:
 yield a
 a, b = b, a + b

Practicality beats purity
"Special cases aren't special enough to break the rules. Although practicality
beats purity."

Breaking the rules can be tempting at times, but it tends to be a slippery slope.
Naturally, this applies to all rules. If your quick fix is going to break the rules, you
should really try to refactor it immediately. Chances are that you won't have the time
to fix it later and will regret it.

Pythonic Syntax, Common Pitfalls, and Style Guide

[22]

No need to go overboard though. If the solution is good enough and refactoring
would be much more work, then choosing the working method might be better.
Even though all of these examples pertain to imports, this guideline applies to
nearly all cases.

To prevent long lines, imports can be made shorter by using a few methods, adding
a backslash, adding parentheses, or just shortening the imports:

from spam.eggs.foo.bar import spam, eggs, extra_spam, extra_eggs,
extra_stuff from spam.eggs.foo.bar import spam, eggs, extra_spam,
extra_eggs

This case can easily be avoided by just following PEP8 (one import per line):

from spam.eggs.foo.bar import spam from spam.eggs.foo.bar import eggs
from spam.eggs.foo.bar import extra_spam from spam.eggs.foo.bar import
extra_eggs from spam.eggs.foo.bar import extra_stuff from spam.eggs.
foo.bar import spam
from spam.eggs.foo.bar import eggs
from spam.eggs.foo.bar import extra_spam
from spam.eggs.foo.bar import extra_eggs

But what about really long imports?

from spam_eggs_and_some_extra_spam_stuff import
my_spam_and_eggs_stuff_which_is_too_long_for_a_line

Yes… even though adding a backslash for imports is generally not recommended,
there are some cases where it's still the best option:

from spam_eggs_and_some_extra_spam_stuff \
 import my_spam_and_eggs_stuff_which_is_too_long_for_a_line

Errors should never pass silently
"Errors should never pass silently. Unless explicitly silenced."

To paraphrase Jamie Zawinsky: Some people, when confronted with an error, think
"I know, I'll use a try/except/pass block." Now they have two problems.

Bare or too broad exception catching is already a bad idea. Not passing them along
will make you (or some other person working on the code) wonder for ages what
is happening:

try:
 value = int(user_input)
except:
 pass

Chapter 2

[23]

If you really need to catch all errors, be very explicit about it:

try:
 value = int(user_input)
except Exception as e:
 logging.warn('Uncaught exception %r', e)

Or even better, catch it specifically and add a sane default:

try:
 value = int(user_input)
except ValueError:
 value = 0

The problem is actually even more complicated. What about blocks of code that
depend on whatever is happening within the exception? For example, consider the
following code block:

try:
 value = int(user_input)
 value = do_some_processing(value)
 value = do_some_other_processing(value)
except ValueError:
 value = 0

If ValueError is raised, which line is causing it? Is it int(user_input), do_some_
processing(value), or do_some_other_processing(value)? With silent catching
of the error, there is no way to know when regularly executing the code, and this can
be quite dangerous. If for some reason the processing of the other functions changes,
it becomes a problem to handle exceptions in this way. So, unless it was actually
intended to behave like that, use this instead:

try:
 value = int(user_input)
except ValueError:
 value = 0
else:
 value = do_some_processing(value)
 value = do_some_other_processing(value)

Pythonic Syntax, Common Pitfalls, and Style Guide

[24]

In the face of ambiguity, refuse the temptation
to guess
While guesses will work in many cases, they can bite you if you're not careful. As
already demonstrated in the "explicit is better than implicit" paragraph, when having
a few from ... import *, you cannot always be certain which module is providing
you the variable you were expecting.

Ambiguity should generally be avoided, so guessing can be avoided. Clear and
unambiguous code generates fewer bugs. A useful case where ambiguity is likely is
function calling. Take, for example, the following two function calls:

spam(1, 2, 3, 4, 5)
spam(spam=1, eggs=2, a=3, b=4, c=5)

They could be the same, but they might also not be. It's impossible to say without
seeing the function. If the function were implemented in the following way, the
results would be vastly different between the two:

def spam(a=0, b=0, c=0, d=0, e=0, spam=1, eggs=2):
 pass

I'm not saying you should use keyword arguments in all cases, but if there are many
arguments involved and/or hard-to-identify parameters (such as numbers), it would
be a good idea. Instead of using keyword arguments, you can choose logical variable
names to pass the arguments as well, as long as the meaning is clearly conveyed
from the code.

For example, the following is a similar call that uses custom variable names to
convey the intent:

a = 3
b = 4
c = 5
spam(a, b, c)

One obvious way to do it
"There should be one—and preferably only one—obvious way to do it. Although
that way may not be obvious at first unless you're Dutch."

Chapter 2

[25]

In general, after thinking about a difficult problem for a while, you will find that
there is one solution that is clearly preferable over the alternatives. There are cases
where this is not the case, however, and in that case, it can be useful if you're Dutch.
The joke here is that Guido van Rossum, the BDFL and original author of Python, is
Dutch (as is yours truly).

Now is better than never
"Now is better than never. Although never is often better than *right* now."

It's better to fix a problem right now than push it into the future. There are cases,
however, where fixing it right away is not an option. In those cases, a good
alternative can be to mark a function as deprecated instead so that there is no chance
of accidentally forgetting the problem:

import warnings
warnings.warn('Something deprecated', DeprecationWarning)

Hard to explain, easy to explain
"If the implementation is hard to explain, it's a bad idea. If the implementation is
easy to explain, it may be a good idea."

As always, keep things as simple as you can. While complicated code can be nice to
test with, it is more prone to bugs. The simpler you can keep things, the better.

Namespaces are one honking great idea
"Namespaces are one honking great idea—let's do more of those!"

Namespaces can make code a lot clearer to use. Naming them properly makes it even
better. For example, what does the following line of code do?

load(fh)

Not too clear, right?

How about the version with the namespace?

pickle.load(fh)

And now we do understand.

Pythonic Syntax, Common Pitfalls, and Style Guide

[26]

To give an example of a namespace, the full length of which renders it impractical to
use, we will take a look at the User class in Django. Within the Django framework,
the User class is stored in django.contrib.auth.models.User. Many projects use
the object in the following way:

from django.contrib.auth.models import User
Use it as: User

While this is fairly clear, it might make someone think that the User class is local
to the current class. Doing the following instead lets people know that it is in a
different module:

from django.contrib.auth import models
Use it as: models.User

This quickly clashes with other models' imports though, so personally I would
recommend the following instead:

from django.contrib.auth import models as auth_models
Use it as auth_models.User

Here is another alternative:

import django.contrib.auth as auth_models
Use it as auth_models.User

Conclusion
Now we should have some idea of what the Pythonic ideology is about. Creating
code that is:

•	 Beautiful
•	 Readable
•	 Unambiguous
•	 Explicit enough
•	 Not completely void of whitespace

So let's move on to some more examples of how to create beautiful, readable, and
simple code using the Python style guide.

Chapter 2

[27]

Explaining PEP8
The previous paragraphs have already shown a lot of examples using PEP20 as a
reference, but there are a few other important guidelines to note as well. The PEP8
style guide specifies the standard Python coding conventions. Simply following the
PEP8 standard doesn't make your code Pythonic though, but it is most certainly a
good start. Which style you use is really not that much of a concern as long as you
are consistent. The only thing worse than not using a proper style guide is being
inconsistent with it.

Duck typing
Duck typing is a method of handling variables by behavior. To quote Alex Martelli
(one of my Python heroes, also nicknamed the MartelliBot by many):

"Don't check whether it IS-a duck: check whether it QUACKS-like-a duck,
WALKS-like-a duck, etc, etc, depending on exactly what subset of duck-like
behaviour you need to play your language-games with. If the argument fails this
specific-ducklyhood-subset-test, then you can shrug, ask "why a duck?"

In many cases, when people make a comparison such as if spam != '':, they are
actually just looking for anything that is considered a true value. While you can
compare the value to the string value '', you generally don't have to make it so
specific. In many cases, simply doing if spam: is more than enough and actually
functions better.

For example, the following lines of code use the value of timestamp to generate
a filename:

filename = '%s.csv' % timestamp

Because it is named timestamp, one might be tempted to check whether it is actually
a date or datetime object, like this:

import datetime
if isinstance(timestamp, (datetime.date, datetime.datetime)):
 filename = '%s.csv' % timestamp
else:
 raise TypeError(
 'Timestamp %r should be date(time) object, got %s'
 % (timestamp, type(timestamp)))

Pythonic Syntax, Common Pitfalls, and Style Guide

[28]

While this is not inherently wrong, comparing types is considered a bad practice
in Python, as there is oftentimes no need for it. In Python, duck typing is preferred
instead. Just try converting it to a string and don't care what it actually is. To illustrate
how little difference this can make for the end result, see the following code:

import datetime
timestamp = datetime.date(2000, 10, 5)
filename = '%s.csv' % timestamp
print('Filename from date: %s' % filename)

timestamp = '2000-10-05'
filename = '%s.csv' % timestamp
print('Filename from str: %s' % filename)

As you might expect, the result is identical:

Filename from date: 2000-10-05.csv
Filename from str: 2000-10-05.csv

The same goes for converting a number to a float or an integer; instead of enforcing a
certain type, just require certain features. Need something that can pass as a number?
Just try to convert to int or float. Need a file object? Why not just check whether
there is a read method with hasattr?

So, don't do this:

if isinstance(value, int):

Instead, just use the following:

value = int(value)

And instead of this:

import io

if isinstance(fh, io.IOBase):

Simply use the following line:

if hasattr(fh, 'read'):

Chapter 2

[29]

Differences between value and identity comparisons
There are several methods of comparing objects in Python, the standard greater than
and less than, equal and unequal. But there are actually a few more, and one of them
is a bit special. That's the identity comparison operator: instead of using if spam ==
eggs, you use if spam is eggs. The big difference is that one compares the value
and the other compares the identity. This sounds a little vague, but it's actually fairly
simple. At least within the CPython implementation, the memory address is being
compared, which means that it is one of the lightest lookups you can get. Whereas a
value needs to make sure that the types are comparable and perhaps check the sub-
values, the identity check just checks whether the unique identifier is the same.

If you've ever written Java, you should be familiar with this
principle. In Java, a regular string comparison (spam == eggs)
will use the identity instead of the value. To compare the value,
you need to use spam.equals(eggs) to get the correct results.

Look at this example:

a = 200 + 56
b = 256
c = 200 + 57
d = 257

print('%r == %r: %r' % (a, b, a == b))
print('%r is %r: %r' % (a, b, a is b))
print('%r == %r: %r' % (c, d, c == d))
print('%r is %r: %r' % (c, d, c is d))

While the values are the same, the identities are different. The actual result from this
code is as follows:

256 == 256: True
256 is 256: True
257 == 257: True
257 is 257: False

The catch is that Python keeps an internal array of integer objects for all integers
between -5 and 256; that's why it works for 256 but not for 257.

You might wonder why anyone would ever want to use is instead of ==. There are
multiple valid answers; depending on the case, one is correct and the other isn't. But
performance can also be a very important consideration. The basic guideline is that
when comparing Python singletons such as True, False, and None, always compare
using is.

Pythonic Syntax, Common Pitfalls, and Style Guide

[30]

As for the performance consideration, think of the following example:

spam = range(1000000)
eggs = range(1000000)

When doing spam == eggs, this will compare every item in both lists to each other,
so effectively it is doing 1,000,000 comparisons internally. Compare this with only
one simple identity check when using spam is eggs.

To look at what Python is actually doing internally with the is operator, you can use
the id function. When executing if spam is eggs, Python will actually execute if
id(spam) == id(eggs) internally.

Loops
Coming from other languages, one might be tempted to use for loops or even while
loops to process the items of a list, tuple, str, and so on. While valid, it is more
complex than needed. For example, consider this code:

i = 0
while i < len(my_list):
 item = my_list[i]
 i += 1
 do_something(i, item)

Instead you can do the following:

for i, item in enumerate(my_list):
 do_something(i, item)

While this can be written even shorter, it's generally not recommended, as it does not
improve readability:

[do_something(i, item) for i, item in enumerate(my_list)]

The last option might be clear to some but not all. Personally, I prefer to limit the
usage of list comprehensions, dict comprehensions, and map and filter statements for
when the result is actually being stored.

For example:

spam_items = [x for x in items if x.startswith('spam_')]

But still, only if it doesn't hurt the readability of the code.

Chapter 2

[31]

Consider this bit of code:

eggs = [is_egg(item) or create_egg(item) for item in list_of_items if
egg and hasattr(egg, 'egg_property') and isinstance(egg, Egg)] eggs =
[is_egg(item) or create_egg(item) for item in list_of_items
 if egg and hasattr(egg, 'egg_property')
 and isinstance(egg, Egg)]

Instead of putting everything in the list comprehension, why not split it into a
few functions?

def to_egg(item):
 return is_egg(item) or create_egg(item)

def can_be_egg(item):
 has_egg_property = hasattr(egg, 'egg_property')
 is_egg_instance = isinstance(egg, Egg)
 return egg and has_egg_property and is_egg_instance

eggs = [to_egg(item) for item in list_of_items if can_be_egg(item)]
eggs = [to_egg(item) for item in list_of_items if
 can_be_egg(item)]

While this code is a bit longer, I would personally argue that it's more readable
this way.

Maximum line length
Many Python programmers think 79 characters is too constricting and just keep the lines
longer. While I am not going to argue for 79 characters specifically, setting a low and
fixed limit such as 79 or 99 is a good idea. While monitors get wider and wider, limiting
your lines can still help a lot with readability and it allows you to put multiple files next
to each other. It's a regular occurrence for me to have four Python files opened next to
each other. If the line width were more than 79 characters, that simply wouldn't fit.

The PEP8 guide tells us to use backslashes in cases where lines get too long. While
I agree that backslashes are preferable over long lines, I still think they should be
avoided if possible. Here's an example from PEP8:

with open('/path/to/some/file/you/want/to/read') as file_1, \
 open('/path/to/some/file/being/written', 'w') as file_2:
 file_2.write(file_1.read())

Instead of using backslashes, I would reformat it like this:

filename_1 = '/path/to/some/file/you/want/to/read'
filename_2 = '/path/to/some/file/being/written'

Pythonic Syntax, Common Pitfalls, and Style Guide

[32]

with open(filename_1) as file_1, open(filename_2, 'w') as file_2:
 file_2.write(file_1.read())

Or perhaps the following:

filename_1 = '/path/to/some/file/you/want/to/read'
filename_2 = '/path/to/some/file/being/written'
with open(filename_1) as file_1:
 with open(filename_2, 'w') as file_2:
 file_2.write(file_1.read())

Not always an option, of course, but it's a good consideration to keep the code short
and readable. It actually gives a bonus of adding more information to the code. If,
instead of filename_1, you use a name that conveys the goal of the filename, it
immediately becomes clearer what you are trying to do.

Verifying code quality, pep8, pyflakes,
and more
There are many tools for checking code quality in Python. The simplest ones, such
as pep8, just validate a few simple PEP8 errors. The more advanced ones, such as
pylint, do advanced introspections to detect potential bugs in otherwise working
code. A large portion of what pylint offers is a bit over the top for many projects,
but still interesting to look at.

flake8
The flake8 tool combines pep8, pyflakes, and McCabe to set up a quality standard
for code. The flake8 tool is one of the most important packages for maintaining
code quality in my packages. All the packages that I maintain have a 100% flake8
compliance requirement. It does not promise readable code, but at least it requires a
certain level of consistency, which is very important when writing on a project with
multiple programmers.

Pep8
One of the simplest tools used to check the quality of Python code is the pep8
package. It doesn't check everything that is in the PEP8 standard, but it goes a long
way and is still updated regularly to add new checks. Some of the most important
things checked by pep8 are as follows:

•	 Indentation, while Python will not check how many spaces you use to indent,
it does not help with the readability of your code

•	 Missing whitespace, such as spam=123

Chapter 2

[33]

•	 Too much whitespace, such as def eggs(spam = 123):
•	 Too many or too few blank lines
•	 Too long lines
•	 Syntax and indentation errors
•	 Incorrect and/or superfluous comparisons (not in, is not, if spam is

True, and type comparisons without isinstance)

The conclusion is that the pep8 tool helps a lot with testing whitespace and some of
the more common styling issues, but it is still fairly limited.

pyflakes
This is where pyflakes comes in. pyflakes is a bit more intelligent than pep8 and
warns you about style issues such as:

•	 Unused imports
•	 Wildcard imports (from module import *)
•	 Incorrect __future__ imports (after other imports)

But more importantly, it warns about potential bugs, such as the following:

•	 Redefinitions of names that were imported
•	 Usage of undefined variables
•	 Referencing variables before assignment
•	 Duplicate argument names
•	 Unused local variables

The last bit of PEP8 is covered by the pep8-naming package. It makes sure that your
naming is close to the standard dictated by PEP8:

•	 Class names as CapWord
•	 Function, variable, and argument names all in lowercase
•	 Constants as full uppercase and being treated as constants
•	 The first argument of instance methods and class methods as self and

cls, respectively

Pythonic Syntax, Common Pitfalls, and Style Guide

[34]

McCabe
Lastly, there is the McCabe complexity. It checks the complexity of code by
looking at the Abstract Syntax Tree (AST). It finds out how many lines, levels,
and statements are there and warns you if your code has more complexity than a
preconfigured threshold. Generally, you will use McCabe through flake8, but a
manual call is possible as well. Using the following code:

def spam():
 pass

def eggs(matrix):
 for x in matrix:
 for y in x:
 for z in y:
 print(z, end='')
 print()
 print()

McCabe will give us the following output:

pip install mccabe

...

python -m mccabe cabe_test.py 1:1: 'spam' 1

5:1: 'eggs' 4

Your maximum threshold is configurable, of course, but the default is 10. The
McCabe test returns a number that is influenced by parameters such as the size of a
function, the nested depths, and a few others. If your function reaches 10, it might be
time to refactor the code.

flake8
All of this combined is flake8, a tool that combines these tools and outputs a single
report. Some of the warnings generated by flake8 might not fit your taste, so each
and every one of the checks can be disabled, both per file and for the entire project
if needed. For example, I personally disable W391 for all my projects, which warns
about blank lines at the end of a file. This is something I find useful while working
on code so that I can easily jump to the end of the file and start writing code instead
of having to append a few lines first.

In general, before committing your code and/or putting it online, just run flake8
from your source directory to check everything recursively.

Chapter 2

[35]

Here is a demonstration with some poorly formatted code:

def spam(a,b,c):
 print(a,b+c)

def eggs():
 pass

It results in the following:

pip install flake8

...

flake8 flake8_test.py

flake8_test.py:1:11: E231 missing whitespace after ','

flake8_test.py:1:13: E231 missing whitespace after ','

flake8_test.py:2:12: E231 missing whitespace after ','

flake8_test.py:2:14: E226 missing whitespace around arithmetic operator

flake8_test.py:4:1: E302 expected 2 blank lines, found 1

Pylint
pylint is a far more advanced—and in some cases better—code quality checker. The
power of pylint does come with a few drawbacks, however. Whereas flake8 is a
really fast, light, and safe quality check, pylint has far more advanced introspection
and is much slower for this reason. In addition, pylint will most likely give you a
large number of warnings, which are irrelevant or even wrong. This could be seen as
a flaw in pylint, but it's actually more of a restriction of passive code analysis. Tools
such as pychecker actually load and execute your code. In many cases, this is safe,
but there are cases where it is not. Just think of what could happen when executing a
command that deletes files.

While I have nothing against pylint, in general I find that most important problems
are handled by flake8, and others can easily be avoided with some proper
coding standards. It can be a very useful tool if configured correctly, but without
configuration, it is very verbose.

Common pitfalls
Python is a language meant to be clear and readable without any ambiguities and
unexpected behaviors. Unfortunately, these goals are not achievable in all cases,
and that is why Python does have a few corner cases where it might do something
different than what you were expecting.

Pythonic Syntax, Common Pitfalls, and Style Guide

[36]

This section will show you some issues that you might encounter when writing
Python code.

Scope matters!
There are a few cases in Python where you might not be using the scope that
you are actually expecting. Some examples are when declaring a class and with
function arguments.

Function arguments
The following example shows a case that breaks due to a careless choice in default
parameters:

def spam(key, value, list_=[], dict_={}):
 list_.append(value)
 dict_[key] = value

 print('List: %r' % list_)
 print('Dict: %r' % dict_)

spam('key 1', 'value 1')
spam('key 2', 'value 2')

You would probably expect the following output:

List: ['value 1']
Dict: {'key 1': 'value 1'}
List: ['value 2']
Dict: {'key 2': 'value 2'}

But it's actually this:

List: ['value 1']
Dict: {'key 1': 'value 1'}
List: ['value 1', 'value 2']
Dict: {'key 1': 'value 1', 'key 2': 'value 2'}

The reason is that list_ and dict_ are actually shared between multiple calls. The
only time this is actually useful is if you are doing something hacky, so please avoid
using mutable objects as default parameters in a function.

The safe alternative of the same example is as follows:

def spam(key, value, list_=None, dict_=None):
 if list_ is None:

Chapter 2

[37]

 list_ = []

 if dict_ is None:
 dict_ {}

 list_.append(value)
 dict_[key] = value

Class properties
The problem also occurs when defining classes. It is very easy to mix class attributes
and instance attributes. Especially when coming from other languages such as C#,
this can be confusing. Let's illustrate it:

class Spam(object):
 list_ = []
 dict_ = {}

 def __init__(self, key, value):
 self.list_.append(value)
 self.dict_[key] = value

 print('List: %r' % self.list_)
 print('Dict: %r' % self.dict_)

Spam('key 1', 'value 1')
Spam('key 2', 'value 2')

As with the function arguments, the list and dictionaries are shared. So, the output is
as follows:

List: ['value 1']
Dict: {'key 1': 'value 1'}
List: ['value 1', 'value 2']
Dict: {'key 1': 'value 1', 'key 2': 'value 2'}

A better alternative is to initialize the mutable objects within the __init__ method of
the class. This way, they are not shared between instances:

class Spam(object):
 def __init__(self, key, value):
 self.list_ = [key]
 self.dict_ = {key: value}

 print('List: %r' % self.list_)
 print('Dict: %r' % self.dict_)

Pythonic Syntax, Common Pitfalls, and Style Guide

[38]

Another important thing to note when dealing with classes is that a class property
will be inherited, and that's where things might prove to be confusing. When
inheriting, the original properties will stay (unless overwritten), even in subclasses:

 >>> class A(object):

... spam = 1

>>> class B(A):

... pass

Regular inheritance, the spam attribute of both A and B are 1 as

you would expect.

>>> A.spam

1

>>> B.spam

1

Assigning 2 to A.spam now modifies B.spam as well

>>> A.spam = 2

>>> A.spam

2

>>> B.spam

2

While this is to be expected due to inheritance, someone else using the class might
not suspect the variable to change in the meantime. After all, we modified A.spam,
not B.spam.

There are two easy ways to prevent this. It is obviously possible to simply set spam
for every class separately. But the better solution is never to modify class properties.
It's easy to forget that the property will change in multiple locations, and if it has to
be modifiable anyway, it's usually better to put it in an instance variable instead.

Modifying variables in the global scope
A common problem when accessing variables from the global scope is that setting a
variable makes it local, even when accessing the global variable.

Chapter 2

[39]

This works:

 >>> def eggs():

... print('Spam: %r' % spam)

>>> eggs()

Spam: 1

But the following does not:

 >>> spam = 1

>>> def eggs():

... spam += 1

... print('Spam: %r' % spam)

>>> eggs()

Traceback (most recent call last):

 ...

UnboundLocalError: local variable 'spam' referenced before assignment

The problem is that spam += 1 actually translates to spam = spam + 1, and
anything containing spam = makes the variable local to your scope. Since the local
variable is being assigned at that point, it has no value yet and you are trying to use
it. For these cases, there is the global statement, although I would really recommend
that you avoid globals altogether.

Overwriting and/or creating extra built-ins
While it can be useful in some cases, generally you will want to avoid overwriting
global functions. The PEP8 convention for naming your functions—similar to built-in
statements, functions, and variables—is to use a trailing underscore.

So, do not use this:

list = [1, 2, 3]

Instead, use the following:

list_ = [1, 2, 3]

Pythonic Syntax, Common Pitfalls, and Style Guide

[40]

For lists and such, this is just a good convention. For statements such as from,
import, and with, it's a requirement. Forgetting about this can lead to very
confusing errors:

>>> list = list((1, 2, 3))

>>> list

[1, 2, 3]

>>> list((4, 5, 6))

Traceback (most recent call last):

 ...

TypeError: 'list' object is not callable

>>> import = 'Some import'

Traceback (most recent call last):

 ...

SyntaxError: invalid syntax

If you actually want to define a built-in that is available everywhere, it's possible. For
debugging purposes, I've been known to add this code to a project while developing:

import builtins
import inspect
import pprint
import re

def pp(*args, **kwargs):
 '''PrettyPrint function that prints the variable name when
 available and pprints the data'''
 name = None
 # Fetch the current frame from the stack
 frame = inspect.currentframe().f_back
 # Prepare the frame info
 frame_info = inspect.getframeinfo(frame)

 # Walk through the lines of the function
 for line in frame_info[3]:
 # Search for the pp() function call with a fancy regexp
 m = re.search(r'\bpp\s*\(\s*([^)]*)\s*\)', line)
 if m:
 print('# %s:' % m.group(1), end=' ')

Chapter 2

[41]

 break

 pprint.pprint(*args, **kwargs)

builtins.pf = pprint.pformat
builtins.pp = pp

Much too hacky for production code, but it is still useful when working on a
large project where you need print statements to debug. Alternative (and better)
debugging solutions can be found in Chapter 11, Debugging – Solving the Bugs.

The usage is quite simple:

x = 10
pp(x)

Here is the output:

x: 10

Modifying while iterating
At one point or another, you will run into this problem: while iterating through
mutable objects such as lists, dicts, or sets, you cannot modify them. All of these result
in a RuntimeError telling you that you cannot modify the object during iteration:

dict_ = {'spam': 'eggs'}
list_ = ['spam']
set_ = {'spam', 'eggs'}

for key in dict_:
 del dict_[key]

for item in list_:
 list_.remove(item)

for item in set_:
 set_.remove(item)

This can be avoided by copying the object. The most convenient option is by using
the list function:

dict_ = {'spam': 'eggs'}
list_ = ['spam']
set_ = {'spam', 'eggs'}

for key in list(dict_):

Pythonic Syntax, Common Pitfalls, and Style Guide

[42]

 del dict_[key]

for item in list(list_):
 list_.remove(item)

for item in list(set_):
 set_.remove(item)

Catching exceptions – differences between
Python 2 and 3
With Python 3, catching an exception and storing it has been made more obvious
with the as statement. The problem is that many people are still used to the except
Exception, variable syntax, which doesn't work anymore. Luckily, the Python
3 syntax has been backported to Python 2, so now you can use the following syntax
everywhere:

try:
 ... # do something here
except (ValueError, TypeError) as e:
 print('Exception: %r' % e)

Another important difference is that Python 3 makes this variable local to the
exception scope. The result is that you need to declare the exception variable before
the try/except block if you want to use it later:

def spam(value):
 try:
 value = int(value)
 except ValueError as exception:
 print('We caught an exception: %r' % exception)

 return exception

spam('a')

You might expect that since we get an exception here, this works; but actually, it
doesn't, because exception does not exist at the point of the return statement.

The actual output is as follows:

We caught an exception: ValueError("invalid literal for int() with
base 10: 'a'",)
Traceback (most recent call last):
 File "test.py", line 14, in <module>

Chapter 2

[43]

 spam('a')
 File "test.py", line 11, in spam
 return exception
UnboundLocalError: local variable 'exception' referenced before
assignment

Personally I would argue that the preceding code is broken in any case: what if there
isn't an exception somehow? It would have raised the same error. Luckily, the fix is
simple; just write the value to a variable outside of the scope. One important thing
to note here is that you explicitly need to save the variable to the parent scope. This
code does not work either:

def spam(value):
 exception = None
 try:
 value = int(value)
 except ValueError as exception:
 print('We caught an exception: %r' % exception)

 return exception

We really need to save it explicitly because Python 3 automatically deletes anything
saved with as variable at the end of the except statements. The reason for this is
that exceptions in Python 3 contain a __traceback__ attribute. Having this attribute
makes it much more difficult for the garbage collector to handle as it introduces a
recursive self-referencing cycle (exception -> traceback -> exception -> traceback… ad
nauseum). To solve this, Python essentially does the following:

exception = None
try:
 value = int(value)
except ValueError as exception:
 try:
 print('We caught an exception: %r' % exception)
 finally:
 del exception

The solution is simple enough—luckily—but you should keep in mind that this can
introduce memory leaks into your program. The Python garbage collector is smart
enough to understand that the variables are not visible anymore and will delete
it eventually, but it can take a lot more time. How the garbage collection actually
works is covered in Chapter 12, Performance – Tracking and Reducing Your Memory and
CPU Usage. Here is the working version of the code:

def spam(value):
 exception = None

Pythonic Syntax, Common Pitfalls, and Style Guide

[44]

 try:
 value = int(value)
 except ValueError as e:
 exception = e
 print('We caught an exception: %r' % exception)

 return exception

Late binding – be careful with closures
Closures are a method of implementing local scopes in code. They make it possible
to locally define variables without overriding variables in the parent (or global)
scope and hide the variables from the outside scope later. The problem with closures
in Python is that Python tries to bind its variables as late as possible for performance
reasons. While generally useful, it does have some unexpected side effects:

eggs = [lambda a: i * a for i in range(3)]

for egg in eggs:
 print(egg(5))

The expected result? Should be something along the lines of this, right?

0
5
10

No, unfortunately not. This is similar to how class inheritance works with properties.
Due to late binding, the variable i gets called from the surrounding scope at call
time, and not when it's actually defined.

The actual result is as follows:

10
10
10

So what to do instead? As with the cases mentioned earlier, the variable needs to be
made local. One alternative is to force immediate binding by currying the function
with partial:

import functools

eggs = [functools.partial(lambda i, a: i * a, i) for i in
range(3)]

Chapter 2

[45]

for egg in eggs:
 print(egg(5))

A better solution would be to avoid binding problems altogether by not introducing
extra scopes (the lambda), that use external variables. If both i and a were specified
as arguments to lambda, this will not be a problem.

Circular imports
Even though Python is fairly tolerant towards circular imports, there are some cases
where you will get errors.

Let's assume we have two files.

eggs.py:

from spam import spam

def eggs():
 print('This is eggs')
 spam()

spam.py:

from eggs import eggs

def spam():
 print('This is spam')

if __name__ == '__main__':
 eggs()

Running spam.py will result in a circular import error:

Traceback (most recent call last):
 File "spam.py", line 1, in <module>
 from eggs import eggs
 File "eggs.py", line 1, in <module>
 from spam import spam
 File "spam.py", line 1, in <module>
 from eggs import eggs
ImportError: cannot import name 'eggs'

Pythonic Syntax, Common Pitfalls, and Style Guide

[46]

There are a few ways to work around this. Restructuring the code is usually the best
to go around, but the best solution depends on the problem. In the preceding case,
it can be solved easily. Just use module imports instead of function imports (which I
recommend regardless of circular imports).

eggs.py:

import spam

def eggs():
 print('This is eggs')
 spam.spam()

spam.py:

import eggs

def spam():
 print('This is spam')

if __name__ == '__main__':
 eggs.eggs()

An alternative solution is to move the imports within the functions so that they occur
at runtime. This is not the prettiest solution but it does the trick in many cases.

eggs.py:

def eggs():
 from spam import spam
 print('This is eggs')
 spam()

spam.py:

def spam():
 from eggs import eggs
 print('This is spam')

if __name__ == '__main__':
 eggs()

Chapter 2

[47]

Lastly there is the solution of moving the imports below the code that actually uses
them. This is generally not recommended because it can make it non-obvious where the
imports are, but I still find it preferable to having the import within the function calls.

eggs.py:

def eggs():
 print('This is eggs')
 spam()

from spam import spam

spam.py:

def spam():
 print('This is spam')

from eggs import eggs

if __name__ == '__main__':
 eggs()

And yes, there are still other solutions such as dynamic imports. One example of
this is how the Django ForeignKey fields support strings instead of actual classes.
But those are generally a really bad idea to use since they will be checked only
at runtime. Because of this, bugs will introduce themselves only when executing
any code that uses it instead of when modifying the code. So please try to avoid
these whenever possible, or make sure you add proper automated tests to prevent
unexpected bugs. Especially when they cause circular imports internally, they
become an enormous pain to debug.

Import collisions
One problem that can be extremely confusing is having colliding imports—multiple
packages/modules with the same name. I have had more than a few bug reports on
my packages where, for example, people tried to use my numpy-stl project, which
resides in a package named stl from a test file named stl.py. The result: it was
importing itself instead of the stl package. While this case is difficult to avoid, at
least within packages, a relative import is generally a better option. This is because
it also tells other programmers that the import comes from the local scope instead of
another package. So, instead of writing import spam, write from . import spam.
This way, the code will always load from the current package instead of any global
package that happens to have the same name.

Pythonic Syntax, Common Pitfalls, and Style Guide

[48]

In addition to this there is also the problem of packages being incompatible with
each other. Common names might be used by several packages, so be careful when
installing those packages. When in doubt, just create a new virtual environment and
try again. Doing this can save you a lot of debugging.

Summary
This chapter showed us what the Pythonic philosophy is all about and explained to
us what the Zen of Python is all about. While code style is highly personal, Python
has a few, very helpful guidelines that at least keep people mostly on the same page
and style. In the end, we are all consenting adults; everyone has the right to write
code as he/she sees fit. But I do request you. Please read through the style guides
and try to adhere to them unless you have a really good reason not to.

With all that power comes great responsibility, and so do a few pitfalls, though
there aren't too many. Some are tricky enough to fool me regularly and I've been
writing Python for a long time! Python improves all the time though. Many pitfalls
have been taken care of since Python 2, but some will always remain. For example,
recursive imports and definitions can easily bite you in most languages that support
them, but that doesn't mean we'll stop trying to improve Python.

A good example of the improvements in Python over the years is the collections
module. It contains many useful collections that have been added by users because
there was a need. Most of them are actually implemented in pure Python, and
because of that, they are easy enough to be read by anyone. Understanding might
take a bit more effort, but I truly believe that if you make it to the end of this
book, you will have no problem understanding what the collections do. Fully
understanding how the internals work is something I cannot promise though; some
parts of that go more towards generic computer science than Python mastery.

The next chapter will show you some of the collections available in Python and how
they are constructed internally. Even though you are undoubtedly familiar with
collections such as lists and dictionaries, you might not be aware of the performance
characteristics involved with some of the operations. If some of the examples in this
chapter were less than clear, you don't have to worry. The next chapter will at least
revisit some of them, and more will come in later chapters.

[49]

Containers and Collections –
Storing Data the Right Way

Python comes bundled with several very useful collections, a few of which are basic
Python collection data types. The rest are advanced combinations of these types. In
this chapter, we will explain some of these collections, how to use them, and the pros
and cons of each of them.

Before we can properly discuss data structures and the related performance, a basic
understanding of time complexity (and specifically the big O notation) is required.
No need to worry! The concept is really simple, but without it, we cannot easily
explain the performance characteristics of operations.

Once the big O notation is clear, we will discuss the basic data structures:

•	 list

•	 dict

•	 set

•	 tuple

Building on the basic data structures, we will continue with more advanced
collections, such as the following:

•	 Dictionary-like types:
°° ChainMap

°° Counter

°° Defaultdict

°° OrderedDict

Containers and Collections – Storing Data the Right Way

[50]

•	 List types:
°° Deque

°° Heapq

•	 Tuple types:
°° NamedTuple

•	 Other types:
°° Enum

Time complexity – the big O notation
Before we can begin with this chapter, there is a simple notation that you need
to understand. This chapter heavily uses the big O notation to indicate the time
complexity for an operation. Feel free to skip this paragraph if you are already
familiar with this notation. While this notation sounds really complicated, the
concept is actually quite simple.

When we say that a function takes O(1) time, it means that it generally only takes 1
step to execute. Similarly, a function with O(n) would take n steps to execute, where
n is generally the size of the object. This time complexity is just a basic indication of
what to expect when executing the code, as it is generally what matters most.

The purpose of this system is to indicate the approximate performance of an
operation; this is separate from code speed but it is still relevant. A piece of code
that executes a single step 1000 times faster but needs O(2**n) steps to execute will
still be slower than another version of it that takes only O(n) steps for a value of n
equal to 10 or more. This is because 2**n for n=10 is 2**10=1024, that is, 1,024 steps
to execute the same code. This makes choosing the right algorithm very important.
Even though C code is generally faster than Python, if it uses the wrong algorithm, it
won't help at all.

For example, suppose you have a list of 1000 items and you walk through them.
This will take O(n) time because there are n=1000 items. Checking whether or not an
item exists in the list takes O(n), so that's 1,000 steps. Doing this 100 times will take
you 100*O(n) = 100 * 1000 = 100,000 steps. When you compare this to a dict,
where checking whether the item exists or not takes only O(1) time the difference is
huge. With a dict, it would be 100*O(1) = 100 * 1 = 100 steps. So, using a dict
instead of a list will be roughly 1,000 times faster for an object with 1,000 items:

n = 1000
a = list(range(n))
b = dict.fromkeys(range(n))

Chapter 3

[51]

for i in range(100):
 i in a # takes n=1000 steps
 i in b # takes 1 step

To illustrate O(1), O(n), and O(n**2) functions:

def o_one(items):
 return 1 # 1 operation so O(1)

def o_n(items):
 total = 0
 # Walks through all items once so O(n)
 for item in items:
 total += item
 return total

def o_n_squared(items):
 total = 0
 # Walks through all items n*n times so O(n**2)
 for a in items:
 for b in items:
 total += a * b
 return total

n = 10
items = range(n)
o_one(items) # 1 operation
o_n(items) # n = 10 operations
o_n_squared(items) # n*n = 10*10 = 100 operations

It should be noted that the big O in this chapter is about the average case and not the
worst case. In some cases, they can be much worse, but those are rare enough to be
ignored for the general case.

Core collections
Before we can look at the more advanced combined collections later in this chapter,
you need to understand the workings of the core Python collections. This is not just
about the usage, however; it is also about the time complexities involved, which can
strongly affect how your application will behave as it grows. If you are well versed
with the time complexities of these objects and know the possibilities of Python
3's tuple packing and unpacking by heart, then feel free to jump to the Advanced
collections section.

Containers and Collections – Storing Data the Right Way

[52]

list – a mutable list of items
The list is most likely the container structure that you've used most in Python. It is
simple in its usage, and for most cases, it exhibits great performance.

While you may already be well versed with the usage of list, you might not be aware
of the time complexities of the list object. Luckily, many of the time complexities of
list are very low; append, get, set, and len all take O(1) time—the best possible.
However, you might not be aware of the fact that remove and insert have O(n)
time complexity. So, to delete a single item out of 1,000 items, Python will have to
walk-through 1,000 items. Internally, the remove and insert operations execute
something along these lines:

>>> def remove(items, value):

... new_items = []

... found = False

... for item in items:

... # Skip the first item which is equal to value

... if not found and item == value:

... found = True

... continue

... new_items.append(item)

...

... if not found:

... raise ValueError('list.remove(x): x not in list')

...

... return new_items

>>> def insert(items, index, value):

... new_items = []

... for i, item in enumerate(items):

... if i == index:

... new_items.append(value)

... new_items.append(item)

... return new_items

>>> items = list(range(10))

>>> items

Chapter 3

[53]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> items = remove(items, 5)

>>> items

[0, 1, 2, 3, 4, 6, 7, 8, 9]

>>> items = insert(items, 2, 5)

>>> items

[0, 1, 5, 2, 3, 4, 6, 7, 8, 9]

To remove or insert a single item from/into the list, Python needs to copy the entire
list, which is especially heavy with larger lists. When executing this only once, it is
of course not all that bad. But when executing a large number of deletions, a filter
or list comprehension is a much faster solution because, if properly structured, it
needs to copy the list only once. For example, suppose we wish to remove a specific
set of numbers from the list. We have quite a few options for this. The first is a
solution using remove, followed by a list comprehension, and then comes a filter
statement. Chapter 4, Functional Programming – Readability Versus Brevity, will explain
list comprehensions and the filter statement in more detail. But first, let's check
out the example:

>>> primes = set((1, 2, 3, 5, 7))

Classic solution

>>> items = list(range(10))

>>> for prime in primes:

... items.remove(prime)

>>> items

[0, 4, 6, 8, 9]

List comprehension

>>> items = list(range(10))

>>> [item for item in items if item not in primes]

[0, 4, 6, 8, 9]

Filter

>>> items = list(range(10))

>>> list(filter(lambda item: item not in primes, items))

[0, 4, 6, 8, 9]

Containers and Collections – Storing Data the Right Way

[54]

The latter two are much faster for large lists of items. This is because the operations
are much faster. To compare using n=len(items) and m=len(primes), the first takes
O(m*n)=5*10=50 operations, whereas the latter two take O(n*1)=10*1=10 operations.

The first method is actually slightly better than that since n
decreases during the loop. So, it's effectively 10+9+8+7+6=40,
but this is an effect that is negligible enough to ignore. In
the case of n=1000, that would be the difference between
1000+999+998+997+996=4990 and 5*1000=5000, which
is negligible in most cases.

Of course, min, max, and in all take O(n) as well, but that is expected for a structure
that is not optimized for these types of lookups.

They can be implemented like this:

>>> def in_(items, value):

... for item in items:

... if item == value:

... return True

... return False

>>> def min_(items):

... current_min = items[0]

... for item in items[1:]:

... if current_min > item:

... current_min = item

... return current_min

>>> def max_(items):

... current_max = items[0]

... for item in items[1:]:

... if current_max < item:

... current_max = item

... return current_max

>>> items = range(5)

>>> in_(items, 3)

True

Chapter 3

[55]

>>> min_(items)

0

>>> max_(items)

4

With these examples, it's obvious as well that the in operator could work O(1) if
you're lucky, but we count it as O(n) because it might not exist, in which case all
values need to be checked.

dict – unsorted but a fast map of items
The dict has to be at least among the top three container structures you use in
Python. It's fast, simple to use, and very effective. The average time complexity is
exactly as you would expect—O(1) for get, set, and del—but there are cases where
this is not true. The way a dict works is by converting the key to a hash using the
hash function (calls the __hash__ function of an object) and storing it in a hash table.
There are two problems with hash tables, however. The first and the most obvious
is that the items will be sorted by hash, which appears at random in most cases. The
second problem with hash tables is that they can have hash collisions, and the result
of a hash collision is that in the worst case, all the former operations can take O(n)
instead. Hash collisions are not all that likely to occur, but they can occur, and if a
large dict performs subpar, that's the place to look.

Let's see how this actually works in practice. For the sake of this example, I will use
the simplest hashing algorithm I can think of, which is the most significant digit of a
number. So, for the case of 12345, it will return 1, and for 56789, it will return 5:

>>> def most_significant(value):

... while value >= 10:

... value //= 10

... return value

>>> most_significant(12345)

1

>>> most_significant(99)

9

>>> most_significant(0)

0

Containers and Collections – Storing Data the Right Way

[56]

Now we will emulate a dict using a list of lists with this hashing method. We
know that our hashing method can only return numbers from 0 to 9, so we need only
10 buckets in our list. Now we will add a few values and show how the spam in eggs
might work:

>>> def add(collection, key, value):

... index = most_significant(key)

... collection[index].append((key, value))

>>> def contains(collection, key):

... index = most_significant(key)

... for k, v in collection[index]:

... if k == key:

... return True

... return False

Create the collection of 10 lists

>>> collection = [[], [], [], [], [], [], [], [], [], []]

Add some items, using key/value pairs

>>> add(collection, 123, 'a')

>>> add(collection, 456, 'b')

>>> add(collection, 789, 'c')

>>> add(collection, 101, 'c')

Look at the collection

>>> collection

[[], [(123, 'a'), (101, 'c')], [], [],

 [(456, 'b')], [], [], [(789, 'c')], [], []]

Check if the contains works correctly

>>> contains(collection, 123)

True

>>> contains(collection, 1)

False

Chapter 3

[57]

This code is obviously not identical to the dict implementation, but it is actually quite
similar internally. Because we can just get item 1 for a value of 123 by simple indexing,
we have only O(1) lookup costs in the general case. However, since both keys, 123 and
101, are within the 1 bucket, the runtime can actually increase to O(n) in the worst case
where all keys have the same hash. That is what we call a hash collision.

To debug hash collisions, you can use the hash() function paired
with the counter collection, discussed in the counter – keeping track
of the most occurring elements section.

In addition to the hash collision performance problem, there is another behavior that
might surprise you. When deleting items from a dictionary, it won't actually resize
the dictionary in memory yet. The result is that both copying and iterating the entire
dictionary take O(m) time (where m is the maximum size of the dictionary); n, the
current number of items is not used. So, if you add 1,000 items to a dict and remove
999, iterating and copying will still take 1,000 steps. The only way to work around this
issue is by recreating the dictionary, which is something that both the copy and insert
operations will perform internally. Note that recreation during an insert operation is
not guaranteed and depends on the number of free slots available internally.

set – like a dict without values
A set is a structure that uses the hash method to get a unique collection of values.
Internally, it is very similar to a dict, with the same hash collision problem, but
there are a few handy features of set that need to be shown:

All output in the table below is generated using this function

>>> def print_set(expression, set_):

... 'Print set as a string sorted by letters'

... print(expression, ''.join(sorted(set_)))

>>> spam = set('spam')

>>> print_set('spam:', spam)

spam: amps

>>> eggs = set('eggs')

>>> print_set('eggs:', spam)

eggs: amps

Containers and Collections – Storing Data the Right Way

[58]

The first few are pretty much as expected. At the operators, it gets interesting.

Expression Output Explanation
spam amps All unique items. A set doesn't allow for duplicates.
eggs egs

spam & eggs s Every item in both.
spam | eggs aegmps Every item in either or both.
spam ^ eggs aegmp Every item in either but not in both.
spam - eggs amp Every item in the first but not the latter.
eggs - spam eg

spam > eggs False True if every item in the latter is in the first.
eggs > spam False

spam > sp True

spam < sp False True if every item in the first is contained in the latter.

One useful example for set operations is calculating the differences between two
objects. For example, let's assume we have two lists:

•	 current_users: The current users in a group
•	 new_users: The new list of users in a group

In permission systems, this is a very common scenario—mass adding and/or
removing users from a group. Within many permission databases, it's not easily
possible to set the entire list at once, so you need a list to insert and a list to delete.
This is where set comes in really handy:

The set function takes a sequence as argument so the double (is

required.

>>> current_users = set((

... 'a',

... 'b',

... 'd',

...))

>>> new_users = set((

... 'b',

... 'c',

... 'd',

... 'e',

Chapter 3

[59]

...))

>>> to_insert = new_users - current_users

>>> sorted(to_insert)

['c', 'e']

>>> to_delete = current_users - new_users

>>> sorted(to_delete)

['a']

>>> unchanged = new_users & current_users

>>> sorted(unchanged)

['b', 'd']

Now we have lists of all users who were added, removed, and unchanged. Note that
sorted is only needed for consistent output, since a set, similar to a dict, has no
predefined sort order.

tuple – the immutable list
A tuple is an object that you use very often without even noticing it. When you
look at it initially, it seems like a useless data structure. It's like a list that you can't
modify, so why not just use a list? There are a few cases where a tuple offers some
really useful functionalities that a list does not.

Firstly, they are hashaable. This means that you can use a tuple as a key in a dict,
which is something a list can't do:

>>> spam = 1, 2, 3

>>> eggs = 4, 5, 6

>>> data = dict()

>>> data[spam] = 'spam'

>>> data[eggs] = 'eggs'

>>> import pprint # Using pprint for consistent and sorted output

>>> pprint.pprint(data)

{(1, 2, 3): 'spam', (4, 5, 6): 'eggs'}

Containers and Collections – Storing Data the Right Way

[60]

However, it can actually be more than simple numbers. As long as all elements
of a tuple are hashable, it will work. This means that you can use nested tuples,
strings, numbers, and anything else for which the hash() function returns a
consistent result:

>>> spam = 1, 'abc', (2, 3, (4, 5)), 'def'

>>> eggs = 4, (spam, 5), 6

>>> data = dict()

>>> data[spam] = 'spam'

>>> data[eggs] = 'eggs'

>>> import pprint # Using pprint for consistent and sorted output

>>> pprint.pprint(data)

{(1, 'abc', (2, 3, (4, 5)), 'def'): 'spam',

 (4, ((1, 'abc', (2, 3, (4, 5)), 'def'), 5), 6): 'eggs'}

You can make these as complex as you need. As long as all the parts are hashable, it
will function as expected.

Perhaps, even more useful is the fact that tuples also support tuple packing and
unpacking:

Assign using tuples on both sides

>>> a, b, c = 1, 2, 3

>>> a

1

Assign a tuple to a single variable

>>> spam = a, (b, c)

>>> spam

(1, (2, 3))

Unpack a tuple to two variables

>>> a, b = spam

>>> a

1

>>> b

(2, 3)

Chapter 3

[61]

In addition to regular packing and unpacking, from Python 3 onwards, we can
actually pack and unpack objects with a variable number of items:

Unpack with variable length objects which actually assigns as a

list, not a tuple

>>> spam, *eggs = 1, 2, 3, 4

>>> spam

1

>>> eggs

[2, 3, 4]

Which can be unpacked as well of course

>>> a, b, c = eggs

>>> c

4

This works for ranges as well

>>> spam, *eggs = range(10)

>>> spam

0

>>> eggs

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Which works both ways

>>> a

2

>>> a, b, *c = a, *eggs

>>> a, b

(2, 1)

>>> c

[2, 3, 4, 5, 6, 7, 8, 9]

This very method can be applied in many cases, even for function arguments:

>>> def eggs(*args):

... print('args:', args)

>>> eggs(1, 2, 3)

args: (1, 2, 3)

Containers and Collections – Storing Data the Right Way

[62]

And its equally useful to return multiple arguments from a function:

>>> def spam_eggs():

... return 'spam', 'eggs'

>>> spam, eggs = spam_eggs()

>>> print('spam: %s, eggs: %s' % (spam, eggs))

spam: spam, eggs: eggs

Advanced collections
The following collections are mostly just extensions of base collections, some of them
fairly simple and others a bit more advanced. For all of them though, it is important
to know the characteristics of the underlying structures. Without understanding
them, it will be difficult to comprehend the characteristics of these collections.

There are a few collections that are implemented in native C code for performance
reasons, but all of them can easily be implemented in pure Python as well.

ChainMap – the list of dictionaries
Introduced in Python 3.3, ChainMap allows you to combine multiple mappings
(dictionaries for example) into one. This is especially useful when combining
multiple contexts. For example, when looking for a variable in your current scope,
by default, Python will search in locals(), globals(), and lastly builtins.

Normally, you would do something like this:

import builtins

builtin_vars = vars(builtins)
if key in locals():
 value = locals()[key]
elif key in globals():
 value = globals()[key]
elif key in builtin_vars:
 value = builtin_vars[key]
else:
 raise NameError('name %r is not defined' % key)

Chapter 3

[63]

This works, but it's ugly to say the least. We can make it prettier, of course:

import builtins

mappings = globals(), locals(), vars(builtins)
for mapping in mappings:
 if key in mapping:
 value = mapping[key]
 break
else:
 raise NameError('name %r is not defined' % key)

A lot better! Moreover, this can actually be considered a nice solution. But since
Python 3.3, it's even easier. Now we can simply use the following code:

import builtins
import collections

mappings = collections.ChainMap(globals(), locals(), vars(builtins))
value = mappings[key]

The ChainMap collection is very useful for command-line applications. The most
important configuration happens through command-line arguments, followed by
directory local config files, followed by global config files, followed by defaults:

import argparse
import collections

defaults = {
 'spam': 'default spam value',
 'eggs': 'default eggs value',
}

parser = argparse.ArgumentParser()
parser.add_argument('--spam')
parser.add_argument('--eggs')

args = vars(parser.parse_args())
We need to check for empty/default values so we can't simply use
vars(args)
filtered_args = {k: v for k, v in args.items() if v}

combined = collections.ChainMap(filtered_args, defaults)

print(combined ['spam'])

Containers and Collections – Storing Data the Right Way

[64]

Note that accessing specific mappings is still possible:

print(combined.maps[1]['spam'])

for map_ in combined.maps:
 print(map_.get('spam'))

counter – keeping track of the most occurring
elements
The counter is a class for keeping track of the number of occurrences of an element.
Its basic usage is as you would expect:

>>> import collections

>>> counter = collections.Counter('eggs')

>>> for k in 'eggs':

... print('Count for %s: %d' % (k, counter[k]))

Count for e: 1

Count for g: 2

Count for g: 2

Count for s: 1

However, counter can do more than simply return the count. It also has a few very
useful and fast (it uses heapq) methods for getting the most common elements. Even
with a million elements added to the counter, it still executes within a second:

>>> import math

>>> import collections

>>> counter = collections.Counter()

>>> for i in range(0, 100000):

... counter[math.sqrt(i) // 25] += 1

>>> for key, count in counter.most_common(5):

... print('%s: %d' % (key, count))

11.0: 14375

10.0: 13125

9.0: 11875

8.0: 10625

12.0: 10000

Chapter 3

[65]

But wait, there's more! In addition to getting the most frequent elements, it's also
possible to add, subtract, intersect, and "union" counters very similarly to the
set operations that we saw earlier. So what is the difference between adding two
counters and making a union of them? As you would expect, they are similar, but
there is a small difference. Let's look at its workings:

>>> import collections

>>> def print_counter(expression, counter):

... sorted_characters = sorted(counter.elements())

... print(expression, ''.join(sorted_characters))

>>> eggs = collections.Counter('eggs')

>>> spam = collections.Counter('spam')

>>> print_counter('eggs:', eggs)

eggs: eggs

>>> print_counter('spam:', spam)

spam: amps

>>> print_counter('eggs & spam:', eggs & spam)

eggs & spam: s

>>> print_counter('spam & eggs:', spam & eggs)

spam & eggs: s

>>> print_counter('eggs - spam:', eggs - spam)

eggs - spam: egg

>>> print_counter('spam - eggs:', spam - eggs)

spam - eggs: amp

>>> print_counter('eggs + spam:', eggs + spam)

eggs + spam: aeggmpss

>>> print_counter('spam + eggs:', spam + eggs)

spam + eggs: aeggmpss

>>> print_counter('eggs | spam:', eggs | spam)

eggs | spam: aeggmps

>>> print_counter('spam | eggs:', spam | eggs)

spam | eggs: aeggmps

The first two are obvious. The eggs string is just a sequence of characters with two
"g"s, one "s", and one "e", and spam is almost the same but with different letters.

Containers and Collections – Storing Data the Right Way

[66]

The result of spam & eggs (and the reverse) is also quite predictable. The only letter
that's shared between spam and eggs is s, so that's the result. When it comes to
counts, it simply does a min(element_a, element_b) per shared element from both
and gets the lowest.

When subtracting the letters s, p, a, and m from eggs, you are left with e and g.
Similarly, when removing e, g, and s from spam, you are left with p, a, and m.

Now, adding is as you would expect—just an element-by-element addition of
both counters.

So how is the union (OR) any different? It gets the max(element_a, element_b)
per element in either of the counters instead of adding them; regardless as is the case
with the addition.

Lastly, as is demonstrated in the preceding code, the elements method returns an
expanded list of all elements repeated by the count.

The Counter object will automatically remove elements
that are zero or less during the execution of mathematical
operations.

deque – the double ended queue
The deque (short for Double Ended Queue) object is one of the oldest collections.
It was introduced in Python 2.4, so it has been available for over 10 years by now.
Generally, this object will be too low-level for most purposes these days, as many
operations that would otherwise use it have well-supported libraries available, but
that doesn't make it less useful.

Internally, deque is created as a doubly linked list, which means that every item
points to the next and the previous item. Since deque is double-ended, the list itself
points to both the first and the last element. This makes both adding and removing
items from either the beginning or the end a very light O(1) operation, since only the
pointer to the beginning/end of the list needs to change and a pointer needs to be
added to the first/last item, depending on whether an item is added at the beginning
or the end.

For simple stack/queue purposes, it seems wasteful to use a double-ended queue,
but the performance is good enough for us not to care about the overhead incurred.
The deque class is fully implemented in C (with CPython).

Chapter 3

[67]

Its usage as a queue is very straightforward:

>>> import collections

>>> queue = collections.deque()

>>> queue.append(1)

>>> queue.append(2)

>>> queue

deque([1, 2])

>>> queue.popleft()

1

>>> queue.popleft()

2

>>> queue.popleft()

Traceback (most recent call last):

 ...

IndexError: pop from an empty deque

As expected, the items are followed by an IndexError since there are only two items
and we are trying to get three.

The usage as a stack is almost identical, but we have to use pop instead of popleft
(or appendleft instead of append):

>>> import collections

>>> queue = collections.deque()

>>> queue.append(1)

>>> queue.append(2)

>>> queue

deque([1, 2])

>>> queue.pop()

2

>>> queue.pop()

1

>>> queue.pop()

Traceback (most recent call last):

 ...

IndexError: pop from an empty deque

Containers and Collections – Storing Data the Right Way

[68]

Another very useful feature is that deque can be used as a circular queue with the
maxlen parameter. By using this, it can be used to keep the last n status messages or
something similar:

>>> import collections

>>> circular = collections.deque(maxlen=2)

>>> for i in range(5):

... circular.append(i)

... circular

deque([0], maxlen=2)

deque([0, 1], maxlen=2)

deque([1, 2], maxlen=2)

deque([2, 3], maxlen=2)

deque([3, 4], maxlen=2)

>>> circular

deque([3, 4], maxlen=2)

Whenever you require a queue or stack class within a single-threaded application,
deque is a very convenient option. If you require the object to be synchronized for
multithreading operations, then the queue.Queue class would be better suited.
Internally, it wraps deque, but it's a thread-safe alternative. In the same category,
there is also an asyncio.Queue for asynchronous operations and multiprocessing.
Queue for multiprocessing operations. Examples of asyncio and multiprocessing
can be found in Chapter 7, Async IO – Multithreading without Threads and Chapter 13,
Multiprocessing – When a Single CPU Core Is Not Enough respectively.

defaultdict – dictionary with a default value
The defaultdict is by far my favorite object in the collections package. I still
remember writing my own versions of it before it was added to the core. While it's a
fairly simple object, it is extremely useful for all sorts of design patterns. Instead of
having to check for the existence of a key and adding a value every time, you can just
declare the default from the beginning, and there is no need to worry about the rest.

For example, let's say we are building a very basic graph structure from a list of
connected nodes.

This is our list of connected nodes (one way):

nodes = [
 ('a', 'b'),

Chapter 3

[69]

 ('a', 'c'),
 ('b', 'a'),
 ('b', 'd'),
 ('c', 'a'),
 ('d', 'a'),
 ('d', 'b'),
 ('d', 'c'),
]

Now let's put this graph into a normal dictionary:

>>> graph = dict()

>>> for from_, to in nodes:

... if from_ not in graph:

... graph[from_] = []

... graph[from_].append(to)

>>> import pprint

>>> pprint.pprint(graph)

{'a': ['b', 'c'],

 'b': ['a', 'd'],

 'c': ['a'],

 'd': ['a', 'b', 'c']}

Some variations are possible, of course, using setdefault for example. But they
remain more complex than they need to be.

The truly Pythonic version uses defaultdict instead:

>>> import collections

>>> graph = collections.defaultdict(list)

>>> for from_, to in nodes:

... graph[from_].append(to)

>>> import pprint

>>> pprint.pprint(graph)

defaultdict(<class 'list'>,

 {'a': ['b', 'c'],

 'b': ['a', 'd'],

 'c': ['a'],

 'd': ['a', 'b', 'c']})

Containers and Collections – Storing Data the Right Way

[70]

Isn't that a beautiful bit of code? The defaultdict can actually be seen as the
precursor of the counter object. It's not as fancy and doesn't have all the bells
and whistles that counter has, but it does the job in many cases:

>>> counter = collections.defaultdict(int)

>>> counter['spam'] += 5

>>> counter

defaultdict(<class 'int'>, {'spam': 5})

The default value for defaultdict needs to be a callable object. In the previous
cases, these were int and list, but you can easily define your own functions to
use as a default value. That's what the following example uses, although I won't
recommend production usage since it lacks a bit of readability. I do believe, however,
that it is a beautiful example of the power of Python.

This is how we create a tree in a single line of Python:

import collections
def tree(): return collections.defaultdict(tree)

Brilliant, isn't it? Here's how we can actually use it:

>>> import json

>>> import collections

>>> def tree():

... return collections.defaultdict(tree)

>>> colours = tree()

>>> colours['other']['black'] = 0x000000

>>> colours['other']['white'] = 0xFFFFFF

>>> colours['primary']['red'] = 0xFF0000

>>> colours['primary']['green'] = 0x00FF00

>>> colours['primary']['blue'] = 0x0000FF

>>> colours['secondary']['yellow'] = 0xFFFF00

>>> colours['secondary']['aqua'] = 0x00FFFF

>>> colours['secondary']['fuchsia'] = 0xFF00FF

>>> print(json.dumps(colours, sort_keys=True, indent=4))

{

Chapter 3

[71]

 "other": {

 "black": 0,

 "white": 16777215

 },

 "primary": {

 "blue": 255,

 "green": 65280,

 "red": 16711680

 },

 "secondary": {

 "aqua": 65535,

 "fuchsia": 16711935,

 "yellow": 16776960

 }

}

The nice thing is that you can make it go as deep as you'd like. Because of the
defaultdict base, it generates itself recursively.

namedtuple – tuples with field names
The namedtuple object is exactly what the name implies—a tuple with a name. It
has a few useful use cases, though I must admit that I haven't found too many in the
wild, except for some Python modules such as inspect and urllib.parse. Points in
2D or 3D space are a nice example of where it is definitely useful:

>>> import collections

>>> Point = collections.namedtuple('Point', ['x', 'y', 'z'])

>>> point_a = Point(1, 2, 3)

>>> point_a

Point(x=1, y=2, z=3)

>>> point_b = Point(x=4, z=5, y=6)

>>> point_b

Point(x=4, y=6, z=5)

Containers and Collections – Storing Data the Right Way

[72]

Not too much can be said about namedtuple; it does what you would expect, and the
greatest advantage is that the properties can be executed both by name and by index,
which makes tuple unpacking quite easy:

>>> x, y, z = point_a

>>> print('X: %d, Y: %d, Z: %d' % (x, y, z))

X: 1, Y: 2, Z: 3

>>> print('X: %d, Y: %d, Z: %d' % point_b)

X: 4, Y: 6, Z: 5

>>> print('X: %d' % point_a.x)

enum – a group of constants
The enum package is quite similar to namedtuple but has a completely different goal
and interface. The basic enum object makes it really easy to have constants in your
modules while still avoiding magic numbers. This is a basic example:

>>> import enum

>>> class Color(enum.Enum):

... red = 1

... green = 2

... blue = 3

>>> Color.red

<Color.red: 1>

>>> Color['red']

<Color.red: 1>

>>> Color(1)

<Color.red: 1>

>>> Color.red.name

'red'

>>> Color.red.value

1

>>> isinstance(Color.red, Color)

True

>>> Color.red is Color['red']

Chapter 3

[73]

True

>>> Color.red is Color(1)

True

A few of the handy features of the enum package are that the objects are iterable,
accessible through both numeric and textual representation of the values, and, with
proper inheritance, even comparable to other classes.

The following code shows the usage of a basic API:

>>> for color in Color:

... color

<Color.red: 1>

<Color.green: 2>

<Color.blue: 3>

>>> colors = dict()

>>> colors[Color.green] = 0x00FF00

>>> colors

{<Color.green: 2>: 65280}

There is more though. One of the lesser known possibilities from the enum package
is that you can make value comparisons work through inheritance of specific types,
and this works for every type—not just integers but (your own) custom types as well.

This is the regular enum:

>>> import enum

>>> class Spam(enum.Enum):

... EGGS = 'eggs'

>>> Spam.EGGS == 'eggs'

False

The following is enum with str inheritance:

>>> import enum

>>> class Spam(str, enum.Enum):

Containers and Collections – Storing Data the Right Way

[74]

... EGGS = 'eggs'

>>> Spam.EGGS == 'eggs'

True

OrderedDict – a dictionary where the insertion
order matters
OrderdDict is a dict that keeps track of the order in which the items were inserted.
Whereas a normal dict will return your keys in the order of hash, OrderedDict will
return your keys by the order of insertion. So, it's not ordered by key or value, but
that is easily possible too:

>>> import collections

>>> spam = collections.OrderedDict()

>>> spam['b'] = 2

>>> spam['c'] = 3

>>> spam['a'] = 1

>>> spam

OrderedDict([('b', 2), ('c', 3), ('a', 1)])

>>> for key, value in spam.items():

... key, value

('b', 2)

('c', 3)

('a', 1)

>>> eggs = collections.OrderedDict(sorted(spam.items()))

>>> eggs

OrderedDict([('a', 1), ('b', 2), ('c', 3)])

While you can probably guess how this works, the internals might surprise you a
little. I know I was expecting a different implementation.

Internally, OrderedDict uses a normal dict for key/value storage, and in addition
to that, it uses a doubly linked list to keep track of the next/previous items. To keep
track of the reverse relation (from the doubly linked list back to the keys), there is an
extra dict stored internally.

Chapter 3

[75]

Put simply, OrderedDict can be a very handy tool for keeping your dict sorted, but
it does come at a cost. The system is structured in such a way that set and get are
really fast O(1), but the object is still a lot heavier (double or more memory usage)
when compared to a regular dict. In many cases, the memory usage of the objects
inside will outweigh the memory usage of the dict itself, of course, but this is
something to keep in mind.

heapq – the ordered list
The heapq module is a great little module that makes it very easy to create a priority
queue in Python. A structure that will always make the smallest (or largest, depending
on the implementation) item available with minimum effort. The API is quite simple,
and one of the best examples of its usage can be seen in the OrderedDict object. You
probably don't want to use heapq directly, but understanding the inner workings is
important in order to analyze how classes such as OrderedDict work.

If you are looking for a structure to keep your list always sorted,
try the bisect module instead.

The basic usage is quite simple though:

>>> import heapq

>>> heap = [1, 3, 5, 7, 2, 4, 3]

>>> heapq.heapify(heap)

>>> heap

[1, 2, 3, 7, 3, 4, 5]

>>> while heap:

... heapq.heappop(heap), heap

(1, [2, 3, 3, 7, 5, 4])

(2, [3, 3, 4, 7, 5])

(3, [3, 5, 4, 7])

(3, [4, 5, 7])

(4, [5, 7])

(5, [7])

(7, [])

Containers and Collections – Storing Data the Right Way

[76]

One important thing to note here—something that you have probably already
understood from the preceding example—is that the heapq module does not create
a special object. It is simply a bunch of methods for treating a regular list as a heap.
That doesn't make it less useful, but it is something to take into consideration. You
may also wonder why the heap isn't sorted. Actually, it is sorted but not the way you
expect it to be. If you view the heap as a tree, it becomes much more obvious:

 1
 2 3
7 3 4 5

The smallest number is always at the top and the biggest numbers are always at the
bottom of the tree. Because of that, it's really easy to find the smallest number, but
finding the largest is not so easy. To get the sorted version of the heap, we simply
need to keep removing the top of the tree until all items are gone.

bisect – the sorted list
We have seen the heapq module in the previous paragraph, which makes it really
simple to always get the smallest number from a list, and therefore makes it easy
to sort a list of objects. While the heapq module appends items to form a tree-like
structure, the bisect module inserts items in such a way that they stay sorted. A
big difference is that adding/removing items with the heapq module is very light
whereas finding items is really light with the bisect module. If your primary
purpose is searching, then bisect should be your choice.

As is the case with heapq, bisect does not really create a special data structure.
It just works on a standard list and expects that list to always be sorted. It is
important to understand the performance implications of this; simply adding items
to the list using the bisect algorithm can be very slow because an insert on a list
takes O(n). Effectively, creating a sorted list using bisect takes O(n*n), which is quite
slow, especially because creating the same sorted list using heapq or sorted takes O(n
* log(n)) instead.

The log(n) refers to the base 2 logarithm function. To calculate
this value, the math.log2() function can be used. This results in
an increase of 1 every time the number doubles in size. For n=2,
the value of log(n) is 1, and consequently for n=4 and n=8, the
log values are 2 and 3, respectively.
This means that a 32-bit number, which is 2**32 = 4294967296,
has a log of 32.

Chapter 3

[77]

If you have a sorted structure and you only need to add a single item, then the
bisect algorithm can be used for insertion. Otherwise, it's generally faster to simply
append the items and call a .sort() afterwards.

To illustrate, we have these lines:

>>> import bisect

Using the regular sort:

>>> sorted_list = []

>>> sorted_list.append(5) # O(1)

>>> sorted_list.append(3) # O(1)

>>> sorted_list.append(1) # O(1)

>>> sorted_list.append(2) # O(1)

>>> sorted_list.sort() # O(n * log(n)) = O(4 * log(4)) = O(8)

>>> sorted_list

[1, 2, 3, 5]

Using bisect:

>>> sorted_list = []

>>> bisect.insort(sorted_list, 5) # O(n) = O(1)

>>> bisect.insort(sorted_list, 3) # O(n) = O(2)

>>> bisect.insort(sorted_list, 1) # O(n) = O(3)

>>> bisect.insort(sorted_list, 2) # O(n) = O(4)

>>> sorted_list

[1, 2, 3, 5]

For a small number of items, the difference is negligible, but it quickly grows to a
point where the difference will be large. For n=4, the difference is just between 4 *
1 + 8 = 12 and 1 + 2 + 3 + 4 = 10 making the bisect solution faster. But if we
were to insert 1,000 items, it would be 1000 + 1000 * log(1000) = 10966 versus
1 + 2 + … 1000 = 1000 * (1000 + 1) / 2 = 500500. So, be very careful while
inserting many items.

Searching within the list is very fast though; because it is sorted, we can use a very
simple binary search algorithm. For example, what if we want to check whether a
few numbers exist within the list?

>>> import bisect

>>> sorted_list = [1, 2, 3, 5]

Containers and Collections – Storing Data the Right Way

[78]

>>> def contains(sorted_list, value):

... i = bisect.bisect_left(sorted_list, value)

... return i < len(sorted_list) and sorted_list[i] == value

>>> contains(sorted_list, 2)

True

>>> contains(sorted_list, 4)

False

>>> contains(sorted_list, 6)

False

As you can see, the bisect_left function finds the position at which the number is
supposed to be. This is actually what the insort function does as well; it inserts the
number at the correct position by searching for the location of the number.

So how is this different from a regular value in sorted_list? The biggest difference
is that bisect does a binary search internally, which means that it starts in the
middle and jumps left or right depending on whether the value is bigger or smaller
than the value. To illustrate, we will search for 4 in a list of numbers from 0 to 14:

sorted_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
Step 1: 4 > 7 ^
Step 2: 4 > 3 ^
Step 3: 4 > 5 ^
Step 4: 4 > 5 ^

As you can see, after only four steps (actually three; the fourth is just for illustration),
we have found the number we searched for. Depending on the number (7, for
example), it may go faster, but it will never take more than O(log(n)) steps to find
a number.

With a regular list, a search would simply walk through all items until it finds the
desired item. If you're lucky, it could be the first number you encounter, but if
you're unlucky, it could be the last item. In the case of 1,000 items, that would be the
difference between 1,000 steps and log(1000) = 10 steps.

Chapter 3

[79]

Summary
Python has quite a few very useful collections built in. Since more and more
collections are added regularly, the best thing to do is simply keep track of the
collections manual. And do you ever wonder how or why any of the structures
works? Just look at the source here:

https://hg.python.org/cpython/file/default/Lib/collections/__init__.
py

After finishing this chapter, you should be aware of both the core collections and
the most important collections from the collections module, but more importantly
the performance characteristics of these collections in several scenarios. Selecting
the correct data structure within your applications is by far the most important
performance factor that your code will ever experience, making this essential
knowledge for any programmer.

Next, we will continue with functional programming which covers lambda functions,
list comprehensions, dict comprehensions, set comprehensions and an array
of related topics. This includes some background information on the mathematics
involved which could be interesting but can safely be skipped.

https://hg.python.org/cpython/file/default/Lib/collections/__init__.py
https://hg.python.org/cpython/file/default/Lib/collections/__init__.py

[81]

Functional Programming –
Readability Versus Brevity

Python is one of the few (or at least the earliest) nonfunctional languages to
incorporate functional features. While Guido van Rossum has tried to remove some
of them a few times, they have become ingrained in the Python community, and list
comprehensions (dict and set comprehensions soon to follow) are widely used in
all sorts of code. The most important thing about code shouldn't be how cool your
reduce statement is or how you can fit the entire function in a single line with an
incomprehensible list comprehension. Readability counts (once again, PEP20)!

This chapter will show you some of the cool tricks that functional programming
in Python gives you, and it will explain some of the limitations of Python's
implementation. While we will try to steer clear of lambda calculus (λ-calculus) as
much as possible, the Y combinator will be discussed briefly.

The last few paragraphs will list (and explain) the usage of the functools and
itertools libraries. If you are familiar with these libraries, feel free to skip them, but
note that some of these will be used heavily in the later chapters about decorators
(Chapter 5, Decorators – Enabling Code Reuse by Decorating), generators (Chapter 6,
Generators and Coroutines – Infinity, One Step at a Time), and performance (Chapter 12,
Performance – Tracking and Reducing Your Memory and CPU Usage).

Functional Programming – Readability Versus Brevity

[82]

These are the topics covered in this chapter:

•	 The theory behind functional programming
•	 list comprehensions
•	 dict comprehensions
•	 set comprehensions
•	 lambda functions
•	 functools (partial, and reduce)
•	 itertools (accumulate, chain, dropwhile, starmap, and so on)

Functional programming
Functional programming is a paradigm that originates from the lambda calculus.
Without diving too much into the lambda calculus (λ-calculus), this roughly means
that computation is performed through the use of mathematical functions, which
avoids mutable data and changing state of surroundings. The idea of a strictly
functional language is that all function outputs are dependent only on the input
and not on any external state. Since Python is not strictly a programming language,
this doesn't necessarily hold true, but it is a good idea to adhere to this paradigm
as mixing these can cause unforeseen bugs as discussed in Chapter 2, Pythonic Syntax,
Common Pitfalls, and Style Guide.

Even outside of functional programming, this is a good idea. Keeping functions
purely functional (relying only on the given input) makes code clearer, easier to
understand, and better to test as there are less dependencies. Well-known examples
can be found within the math module. These functions (sin, cos, pow, sqrt, and so
on) have an input and an output that is strictly dependent on the input.

list comprehensions
The Python list comprehensions are a very easy way to apply a function or filter
to a list of items. List comprehensions can be very useful if used correctly but very
unreadable if you're not careful.

Let's dive right into a few examples. The basic premise of a list comprehension
looks like this:

>>> squares = [x ** 2 for x in range(10)]

>>> squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Chapter 4

[83]

We can easily expand this with a filter:

>>> uneven_squares = [x ** 2 for x in range(10) if x % 2]

>>> uneven_squares

[1, 9, 25, 49, 81]

The syntax is pretty close to regular Python for loops, but the if statement and
automatic storing of results makes it quite useful for some cases. The regular Python
equivalent is not much longer, however:

>>> uneven_squares = []

>>> for x in range(10):

... if x % 2:

... uneven_squares.append(x ** 2)

>>> uneven_squares

[1, 9, 25, 49, 81]

Care must be taken though; because of the special list comprehension structure,
some types of operations are not as obvious as you might expect. This time, we are
looking for random numbers greater than 0.5:

>>> import random

>>> [random.random() for _ in range(10) if random.random() >= 0.5]

[0.5211948104577864, 0.650010512129705, 0.021427316545174158]

See that last number? It's actually less than 0.5. This happens because the first and
the last random calls are actually separate calls and return different results.

One way to counter this is by creating the list separate from the filter:

>>> import random

>>> numbers = [random.random() for _ in range(10)]

>>> [x for x in numbers if x >= 0.5]

[0.715510247827078, 0.8426277505519564, 0.5071133900377911]

That obviously works, but it's not all that pretty. So what other options are there?
Well, there are a few but the readability is a bit questionable, so these are not the
solutions that I would recommend. It's good to see them at least once, however.

Here is a list comprehension in a list comprehension:

>>> import random

>>> [x for x in [random.random() for _ in range(10)] if x >= 0.5]

Functional Programming – Readability Versus Brevity

[84]

And here's one that quickly becomes an incomprehensible list comprehension:

>>> import random

>>> [x for _ in range(10) for x in [random.random()] if x >= 0.5]

Caution is needed with these options as the double list comprehension actually
works like a nested for loop would, so it quickly generates a lot of results. To
elaborate on this regard:

>>> [(x, y) for x in range(3) for y in range(3, 5)]

[(0, 3), (0, 4), (1, 3), (1, 4), (2, 3), (2, 4)]

This effectively does the following:

>>> results = []

>>> for x in range(3):

... for y in range(3, 5):

... results.append((x, y))

...

>>> results

[(0, 3), (0, 4), (1, 3), (1, 4), (2, 3), (2, 4)]

These can be useful for some cases, but I would recommend that you limit their
usage, as they have a tendency to quickly become unreadable. I would strongly
advise against using list comprehensions within list comprehensions for the sake
of readability. It's still important to understand what is happening, so let's look at
one more example. The following list comprehension swaps the column and row
counts, so a 3 x 4 matrix becomes 4 x 3:

>>> matrix = [

... [1, 2, 3, 4],

... [5, 6, 7, 8],

... [9, 10, 11, 12],

...]

>>> reshaped_matrix = [

... [

... [y for x in matrix for y in x][i * len(matrix) + j]

... for j in range(len(matrix))

...]

... for i in range(len(matrix[0]))

Chapter 4

[85]

...]

>>> import pprint

>>> pprint.pprint(reshaped_matrix, width=40)

[[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9],

 [10, 11, 12]]

Even with the extra indentation, the list comprehension just isn't all that readable.
With four nested loops, that is expectedly so, of course. There are rare cases where
nested list comprehensions might be justified, but generally I won't recommend
their usage.

dict comprehensions
dict comprehensions are very similar to list comprehensions, but the result is a dict
instead. Other than this, the only real difference is that you need to return both a key
and a value, whereas a list comprehension accepts any type of value. The following
is a basic example:

>>> {x: x ** 2 for x in range(10)}

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

>>> {x: x ** 2 for x in range(10) if x % 2}

{1: 1, 3: 9, 9: 81, 5: 25, 7: 49}

Since the output is a dictionary, the key needs to be hashable
for the dict comprehension to work.

The funny thing is that you can mix these two, of course, for even more unreadable
magic:

>>> {x ** 2: [y for y in range(x)] for x in range(5)}

{0: [], 1: [0], 4: [0, 1], 16: [0, 1, 2, 3], 9: [0, 1, 2]}

Obviously, you need to be careful with these. They can be very useful if used
correctly, but the output quickly becomes unreadable, even with proper whitespace.

Functional Programming – Readability Versus Brevity

[86]

set comprehensions
Just as you can create a set using curly brackets ({}), you can also create a set using
set comprehensions. These work in a way similar to list comprehensions, but the
values are unique (and without sort order):

>>> [x*y for x in range(3) for y in range(3)]

[0, 0, 0, 0, 1, 2, 0, 2, 4]

>>> {x*y for x in range(3) for y in range(3)}

{0, 1, 2, 4}

As is the case with the regular set, set comprehensions
support only hashable types.

lambda functions
The lambda statement in Python is simply an anonymous function. Due to the
syntax, it is slightly more limited than regular functions, but a lot can be done
through it. As always though, readability counts, so generally it is a good idea to
keep it as simple as possible. One of the more common use cases is the sort key for
the sorted function:

>>> class Spam(object):

... def __init__(self, value):

... self.value = value

...

... def __repr__(self):

... return '<%s: %s>' % (self.__class__.__name__, self.value)

...

>>> spams = [Spam(5), Spam(2), Spam(4), Spam(1)]

>>> sorted_spams = sorted(spams, key=lambda spam: spam.value)

>>> spams

[<Spam: 5>, <Spam: 2>, <Spam: 4>, <Spam: 1>]

>>> sorted_spams

[<Spam: 1>, <Spam: 2>, <Spam: 4>, <Spam: 5>]

Chapter 4

[87]

While the function could have been written separately or the __cmp__ method of
Spam could have been overwritten in this case, in many cases, this is an easy way to
get a quick sort function as you would want it.

It's not that the regular function would be verbose, but by using an anonymous
function, you have a small advantage; you are not contaminating your local scope
with an extra function:

>>> def key_function(spam):

... return spam.value

>>> spams = [Spam(5), Spam(2), Spam(4), Spam(1)]

>>> sorted_spams = sorted(spams, key=lambda spam: spam.value)

As for style, do note that PEP8 dictates that assigning a lambda to a variable is a
bad idea. And logically, it is. The idea of an anonymous function is that it is just
that—anonymous. If you are giving it an identity, you should define it as a normal
function. It really isn't much longer if you want to keep it short. Note that both of the
following statements are considered bad style and are for example purposes only:

>>> def key(spam): return spam.value

>>> key = lambda spam: spam.value

In my opinion, the only valid use case for lambda functions is as anonymous
functions used as function parameters, and preferably only if they are short enough
to fit on a single line.

The Y combinator
Note that this paragraph can easily be skipped. It is mostly an
example of the mathematical value of the lambda statement.

The Y combinator is probably the most famous example of the λ-calculus:

All this looks very complicated, but that's also because it has used the lambda
calculus notation. You should read this syntax, , as an anonymous (lambda)
function that takes x as an input and returns . In Python, this would be expressed
almost exactly as it is in the original lambda calculus, except for replacing with
lambda and . with :, so it results in lambda x: x^2.

Functional Programming – Readability Versus Brevity

[88]

With some algebra, this can be reduced to , or a function that takes the f
function and applies it to itself. The λ-calculus notation of this function is as follows:

Here is the Python notation:

Y = lambda f: lambda *args: f(Y(f))(*args)

The following is the longer version:

def Y(f):
 def y(*args):
 y_function = f(Y(f))
 return y_function(*args)
 return y

This might still be a bit unclear to you, so let's look at an example that actually uses
it:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> def factorial(combinator):

... def _factorial(n):

... if n:

... return n * combinator(n - 1)

... else:

... return 1

... return _factorial

>>> Y(factorial)(5)

120

The following is the short version, where the power of the Y combinator actually
appears, with a recursive but still anonymous function:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> Y(lambda c: lambda n: n and n * c(n - 1) or 1)(5)

120

Chapter 4

[89]

Note that the n and n * c(n – 1) or 1 part is short for the if statement used in the
longer version of the function. Alternatively, this can be written using the Python
ternary operator:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> Y(lambda c: lambda n: n * c(n - 1) if n else 1)(5)

120

You might be wondering about the point of this entire exercise. Can't you write a
factorial shorter/easier? Yes, you can. The importance of the Y combinator is that it
can be applied to any function and is very close to the mathematical definition.

One final example of the Y combinator will be given by the definition of quicksort
in a few lines:

>>> quicksort = Y(lambda f:

... lambda x: (

... f([item for item in x if item < x[0]])

... + [y for y in x if x[0] == y]

... + f([item for item in x if item > x[0]])

...) if x else [])

>>> quicksort([1, 3, 5, 4, 1, 3, 2])

[1, 1, 2, 3, 3, 4, 5]

While the Y combinator most likely doesn't have much practical use in Python,
it does show the power of the lambda statement and how close Python is to the
mathematical definition. Essentially, the difference is only in the notation and not
in the functionality.

functools
In addition to the list/dict/set comprehensions, Python also has a few (more
advanced) functions that can be really convenient when coding functionally. The
functools library is a collection of functions that return callable objects. Some of
these functions are used as decorators (we'll cover more about that in Chapter 5,
Decorators – Enabling Code Reuse by Decorating), but the ones that we are going to talk
about are used as straight-up functions to make your life easier.

Functional Programming – Readability Versus Brevity

[90]

partial – no need to repeat all arguments
every time
The partial function is really convenient for adding some default arguments to a
function that you use often but can't (or don't want to) redefine. With object-oriented
code, you can usually work around cases similar to these, but with procedural code,
you will often have to repeat your arguments. Let's take the heapq functions from
Chapter 3, Containers and Collections – Storing Data the Right Way, as an example:

>>> import heapq

>>> heap = []

>>> heapq.heappush(heap, 1)

>>> heapq.heappush(heap, 3)

>>> heapq.heappush(heap, 5)

>>> heapq.heappush(heap, 2)

>>> heapq.heappush(heap, 4)

>>> heapq.nsmallest(3, heap)

[1, 2, 3]

Almost all the heapq functions require a heap argument, so why not make a shortcut
for it? This is where functools.partial comes in:

>>> import functools

>>> import heapq

>>> heap = []

>>> push = functools.partial(heapq.heappush, heap)

>>> smallest = functools.partial(heapq.nsmallest, iterable=heap)

>>> push(1)

>>> push(3)

>>> push(5)

>>> push(2)

>>> push(4)

>>> smallest(3)

[1, 2, 3]

Seems a bit cleaner, right? In this case, both versions are fairly short and readable,
but it's a convenient function to have.

Chapter 4

[91]

Why should we use partial instead of writing a lambda argument? Well, it's mostly
about convenience, but it also helps solve the late binding problem discussed in
Chapter 2, Pythonic Syntax, Common Pitfalls, and Style Guide. Additionally, partial
functions can be pickled whereas lambda statements cannot.

reduce – combining pairs into a single result
The reduce function implements a mathematical technique called fold. It basically
applies a function to the first and second elements, uses that result to apply together
with the third element, and continues until the list is exhausted.

The reduce function is supported by many languages but in most cases using
different names such as curry, fold, accumulate, or aggregate. Python has actually
supported reduce for a very long time, but since Python 3, it has been moved from
the global scope to the functools library. Some code can be simplified beautifully
using the reduce statement; whether it's readable or not is debatable, however.

Implementing a factorial function
One of the most used examples of reduce is for calculating factorials, which is
indeed quite simple:

>>> import operator

>>> import functools

>>> functools.reduce(operator.mul, range(1, 6))

120

The preceding code uses operator.mul instead of
lambda a, b: a * b. While they produce the same
results, the former can be quite faster.

Internally, the reduce function will do the following:

>>> import operator

>>> f = operator.mul

>>> f(f(f(f(1, 2), 3), 4), 5)

120

To clarify this further, let's look at it like this:

>>> iterable = range(1, 6)

>>> import operator

Functional Programming – Readability Versus Brevity

[92]

The initial values:

>>> a, b, *iterable = iterable

>>> a, b, iterable

(1, 2, [3, 4, 5])

First run

>>> a = operator.mul(a, b)

>>> b, *iterable = iterable

>>> a, b, iterable

(2, 3, [4, 5])

Second run

>>> a = operator.mul(a, b)

>>> b, *iterable = iterable

>>> a, b, iterable

(6, 4, [5])

Third run

>>> a = operator.mul(a, b)

>>> b, *iterable = iterable

>>> a, b, iterable

(24, 5, [])

Fourth and last run

>>> a = operator.mul (a, b)

>>> a

120

Or with a simple while loop using the deque collection:

>>> import operator

>>> import collections

>>> iterable = collections.deque(range(1, 6))

>>> value = iterable.popleft()

>>> while iterable:

... value = operator.mul(value, iterable.popleft())

>>> value

120

Chapter 4

[93]

Processing trees
Trees are a case where the reduce function really shines. Remember the one-line tree
definition using a defaultdict from Chapter 3, Containers and Collections – Storing Data
the Right Way? What would be a good way to access the keys inside of that object?
Given a path of a tree item, we can use reduce to easily access the items inside:

>>> import json

>>> import functools

>>> import collections

>>> def tree():

... return collections.defaultdict(tree)

Build the tree:

>>> taxonomy = tree()

>>> reptilia = taxonomy['Chordata']['Vertebrata']['Reptilia']

>>> reptilia['Squamata']['Serpentes']['Pythonidae'] = [

... 'Liasis', 'Morelia', 'Python']

The actual contents of the tree

>>> print(json.dumps(taxonomy, indent=4))

{

 "Chordata": {

 "Vertebrata": {

 "Reptilia": {

 "Squamata": {

 "Serpentes": {

 "Pythonidae": [

 "Liasis",

 "Morelia",

 "Python"

]

 }

 }

 }

 }

 }

}

The path we wish to get

Functional Programming – Readability Versus Brevity

[94]

>>> path = 'Chordata.Vertebrata.Reptilia.Squamata.Serpentes'

Split the path for easier access

>>> path = path.split('.')

Now fetch the path using reduce to recursively fetch the items

>>> family = functools.reduce(lambda a, b: a[b], path, taxonomy)

>>> family.items()

dict_items([('Pythonidae', ['Liasis', 'Morelia', 'Python'])])

The path we wish to get

>>> path = 'Chordata.Vertebrata.Reptilia.Squamata'.split('.')

>>> suborder = functools.reduce(lambda a, b: a[b], path, taxonomy)

>>> suborder.keys()

dict_keys(['Serpentes'])

And lastly, some people might be wondering why Python only has fold_left and
no fold_right. In my opinion, you don't really need both of them as you can easily
reverse the operation.

The regular reduce—the fold left operation:

fold_left = functools.reduce(
 lambda x, y: function(x, y),
 iterable,
 initializer,
)

The reverse—the fold right operation:
fold_right = functools.reduce(
 lambda x, y: function(y, x),
 reversed(iterable),
 initializer,
)

While this one is definitely very useful in purely functional languages—where
these operations are used quite often—initially there were plans to remove the
reduce function from Python with the introduction of Python 3. Luckily, that plan
was modified, and instead of being removed, it has been moved from reduce to
functools.reduce. There may not be many useful cases for reduce, but there are
some cool use cases. Especially traversing recursive data structures is far more easily
done using reduce, since it would otherwise involve more complicated loops or
recursive functions.

Chapter 4

[95]

itertools
The itertools library contains iterable functions inspired by those available in
functional languages. All of these are iterable and have been constructed in such a
way that only a minimal amount of memory is required to process even the largest of
datasets. While you can easily write most of these functions yourself using a simple
function, I would still recommend using the ones available in the itertools library.
These are all fast, memory efficient, and—perhaps more importantly—tested.

Even though the titles of the paragraphs are capitalized, the
functions themselves are not. Be careful not to accidently
type Accumulate instead of accumulate.

accumulate – reduce with intermediate results
The accumulate function is very similar to the reduce function, which is why some
languages actually have accumulate instead of reduce as the folding operator.

The major difference between the two is that the accumulate function returns the
immediate results. This can be useful when summing the results of a company's
sales, for example:

>>> import operator

>>> import itertools

Sales per month

>>> months = [10, 8, 5, 7, 12, 10, 5, 8, 15, 3, 4, 2]

>>> list(itertools.accumulate(months, operator.add))

[10, 18, 23, 30, 42, 52, 57, 65, 80, 83, 87, 89]

It should be noted that the operator.add function is actually optional in this case
as the default behavior of accumulate is to sum the results. In some other languages
and libraries, this function is called cumsum (cumulative sum).

chain – combining multiple results
The chain function is a simple but useful function that combines the results of
multiple iterators. Very simple but also very useful if you have multiple lists,
iterators, and so on—just combine them with a simple chain:

>>> import itertools

>>> a = range(3)

Functional Programming – Readability Versus Brevity

[96]

>>> b = range(5)

>>> list(itertools.chain(a, b))

[0, 1, 2, 0, 1, 2, 3, 4]

It should be noted that there is a small variant of chain that accepts an iterable
containing iterables, namely chain.from_iterable. They work nearly identically,
except for the fact that you need to pass along an iterable item instead of passing a
list of arguments. Your initial response might be that this can be achieved simply by
unpacking the (*args) tuple, as we will see in Chapter 6, Generators and Coroutines
– Infinity, One Step at a Time. However, this is not always the case. For now, just
remember that if you have a iterable containing iterables, the easiest method is to use
itertools.chain.from_iterable.

combinations – combinatorics in Python
The combinations iterator produces results exactly as you would expect from the
mathematical definition. All combinations with a specific length from a given list
of items:

>>> import itertools

>>> list(itertools.combinations(range(3), 2))

[(0, 1), (0, 2), (1, 2)]

The combinations function gives all possible combinations
of the given items of a given length. The number of possible
combinations is given by the binomial coefficient, the nCr
button on many calculators. It is commonly denoted as follows:

We have n=2 and k=4 in this case.

Here is the variant with repetition of elements:

>>> import itertools

>>> list(itertools.combinations_with_replacement(range(3), 2))

[(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)]

Chapter 4

[97]

The combinations_with_repetitions function is
very similar to the regular combinations function, except
that the items can be combined with themselves as well.
To calculate the number of results, the binomial coefficient
described earlier can be used with the parameters as
n=n+k-1 and k=k.

Let's look at a little combination of combinations and chain for generating a
powerset:

>>> import itertools

>>> def powerset(iterable):

... return itertools.chain.from_iterable(

... itertools.combinations(iterable, i)

... for i in range(len(iterable) + 1))

>>> list(powerset(range(3)))

[(), (0,), (1,), (2,), (0, 1), (0, 2), (1, 2), (0, 1, 2)]

The powerset is essentially the combined result of all
combinations from 0 to n, meaning that it also includes
elements with zero items (the empty set, or ()), elements with
1 item, and all the way up to n. The number of items in the
powerset is easily calculated using the power operator: 2**n.

permutations – combinations where the order
matters
The permutations function is quite similar to the combinations function. The only
real difference is that (a, b) is considered distinct from (b, a). In other words, the
order matters:

>>> import itertools

>>> list(itertools.permutations(range(3), 2))

[(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]

Functional Programming – Readability Versus Brevity

[98]

compress – selecting items using a list
of Booleans
The compress function is one of those that you won't need too often, but it can be
very useful when you do need it. It applies a Boolean filter to your iterable, making it
return only the ones you actually need. The most important thing to note here is that
it's all executed lazily and that compress will stop if either the data or the selectors
collection is exhausted. So, even with infinite ranges, it works without a hitch:

>>> import itertools

>>> list(itertools.compress(range(1000), [0, 1, 1, 1, 0, 1]))

[1, 2, 3, 5]

dropwhile/takewhile – selecting items using
a function
The dropwhile function will drop all results until a given predicate evaluates to true.
This can be useful if you are waiting for a device to finally return an expected result.
That's a bit difficult to demonstrate here, so I'll just show an example with the basic
usage—waiting for a number greater than 3:

>>> import itertools

>>> list(itertools.dropwhile(lambda x: x <= 3, [1, 3, 5, 4, 2]))

[5, 4, 2]

As you might expect, the takewhile function is the reverse of this. It will simply
return all rows until the predicate turns false:

>>> import itertools

>>> list(itertools.takewhile(lambda x: x <= 3, [1, 3, 5, 4, 2]))

[1, 3]

Simply adding the two will give you the original result again.

count – infinite range with decimal steps
The count function is quite similar to the range function, but there are two
significant differences.

The first is that this range is infinite, so don't even try to do list(itertools.
count()). You'll definitely run out of memory immediately and it might even freeze
your system.

Chapter 4

[99]

The second difference is that unlike the range function, you can actually use
floating-point numbers here, so there is no need of whole/integer numbers.

Since listing the entire range will kill our Python interpreter, we'll simply use zip
both to limit the results and to compare the results of the regular range function. In a
later paragraph, we will see a more convenient option using itertools.islice. The
count function takes two optional parameters: a start parameter, which defaults to
0, and a step parameter, which defaults to 1:

>>> import itertools

Except for being infinite, the standard version returns the same

results as the range function does.

>>> for a, b in zip(range(3), itertools.count()):

... a, b

(0, 0)

(1, 1)

(2, 2)

With a different starting point the results are still the same

>>> for a, b in zip(range(5, 8), itertools.count(5)):

... a, b

(5, 5)

(6, 6)

(7, 7)

And a different step works the same as well

>>> for a, b in zip(range(5, 10, 2), itertools.count(5, 2)):

... a, b

(5, 5)

(7, 7)

(9, 9)

Unless you try to use floating point numbers

>>> range(5, 10, 0.5)

Traceback (most recent call last):

 ...

Functional Programming – Readability Versus Brevity

[100]

TypeError: 'float' object cannot be interpreted as an integer

Which does work for count

>>> for a, b in zip(range(5, 10), itertools.count(5, 0.5)):

... a, b

(5, 5)

(6, 5.5)

(7, 6.0)

(8, 6.5)

(9, 7.0)

The itertools.islice function is also very useful in conjunction with itertools.
count, as we'll see in a later paragraph.

groupby – grouping your sorted iterable
The groupby function is a really convenient function for grouping results. The usage
and use cases are probably clear, but there are some important things to keep in
mind when using this function:

•	 The input needs to be sorted by the group parameter. Otherwise, it will be
added as a separate group.

•	 The results are available for use only once. So, after processing a group, it
will not be available anymore.

Here is an example of the proper use of groupby:

>>> import itertools

>>> items = [('a', 1), ('a', 2), ('b', 2), ('b', 0), ('c', 3)]

>>> for group, items in itertools.groupby(items, lambda x: x[0]):

... print('%s: %s' % (group, [v for k, v in items]))

a: [1, 2]

b: [2, 0]

c: [3]

And then there are cases where you might get unexpected results:

>>> import itertools

>>> items = [('a', 1), ('b', 0), ('b', 2), ('a', 2), ('c', 3)]

>>> groups = dict()

Chapter 4

[101]

>>> for group, items in itertools.groupby(items, lambda x: x[0]):

... groups[group] = items

... print('%s: %s' % (group, [v for k, v in items]))

a: [1]

b: [0, 2]

a: [2]

c: [3]

>>> for group, items in sorted(groups.items()):

... print('%s: %s' % (group, [v for k, v in items]))

a: []

b: []

c: []

Now we see two groups containing a. So, make sure you sort by the grouping
parameter before trying to group. Additionally, walking through the same
group a second time offers no results. This can be fixed easily using
groups[group] = list(items) instead, but it can give quite a few unexpected
bugs if you are not aware of this.

islice – slicing any iterable
When working with the itertools functions, you might notice that you cannot
slice these objects. That is because they are generators, a topic that we will discuss
in Chapter 6, Generators and Coroutines – Infinity, One Step at a Time. Luckily, the
itertools library has a function for slicing these objects as well—islice.

Let's take itertools.counter from before as an example:

>>> import itertools

>>> list(itertools.islice(itertools.count(), 2, 7))

[2, 3, 4, 5, 6]

So, instead of the regular slice:

itertools.count()[:10]

We enter the slice parameters to the function:

itertools.islice(itertools.count(), 10)

Functional Programming – Readability Versus Brevity

[102]

What you should note from this is actually more than the inability to slice the objects.
It is not just that slicing doesn't work, but it is not possible to get the length either—at
least not without counting all items separately—and with infinite iterators, even that
is not possible. The only understanding you actually get from a generator is that you
can fetch items one at a time. You won't even know in advance whether you're at the
end of the generator or not.

Summary
For some reason, functional programming is a paradigm that scares many people,
but really it shouldn't. The most important difference between functional and
procedural programming (within Python) is the mindset. Everything is executed
using simple (and often translations of the mathematical equivalent) functions
without any storage of variables. Simply put, a functional program consists of many
functions having a simple input and output, without using (or even having) any
outside scope or context to access. Python is not a purely functional language, so it is
easy to cheat and work outside of the local scope, but that is not recommended.

This chapter covered the basics of functional programming within Python and
some of the mathematics behind it. In addition to this, some of the many useful
libraries that can be used in a very convenient way by using functional programming
were covered.

The most important outtakes should be the following:

•	 Lambda statements are not inherently bad but it would be best to make them
use variables from the local scope only, and they should not be longer than a
single line.

•	 Functional programming can be very powerful, but it has a tendency to
quickly become unreadable. Care must be taken.

•	 list/dict/set comprehensions are very useful, but they should generally
not be nested, and for the purpose of readability, they should be kept short
as well.

Ultimately, it is a matter of preference. For the sake of readability, I recommend
limiting the usage of the functional paradigm when there is no obvious benefit.
Having said that, when executed correctly, it can be a thing of beauty.

Next up are decorators—methods to wrap your functions and classes in other
functions and/or classes to modify their behavior and extend their functionality.

[103]

Decorators – Enabling Code
Reuse by Decorating

In this chapter, you are going to learn about Python decorators. Decorators are
essentially function/class wrappers that can be used to modify the input, output, or
even the function/class itself before executing it. This type of wrapping can just as
easily be achieved by having a separate function that calls the inner function, or via
mixins. As is the case with many Python constructs, decorators are not the only way
to reach the goal but are definitely convenient in many cases.

While you can live perfectly without knowing too much about decorators, they give
you a lot of "reuse power" and are therefore used heavily in framework libraries such
as web frameworks. Python actually comes bundled with some useful decorators,
most notably the property decorator.

There are, however, some particularities to take note of: wrapping a function creates a
new function and makes it harder to reach the inner function and its properties. One
example of this is the help(function) functionality of Python; by default, you will
lose function properties such as the help text and the module the function exists in.

This chapter will cover the usage of both function and class decorators as well as the
intricate details you need to know when decorating functions within classes.

The following are the topics covered:

•	 Decorating functions
•	 Decorating class functions
•	 Decorating classes
•	 Using classes as decorators
•	 Useful decorators in the Python standard library

Decorators – Enabling Code Reuse by Decorating

[104]

Decorating functions
Essentially, a decorator is nothing more than a function or class wrapper. If we
have a function called spam and a decorator called eggs, then the following would
decorate spam with eggs:

spam = eggs(spam)

To make the syntax easier to use, Python has a special syntax for this case. So, instead
of adding a line such as the preceding one below the function, you can simply
decorate a function using the @ operator:

@eggs
def spam():
 pass

The decorator simply receives the function and returns a—usually
different—function. The simplest possible decorator is:

def eggs(function):
 return function

Looking at the earlier example, we realize that this gets spam as the argument for
function and returns that function again, effectively changing nothing. Most
decorators nest functions, however. The following decorator will print all arguments
sent to spam and pass them to spam unmodified:

>>> import functools

>>> def eggs(function):

... @functools.wraps(function)

... def _eggs(*args, **kwargs):

... print('%r got args: %r and kwargs: %r' % (

... function.__name__, args, kwargs))

... return function(*args, **kwargs)

...

... return _eggs

>>> @eggs

... def spam(a, b, c):

Chapter 5

[105]

... return a * b + c

>>> spam(1, 2, 3)

'spam' got args: (1, 2, 3) and kwargs: {}

5

This should indicate how powerful decorators can be. By modifying *args and
**kwargs, you can add, modify and remove arguments completely. Additionally,
the return statement can be modified as well. Instead of return function(...),
you can return something completely different if you wish.

Why functools.wraps is important
Whenever you are writing a decorator, always be sure to add functools.wraps to
wrap the inner function. Without wrapping it, you will lose all properties from the
original function, which can lead to confusion. Take a look at the following code
without functools.wraps:

>>> def eggs(function):

... def _eggs(*args, **kwargs):

... return function(*args, **kwargs)

... return _eggs

>>> @eggs

... def spam(a, b, c):

... '''The spam function Returns a * b + c'''

... return a * b + c

>>> help(spam)

Help on function _eggs in module ...:

<BLANKLINE>

_eggs(*args, **kwargs)

<BLANKLINE>

>>> spam.__name__

'_eggs'

Decorators – Enabling Code Reuse by Decorating

[106]

Now, our spam method has no documentation anymore and the name is gone. It has
been renamed to _eggs. Since we are indeed calling _eggs, this is understandable,
but it's very inconvenient for code that relies on this information. Now we will try
the same code with the minor difference; we will use functools.wraps:

>>> import functools

>>> def eggs(function):

... @functools.wraps(function)

... def _eggs(*args, **kwargs):

... return function(*args, **kwargs)

... return _eggs

>>> @eggs

... def spam(a, b, c):

... '''The spam function Returns a * b + c'''

... return a * b + c

>>> help(spam)

Help on function spam in module ...:

<BLANKLINE>

spam(a, b, c)

 The spam function Returns a * b + c

<BLANKLINE>

>>> spam.__name__

'spam'

Without any further changes, we now have documentation and the expected function
name. The working of functools.wraps is nothing magical though; it simply copies
and updates several attributes. Specifically, the following attributes are copied:

•	 __doc__

•	 __name__

•	 __module__

•	 __annotations__

•	 __qualname__

Chapter 5

[107]

Additionally, __dict__ is updated using _eggs.__dict__.update(spam.__dict__),
and a new property called __wrapped__ is added, which contains the original (spam in
this case) function. The actual wraps function is available in the functools.py file of
your Python distribution.

How are decorators useful?
The use cases for decorators are plentiful, but some of the most useful cases are with
debugging. More extensive examples of this will be covered in Chapter 11, Debugging
– Solving the Bugs but I can give you a sneak preview of how to use decorators to
keep track of what your code is doing.

Let's assume you have a bunch of functions that may or may not be called, and you're
not entirely sure what kind of input and output each of these is getting. In this case,
you could, of course, modify the function and add some print statements at the
beginning and the end to print the output. This quickly gets tedious, however, and it's
one of those cases where a simple decorator will make it easy to do the same thing.

For this example, we are using a very simple function, but we all know that in real
life, we're not always that lucky:

>>> def spam(eggs):

... return 'spam' * (eggs % 5)

...

>>> output = spam(3)

Let's take our simple spam function and add some output so that we can see what
happens internally:

>>> def spam(eggs):

... output = 'spam' * (eggs % 5)

... print('spam(%r): %r' % (eggs, output))

... return output

...

>>> output = spam(3)

spam(3): 'spamspamspam'

While this works, wouldn't it be far nicer to have a little decorator that takes care of
this problem?

>>> def debug(function):

... @functools.wraps(function)

... def _debug(*args, **kwargs):

Decorators – Enabling Code Reuse by Decorating

[108]

... output = function(*args, **kwargs)

... print('%s(%r, %r): %r' % (function.__name__, args, kwargs,
output))

... return output

... return _debug

...

>>>

>>> @debug

... def spam(eggs):

... return 'spam' * (eggs % 5)

...

>>> output = spam(3)

spam((3,), {}): 'spamspamspam'

Now we have a decorator that we can easily reuse for any function that prints the
input, output, and function name. This type of decorator can also be very useful for
logging applications, as we will see in Chapter 10, Testing and Logging – Preparing for
Bugs. It should be noted that you can use this example even if you are not able to
modify the module containing the original code. We can wrap the function locally
and even monkey-patch the module if needed:

import some_module

Regular call
some_module.some_function()

Wrap the function
debug_some_function = debug(some_module.some_function)

Call the debug version
debug_some_function()

Monkey patch the original module
some_module.some_function = debug_some_function

Now this calls the debug version of the function
some_module.some_function()

Naturally, monkey-patching is not a good idea in production code, but it can be very
useful when debugging.

Chapter 5

[109]

Memoization using decorators
Memoization is a simple trick for making some code run a bit faster. The basic trick
here is to store a mapping of the input and expected output so that you have to
calculate a value only once. One of the most common examples of this technique is
when demonstrating the naïve (recursive) Fibonacci function:

>>> import functools

>>> def memoize(function):

... function.cache = dict()

...

... @functools.wraps(function)

... def _memoize(*args):

... if args not in function.cache:

... function.cache[args] = function(*args)

... return function.cache[args]

... return _memoize

>>> @memoize

... def fibonacci(n):

... if n < 2:

... return n

... else:

... return fibonacci(n - 1) + fibonacci(n - 2)

>>> for i in range(1, 7):

... print('fibonacci %d: %d' % (i, fibonacci(i)))

fibonacci 1: 1

fibonacci 2: 1

fibonacci 3: 2

fibonacci 4: 3

fibonacci 5: 5

fibonacci 6: 8

>>> fibonacci.__wrapped__.cache

{(5,): 5, (0,): 0, (6,): 8, (1,): 1, (2,): 1, (3,): 2, (4,): 3}

Decorators – Enabling Code Reuse by Decorating

[110]

While this example would work just fine without any memoization, for larger
numbers, it would kill the system. For n=2, the function would execute fibonacci(n
- 1) and fibonacci(n - 2) recursively, effectively giving an exponential time
complexity. Also, effectively for n=30, the Fibonacci function is called 2,692,537 times
which is still doable nonetheless. At n=40, it is going to take you quite a very long
time to calculate.

The memoized version, however, doesn't even break a sweat and only needs to
execute 31 times for n=30.

This decorator also shows how a context can be attached to a function itself. In this
case, the cache property becomes a property of the internal (wrapped fibonacci)
function so that an extra memoize decorator for a different object won't clash with
any of the other decorated functions.

Note, however, that implementing the memoization function yourself is generally not
that useful anymore since Python introduced lru_cache (least recently used cache) in
Python 3.2. The lru_cache is similar to the preceding memoize function but a bit more
advanced. It only maintains a fixed (128 by default) cache size to save memory and
uses some statistics to check whether the cache size should be increased.

To demonstrate how lru_cache works internally, we will calculate
fibonacci(100), which would keep our computer busy until the end of the
universe without any caching. Moreover, to make sure that we can actually see how
many times the fibonacci function is being called, we'll add an extra decorator that
keeps track of the count, as follows:

>>> import functools

Create a simple call counting decorator

>>> def counter(function):

... function.calls = 0

... @functools.wraps(function)

... def _counter(*args, **kwargs):

... function.calls += 1

... return function(*args, **kwargs)

... return _counter

Create a LRU cache with size 3

>>> @functools.lru_cache(maxsize=3)

... @counter

... def fibonacci(n):

Chapter 5

[111]

... if n < 2:

... return n

... else:

... return fibonacci(n - 1) + fibonacci(n - 2)

>>> fibonacci(100)

354224848179261915075

The LRU cache offers some useful statistics

>>> fibonacci.cache_info()

CacheInfo(hits=98, misses=101, maxsize=3, currsize=3)

The result from our counter function which is now wrapped both by

our counter and the cache

>>> fibonacci.__wrapped__.__wrapped__.calls

101

You might wonder why we need only 101 calls with a cache size of 3. That's because
we recursively require only n - 1 and n - 2, so we have no need of a larger cache
in this case. With others, it would still be useful though.

Additionally, this example shows the usage of two decorators for a single function.
You can see these as the layers of an onion. The first one is the outer layer and it
works towards the inside. When calling fibonacci, lru_cache will be called first
because it's the first decorator in the list. Assuming there is no cache available yet,
the counter decorator will be called. Within the counter, the actual fibonacci
function will be called.

Returning the values works in the reverse order, of course; fibonacci returns its
value to counter, which passes the value along to lru_cache.

Decorators with (optional) arguments
The previous examples mostly used simple decorators without any arguments. As
we have already seen with lru_cache, decorators can accept arguments as well since
they are just regular functions, but this adds an extra layer to a decorator. This means
that adding an argument can be as simple as the following:

>>> import functools

>>> def add(extra_n=1):

Decorators – Enabling Code Reuse by Decorating

[112]

... 'Add extra_n to the input of the decorated function'

...

... # The inner function, notice that this is the actual

... # decorator

... def _add(function):

... # The actual function that will be called

... @functools.wraps(function)

... def __add(n):

... return function(n + extra_n)

...

... return __add

...

... return _add

>>> @add(extra_n=2)

... def eggs(n):

... return 'eggs' * n

>>> eggs(2)

'eggseggseggseggs'

Optional arguments are a different matter, however, because they make the extra
function layer optional. With arguments, you need three layers, but without
arguments, you need only two layers. Since decorators are essentially regular
functions that return functions, the difference would be to return the sub-function or
the sub-sub-function, based on the parameters. This leaves just one issue—detecting
whether the parameter is a function or a regular parameter. To illustrate, with the
parameters the actual call looks like the following:

add(extra_n=2)(eggs)(2)

Whereas the call without arguments would look like this:

add(eggs)(2)

To detect whether the decorator was called with a function or a regular argument
as a parameter, we have several options, none of which are completely ideal in
my opinion:

•	 Using keyword arguments for decorator arguments so that the regular
argument will always be the function

•	 Detecting whether the first and only argument is callable

Chapter 5

[113]

In my opinion, the first one—using keyword arguments—is the better of the two
options because it is somewhat more explicit and leaves less room for confusion.
The second option could be problematic if, for some reason, your argument is
callable as well.

Using the first method, the normal (non-keyword) argument has to be the decorated
function and the other two checks can still apply. We can still check whether the
function is indeed callable and whether there is only a single argument available.
Here is an example using a modified version of the previous example:

>>> import functools

>>> def add(*args, **kwargs):

... 'Add n to the input of the decorated function'

...

... # The default kwargs, we don't store this in kwargs

... # because we want to make sure that args and kwargs

... # can't both be filled

... default_kwargs = dict(n=1)

...

... # The inner function, notice that this is actually a

... # decorator itself

... def _add(function):

... # The actual function that will be called

... @functools.wraps(function)

... def __add(n):

... default_kwargs.update(kwargs)

... return function(n + default_kwargs['n'])

...

... return __add

...

... if len(args) == 1 and callable(args[0]) and not kwargs:

... # Decorator call without arguments, just call it

... # ourselves

... return _add(args[0])

... elif not args and kwargs:

... # Decorator call with arguments, this time it will

... # automatically be executed with function as the

Decorators – Enabling Code Reuse by Decorating

[114]

... # first argument

... default_kwargs.update(kwargs)

... return _add

... else:

... raise RuntimeError('This decorator only supports '

... 'keyword arguments')

>>> @add

... def spam(n):

... return 'spam' * n

>>> @add(n=3)

... def eggs(n):

... return 'eggs' * n

>>> spam(3)

'spamspamspamspam'

>>> eggs(2)

'eggseggseggseggseggs'

>>> @add(3)

... def bacon(n):

... return 'bacon' * n

Traceback (most recent call last):

 ...

RuntimeError: This decorator only supports keyword arguments

Whenever you have the choice available, I recommend that you either have a
decorator with arguments or without them, instead of having optional arguments.
However, if you have a really good reason for making the arguments optional, then
you have a relatively safe method of making this possible.

Chapter 5

[115]

Creating decorators using classes
Similar to how we create regular function decorators, it is also possible to create
decorators using classes instead. After all, a function is just a callable object and
a class can implement the callable interface as well. The following decorator
works similarly to the debug decorator we used earlier, but uses a class instead
of a regular function:

>>> import functools

>>> class Debug(object):

...

... def __init__(self, function):

... self.function = function

... # functools.wraps for classes

... functools.update_wrapper(self, function)

...

... def __call__(self, *args, **kwargs):

... output = self.function(*args, **kwargs)

... print('%s(%r, %r): %r' % (

... self.function.__name__, args, kwargs, output))

... return output

>>> @Debug

... def spam(eggs):

... return 'spam' * (eggs % 5)

...

>>> output = spam(3)

spam((3,), {}): 'spamspamspam'

The only notable difference between functions and classes is that functools.wraps
is now replaced with functools.update_wrapper in the __init__ method.

Decorators – Enabling Code Reuse by Decorating

[116]

Decorating class functions
Decorating class functions is very similar to regular functions, but you need to be
aware of the required first argument, self—the class instance. You have most likely
already used a few class function decorators. The classmethod, staticmethod,
and property decorators for example, are used in many different projects. To
explain how all this works, we will build our own versions of the classmethod,
staticmethod, and property decorators. First, let's look at a simple decorator for
class functions to show the difference from regular decorators:

>>> import functools

>>> def plus_one(function):
... @functools.wraps(function)
... def _plus_one(self, n):
... return function(self, n + 1)
... return _plus_one

>>> class Spam(object):
... @plus_one
... def get_eggs(self, n=2):
... return n * 'eggs'

>>> spam = Spam()
>>> spam.get_eggs(3)
'eggseggseggseggs'

As is the case with regular functions, the class function decorator now gets passed
along self as the instance. Nothing unexpected!

Skipping the instance – classmethod and
staticmethod
The difference between a classmethod and a staticmethod is fairly simple.
The classmethod passes a class object instead of a class instance (self), and
staticmethod skips both the class and the instance entirely. This effectively makes
staticmethod very similar to a regular function outside of a class.

Chapter 5

[117]

Before we recreate classmethod and staticmethod, we need to take a look at the
expected behavior of these methods:

>>> import pprint

>>> class Spam(object):

...

... def some_instancemethod(self, *args, **kwargs):

... print('self: %r' % self)

... print('args: %s' % pprint.pformat(args))

... print('kwargs: %s' % pprint.pformat(kwargs))

...

... @classmethod

... def some_classmethod(cls, *args, **kwargs):

... print('cls: %r' % cls)

... print('args: %s' % pprint.pformat(args))

... print('kwargs: %s' % pprint.pformat(kwargs))

...

... @staticmethod

... def some_staticmethod(*args, **kwargs):

... print('args: %s' % pprint.pformat(args))

... print('kwargs: %s' % pprint.pformat(kwargs))

Create an instance so we can compare the difference between

executions with and without instances easily

>>> spam = Spam()

With an instance (note the lowercase spam)

>>> spam.some_instancemethod(1, 2, a=3, b=4)

self: <...Spam object at 0x...>

args: (1, 2)

kwargs: {'a': 3, 'b': 4}

Without an instance (note the capitalized Spam)

>>> Spam.some_instancemethod()

Decorators – Enabling Code Reuse by Decorating

[118]

Traceback (most recent call last):

 ...

TypeError: some_instancemethod() missing 1 required positional argument:
'self'

But what if we add parameters? Be very careful with these!

Our first argument is now used as an argument, this can give

very strange and unexpected errors

>>> Spam.some_instancemethod(1, 2, a=3, b=4)

self: 1

args: (2,)

kwargs: {'a': 3, 'b': 4}

Classmethods are expectedly identical

>>> spam.some_classmethod(1, 2, a=3, b=4)

cls: <class '...Spam'>

args: (1, 2)

kwargs: {'a': 3, 'b': 4}

>>> Spam.some_classmethod()

cls: <class '...Spam'>

args: ()

kwargs: {}

>>> Spam.some_classmethod(1, 2, a=3, b=4)

cls: <class '...Spam'>

args: (1, 2)

kwargs: {'a': 3, 'b': 4}

Staticmethods are also identical

>>> spam.some_staticmethod(1, 2, a=3, b=4)

args: (1, 2)

kwargs: {'a': 3, 'b': 4}

>>> Spam.some_staticmethod()

Chapter 5

[119]

args: ()

kwargs: {}

>>> Spam.some_staticmethod(1, 2, a=3, b=4)

args: (1, 2)

kwargs: {'a': 3, 'b': 4}

Note that calling some_instancemethod without an instance results in an error
whereby self is missing. As expected (since we didn't instantiate the class in that
case), for the version with the arguments, it seems to work but it is actually broken.
This is because the first argument is now assumed to be self. This is obviously
incorrect in this case, where you pass an integer, but if you had passed along some
other class instance, this could be a source of very strange bugs. Both classmethod
and staticmethod handle this correctly.

Before we can continue with decorators, you need to be aware of how Python
descriptors function. Descriptors can be used to modify the binding behavior of
object attributes. This means that if a descriptor is used as the value of an attribute,
you can modify which value is being set, get, and deleted when these operations are
called on the attribute. Here is a basic example of this behavior:

>>> class MoreSpam(object):

...

... def __init__(self, more=1):

... self.more = more

...

... def __get__(self, instance, cls):

... return self.more + instance.spam

...

... def __set__(self, instance, value):

... instance.spam = value - self.more

>>> class Spam(object):

...

... more_spam = MoreSpam(5)

...

... def __init__(self, spam):

... self.spam = spam

Decorators – Enabling Code Reuse by Decorating

[120]

>>> spam = Spam(1)

>>> spam.spam

1

>>> spam.more_spam

6

>>> spam.more_spam = 10

>>> spam.spam

5

As you can see, whenever we set or get values from more_spam, it actually calls
__get__ or __set__ on MoreSpam. A very useful feat for automatic conversions and
type checking, the property decorator we will see in the next paragraph is just a
more convenient implementation of this technique.

Now that we know how descriptors work, we can continue with creating the
classmethod and staticmethod decorators. For these two, we simply need to
modify __get__ instead of __call__ so that we can control which type of instance
(or none at all) is passed along:

import functools

class ClassMethod(object):

 def __init__(self, method):
 self.method = method

 def __get__(self, instance, cls):
 @functools.wraps(self.method)
 def method(*args, **kwargs):
 return self.method(cls, *args, **kwargs)
 return method

class StaticMethod(object):

 def __init__(self, method):
 self.method = method

 def __get__(self, instance, cls):
 return self.method

Chapter 5

[121]

The ClassMethod decorator still features a sub-function to actually produce a working
decorator. Looking at the function, you can most likely guess how it functions. Instead
of passing instance as the first argument to self.method, it passes cls.

StaticMethod is even simpler, because it completely ignores both the instance and
the cls. It can just return the original method unmodified. Because it returns the
original method without any modifications, we have no need for the functools.
wraps call either.

Properties – smart descriptor usage
The property decorator is probably the most used decorator in Python land. It
allows you to add getters/setters to existing instance properties so that you can add
validators and modify your values before setting them to your instance properties.
The property decorator can be used both as an assignment and as a decorator. The
following example shows both syntaxes so that we know what to expect from the
property decorator:

>>> class Spam(object):

...

... def get_eggs(self):

... print('getting eggs')

... return self._eggs

...

... def set_eggs(self, eggs):

... print('setting eggs to %s' % eggs)

... self._eggs = eggs

...

... def delete_eggs(self):

... print('deleting eggs')

... del self._eggs

...

... eggs = property(get_eggs, set_eggs, delete_eggs)

...

... @property

... def spam(self):

... print('getting spam')

... return self._spam

...

Decorators – Enabling Code Reuse by Decorating

[122]

... @spam.setter

... def spam(self, spam):

... print('setting spam to %s' % spam)

... self._spam = spam

...

... @spam.deleter

... def spam(self):

... print('deleting spam')

... del self._spam

>>> spam = Spam()

>>> spam.eggs = 123

setting eggs to 123

>>> spam.eggs

getting eggs

123

>>> del spam.eggs

deleting eggs

Note that the property decorator works only if the class
inherits object.

Similar to how we implemented the classmethod and staticmethod decorators,
we need the Python descriptors again. This time, we require the full power of the
descriptors, however—not just __get__ but __set__ and __delete__ as well:

class Property(object):
 def __init__(self, fget=None, fset=None, fdel=None,
 doc=None):
 self.fget = fget
 self.fset = fset
 self.fdel = fdel
 # If no specific documentation is available, copy it
 # from the getter
 if fget and not doc:
 doc = fget.__doc__
 self.__doc__ = doc

Chapter 5

[123]

 def __get__(self, instance, cls):
 if instance is None:
 # Redirect class (not instance) properties to
 # self
 return self
 elif self.fget:
 return self.fget(instance)
 else:
 raise AttributeError('unreadable attribute')

 def __set__(self, instance, value):
 if self.fset:
 self.fset(instance, value)
 else:
 raise AttributeError("can't set attribute")

 def __delete__(self, instance):
 if self.fdel:
 self.fdel(instance)
 else:
 raise AttributeError("can't delete attribute")

 def getter(self, fget):
 return type(self)(fget, self.fset, self.fdel)

 def setter(self, fset):
 return type(self)(self.fget, fset, self.fdel)

 def deleter(self, fdel):
 return type(self)(self.fget, self.fset, fdel)

As you can see, most of the Property implementation is simply an implementation
of the descriptor methods. The getter, setter, and deleter functions are simply
shortcuts for making the usage of the decorator possible, which is why we have to
return self if no instance is available.

Naturally, there are more methods of achieving this effect. In the previous paragraph,
we saw the bare descriptor implementation, and in our previous example, we saw
the property decorator. A somewhat more generic solution for a class is to implement
__getattr__ or __getattribute__. Here's a simple demonstration:

>>> class Spam(object):

... def __init__(self):

... self.registry = {}

Decorators – Enabling Code Reuse by Decorating

[124]

...

... def __getattr__(self, key):

... print('Getting %r' % key)

... return self.registry.get(key, 'Undefined')

...

... def __setattr__(self, key, value):

... if key == 'registry':

... object.__setattr__(self, key, value)

... else:

... print('Setting %r to %r' % (key, value))

... self.registry[key] = value

...

... def __delattr__(self, key):

... print('Deleting %r' % key)

... del self.registry[key]

>>> spam = Spam()

>>> spam.a

Getting 'a'

'Undefined'

>>> spam.a = 1

Setting 'a' to 1

>>> spam.a

Getting 'a'

1

>>> del spam.a

Deleting 'a'

The __getattr__ method looks for the key in instance.__dict__ first and is called
only if it does not exist. That's why we never see a __getattr__ for the registry
attribute. The __getattribute__ method is called in all cases, which makes it a
bit more dangerous to use. With the __getattribute__ method, you will need a
specific exclusion for registry since it will be executed recursively if you try to
access self.registry.

Chapter 5

[125]

There is rarely a need to look at descriptors, but they are used by several internal
Python processes, such as the super() method when inheriting classes.

Decorating classes
Python 2.6 introduced the class decorator syntax. As is the case with the function
decorator syntax, this is not really a new technique either. Even without the
syntax, a class can be decorated simply by executing DecoratedClass =
decorator(RegularClass). After the previous paragraphs, you should be familiar
with writing decorators. Class decorators are no different from regular ones, except
for the fact that they take a class instead of a function. As is the case with functions,
this happens at declaration time and not at instantiating/calling time.

Because there are quite a few alternative ways to modify how classes work, such
as standard inheritance, mixins, and metaclasses (more about that in Chapter 8,
Metaclasses – Making Classes (Not Instances) Smarter), class decorators are never strictly
needed. This does not reduce their usefulness, but it does offer an explanation of
why you will most likely not see too many examples of class decorating in the wild.

Singletons – classes with a single instance
Singletons are classes that always allow only a single instance to exist. So, instead of
getting an instance specifically for your call, you always get the same one. These can
be very useful for things such as a database connection pool, where you don't want
to keep opening connections all of the time but want to reuse the original ones:

>>> import functools

>>> def singleton(cls):

... instances = dict()

... @functools.wraps(cls)

... def _singleton(*args, **kwargs):

... if cls not in instances:

... instances[cls] = cls(*args, **kwargs)

... return instances[cls]

... return _singleton

>>> @singleton

... class Spam(object):

... def __init__(self):

Decorators – Enabling Code Reuse by Decorating

[126]

... print('Executing init')

>>> a = Spam()

Executing init

>>> b = Spam()

>>> a is b

True

>>> a.x = 123

>>> b.x

123

As you can see in the a is b comparison, both objects have the same identity, so
we can conclude that they are indeed the same object. As is the case with regular
decorators, due to the functools.wraps functionality, we can still access the original
class through Spam.__wrapped__ if needed.

The is operator compares objects by identity, which is implemented
as the memory address in CPython. If a is b returns True, we can
conclude that both a and b are the same instance.

Total ordering – sortable classes the easy way
At some point or the other, you have probably needed to sort data structures.
While this is easily achievable using the key parameter to the sorted function,
there is a more convenient way if you need to do this often—by implementing the
__gt__, __ge__, __lt__, __le__, and __eq__ functions. That seems a bit verbose,
doesn't it? If you want the best performance, it's still a good idea, but if you can
take a tiny performance hit and some slightly more complicated stack traces, then
total_ordering might be a nice alternative. The total_ordering class decorator
can implement all required sort functions based on a class that possesses an __eq__
function and one of the comparison functions (__lt__, __le__, __gt__, or __ge__).
This means you can seriously shorten your function definitions. Let's compare the
regular one and the one using the total_ordering decorator:

>>> import functools

>>> class Value(object):

Chapter 5

[127]

... def __init__(self, value):

... self.value = value

...

... def __repr__(self):

... return '<%s[%d]>' % (self.__class__, self.value)

>>> class Spam(Value):

... def __gt__(self, other):

... return self.value > other.value

...

... def __ge__(self, other):

... return self.value >= other.value

...

... def __lt__(self, other):

... return self.value < other.value

...

... def __le__(self, other):

... return self.value <= other.value

...

... def __eq__(self, other):

... return self.value == other.value

>>> @functools.total_ordering

... class Egg(Value):

... def __lt__(self, other):

... return self.value < other.value

...

... def __eq__(self, other):

... return self.value == other.value

>>> numbers = [4, 2, 3, 4]

>>> spams = [Spam(n) for n in numbers]

>>> eggs = [Egg(n) for n in numbers]

>>> spams

Decorators – Enabling Code Reuse by Decorating

[128]

[<<class 'H05.Spam'>[4]>, <<class 'H05.Spam'>[2]>,

<<class 'H05.Spam'>[3]>, <<class 'H05.Spam'>[4]>]

>>> eggs

[<<class 'H05.Egg'>[4]>, <<class 'H05.Egg'>[2]>,

<<class 'H05.Egg'>[3]>, <<class 'H05.Egg'>[4]>]

>>> sorted(spams)

[<<class 'H05.Spam'>[2]>, <<class 'H05.Spam'>[3]>,

<<class 'H05.Spam'>[4]>, <<class 'H05.Spam'>[4]>]

>>> sorted(eggs)

[<<class 'H05.Egg'>[2]>, <<class 'H05.Egg'>[3]>,

<<class 'H05.Egg'>[4]>, <<class 'H05.Egg'>[4]>]

Sorting using key is of course still possible and in this case

perhaps just as easy:

>>> values = [Value(n) for n in numbers]

>>> values

[<<class 'H05.Value'>[4]>, <<class 'H05.Value'>[2]>,

<<class 'H05.Value'>[3]>, <<class 'H05.Value'>[4]>]

>>> sorted(values, key=lambda v: v.value)

[<<class 'H05.Value'>[2]>, <<class 'H05.Value'>[3]>,

<<class 'H05.Value'>[4]>, <<class 'H05.Value'>[4]>]

Now, you might be wondering, "Why isn't there a class decorator to make a class
sortable using a specified key property?" Well, that might indeed be a good idea for
the functools library but it isn't there yet. So let's see how we would implement
something like it:

>>> def sort_by_attribute(attr, keyfunc=getattr):

... def _sort_by_attribute(cls):

... def __gt__(self, other):

... return getattr(self, attr) > getattr(other, attr)

...

... def __ge__(self, other):

... return getattr(self, attr) >= getattr(other, attr)

...

Chapter 5

[129]

... def __lt__(self, other):

... return getattr(self, attr) < getattr(other, attr)

...

... def __le__(self, other):

... return getattr(self, attr) <= getattr(other, attr)

...

... def __eq__(self, other):

... return getattr(self, attr) <= getattr(other, attr)

...

... cls.__gt__ = __gt__

... cls.__ge__ = __ge__

... cls.__lt__ = __lt__

... cls.__le__ = __le__

... cls.__eq__ = __eq__

...

... return cls

... return _sort_by_attribute

>>> class Value(object):

... def __init__(self, value):

... self.value = value

...

... def __repr__(self):

... return '<%s[%d]>' % (self.__class__, self.value)

>>> @sort_by_attribute('value')

... class Spam(Value):

... pass

>>> numbers = [4, 2, 3, 4]

>>> spams = [Spam(n) for n in numbers]

>>> sorted(spams)

[<<class '...Spam'>[2]>, <<class '...Spam'>[3]>,

<<class '...Spam'>[4]>, <<class '...Spam'>[4]>]

Decorators – Enabling Code Reuse by Decorating

[130]

Certainly, this greatly simplifies the making of a sortable class. And if you would
rather have your own key function instead of getattr, it's even easier. Simply
replace the getattr(self, attr) call with key_function(self), do that for other
as well, and change the argument for the decorator to your function. You can even
use that as the base function and implement sort_by_attribute by simply passing
a wrapped getattr function.

Useful decorators
In addition to the ones already mentioned in this chapter, Python comes bundled
with a few other useful decorators. There are some that aren't in the standard
library (yet?).

Single dispatch – polymorphism in Python
If you've used C++ or Java before, you're probably used to having ad hoc
polymorphism available—different functions being called depending on the
argument types. Python being a dynamically typed language, most people would
not expect the possibility of a single dispatch pattern. Python, however, is a language
that is not only dynamically typed but also strongly typed, which means we can rely
on the type we receive.

A dynamically typed language does not require strict type
definitions. On the other hand, a language such as C would
require the following to declare an integer:

int some_integer = 123;

Python simply accepts that your value has a type:
some_integer = 123

As opposed to languages such as JavaScript and PHP, however,
Python does very little implicit type conversion. In Python, the
following will return an error, whereas JavaScript would execute
it without any problems:

'spam' + 5

In Python, the result is a TypeError. In Javascript, it's 'spam5'.

Chapter 5

[131]

The idea of single dispatch is that depending on the type you pass along, the correct
function is called. Since str + int results in an error in Python, this can be very
convenient to automatically convert your arguments before passing them to your
function. This can be useful to separate the actual workings of your function from the
type conversions.

Since Python 3.4, there is a decorator that makes it easily possible to implement the
single dispatch pattern in Python. For one of those cases that you need to handle a
specific type different from the normal execution. Here is the basic example:

>>> import functools

>>> @functools.singledispatch

... def printer(value):

... print('other: %r' % value)

>>> @printer.register(str)

... def str_printer(value):

... print(value)

>>> @printer.register(int)

... def int_printer(value):

... printer('int: %d' % value)

>>> @printer.register(dict)

... def dict_printer(value):

... printer('dict:')

... for k, v in sorted(value.items()):

... printer(' key: %r, value: %r' % (k, v))

>>> printer('spam')

spam

>>> printer([1, 2, 3])

other: [1, 2, 3]

>>> printer(123)

Decorators – Enabling Code Reuse by Decorating

[132]

int: 123

>>> printer({'a': 1, 'b': 2})

dict:

 key: 'a', value: 1

 key: 'b', value: 2

See how, depending on the type, the other functions were called? This pattern can be
very useful for reducing the complexity of a single function that takes several types
of argument.

When naming the functions, make sure that you do not
overwrite the original singledispatch function. If we had
named str_printer as just printer, it would overwrite the
initial printer function. This would make it impossible to
access the original printer function and make all register
operations after that fail as well.

Now, a slightly more useful example—differentiating between a filename and
a file handler:

>>> import json

>>> import functools

>>> @functools.singledispatch

... def write_as_json(file, data):

... json.dump(data, file)

>>> @write_as_json.register(str)

... @write_as_json.register(bytes)

... def write_as_json_filename(file, data):

... with open(file, 'w') as fh:

... write_as_json(fh, data)

>>> data = dict(a=1, b=2, c=3)

Chapter 5

[133]

>>> write_as_json('test1.json', data)

>>> write_as_json(b'test2.json', 'w')

>>> with open('test3.json', 'w') as fh:

... write_as_json(fh, data)

So now we have a single write_as_json function; it calls the right code depending
on the type. If it's an str or bytes object, it will automatically open the file and call
the regular version of write_as_json, which accepts file objects.

Writing a decorator that does this is not that hard to do, of course, but it's still
quite convenient to have it in the base library. It most certainly beats a couple of
isinstance calls in your function. To see which function will be called, you can use
the write_as_json.dispatch function with a specific type. When passing along
an str, you will get the write_as_json_filename function. It should be noted that
the name of the dispatched functions is completely arbitrary. They are accessible as
regular functions, of course, but you can name them anything you like.

To check the registered types, you can access the registry, which is a dictionary,
through write_as_json.registry:

>>> write_as_json.registry.keys()

dict_keys([<class 'bytes'>, <class 'object'>, <class 'str'>])

Contextmanager, with statements made easy
Using the contextmanager class, we can make the creation of a context wrapper
very easy. Context wrappers are used whenever you use a with statement. One
example is the open function, which works as a context wrapper as well, allowing
you to use the following code:

with open(filename) as fh:
 pass

Let's just assume for now that the open function is not usable as a context manager
and that we need to build our own function to do this. The standard method of
creating a context manager is by creating a class that implements the __enter__ and
__exit__ methods, but that's a bit verbose. We can have it shorter and simpler:

>>> import contextlib

>>> @contextlib.contextmanager

... def open_context_manager(filename, mode='r'):

... fh = open(filename, mode)

Decorators – Enabling Code Reuse by Decorating

[134]

... yield fh

... fh.close()

>>> with open_context_manager('test.txt', 'w') as fh:

... print('Our test is complete!', file=fh)

Simple, right? However, I should mention that for this specific case—the closing of
objects—there is a dedicated function in contextlib, and it is even easier to use.
Let's demonstrate it:

>>> import contextlib

>>> with contextlib.closing(open('test.txt', 'a')) as fh:

... print('Yet another test', file=fh)

For a file object, this is of course not needed since it already functions as a context
manager. However, some objects such as requests made by urllib don't support
automatic closing in that manner and benefit from this function.

But wait; there's more! In addition to being usable in a with statement, the results
of a contextmanager are actually usable as decorators since Python 3.2. In older
Python versions, it was simply a small wrapper, but since Python 3.2 it's based on the
ContextDecorator class, which makes it a decorator. The previous decorator isn't really
suitable for that task since it yields a result (more about that in Chapter 6, Generators and
Coroutines – Infinity, One Step at a Time), but we can think of other functions:

>>> @contextlib.contextmanager

... def debug(name):

... print('Debugging %r:' % name)

... yield

... print('End of debugging %r' % name)

>>> @debug('spam')

... def spam():

... print('This is the inside of our spam function')

>>> spam()

Debugging 'spam':

This is the inside of our spam function

End of debugging 'spam'

Chapter 5

[135]

There are quite a few nice use cases for this, but at the very least, it's just a convenient
way to wrap a function in a context without all the (nested) with statements.

Validation, type checks, and conversions
While checking for types is usually not the best way to go in Python, at times it can
be useful if you know that you will need a specific type (or something that can be
cast to that type). To facilitate this, Python 3.5 introduces a type hinting system so
that you can do the following:

def spam(eggs: int):
 pass

Since Python 3.5 is not that common yet, here's a decorator that achieves the same with
more advanced type checking. To allow for this type of checking, some magic has to
be used, specifically the usage of the inspect module. Personally, I am not a great fan
of inspecting code to perform tricks like these, as they are easy to break. This piece of
code actually breaks when a regular decorator (one that doesn't copy argspec) is used
between the function and this decorator, but it's a nice example nonetheless:

>>> import inspect

>>> import functools

>>> def to_int(name, minimum=None, maximum=None):

... def _to_int(function):

... # Use the method signature to map *args to named

... # arguments

... signature = inspect.signature(function)

...

... # Unfortunately functools.wraps doesn't copy the

... # signature (yet) so we do it manually.

... # For more info: http://bugs.python.org/issue23764

... @functools.wraps(function, ['__signature__'])

... @functools.wraps(function)

... def __to_int(*args, **kwargs):

... # Bind all arguments to the names so we get a single

... # mapping of all arguments

... bound = signature.bind(*args, **kwargs)

...

Decorators – Enabling Code Reuse by Decorating

[136]

... # Make sure the value is (convertible to) an integer

... default = signature.parameters[name].default

... value = int(bound.arguments.get(name, default))

...

... # Make sure it's within the allowed range

... if minimum is not None:

... assert value >= minimum, (

... '%s should be at least %r, got: %r' %

... (name, minimum, value))

...

... if maximum is not None:

... assert value <= maximum, (

... '%s should be at most %r, got: %r' %

... (name, maximum, value))

...

... return function(*args, **kwargs)

... return __to_int

... return _to_int

>>> @to_int('a', minimum=10)

... @to_int('b', maximum=10)

... @to_int('c')

... def spam(a, b, c=10):

... print('a', a)

... print('b', b)

... print('c', c)

>>> spam(10, b=0)

a 10

b 0

c 10

>>> spam(a=20, b=10)

a 20

b 10

c 10

>>> spam(1, 2, 3)

Chapter 5

[137]

Traceback (most recent call last):

 ...

AssertionError: a should be at least 10, got: 1

>>> spam()

Traceback (most recent call last):

 ...

TypeError: 'a' parameter lacking default value

>>> spam('spam', {})

Traceback (most recent call last):

 ...

ValueError: invalid literal for int() with base 10: 'spam'

Because of the inspect magic, I'm still not sure whether I would recommend
using the decorator like this. Instead, I would opt for a simpler version that uses
no inspect whatsoever and simply parses the arguments from kwargs:

>>> import functools

>>> def to_int(name, minimum=None, maximum=None):

... def _to_int(function):

... @functools.wraps(function)

... def __to_int(**kwargs):

... value = int(kwargs.get(name))

...

... # Make sure it's within the allowed range

... if minimum is not None:

... assert value >= minimum, (

... '%s should be at least %r, got: %r' %

... (name, minimum, value))

...

... if maximum is not None:

... assert value <= maximum, (

... '%s should be at most %r, got: %r' %

... (name, maximum, value))

...

Decorators – Enabling Code Reuse by Decorating

[138]

... return function(**kwargs)

... return __to_int

... return _to_int

>>> @to_int('a', minimum=10)

... @to_int('b', maximum=10)

... def spam(a, b):

... print('a', a)

... print('b', b)

>>> spam(a=20, b=10)

a 20

b 10

>>> spam(a=1, b=10)

Traceback (most recent call last):

 ...

AssertionError: a should be at least 10, got: 1

However, as demonstrated, supporting both args and kwargs is not impossible as
long as you keep in mind that __signature__ is not copied by default. Without
__signature__, the inspect module won't know which parameters are allowed and
which aren't.

The missing __signature__ issue is currently being discussed
and might be solved in a future Python version:
http://bugs.python.org/issue23764.

Useless warnings – how to ignore them
Generally when writing Python, warnings are very useful the first time when you're
actually writing the code. When executing it, however, it is not useful to get that
same message every time you run your script/application. So, let's create some code
that allows easy hiding of the expected warnings, but not all of them so that we can
easily catch new ones:

import warnings
import functools

def ignore_warning(warning, count=None):

http://bugs.python.org/issue23764

Chapter 5

[139]

 def _ignore_warning(function):
 @functools.wraps(function)
 def __ignore_warning(*args, **kwargs):
 # Execute the code while recording all warnings
 with warnings.catch_warnings(record=True) as ws:
 # Catch all warnings of this type
 warnings.simplefilter('always', warning)
 # Execute the function
 result = function(*args, **kwargs)

 # Now that all code was executed and the warnings
 # collected, re-send all warnings that are beyond our
 # expected number of warnings
 if count is not None:
 for w in ws[count:]:
 warnings.showwarning(
 message=w.message,
 category=w.category,
 filename=w.filename,
 lineno=w.lineno,
 file=w.file,
 line=w.line,
)

 return result
 return __ignore_warning
 return _ignore_warning

@ignore_warning(DeprecationWarning, count=1)
def spam():
 warnings.warn('deprecation 1', DeprecationWarning)
 warnings.warn('deprecation 2', DeprecationWarning)

Using this method, we can catch the first (expected) warning and still see the second
(not expected) warning.

Decorators – Enabling Code Reuse by Decorating

[140]

Summary
This chapter showed us some of the places where decorators can be used to make
our code simpler and add some fairly complex behavior to very simple functions.
Truthfully, most decorators are more complex than the regular function would
have been by simply adding the functionality directly, but the added advantage of
applying the same pattern to many functions and classes is generally well worth it.

Decorators have so many uses to make your functions and classes smarter and more
convenient to use:

•	 Debugging
•	 Validation
•	 Argument convenience (pre-filling or converting arguments)
•	 Output convenience (converting the output to a specific type)

The most important takeaway of this chapter should be to never forget functools.
wraps when wrapping a function. Debugging decorated functions can be rather
difficult because of (unexpected) behavior modification, but losing attributes as well
can make that problem much worse.

The next chapter will show us how and when to use generators and coroutines. This
chapter has already shown us the usage of the with statement slightly, but generators
and coroutines go much further with this. We will still be using decorators often
though, so make sure you have a good understanding of how they work.

[141]

Generators and Coroutines –
Infinity, One Step at a Time

A generator is a specific type of iterator that generates values through a function.
While traditional methods build and return a list of items, a generator will simply
yield every value separately at the moment when they are requested by the caller.
This method has several benefits:

•	 Generators pause execution completely until the next value is yielded, which
makes them completely lazy. If you fetch five items from a generator, only
five items will be generated, so no other computation is needed.

•	 Generators have no need to save values. Whereas a traditional function
would require creating a list and storing all results until they are returned,
a generator only needs to store a single value.

•	 Generators can have infinite size. There is no requirement to stop at a
certain point.

These benefits come at a price, however. The immediate results of these benefits are a
few disadvantages:

•	 Until you are done processing, you never know how many values are left; it
could even be infinite. This makes usage dangerous in some cases; executing
list(some_infinite_generator) will run out of memory.

•	 You cannot slice generators.
•	 You cannot get specific items without yielding all values before that index.
•	 You cannot restart a generator. All values are yielded exactly once.

Generators and Coroutines – Infinity, One Step at a Time

[142]

In addition to generators, there is a variation to the generator's syntax that creates
coroutines. Coroutines are functions that allow for multitasking without requiring
multiple threads or processes. Whereas generators can only yield values to the caller,
coroutines actually receive values from the caller while it is still running. While
this technique has a few limitations, if it suits your purpose, it can result in great
performance at a very little cost.

In short, the topics covered in this chapter are:

•	 The characteristics and uses of generators
•	 Generator comprehensions
•	 Generator functions
•	 Generator classes
•	 Bundled generators
•	 Coroutines

What are generators?
A generator, in its simplest form, is a function that returns elements one at a time
instead of returning a collection of items. The most important advantage of this is
that it requires very little memory and that it doesn't need to have a predefined size.
Creating an endless generator (such as the itertools.count iterator discussed in
Chapter 4, Functional Programming – Readability Versus Brevity) is actually quite easy,
but it does come with a cost, of course. Not having the size of an object available
makes certain patterns difficult to achieve.

The basic trick in writing generators (as functions) is using the yield statement.
Let's use the itertools.count generator as an example and extend it with a
stop variable:

>>> def count(start=0, step=1, stop=10):

... n = start

... while n <= stop:

... yield n

... n += step

>>> for x in count(10, 2.5, 20):

... print(x)

10

12.5

Chapter 6

[143]

15.0

17.5

20.0

Due to the potentially infinite nature of generators, caution is required. Without
the stop variable, simply doing list(count()) would result in an out-of-memory
situation quite fast.

So how does this work? It's just a normal for loop, but the big difference between
this and the regular method of returning a list of items is that the yield statement
returns the items one at a time. An important thing to note here is that the return
statement results in a StopIteration and passing something along to return
will be the argument to the StopIteration. It should be noted that this behavior
changed in Python 3.3; in Python 3.2 and earlier versions, it was simply not possible
to return anything other than None. Here is an example:

>>> def generator():

... yield 'this is a generator'

... return 'returning from a generator'

>>> g = generator()

>>> next(g)

'this is a generator'

>>> next(g)

Traceback (most recent call last):

 ...

StopIteration: returning from a generator

Of course, as always, there are multiple ways of creating generators with Python.
Other than functions, there are also generator comprehensions and classes that
can do the same thing. Generator comprehensions are pretty much identical to list
comprehensions but use parentheses instead of brackets, like this for example:

>>> generator = (x ** 2 for x in range(4))

>>> for x in generator:

... print(x)

0

1

4

9

Generators and Coroutines – Infinity, One Step at a Time

[144]

For completeness, the class version of the count function is as follows:

>>> class Count(object):

... def __init__(self, start=0, step=1, stop=10):

... self.n = start

... self.step = step

... self.stop = stop

...

... def __iter__(self):

... return self

...

... def __next__(self):

... n = self.n

... if n > self.stop:

... raise StopIteration()

...

... self.n += self.step

... return n

>>> for x in Count(10, 2.5, 20):

... print(x)

10

12.5

15.0

17.5

20.0

The biggest difference between the class and the function-based approach is that
you are required to raise a StopIteration explicitly instead of just returning it.
Beyond that, they are quite similar, although the class-based version obviously
adds some verbosity.

Chapter 6

[145]

Advantages and disadvantages of generators
You have seen a few examples of generators and know the basics of what you can
do with them. However, it is important to keep their advantages and disadvantages
in mind.

The following are most important pros:

•	 Memory usage. Items can be processed one at a time, so there is generally no
need to keep the entire list in memory.

•	 The results can depend on outside factors, instead of having a static list.
Think of processing a queue/stack for example.

•	 Generators are lazy. This means that if you're using only the first five results
of a generator, the rest won't even be calculated.

•	 Generally, it is simpler to write than list generating functions.

The most important cons:

•	 The results are available only once. After processing the results of a
generator, it cannot be used again.

•	 The size is unknown until you are done processing, which can be detrimental
to certain algorithms.

•	 Generators are not indexable, which means that some_generator[5] will
not work.

Considering all the advantages and disadvantages, my general advice would be to
use generators if possible and only return a list or tuple when you actually need
to. Converting a generator to a list is as simple as list(some_generator), so that
shouldn't stop you since generator functions tend to be simpler than the equivalents
that produce list.

The memory usage advantage is understandable; one item requires less memory
than many items. The lazy part, however, needs some additional explanation as it
has a small snag:

>>> def generator():

... print('Before 1')

... yield 1

... print('After 1')

... print('Before 2')

... yield 2

... print('After 2')

Generators and Coroutines – Infinity, One Step at a Time

[146]

... print('Before 3')

... yield 3

... print('After 3')

>>> g = generator()

>>> print('Got %d' % next(g))

Before 1

Got 1

>>> print('Got %d' % next(g))

After 1

Before 2

Got 2

As you can see, the generator effectively freezes right after the yield statement,
so even the After 2 won't print until 3 is yielded.

This has important advantages, but it's definitely something you need to take into
consideration. You can't have your cleanup right after the yield as it won't be
executed until the next yield.

Pipelines – an effective use of generators
The theoretical possibilities of generators are infinite (no pun intended), but their
practical uses can be difficult to find. If you are familiar with the Unix/Linux shell,
you must have probably used pipes before, something like ps aux | grep python'
for example to list all Python processes. There are many ways to do this, of course,
but let's emulate something similar in Python to see a practical example. To create
an easy and consistent output, we will create a file called lines.txt with the
following lines:

spam
eggs
spam spam
eggs eggs
spam spam spam
eggs eggs eggs

Chapter 6

[147]

Now, let's take the following Linux/Unix/Mac shell command to read the file with
some modifications:

cat lines.txt | grep spam | sed 's/spam/bacon/g'

bacon

bacon bacon

bacon bacon bacon

This reads the file using cat, outputs all lines that contain spam using grep, and
replaces spam with bacon using the sed command. Now let's see how we can
recreate this with the use of Python generators:

>>> def cat(filename):

... for line in open(filename):

... yield line.rstrip()

...

>>> def grep(sequence, search):

... for line in sequence:

... if search in line:

... yield line

...

>>> def replace(sequence, search, replace):

... for line in sequence:

... yield line.replace(search, replace)

...

>>> lines = cat('lines.txt')

>>> spam_lines = grep(lines, 'spam')

>>> bacon_lines = replace(spam_lines, 'spam', 'bacon')

>>> for line in bacon_lines:

... print(line)

...

bacon

bacon bacon

bacon bacon bacon

Generators and Coroutines – Infinity, One Step at a Time

[148]

Or the one-line version, fits within 78 characters:

>>> for line in replace(grep(cat('lines.txt'), 'spam'),

... 'spam', 'bacon'):

... print(line)

...

bacon

bacon bacon

bacon bacon bacon

That's the big advantage of generators. You can wrap a list or sequence multiple
times with very little performance impact. Not a single one of the functions
involved executes anything until a value is requested.

tee – using an output multiple times
As mentioned before, one of the biggest disadvantages of generators is that the
results are usable only once. Luckily, Python has a function that allows you to
copy the output to several generators. The name tee might be familiar to you if
you are used to working in a command-line shell. The tee program allows you to
write outputs to both the screen and a file, so you can store an output while still
maintaining a live view of it.

The Python version, itertools.tee, does a similar thing except that it returns
several iterators, allowing you to process the results separately.

By default, tee will split your generator into a tuple containing two different
generators, which is why tuple unpacking works nicely here. By passing along the n
parameter, this can easily be changed to support more than 2 generators. Here is an
example:

>>> import itertools

>>> def spam_and_eggs():

... yield 'spam'

... yield 'eggs'

>>> a, b = itertools.tee(spam_and_eggs())

>>> next(a)

'spam'

>>> next(a)

'eggs'

Chapter 6

[149]

>>> next(b)

'spam'

>>> next(b)

'eggs'

>>> next(b)

Traceback (most recent call last):

 ...

StopIteration

After seeing this code, you might be wondering about the memory usage of tee.
Does it need to store the entire list for you? Luckily, no. The tee function is pretty
smart in handling this. Assume you have a generator that contains 1,000 items, and
you read the first 100 items from a and the first 75 items from b simultaneously.
Then tee will only keep the difference (100 - 75 = 25 items) in the memory and
drop the rest while you are iterating the results.

Whether tee is the best solution in your case or not depends, of course. If instance a
is read from the beginning to (nearly) the end before instance b is read, then it would
not be a great idea to use tee. Simply converting the generator to a list would be
faster since it involves much fewer operations.

Generating from generators
As we have seen before, we can use generators to filter, modify, add, and remove
items. In many cases, however, you'll notice that when writing generators, you'll
be returning from sub-generators and/or sequences. An example of this is when
creating a powerset using the itertools library:

>>> import itertools

>>> def powerset(sequence):

... for size in range(len(sequence) + 1):

... for item in itertools.combinations(sequence, size):

... yield item

>>> for result in powerset('abc'):

... print(result)

()

('a',)

('b',)

Generators and Coroutines – Infinity, One Step at a Time

[150]

('c',)

('a', 'b')

('a', 'c')

('b', 'c')

('a', 'b', 'c')

This pattern was so common that the yield syntax was actually enhanced to make
this even easier. Instead of manually looping over the results, Python 3.3 introduced
the yield from syntax, which makes this common pattern even simpler:

>>> import itertools

>>> def powerset(sequence):

... for size in range(len(sequence) + 1):

... yield from itertools.combinations(sequence, size)

>>> for result in powerset('abc'):

... print(result)

()

('a',)

('b',)

('c',)

('a', 'b')

('a', 'c')

('b', 'c')

('a', 'b', 'c')

And that's how you create a powerset in only three lines of code.

Perhaps, a more useful example of this is flattening a sequence recursively:

>>> def flatten(sequence):

... for item in sequence:

... try:

... yield from flatten(item)

... except TypeError:

... yield item

...

>>> list(flatten([1, [2, [3, [4, 5], 6], 7], 8]))

[1, 2, 3, 4, 5, 6, 7, 8]

Chapter 6

[151]

Note that this code uses TypeError to detect non-iterable objects. The result is that
if the sequence (which could be a generator) returns a TypeError, it will silently
hide it.

Also note that this is a very basic flattening function that has no type checking
whatsoever. An iterable containing an str for example will be flattened recursively
until the maximum recursion depth is reached, since every item in an str also
returns an str.

Context managers
As with most of the techniques described in this book, Python also comes bundled
with a few useful generators. Some of these (itertools and contextlib.
contextmanager for example) have already been discussed in Chapter 4, Functional
Programming – Readability Versus Brevity and Chapter 5, Decorators – Enabling Code
Reuse by Decorating but we can use some extra examples to demonstrate how simple
and powerful they can be.

The Python context managers do not appear to be directly related to generators,
but that's a large part of what they use internally:

>>> import datetime

>>> import contextlib

Context manager that shows how long a context was active

>>> @contextlib.contextmanager

... def timer(name):

... start_time = datetime.datetime.now()

... yield

... stop_time = datetime.datetime.now()

... print('%s took %s' % (name, stop_time - start_time))

The write to log function writes all stdout (regular print data) to

a file. The contextlib.redirect_stdout context wrapper

temporarily redirects standard output to a given file handle, in

this case the file we just opened for writing.

>>> @contextlib.contextmanager

... def write_to_log(name):

... with open('%s.txt' % name, 'w') as fh:

... with contextlib.redirect_stdout(fh):

Generators and Coroutines – Infinity, One Step at a Time

[152]

... with timer(name):

... yield

Use the context manager as a decorator

>>> @write_to_log('some function')

... def some_function():

... print('This function takes a bit of time to execute')

... ...

... print('Do more...')

>>> some_function()

While all this works just fine, the three levels of context managers tend to get a bit
unreadable. Generally, decorators can solve this. In this case, however, we need the
output from one context manager as the input for the next.

That's where ExitStack comes in. It allows easy combining of multiple context
managers:

>>> import contextlib

>>> @contextlib.contextmanager

... def write_to_log(name):

... with contextlib.ExitStack() as stack:

... fh = stack.enter_context(open('stdout.txt', 'w'))

... stack.enter_context(contextlib.redirect_stdout(fh))

... stack.enter_context(timer(name))

...

... yield

>>> @write_to_log('some function')

... def some_function():

... print('This function takes a bit of time to execute')

... ...

... print('Do more...')

>>> some_function()

Chapter 6

[153]

Looks at least a bit simpler, doesn't it? While the necessity is limited in this case, the
convenience of ExitStack becomes quickly apparent when you need to do specific
teardowns. In addition to the automatic handling as seen before, it's also possible to
transfer the contexts to a new ExitStack and manually handle the closing:

>>> import contextlib

>>> with contextlib.ExitStack() as stack:

... spam_fh = stack.enter_context(open('spam.txt', 'w'))

... eggs_fh = stack.enter_context(open('eggs.txt', 'w'))

... spam_bytes_written = spam_fh.write('writing to spam')

... eggs_bytes_written = eggs_fh.write('writing to eggs')

... # Move the contexts to a new ExitStack and store the

... # close method

... close_handlers = stack.pop_all().close

>>> spam_bytes_written = spam_fh.write('still writing to spam')

>>> eggs_bytes_written = eggs_fh.write('still writing to eggs')

After closing we can't write anymore

>>> close_handlers()

>>> spam_bytes_written = spam_fh.write('cant write anymore')

Traceback (most recent call last):

 ...

ValueError: I/O operation on closed file.

Most of the contextlib functions have extensive documentation available in the
Python manual. ExitStack in particular is documented using many examples
at https://docs.python.org/3/library/contextlib.html#contextlib.
ExitStack. I recommend keeping an eye on the contextlib documentation as it is
improving greatly with every Python version.

https://docs.python.org/3/library/contextlib.html#contextlib.ExitStack
https://docs.python.org/3/library/contextlib.html#contextlib.ExitStack

Generators and Coroutines – Infinity, One Step at a Time

[154]

Coroutines
Coroutines are subroutines that offer non-pre-emptive multitasking through
multiple entry points. The basic premise is that coroutines allow two functions to
communicate with each other while running. Normally, this type of communication
is reserved only for multitasking solutions, but coroutines offer a relatively simple
way of achieving this at almost no added performance cost.

Since generators are lazy by default, the working of coroutines is fairly obvious.
Until a result is consumed, the generator sleeps; but while consuming a result, the
generator becomes active. The difference between regular generators and coroutines
is that coroutines don't simply return values to the calling function but can receive
values as well.

A basic example
In the previous paragraphs, we saw how regular generators can yield values. But
that's not all that generators can do. They can actually receive values as well. The
basic usage is fairly simple:

>>> def generator():

... value = yield 'spam'

... print('Generator received: %s' % value)

... yield 'Previous value: %r' % value

>>> g = generator()

>>> print('Result from generator: %s' % next(g))

Result from generator: spam

>>> print(g.send('eggs'))

Generator received: eggs

Previous value: 'eggs'

And that's all there is to it. The function is frozen until the send method is called,
at which point it will process up to the next yield statement.

Chapter 6

[155]

Priming
Since generators are lazy, you can't just send a value to a brand new generator.
Before a value can be sent to the generator, either a result must be fetched using
next() or a send(None) has to be issued so that the code is actually reached. The
need for this is understandable but a bit tedious at times. Let's create a simple
decorator to omit the need for this:

>>> import functools

>>> def coroutine(function):

... @functools.wraps(function)

... def _coroutine(*args, **kwargs):

... active_coroutine = function(*args, **kwargs)

... next(active_coroutine)

... return active_coroutine

... return _coroutine

>>> @coroutine

... def spam():

... while True:

... print('Waiting for yield...')

... value = yield

... print('spam received: %s' % value)

>>> generator = spam()

Waiting for yield...

>>> generator.send('a')

spam received: a

Waiting for yield...

>>> generator.send('b')

spam received: b

Waiting for yield...

Generators and Coroutines – Infinity, One Step at a Time

[156]

As you've probably noticed, even though the generator is still lazy, it now
automatically executes all of the code until it reaches the yield statement
again. At that point, it will stay dormant until new values are sent.

Note that the coroutine decorator will be used throughout this
chapter from this point onwards. For brevity, we will omit it from
the following examples.

Closing and throwing exceptions
Unlike regular generators, which simply exit as soon as the input sequence is
exhausted, coroutines generally employ infinite while loops, which means that they
won't be torn down the normal way. That's why coroutines also support both close
and throw methods, which will exit the function. The important thing here is not
the closing but the possibility of adding a teardown method. Essentially, it is very
comparable to how context wrappers function with an __enter__ and __exit__
method, but with coroutines in this case:

@coroutine
def simple_coroutine():
 print('Setting up the coroutine')
 try:
 while True:
 item = yield
 print('Got item: %r' % item)
 except GeneratorExit:
 print('Normal exit')
 except Exception as e:
 print('Exception exit: %r' % e)
 raise
 finally:
 print('Any exit')

print('Creating simple coroutine')
active_coroutine = simple_coroutine()
print()

print('Sending spam')
active_coroutine.send('spam')
print()

Chapter 6

[157]

print('Close the coroutine')
active_coroutine.close()
print()

print('Creating simple coroutine')
active_coroutine = simple_coroutine()
print()

print('Sending eggs')
active_coroutine.send('eggs')
print()

print('Throwing runtime error')
active_coroutine.throw(RuntimeError, 'Oops...')
print()

This generates the following output, which should be as expected—no strange
behavior but simply two methods of exiting a coroutine:

python3 H06.py

Creating simple coroutine

Setting up the coroutine

Sending spam

Got item: 'spam'

Close the coroutine

Normal exit

Any exit

Creating simple coroutine

Setting up the coroutine

Sending eggs

Got item: 'eggs'

Throwing runtime error

Exception exit: RuntimeError('Oops...',)

Any exit

Generators and Coroutines – Infinity, One Step at a Time

[158]

Traceback (most recent call last):

...

 File ... in <module>

 active_coroutine.throw(RuntimeError, 'Oops...')

 File ... in simple_coroutine

 item = yield

RuntimeError: Oops...

Bidirectional pipelines
In the previous paragraphs, we saw pipelines; they process the output sequentially
and one-way. However, there are cases where this is simply not enough—times
where you need a pipe that not only sends values to the next pipe but also receives
information back from the sub-pipe. Instead of always having a single list that is
processed, we can maintain the state of the generator between executions this way.
So, let's start by converting the earlier pipelines to coroutines. First, the lines.txt
file again:

spam
eggs
spam spam
eggs eggs
spam spam spam
eggs eggs eggs

Now, the coroutine pipeline. The functions are the same as before but using
coroutines instead:

>>> @coroutine

... def replace(search, replace):

... while True:

... item = yield

... print(item.replace(search, replace))

>>> spam_replace = replace('spam', 'bacon')

>>> for line in open('lines.txt'):

... spam_replace.send(line.rstrip())

bacon

eggs

Chapter 6

[159]

bacon bacon

eggs eggs

bacon bacon bacon

eggs eggs eggs

Given this example, you might be wondering why we are now printing the value
instead of yielding it. Well! We can, but remember that generators freeze until a
value is yielded. Let's see what would happen if we simply yield the value instead
of calling print. By default, you might be tempted to do this:

>>> @coroutine

... def replace(search, replace):

... while True:

... item = yield

... yield item.replace(search, replace)

>>> spam_replace = replace('spam', 'bacon')

>>> spam_replace.send('spam')

'bacon'

>>> spam_replace.send('spam spam')

>>> spam_replace.send('spam spam spam')

'bacon bacon bacon'

Half of the values have disappeared now, so the question is, "Where did they go?"
Notice that the second yield isn't storing the results. That's where the values are
disappearing. We need to store those as well:

>>> @coroutine

... def replace(search, replace):

... item = yield

... while True:

... item = yield item.replace(search, replace)

>>> spam_replace = replace('spam', 'bacon')

>>> spam_replace.send('spam')

Generators and Coroutines – Infinity, One Step at a Time

[160]

'bacon'

>>> spam_replace.send('spam spam')

'bacon bacon'

>>> spam_replace.send('spam spam spam')

'bacon bacon bacon'

But even this is far from optimal. We are essentially using coroutines to mimic the
behavior of generators right now. Although it works, it's just a tad silly and not all
that clear. Let's make a real pipeline this time where the coroutines send the data
to the next coroutine (or coroutines) and actually show the power of coroutines by
sending the results to multiple coroutines:

Grep sends all matching items to the target

>>> @coroutine

... def grep(target, pattern):

... while True:

... item = yield

... if pattern in item:

... target.send(item)

Replace does a search and replace on the items and sends it to

the target once it's done

>>> @coroutine

... def replace(target, search, replace):

... while True:

... target.send((yield).replace(search, replace))

Print will print the items using the provided formatstring

>>> @coroutine

... def print_(formatstring):

... while True:

... print(formatstring % (yield))

Tee multiplexes the items to multiple targets

>>> @coroutine

... def tee(*targets):

... while True:

Chapter 6

[161]

... item = yield

... for target in targets:

... target.send(item)

Because we wrap the results we need to work backwards from the

inner layer to the outer layer.

First, create a printer for the items:

>>> printer = print_('%s')

Create replacers that send the output to the printer

>>> replacer_spam = replace(printer, 'spam', 'bacon')

>>> replacer_eggs = replace(printer, 'spam spam', 'sausage')

Create a tee to send the input to both the spam and the eggs

replacers

>>> branch = tee(replacer_spam, replacer_eggs)

Send all items containing spam to the tee command

>>> grepper = grep(branch, 'spam')

Send the data to the grepper for all the processing

>>> for line in open('lines.txt'):

... grepper.send(line.rstrip())

bacon

spam

bacon bacon

sausage

bacon bacon bacon

sausage spam

This makes the code much simpler and more readable, but more importantly, it
shows how a single source can be split into multiple destinations. While this might
not look too exciting, it most certainly is. If you look closely, you will see that the tee
method splits the input into two different outputs, but both of those outputs write
back to the same print_ instance. This means that it's possible to route your data
along whichever way is convenient for you while still having it end up at the same
endpoint with no effort whatsoever.

Generators and Coroutines – Infinity, One Step at a Time

[162]

Regardless, the example is still not that useful, as these functions still don't use all
of the coroutine's power. The most important feature, a consistent state, is not really
used in this case.

The most important lesson to learn from these lines is that mixing generators and
coroutines is not a good idea in most cases since it can have very strange side effects
if used incorrectly. Even though both use the yield statement, they are significantly
different creatures with different behavior. The next paragraph will show one of the
few cases where mixing coroutines and generators can be useful.

Using the state
Now that we know how to write basic coroutines and which pitfalls we have to take
care of, how about writing a function where remembering the state is required? That
is, a function that always gives you the average value of all sent values. This is one of
the few cases where it is still relatively safe and useful to combine the coroutine and
generator syntax:

>>> @coroutine

... def average():

... count = 1

... total = yield

... while True:

... total += yield total / count

... count += 1

>>> averager = average()

>>> averager.send(20)

20.0

>>> averager.send(10)

15.0

>>> averager.send(15)

15.0

>>> averager.send(-25)

5.0

Chapter 6

[163]

It still requires some extra logic to work properly though. To make sure we don't
divide by zero, we initialize the count to 1. After that, we fetch our first item using
yield, but we don't send any data at that point because the first yield is the primer
and is executed before we get the value. Once that's all set up, we can easily yield
the average value while summing. Not all that bad, but the pure coroutine version is
slightly simpler to understand since we don't have to worry about priming:

>>> @coroutine

... def print_(formatstring):

... while True:

... print(formatstring % (yield))

>>> @coroutine

... def average(target):

... count = 0

... total = 0

... while True:

... count += 1

... total += yield

... target.send(total / count)

>>> printer = print_('%.1f')

>>> averager = average(printer)

>>> averager.send(20)

20.0

>>> averager.send(10)

15.0

>>> averager.send(15)

15.0

>>> averager.send(-25)

5.0

As simple as it should be, just keeping the count and the total value and simply send
the new average for every new value.

Generators and Coroutines – Infinity, One Step at a Time

[164]

Another nice example is itertools.groupby, also quite simple to do with
coroutines. For comparison, we will once again show both the generator
coroutine and the pure coroutine version:

>>> @coroutine

... def groupby():

... # Fetch the first key and value and initialize the state

... # variables

... key, value = yield

... old_key, values = key, []

... while True:

... # Store the previous value so we can store it in the

... # list

... old_value = value

... if key == old_key:

... key, value = yield

... else:

... key, value = yield old_key, values

... old_key, values = key, []

... values.append(old_value)

>>> grouper = groupby()

>>> grouper.send(('a', 1))

>>> grouper.send(('a', 2))

>>> grouper.send(('a', 3))

>>> grouper.send(('b', 1))

('a', [1, 2, 3])

>>> grouper.send(('b', 2))

>>> grouper.send(('a', 1))

('b', [1, 2])

>>> grouper.send(('a', 2))

>>> grouper.send((None, None))

('a', [1, 2])

Chapter 6

[165]

As you can see, this function uses a few tricks. We store the previous key and value
so that we can detect when the group (key) changes. And that is the second issue; we
obviously cannot recognize a group until the group has changed, so only after the
group has changed will the results be returned. This means that the last group will
be sent only if a different group is sent after it, hence the (None, None). And now,
here is the pure coroutine version:

>>> @coroutine

... def print_(formatstring):

... while True:

... print(formatstring % (yield))

>>> @coroutine

... def groupby(target):

... old_key = None

... while True:

... key, value = yield

... if old_key != key:

... # A different key means a new group so send the

... # previous group and restart the cycle.

... if old_key and values:

... target.send((old_key, values))

... values = []

... old_key = key

... values.append(value)

>>> grouper = groupby(print_('group: %s, values: %s'))

>>> grouper.send(('a', 1))

>>> grouper.send(('a', 2))

>>> grouper.send(('a', 3))

>>> grouper.send(('b', 1))

group: a, values: [1, 2, 3]

>>> grouper.send(('b', 2))

>>> grouper.send(('a', 1))

group: b, values: [1, 2]

>>> grouper.send(('a', 2))

>>> grouper.send((None, None))

group: a, values: [1, 2]

Generators and Coroutines – Infinity, One Step at a Time

[166]

While the functions are fairly similar, the pure coroutine version is, once again, quite
a bit simpler. This is because we don't have to think about priming and values that
might get lost.

Summary
This chapter showed us how to create generators and both the strengths and
weaknesses that they possess. Additionally, it should now be clear how to work
around their limitations and the implications of doing so.

While the paragraphs about coroutines should have provided some insights into
what they are and how they can be used, not everything has been shown yet. We
saw the constructs of both pure coroutines and coroutines that are generators at
the same time, but they are still all synchronous. The coroutines allow sending the
results to many other coroutines, therefore effectively executing many functions
at once, but they can still freeze Python completely if an operation turns out to be
blocking. That's where our next chapter will help.

Python 3.5 introduced a few useful features, such as the async and await statements.
These make it possible to make coroutines fully asynchronous and non-blocking,
whereas this chapter uses the basic coroutine features that have been available
since Python 2.5.

The next chapter will expand on the newer features, including the asyncio module.
This module makes it almost simple to use coroutines for asynchronous I/O to
endpoints such as TCP, UDP, files, and processes.

[167]

Async IO – Multithreading
without Threads

The previous chapter showed us the basic implementation of synchronous
coroutines. Whenever you are dealing with external resources, however,
synchronous coroutines are a bad idea. Just a single stalling remote connection
can cause your entire process to hang, unless you are using multiprocessing
(explained in Chapter 13, Multiprocessing – When a Single CPU Core Is Not Enough) or
asynchronous functions that is.

Asynchronous IO makes it possible to access external resources without having to
worry about slowing down or stalling your application. Instead of actively waiting
for results, the Python interpreter can simply continue with other tasks until it is
needed again. This is very similar to the functioning of Node.js and AJAX calls
in JavaScript. Within Python, we have seen libraries such as asyncore, gevent,
and eventlet that have made this possible for years. With the introduction of the
asyncio module, however, it has become significantly easier to use.

This chapter will explain how asynchronous functions can be used in Python
(particularly 3.5 and above) and how code can be restructured in such a way that it
still functions even though it doesn't follow the standard procedural coding pattern
of returning values.

Async IO – Multithreading without Threads

[168]

The following topics will be covered in this chapter:

•	 Functions using:
°° async def

°° async for

°° async with

°° await

•	 Parallel execution
•	 Servers
•	 Clients
•	 Eventual results using Future

Introducing the asyncio library
The asyncio library was created to make asynchronous processing much easier
and results more predictable. It was introduced with the purpose of replacing the
asyncore module, which has been available for a very long time (since Python 1.5
in fact). The asyncore module was never very usable, which prompted the creation
of the gevent and eventlet third-party libraries. Both gevent and eventlet make
asynchronous programming much easier than asyncore ever did, but I feel that both
have been made largely obsolete with the introduction of asyncio. Even though
I have to admit that asyncio still has quite a few rough edges, it is in very active
development, which makes me think that all the rough edges will soon be fixed by
either the core Python library or third-party wrappers.

The asyncio library was officially introduced for Python 3.4, but a back port for Python
3.3 is available through the Python Package Index. With that in mind, while some
portions of this chapter will be able to run on Python 3.3, most of it has been written
with Python 3.5 and the newly introduced async and await keywords in mind.

The async and await statements
Before we continue with any example, it is important to know how the Python
3.4 and Python 3.5 code syntaxes relate. Even though the asyncio library was
introduced only in Python 3.4, a large portion of the generic syntax has already been
replaced in Python 3.5. Not forcefully, but the easier and therefore recommended
syntax using async and await has been introduced.

Chapter 7

[169]

Python 3.4
For the traditional Python 3.4 usage, a few things need to be considered:

•	 Functions should be declared using the asyncio.coroutine decorator
•	 Asynchronous results should be fetched using yield from coroutine()
•	 Asynchronous loops are not directly supported but can be emulated using

while True: yield from coroutine()

Here is an example:

import asyncio

@asyncio.coroutine
def sleeper():
 yield from asyncio.sleep(1)

Python 3.5
In Python 3.5, a new syntax was introduced to mark a function as asynchronous.
Instead of the asyncio.coroutine decorator, the async keyword can be used.
Also, instead of the confusing yield from syntax, Python now supports the await
statement. The yield from statement was slightly confusing because it might give
someone the idea that a value is being exchanged, which is not always the case.

The following is the async statement:

async def some_coroutine():
 pass

It can be used instead of the decorator:

import asyncio

@asyncio.coroutine
def some_coroutine():
 pass

Within Python 3.5, and most likely in future versions as well, the coroutine
decorator will still be supported, but if backwards compatibility is not an issue,
I strongly recommend the new syntax.

Async IO – Multithreading without Threads

[170]

Additionally, instead of the yield from statement, we can use the much more
logical await statement. So, the example from the previous paragraph becomes as
simple as the following:

import asyncio

async def sleeper():
 await asyncio.sleep(1)

The yield from statement originated from the original coroutines implementation
in Python and was a logical extension from the yield statement used within
synchronous coroutines. Actually, the yield from statement still works and the
await statement is just a wrapper for it, with some added checks. While using await,
the interpreter checks whether the object is an awaitable object, meaning it needs to
be one of the following:

•	 A native coroutine created with the async def statement
•	 A coroutine created with the asyncio.coroutine decorator
•	 An object that implements the __await__ method

This check alone makes the await statement preferable over the yield from
statement, but I personally think that await conveys the meaning of the statement
much better as well.

To summarize, to convert to the new syntax, make the following changes:

•	 Functions should be declared using async def instead of def
•	 Asynchronous results should be fetched using await coroutine()
•	 Asynchronous loops can be created using async for ... in ...
•	 Asynchronous with statements can be created using async with ...

Choosing between the 3.4 and 3.5 syntax
Unless you really need Python 3.3 or 3.4 support, I would strongly recommend
the Python 3.5 syntax. The new syntax is clearer and supports more features, such
as asynchronous for loops and with statements. Unfortunately, they are not fully
compatible, so you need to make a choice. Within an async def (3.5), we cannot use
yield from, but all we need to do to fix that is replace yield from with await.

Chapter 7

[171]

A simple example of single-threaded parallel
processing
Parallel processing has many uses: a server taking care of multiple requests at the
same time, speeding up heavy tasks, waiting for external resources, and much more.
Generic coroutines can help with handling multiple requests and external resources
in some cases, but they are still synchronous and therefore limited. With asyncio,
we can transcend the limitations of generic coroutines and easily handle stalling
resources without having to worry about blocking the main thread. Let's see a quick
example of how the code does not stall with multiple parallel functions:

>>> import asyncio

>>> async def sleeper(delay):

... await asyncio.sleep(delay)

... print('Finished sleeper with delay: %d' % delay)

>>> loop = asyncio.get_event_loop()

>>> results = loop.run_until_complete(asyncio.wait((

... sleeper(1),

... sleeper(3),

... sleeper(2),

...)))

Finished sleeper with delay: 1

Finished sleeper with delay: 2

Finished sleeper with delay: 3

Even though we started the sleepers with the order of 1, 3, 2, which sleeps for that
amount of time, asyncio.sleep combined with the await statement actually tells
Python that it should just continue with a task that needs actual processing at this
time. A regular time.sleep would actually stall the Python task, meaning they
would execute sequentially. This makes it somewhat more obviously transparent
what these can be used for, as it handles any type of wait, which we can hand off
to asyncio instead of keeping the entire Python thread busy. So, instead of while
True: fh.read(), we can just respond whenever there is new data.

Async IO – Multithreading without Threads

[172]

Let's analyze the components used in this example:

•	 asyncio.coroutine: This decorator enables yielding from async def
coroutines. Unless you are using this syntax, there is no real need for the
decorator, but it's a good default if only used as documentation.

•	 asyncio.sleep: This is the asynchronous version of time.sleep. The
big difference between these two is that time.sleep will keep the Python
process busy while it is sleeping, whereas asyncio.sleep will allow
switching to a different task within the event loop. This process is very
similar to the workings of task switching in most operating systems.

•	 asyncio.get_event_loop: The default event loop is effectively the asyncio
task switcher; we'll explain more about these in the next paragraph.

•	 asyncio.wait: This is the coroutine for wrapping a sequence of coroutines
or futures and waiting for the results. The wait time is configurable, as is the
manner of waiting (first done, all done, or the first exception).

That should explain the basic workings of the example: the sleeper function is the
asynchronous coroutine, which exits after the given delay. The wait function waits
for all coroutines to finish before exiting, and the event loop is used for switching
between the three coroutines.

Concepts of asyncio
The asyncio library has several basic concepts, which have to be explained before
we venture further into examples and uses. The example shown in the previous
paragraph actually used most of them, but a little explanation about the how and the
why might still be useful.

The main concepts of asyncio are coroutines and event loops. Within them, there
are several helper classes available, such as Streams, Futures, and Processes.
The next few paragraphs will explain the basics so that you can understand the
implementations in the examples in the later paragraphs.

Futures and tasks
The asyncio.Future class is essentially a promise of a result; it returns the results
if they are available, and once it receives results, it will pass them along to all the
registered callbacks. It maintains a state variable internally, which allows an outside
party to mark a future as canceled. The API is very similar to the concurrent.
futures.Future class, but since they are not fully compatible, make sure you do not
confuse the two.

Chapter 7

[173]

The Future class by itself is not that convenient to use though, so that is where
asyncio.Task comes in. The Task class wraps a coroutine and automatically
handles the execution, results, and state for you. The coroutine will be executed
through the given event loop, or the default event loop if none was given.

The creation of these classes is not something you need to worry about directly.
This is because instead of creating the class yourself, the recommended way is
through either asyncio.ensure_future or loop.create_task. The former actually
executes loop.create_task internally but it is more convenient if you simply
want to execute it on the main/default event loop without having to specify it first.
The usage is simple enough. To create your own future manually, you simply tell
the event loop to execute create_task for you. The following example is a bit
complicated because of all the setup code but the usage of C should be clear enough.
The most important aspect to note is that the event loop should be linked so that the
task knows how/where to run:

>>> import asyncio

>>> async def sleeper(delay):

... await asyncio.sleep(delay)

... print('Finished sleeper with delay: %d' % delay)

Create an event loop

>>> loop = asyncio.get_event_loop()

Create the task

>>> result = loop.call_soon(loop.create_task, sleeper(1))

Make sure the loop stops after 2 seconds

>>> result = loop.call_later(2, loop.stop)

Start the loop and make it run forever. Or at least until the loop.stop
gets

called in 2 seconds.

>>> loop.run_forever()

Finished sleeper with delay: 1

Async IO – Multithreading without Threads

[174]

Now, a little bit about debugging asynchronous functions. Debugging asynchronous
functions used to be very difficult if not impossible, as there was no good way to see
where and how the functions were stalling. Luckily, that has changed. In the case of
the Task class, it is as simple as calling task.get_stack or task.print_stack to see
where it is currently. The usage can be as simple as the following:

>>> import asyncio

>>> async def stack_printer():

... for task in asyncio.Task.all_tasks():

... task.print_stack()

Create an event loop

>>> loop = asyncio.get_event_loop()

Create the task

>>> result = loop.run_until_complete(stack_printer())

Event loops
The concept of event loops is actually the most important one within asyncio. You
might have suspected that the coroutines themselves are what everything is about,
but without the event loop, they are useless. Event loops function as task switchers,
just the way operating systems switch between active tasks on the CPU. Even with
multicore processors, there is still a need for a main process to tell the CPU which
tasks have to run and which need to wait/sleep for a while. This is exactly what the
event loop does: it decides which task to run.

Event loop implementations
So far, we have only seen asyncio.get_event_loop, which returns the default event
loop with the default event loop policy. Currently, there are two bundled event loop
implementations: the async.SelectorEventLoop and async.ProactorEventLoop
implementations. Which of the two is available depends on your operating
system. The latter event loop is available only on Windows machines and uses I/O
Completion Ports, which is a system that is supposedly faster and more efficient than
the Select implementation of asyncio.SelectorEventLoop. This is something to
consider if performance is an issue. The usage is simple enough, luckily:

import asyncio

loop = asyncio.ProActorEventLoop()
asyncio.set_event_loop(loop)

Chapter 7

[175]

The alternative event loop is based on selectors, which, since Python 3.4, are available
through the selectors module in the core Python installation. The selectors module
was introduced in Python 3.4 to enable easy access to low-level asynchronous I/O
operations. Basically, it allows you to open and read from many files by using I/O
multiplexing. Since asyncio handles all complexities for you, there is generally no
need to use the module directly, but the usage is simple enough if you need it. Here's
an example of binding a function to the read event (EVENT_READ) on the standard
input. The code will simply wait until one of the registered files provides new data:

import sys
import selectors

def read(fh):
 print('Got input from stdin: %r' % fh.readline())

if __name__ == '__main__':
 # Create the default selector
 selector = selectors.DefaultSelector()

 # Register the read function for the READ event on stdin
 selector.register(sys.stdin, selectors.EVENT_READ, read)

 while True:
 for key, mask in selector.select():
 # The data attribute contains the read function here
 callback = key.data
 # Call it with the fileobj (stdin here)
 callback(key.fileobj)

There are several selectors available, such as the traditional selectors.
SelectSelector (which uses select.select internally), but there are also more
modern solutions such as selectors.KqueueSelector, selectors.EpollSelector,
and selectors.DevpollSelector. Even though it should select the most efficient
selector by default, there are cases where the most efficient one is not suitable in
some way or another. In those cases, the selector event loop allows you to specify a
different selector:

import asyncio
import selectors

selector = selectors.SelectSelector()
loop = asyncio.SelectorEventLoop(selector)
asyncio.set_event_loop(loop)

Async IO – Multithreading without Threads

[176]

It should be noted that the differences between these selectors are generally too
small to notice in most real-world applications. The only situation I have come across
where such an optimization makes a difference is when building a server that has to
handle a lot of simultaneous connections. With "a lot," I am referring to over 100,000
concurrent connections on a single server, which is a problem only a few people on
this planet have had to deal with.

Event loop policies
Event loop policies are objects that create and store the actual event loops for you.
They have been written with maximum flexibility in mind but are not objects that
you often need to modify. The only reason I can think of modifying the event loop
policy is if you want to make specific event loops run on specific processors and/
or systems, or if you wish to change the default event loop type. Beyond that, it
offers more flexibility than most people will ever need. Making your own event loop
(ProActorEventLoop in this case) the default is simply possible through this code:

import asyncio

class ProActorEventLoopPolicy(
 asyncio.events.BaseDefaultEventLoopPolicy):
 _loop_factory = asyncio.SelectorEventLoop

policy = ProActorEventLoopPolicy()
asyncio.set_event_loop_policy(policy)

Event loop usage
So far, we have only seen the loop.run_until_complete method. Naturally, there
are a few others as well. The one you will most likely use most often is loop.run_
forever. This method, as you might expect, keeps running forever, or at least until
loop.stop has been run.

So, assuming we have an event loop running forever now, we need to add tasks to
it. This is where things get interesting. There are quite a few choices available within
the default event loops:

•	 call_soon: Add an item to the end of the (FIFO) queue so that the functions
will be executed in the order in which they were inserted.

•	 call_soon_threadsafe: This is the same as call_soon except for being
thread safe. The call_soon method is not thread safe because thread safety
requires the usage of the global interpreter lock (GIL), which effectively
makes your program single threaded at the moment of thread safety. The
performance chapter will explain this more thoroughly.

Chapter 7

[177]

•	 call_later: Call the function after the given number of seconds. If two jobs
would run at the same time, they will run in an undefined order. Note that
the delay is a minimum. If the event loop is locked/busy, it can run later.

•	 call_at: Call a function at a specific time related to the output of loop.time.
Every integer after loop.time adds a second.

All of these functions return asyncio.Handle objects. These objects allow the
cancellation of the task through the handle.cancel function as long as it has
not been executed yet. Be careful with canceling from other threads, however,
as cancellation is not thread safe either. To execute it in a thread-safe way, we
have to execute the cancellation function as a task as well: loop.call_soon_
threadsafe(handle.cancel). The following is an example usage:

>>> import time

>>> import asyncio

>>> t = time.time()

>>> def printer(name):

... print('Started %s at %.1f' % (name, time.time() - t))

... time.sleep(0.2)

... print('Finished %s at %.1f' % (name, time.time() - t))

>>> loop = asyncio.get_event_loop()

>>> result = loop.call_at(loop.time() + .2, printer, 'call_at')

>>> result = loop.call_later(.1, printer, 'call_later')

>>> result = loop.call_soon(printer, 'call_soon')

>>> result = loop.call_soon_threadsafe(printer, 'call_soon_threadsafe')

>>> # Make sure we stop after a second

>>> result = loop.call_later(1, loop.stop)

>>> loop.run_forever()

Started call_soon at 0.0

Finished call_soon at 0.2

Started call_soon_threadsafe at 0.2

Async IO – Multithreading without Threads

[178]

Finished call_soon_threadsafe at 0.4

Started call_later at 0.4

Finished call_later at 0.6

Started call_at at 0.6

Finished call_at at 0.8

You might be wondering why we are not using the coroutine decorator here. The
reason is that the loop won't allow running of coroutines directly. To run a coroutine
through these call functions, we need to make sure that it is wrapped in an asyncio.
Task. As we have seen in the previous paragraph, this is easy enough—luckily:

>>> import time

>>> import asyncio

>>> t = time.time()

>>> async def printer(name):

... print('Started %s at %.1f' % (name, time.time() - t))

... await asyncio.sleep(0.2)

... print('Finished %s at %.1f' % (name, time.time() - t))

>>> loop = asyncio.get_event_loop()

>>> result = loop.call_at(

... loop.time() + .2, loop.create_task, printer('call_at'))

>>> result = loop.call_later(.1, loop.create_task,

... printer('call_later'))

>>> result = loop.call_soon(loop.create_task,

... printer('call_soon'))

>>> result = loop.call_soon_threadsafe(

... loop.create_task, printer('call_soon_threadsafe'))

>>> # Make sure we stop after a second

>>> result = loop.call_later(1, loop.stop)

Chapter 7

[179]

>>> loop.run_forever()

Started call_soon at 0.0

Started call_soon_threadsafe at 0.0

Started call_later at 0.1

Started call_at at 0.2

Finished call_soon at 0.2

Finished call_soon_threadsafe at 0.2

Finished call_later at 0.3

Finished call_at at 0.4

These call methods might appear slightly different but the internals actually boil
down to two queues that are implemented through heapq. The loop._scheduled is
used for scheduled operations and loop._ready is for immediate execution. When
the _run_once method is called (the run_forever method wraps this method in a
while True loop), the loop will first try to process all items in the loop._ready heap
with the specific loop implementation (for example, SelectorEventLoop). Once
everything in loop._ready is processed, the loop will continue to move items from
the loop._scheduled heap to the loop._ready heap if they are due.

Both call_soon and call_soon_threadsafe write to the loop._ready heap.
And the call_later method is simply a wrapper for call_at with the current
value of asyncio.time added to the scheduled time, which writes to the
loop._scheduled heap.

The result of this method of processing is that everything added through the call_
soon* methods will always execute after everything that is added through the call_
at/call_later methods.

As for the ensure_futures function, it will call loop.create_task internally to
wrap the coroutine in a Task object, which is, of course, a subclass of a Future object.
If you need to extend the Task class for some reason, that is easily possible through
the loop.set_task_factory method.

Depending on the type of event loop, there are actually many other methods for
creating connections, file handlers, and more. Those will be explained by example in
later paragraphs, since they have less to do with the event loop and are more about
programming with coroutines.

Async IO – Multithreading without Threads

[180]

Processes
So far, we have simply executed specifically asynchronous Python functions, but
some things are a tad more difficult to run asynchronously within Python. For
example, let's assume we have a long-running external application that we wish
to run. The subprocess module would be the standard approach for running
external applications, and it works quite well. With a bit of care, one could even
make sure that these do not block the main thread by polling the output. That
still requires polling, however. Yet, won't events be better so that we can do other
things while we are waiting for the results? Luckily, this is easily arranged through
asyncio.Process. Similar to the Future and Task classes, this class is meant to be
created through the event loop. In terms of usage, the class is very similar to the
subprocess.Popen class, except that the functions have been made asynchronous.
This results in the removal of the polling function, of course.

First, let's look at the traditional sequential version:

>>> import time

>>> import subprocess

>>>

>>>

>>> t = time.time()

>>>

>>>

>>> def process_sleeper():

... print('Started sleep at %.1f' % (time.time() - t))

... process = subprocess.Popen(['sleep', '0.1'])

... process.wait()

... print('Finished sleep at %.1f' % (time.time() - t))

...

>>>

>>> for i in range(3):

... process_sleeper()

Started sleep at 0.0

Finished sleep at 0.1

Started sleep at 0.1

Finished sleep at 0.2

Started sleep at 0.2

Finished sleep at 0.3

Chapter 7

[181]

Since everything is executed sequentially, it takes three times the 0.1 seconds that the
sleep command is sleeping. So, instead of waiting for all of them at the same time,
let's run them in parallel this time:

>>> import time

>>> import subprocess

>>> t = time.time()

>>> def process_sleeper():

... print('Started sleep at %.1f' % (time.time() - t))

... return subprocess.Popen(['sleep', '0.1'])

...

>>>

>>> processes = []

>>> for i in range(5):

... processes.append(process_sleeper())

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

>>> for process in processes:

... returncode = process.wait()

... print('Finished sleep at %.1f' % (time.time() - t))

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1

Async IO – Multithreading without Threads

[182]

While this looks a lot better in terms of runtime, our program structure is a bit messy
now. We needed two loops, one to start the processes and one to measure the finish
time. Moreover, we had to move the print statement outside of the function, which is
generally not desirable either. This time, we will try the asyncio version:

>>> import time

>>> import asyncio

>>> t = time.time()

>>> async def async_process_sleeper():

... print('Started sleep at %.1f' % (time.time() - t))

... process = await asyncio.create_subprocess_exec('sleep', '0.1')

... await process.wait()

... print('Finished sleep at %.1f' % (time.time() - t))

>>> loop = asyncio.get_event_loop()

>>> for i in range(5):

... task = loop.create_task(async_process_sleeper())

>>> future = loop.call_later(.5, loop.stop)

>>> loop.run_forever()

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1

Chapter 7

[183]

As you can see, it is easy to run multiple applications at the same time this way.
But that is the easy part; the difficult part with processes is interactive input and
output. The asyncio module has several measures to make it easier, but it can still
be difficult when actually working with the results. Here's an example of calling the
Python interpreter, executing some code, and exiting again:

import asyncio

async def run_script():
 process = await asyncio.create_subprocess_shell(
 'python3',
 stdout=asyncio.subprocess.PIPE,
 stdin=asyncio.subprocess.PIPE,
)

 # Write a simple Python script to the interpreter
 process.stdin.write(b'\n'.join((
 b'import math',
 b'x = 2 ** 8',
 b'y = math.sqrt(x)',
 b'z = math.sqrt(y)',
 b'print("x: %d" % x)',
 b'print("y: %d" % y)',
 b'print("z: %d" % z)',
 b'for i in range(int(z)):',
 b' print("i: %d" % i)',
)))
 # Make sure the stdin is flushed asynchronously
 await process.stdin.drain()
 # And send the end of file so the Python interpreter will
 # start processing the input. Without this the process will
 # stall forever.
 process.stdin.write_eof()

 # Fetch the lines from the stdout asynchronously
 async for out in process.stdout:
 # Decode the output from bytes and strip the whitespace
 # (newline) at the right
 print(out.decode('utf-8').rstrip())

 # Wait for the process to exit

Async IO – Multithreading without Threads

[184]

 await process.wait()

if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 loop.run_until_complete(run_script())
 loop.close()

The code is simple enough, but there are a few parts of this code that are not obvious
to us and yet required to function. While the creation of the subprocess and the writing
code is quite obvious, you might be wondering about the process.stdin.write_
eof() line. The problem here is buffering. To improve performance, most programs
will buffer input and output by default. In the case of the Python program, the result is
that unless we send the end of file (eof), the program will keep waiting for more input.
An alternative solution would be to close the stdin stream or somehow communicate
with the Python program that we will not send any more input. However, it is
certainly something to take into consideration. Another option is to use yield from
process.stdin.drain(), but that only takes care of the sending side of the code; the
receiving side might still be waiting for more input. Let's see the output though:

python3 processes.py

x: 256

y: 16

z: 4

i: 0

i: 1

i: 2

i: 3

With this implementation, we still need a loop to get all the results from the stdout
stream. Unfortunately, the asyncio.StreamReader (which process.stdout is)
class does not support the async for syntax yet. If it did, a simple async for
out in process.stdout would have worked. A simple yield from process.
stdout.read() would have worked as well, but reading per line is generally more
convenient to use.

If possible, I recommend that you abstain from using stdin to send data to
subprocesses and instead use some network, pipe, or file communication. As we will
see in the next paragraphs, these are much more convenient to handle.

Chapter 7

[185]

Asynchronous servers and clients
One of the most common reason for stalling scripts and applications is the usage of
remote resources. With asyncio, at least a large portion of that is easily fixable. Fetching
multiple remote resources and serving to multiple clients is quite a bit easier and more
lightweight than it used to be. While both multithreading and multiprocessing can
be used for these cases as well, asyncio is a much lighter alternative and it is actually
easier to manage. There are two main methods of creating clients and servers. The
coroutine way is to use asyncio.open_connection and asyncio.start_server. The
class-based approach requires you to inherit the asyncio.Protocol class. While these
are essentially the same thing, the workings are slightly different.

Basic echo server
The basic client and server versions are simple enough to write. The asyncio
module takes care of all the low-level connection handling, leaving us with only the
requirement of connecting the correct methods. For the server, we need a method
to handle the incoming connections, and for the client, we need a function to create
connections. And to illustrate what is happening and at which point in time, we will
add a dedicated print function that prints both the time since the server process was
started and the given arguments:

import time
import sys
import asyncio

HOST = '127.0.0.1'
PORT = 1234

start_time = time.time()

def printer(start_time, *args, **kwargs):
 '''Simple function to print a message prefixed with the
 time relative to the given start_time'''
 print('%.1f' % (time.time() - start_time), *args, **kwargs)

async def handle_connection(reader, writer):
 client_address = writer.get_extra_info('peername')
 printer(start_time, 'Client connected', client_address)

 # Send over the server start time to get consistent
 # timestamps
 writer.write(b'%.2f\n' % start_time)
 await writer.drain()

Async IO – Multithreading without Threads

[186]

 repetitions = int((await reader.readline()))
 printer(start_time, 'Started sending to', client_address)

 for i in range(repetitions):
 message = 'client: %r, %d\n' % (client_address, i)
 printer(start_time, message, end='')
 writer.write(message.encode())
 await writer.drain()

 printer(start_time, 'Finished sending to', client_address)
 writer.close()

async def create_connection(repetitions):
 reader, writer = await asyncio.open_connection(
 host=HOST, port=PORT)

 start_time = float((await reader.readline()))

 writer.write(repetitions.encode() + b'\n')
 await writer.drain()

 async for line in reader:
 # Sleeping a little to emulate processing time and make
 # it easier to add more simultaneous clients
 await asyncio.sleep(1)

 printer(start_time, 'Got line: ', line.decode(),
 end='')

 writer.close()

if __name__ == '__main__':
 loop = asyncio.get_event_loop()

 if sys.argv[1] == 'server':
 server = asyncio.start_server(
 handle_connection,
 host=HOST,
 port=PORT,
)
 running_server = loop.run_until_complete(server)

 try:
 result = loop.call_later(5, loop.stop)
 loop.run_forever()
 except KeyboardInterrupt:
 pass

Chapter 7

[187]

 running_server.close()
 loop.run_until_complete(running_server.wait_closed())
 elif sys.argv[1] == 'client':
 loop.run_until_complete(create_connection(sys.argv[2]))

 loop.close()

Now we will run the server and two simultaneous clients. Since these run in parallel,
the server output is a bit strange, of course. Because of that, we synchronize the start
time from the server to the clients and prefix all print statements with the number of
seconds since the server was started.

The server:

python3 simple_connections.py server

0.4 Client connected ('127.0.0.1', 59990)

0.4 Started sending to ('127.0.0.1', 59990)

0.4 client: ('127.0.0.1', 59990), 0

0.4 client: ('127.0.0.1', 59990), 1

0.4 client: ('127.0.0.1', 59990), 2

0.4 Finished sending to ('127.0.0.1', 59990)

2.0 Client connected ('127.0.0.1', 59991)

2.0 Started sending to ('127.0.0.1', 59991)

2.0 client: ('127.0.0.1', 59991), 0

2.0 client: ('127.0.0.1', 59991), 1

2.0 Finished sending to ('127.0.0.1', 59991)

The first client:

python3 simple_connections.py client 3

1.4 Got line: client: ('127.0.0.1', 59990), 0

2.4 Got line: client: ('127.0.0.1', 59990), 1

3.4 Got line: client: ('127.0.0.1', 59990), 2

The second client:

python3 simple_connections.py client 2

3.0 Got line: client: ('127.0.0.1', 59991), 0

4.0 Got line: client: ('127.0.0.1', 59991), 1

Since both the input and output have buffers, we need to manually drain the input
after writing and use yield from when reading the output from the other party.
That is exactly the reason that communication with regular external processes is more
difficult than network interaction. The standard input for processes is more focused
towards user input than computer input, which makes it less convenient to use.

Async IO – Multithreading without Threads

[188]

If you wish to use reader.read(BUFFER) instead of reader.
readline(), that's also possible. Just note that you need
to specifically separate the data because it might accidently
get appended otherwise. All write operations write to the
same buffer, resulting in one long return stream. On the other
hand, trying to write without a new line (\n) for reader.
readline() to recognize will cause the client to wait forever.

Summary
In this chapter, we saw how to use asynchronous I/O in Python using asyncio.
For many scenarios, the asyncio module is still a bit raw and unfinished, but there
should not be any obstacles in using it. Creating a fully functional server/client
setup is still a tad complicated, but the most obvious use of asyncio is the handling
of basic network I/O such as database connections and external resources such as
websites. Especially, the latter takes only a few lines to implement with the use of
asyncio, removing some very important bottlenecks from your code.

The point of this chapter is understanding how to tell Python to wait for results in
the background instead of simply waiting or polling for them as usual. In Chapter
13, Multiprocessing – When a Single CPU Core Is Not Enough you will learn about
multiprocessing, which is also an option for handling stalling resources. However,
the goal of multiprocessing is actually to use multiple processors instead of
handling stalling resources. When it comes to potentially slow external resources,
I recommend that you always use asyncio, if at all possible.

When building utilities based on the asyncio library, make sure you search for
premade libraries to solve your problems, as many of them are currently being
developed. While writing this chapter, Python 3.5 was not officially out yet, so the
odds are that a lot more documentation and libraries using the async/await syntax
will pop up soon. To make sure you do not repeat work that others have done,
search the Internet thoroughly before writing your own code extending on asyncio.

The next chapter will explain a completely different topic—the construction of classes
using metaclasses. Regular classes are created using the type class, but now we will see
how we can extend and modify the default behavior to make a class do pretty much
anything we want. Metaclasses even make it possible to have automatically registering
plugins and add features to classes in a very magical way—in short, how to customize
not just the class instances but the class definitions themselves.

[189]

Metaclasses – Making
Classes (Not Instances)

Smarter
The previous chapters have already shown us how to modify classes and functions
using decorators. But that's not the only option to modify or extend a class. An even
more advanced technique of modifying your classes before creation is the usage of
metaclasses. The name already gives a hint to what it could be; a metaclass is a class
containing meta information about a class.

The basic premise of a metaclass is a class that generates another class for you at
definition time, so generally you wouldn't use it to change the class instances but only
the class definitions. By changing the class definitions, it is possible to automatically
add some properties to a class, validate whether certain properties are set, change
inheritance, automatically register the class at a manager, and do many other things.

Although metaclasses are generally considered to be a more powerful technique than
(class) decorators, effectively they don't differ too much in possibilities. The choice
usually comes down to either convenience or personal preference.

The following topics are covered in this chapter:

•	 Basic dynamic class creation
•	 Metaclasses with arguments
•	 Internals of class creation, the order of operations
•	 Abstract base classes, examples and inner workings
•	 Automatic plugin system using metaclasses
•	 Storing definition order of class attributes

Metaclasses – Making Classes (Not Instances) Smarter

[190]

Dynamically creating classes
Metaclasses are the factories that create new classes in Python. In fact, even though
you may not be aware of it, Python will always execute the type metaclass whenever
you create a class.

When creating classes in a procedural way, the type metaclass is used as a function.
This function takes three arguments: name, bases, and dict. The name will become
the __name__ attribute, the bases is the list of inherited base classes and will be
stored in __bases__ and dict is the namespace dictionary that contains all variables
and will be stored in __dict__.

It should be noted that the type() function has another use as well. Given the
arguments documented earlier, it creates a class given those specifications. Given a
single argument with the instance of a class, it will return the class as well but from
the instance. Your next question might be, "What happens if I call type() on a class
definition instead of a class instance?" Well, that returns the metaclass for the class
which is type by default.

Let's clarify this using a few examples:

>>> class Spam(object):

>>> eggs = 'my eggs'

>>> Spam = type('Spam', (object,), dict(eggs='my eggs'))

The preceding two definitions of Spam are completely identical; they both create a
class with an instantiated property of eggs and object as a base. Let's test if this
actually works as you would expect:

>>> class Spam(object):

... eggs = 'my eggs'

>>> spam = Spam()

>>> spam.eggs

'my eggs'

>>> type(spam)

<class '…Spam'>

>>> type(Spam)

<class 'type'>

Chapter 8

[191]

>>> Spam = type('Spam', (object,), dict(eggs='my eggs'))

>>> spam = Spam()

>>> spam.eggs

'my eggs'

>>> type(spam)

<class '...Spam'>

>>> type(Spam)

<class 'type'>

As expected, the results for the two are the same. When creating a class, Python
silently adds the type metaclass and custom metaclasses are simply classes that
inherit type. A simple class definition has a silent metaclass making a simple
definition such as:

class Spam(object):

 pass

Essentially identical to:

class Spam(object, metaclass=type):

 pass

This raises the question that if every class is created by a (silent) metaclass, what is
the metaclass of type? This is actually a recursive definition; the metaclass of type
is type. This is the essence of what a custom metaclass is: a class that inherits type to
allow class modification without needing to modify the class definition itself.

A basic metaclass
Since metaclasses can modify any class attribute, you can do absolutely anything
you wish. Before we continue with more advanced metaclasses, let's look at a
basic example:

The metaclass definition, note the inheritance of type instead

of object

>>> class MetaSpam(type):

...

... # Notice how the __new__ method has the same arguments

... # as the type function we used earlier?

... def __new__(metaclass, name, bases, namespace):

... name = 'SpamCreatedByMeta'

Metaclasses – Making Classes (Not Instances) Smarter

[192]

... bases = (int,) + bases

... namespace['eggs'] = 1

... return type.__new__(metaclass, name, bases, namespace)

First, the regular Spam:

>>> class Spam(object):

... pass

>>> Spam.__name__

'Spam'

>>> issubclass(Spam, int)

False

>>> Spam.eggs

Traceback (most recent call last):

 ...

AttributeError: type object 'Spam' has no attribute 'eggs'

Now the meta-Spam

>>> class Spam(object, metaclass=MetaSpam):

... pass

>>> Spam.__name__

'SpamCreatedByMeta'

>>> issubclass(Spam, int)

True

>>> Spam.eggs

1

As you can see, everything about the class definition can easily be modified using
metaclasses. This makes it both a very powerful and a very dangerous tool, as you
can easily cause very unexpected behavior.

Chapter 8

[193]

Arguments to metaclasses
The possibility of adding arguments to a metaclass is a little-known feature, but very
useful nonetheless. In many cases, simply adding attributes or methods to a class
definition is enough to detect what to do, but there are cases where it is useful to be
more specific.

>>> class MetaWithArguments(type):

... def __init__(metaclass, name, bases, namespace, **kwargs):

... # The kwargs should not be passed on to the

... # type.__init__

... type.__init__(metaclass, name, bases, namespace)

...

... def __new__(metaclass, name, bases, namespace, **kwargs):

... for k, v in kwargs.items():

... namespace.setdefault(k, v)

...

... return type.__new__(metaclass, name, bases, namespace)

>>> class WithArgument(metaclass=MetaWithArguments, spam='eggs'):

... pass

>>> with_argument = WithArgument()

>>> with_argument.spam

'eggs'

This simplistic example may not be useful but the possibilities are. The only thing
you need to keep in mind is that both the __new__ and __init__ methods need to be
extended for this to work.

Accessing metaclass attributes through
classes
When using metaclasses, it might be confusing to note that the class actually does
more than simply construct the class, it actually inherits the class during the creation.
To illustrate:

>>> class Meta(type):

...

... @property

Metaclasses – Making Classes (Not Instances) Smarter

[194]

... def spam(cls):

... return 'Spam property of %r' % cls

...

... def eggs(self):

... return 'Eggs method of %r' % self

>>> class SomeClass(metaclass=Meta):

... pass

>>> SomeClass.spam

"Spam property of <class '...SomeClass'>"

>>> SomeClass().spam

Traceback (most recent call last):

 ...

AttributeError: 'SomeClass' object has no attribute 'spam'

>>> SomeClass.eggs()

"Eggs method of <class '...SomeClass'>"

>>> SomeClass().eggs()

Traceback (most recent call last):

 ...

AttributeError: 'SomeClass' object has no attribute 'eggs'

As can be seen in the preceding example, these methods are only available for the
class objects and not the instances. The spam attribute and the eggs method are
not accessible through the instance while they are accessible through the class. I
personally don't see any useful cases for this behavior but it is definitely noteworthy.

Abstract classes using collections.abc
The abstract base classes module is one of the most useful and most used examples
of metaclasses in Python, as it makes it easy to ensure that a class adheres to a certain
interface without a lot of manual checks. We have already seen some examples of
abstract base classes in the previous chapters, but now we will look at the inner
workings of these and the more advanced features, such as custom ABCs.

Chapter 8

[195]

Internal workings of the abstract classes
First, let's demonstrate the usage of the regular abstract base class:

>>> import abc

>>> class Spam(metaclass=abc.ABCMeta):

...

... @abc.abstractmethod

... def some_method(self):

... raise NotImplemented()

>>> class Eggs(Spam):

... def some_new_method(self):

... pass

>>> eggs = Eggs()

Traceback (most recent call last):

 ...

TypeError: Can't instantiate abstract class Eggs with abstract

methods some_method

>>> class Bacon(Spam):

... def some_method():

... pass

>>> bacon = Bacon()

As you can see, the abstract base class blocks us from instantiating the classes until
all the abstract methods have been inherited. In addition to the regular methods,
property, staticmethod, and classmethod are also supported.

>>> import abc

>>> class Spam(object, metaclass=abc.ABCMeta):

... @property

Metaclasses – Making Classes (Not Instances) Smarter

[196]

... @abc.abstractmethod

... def some_property(self):

... raise NotImplemented()

...

... @classmethod

... @abc.abstractmethod

... def some_classmethod(cls):

... raise NotImplemented()

...

... @staticmethod

... @abc.abstractmethod

... def some_staticmethod():

... raise NotImplemented()

...

... @abc.abstractmethod

... def some_method():

... raise NotImplemented()

So what does Python do internally? You could, of course, read the abc.py source
code but I think a simple explanation would be better.

First, abc.abstractmethod sets the __isabstractmethod__ property on the
function to True. So if you don't want to use the decorator, you can simply emulate
the behavior by doing something along the lines of:

some_method.__isabstractmethod__ = True

After that, the abc.ABCMeta metaclass walks through all the items in a namespace and
looks for objects where the __isabstractmethod__ attribute evaluates to True. In
addition to that, it walks through all bases and checks the __abstractmethods__ set
for every base class, in case the class inherits an abstract class. All the items where __
isabstractmethod__ still evaluates to True get added to the __abstractmethods__
set which is stored in the class as frozenset.

Note that we don't use abc.abstractproperty,
abc.abstractclassmethod, and abc.
abstractstaticmethod. Since Python 3.3 these have
been deprecated as the classmethod, staticmethod,
and property decorators are recognized by abc.
abstractmethod so a simple property decorator followed
by a abc.abstractmethod is recognized as well. Take care
when ordering the decorators; abc.abstractmethod needs
to be the innermost decorator for this to work properly.

Chapter 8

[197]

The next question now is about where the actual checks come in; the checks to see
if the classes are completely implemented. This actually functions through a few
Python internals:

>>> class AbstractMeta(type):

... def __new__(metaclass, name, bases, namespace):

... cls = super().__new__(metaclass, name, bases, namespace)

... cls.__abstractmethods__ = frozenset(('something',))

... return cls

>>> class Spam(metaclass=AbstractMeta):

... pass

>>> eggs = Spam()

Traceback (most recent call last):

 ...

TypeError: Can't instantiate abstract class Spam with ...

We can easily emulate the same behavior with a metaclass ourselves, but it should
be noted that abc.ABCMeta actually does more, which we will demonstrate in the
next section. To mimic the behavior of the built-in abstract base class support, take a
look at the following example:

>>> import functools

>>> class AbstractMeta(type):

... def __new__(metaclass, name, bases, namespace):

... # Create the class instance

... cls = super().__new__(metaclass, name, bases, namespace)

...

... # Collect all local methods marked as abstract

... abstracts = set()

... for k, v in namespace.items():

... if getattr(v, '__abstract__', False):

... abstracts.add(k)

...

... # Look for abstract methods in the base classes and add

Metaclasses – Making Classes (Not Instances) Smarter

[198]

... # them to the list of abstracts

... for base in bases:

... for k in getattr(base, '__abstracts__', ()):

... v = getattr(cls, k, None)

... if getattr(v, '__abstract__', False):

... abstracts.add(k)

...

... # store the abstracts in a frozenset so they cannot be

... # modified

... cls.__abstracts__ = frozenset(abstracts)

...

... # Decorate the __new__ function to check if all abstract

... # functions were implemented

... original_new = cls.__new__

... @functools.wraps(original_new)

... def new(self, *args, **kwargs):

... for k in self.__abstracts__:

... v = getattr(self, k)

... if getattr(v, '__abstract__', False):

... raise RuntimeError(

... '%r is not implemented' % k)

...

... return original_new(self, *args, **kwargs)

...

... cls.__new__ = new

... return cls

>>> def abstractmethod(function):

... function.__abstract__ = True

... return function

>>> class Spam(metaclass=AbstractMeta):

... @abstractmethod

... def some_method(self):

Chapter 8

[199]

... pass

Instantiating the function, we can see that it functions as the

regular ABCMeta does

>>> eggs = Spam()

Traceback (most recent call last):

 ...

RuntimeError: 'some_method' is not implemented

The actual implementation is a bit more complicated as it still needs to take care
of the old style classes and the property, classmethod, and staticmethod types
of methods. Additionally, it features caching, but this code covers the most useful
part of the implementation. One of the most important tricks to note here is that the
actual check is executed by decorating the __new__ function of the actual class. This
method is only executed once within a class so we can avoid the overhead of these
checks for multiple instantiations.

The actual implementation of the abstract methods can be
found by looking for __isabstractmethod__ in the Python
source code in the following files: Objects/descrobject.c,
Objects/funcobject.c, and Objects/object.c. The
Python part of the implementation can be found in Lib/abc.py.

Custom type checks
Defining your own interfaces using abstract base classes is great, of course. But it can
also be very convenient to tell Python what your class actually resembles and what
kind of types are similar. For that, abc.ABCMeta offers a register function which
allows you to specify which types are similar. For example, a custom list that sees the
list type as similar:

>>> import abc

>>> class CustomList(abc.ABC):

... 'This class implements a list-like interface'

... pass

>>> CustomList.register(list)

<class 'list'>

Metaclasses – Making Classes (Not Instances) Smarter

[200]

>>> issubclass(list, CustomList)

True

>>> isinstance([], CustomList)

True

>>> issubclass(CustomList, list)

False

>>> isinstance(CustomList(), list)

False

As demonstrated with the last four lines, this is a one-way relationship. The other
way around would generally be easy enough to realize through inheriting list, but
that won't work in this case. abc.ABCMeta refuses to create inheritance cycles.

>>> import abc

>>> class CustomList(abc.ABC, list):

... 'This class implements a list-like interface'

... pass

>>> CustomList.register(list)

Traceback (most recent call last):

 ...

RuntimeError: Refusing to create an inheritance cycle

To be able to handle cases like these, there is another useful feature in abc.ABCMeta.
When subclassing abc.ABCMeta, the __subclasshook__ method can be extended to
customize the behavior of issubclass and with that, isinstance.

>>> import abc

>>> class UniversalClass(abc.ABC):

... @classmethod

... def __subclasshook__(cls, subclass):

... return True

>>> issubclass(list, UniversalClass)

True

>>> issubclass(bool, UniversalClass)

Chapter 8

[201]

True

>>> isinstance(True, UniversalClass)

True

>>> issubclass(UniversalClass, bool)

False

The __subclasshook__ should return True, False, or NotImplemented, which
would result in issubclass returning True, False, or the usual behavior when
NotImplemented is raised.

Using abc.ABC before Python 3.4
The abc.ABC class we have used in this paragraph is only available in Python
versions 3.4 and higher, but it's trivial to implement it in older versions. It's little
more than syntactic sugar for metaclass=abc.ABCMeta. To implement it yourself,
you can simply use the following snippet:

import abc

class ABC(metaclass=abc.ABCMeta):
 pass

Automatically registering a plugin system
One of the most common uses of metaclasses is to have classes automatically register
themselves as plugins/handlers. Examples of these can be seen in many projects,
such as web frameworks. Those codebases are too extensive to usefully explain here
though. Hence, we'll show a simpler example showing the power of metaclasses as a
self-registering plugin system:

>>> import abc

>>> class Plugins(abc.ABCMeta):

... plugins = dict()

...

... def __new__(metaclass, name, bases, namespace):

... cls = abc.ABCMeta.__new__(metaclass, name, bases,

... namespace)

... if isinstance(cls.name, str):

... metaclass.plugins[cls.name] = cls

Metaclasses – Making Classes (Not Instances) Smarter

[202]

... return cls

...

... @classmethod

... def get(cls, name):

... return cls.plugins[name]

>>> class PluginBase(metaclass=Plugins):

... @property

... @abc.abstractmethod

... def name(self):

... raise NotImplemented()

>>> class SpamPlugin(PluginBase):

... name = 'spam'

>>> class EggsPlugin(PluginBase):

... name = 'eggs'

>>> Plugins.get('spam')

<class '...SpamPlugin'>

>>> Plugins.plugins

{'spam': <class '...SpamPlugin'>,

 'eggs': <class '...EggsPlugin'>}

This example is a tad simplistic of course, but it's the basis for many plugin systems.
Which is a very important thing to note while implementing systems like these;
however, while metaclasses run at definition time, the module still needs to be
imported to work. There are several options to do this; loading on-demand through
the get method has my vote as that also doesn't add load time if the plugin is not used.

The following examples will use the following file structure to get reproducible
results. All files will be contained in a plugins directory.

Chapter 8

[203]

The __init__.py file is used to create shortcuts, so a simple import plugins will
result in having plugins.Plugins available, instead of requiring importing
plugins.base explicitly.

plugins/__init__.py
from .base import Plugin
from .base import Plugins

__all__ = ['Plugin', 'Plugins']

The base.py file containing the Plugins collection and the Plugin base class:

plugins/base.py
import abc

class Plugins(abc.ABCMeta):
 plugins = dict()

 def __new__(metaclass, name, bases, namespace):
 cls = abc.ABCMeta.__new__(
 metaclass, name, bases, namespace)
 if isinstance(cls.name, str):
 metaclass.plugins[cls.name] = cls
 return cls

 @classmethod
 def get(cls, name):
 return cls.plugins[name]

class Plugin(metaclass=Plugins):
 @property
 @abc.abstractmethod
 def name(self):
 raise NotImplemented()

And two simple plugins, spam.py:

from . import base

class Spam(base.Plugin):
 name = 'spam'

Metaclasses – Making Classes (Not Instances) Smarter

[204]

And eggs.py:

from . import base

class Eggs(base.Plugin):
 name = 'eggs'

Importing plugins on-demand
The first of the solutions for the import problem is simply taking care of it in the get
method of the Plugins metaclass. Whenever the plugin is not found in the registry,
it should automatically load the module from the plugins directory.

The advantages of this approach are that not only the plugins don't explicitly
need to be preloaded but also that the plugins are only loaded when the need is
there. Unused plugins are not touched, so this method can help in reducing your
applications' load times.

The downside is that the code will not be run or tested, so it might be completely
broken and you won't know about it until it is finally loaded. Solutions for this
problem will be covered in the testing chapter, Chapter 10, Testing and Logging –
Preparing for Bugs. The other problem is that if the code self-registers itself into other
parts of an application then that code won't be executed either.

Modifying the Plugins.get method, we get the following:

import abc
import importlib

class Plugins(abc.ABCMeta):
 plugins = dict()

 def __new__(metaclass, name, bases, namespace):
 cls = abc.ABCMeta.__new__(
 metaclass, name, bases, namespace)
 if isinstance(cls.name, str):
 metaclass.plugins[cls.name] = cls
 return cls

 @classmethod
 def get(cls, name):
 if name not in cls.plugins:
 print('Loading plugins from plugins.%s' % name)
 importlib.import_module('plugins.%s' % name)
 return cls.plugins[name]

Chapter 8

[205]

This results in the following when executing:

>>> import plugins

>>> plugins.Plugins.get('spam')

Loading plugins from plugins.spam

<class 'plugins.spam.Spam'>

>>> plugins.Plugins.get('spam')

<class 'plugins.spam.Spam'>

As you can see, this approach only results in running import once. The second time,
the plugin will be available in the plugins dictionary so no loading will be necessary.

Importing plugins through configuration
While only loading the needed plugins is generally a better idea, there is something
to be said to preload the plugins you will likely need. As explicit is better than
implicit, an explicit list of plugins to load is generally a good solution. The added
advantages of this method are that firstly you are able to make the registration a
bit more advanced as you are guaranteed that it is run and secondly you can load
plugins from multiple packages.

Instead of importing in the get method, we will add a load method this time; a load
method that imports all the given module names:

import abc
import importlib

class Plugins(abc.ABCMeta):
 plugins = dict()

 def __new__(metaclass, name, bases, namespace):
 cls = abc.ABCMeta.__new__(
 metaclass, name, bases, namespace)
 if isinstance(cls.name, str):
 metaclass.plugins[cls.name] = cls
 return cls

 @classmethod
 def get(cls, name):
 return cls.plugins[name]

Metaclasses – Making Classes (Not Instances) Smarter

[206]

 @classmethod
 def load(cls, *plugin_modules):
 for plugin_module in plugin_modules:
 plugin = importlib.import_module(plugin_module)

Which can be called using the following code:

>>> import plugins

>>> plugins.Plugins.load(

... 'plugins.spam',

... 'plugins.eggs',

...)

>>> plugins.Plugins.get('spam')

<class 'plugins.spam.Spam'>

A fairly simple and straightforward system to load the plugins based on settings, this
can easily be combined with any type of settings system to fill the load method.

Importing plugins through the file system
Whenever possible, it is best to avoid having systems depend on automatic detection
of modules on a filesystem as it goes directly against PEP8. Specifically, "explicit is
better than implicit". While these systems can work fine in specific cases, they often
make debugging much more difficult. Similar automatic import systems in Django
have caused me a fair share of headaches as they tend to obfuscate the errors. Having
said that, automatic plugin loading based on all the files in a plugins directory is still
a possibility warranting a demonstration.

import os
import re
import abc
import importlib

MODULE_NAME_RE = re.compile('[a-z][a-z0-9_]*', re.IGNORECASE)

class Plugins(abc.ABCMeta):
 plugins = dict()

 def __new__(metaclass, name, bases, namespace):
 cls = abc.ABCMeta.__new__(
 metaclass, name, bases, namespace)

Chapter 8

[207]

 if isinstance(cls.name, str):
 metaclass.plugins[cls.name] = cls
 return cls

 @classmethod
 def get(cls, name):
 return cls.plugins[name]

 @classmethod
 def load_directory(cls, module, directory):
 for file_ in os.listdir(directory):
 name, ext = os.path.splitext(file_)
 full_path = os.path.join(directory, file_)
 import_path = [module]
 if os.path.isdir(full_path):
 import_path.append(file_)
 elif ext == '.py' and MODULE_NAME_RE.match(name):
 import_path.append(name)
 else:
 # Ignoring non-matching files/directories
 continue

 plugin = importlib.import_module('.'.join(import_path))

 @classmethod
 def load(cls, **plugin_directories):
 for module, directory in plugin_directories.items():
 cls.load_directory(module, directory)

If possible, I would try to avoid using a fully automatic import system as it's very
prone to accidental errors and can make debugging more difficult, not to mention
that the import order cannot easily be controlled this way. To make this system a bit
smarter (even importing packages outside of your Python path), you can create a
plugin loader using the abstract base classes in importlib.abc. Note that you will
most likely still need to list the directories through os.listdir or os.walk though.

Order of operations when instantiating
classes
The order of operations during class instantiation is very important to keep in mind
when debugging issues with dynamically created and/or modified classes. The
instantiation of a class happens in the following order.

Metaclasses – Making Classes (Not Instances) Smarter

[208]

Finding the metaclass
The metaclass comes from either the explicitly given metaclass on the class or bases,
or by using the default type metaclass.

For every class, the class itself and the bases, the first matching of the following will
be used:

•	 Explicitly given metaclass
•	 Explicit metaclass from bases
•	 type()

Note that if no metaclass is found that is a subtype of all the
candidate metaclasses, a TypeError will be raised. This
scenario is not that likely to occur but certainly a possibility
when using multiple inheritance/mixins with metaclasses.

Preparing the namespace
The class namespace is prepared through the metaclass selected previously. If
the metaclass has a __prepare__ method, it will be called namespace =
metaclass.__prepare__(names, bases, **kwargs), where **kwargs originates
from the class definition. If no __prepare__ method is available, the result will be
namespace = dict().

Note that there are multiple ways of achieving custom namespaces, as we saw in the
previous paragraph, the type() function call also takes a dict argument which can
be used to alter the namespace as well.

Executing the class body
The body of the class is executed very similarly to normal code execution with one
key difference, the separate namespace. Since a class has a separate namespace,
which shouldn't pollute the globals()/locals() namespaces, it is executed within
that context. The resulting call looks something like this: exec(body, globals(),
namespace) where namespace is the previously produced namespace.

Chapter 8

[209]

Creating the class object (not instance)
Now that we have all the components ready, the actual class object can be produced.
This is done through the class_ = metaclass(name, bases, namespace,
**kwargs) call. This is, as you can see, actually identical to the type() call
previously discussed. **kwargs here are the same as the ones passed to
the __prepare__ method earlier.

It might be useful to note that this is also the object that will be referenced from the
super() call without arguments.

Executing the class decorators
Now that the class object is actually done already, the class decorators will be
executed. Since this is only executed after everything else in the class object has
already been constructed, it becomes difficult to modify class attributes, such as which
classes are being inherited, and the name of the class. By modifying the __class__
object you can still modify or overwrite these, but it is, at the very least, more difficult.

Creating the class instance
From the class object produced previously, we can now finally create the actual
instances as you normally would with a class. It should be noted that this step and
the class decorators steps, unlike the earlier steps, are the only ones that are executed
every time you instantiate a class. The steps before these two are only executed once
per class definition.

Example
Enough theory! Let's illustrate the creation and instantiation of the class objects so we
can check the order of operations:

>>> import functools

>>> def decorator(name):

... def _decorator(cls):

... @functools.wraps(cls)

... def __decorator(*args, **kwargs):

... print('decorator(%s)' % name)

... return cls(*args, **kwargs)

Metaclasses – Making Classes (Not Instances) Smarter

[210]

... return __decorator

... return _decorator

>>> class SpamMeta(type):

...

... @decorator('SpamMeta.__init__')

... def __init__(self, name, bases, namespace, **kwargs):

... print('SpamMeta.__init__()')

... return type.__init__(self, name, bases, namespace)

...

... @staticmethod

... @decorator('SpamMeta.__new__')

... def __new__(cls, name, bases, namespace, **kwargs):

... print('SpamMeta.__new__()')

... return type.__new__(cls, name, bases, namespace)

...

... @classmethod

... @decorator('SpamMeta.__prepare__')

... def __prepare__(cls, names, bases, **kwargs):

... print('SpamMeta.__prepare__()')

... namespace = dict(spam=5)

... return namespace

>>> @decorator('Spam')

... class Spam(metaclass=SpamMeta):

...

... @decorator('Spam.__init__')

... def __init__(self, eggs=10):

... print('Spam.__init__()')

... self.eggs = eggs

decorator(SpamMeta.__prepare__)

SpamMeta.__prepare__()

decorator(SpamMeta.__new__)

SpamMeta.__new__()

Chapter 8

[211]

decorator(SpamMeta.__init__)

SpamMeta.__init__()

Testing with the class object

>>> spam = Spam

>>> spam.spam

5

>>> spam.eggs

Traceback (most recent call last):

 ...

AttributeError: ... object has no attribute 'eggs'

Testing with a class instance

>>> spam = Spam()

decorator(Spam)

decorator(Spam.__init__)

Spam.__init__()

>>> spam.spam

5

>>> spam.eggs

10

The example clearly shows the creation order of the class:

1.	 Preparing the namespace through __prepare__.
2.	 Creating the class body using __new__.
3.	 Initializing the metaclass using __init__ (note that this is not the

class __init__).
4.	 Initializing the class through the class decorator.
5.	 Initializing the class through the class __init__ function.

One thing we can note from this is that the class decorators are executed each and
every time the class is actually instantiated and not before that. This can be both an
advantage and a disadvantage of course, but if you wish to build a register of all
subclasses, it is definitely more convenient to use a metaclass since the decorator will
not register until you instantiate the class.

Metaclasses – Making Classes (Not Instances) Smarter

[212]

In addition to this, having the power to modify the namespace before actually
creating the class object (not the instance) can be very powerful as well. It can be
convenient for sharing a certain scope between several class objects for example, or
for easily ensuring that certain items are always available in the scope.

Storing class attributes in definition
order
There are cases where the definition order makes a difference. For example, let's
assume we are creating a class that represents a CSV (Comma Separated Values)
format. The CSV format expects the fields to have a particular order. In some cases
this will be indicated by a header but it's still useful to have a consistent field order.
Similar systems are using in ORM systems such as SQLAlchemy to store the column
order for table definitions and for the input field order within forms in Django.

The classic solution without metaclasses
An easy way to store the order of the fields is by giving the field instances a special
__init__ method which increments for every definition, so the fields have an
incrementing index property. This solution can be considered the classic solution as
it also works in Python 2.

>>> import itertools

>>> class Field(object):

... counter = itertools.count()

...

... def __init__(self, name=None):

... self.name = name

... self.index = next(Field.counter)

...

... def __repr__(self):

... return '<%s[%d] %s>' % (

... self.__class__.__name__,

... self.index,

... self.name,

...)

>>> class FieldsMeta(type):

Chapter 8

[213]

... def __new__(metaclass, name, bases, namespace):

... cls = type.__new__(metaclass, name, bases, namespace)

... fields = []

... for k, v in namespace.items():

... if isinstance(v, Field):

... fields.append(v)

... v.name = v.name or k

...

... cls.fields = sorted(fields, key=lambda f: f.index)

... return cls

>>> class Fields(metaclass=FieldsMeta):

... spam = Field()

... eggs = Field()

>>> Fields.fields

[<Field[0] spam>, <Field[1] eggs>]

>>> fields = Fields()

>>> fields.eggs.index

1

>>> fields.spam.index

0

>>> fields.fields

[<Field[0] spam>, <Field[1] eggs>]

For convenience, and to make things prettier, we have added the FieldsMeta class.
It is not strictly required here, but it automatically takes care of filling in the name if
needed, and adds the fields list which contains a sorted list of fields.

Using metaclasses to get a sorted namespace
The previous solution is a bit more straightforward and supports Python 2 as
well, but with Python 3 we have more options. As you have seen in the previous
paragraphs, since Python 3 we have the __prepare__ method, which returns the
namespace. From the previous chapters you might also remember collections.
OrderedDict, so let's see what happens when we combine them.

>>> import collections

>>> class Field(object):

Metaclasses – Making Classes (Not Instances) Smarter

[214]

... def __init__(self, name=None):

... self.name = name

...

... def __repr__(self):

... return '<%s %s>' % (

... self.__class__.__name__,

... self.name,

...)

>>> class FieldsMeta(type):
... @classmethod
... def __prepare__(metaclass, name, bases):
... return collections.OrderedDict()
...
... def __new__(metaclass, name, bases, namespace):
... cls = type.__new__(metaclass, name, bases, namespace)
... cls.fields = []
... for k, v in namespace.items():
... if isinstance(v, Field):
... cls.fields.append(v)
... v.name = v.name or k
...
... return cls

>>> class Fields(metaclass=FieldsMeta):
... spam = Field()
... eggs = Field()

>>> Fields.fields
[<Field spam>, <Field eggs>]
>>> fields = Fields()
>>> fields.fields
[<Field spam>, <Field eggs>]

As you can see, the fields are indeed in the order we defined them. Spam first and
eggs after that. Since the class namespace is now a collections.OrderedDict
instance, we know that the order is guaranteed. Instead of the regular not
predetermined order of the Python dict. This demonstrates how convenient
metaclasses can be to extend your classes in a generic way. Another big advantage
of metaclasses, instead of a custom __init__ method, is that the users won't lose the
functionality if they forget to call the parent __init__ method. The metaclass will
always be executed, unless a different metaclass is added, that is.

Chapter 8

[215]

Summary
The Python metaclass system is something every Python programmer uses all the
time, perhaps without even knowing about it. Every class should be created through
some (subclass of) type, which allows for endless customization and magic. Instead
of statically defining your class, you can now have it created as you normally
would and dynamically add, modify, or remove attributes from your class during
definition; very magical but very useful. The magic component, however, is also
the reason it should be used with a lot of caution. While metaclasses can be used to
make your life much easier, they are also amongst the easiest ways of producing
completely incomprehensible code.

Regardless, there are some great use-cases for metaclasses and many libraries such as
SQLAlchemy and Django use metaclasses to make your code work much easier and
arguably better. Actually comprehending the magic that is used inside is generally
not needed for the usage of these libraries, which makes the cases defendable. The
question becomes whether a much better experience for beginners is worth some
dark magic internally, and looking at the success of these libraries, I would say yes
in this case.

To conclude, when thinking about using metaclasses, keep in mind what Tim Peters
once said: "Metaclasses are deeper magic than 99% of users should ever worry about.
If you wonder whether you need them, you don't."

Now we will continue with a solution to remove some of the magic that metaclasses
generate: documentation. The next chapter will show us how your code can be
documented, how that documentation can be tested, and most importantly, how the
documentation can be made smarter by annotating types in your documentation.

[217]

Documentation – How to Use
Sphinx and reStructuredText

Documenting code can be both fun and useful! I will admit that many programmers
have a strong dislike for documenting code and understandably so. Writing
documentation can be a boring job and traditionally only others reap the benefits of
that effort. The tools available for Python, however, make it almost trivial to generate
useful and up-to-date documentation with little to no effort at all. Generating
documentation has actually become so easy that I create and generate documentation
before using a Python package. Assuming it wasn't available already, that is.

In addition to simple text documentation explaining what a function does, it is also
possible to add metadata, such as type hints. These type hints can be used to make
the arguments and return types of a function or class clickable in the documentation.
But more importantly, many modern IDEs and editors, such as VIM, have plugins
available that parse the type hints and use them for intelligent auto-completion. So if
you type Spam.eggs, your editor will automatically complete the specific attributes
and methods of the eggs object; something that is traditionally only viable with
statically typed languages such as Java, C, and C++.

This chapter will explain the types of documentation available in Python and how
easily a full set of documentation can be created. With the amazing tools that Python
provides, you can have fully functioning documentation within minutes.

Topics covered in this chapter are as follows:

•	 The reStructuredText syntax
•	 Setting up documentation using Sphinx
•	 Sphinx style docstrings
•	 Google style docstrings
•	 NumPy style docstrings

Documentation – How to Use Sphinx and reStructuredText

[218]

The reStructuredText syntax
The reStructuredText format (also known as RST, ReST, or reST) was developed in
2002 as a simple language that implements enough markup to be usable, but is simple
enough to be readable as plain text. These two features make it readable enough to use
in code, yet still versatile enough to generate pretty and useful documentation.

The greatest thing about reStructuredText is that it is very intuitive. Even without
knowing anything about the standard, you can easily write documentation in this
style without ever knowing that it would be recognized as a language. However,
more advanced techniques, such as images and links, do require some explanation.

Next to reStructuredText, there are also languages such as Markdown which are quite
similar in usage. Within the Python community, reStructuredText has been the standard
documentation language for over 10 years, making it the recommended solution.

To easily convert between formats such as reStructuredText
and Markdown, use the Pandoc tool, available at http://
pandoc.org/.

The basic syntax reads just like text and the next few paragraphs will show some
of the more advanced features. However, let us start with a simple example
demonstrating how simple a reStructuredText file can be.

Documentation, how to use Sphinx and reStructuredText

##

Documenting code can be both fun and useful! ...

Additionally, adding ...

... So that typing `Spam.eggs.` will automatically ...

Topics covered in this chapter are as follows:

 - The reStructuredText syntax

 - Setting up documentation using Sphinx

 - Sphinx style docstrings

 - Google style docstrings

 - NumPy style docstrings

http://pandoc.org/
http://pandoc.org/

Chapter 9

[219]

The reStructuredText syntax

**

The reStructuredText format (also known as ...

That's how easy it is to convert the text of this chapter so far to reStructuredText. The
following paragraphs will cover the following features:

1.	 Inline markup (italic, bold, code, and links)
2.	 Lists
3.	 Headers
4.	 Advanced links
5.	 Images
6.	 Substitutions
7.	 Blocks containing code, math, and others

Getting started with reStructuredText
To quickly convert a reStructuredText file to HTML, we can use the docutils
library. The sphinx library discussed later in this chapter actually uses the docutils
library internally, but has some extra features that we won't need initially. To get
started, we just need to install docutils:

pip install docutils

After that we can easily convert reStructuredText into PDF, LaTeX, HTML, and other
formats. For the examples in this paragraph, we'll use the HTML format which is
easily generated using the following command:

rst2html.py file.rst file.html

The basic components of reStructuredText are roles, which are used for inline
modifications of the output and directives to generate markup blocks. Within pure
reStructuredText, the directives are the most important, but we will see many uses
for the roles in the section about Sphinx.

Inline markup
Inline markup is the markup that is used within a regular line of text. Examples of
these are emphasis, in-line code examples, links, images, and bullet lists.

Documentation – How to Use Sphinx and reStructuredText

[220]

Emphasis, for example, can be added by encapsulating the words between one or
two asterisk signs. This sentence for example could add a little bit of *emphasis*
by adding a single asterisk on both sides or a lot of **emphasis** by adding two
asterisks at both sides. There are many different inline markup directives so we
will list only the most common ones. A full list can always be found through the
reStructuredText homepage at docutils.sourceforge.net.

Following are some examples:

•	 Emphasis (italic) text: *emphasis for this phrase*.
•	 Extra emphasis (bold) text: **extra emphasis for this phrase**.
•	 For lists without numbers, a simple dash with spaces after it:

- item 1
- item 2

The space after the dash is required for reStructuredText
to recognize the list.

•	 For lists with numbers, the number followed by a period and a space:
1. item 1
2. item 2

•	 For numbered lists, the period after the number is required.
•	 Interpreted text: These are domain specific. Within Python documentation,

the default role is code which means that surround text with back ticks will
convert your code to use code tags. For example, `if spam and eggs:`.
Different roles can be set through either a role prefix or suffix depending
on your preference. For example, :math:`E=mc^2` to show mathematical
equations.

•	 Inline literals: This is formatted with a mono-space font, which makes it ideal
for inline code. Just add two back ticks to ``add some code``.

•	 References: These can be created through a trailing underscore. They can
point to headers, links, labels, and more. The next section will cover more
about these, but the basic syntax is simply reference_ or enclosed in back
ticks when the reference contains spaces, `some reference link`_.

•	 To escape the preceding characters, the backslash can be used. So if you wish
to have an asterisk with emphasis, it's possible to use ***, quite similar to
escaping in Python strings.

There are many more available, but these are the ones you will use the most when
writing reStructuredText.

Chapter 9

[221]

Headers
The headers are used to indicate the start of a document, section, chapter, or
paragraph. It is therefore the first structure you need in a document. While not
strictly needed, its usage is highly recommended as it serves several purposes:

1.	 The headers are consistently formatted according to their level.
2.	 Sphinx can generate a Table Of Contents (TOC) tree from the headers.
3.	 All headers automatically function as labels, which means you can create

links towards them.

When creating headers, consistency is one of the few constraints; the character used
is fairly arbitrary as is the amount of levels.

Personally, I default to a simple system with a fixed-size header, but I recommend
at least following the default of the Python documentation in terms of the parts,
chapters, sections, subsections, subsubsections, and paragraphs. Something along the
lines of the following:

Part

##

Chapter

**

Section

==

Subsection

--

Subsubsection

^^

Paragraph

""

Content

Documentation – How to Use Sphinx and reStructuredText

[222]

Output:

That is just the common usage of the headers, but the main idea of reStructuredText
is that you can use just about anything that feels natural to you, which means that
you can use any of the following characters: = - ` : ' " ~ ^ _ * + # <>. It also
supports both underlines and overlines, so if you prefer that, they are options as well:

##

Part

##

**

Chapter

**

==

Section

==

--

Subsection

--

^^

Subsubsection

^^

""

Paragraph

""

Content

Chapter 9

[223]

While I try to keep the number of characters fixed to 78 characters as PEP8 (Chapter 2,
Pythonic Syntax, Common Pitfalls, and Style Guide) recommends for Python, the
number of characters used is mostly arbitrary, but it does have to be at least as long
as the text of the header. This allows it to get the following result:

Section

=======

But not this:

Section

====

Lists
The reStructuredText format has several styles of lists:

1.	 Enumerated
2.	 Bulleted
3.	 Options
4.	 Definitions

The simplest forms of lists were already displayed in the introduction section,
but it's actually possible to use many different characters, such as letters, Roman
numerals, and others, for enumeration. After demonstrating the basic list types, we
will continue with the nesting of lists and structures which makes them even more
powerful. Care must be taken with the amount of whitespace, as a space too many
can cause a structure to be recognized as regular text instead of a structure.

Enumerated list
Enumerated lists are convenient for all sorts of enumerations. The basic premise
for enumerated lists is an alphanumeric character followed by a period, a right
parenthesis, or parentheses on both sides. Additionally, the # character functions as
an automatic enumeration. For example:

1. With

2. Numbers

a. With

#. letters

Documentation – How to Use Sphinx and reStructuredText

[224]

i. Roman

#. numerals

(1) With

(2) Parenthesis

The output is perhaps a bit simpler than you would expect. The reason is that
it depends on the output format. These were generated with the HTML output
format which has no support for parentheses. If you output LaTeX for example, the
difference can be made visible. Following is the rendered HTML output:

Bulleted list
If the order of the list is not relevant and you simply need a list of items without
enumeration, then the bulleted list is what you need. To create a simple list using
bullets only, the bulleted items need to start with a *, +, -, •, ‣, or ⁃. This list is
mostly arbitrary and can be modified by extending Sphinx or Docutils. For example:

- dashes

- and more dashes

* asterisk

* stars

+ plus

+ and plus

Chapter 9

[225]

As you can see, with the HTML output again all bullets look identical. When
generating documentation as LaTeX (and consecutively, PDF or Postscript), these can
differ. Since web-based documentation is by far the most common output format for
Sphinx, we default to that output instead. The rendered HTML output is as follows:

Option list
The option list is one meant specifically for documenting the command line
arguments of a program. The only special thing about the syntax is that the comma-
space is recognized as a separator for options.

-s, --spam This is the spam option

--eggs This is the eggs option

Following is the output:

Definition list
The definition list is a bit more obscure than the other types of lists, since the actual
structure consists of whitespace only. It's therefore pretty straightforward to use, but
not always as easy to identify in a file.

spam

 Spam is a canned pork meat product

eggs

 Is, similar to spam, also food

Documentation – How to Use Sphinx and reStructuredText

[226]

Following is the output:

Nested lists
Nesting items is actually not limited to lists and can be done with multiple types of
blocks, but the idea is the same. Just be careful to keep the indenting at the correct level.
If you don't, it either won't be recognized as a separate level or you will get an error.

1. With

2. Numbers

 (food) food

 spam

 Spam is a canned pork meat product

 eggs

 Is, similar to spam, also food

 (other) non-food stuff

Following is the output:

Chapter 9

[227]

Links, references, and labels
There are many types of links supported in reStructuredText, the simplest of which
is just a link with the protocol such as http://python.org, which will automatically
be recognized by most parsers. However, custom labels are also an option by using
the interpreted text syntax we saw earlier: `Python <http://python.org>`_.

Both of these are nice for simple links, which won't be repeated too often, but
generally it's more convenient to attach labels to links so they can be reused and
don't clog up the text too much.

For example, refer to the following:

The switch to reStructuredText and Sphinx was made with the

`Python 2.6 <https://docs.python.org/whatsnew/2.6.html>`_

release.

Now compare it with the following:

The switch to reStructuredText and Sphinx was made with the

`python 2.6`_ release.

.. _`Python 2.6`: https://docs.python.org/whatsnew/2.6.html

The output is as follows:

Using labels, you can easily have a list of references at a designated location without
making the actual text harder to read. These labels can be used for more than
external links however; similar to the GOTO statements found in older programming
languages, you can create labels and refer to them from other parts of the
documentation:

.. _label:

Within HTML or PDF output, this can be used to create a clickable link from
anywhere in the text using the underscore links. Creating a clickable link to the label
is as simple as having label_ in the text. Note that reStructuredText ignores case
differences so both uppercase and lowercase links work just fine. Even though it's
not likely to make this mistake, having the same label in a single document with only
case differences results in an error to make sure duplicates never occur.

http://python.org

Documentation – How to Use Sphinx and reStructuredText

[228]

The usage of references in conjunction with the headers works in a very natural way;
you can just refer to them as you normally would and add an underscore to make it
a link:

The introduction section

==

This section contains:

- `chapter 1`_

- :ref:`chapter2`

 1. my_label_

 2. `And a label link with a custom title <my_label>`_

Chapter 1

--

Jumping back to the beginning of `chapter 1`_ is also possible.

Or jumping to :ref:`Chapter 2 <chapter2>`

.. _chapter2:

Chapter 2 With a longer title

--

The next chapter.

.. _my_label:

The label points here.

Back to `the introduction section`_

Chapter 9

[229]

The output is as follows:

Images
The image directive looks very similar to the label syntax. They're actually a bit
different but the pattern is quite similar. The image directive is just one of the many
directives that is supported by reStructuredText. We will see more about that later
on when we cover Sphinx and reStructuredText extensions. For the time being, it is
enough to know that the directives start with two periods followed by a space, the
name of the directive, and two colons:

 .. name_of_directive::

In the case of the image, the directive is called image of course:

.. image:: python.png

Scaled output as the actual image is much larger:

Note the double colon after the directives.

Documentation – How to Use Sphinx and reStructuredText

[230]

But how about specifying the size and other properties? The image directive has
many other options (as do most other directives) which can be used: http://
docutils.sourceforge.net/docs/ref/rst/directives.html#images, they
are mostly fairly obvious however. To specify the width and height or the scale (in
percent) of the image:

.. image:: python.png

 :width: 150

 :height: 100

.. image:: python.png

 :scale: 10

Following is the output:

The scale option uses the width and height options if available
and falls back to the PIL (Python Imaging Library) or Pillow
library to detect the image. If both width/height and PIL/Pillow
are not available, the scale option will be ignored silently.

In addition to the image directive, there is also the figure directive. The difference is
that figure adds a caption to the image. Beyond that, the usage is the same as image:

.. figure:: python.png

 :scale: 10

 The Python logo

http://docutils.sourceforge.net/docs/ref/rst/directives.html#images
http://docutils.sourceforge.net/docs/ref/rst/directives.html#images

Chapter 9

[231]

The output is as follows:

Substitutions
When writing documentation, it often happens that constructs are being repeated,
the links have their own labelling system but there are more ways within
reStructuredText. The substitution definitions make it possible to shorten directives
so they can easily be re-used.

Let's assume we have a logo that we use quite often within a bit of text. Instead of
typing the entire .. image:: <url> it would be very handy to have a shorthand to
make it easier. That's where the substitutions are very useful:

.. |python| image:: python.png

 :scale: 1

The Python programming language uses the logo: |python|

The output is as follows:

These substitutions can be used with many directives, though they are particularly
useful for outputting a variable in many places of a document. For example:

.. |author| replace:: Rick van Hattem

This book was written by |author|

Following is the output:

Documentation – How to Use Sphinx and reStructuredText

[232]

Blocks, code, math, comments, and quotes
When writing documentation, a common scenario is the need for blocks that contain
different type of content, explanations with mathematical formulas, code examples,
and more. The usage of these directives is similar to the image directive. Following is
an example of a code block:

.. code:: python

 def spam(*args):

 print('spam got args', args)

The output is as follows:

Or math using LaTeX syntax, the fundamental theorem of calculus:

.. math::

 \int_a^b f(x)\,dx = F(b) - F(a)

Following is the output:

Commenting a bunch of text/commands is easily achieved by using the "empty"
directive followed by an indent:

Before comments

.. Everything here will be commented

 And this as well

 .. code:: python

 def even_this_code_sample():

 pass # Will be commented

After comments

Chapter 9

[233]

The output is as follows:

The simplest ones are the block quotes. A block quote requires nothing but just a
simple bit of indentation.

Normal text

 Quoted text

The output is as follows:

Conclusion
reStructuredText is both a very simple and a very extensive language; a large portion
of the syntax comes naturally when writing plain-text notes. A full guide to all the
intricacies, however, could fill a separate book. The previous demonstrations should
have given enough of an introduction to do at least 90 percent of the work you will
need when documenting your projects. Beyond that, Sphinx will help a lot as we will
see in the next sections.

The Sphinx documentation generator
The Sphinx documentation generator was created in 2008 for the Python 2.6 release
to replace the old LaTeX documentation for Python. It's a generator that makes it
almost trivial to generate documentation for programming projects, but even outside
of the programming world it can be easily used. Within programming projects, there
is specific support for the following domains (programming languages):

•	 Python
•	 C
•	 C++
•	 Javascript
•	 reStructuredText

Documentation – How to Use Sphinx and reStructuredText

[234]

Outside of these languages, there are extensions available for many other languages
such as CoffeeScript, MATLAB, PHP, Ruby Lisp, Go, and Scala. And if you're
simply looking for snippet code highlighting, the Pygments highlighter which
is used internally supports over 120 languages and is easily extendible for new
languages if needed.

The most important advantage of Sphinx is that almost everything can be
automatically generated from your source code. So the documentation is always
up to date.

Getting started with Sphinx
First of all, we have to make sure we install Sphinx. Even though the Python core
documentation is written using Sphinx, it is still a separately maintained project and
must be installed separately. Luckily, that's easy enough using pip:

pip install sphinx

After installing Sphinx, there are two ways of getting started with a project, the
sphinx-quickstart script and the sphinx-apidoc script. If you want to create
and customize an entire Sphinx project then sphinx-quickstart may be best as it
assists you in configuring a fully featured Sphinx project. If you simply want API
documentation for an existing project then sphinx-apidoc might be better suited
since it takes a single command and no further input to create a project.

In the end, both are valid options for creating Sphinx projects and personally I usually
end up generating the initial configuration using sphinx-quickstart and call the
sphinx-apidoc command every time I add a Python module to add the new module.
Since sphinx-apidoc does not overwrite any files by default, it is a safe operation.

Using sphinx-quickstart
The sphinx-quickstart script interactively asks you about the most important
decisions in your Sphinx project. No need to worry if you've accidently made a typo
however. Most of the configuration is stored in the conf.py directory so it's easy
enough to edit the configuration later in case you still want to enable a certain module.

Usage is easy enough, as a default I would recommend using the following settings.
The output uses the following conventions:

•	 Inline comments start with #
•	 User input lines start with >

Chapter 9

[235]

•	 Cropped output is indicated with ... and all questions skipped in between
use the default settings

sphinx-quickstart

Welcome to the Sphinx 1.3.3 quickstart utility.

...

Enter the root path for documentation.

> Root path for the documentation [.]: docs

...

The project name will occur in several places in the built documentation.

> Project name: Mastering Python

> Author name(s): Rick van Hattem

As version you might want to start below 1.0 or add an extra digit

but I would recommend leaving the default and modify the

configuration file instead. Just make it import from the Python

package instead. An example can be found in the numpy-stl package:

https://github.com/WoLpH/numpy-stl/blob/develop/docs/conf.py

...

> Project version: 1.0

> Project release [1.0]:

...

Enabling the epub builder can be useful for people using e-readers to

read the documentation.

Sphinx can also add configuration for epub output:

> Do you want to use the epub builder (y/n) [n]: y

...

Autodoc is required to document the code, definitely recommended to

enable

> autodoc: automatically insert docstrings from

Documentation – How to Use Sphinx and reStructuredText

[236]

 modules (y/n) [n]: y

With the doctest feature we can run tests embedded in the

documentation. This is meant for doctests in the .rst files.

> doctest: automatically test code snippets in

 doctest blocks (y/n) [n]: y

Intersphinx enables linking between Sphinx documentation sets

allowing for links to external documentation. After enabling this

you can make str link to the regular Python documentation about str

for example.

> intersphinx: link between Sphinx documentation

 of different projects (y/n) [n]: y

...

Mathjax enables LaTeX style mathematical rendering, not strictly

needed but very useful for rendering equations.

> mathjax: include math, rendered in the browser

 by MathJax (y/n) [n]: y

...

> viewcode: include links to the source code of

 documented Python objects (y/n) [n]: y

...

Creating file docs/conf.py.

Creating file docs/index.rst.

Creating file docs/Makefile.

Creating file docs/make.bat.

Finished: An initial directory structure has been created.

You should now populate your master file docs/index.rst and create other
documentation source files. Use the Makefile to build the docs, like so:

 make builder

where "builder" is one of the supported builders, e.g. html, latex or
linkcheck.

Chapter 9

[237]

After running this, we should have a docs directory containing the Sphinx project.
Let's see what the command actually created for us:

find docs

docs

docs/_build

docs/_static

docs/_templates

docs/conf.py

docs/index.rst

docs/make.bat

docs/Makefile

The _build, _static, and _templates directories are initially empty and
can be ignored for now. The _build directory is used to output the generated
documentation whereas the _static directory can be used to easily include custom
CSS files and such. The _templates directory makes it possible to style the HTML
output to your liking as well. Examples of these can be found in the Sphinx Git
repository at https://github.com/sphinx-doc/sphinx/tree/master/sphinx/
themes.

Makefile and make.bat can be used to generate the documentation output.
Makefile can be used for any operating system that supports the make utility and
make.bat is there to support Windows systems out of the box. Now let's look at the
index.rst source:

Welcome to Mastering Python's documentation!

==

Contents:

.. toctree::

 :maxdepth: 2

Indices and tables

==================

* :ref:`genindex`

* :ref:`modindex`

* :ref:`search`

https://github.com/sphinx-doc/sphinx/tree/master/sphinx/themes
https://github.com/sphinx-doc/sphinx/tree/master/sphinx/themes

Documentation – How to Use Sphinx and reStructuredText

[238]

We see the document title as expected, followed by toctree (table of contents tree;
more about that later in this chapter), and the links to the indices and search. toctree
automatically generates a tree out of the headers of all available documentation pages.
The indices and tables are automatically generated Sphinx pages, which are very
useful but nothing we need to worry about in terms of settings.

Now it's time to generate the HTML output:

cd docs

make html

The make html command generates the documentation for you and the result is
placed in _build/html/. Just open index.html in your browser to see the results.
You should have something looking similar to the following now:

With just that single command and by answering a few questions, we now have a
documentation project with an index, search, and table of contents on all the pages.

In addition to the HTML output, there are quite a few other formats supported by
default, although some require external libraries to actually work:

make

Please use `make <target>' where <target> is one of

 html to make standalone HTML files

 dirhtml to make HTML files named index.html in directories

 singlehtml to make a single large HTML file

 pickle to make pickle files

 json to make JSON files

Chapter 9

[239]

 htmlhelp to make HTML files and a HTML help project

 qthelp to make HTML files and a qthelp project

 applehelp to make an Apple Help Book

 devhelp to make HTML files and a Devhelp project

 epub to make an epub

 latex to make LaTeX files, you can set PAPER=a4 or ...

 latexpdf to make LaTeX files and run them through pdflatex

 latexpdfja to make LaTeX files and run them through platex/...

 text to make text files

 man to make manual pages

 texinfo to make Texinfo files

 info to make Texinfo files and run them through makeinfo

 gettext to make PO message catalogs

 changes to make an overview of all changed/added/deprecate...

 xml to make Docutils-native XML files

 pseudoxml to make pseudoxml-XML files for display purposes

 linkcheck to check all external links for integrity

 doctest to run all doctests embedded in the documentation

 coverage to run coverage check of the documentation

Using sphinx-apidoc
The sphinx-apidoc command is generally used together with sphinx-quickstart.
It is possible to generate an entire project with the --full parameter but it's
generally a better idea to generate the entire project using sphinx-quickstart and
simply add the API documentation using sphinx-apidoc. To properly demonstrate
the sphinx-apidoc command, we need some Python files, so we'll create two files
within a project called h09.

The first one is h09/spam.py containing a class called Spam with some methods:

class Spam(object):

 def __init__(self, arg, *args, **kwargs):

 pass

 def regular_method(self, arg):

 pass

 @classmethod

Documentation – How to Use Sphinx and reStructuredText

[240]

 def decorated_method(self, arg):

 pass

 def _hidden_method(self):

 pass

Next we have h09/eggs.py containing a Eggs class that inherits Spam:

import spam

class Eggs(spam.Spam):

 def regular_method(self):

 '''This regular method overrides

 :meth:`spam.Spam.regular_method`

 '''

 pass

Now that we have our source files, it's time to generate the actual API documentation:

sphinx-apidoc h09 -o docs

Creating file docs/eggs.rst.

Creating file docs/spam.rst.

Creating file docs/modules.rst.

This alone is not enough to include the API in the documentation. It needs to be
added to toctree. Luckily, that's as simple as adding modules to toctree in the
index.rst file to look something like this:

.. toctree::

 :maxdepth: 2

 modules

The toctree directive is discussed in further detail later in this chapter.

We also have to make sure that the modules can be imported, otherwise Sphinx
won't be able to read the Python files. To do that, we simply add the h09 directory to
sys.path; this can be put anywhere in the conf.py file:

import os

sys.path.insert(0, os.path.join(os.path.abspath('..'), 'h09'))

Chapter 9

[241]

Now it's time to generate the documentation again:

cd docs

make html

Open the docs/_build/index.html file again. For the sake of brevity, the repeated
parts of the document will be omitted from the screenshots. The cropped output is
as follows:

But it actually generated quite a bit more. When running the sphinx-apidoc
command, it looks at all the Python modules in the specified directory recursively
and generates a rst file for each of them. After generating all those separate files, it
adds all those to a file called modules.rst which makes it easy to add them to your
documentation.

The modules.rst file is really straight to the point; nothing more than a list of
modules with the package name as the title really:

h09

===

.. toctree::

 :maxdepth: 4

 eggs

 spam

The output is as follows:

Documentation – How to Use Sphinx and reStructuredText

[242]

spam.rst and eggs.rst are equally simple, but more important in terms of
customization. Within those files it adds the automodule directive which imports the
Python module and lists the methods. The methods that are listed can be configured
and by default we already get pretty useful output:

eggs module

===========

.. automodule:: eggs

 :members:

 :undoc-members:

 :show-inheritance:

Following is the output:

Pretty, isn't it? And all that can be generated from most Python projects with
virtually no effort whatsoever. The nice things about this is that the documentation
we added to Eggs.regular_method is immediately added here, the inherited base
(spam.Spam) is a clickable link to the spam.Spam documentation page, and the
:func: role makes spam.Spam.regular_method immediately clickable as well.

The output for the spam module is similar:

Chapter 9

[243]

New files won't be added to your docs automatically. It is safe to
rerun the sphinx-apidoc command to add the new files but
it won't update your existing files. Even though the --force
option can be used to force overwriting the files, within existing
files I recommend manually editing them instead. As we will see
in the next sections, there are quite a few reasons to manually
modify the generated files after.

Sphinx directives
Sphinx adds a few directives on top of the default ones in reStructuredText and an
easy API to add new directives yourself. Most of them are generally not that relevant
to modify but, as one would expect, Sphinx has pretty good documentation in case
you need to know more about them. There are a few very commonly used ones
which we will discus however.

The table of contents tree directive (toctree)
This is one of the most important directives in Sphinx; it generates toctree (table of
contents tree). The toctree directive has a couple of options but the most important
one is probably maxdepth which specifies how deep the tree needs to go. The top
level of toctree has to be specified manually by specifying the files to be read, but
beyond that every level within a document (section, chapter, paragraph, and so on)
can be another level in toctree, depending on the depth of course. Even though the
maxdepth option is optional, without it all the available levels will be shown, which
is usually more than required. In most cases a maxdepth of 2 is a good default value
which makes the basic example look like this:

.. toctree::

 :maxdepth: 2

The items in toctree are the .rst files in the same directory without the extension.
This can include subdirectories, in which case the directories are separated with a .
(period):

.. toctree::

 :maxdepth: 2

 module.a

 module.b

 module.c

Documentation – How to Use Sphinx and reStructuredText

[244]

Another very useful option is the glob option. It tells toctree to use the glob
module in Python to automatically add all the documents matching a pattern. By
simply adding a directory with a glob pattern, you can add all the files in that
directory. This makes the toctree we had before as simple as:

.. toctree::

 :maxdepth: 2

 :glob:

 module.*

If for some reason the document title is not as you would have liked, you can easily
change the title to something customized:

.. toctree::

 :maxdepth: 2

 The A module <module.a>

Autodoc, documenting Python modules, classes,
and functions
The most powerful feature of Sphinx is the possibility of automatically documenting
your modules, classes, and functions. The sphinx-apidoc command has already
generated some of these for us, so let's use those files for the Spam and Eggs classes to
extend the documentation a bit.

The original result from sphinx-apidoc was:

eggs module

===========

.. automodule:: eggs

 :members:

 :undoc-members:

 :show-inheritance:

Chapter 9

[245]

This renders as:

The Eggs class has only a single function right now. We can of course click towards
the parent class with ease, but in many cases it's useful to see all available functions
in the class. So let's add all the functions that are inherited from Spam as well:

eggs module

===========

.. automodule:: eggs

 :members:

 :undoc-members:

 :show-inheritance:

 :inherited-members:

The output is as follows:

Much more useful already, but we are still missing the hidden method. Let's add the
private members as well:

eggs module

===========

Documentation – How to Use Sphinx and reStructuredText

[246]

.. automodule:: eggs

 :members:

 :undoc-members:

 :show-inheritance:

 :inherited-members:

 :private-members:

Following is the output:

Now all the methods are shown, but what about the members option? Without the
members option or the *-members options, no functions will be visible anymore.

show-inheritance is useful if you want to have the Bases: ... section so it is
possible to click to the parent class.

Naturally, it is also possible to create classes manually. While this has little practical
use, it does show the internal structure of Python classes within Sphinx.

There is a practical case however, if you are dynamically creating classes then
autodoc will not always be able to document correctly and some additional help is
required. There is more however, while it's generally not that useful as you're doing
double work. In some cases, the autodoc extension won't be able to correctly identify
the members of your class. This is true in case of dynamic class/function generation,
for example. For such cases, it can be useful to add some manual documentation to
the module/class/function:

eggs module

===========

.. automodule:: eggs

 :members:

 :undoc-members:

Chapter 9

[247]

 :show-inheritance:

 .. class:: NonExistingClass

 This class doesn't actually exist, but it's in the documentation
now.

 .. method:: non_existing_function()

 And this function does not exist either.

Following is the output:

If at all possible, I would avoid this usage though. The biggest benefit of Sphinx is
that it can automatically generate a large portion of your docs for you. By manually
documenting, you may produce the one thing that's worse than no documentation,
that is incorrect documentation. These statements are mainly useful for meta-
documentation; documenting how a class might look instead of an actual example.

Sphinx roles
We have seen Sphinx directives, which are separate blocks. Now we will discuss
Sphinx roles, which can be used in-line. A role allows you to tell Sphinx how to parse
some input. Examples of these roles are links, math, code, and markup. But the most
important ones are the roles within the Sphinx domains for referencing other classes,
even for external projects. Within Sphinx, the default domain is the Python one so a
role such as :py:meth: can be used as :meth: as well. These roles are really useful
to link to different packages, modules, classes, methods, and other objects. The basic
usage is simple enough. To link to a class, use the following:

Spam: :class:`spam.Spam`

Documentation – How to Use Sphinx and reStructuredText

[248]

The output is:

The same goes for just about any other object, functions, exceptions, attributes, and
so on. The Sphinx documentation offers a list of supported objects: http://sphinx-
doc.org/domains.html#cross-referencing-python-objects.

One of the nicer features of Sphinx is that this is actually possible across projects as
well, adding a reference to the int object in the standard Python documentation is
easily possible using :obj:`int`. And adding references to your own projects on
other sites is fairly trivial as well. Perhaps you remember the intersphinx question
from the sphinx-quickstart script:

> intersphinx: link between Sphinx documentation

 of different projects (y/n) [n]: y

That's what makes cross-referencing between external Sphinx documentation and
your local one possible. With intersphinx you can add links between projects with
virtually no effort whatsoever. The standard intersphinx_mapping in conf.py is a
bit limited:

intersphinx_mapping = {'https://docs.python.org/': None}

However, it can easily be extended to other documentation sites:

intersphinx_mapping = {

 'https://docs.python.org/': None,

 'sphinx': ('http://sphinx-doc.org/', None),

}

Now we can easily link to the documentation on the Sphinx homepage:

Link to the intersphinx module: :mod:`sphinx.ext.intersphinx`

Following is the output:

This links to http://www.sphinx-doc.org/en/stable/ext/intersphinx.html.

http://sphinx-doc.org/domains.html#cross-referencing-python-objects
http://sphinx-doc.org/domains.html#cross-referencing-python-objects
http://www.sphinx-doc.org/en/stable/ext/intersphinx.html

Chapter 9

[249]

Documenting code
There are currently three different documentation styles supported by Sphinx: the
original Sphinx style and the more recent NumPy and Google styles. The differences
between them are mainly in style but it's actually slightly more than that.

The Sphinx style was developed using a bunch of reStructuredText roles, a very
effective method but when used a lot it can be detrimental for readability. You can
probably tell what the following does but it's not the nicest syntax:

:param amount: The amount of eggs to return

:type amount: int

The Google style was (as the name suggests) developed by Google. The goal was
to have a simple/readable format which works both as in-code documentation
and parse able for Sphinx. In my opinion, this comes closer to the original idea of
reStructuredText, a format that's very close to how you would document instinctively.
This example has the same meaning as the Sphinx style example shown earlier:

Args:

 amount (int): The amount of eggs to return

The NumPy style was created specifically for the NumPy project. The NumPy project
has many functions with a huge amount of documentation and generally a lot of
documentation per argument. It is slightly more verbose than the Google format but
quite easy to read as well:

Parameters

amount : int

 The amount of eggs to return

In the future, with the Python 3.5 type hint annotations, at least
the argument type part of these syntaxes might become useless.
For the time being, Sphinx has no specific support for the
annotations yet, so explicit type hinting through the docs must
be used. But perhaps we can use the following soon:

def eggs(amount: int):
 pass

Documentation – How to Use Sphinx and reStructuredText

[250]

Documenting a class with the Sphinx style
First of all, let's look at the traditional style, the Sphinx style. While it's easy to
understand what all the parameters mean, it's a bit verbose and not all that readable.
Nonetheless, it's pretty clear and definitely not a bad style to use:

class Spam(object):

 '''

 The Spam object contains lots of spam

 :param arg: The arg is used for ...

 :type arg: str

 :param `*args`: The variable arguments are used for ...

 :param `**kwargs`: The keyword arguments are used for ...

 :ivar arg: This is where we store arg

 :vartype arg: str

 '''

 def __init__(self, arg, *args, **kwargs):

 self.arg = arg

 def eggs(self, amount, cooked):

 '''We can't have spam without eggs, so here's the eggs

 :param amount: The amount of eggs to return

 :type amount: int

 :param bool cooked: Should the eggs be cooked?

 :raises: :class:`RuntimeError`: Out of eggs

 :returns: A bunch of eggs

 :rtype: Eggs

 '''

 pass

Chapter 9

[251]

Following is the output:

This is a very useful output indeed with documented functions, classes, and
arguments. And more importantly, the types are documented as well, resulting in a
clickable link towards the actual type. An added advantage of specifying the type is
that many editors understand the documentation and will provide auto-completion
based on the given types.

To explain what's actually happening here, Sphinx has a few roles within the
docstrings that offer hints as to what we are documenting.

The param role paired with a name sets the documentation for the parameter with
that name. The type role paired with a name tells Sphinx the data type of the
parameter. Both the roles are optional and the parameter simply won't have any
added documentation if they are omitted, but the param role is always required for
any documentation to show. Simply adding the type role without the param role will
result in no output whatsoever, so take note to always pair them.

The returns role is similar to the param role with regards to documenting. While the
param role documents a parameter, the returns role documents the returned object.
They are slightly different however. Opposed to the param role, the returns role is
not dependent of the rtype role or vice versa. They both work independently of each
other making it possible to use either or both of the roles.

The rtype, as you can expect, tells Sphinx (and several editors) what type of object is
returned from the function.

Documentation – How to Use Sphinx and reStructuredText

[252]

Documenting a class with the Google style
The Google style is just a more legible version of the Sphinx style documentation.
It doesn't actually support more or less but it's a lot more intuitive to use. The only
thing to keep in mind is that it's a fairly recent feature of Sphinx. With the older
versions, you were required to install the sphinxcontrib-napoleon package. These
days it comes bundled with Sphinx but still needs to be enabled through the conf.py
file. So, depending on the Sphinx version (Napoleon was added in Sphinx 1.3), you
will need to add either sphinx.ext.napoleon or sphinxcontrib.napoleon to the
extensions list in conf.py.

Once you have everything configured correctly, we can use both the Google and
NumPy style. Here's the Google style version of the Spam class:

class Spam(object):

 '''

 The Spam object contains lots of spam

 Args:

 arg (str): The arg is used for ...

 *args: The variable arguments are used for ...

 **kwargs: The keyword arguments are used for ...

 Attributes:

 arg (str): This is where we store arg,

 '''

 def __init__(self, arg, *args, **kwargs):

 self.arg = arg

 def eggs(self, amount, cooked):

 '''We can't have spam without eggs, so here's the eggs

 Args:

 amount (int): The amount of eggs to return

 cooked (bool): Should the eggs be cooked?

 Raises:

 RuntimeError: Out of eggs

Chapter 9

[253]

 Returns:

 Eggs: A bunch of eggs

 '''

 pass

This is easier on the eyes than the Sphinx style and has the same amount of
possibilities. For longer argument documentation, it's less than convenient though.
Just imagine how a multiline description of amount would look. That is why the
NumPy style was developed, a lot of documentation for its arguments.

Documenting a class with the NumPy style
The NumPy style is meant for having a lot of documentation. Honestly, most people
are too lazy for that, so for most projects it would not be a good fit. If you do plan to
have extensive documentation of your functions and all their parameters, the NumPy
style might be a good option for you. It's a bit more verbose than the Google style but
it's very legible, especially with more detailed documentation. Just remember that,
similar to the Google style, this requires the Napoleon extension for Sphinx, so make
sure you have Sphinx 1.3 or above installed. Following is the NumPy version of the
Spam class:

class Spam(object):

 '''

 The Spam object contains lots of spam

 Parameters

 arg : str

 The arg is used for ...

 *args

 The variable arguments are used for ...

 **kwargs

 The keyword arguments are used for ...

 Attributes

 arg : str

 This is where we store arg,

 '''

Documentation – How to Use Sphinx and reStructuredText

[254]

 def __init__(self, arg, *args, **kwargs):

 self.arg = arg

 def eggs(self, amount, cooked):

 '''We can't have spam without eggs, so here's the eggs

 Parameters

 amount : int

 The amount of eggs to return

 cooked : bool

 Should the eggs be cooked?

 Raises

 RuntimeError

 Out of eggs

 Returns

 Eggs

 A bunch of eggs

 '''

 pass

While the NumPy style definitely isn't bad, it's just very verbose. This example
alone is about 1.5 times as long as the alternatives. So, for longer and more detailed
documentation it's a very good choice, but if you're planning to have short
documentation anyhow, just use the Google style instead.

Which style to choose
For most projects, the Google style is the best choice since it is readable but not too
verbose. If you are planning to use large amounts of documentation per parameter
then the NumPy style might be a good option as well.

The only reason to choose the Sphinx style is legacy. Even though the Google style
might be more legible, consistency is more important.

Chapter 9

[255]

Summary
Documentation can help greatly in a project's popularity and bad documentation can
kill productivity. I think there are few aspects of a library that have more impact on
the usage by third parties than documentation. Thus in many cases, documentation is
a more important factor in deciding the usage of a project than the actual code quality.
That's why it is very important to always try to have some documentation available.

With Sphinx it is actually easy to generate documentation. With just a few minutes
of your time, you can have a fully functioning website with documentation available,
or a PDF, or ePub, or one of the many other output formats. There really is no excuse
for having no documentation anymore. And even if you don't use the documentation
that much yourself, offering type hints to your editor can help a lot in productivity as
well. Making your editor smarter should always help in productivity. I for one have
added type hints to several projects simply to increase my productivity.

The next chapter will explain how code can be tested in Python and some part of the
documentation will return there. Using doctest, it is possible to have example code,
documentation, and tests in one.

[257]

Testing and Logging –
Preparing for Bugs

When programming, most developers plan a bit and immediately continue writing
code. After all, we all expect to write bug-free code! Unfortunately, we don't. At some
point, an incorrect assumption, a misinterpretation, or just a silly mistake is bound to
happen. Debugging (covered in Chapter 11, Debugging – Solving the Bugs) will always
be required at some point, but there are several methods that you can use to prevent
bugs or, at the very least, make it much easier to solve them when they do occur.

To prevent bugs from occurring in the first place, test-driven development or,
at the very least, functional/regression/unit tests are very useful. The standard
Python installation alone offers several options such as the doctest, unittest,
and test modules. The doctest module allows you to combine tests with example
documentation. The unittest module allows you to easily write regression tests.
The test module is meant for internal usage only, so unless you are planning to
modify the Python core, you probably won't need this one.

The test modules we will discuss in this chapter are:

•	 doctest

•	 py.test (and why it's more convenient than unittest)
•	 unittest.mock

The py.test module has roughly the same purpose as the unittest module, but it's
much more convenient to use and has a few extra options.

Testing and Logging – Preparing for Bugs

[258]

After learning how to avoid the bugs, it's time to take a look at logging so that we
can inspect what is happening in our program and why. The logging module in
Python is highly configurable and can be adjusted for just about any use case. If
you've ever written Java code, you should feel right at home with the logging
module, as its design is largely based on the log4j module and is very similar in both
implementation and naming. The latter makes it a bit of an odd module in Python as
well, as it is one of the few modules that do not follow the pep8 naming standards.

This chapter will explain the following topics:

•	 Combining documentation with tests using doctest
•	 Regression and unit tests using py.test and unittest
•	 Testing with fake objects using unittest.mock
•	 Using the logging module effectively
•	 Combining logging and py.test

Using examples as tests with doctest
The doctest module is one of the most useful modules within Python. It allows you
to combine documenting your code with tests to make sure that it keeps working as
it is supposed to.

A simple doctest example
Let's start with a quick example: a function that squares the input. The following
example is a fully functional command-line application, containing not only code
but also functioning tests. The first few tests cover how the function is supposed
to behave when executing normally, followed by a few tests to demonstrate the
expected errors:

def square(n):

 '''

 Returns the input number, squared

 >>> square(0)

 0

 >>> square(1)

 1

 >>> square(2)

 4

Chapter 10

[259]

 >>> square(3)

 9

 >>> square()

 Traceback (most recent call last):

 ...

 TypeError: square() missing 1 required positional argument: 'n'

 >>> square('x')

 Traceback (most recent call last):

 ...

 TypeError: can't multiply sequence by non-int of type 'str'

 Args:

 n (int): The number to square

 Returns:

 int: The squared result

 '''

 return n * n

if __name__ == '__main__':

 import doctest

 doctest.testmod()

It can be executed as any Python script, but the regular command won't give any
output as all tests are successful. The doctest.testmod function takes verbosity
parameters, luckily:

python square.py -v

Trying:

 square(0)

Expecting:

 0

ok

Trying:

 square(1)

Expecting:

 1

Testing and Logging – Preparing for Bugs

[260]

ok

Trying:

 square(2)

Expecting:

 4

ok

Trying:

 square(3)

Expecting:

 9

ok

Trying:

 square()

Expecting:

 Traceback (most recent call last):

 ...

 TypeError: square() missing 1 required positional argument: 'n'

ok

Trying:

 square('x')

Expecting:

 Traceback (most recent call last):

 ...

 TypeError: can't multiply sequence by non-int of type 'str'

ok

1 items had no tests:

 __main__

1 items passed all tests:

 6 tests in __main__.square

6 tests in 2 items.

6 passed and 0 failed.

Test passed.

Chapter 10

[261]

Additionally, since it uses the Google syntax (as discussed in Chapter 9,
Documentation – How to Use Sphinx and reStructuredText, the documentation chapter),
we can generate pretty documentation using Sphinx:

However, the code is not always correct, of course. What would happen if we modify
the code so that the tests do not pass anymore?

This time, instead of n * n, we use n ** 2. Both square a number right? So the
results must be identical. Right? These are the types of assumptions that create bugs,
and the types of assumptions that are trivial to catch using a few basic tests:

def square(n):

 '''

 Returns the input number, squared

 >>> square(0)

 0

 >>> square(1)

 1

 >>> square(2)

Testing and Logging – Preparing for Bugs

[262]

 4

 >>> square(3)

 9

 >>> square()

 Traceback (most recent call last):

 ...

 TypeError: square() missing 1 required positional argument: 'n'

 >>> square('x')

 Traceback (most recent call last):

 ...

 TypeError: can't multiply sequence by non-int of type 'str'

 Args:

 n (int): The number to square

 Returns:

 int: The squared result

 '''

 return n ** 2

if __name__ == '__main__':

 import doctest

 doctest.testmod()

So let's execute the test again and see what happens this time. For brevity, we will
skip the verbosity flag this time:

python square.py

**

File "square.py", line 17, in __main__.square

Failed example:

 square('x')

Expected:

 Traceback (most recent call last):

 ...

 TypeError: can't multiply sequence by non-int of type 'str'

Got:

Chapter 10

[263]

 Traceback (most recent call last):

 File "doctest.py", line 1320, in __run

 compileflags, 1), test.globs)

 File "<doctest __main__.square[5]>", line 1, in <module>

 square('x')

 File "square.py", line 28, in square

 return n ** 2

 TypeError: unsupported operand type(s) for ** or pow(): 'str' and
'int'

**

1 items had failures:

 1 of 6 in __main__.square

Test Failed 1 failures.

The only modification we made to the code was replacing n * n with n ** 2, which
translates to the power function. Since multiplication is not the same as taking the
power of a number, the results are slightly different but similar enough in practice
that most programmers wouldn't notice the difference.

The only difference caused by the code change was that we now have a different
exception—an innocent mistake, only breaking the tests in this case. But it shows
how useful these tests are. When rewriting code, an incorrect assumption is easily
made, and that is where tests are most useful—knowing you are breaking code as
soon as you break it instead of finding out months later.

Writing doctests
Perhaps, you have noticed from the preceding examples that the syntax is very
similar to the regular Python console, and that is exactly the point. The doctest
input is nothing more than the output of a regular Python shell session. This is what
makes testing with this module so intuitive; simply write the code in the Python
console and copy the output into a docstring to get tests. Here is an example:

python

>>> from square import square

>>> square(5)

25

>>> square()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: square() missing 1 required positional argument: 'n'

Testing and Logging – Preparing for Bugs

[264]

That's why this is probably the easiest way to test code. With almost no effort, you
can check whether your code is working as you would expect it, add tests, and add
documentation at the same time. Simply copy the output from the interpreter to your
function or class documentation and you have functioning doctests.

Testing with pure documentation
The docstrings in functions, classes, and modules are usually the most obvious
way to add doctests to your code, but they are not the only way. The Sphinx
documentation, as we discussed in the previous chapter, also supports the doctest
module. You might remember that when creating the Sphinx project, we enabled the
doctest module:

> doctest: automatically test code snippets in doctest blocks (y/n) [n]:y

This flag enables the sphinx.ext.doctest extension in Sphinx, which tells Sphinx
to run those tests as well. Since not all the examples in the code are useful, let's see
whether we can split them between the ones that are actually useful and the ones
that are only relevant for documentation. Moreover, to see the results, we will add an
error to the documentation:

square.py

def square(n):

 '''

 Returns the input number, squared

 >>> square(2)

 4

 Args:

 n (int): The number to square

 Returns:

 int: The squared result

 '''

 return n * n

if __name__ == '__main__':

 import doctest

 doctest.testmod()

Chapter 10

[265]

square.rst

square module

=============

.. automodule:: square

 :members:

 :undoc-members:

 :show-inheritance:

Examples:

.. testsetup::

 from square import square

.. doctest::

 >>> square(100)

 >>> square(0)

 0

 >>> square(1)

 1

 >>> square(3)

 9

 >>> square()

 Traceback (most recent call last):

 ...

 TypeError: square() missing 1 required positional argument: 'n'

 >>> square('x')

 Traceback (most recent call last):

 ...

 TypeError: can't multiply sequence by non-int of type 'str'

Testing and Logging – Preparing for Bugs

[266]

Now, it's time to execute the tests. In the case of Sphinx, there is a specific command
for this:

make doctest

sphinx-build -b doctest -d _build/doctrees . _build/doctest

Running Sphinx v1.3.3

loading translations [en]... done

loading pickled environment... done

building [mo]: targets for 0 po files that are out of date

building [doctest]: targets for 3 source files that are out of date

updating environment: 0 added, 0 changed, 0 removed

looking for now-outdated files... none found

running tests...

Document: square

**

File "square.rst", line 16, in default

Failed example:

 square(100)

Expected nothing

Got:

 10000

**

1 items had failures:

 1 of 7 in default

7 tests in 1 items.

6 passed and 1 failed.

Test Failed 1 failures.

Doctest summary

===============

 7 tests

 1 failure in tests

 0 failures in setup code

 0 failures in cleanup code

build finished with problems.

make: *** [doctest] Error 1

Chapter 10

[267]

As expected, we are getting an error for the incomplete doctest, but beyond that, all
tests executed correctly. To make sure that the tests know what square is, we had to
add the testsetup directive, and this still generates a pretty output:

The doctest flags
The doctest module features several option flags. They affect how doctest
processes the tests. These option flags can be passed globally using your test suite,
through command-line parameters while running the tests, and through inline
commands. For this book, I have globally enabled the following option flags through
a pytest.ini file (we will cover more about py.test later in this chapter):

doctest_optionflags = ELLIPSIS NORMALIZE_WHITESPACE

Testing and Logging – Preparing for Bugs

[268]

Without these option flags, some of the examples in this book will not function
properly. This is because they have to be reformatted to fit. The next few paragraphs
will cover the following option flags:

•	 DONT_ACCEPT_TRUE_FOR_1

•	 NORMALIZE_WHITESPACE

•	 ELLIPSIS

There are several other option flags available with varying degrees of usefulness, but
these are better left to the Python documentation:

https://docs.python.org/3/library/doctest.html#option-flags

True and False versus 1 and 0
Having True evaluating to 1 and False evaluating to 0 is useful in most cases, but it
can give unexpected results. To demonstrate the difference, we have these lines:

'''

>>> False

0

>>> True

1

>>> False # doctest: +DONT_ACCEPT_TRUE_FOR_1

0

>>> True # doctest: +DONT_ACCEPT_TRUE_FOR_1

1

'''

if __name__ == '__main__':

 import doctest

 doctest.testmod()

Here are the results of the DONT_ACCEPT_TRUE_FOR_1 flag:

python test.py

**

File "test.py", line 6, in __main__

Failed example:

 False # doctest: +DONT_ACCEPT_TRUE_FOR_1

https://docs.python.org/3/library/doctest.html#option-flags

Chapter 10

[269]

Expected:

 0

Got:

 False

**

File "test.py", line 8, in __main__

Failed example:

 True # doctest: +DONT_ACCEPT_TRUE_FOR_1

Expected:

 1

Got:

 True

**

1 items had failures:

 2 of 4 in __main__

Test Failed 2 failures.

As you can see, the DONT_ACCEPT_TRUE_FOR_1 flag makes doctest reject 1 as a valid
response for True as well as 0 for False.

Normalizing whitespace
Since doctests are used for both documentation and test purposes, it is pretty much
a requirement to keep them readable. Without normalizing whitespace, this can be
tricky, however. Consider the following example:

>>> [list(range(5)) for i in range(5)]

[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0,
1, 2, 3, 4]]

While not all that bad, this output isn't the best for readability. With whitespace
normalizing, here is what we can do instead:

>>> [list(range(5)) for i in range(5)] # doctest: +NORMALIZE_WHITESPACE

[[0, 1, 2, 3, 4],

 [0, 1, 2, 3, 4],

 [0, 1, 2, 3, 4],

 [0, 1, 2, 3, 4],

 [0, 1, 2, 3, 4]]

Formatting the output in this manner is both more readable and convenient for
keeping your line length less.

Testing and Logging – Preparing for Bugs

[270]

Ellipsis
The ELLIPSIS flag is very useful but also a bit dangerous, as it can easily lead
to incorrect matches. It makes ... match any substring, which is very useful for
exceptions but dangerous in other cases:

>>> {10: 'a', 20: 'b'} # doctest: +ELLIPSIS

{...}

>>> [True, 1, 'a'] # doctest: +ELLIPSIS

[...]

>>> True, # doctest: +ELLIPSIS

(...)

>>> [1, 2, 3, 4] # doctest: +ELLIPSIS

[1, ..., 4]

>>> [1, 0, 0, 0, 0, 0, 4] # doctest: +ELLIPSIS

[1, ..., 4]

These cases are not too useful in real scenarios, but they demonstrate how the
ELLIPSIS option flag functions. They also indicate the danger. Both [1, 2, 3, 4]
and [1, 0, ... , 4] match the [1, ..., 4] test, which is probably unintentional,
so be very careful while using ELLIPSIS.

A more useful case is when documenting class instances:

>>> class Spam(object):

... pass

>>> Spam() # doctest: +ELLIPSIS

<__main__.Spam object at 0x...>

Without the ELLIPSIS flag, the memory address (the 0x... part) would never be
what you expect. Let's demonstrate an actual run in a normal CPython instance:

Failed example:

 Spam()

Expected:

 <__main__.Spam object at 0x...>

Got:

 <__main__.Spam object at 0x10d9ad160>

Chapter 10

[271]

Doctest quirks
The three option flags discussed earlier take care of quite a few quirks found in doctests,
but there are several more cases that require care. In these cases, you just need to be a bit
careful and work around the limitations of the doctest module. The doctest module
effectively uses the representation string, and those are not always consistent.

The most important cases are floating-point inaccuracies, dictionaries, and random
values, such as timers. The following example will fail most of the time because
certain types in Python have no consistent ordering and depend on external variables:

>>> dict.fromkeys('spam')

{'s': None, 'p': None, 'a': None, 'm': None}

>>> 1./7.

0.14285714285714285

>>> import time

>>> time.time() - time.time()

-9.5367431640625e-07

All the problems have several possible solutions, which differ mostly in style and
your personal preference.

Testing dictionaries
The problem with dictionaries is that they are internally implemented as hash tables,
resulting in an effectively random representation order. Since the doctest system
requires a representation string that is identical in meaning (save for certain doctest
flags, of course) to the docstring, this does not work. Naturally, there are several
workaround options available and all have some advantages and disadvantages.

The first is using the pprint library to format it in a pretty way:

>>> import pprint

>>> data = dict.fromkeys('spam')

>>> pprint.pprint(data)

{'a': None, 'm': None, 'p': None, 's': None}

Since the pprint library always sorts the items before outputting, this solves the
problem with random representation orders. However, it does require an extra
import and function call, which some people prefer to avoid.

Testing and Logging – Preparing for Bugs

[272]

Another option is manual sorting of the items:

>>> data = dict.fromkeys('spam')

>>> sorted(data.items())

[('a', None), ('m', None), ('p', None), ('s', None)]

The downside here is that it is not visible from the output that data is a dictionary,
which makes the output less readable.

Lastly, comparing the dict with a different dict comprised of the same elements
works as well:

>>> data = dict.fromkeys('spam')

>>> data == {'a': None, 'm': None, 'p': None, 's': None}

True

A perfectly okay solution, of course! But True is not really the clearest output,
especially if the comparison doesn't work:

Failed example:

 data == {'a': None, 'm': None, 'p': None}

Expected:

 True

Got:

 False

On the other hand, the other options presented previously show both the expected
value and the returned value correctly:

Failed example:

 sorted(data.items())

Expected:

 [('a', None), ('m', None), ('p', None)]

Got:

 [('a', None), ('m', None), ('p', None), ('s', None)]

Failed example:

 pprint.pprint(data)

Expected:

 {'a': None, 'm': None, 'p': None}

Got:

 {'a': None, 'm': None, 'p': None, 's': None}

Chapter 10

[273]

Personally, out of the solutions presented, I would recommend using pprint, as I
find it the most readable solution, but all the solutions have some merits to them.

Testing floating-point numbers
For the same reason as a floating-point comparison can be problematic (that is,
1/3 == 0.333), a representation string comparison is also problematic. The easiest
solution is to simply add some rounding/clipping to your code, but the ELLIPSIS
flag is also an option here. Here is a list of several solutions:

>>> 1/3 # doctest: +ELLIPSIS

0.333...

>>> '%.3f' % (1/3)

'0.333'

>>> '{:.3f}'.format(1/3)

'0.333'

>>> round(1/3, 3)

0.333

>>> 0.333 < 1/3 < 0.334

True

When the ELLIPSIS option flag is enabled globally anyhow, that would be the most
obvious solution. In other cases, I recommend one of the alternative solutions.

Times and durations
For timings, the problems that you will encounter are quite similar to the floating-
point issues. When measuring the duration execution time of a code snippet, there
will always be some variation present. That's why the most stable solution for
tests, including time, is limiting the precision, although even that is no guarantee.
Regardless, the simplest solution checks whether the delta between the two times is
smaller than a certain number, as follows:

>>> import time

>>> a = time.time()

>>> b = time.time()

>>> (b - a) < 0.01

True

Testing and Logging – Preparing for Bugs

[274]

For the timedelta objects, however, it's slightly more complicated. Yet, this is where
the ELLIPSIS flag definitely comes in handy again:

>>> import datetime

>>> a = datetime.datetime.now()

>>> b = datetime.datetime.now()

>>> str(b - a) # doctest: +ELLIPSIS

'0:00:00.000...

The alternative to the ELLIPSIS option flag would be comparing the days, hours,
minutes, and microseconds in timedelta separately.

In a later paragraph, we will see a completely stable solution for problems like these
using mock objects. For doctests, however, that is generally overkill.

Testing with py.test
The py.test tool makes it very easy to write tests and run them. There are a few
other options such as nose and the bundled unittest module available, but the
py.test library offers a very good combination of usability and active development.
In the past, I was an avid nose user but have since switched to py.test as it tends
to be easier to use and has better community support, in my experience at least.
Regardless, nose is still a good choice, and if you're already using it, there is little
reason to switch and rewrite all of your tests. When writing tests for a new project,
however, py.test can be much more convenient.

Now, we will run the doctests from the previously discussed square.py file using
py.test.

First, start by installing py.test, of course:

pip install pytest

Now you can do a test run, so let's give the doctests we have in square.py a try:

py.test --doctest-modules -v square.py

======================== test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.2, py-1.4.30, pluggy-0.3.1 --
python3.5

cachedir: .cache

rootdir: code, inifile: pytest.ini

collected 1 items

Chapter 10

[275]

square.py::square.square PASSED

===================== 1 passed in 0.02 seconds ======================

The difference between the unittest and
py.test output
We have the doctests in square.py. Let's create a new class called cube and create a
proper set of tests outside of the code.

First of all, we have the code of cube.py, similar to square.py but minus the
doctests, since we don't need them anymore:

def cube(n):

 '''

 Returns the input number, cubed

 Args:

 n (int): The number to cube

 Returns:

 int: The cubed result

 '''

 return n ** 3

Now let's start with the unittest example, test_cube.py:

import cube

import unittest

class TestCube(unittest.TestCase):

 def test_0(self):

 self.assertEqual(cube.cube(0), 0)

 def test_1(self):

 self.assertEqual(cube.cube(1), 1)

 def test_2(self):

Testing and Logging – Preparing for Bugs

[276]

 self.assertEqual(cube.cube(2), 8)

 def test_3(self):

 self.assertEqual(cube.cube(3), 27)

 def test_no_arguments(self):

 with self.assertRaises(TypeError):

 cube.cube()

 def test_exception_str(self):

 with self.assertRaises(TypeError):

 cube.cube('x')

if __name__ == '__main__':

 unittest.main()

This can be executed by executing the file itself:

python test_cube.py -v

test_0 (__main__.TestCube) ... ok

test_1 (__main__.TestCube) ... ok

test_2 (__main__.TestCube) ... ok

test_3 (__main__.TestCube) ... ok

test_exception_str (__main__.TestCube) ... ok

test_no_arguments (__main__.TestCube) ... ok

--

Ran 6 tests in 0.001s

OK

Alternatively, it can be done through the module:

python -m unittest -v test_cube.py

test_0 (test_cube.TestCube) ... ok

test_1 (test_cube.TestCube) ... ok

test_2 (test_cube.TestCube) ... ok

test_3 (test_cube.TestCube) ... ok

test_exception_str (test_cube.TestCube) ... ok

Chapter 10

[277]

test_no_arguments (test_cube.TestCube) ... ok

--

Ran 6 tests in 0.001s

OK

This one is through py.test:

py.test -v test_cube.py

====================== test session starts ======================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1 --
python3.5

cachedir: ../.cache

rootdir: code, inifile: pytest.ini

collected 6 items

test_cube.py::TestCube::test_0 PASSED

test_cube.py::TestCube::test_1 PASSED

test_cube.py::TestCube::test_2 PASSED

test_cube.py::TestCube::test_3 PASSED

test_cube.py::TestCube::test_exception_str PASSED

test_cube.py::TestCube::test_no_arguments PASSED

=================== 6 passed in 0.02 seconds ====================

We even have nose:

nosetests -v test_cube.py

test_0 (test_cube.TestCube) ... ok

test_1 (test_cube.TestCube) ... ok

test_2 (test_cube.TestCube) ... ok

test_3 (test_cube.TestCube) ... ok

test_exception_str (test_cube.TestCube) ... ok

test_no_arguments (test_cube.TestCube) ... ok

--

Ran 6 tests in 0.001s

OK

Testing and Logging – Preparing for Bugs

[278]

As long as all the results are successful, the differences between unittest and
py.test are slim. In the case of unittest and nose, the results are identical. This
time around, however, we are going to break the code to show the difference when it
actually matters. Instead of the cube code, we will add the square code. So returning
n ** 2 instead of n ** 3 from square.

First of all, we have the regular unittest output:

python test_cube.py -v

test_0 (__main__.TestCube) ... ok

test_1 (__main__.TestCube) ... ok

test_2 (__main__.TestCube) ... FAIL

test_3 (__main__.TestCube) ... FAIL

test_exception_str (__main__.TestCube) ... ok

test_no_arguments (__main__.TestCube) ... ok

==

FAIL: test_2 (__main__.TestCube)

--

Traceback (most recent call last):

 File "test_cube.py", line 13, in test_2

 self.assertEqual(cube.cube(2), 8)

AssertionError: 4 != 8

==

FAIL: test_3 (__main__.TestCube)

--

Traceback (most recent call last):

 File "test_cube.py", line 16, in test_3

 self.assertEqual(cube.cube(3), 27)

AssertionError: 9 != 27

--

Ran 6 tests in 0.001s

FAILED (failures=2)

Chapter 10

[279]

Not all that bad, as per each test returns a nice stack trace that includes the values
and everything. Yet, we can observe a small difference here when compared with the
py.test run:

py.test -v test_cube.py

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1 --
python3.5

cachedir: ../.cache

rootdir: code, inifile: pytest.ini

collected 6 items

test_cube.py::TestCube::test_0 PASSED

test_cube.py::TestCube::test_1 PASSED

test_cube.py::TestCube::test_2 FAILED

test_cube.py::TestCube::test_3 FAILED

test_cube.py::TestCube::test_exception_str PASSED

test_cube.py::TestCube::test_no_arguments PASSED

============================= FAILURES =============================

_________________________ TestCube.test_2 __________________________

self = <test_cube.TestCube testMethod=test_2>

 def test_2(self):

> self.assertEqual(cube.cube(2), 8)

E AssertionError: 4 != 8

test_cube.py:13: AssertionError

_________________________ TestCube.test_3 __________________________

self = <test_cube.TestCube testMethod=test_3>

 def test_3(self):

> self.assertEqual(cube.cube(3), 27)

E AssertionError: 9 != 27

test_cube.py:16: AssertionError

================= 2 failed, 4 passed in 0.03 seconds ================

Testing and Logging – Preparing for Bugs

[280]

In small cases such as these, the difference is not all that apparent, but when testing
complicated code with large stack traces, it becomes even more useful. However, for
me personally, seeing the surrounding test code is a big advantage. In the example
that was just discussed, the self.assertEqual(...) line shows the entire test, but
in many other cases, you will need more information. The difference between the
regular unittest module and the py.test module is that you can see the entire
function with all of the code and the output. Later in this chapter, we will see how
powerful this can be when writing more advanced tests.

To truly appreciate the py.test output, we need to enable colors as well. The colors
depend on your local color schemes, of course, but it's useful to see them side by side
at least once, as shown here:

Perhaps you are wondering now, "Is that all?" The only difference between py.test
and unittest is a bit of color and a slightly different output? Well, far from it, there
are many other differences, but this alone is enough reason to give it a try.

The difference between unittest and
py.test tests
The improved output does help a bit, but the combination of improved output and
a much easier way to write tests is what makes py.test so useful. There are quite a
few methods for making the tests simpler and more legible, and in many cases, you
can choose which you prefer. As always, readability counts, so choose wisely and try
not to over-engineer the solutions.

Chapter 10

[281]

Simplifying assertions
Where the unittest library requires the usage of self.assertEqual to compare
variables, py.test uses some magic to allow for simpler tests using regular
assert statements.

The following test file contains both styles of tests, so they can be compared easily:

import cube
import pytest
import unittest

class TestCube(unittest.TestCase):
 def test_0(self):
 self.assertEqual(cube.cube(0), 0)

 def test_1(self):
 self.assertEqual(cube.cube(1), 1)

 def test_2(self):
 self.assertEqual(cube.cube(2), 8)

 def test_3(self):
 self.assertEqual(cube.cube(3), 27)

 def test_no_arguments(self):
 with self.assertRaises(TypeError):
 cube.cube()

 def test_exception_str(self):
 with self.assertRaises(TypeError):
 cube.cube('x')

class TestPyCube(object):
 def test_0(self):
 assert cube.cube(0) == 0

 def test_1(self):
 assert cube.cube(1) == 1

 def test_2(self):
 assert cube.cube(2) == 8

Testing and Logging – Preparing for Bugs

[282]

 def test_3(self):
 assert cube.cube(3) == 27

 def test_no_arguments(self):
 with pytest.raises(TypeError):
 cube.cube()

 def test_exception_str(self):
 with pytest.raises(TypeError):
 cube.cube('x')

So what did we do? Well, we simply replaced self.assertEqual with assert
... == ... and with self.assertRaises with with pytest.raises. A minor
improvement indeed, but the actual benefit is seen in the failure output. The first two
use the unittest style and the latter two use the py.test style:

============================= FAILURES =============================

_________________________ TestCube.test_2 __________________________

self = <test_cube.TestCube testMethod=test_2>

 def test_2(self):

> self.assertEqual(cube.cube(2), 8)

E AssertionError: 4 != 8

test_cube.py:14: AssertionError

_________________________ TestCube.test_3 __________________________

self = <test_cube.TestCube testMethod=test_3>

 def test_3(self):

> self.assertEqual(cube.cube(3), 27)

E AssertionError: 9 != 27

test_cube.py:17: AssertionError

________________________ TestPyCube.test_2 _________________________

self = <test_cube.TestPyCube object at 0x107c7bef0>

Chapter 10

[283]

 def test_2(self):

> assert cube.cube(2) == 8

E assert 4 == 8

E + where 4 = <function cube at 0x107bb7c80>(2)

E + where <function cube at 0x107bb7c80> = cube.cube

test_cube.py:36: AssertionError

________________________ TestPyCube.test_3 _________________________

self = <test_cube.TestPyCube object at 0x107c56a90>

 def test_3(self):

> assert cube.cube(3) == 27

E assert 9 == 27

E + where 9 = <function cube at 0x107bb7c80>(3)

E + where <function cube at 0x107bb7c80> = cube.cube

test_cube.py:39: AssertionError

================ 4 failed, 8 passed in 0.05 seconds ================

Therefore, in addition to seeing the values that were compared, we can actually see
the function that was called and which input parameters it received. With the static
numbers that we have here, it may not be that useful, but it is invaluable when using
variables, as we'll see in the next paragraphs.

The preceding tests are all stored in a class. With py.test,
that's completely optional, however. If readability or inheritance
makes it useful to encapsulate the tests in a class, then feel free to
do so, but as far as py.test is concerned, there is no advantage.

The standard py.test behavior works for most test cases, but it may not be enough
for some custom types. For example, let's say that we have a Spam object with a
count attribute that should be compared with the count attribute on another object.
This part can easily be achieved by implementing the __eq__ method on Spam, but
it does not improve clarity. Since count is the attribute that we compare, it would be
useful if the tests show count when errors are displayed. First is the class with two
tests, one working and one broken to demonstrate the regular output:

test_spam.py

class Spam(object):
 def __init__(self, count):

Testing and Logging – Preparing for Bugs

[284]

 self.count = count

 def __eq__(self, other):
 return self.count == other.count

def test_spam_equal_correct():
 a = Spam(5)
 b = Spam(5)

 assert a == b

def test_spam_equal_broken():
 a = Spam(5)
 b = Spam(10)

 assert a == b

And here is the regular py.test output:

============================= FAILURES =============================

______________________ test_spam_equal_broken ______________________

 def test_spam_equal_broken():

 a = Spam(5)

 b = Spam(10)

> assert a == b

E assert <test_spam.Spam object at 0x105b484e0> == <test_spam.Spam
object at 0x105b48518>

test_spam.py:20: AssertionError

================ 1 failed, 1 passed in 0.01 seconds ================

The default test output is still usable since the function is fairly straightforward, and
the value for count is visible due to it being available in the constructor. However,
it would have been more useful if we could explicitly see the value of count. By
adding a pytest_assertrepr_compare function to the conftest.py file, we can
modify the behavior of the assert statements.

Chapter 10

[285]

That's a special file for py.test that can be used to override
or extend py.test. Note that this file will automatically be
loaded by every test run in that directory, so we need to test
the types of both the left-hand side and the right-hand side of
the operator. In this case, it's a and b.

conftest.py

import test_spam

def pytest_assertrepr_compare(config, op, left, right):
 left_spam = isinstance(left, test_spam.Spam)
 right_spam = isinstance(right, test_spam.Spam)
 if left_spam and right_spam and op == '==':
 return [
 'Comparing Spam instances:',
 ' counts: %s != %s' % (left.count, right.count),
]

The preceding function will be used as the output for our test. So when it fails, this
time we get our own, slightly more useful, output:

============================= FAILURES =============================

______________________ test_spam_equal_broken ______________________

 def test_spam_equal_broken():

 a = Spam(5)

 b = Spam(10)

> assert a == b

E assert Comparing Spam instances:

E counts: 5 != 10

test_spam.py:20: AssertionError

================ 1 failed, 1 passed in 0.01 seconds ================

In this case, we could have easily changed the __repr__ function of Spam as well, but
there are many cases where modifying the py.test output can be useful. Similar to
this, there is specific support for many types, such as sets, dictionaries, and texts.

Testing and Logging – Preparing for Bugs

[286]

Parameterizing tests
So far, we have specified every test separately, but we can simplify tests a lot by
parameterizing them. Both the square and cube tests were very similar; a certain
input gave a certain output. This is something that can easily be verified using
a loop, of course, but using a loop in a test has a pretty big downside. It will be
executed as a single test. This means that it will fail in its entirety if a single test
iteration of the loop fails, and that is a problem. Instead of having an output for
every version, you will get it only once, while they actually might be separate bugs.
That's where parameters help. You can simply create a list of parameters and the
expected data and make it run the test function for every parameter separately:

import cube
import pytest

cubes = (
 (0, 0),
 (1, 1),
 (2, 8),
 (3, 27),
)

@pytest.mark.parametrize('n,expected', cubes)
def test_cube(n, expected):
 assert cube.cube(n) == expected

This outputs the following, as you might have already expected:

============================= FAILURES =============================

__________________________ test_cube[2-8] __________________________

n = 2, expected = 8

 @pytest.mark.parametrize('n,expected', cubes)

 def test_cube(n, expected):

> assert cube.cube(n) == expected

E assert 4 == 8

E + where 4 = <function cube at 0x106576268>(2)

E + where <function cube at 0x106576268> = cube.cube

test_cube.py:15: AssertionError

_________________________ test_cube[3-27] __________________________

Chapter 10

[287]

n = 3, expected = 27

 @pytest.mark.parametrize('n,expected', cubes)

 def test_cube(n, expected):

> assert cube.cube(n) == expected

E assert 9 == 27

E + where 9 = <function cube at 0x106576268>(3)

E + where <function cube at 0x106576268> = cube.cube

test_cube.py:15: AssertionError

================ 2 failed, 2 passed in 0.02 seconds ================

With the parameterized tests, we can see the parameters clearly, which means we
can see all inputs and outputs without any extra effort.

Generating the list of tests dynamically at runtime is also possible with a global
function. Similar to the pytest_assertrepr_compare function that we added
to conftest.py earlier, we can add a pytest_generate_tests function, which
generates tests.

Creating the pytest_generate_tests function can be useful only to test a subset of
options depending on the configuration options. If possible, however, I recommend
trying to configure selective tests using fixtures instead, as they are somewhat more
explicit. The problem with functions such as pytest_generate_tests is that they
are global and don't discriminate between specific tests, resulting in strange behavior
if you are not expecting that.

Automatic arguments using fixtures
The fixture system is one of the most magical features of py.test. It magically
executes a fixture function with the same name as your arguments. Because of this,
the naming of the arguments becomes very important, as they can easily collide
with other fixtures. To prevent collisions, the scope is set to function by default.
However, class, module, and session are also valid options for the scope. There
are several fixtures available by default, some of which you will use often, and
others most likely never. A complete list can always be generated with the following
command:

py.test --quiet --fixtures

cache

 Return a cache object that can persist state between testing
sessions.

 cache.get(key, default)

Testing and Logging – Preparing for Bugs

[288]

 cache.set(key, value)

 Keys must be a ``/`` separated value, where the first part is usually
the

 name of your plugin or application to avoid clashes with other cache
users.

 Values can be any object handled by the json stdlib module.

capsys

 enables capturing of writes to sys.stdout/sys.stderr and makes

 captured output available via ``capsys.readouterr()`` method calls

 which return a ``(out, err)`` tuple.

capfd

 enables capturing of writes to file descriptors 1 and 2 and makes

 captured output available via ``capfd.readouterr()`` method calls

 which return a ``(out, err)`` tuple.

record_xml_property

 Fixture that adds extra xml properties to the tag for the calling
test.

 The fixture is callable with (name, value), with value being
automatically

 xml-encoded.

monkeypatch

 The returned ``monkeypatch`` funcarg provides these

 helper methods to modify objects, dictionaries or os.environ::

 monkeypatch.setattr(obj, name, value, raising=True)

 monkeypatch.delattr(obj, name, raising=True)

 monkeypatch.setitem(mapping, name, value)

 monkeypatch.delitem(obj, name, raising=True)

 monkeypatch.setenv(name, value, prepend=False)

 monkeypatch.delenv(name, value, raising=True)

 monkeypatch.syspath_prepend(path)

 monkeypatch.chdir(path)

 All modifications will be undone after the requesting

 test function has finished. The ``raising``

Chapter 10

[289]

 parameter determines if a KeyError or AttributeError

 will be raised if the set/deletion operation has no target.

pytestconfig

 the pytest config object with access to command line opts.

recwarn

 Return a WarningsRecorder instance that provides these methods:

 * ``pop(category=None)``: return last warning matching the category.

 * ``clear()``: clear list of warnings

 See http://docs.python.org/library/warnings.html for information

 on warning categories.

tmpdir_factory

 Return a TempdirFactory instance for the test session.

tmpdir

 return a temporary directory path object

 which is unique to each test function invocation,

 created as a sub directory of the base temporary

 directory. The returned object is a `py.path.local`_

 path object.

The standard fixtures are quite well documented, but a few examples never hurt. The
next paragraphs demonstrate fixture usage.

Cache
The cache fixture is as simple as it is useful; there is a get function and a set
function, and it remains between sessions. This test, for example, will allow five
executions and raise an error every time after that. While it is not the most useful and
elaborate example, it does show how the cache function works:

def test_cache(cache):
 counter = cache.get('counter', 0)
 assert counter < 5
 cache.set('counter', counter + 1)

The default value (0 in this case) is required for the
cache.get function.

The cache can be cleared through the --cache-clear command-line parameter, and
all caches can be shown through --cache-show.

Testing and Logging – Preparing for Bugs

[290]

Custom fixtures
Bundled fixtures are quite useful, but within most projects, you will need to create your
own fixtures to make things easier. Fixtures make it trivial to repeat code that is needed
more often. You are most likely wondering how this is different from a regular function,
context wrapper, or something else, but the special thing about fixtures is that they
themselves can accept fixtures as well. So, if your function needs the pytestconfig
variables, it can ask for it without needing to modify the calling functions.

The use cases for fixtures strongly depend on the projects, and because of that, it is
difficult to generate a universally useful example, but a theoretical one is of course
an option. The basic premise is simple enough, though: a function with the pytest.
fixture decorator, which returns a value that will be passed along as an argument.
Also, the function can take parameters and fixtures just as any test can. The only
notable variation is pytest.yield_fixture. This fixture variation has one small
difference; the actual test will be executed at the yield (more than one yield results
in errors) and the code before/after functions as setup/teardown code. The most
basic example of a fixture with yield_fixture looks like this:

import pytest

@pytest.yield_fixture
def some_yield_fixture():
 # Before the function
 yield 'some_value_to_pass_as_parameter'
 # After the function

@pytest.fixture
def some_regular_fixture():
 # Do something here
 return 'some_value_to_pass_as_parameter'

These fixtures take no parameters and simply pass a parameter to the py.test
functions. A more useful example would be setting up a database connection and
executing a query in a transaction:

import pytest
import sqlite3

@pytest.fixture(params=[':memory:'])
def connection(request):
 return sqlite3.connect(request.param)

Chapter 10

[291]

@pytest.yield_fixture
def transaction(connection):
 with connection:
 yield connection

def test_insert(transaction):
 transaction.execute('create table test (id integer)')
 transaction.execute('insert into test values (1), (2), (3)')

Naturally, instead of using the :memory: database in sqlite3, we can use a different
database name (or several) as well.

Print statements and logging
Even though print statements are generally not the most optimal way to debug
code, I admit that it is still my default method of debugging. This means that when
running and trying tests, I will include many print statements. However, let's see
what happens when we try this with py.test. Here is the testing code:

import sys
import logging

def test_print():
 print('Printing to stdout')
 print('Printing to stderr', file=sys.stderr)
 logging.debug('Printing to debug')
 logging.info('Printing to info')
 logging.warning('Printing to warning')
 logging.error('Printing to error')

The following is the actual output:

py.test test_print.py -v

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1

cachedir: ../.cache

rootdir: code, inifile: pytest.ini

collected 1 items

test_print.py .

===================== 1 passed in 0.01 seconds =====================

Testing and Logging – Preparing for Bugs

[292]

So, all of our print statements and logging got trashed? Well, not really. In this case,
py.test assumed that it wouldn't be relevant to you, so it ignored the output. But
what about the same test with an error?

import sys
import logging

def test_print():
 print('Printing to stdout')
 print('Printing to stderr', file=sys.stderr)
 logging.debug('Printing to debug')
 logging.info('Printing to info')
 logging.warning('Printing to warning')
 logging.error('Printing to error')
 assert False, 'Dying because we can'

And the output with the error?

============================= FAILURES =============================

____________________________ test_print ____________________________

 def test_print():

 print('Printing to stdout')

 print('Printing to stderr', file=sys.stderr)

 logging.debug('Printing to debug')

 logging.info('Printing to info')

 logging.warning('Printing to warning')

 logging.error('Printing to error')

> assert False, 'Dying because we can'

E AssertionError: Dying because we can

E assert False

test_print.py:12: AssertionError

------------------------ Captured stdout call ------------------------

Printing to stdout

------------------------ Captured stderr call ------------------------

Printing to stderr

WARNING:root:Printing to warning

ERROR:root:Printing to error

===================== 1 failed in 0.01 seconds =====================

Chapter 10

[293]

Wow! Do you see that? The stdout, stderr, and logging with a level of WARNING or
higher do get output now. DEBUG and INFO still won't be visible, but we'll see more
about that later in this chapter, in the logging section.

Plugins
One of the most powerful features of py.test is the plugin system. Within py.test,
nearly everything can be modified using the available hooks, the result of which
is that writing plugins is almost simple. Actually, you already wrote a few plugins
in the previous paragraphs without realizing it. By packaging conftest.py in a
different package or directory, it becomes a py.test plugin. We will explain more
about packaging in Chapter 15, Packaging – Creating Your Own Libraries or Applications.
Generally, it won't be required to write your own plugin because the odds are that
the plugins you seek are already available. A small list of plugins can be found on
the py.test website at https://pytest.org/latest/plugins.html, and a longer
list can be found through the Python package index at https://pypi.python.org/
pypi?%3Aaction=search&term=pytest-.

By default, py.test does cover quite a bit of the desirable features, so you can easily
do without plugins, but within the packages that I write myself, I generally default to
the following list:

•	 pytest-cov

•	 pytest-pep8

•	 pytest-flakes

By using these plugins, it becomes much easier to maintain the code quality of your
project. In order to understand why, we will take a closer look at these packages in
the following paragraphs.

pytest-cov
Using the pytest-cov package, you can see whether your code is properly covered
by tests or not. Internally, it uses the coverage package to detect how much of the
code is being tested. To demonstrate the principle, we will check the coverage of a
cube_root function.

Make sure you have pytest-cov installed:
pip install pytest-cov

https://pytest.org/latest/plugins.html
https://pypi.python.org/pypi?%3Aaction=search&term=pytest-
https://pypi.python.org/pypi?%3Aaction=search&term=pytest-

Testing and Logging – Preparing for Bugs

[294]

First of all, let's create a .coveragerc file with some useful defaults:

[report]
The test coverage you require, keeping to 100% is not easily
possible for all projects but it's a good default for new projects.
fail_under = 100

These functions are generally only needed for debugging and/or
extra safety so we want to ignore them from the coverage
requirements
exclude_lines =
 # Make it possible to ignore blocks of code
 pragma: no cover

 # Generally only debug code uses this
 def __repr__

 # If a debug setting is set, skip testing
 if self\.debug:
 if settings.DEBUG

 # Don't worry about safety checks and expected errors
 raise AssertionError
 raise NotImplementedError

 # This code will probably never run so don't complain about that
 if 0:
 if __name__ == .__main__.:
 @abc.abstractmethod

[run]
Make sure we require that all branches of the code is covered. So
both the if and the else
branch = True

No need to test the testing code
omit =
 test_*.py

Here is the cube_root.py code:

def cube_root(n):
 '''
 Returns the cube root of the input number

Chapter 10

[295]

 Args:
 n (int): The number to cube root

 Returns:
 int: The cube root result
 '''
 if n >= 0:
 return n ** (1/3)
 else:
 raise ValueError('A number larger than 0 was expected')

And the test_cube_root.py code:

import pytest
import cube_root

cubes = (
 (0, 0),
 (1, 1),
 (8, 2),
 (27, 3),
)

@pytest.mark.parametrize('n,expected', cubes)
def test_cube_root(n, expected):
 assert cube_root.cube_root(n) == expected

Now let's see what happens when we run this with the --cov-report=html
parameter:

py.test test_cube_root.py --cov-report=html --cov-report=term-missing
--cov=cube_root.py

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1

rootdir: code, inifile: pytest.ini

plugins: cov-2.2.0

collected 4 items

test_cube_root.py

--------- coverage: platform darwin, python 3.5.1-final-0 ----------

Name Stmts Miss Branch BrPart Cover Missing

Testing and Logging – Preparing for Bugs

[296]

--

cube_root.py 4 1 2 1 67% 14, 11->14

Coverage HTML written to dir htmlcov

Traceback (most recent call last):

...

pytest_cov.plugin.CoverageError: Required test coverage of 100% not
reached. Total coverage: 66.67%

What happened here? It looks like we forgot to test some part of the code: line 14 and
the branch that goes from line 11 to line 14. This output isn't all that readable, and
that's why we specified the HTML output as well:

Perfect! So now we know. We forgot to test for values smaller than 0.

The yellow line indicates that only one part of the branch was executed ((n >= 0)
== True) and not the other ((n >= 0) == False), this occurs with if statements,
loops, and other things where at least one of the branches is not covered. For
example, if a loop over an empty array is an impossible scenario, then the test can be
partially skipped:

pragma: no branch

Chapter 10

[297]

But since we know the problem, that is, the missing test for ValueError, let's add the
test case:

import cube
import pytest

cubes = (
 (0, 0),
 (1, 1),
 (2, 8),
 (3, 27),
)

@pytest.mark.parametrize('n,expected', cubes)
def test_cube(n, expected):
 assert cube.cube(n) == expected

def test_cube_root_below_zero():
 with pytest.raises(ValueError):
 cube_root.cube_root(-1)

Then we run the test again:

py.test test_cube_root.py --cov-report=html --cov-report=term-missing
--cov=cube_root.py

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1

rootdir: code, inifile: pytest.ini

plugins: cov-2.2.0

collected 5 items

test_cube_root.py

---------- coverage: platform darwin, python 3.5.1-final-0 -----------

Name Stmts Miss Branch BrPart Cover Missing

--

cube_root.py 4 0 2 0 100%

Coverage HTML written to dir htmlcov

===================== 5 passed in 0.03 seconds =====================

Testing and Logging – Preparing for Bugs

[298]

Perfect! 100% coverage without a problem, and the HTML output is also exactly
what we expect:

But what if the code was slightly different? Instead of raising a ValueError for
values below 0, what if we just raise a NotImplementedError?

def cube_root(n):
 '''
 Returns the cube root of the input number

 Args:
 n (int): The number to cube root

 Returns:
 int: The cube root result
 '''
 if n >= 0:
 return n ** (1 / 3)
 else:
 raise NotImplementedError(
 'A number larger than 0 was expected')

Chapter 10

[299]

And remove the extra test as well:

import cube_root
import pytest

cubes = (
 (0, 0),
 (1, 1),
 (8, 2),
 (27, 3),
)

@pytest.mark.parametrize('n,expected', cubes)
def test_cube_root(n, expected):
 assert cube_root.cube_root(n) == expected

Run the test again:

py.test test_cube_root.py --cov-report=html --cov-report=term-missing
--cov=cube_root.py

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1

rootdir: code, inifile: pytest.ini

plugins: cov-2.2.0

collected 4 items

test_cube_root.py

---------- coverage: platform darwin, python 3.5.1-final-0 -----------

Name Stmts Miss Branch BrPart Cover Missing

--

cube_root.py 3 0 0 0 100%

Coverage HTML written to dir htmlcov

===================== 4 passed in 0.03 seconds =====================

Testing and Logging – Preparing for Bugs

[300]

You might wonder why we get 100% test coverage now though we actually
didn't cover NotImplementedError. This is because we added raise
NotImplementedError to the ignore list in the .coveragerc file. This also
gives us a different result in the HTML output:

Even if we add the test for NotImplementedError in the test file, the coverage report
will still ignore the line.

pytest-pep8 and pytest-flakes
Pyflakes and pep8 are code quality testing tools that are very useful for making your
code readable and pep8 compliant. The pytest-pep8 and pytest-flakes modules
automatically execute these checks before running the actual tests. To install them,
simply execute this line:

pip install pytest-flakes pytest-pep8

After that, you'll be able to run both of them like this:

py.test --flakes --pep8 cube_root.py

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1

rootdir: code, inifile: pytest.ini

plugins: cov-2.2.0, flakes-1.0.1, pep8-1.0.6

Chapter 10

[301]

collected 2 items

cube_root.py ..

===================== 2 passed in 0.01 seconds =====================

Configuring plugins
To make sure that all the plugins get executed and to configure them, simply add the
settings to the pytest.ini file. The following example can be a reasonable default
for development, but for production releases, you will probably want to care of the
UnusedImport warnings.

pytest.ini:

[pytest]
python_files =
 your_project_source/*.py
 tests/*.py

addopts =
 --doctest-modules
 --cov your_project_source
 --cov-report term-missing
 --cov-report html
 --pep8
 --flakes

W391 is the error about blank lines at the end of a file
pep8ignore =
 *.py W391

Ignore unused imports
flakes-ignore =
 *.py UnusedImport

When debugging to find out why a test is failing, it can be
useful to simply look at the first test that fails. The py.test
module offers both a -x flag to stop after the first failure and
--maxfail=n to stop after n failures.

Testing and Logging – Preparing for Bugs

[302]

Mock objects
When writing tests, this regularly occurs: you are testing not only your own code but
also the interaction with external resources, such as hardware, databases, web hosts,
servers, and others. Some of these can be run safely, but certain tests are too slow, too
dangerous, or even impossible to run. In those cases, mock objects are your friends;
they can be used to fake anything, so you can be certain that your code still returns
the expected results without having any variation from external factors.

Using unittest.mock
The unittest.mock library provides two base objects, Mock and MagicMock, to
easily mock any external resources. The Mock object is just a general generic mock
object and MagicMock is mostly the same, but it has all the magic methods such as
__contains__ and __len__ defined. In addition to this, it can make your life even
easier. This is because in addition to creating mock objects manually, it is possible to
patch objects directly using the patch decorator/context manager.

The following function uses random to return True or False given governed by a
certain probability distribution. Due to the random nature of a function like this, it is
notoriously difficult to test, but not with unittest.mock. With the use of unittest.
mock, it's easy to get repeatable results:

from unittest import mock
import random

def bernoulli(p):
 return random.random() > p

@mock.patch('random.random')
def test_bernoulli(mock_random):
 # Test for random value of 0.1
 mock_random.return_value = 0.1
 assert bernoulli(0.0)
 assert not bernoulli(0.1)
 assert mock_random.call_count == 2

Chapter 10

[303]

Wonderful, isn't it? Without having to modify the original code, we can make
sure that random.random now returns 0.1 instead of some random number. For
completeness, the version that uses a context manager is given here:

from unittest import mock
import random

def bernoulli(p):
 return random.random() > p

def test_bernoulli():
 with mock.patch('random.random') as mock_random:
 mock_random.return_value = 0.1
 assert bernoulli(0.0)
 assert not bernoulli(0.1)
 assert mock_random.call_count == 2

The possibilities with mock objects are nearly endless. They vary from raising
exceptions on access to faking entire APIs and returning different results on multiple
calls. For example, let's fake deleting a file:

import os
from unittest import mock

def delete_file(filename):
 while os.path.exists(filename):
 os.unlink(filename)

@mock.patch('os.path.exists', side_effect=(True, False, False))
@mock.patch('os.unlink')
def test_delete_file(mock_exists, mock_unlink):
 # First try:
 delete_file('some non-existing file')

 # Second try:
 delete_file('some non-existing file')

Quite a bit of magic in this example! The side_effect parameter tells mock to
return those values in that sequence, making sure that the first call to os.path.
exists returns True and the other two return False. The mock.patch without
arguments simply returns a callable that does nothing.

Testing and Logging – Preparing for Bugs

[304]

Using py.test monkeypatch
The monkeypatch object in py.test is a fixture that allows mocking as well. While
it may seem useless after seeing the possibilities with unittest.mock, in summary,
it's not. Some of the functionality does overlap, but while unittest.mock focuses on
controlling and recording the actions of an object, the monkeypatch fixture focuses
on simple and temporary environmental changes. Some examples of these are given
in the following list:

•	 Setting and deleting attributes using monkeypatch.setattr and
monkeypatch.delattr

•	 Setting and deleting dictionary items using monkeypatch.setitem and
monkeypatch.delitem

•	 Setting and deleting environment variables using monkeypatch.setenv and
monkeypatch.delenv

•	 Inserting an extra path to sys.path before all others using monkeypatch.
syspath_prepend

•	 Changing the directory using monkeypatch.chdir

To undo all modifications, simply use monkeypatch.undo.

For example, let's say that for a certain test, we need to work from a different
directory. With mock, your options would be to mock pretty much all file functions,
including the os.path functions, and even in that case, you will probably forget
about a few. So, it's definitely not useful in this case. Another option would be to put
the entire test into a try…finally block and just do an os.chdir before and after the
testing code. This is quite a good and safe solution, but it's a bit of extra work, so let's
compare the two methods:

import os

def test_chdir_monkeypatch(monkeypatch):
 monkeypatch.chdir('/dev')
 assert os.getcwd() == '/dev'
 monkeypatch.chdir('/')
 assert os.getcwd() == '/'

def test_chdir():
 original_directory = os.getcwd()
 try:
 os.chdir('/dev')

Chapter 10

[305]

 assert os.getcwd() == '/dev'
 os.chdir('/')
 assert os.getcwd() == '/'
 finally:
 os.chdir(original_directory)

They effectively do the same, but one needs four lines of code whereas the other
needs eight. All of these can easily be worked around with a few extra lines of code,
of course, but the simpler the code is, the fewer mistakes you can make and the more
readable it is.

Logging
The Python logging module is one of those modules that are extremely useful, but it
tends to be very difficult to use correctly. The result is often that people just disable
logging completely and use print statements instead. This is insightful but a waste of
the very extensive logging system in Python. If you've written Java code before, you
might be familiar with the Log4j Java library. The Python logging module is largely
and primarily based on that library.

The most important objects of the logging module are the following:

•	 Logger: the actual logging interface
•	 Handler: This processes the log statements and outputs them
•	 Formatter: This formats the input data into a string
•	 Filter: This allows filtering of certain messages

Within these objects, you can set the logging levels to one of the default levels:

•	 CRITICAL: 50

•	 ERROR: 40

•	 WARNING: 30

•	 INFO: 20

•	 DEBUG: 10

•	 NOTSET: 0

The numbers are the numeric values of these log levels. While you can generally
ignore them, the order is obviously important while setting the minimum level. Also,
when defining custom levels, you will have to overwrite existing levels if they have
the same numeric value.

Testing and Logging – Preparing for Bugs

[306]

Configuration
There are several ways to configure the logging system, ranging from pure code to
JSON files or even remote configuration. The examples will use parts of the logging
module later discussed in this chapter, but the usage of the config system is all
that matters here. If you are not interested in the internal workings of the logging
module, you should be able to get by with just this paragraph of the logging section.

Basic logging configuration
The most basic logging configuration is, of course, no configuration, but that will not
get you much useful output:

import logging

logging.debug('debug')
logging.info('info')
logging.warning('warning')
logging.error('error')
logging.critical('critical')

With the default log level, you will only see a warning and up:

python log.py

WARNING:root:warning

ERROR:root:error

CRITICAL:root:critical

A quick and easy start for a configuration is basicConfig. I recommend using this if
you just need some quick logging for a script you're writing, but not for a full-blown
application. While you can configure pretty much anything you wish, once you get
a more complicated setup, there are usually more convenient options. We will talk
more about that in later paragraphs, but first, we have a basicConfig that configures
our logger to display some more information, including the logger name:

import logging

log_format = (
 '[%(asctime)s] %(levelname)-8s %(name)-12s %(message)s')

logging.basicConfig(
 filename='debug.log',
 format=log_format,
 level=logging.DEBUG,
)

Chapter 10

[307]

formatter = logging.Formatter(log_format)
handler = logging.StreamHandler()
handler.setLevel(logging.WARNING)
handler.setFormatter(formatter)
logging.getLogger().addHandler(handler)

We test the code:

logging.debug('debug')
logging.info('info')
some_logger = logging.getLogger('some')
some_logger.warning('warning')
some_logger.error('error')
other_logger = some_logger.getChild('other')
other_logger.critical('critical')

This will give us the following output on our screen:

python log.py

[2015-12-02 15:56:19,449] WARNING some warning

[2015-12-02 15:56:19,449] ERROR some error

[2015-12-02 15:56:19,449] CRITICAL some.other critical

And here is the output in the debug.log file:

[2015-12-02 15:56:19,449] DEBUG root debug
[2015-12-02 15:56:19,449] INFO root info
[2015-12-02 15:56:19,449] WARNING some warning
[2015-12-02 15:56:19,449] ERROR some error
[2015-12-02 15:56:19,449] CRITICAL some.other critical

This configuration shows how log outputs can be configured with separate
configurations, log levels, and, if you choose so, formatting. It tends to become
unreadable though, which is why it's usually a better idea to use basicConfig only
for simple configurations that don't involve multiple handlers.

Dictionary configuration
The dictconfig makes it possible to name all parts so that they can be reused easily,
for example, a single formatter for multiple loggers and handlers. So let's rewrite our
previous configuration using dictconfig:

from logging import config

config.dictConfig({
 'version': 1,

Testing and Logging – Preparing for Bugs

[308]

 'formatters': {
 'standard': {
 'format': '[%(asctime)s] %(levelname)-8s '
 '%(name)-12s %(message)s',
 },
 },
 'handlers': {
 'file': {
 'filename': 'debug.log',
 'level': 'DEBUG',
 'class': 'logging.FileHandler',
 'formatter': 'standard',
 },
 'stream': {
 'level': 'WARNING',
 'class': 'logging.StreamHandler',
 'formatter': 'standard',
 },
 },
 'loggers': {
 '': {
 'handlers': ['file', 'stream'],
 'level': 'DEBUG',
 },
 },
})

The nice thing about the dictionary configuration is that it's very easy to extend
and/or overwrite the logging configuration. For example, if you want to change the
formatter for all of your logging, you can simply change the standard formatter or
even loop through handlers.

JSON configuration
Since dictconfig takes any type of dictionary, it is actually quite simple to implement
a different type of reader employing JSON or YAML files. This is especially useful
as they tend to be a bit friendlier towards non-Python programmers. As opposed to
Python files, they are easily readable and writable from outside of Python.

Let's assume that we have a log_config.json file such as the following:

{
 "version": 1,
 "formatters": {
 "standard": {
 "format": "[%(asctime)s] %(levelname)-8s %(name)-12s
%(message)s"

Chapter 10

[309]

 }
 },
 "handlers": {
 "file": {
 "filename": "debug.log",
 "level": "DEBUG",
 "class": "logging.FileHandler",
 "formatter": "standard"
 },
 "stream": {
 "level": "WARNING",
 "class": "logging.StreamHandler",
 "formatter": "standard"
 }
 },
 "loggers": {
 "": {
 "handlers": ["file", "stream"],
 "level": "DEBUG"
 }
 }
}

We can simply use this code to read the config:

import json
from logging import config

with open('log_config.json') as fh:
 config.dictConfig(json.load(fh))

Ini file configuration
The file configuration is probably the most readable format for non-programmers.
It uses the ini-style configuration format and uses the configparser module
internally. The downside is that it is perhaps a little verbose, but it is clear enough
and makes it easy to combine several configuration files without us having to worry
too much about overwriting other configurations. Having said that, if dictConfig is
an option, then it is most likely a better option. This is because fileConfig is slightly
limited and awkward at times. Just look at the handlers as an example:

[formatters]
keys=standard

[handlers]

Testing and Logging – Preparing for Bugs

[310]

keys=file,stream

[loggers]
keys=root

[formatter_standard]
format=[%(asctime)s] %(levelname)-8s %(name)-12s %(message)s

[handler_file]
level=DEBUG
class=FileHandler
formatter=standard
args=('debug.log',)

[handler_stream]
level=WARNING
class=StreamHandler
formatter=standard
args=(sys.stderr,)

[logger_root]
handlers=file,stream
level=DEBUG

Reading the files is extremely easy though:

from logging import config

config.fileConfig('log_config.ini')

One thing to make note of, however, is that if you look carefully, you will see that
this config is slightly different from the other configs. With fileConfig you can't
just use keyword arguments alone. The args is required for both FileHandler and
StreamHandler.

The network configuration
The network configuration is both very convenient and a bit dangerous, because it
allows you to configure your logger on the fly while your application/script is still
running. The dangerous part is that the config is (partially) read by using the eval
function, which allows people to potentially execute code within your application
remotely. Even though logging.config.listen only listens to local connections, it
can still be dangerous if you execute the code on a shared/unsafe host.

Chapter 10

[311]

Luckily, since version Python 3.4, it is possible to add a verify parameter, which
is a function that will be executed to convert the input into the output. The default
is obviously something along the lines of lambda config: config, but it can be
configured to return just about anything.

To prove this point through an example, we need two scripts. One script will
continuously print a few messages to the loggers and the other will change the
logging configuration. We will start with the same test code that we had before but
keep it running in an endless loop with a sleep in between:

import time
import logging
from logging import config

listener = config.listen()
listener.start()

try:
 while True:
 logging.debug('debug')
 logging.info('info')
 some_logger = logging.getLogger('some')
 some_logger.warning('warning')
 some_logger.error('error')
 other_logger = some_logger.getChild('other')
 other_logger.critical('critical')

 time.sleep(5)

except KeyboardInterrupt:
 # Stop listening and finish the listening thread
 logging.config.stopListening()
 listener.join()

Now comes the code that will send the configuration file:

import struct
import socket
from logging import config

with open('log_config.ini') as fh:
 data = fh.read()

Open the socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Testing and Logging – Preparing for Bugs

[312]

Connect to the server
sock.connect(('127.0.0.1', config.DEFAULT_LOGGING_CONFIG_PORT))
Send the magic logging packet
sock.send(struct.pack('>L', len(data)))
Send the config
sock.send(data)
And close the connection again
sock.close()

Next, let's see the output. After the first execution of the loop, we will execute the
second script to read the logging configuration:

python log_networkconfig.py

WARNING:some:warning

ERROR:some:error

CRITICAL:some.other:critical

You might be wondering where the rest of the output is. There is none.
The debug.log file has been filled with messages like these, however:

[2015-12-03 12:32:38,894] DEBUG root debug
[2015-12-03 12:32:38,894] INFO root info

So what happened? This is where we see the pitfalls of custom loggers and
configuration after using the loggers. The logging.config.listen function will
modify the root logger as requested, but since the other loggers (some and some.
other) weren't specified, they weren't modified. We modify the configuration to
include them, as follows:

[formatters]
keys=standard

[handlers]
keys=file,stream

[loggers]
keys=root,some

[formatter_standard]
format=[%(asctime)s] %(levelname)-8s %(name)-12s %(message)s

[handler_file]
level=DEBUG
class=FileHandler
formatter=standard

Chapter 10

[313]

args=('debug.log',)

[handler_stream]
level=WARNING
class=StreamHandler
formatter=standard
args=(sys.stderr,)

[logger_root]
handlers=file,stream
level=DEBUG

[logger_some]
level=DEBUG
qualname=some
handlers=

Now it works as expected:

python log_networkconfig.py

WARNING:some:warning

ERROR:some:error

CRITICAL:some.other:critical

[2015-12-03 12:42:05,621] WARNING some warning

[2015-12-03 12:42:05,622] ERROR some error

[2015-12-03 12:42:05,622] CRITICAL some.other critical

You will probably notice that we didn't add any handlers to the some logger.
That's because the handler is already present—at the root level. However, without
manually telling the logging module that the logger is there, it won't send it to the
handler anymore. This is not problematic generally, but it's a dangerous pitfall when
modifying logging configurations at runtime.

An alternative way to configure it without having this propagation issue is by
disabling propagation altogether, but that will create an entirely new logger and
will forget any configuration added to the root. So, if you have a handler for the
error level at the root that gets sent to your error reporting system, it won't arrive
anymore. In this case, however, the config is slightly clearer:

[logger_some]
handlers=file,stream
level=DEBUG
qualname=some
propagate=0

Testing and Logging – Preparing for Bugs

[314]

Logger
The main object that you will be using all the time with the logging module is the
Logger object. This object contains all the APIs that you will need to do the actual
logging. Most are simple enough but some require attention.

First of all, loggers inherit the parent settings by default. As we have seen previously
with the propagate setting, by default, all settings will propagate from the parent.
This is really useful when incorporating loggers within your files. Assuming your
modules are using sane names and import paths, I recommend the following style of
naming your loggers:

import logging

logger = logging.getLogger(__name__)

class Spam(object):
 def __init__(self, count):
 self.logger = logger.getChild(self.__class__.__name__)

By using this style, your loggers will get names such as main_module.sub_module.
ClassName. Not only does this make your logs easier to read, but also it is easily
possible to enable or disable logging per module with the propagation of log settings.
To create a new log file that logs everything from main_module.sub_module, we can
simply do this:

import logging

logger = logging.getLogger('main_module.sub_module')
logger.addHandler(logging.FileHandler('sub_module.log'))

Alternatively, you can configure it using your chosen configuration option, of course.
The relevant point is that with sub-loggers, you have very fine-grained control over
your loggers.

This includes increasing the log level:

import logging

logger = logging.getLogger('main_module.sub_module')
logger.setLevel(logging.DEBUG)

Chapter 10

[315]

Usage
The usage of the Logger object is mostly identical to that of the bare logging
module, but Logger actually supports a bit more. This is because the bare logging
module just calls the functions on the root logger. It has a few very useful properties,
although most of these are undocumented in the library:

•	 Propagate: Whether to pass events to this logger or to the handlers of the
parent loggers. Without this, a log message to main_module.sub_module
won't be logged by main_module.
The handle method will keep looking for parent handlers as long as those
loggers have propagate set to true, which is the default.

•	 Filters: These are the filters attached to the logger. They can be added
through addFilter and removeFilter, To see whether a message will be
filtered, the filter method can be used.

•	 Disabled: By setting this property, it's possible to disable a certain logger.
The regular API only allows disabling of all loggers below a certain level.
This offers some fine-grained control.

•	 Handlers: These are the handlers attached to the logger. They can be added
through addHandler and removeHandler. The existence of any (inherited)
handlers can be checked through the hasHandlers function.

•	 Level: This is really an internal one as it simply has a numeric value and not
a name. But beyond that, it doesn't take inheritance into account, so it's better
to avoid the property and use the getEffectiveLevel function instead. To
check whether the setting is enabled for a DEBUG for example, you can simply
do logger.isEnabledFor(logging.DEBUG). Setting the property is possible
through the setLevel function, of course.

•	 Name: As this property's name says, it is very useful for your own reference,
of course.

Now that you know about the properties, it is time to discuss the logging functions
themselves. The functions you will use most often are the log, debug, info, warning,
error, and critical log functions. They can be used quite simply, but they support
string formatting as well, which is very useful:

import logging

logger = logging.getLogger()
exception = 'Oops...'
logger.error('Some horrible error: %r', exception)

Testing and Logging – Preparing for Bugs

[316]

You might wonder why we don't simply use the regular string formatting with %
or string.format instead. The reason is that when parameters are used instead of
preformatted strings, the handler gets them as parameters. The result is that you
can group log messages by the original string, which is what tools such as sentry
(https://github.com/getsentry/sentry) use.

There is more to it, however. In terms of parameters, *args are only for string
formatting, but it's possible to add extra parameters to a log object using the extra
keyword parameter:

import logging

logger = logging.getLogger()
logger.error('simple error', extra=dict(spam='some spam'))

These extra parameters can be used in the logging formatter to display extra
information just like the standard formatting options:

import logging

logging.basicConfig(format='%(spam)s: %(message)s')
logger = logging.getLogger()
logger.error('the message', extra=dict(spam='some spam'))

This results in the following:

python test_spam.py

some spam: the message

However, one of the most useful features is the support for exceptions:

import logging

logger = logging.getLogger()

try:
 raise RuntimeError('Not enough spam')
except:
 logger.exception('Got an exception')

logger.error('And an error')

https://github.com/getsentry/sentry

Chapter 10

[317]

This results in a stack trace for the exception, but it will not kill the code:

python test_spam.py

Got an exception

Traceback (most recent call last):

 File "test_spam.py", line 6, in <module>

 raise RuntimeError('Not enough spam')

RuntimeError: Not enough spam

And an error

Summary
This chapter showed us how to write doctests, make use of the shortcuts
provided by py.test, and use the logging module. With testing, there is never a
one-size-fits-all solution. While the doctest system is very useful in many cases for
providing both documentation and tests at the same time, in many functions, there
are edge cases that simply don't matter for documentation, but still need to be tested.
This is where regular unit tests come in and where py.test helps a lot.

Because the py.test library is always evolving, this chapter cannot fully cover
everything you will need, but it should provide you with enough of a basis to be able
to use it effectively and extend it where needed.

The logging module is extremely useful but it's also a pain if configured incorrectly.
Unfortunately, the right configuration can be a bit obscure when multiple modules
are trying to configure logging simultaneously. The usage of the logging system
should be clear enough for most of the common use cases now, and as long as you
keep the propagate parameter in check, you should be fine when implementing a
logging system.

Next up is debugging, where testing helps prevent bugs. We will see how to solve
them effectively. In addition, the logging that we added in this chapter will help a lot
in that area.

[319]

Debugging – Solving
the Bugs

The previous chapter showed you how to add logging and tests to your code, but no
matter how many tests you have, you will always have bugs. The biggest problem is
always user input, as it is simply impossible to test all possible inputs, implying that
at one point, we will need to debug the code.

There are many debugging techniques, and most certainly, you have already used
a few of them. Within this chapter, we are going to focus on print/trace debugging
and interactive debugging.

Debugging using print statements, stack traces, and logging is one of the most
versatile methods to work with, and it is most likely the first type of debugging
you've ever used. Even a print 'Hello world' can be considered this type, as the
output will show you that your code is being executed correctly. There is obviously
no point in explaining how and where to place print statements to debug your code,
but there are quite a few nice tricks using decorators and other Python modules that
render this type of debugging a lot more useful, such as faulthandler.

Interactive debugging is a more complicated debugging method. It allows you to
debug a program while it's still running. Using this method, it's even possible to
change variables while the application is running and pause the application at any
point desired. The downside is that it requires some knowledge about the debugger
commands to be really useful.

To summarize, we will cover the following topics:

•	 Debugging using print, trace, logging, and faulthandler
•	 Interactive debugging using pdb

Debugging – Solving the Bugs

[320]

Non-interactive debugging
The most basic form of debugging is adding a simple print statement into your code
to see what is still working and what isn't. This is useful in a variety of cases and likely
to help solve most of your issues. Later in this chapter, we will show some interactive
debugging methods, but those are not always suitable. Interactive debugging tends
to become difficult or even impossible in multithreaded environments, while on a
closed-off remote server, you might need a different solution as well. Both methods
have their merits, but I personally opt for non-interactive debugging 90% of the time
since a simple print/log statement is usually enough to analyze the cause of a problem.

A basic example of this (I've been known to do similar) with a generator can be
as follows:

>>> def spam_generator():

... print('a')

... yield 'spam'

... print('b')

... yield 'spam!'

... print('c')

... yield 'SPAM!'

... print('d')

>>> generator = spam_generator()

>>> next(generator)

a

'spam'

>>> next(generator)

b

'spam!'

This shows exactly where the code does, and consequently, does not reach. Without
this example, you might have expected the first print to come immediately after the
spam_generator() call, since it's a generator. However, the execution completely
stalls until we yield an item. Assuming you would have some setup code before the
first yield, it won't run until next is actually called.

Chapter 11

[321]

Although this is one of the simplest ways to debug functions using print statements,
it's definitely not the best way. We can start by making an auto-print function that
automatically increments the letter:

>>> import string

>>> def print_character():

... i = 0

... while True:

... print('Letter: %r' % string.ascii_letters[i])

... i = (i + 1) % len(string.ascii_letters)

... yield

>>> # Always initialize

>>> print_character = print_character()

>>> next(print_character)

Letter: 'a'

>>> next(print_character)

Letter: 'b'

>>> next(print_character)

Letter: 'c'

While the print statement generator is slightly better than bare print statements,
it doesn't help that much yet. It would be much more useful to see which lines
were actually executed while running the code. We can do this manually using
inspect.currentframe, but there is no need for hacking. Python has you covered
with some dedicated tools.

Inspecting your script using trace
Simple print statements are useful in a lot of cases since you can easily incorporate
print statements in nearly every application. It does not matter whether it's remote or
local, threaded or using multiprocessing. It works almost everywhere, making it the
most universal solution available, in addition to logging that is. The general solution
is often not the best solution, however. There are better solutions available for the
most common scenarios. One of them is the trace module. It offers you a way to
trace every execution, relationships between functions, and a few others.

Debugging – Solving the Bugs

[322]

To demonstrate, we will use our previous code but without print statements:

def eggs_generator():
 yield 'eggs'
 yield 'EGGS!'

def spam_generator():
 yield 'spam'
 yield 'spam!'
 yield 'SPAM!'

generator = spam_generator()
print(next(generator))
print(next(generator))

generator = eggs_generator()
print(next(generator))

We will execute it with the trace module:

python3 -m trace --trace --timing tracing.py

 --- modulename: tracing, funcname: <module>

0.00 tracing.py(1): def eggs_generator():

0.00 tracing.py(6): def spam_generator():

0.00 tracing.py(11): generator = spam_generator()

0.00 tracing.py(12): print(next(generator))

 --- modulename: tracing, funcname: spam_generator

0.00 tracing.py(7): yield 'spam'

spam

0.00 tracing.py(13): print(next(generator))

 --- modulename: tracing, funcname: spam_generator

0.00 tracing.py(8): yield 'spam!'

spam!

0.00 tracing.py(15): generator = eggs_generator()

 --- modulename: tracing, funcname: spam_generator

0.00 tracing.py(16): print(next(generator))

 --- modulename: tracing, funcname: eggs_generator

0.00 tracing.py(2): yield 'eggs'

eggs

 --- modulename: trace, funcname: _unsettrace

0.00 trace.py(77): sys.settrace(None)

Chapter 11

[323]

Quite nice, isn't it? It shows you exactly which line is being executed with function
names and, more importantly, which line was caused by which statement (or
statements). Additionally, it shows you at what time it was executed relative to the
start time of the program. This is due to the --timing flag.

As you might expect, this output is a bit too verbose to be universally useful. In
spite of the fact that you can opt to ignore specific modules and directories by using
command-line parameters, it is still too verbose in many cases. So let's go for the next
solution—a context manager. The preceding output has already revealed some of the
trace internals. The last line shows a sys.settrace call, which is exactly what we
need for manual tracing:

import- sys
import trace as trace_module
import contextlib

@contextlib.contextmanager
def trace(count=False, trace=True, timing=True):
 tracer = trace_module.Trace(
 count=count, trace=trace, timing=timing)
 sys.settrace(tracer.globaltrace)
 yield tracer
 sys.settrace(None)

 result = tracer.results()
 result.write_results(show_missing=False, summary=True)

def eggs_generator():
 yield 'eggs'
 yield 'EGGS!'

def spam_generator():
 yield 'spam'
 yield 'spam!'
 yield 'SPAM!'

with trace():
 generator = spam_generator()
 print(next(generator))
 print(next(generator))

generator = eggs_generator()
print(next(generator))

Debugging – Solving the Bugs

[324]

When executed as a regular Python file, this returns:

python3 tracing.py

 --- modulename: tracing, funcname: spam_generator

0.00 tracing.py(24): yield 'spam'

spam

 --- modulename: tracing, funcname: spam_generator

0.00 tracing.py(25): yield 'spam!'

spam!

 --- modulename: contextlib, funcname: __exit__

0.00 contextlib.py(64): if type is None:

0.00 contextlib.py(65): try:

0.00 contextlib.py(66): next(self.gen)

 --- modulename: tracing, funcname: trace

0.00 tracing.py(12): sys.settrace(None)

This code immediately reveals what the trace code does internally as well: it uses
sys.settrace to tell the Python interpreter where to send every statement that is
being executed. Given this, it's obviously trivial to write the function as a decorator,
but I'll leave that as an exercise to you if you need it.

Another take-away from this is that you can easily add extra filters to your trace
function by wrapping tracer.globaltrace. The function takes the following
parameters (from the standard Python documentation):

Parameter Description
Call A function is called (or some other code block entered). The global trace

function is called; arg is None. The return value specifies the local trace
function.

Line The interpreter is about to execute a new line of code or re-execute
the condition of a loop. The local trace function is called; arg is None.
The return value specifies the new local trace function. See Objects/
lnotab_notes.txt for a detailed explanation of how this works.

return A function (or another code block) is about to return. The local trace
function is called; arg is the value that will be returned or None if the
event is caused by an exception being raised. The trace function's return
value is ignored.

exception This means an exception has occurred. The local trace function is called;
arg is a tuple (exception, value, traceback). The return value
specifies the new local trace function.

Chapter 11

[325]

Parameter Description
c_call A C function is about to be called. This may be an extension function or a

built-in function. The arg is the C function object.
c_return A C function has returned, and arg is the C function object.
c_exception A C function has raised an exception, and arg is the C function object.

As you must have expected, with a simple filter function, you can easily make sure
that only specific functions will be returned, instead of the long list you would
normally get. You really shouldn't underestimate the amount of data generated by
tracing code with a few imports. The preceding context manager code gives over 300
lines of output.

Debugging using logging
In Chapter 10, Testing and Logging – Preparing for Bugs, our chapter about testing
and logging, we saw how to create custom loggers, set the levels for them, and add
handlers to specific levels. We are going to use the logging.DEBUG level to log now,
which is nothing special by itself, but with a few decorators, we can add some very
useful debug-only code.

Whenever I'm debugging, I always find it very useful to know the input and output
for a function. The basic version with a decorator is simple enough to write; just print
the args and kwargs and you are done. The following example goes a little further.
By using the inspect module, we can retrieve the default arguments as well, making
it possible to show all arguments with the argument names and values in all cases,
even if the argument was not specified:

import pprint
import inspect
import logging
import functools

logging.basicConfig(level=logging.DEBUG)

def debug(function):
 @functools.wraps(function)
 def _debug(*args, **kwargs):
 try:
 result = function(*args, **kwargs)
 finally:
 # Extract the signature from the function
 signature = inspect.signature(function)

Debugging – Solving the Bugs

[326]

 # Fill the arguments
 arguments = signature.bind(*args, **kwargs)
 # NOTE: This only works for Python 3.5 and up!
 arguments.apply_defaults()

 logging.debug('%s(%s): %s' % (
 function.__qualname__,
 ', '.join('%s=%r' % (k, v) for k, v in
 arguments.arguments.items()),
 pprint.pformat(result),
))

 return _debug

@debug
def spam(a, b=123):
 return 'some spam'

spam(1)
spam(1, 456)
spam(b=1, a=456)

The following output is returned:

python3 logged.py

DEBUG:root:spam(a=1, b=123): 'some spam'

DEBUG:root:spam(a=1, b=456): 'some spam'

DEBUG:root:spam(a=456, b=1): 'some spam'

Very nice of course, as we have a clear sight of when the function is called, which
parameters were used, and what is returned. However, this is something you will
probably only execute when you are actively debugging your code. You can also
make the regular logging.debug statements in your code quite a bit more useful by
adding a debug-specific logger, which shows more information. Simply replace the
logging config of the preceding example with this:

import logging

log_format = (
 '[%(relativeCreated)d %(levelname)s] '
 '%(pathname)s:%(lineno)d:%(funcName)s: %(message)s'
)
logging.basicConfig(level=logging.DEBUG, format=log_format)

Chapter 11

[327]

Then your result will be something like this:

time python3 logged.py

[0 DEBUG] logged.py:31:_debug: spam(a=1, b=123): 'some spam'

[0 DEBUG] logged.py:31:_debug: spam(a=1, b=456): 'some spam'

[0 DEBUG] logged.py:31:_debug: spam(a=456, b=1): 'some spam'

python3 logged.py 0.04s user 0.01s system 96% cpu 0.048 total

It shows the time relative to the start of the application in milliseconds and the
log level. This is followed by an identification block that shows the filename, line
number, and function name that originated the logs. Of course, there is a message
at the end.

Showing call stack without exceptions
When looking at how and why a piece of code is being run, it's often useful to see the
entire stack trace. Simply raising an exception is, of course, an option. However, that
will kill the current code execution, which is generally not something we are looking
for. This is where the traceback module comes in handy. With just a few simple
lines, we get a full (or limited, if you prefer) stack list:

import traceback

class Spam(object):

 def run(self):
 print('Before stack print')
 traceback.print_stack()
 print('After stack print')

class Eggs(Spam):
 pass

if __name__ == '__main__':
 eggs = Eggs()
 eggs.run()

This results in the following:

python3 traceback_test.py

Before stack print

Debugging – Solving the Bugs

[328]

 File "traceback_test.py", line 18, in <module>

 eggs.run()

 File "traceback_test.py", line 8, in run

 traceback.print_stack()

After stack print

As you can see, the traceback simply prints without any exceptions. The traceback
module actually has quite a few other methods for printing tracebacks based on
exceptions and such, but you probably won't need them often. The most useful one
is probably the limit parameter; this parameter allows you to limit the stack trace
to the useful part. For example, if you've added this code using a decorator or helper
function, you probably have no need to include those in the stack trace. That's where
the limit parameter helps:

import traceback

class Spam(object):

 def run(self):
 print('Before stack print')
 traceback.print_stack(limit=-1)
 print('After stack print')

class Eggs(Spam):
 pass

if __name__ == '__main__':
 eggs = Eggs()
 eggs.run()

This results in the following:

python3 traceback_test.py

Before stack print

 File "traceback_test.py", line 18, in <module>

 eggs.run()

After stack print

Chapter 11

[329]

As you can see, the print_stack function itself has now been hidden from the stack
trace, which makes everything a bit cleaner.

The negative limit support was added in Python 3.5. Before
that, only positive limits were supported.

Debugging asyncio
The asyncio module has a few special provisions to make debugging somewhat
easier. Given the asynchronous nature of functions within asyncio, this is a very
welcome feat. While debugging of multithreaded/multiprocessing functions or
classes can be difficult—since concurrent classes can easily change environment
variables in parallel—with asyncio, it's just as difficult if not more.

Within most Linux/Unix/Mac shell sessions, environment
variables can be set using it as a prefix:
SOME_ENVIRONMENT_VARIABLE=value python3 script.py

Also, it can be configured for the current shell session using
export:
export SOME_ENVIRONMENT_VARIABLE=value

The current value can be fetched using the following line:
echo $SOME_ENVIRONMENT_VARIABLE

On Windows, you can configure an environment variable for
your local shell session using the set command:
set SOME_ENVIRONMENT_VARIABLE=value

The current value can be fetched using this line:
set SOME_ENVIRONMENT_VARIABLE

When enabling the debug mode using the PYTHONASYNCIODEBUG environment setting
the asyncio module will check whether every defined coroutine is actually run:

import asyncio

@asyncio.coroutine
def printer():
 print('This is a coroutine')

printer()

Debugging – Solving the Bugs

[330]

This results in an error for the printer coroutine, which is never yielded here:

PYTHONASYNCIODEBUG=1 python3 asyncio_test.py

<CoroWrapper printer() running, defined at asyncio_test.py:4, created at
asyncio_test.py:8> was never yielded from

Coroutine object created at (most recent call last):

 File "asyncio_test.py", line 8, in <module>

 printer()

Additionally, the event loop has some log messages by default:

import asyncio
import logging

logging.basicConfig(level=logging.DEBUG)
loop = asyncio.get_event_loop()

This results in debug messages such as the following:

PYTHONASYNCIODEBUG=1 python3 asyncio_test.py

DEBUG:asyncio:Using selector: KqueueSelector

DEBUG:asyncio:Close <_UnixSelectorEventLoop running=False closed=False
debug=True>

You might wonder why we are using the PYTHONASYNCIODEBUG flag instead of
loop.set_debug(True). The reason is that there are cases where this won't work
because debugging is enabled too late. For example, when trying that with the
preceding printer(), you will see that you won't get any errors when using
loop.set_debug(True) alone.

When enabling debugging, the following will change:

•	 Coroutines that have not been yielded (as can be seen in the preceding lines)
will raise an exception.

•	 Calling coroutines from the "wrong" thread raises an exception.
•	 The execution time of the selector will be logged.
•	 Slow callbacks (more than 100 ms) will be logged. This timeout can be

modified through loop.slow_callback_duration.
•	 Warnings will be raised when resources are not closed properly.
•	 Tasks that were destroyed before execution will be logged.

Chapter 11

[331]

Handling crashes using faulthandler
The faulthandler module helps when debugging really low-level crashes, that is,
crashes that should only be possible when using low-level access to memory, such as
C extensions.

For example, here's a bit of code that will cause your Python interpreter to crash:

import ctypes

Get memory address 0, your kernel shouldn't allow this:
ctypes.string_at(0)

It results in something similar to the following:

python faulthandler_test.py

zsh: segmentation fault python faulthandler_test.py

That's quite an ugly response of course and gives you no possibility to handle the
error. Just in case you are wondering, having a try/except structure won't help you
in these cases either. The following code will crash exactly in the same way:

import ctypes

try:
 # Get memory address 0, your kernel shouldn't allow this:
 ctypes.string_at(0)
except Exception as e:
 print('Got exception:', e)

This is where the faulthandler module helps. It will still cause your interpreter to
crash, but at least you will see a proper error message raised, so it's a good default if
you (or any of the sublibraries) have any interaction with raw memory:

import ctypes
import faulthandler

faulthandler.enable()

Get memory address 0, your kernel shouldn't allow this:
ctypes.string_at(0)

It results in something along these lines:

python faulthandler_test.py

Fatal Python error: Segmentation fault

Debugging – Solving the Bugs

[332]

Current thread 0x00007fff79171300 (most recent call first):

 File "ctypes/__init__.py", line 491 in string_at

 File "faulthandler_test.py", line 7 in <module>

zsh: segmentation fault python faulthandler_test.py

Obviously, it's not desirable to have a Python application exit in this manner as the
code won't exit with a normal cleanup. Resources won't be closed cleanly and your
exit handler won't be called. If you somehow need to catch this behavior, your best
bet is to wrap the Python executable in a separate script.

Interactive debugging
Now that we have discussed basic debugging methods that will always work, we
will look at interactive debugging for some more advanced debugging techniques.
The previous debugging methods made variables and stacks visible through
modifying the code and/or foresight. This time around, we will look at a slightly
smarter method, which constitutes doing the same thing interactively, but once the
need arises.

Console on demand
When testing some Python code, you may have used the interactive console a couple
of times, since it's a simple yet effective tool for testing your Python code. What you
might not have known is that it is actually simple to start your own shell from within
your code. So, whenever you want to drop into a regular shell from a specific point
in your code, that's easily possible:

import code

def spam():
 eggs = 123
 print('The begin of spam')
 code.interact(banner='', local=locals())
 print('The end of spam')
 print('The value of eggs: %s' % eggs)

if __name__ == '__main__':
 spam()

Chapter 11

[333]

When executing that, we will drop into an interactive console halfway:

python3 test_code.py

The begin of spam

>>> eggs

123

>>> eggs = 456

>>>

The end of spam

The value of eggs: 123

To exit this console, we can use ^d (Ctrl + d) on Linux/Mac systems and ^z (Ctrl + Z)
on Windows systems.

One important thing to note here is that the scope is not shared between the two.
Even though we passed along locals() to share the local variables for convenience,
this relation is not bidirectional. The result is that even though we set eggs to 456 in
the interactive session, it does not carry over to the outside function. You can modify
variables in the outside scope through direct manipulation (for example, setting the
properties) if you wish, but all variables declared locally will remain local.

Debugging using pdb
When it comes to actually debugging code, the regular interactive console just isn't
suited. With a bit of effort, you can make it work, but it's just not all that convenient
for debugging since you can only see the current scope and can't jump around the
stack easily. With pdb (Python debugger), this is easily possible. So let's look at a
simple example of using pdb:

import pdb

def spam():
 eggs = 123
 print('The begin of spam')
 pdb.set_trace()
 print('The end of spam')
 print('The value of eggs: %s' % eggs)

if __name__ == '__main__':
 spam()

Debugging – Solving the Bugs

[334]

This example is pretty much identical to the one in the previous paragraph, except
that this time we end up in the pdb console instead of a regular interactive console.
So let's give the interactive debugger a try:

python3 test_pdb.py

The begin of spam

> test_pdb.py(8)spam()

-> print('The end of spam')

(Pdb) eggs

123

(Pdb) eggs = 456

(Pdb) continue

The end of spam

The value of eggs: 456

As you can see, we've actually modified the value of eggs now. In this case, we used
the full continue command, but all the pdb commands have short versions as well.
So, using c instead of continue gives the same result. Just typing eggs (or any other
variable) will show the contents and setting the variable will simply set it, just as we
would expect from an interactive session.

To get started with pdb, first of all, a list of the most useful (full) commands with
shorthands is shown here:

Command Explanation
h(elp) This shows the list of commands (this list).
h(elp) command This shows the help for the given command.
w(here) Current stack trace with an arrow at the current frame.
d(own) Move down/to a newer frame in the stack.
u(p) Move up/to an older frame in the stack.
s(tep) Execute the current line and stop as soon as possible.
n(ext) Execute the current line and stop at the next line within

the current function.
r(eturn) Continue execution until the function returns.
c(ont(inue)) Continue execution up to the next breakpoint.
l(ist) [first[, last]] List the lines of source code (by default, 11 lines) around

the current line.
ll | longlist List all of the source code for the current function or frame.
source expression List the source code for the given object. This is similar to

longlist.

Chapter 11

[335]

Command Explanation
a(rgs) Print the arguments for the current function.
pp expression Pretty-print the given expression.
b(reak) Show the list of breakpoints.

b(reak) [filename:]
lineno

Place a breakpoint at the given line number and,
optionally, file.

b(reak) function[,
condition]

Place a breakpoint at the given function. The condition
is an expression that must evaluate to True for the
breakpoint to work.

cl(ear) [filename:]
lineno

Clear the breakpoint (or breakpoints) at this line.

cl(ear) breakpoint
[breakpoint ...]

Clear the breakpoint (or breakpoints) with these numbers.

Command List all defined commands.
command breakpoint Specify a list of commands to execute whenever the given

breakpoint is encountered. The list is ended using the end
command.

Alias List all aliases.
alias name command Create an alias. The command can be any valid Python

expression, so you can do the following to print all
properties for an object:
alias pd pp %1.__dict__

unalias name Remove an alias.
! statement Execute the statement at the current point in the stack.

Normally the ! sign is not needed, but this can be useful
if there are collisions with debugger commands. For
example, try b = 123.

Interact Open an interactive session similar to the previous
paragraph. Note that variables set within that local scope
will not be transferred.

Breakpoints
It's quite a long list, but you will probably use most of these quite regularly. To
highlight one of the options shown in the preceding table, let's demonstrate the
setting and use of breakpoints:

import pdb

def spam():

Debugging – Solving the Bugs

[336]

 print('The begin of spam')
 print('The end of spam')

if __name__ == '__main__':
 pdb.set_trace()
 spam()

So far, nothing new has happened, but let's now open the interactive debugging
session, as follows:

python3 test_pdb.py

> test_pdb.py(11)<module>()

-> while True:

(Pdb) source spam # View the source of spam

 4 def spam():

 5 print('The begin of spam')

 6 print('The end of spam')

(Pdb) b 5 # Add a breakpoint to line 5

Breakpoint 1 at test_pdb.py:5

(Pdb) w # Where shows the current line

> test_pdb.py(11)<module>()

-> while True:

(Pdb) c # Continue (until the next breakpoint or exception)

> test_pdb.py(5)spam()

-> print('The begin of spam')

(Pdb) w # Where again

 test_pdb.py(12)<module>()

-> spam()

> test_pdb.py(5)spam()

-> print('The begin of spam')

(Pdb) ll # List the lines of the current function

 4 def spam():

 5 B-> print('The begin of spam')

Chapter 11

[337]

 6 print('The end of spam')

(Pdb) b # Show the breakpoints

Num Type Disp Enb Where

1 breakpoint keep yes at test_pdb.py:5

 breakpoint already hit 1 time

(Pdb) cl 1 # Clear breakpoint 1

Deleted breakpoint 1 at test_pdb.py:5

That was a lot of output, but it's actually not as complex as it seems:

1.	 First, we used the source spam command to see the source for the
spam function.

2.	 After that, we knew the line number of the first print statement, which we
used to place a breakpoint (b 5) at line 5.

3.	 To check whether we were still at the right position, we used the w command.
4.	 Since the breakpoint was set, we used c to continue up to the next breakpoint.
5.	 Having stopped at the breakpoint at line 5, we used w again to confirm that.
6.	 Listing the code of the current function using ll.
7.	 Listing the breakpoints using b.
8.	 Removing the breakpoint again using cl 1 with the breakpoint number from

the previous command.

It all seems a bit complicated in the beginning, but you'll see that it's actually a very
convenient way of debugging once you've tried a few times.

To make it even better, this time we will execute the breakpoint only when eggs = 3.
The code is pretty much the same, although we need a variable in this case:

import pdb

def spam(eggs):
 print('eggs:', eggs)

if __name__ == '__main__':
 pdb.set_trace()
 for i in range(5):
 spam(i)

Debugging – Solving the Bugs

[338]

Now, let's execute the code and make sure that it only breaks at certain times:
python3 test_breakpoint.py

> test_breakpoint.py(10)<module>()

-> for i in range(5):

(Pdb) source spam

 4 def spam(eggs):

 5 print('eggs:', eggs)

(Pdb) b 5, eggs == 3 # Add a breakpoint to line 5 whenever eggs=3

Breakpoint 1 at test_breakpoint.py:5

(Pdb) c # Continue

eggs: 0

eggs: 1

eggs: 2

> test_breakpoint.py(5)spam()

-> print('eggs:', eggs)

(Pdb) a # Show function arguments

eggs = 3

(Pdb) c # Continue

eggs: 3

eggs: 4

To list what we have done:

1.	 First, using source spam, we looked for the line number.
2.	 After that, we placed a breakpoint with the eggs == 3 condition.
3.	 Then we continued execution using c. As you can see, the values 0, 1, and 2

are printed as normal.
4.	 The breakpoint was reached at value 3. To verify this we used a to see the

function arguments.
5.	 And we continued to execute the rest of the code.

Catching exceptions
All of these have been manual calls to the pdb.set_trace() function, but in general,
you are just running your application and not really expecting issues. This is where
exception catching can be very handy. In addition to importing pdb yourself, you can
run scripts through pdb as a module as well. Let's examine this bit of code, which
dies as soon as it reaches zero division:

print('This still works')
1/0
print('We shouldnt reach this code')

Chapter 11

[339]

If we run it using the pdb parameter, we can end up in the Python Debugger
whenever it crashes:

python3 -m pdb test_zero.py

> test_zero.py(1)<module>()

-> print('This still works')

(Pdb) w # Where

 bdb.py(431)run()

-> exec(cmd, globals, locals)

 <string>(1)<module>()

> test_zero.py(1)<module>()

-> print('This still works')

(Pdb) s # Step into the next statement

This still works

> test_zero.py(2)<module>()

-> 1/0

(Pdb) c # Continue

Traceback (most recent call last):

 File "pdb.py", line 1661, in main

 pdb._runscript(mainpyfile)

 File "pdb.py", line 1542, in _runscript

 self.run(statement)

 File "bdb.py", line 431, in run

 exec(cmd, globals, locals)

 File "<string>", line 1, in <module>

 File "test_zero.py", line 2, in <module>

 1/0

ZeroDivisionError: division by zero

Uncaught exception. Entering post mortem debugging

Running 'cont' or 'step' will restart the program

> test_zero.py(2)<module>()

-> 1/0

A useful little trick within pdb is to use the Enter button, which,
by default, will execute the previously executed command again.
This is very useful when stepping through the program.

Debugging – Solving the Bugs

[340]

Commands
The commands command is a little complicated but very useful. It allows you to
execute commands whenever a specific breakpoint is encountered. To illustrate this,
let's start from a simple example again:

import pdb

def spam(eggs):
 print('eggs:', eggs)

if __name__ == '__main__':
 pdb.set_trace()
 for i in range(5):
 spam(i)

The code is simple enough, so now we'll add the breakpoint and the commands,
as follows:

python3 test_breakpoint.py

> test_breakpoint.py(10)<module>()

-> for i in range(3):

(Pdb) b spam # Add a breakpoint to function spam

Breakpoint 1 at test_breakpoint.py:4

(Pdb) commands 1 # Add a command to breakpoint 1

(com) print('The value of eggs: %s' % eggs)

(com) end # End the entering of the commands

(Pdb) c # Continue

The value of eggs: 0

> test_breakpoint.py(5)spam()

-> print('eggs:', eggs)

(Pdb) c # Continue

eggs: 0

The value of eggs: 1

> test_breakpoint.py(5)spam()

-> print('eggs:', eggs)

(Pdb) cl 1 # Clear breakpoint 1

Deleted breakpoint 1 at test_breakpoint.py:4

(Pdb) c # Continue

eggs: 1

eggs: 2

Chapter 11

[341]

As you can see, we can easily add commands to the breakpoint. After removing the
breakpoint, these commands obviously won't be executed anymore.

Debugging using ipdb
While the generic Python console is useful, it can be a little rough around the edges.
The IPython console offers a whole new world of extra features, which make it a much
nicer console to work with. One of those features is a more convenient debugger.

First, make sure you have ipdb installed:

pip install ipdb

Next, let's try the debugger again with our previous script. The only small change is
that we now import ipdb instead of pdb:

import ipdb

def spam(eggs):
 print('eggs:', eggs)

if __name__ == '__main__':
 ipdb.set_trace()
 for i in range(3):
 spam(i)

Then we execute it:

python3 test_ipdb.py

> test_ipdb.py(10)<module>()

 9 ipdb.set_trace()

---> 10 for i in range(3):

 11 spam(i)

ipdb> b spam # Set a breakpoint

Breakpoint 1 at test_ipdb.py:4

ipdb> c # Continue (until exception or breakpoint)

> test_ipdb.py(5)spam()

1 4 def spam(eggs):

----> 5 print('eggs:', eggs)

 6

Debugging – Solving the Bugs

[342]

ipdb> a # Show the arguments

eggs = 0

ipdb> c # Continue

eggs: 0

> test_ipdb.py(5)spam()

1 4 def spam(eggs):

----> 5 print('eggs:', eggs)

 6

ipdb> # Repeat the previous command, so continue again

eggs: 1

> test_ipdb.py(5)spam()

1 4 def spam(eggs):

----> 5 print('eggs:', eggs)

 6

ipdb> cl 1 # Remove breakpoint 1

Deleted breakpoint 1 at test_ipdb.py:4

ipdb> c # Continue

eggs: 2

The commands are all the same, but the output is just a tad more legible in my
opinion. The actual version also includes syntax highlighting, which makes the
output even easier to follow.

In short, you can just replace pdb with ipdb in most situations to simply get a more
intuitive debugger. But I will give you the recommendation as well, to the ipdb
context manager:

import ipdb

with ipdb.launch_ipdb_on_exception():
 main()

This is as convenient as it looks. It simply hooks ipdb into your exceptions so that
you can easily debug whenever needed. Combine that with a debug flag to your
application to easily allow debugging when needed.

Chapter 11

[343]

Other debuggers
pdb and ipdb are just two of the large number of debuggers available for Python.
Some of the currently noteworthy debuggers are as follows:

•	 pudb: This offers a a full-screen command-line debugger
•	 pdbpp: This hooks into the regular pdb
•	 rpdb2: This is a remote debugger that allows hooking into running (remote)

applications
•	 Werkzeug: This is a web-based debugger that allows debugging of web

applications while they are running

There are many others, of course, and there isn't a single one that's the absolute best.
As is the case with all tools, they all have their advantages and their fallacies, and
the one that is best for your current purpose can be properly decided only by you.
Chances are that your current Python IDE already has an integrated debugger.

Debugging services
In addition to debugging when you encounter a problem, there are times when you
simply need to keep track of errors for later debugging. Especially when working
with remote servers, these can be invaluable to detect when and how a Python
process is malfunctioning. Additionally, these services offer grouping of errors as
well, making them far more useful than a simple e-mail-on-exception type of script,
which can quickly spam your inbox.

A nice open source solution for keeping track of errors is sentry. If you need a full-
fletched solution that offers performance tracking as well, then Opbeat and Newrelic
are very nice solutions; they offer both free and paid versions. Note that all of these
also support tracking of other languages, such as JavaScript.

Debugging – Solving the Bugs

[344]

Summary
This chapter explained a few different debugging techniques and gotchas. There
is, of course, much more that can be said about debugging, but I hope you have
acquired a nice vantage point for debugging your Python code now. Interactive
debugging techniques are very useful for single-threaded applications and locations
where interactive sessions are available. But since that's not always the case, we also
discussed some non-interactive options.

Here's an overview of all the points discussed in this chapter:

•	 Non-interactive debugging using:
°° print

°° logging

°° trace

°° traceback

°° asyncio

°° faulthandler

•	 Interactive debugging using both pdb and ipdb

In the next chapter, we will see how to monitor and improve both CPU and memory
performance, as well as finding and fixing memory leaks.

[345]

Performance – Tracking and
Reducing Your Memory and

CPU Usage
Before we talk about performance, there is a quote by Donald Knuth you need to
consider first:

"The real problem is that programmers have spent far too much time worrying
about efficiency in the wrong places and at the wrong times; premature
optimization is the root of all evil (or at least most of it) in programming."

Donald Knuth is often called the father of algorithm analysis. His
book series, The Art of Computer Programming, can be considered the
Bible of all fundamental algorithms.

As long as you pick the correct data structures with the right algorithms,
performance should not be something to worry about. That does not mean you
should ignore performance entirely, but just make sure you pick the right battles
and optimize only when it is actually needed. Micro/premature optimizations can
definitely be fun, but only very rarely useful.

We have seen the performance characteristics of many data structures in Chapter 2,
Pythonic Syntax, Common Pitfalls, and Style Guide, already, so we won't discuss that,
but we will show you how performance can be measured and how problems can
be detected. There are cases where micro optimizations make a difference, but you
won't know until you measure the performance.

Performance – Tracking and Reducing Your Memory and CPU Usage

[346]

Within this chapter, we will cover:

•	 Profiling CPU usage
•	 Profiling memory usage
•	 Learning how to correctly compare performance metrics
•	 Optimizing performance
•	 Finding and fixing memory leaks

What is performance?
Performance is a very broad term. It has many different meanings and in many cases
it is defined incorrectly. You have probably heard statements similar to "Language
X is faster than Python". However, that statement is inherently wrong. Python is
neither fast nor slow; Python is a programming language and a language has no
performance metrics whatsoever. If one were to say that the CPython interpreter
is faster or slower than interpreter Y for language X, that would be possible. The
performance characteristics of code can vary greatly between different interpreters.
Just take a look at this small test:

python3 -m timeit '"".join(str(i) for i in range(10000))'

100 loops, best of 3: 2.91 msec per loop

python2 -m timeit '"".join(str(i) for i in range(10000))'

100 loops, best of 3: 2.13 msec per loop

pypy -m timeit '"".join(str(i) for i in range(10000))'

1000 loops, best of 3: 677 usec per loop

Three different interpreters with all vastly different performance! All are Python but
the interpreters obviously vary. Looking at this benchmark, you might be tempted
to drop the CPython interpreter completely and only use Pypy. The danger with
benchmarks such as these is that they rarely offer any meaningful results. For this
limited example, the Pypy interpreter was about four times faster than the CPython3
interpreter, but that has no relevance whatsoever for the general case. The only
conclusion that can safely be drawn here is that this specific version of the Pypy
interpreter is more than four times faster than this specific version of CPython3
for this exact test. For any other test and interpreter version the results could be
vastly different.

Chapter 12

[347]

Timeit – comparing code snippet
performance
Before we can start improving performance, we need a reliable method to measure
it. Python has a really nice module (timeit) with the specific purpose of measuring
execution times of bits of code. It executes a bit of code many times to make sure there
is as little variation as possible and to make the measurement fairly clean. It's very
useful if you want to compare a few code snippets. Following are example executions:

python3 -m timeit 'x=[]; [x.insert(0, i) for i in range(10000)]'

10 loops, best of 3: 30.2 msec per loop

python3 -m timeit 'x=[]; [x.append(i) for i in range(10000)]'

1000 loops, best of 3: 1.01 msec per loop

python3 -m timeit 'x=[i for i in range(10000)]'

1000 loops, best of 3: 381 usec per loop

python3 -m timeit 'x=list(range(10000))'

10000 loops, best of 3: 212 usec per loop

These few examples demonstrate the performance difference between list.insert,
list.append, a list comprehension, and the list function. But more importantly,
it demonstrates how to use the timeit command. Naturally, the command can be
used with regular scripts as well, but the timeit module only accepts statements
as strings to execute which is a bit of an annoyance. Luckily, you can easily work
around that by wrapping your code in a function and just timing that function:

import timeit

def test_list():
 return list(range(10000))

def test_list_comprehension():
 return [i for i in range(10000)]

def test_append():
 x = []
 for i in range(10000):
 x.append(i)

 return x

Performance – Tracking and Reducing Your Memory and CPU Usage

[348]

def test_insert():
 x = []
 for i in range(10000):
 x.insert(0, i)

 return x

def benchmark(function, number=100, repeat=10):
 # Measure the execution times
 times = timeit.repeat(function, number=number, globals=globals())
 # The repeat function gives `repeat` results so we take the min()
 # and divide it by the number of runs
 time = min(times) / number
 print('%d loops, best of %d: %9.6fs :: %s' % (
 number, repeat, time, function))

if __name__ == '__main__':
 benchmark('test_list()')
 benchmark('test_list_comprehension()')
 benchmark('test_append()')
 benchmark('test_insert()')

When executing this, you will get something along the following lines:

python3 test_timeit.py

100 loops, best of 10: 0.000238s :: test_list()

100 loops, best of 10: 0.000407s :: test_list_comprehension()

100 loops, best of 10: 0.000838s :: test_append()

100 loops, best of 10: 0.031795s :: test_insert()

As you may have noticed, this script is still a bit basic. While the regular version
keeps trying until it reaches 0.2 seconds or more, this script just has a fixed number
of executions. Unfortunately, the timeit module wasn't entirely written with re-use
in mind, so besides calling timeit.main() from your script there is not much you
can do to re-use that logic.

Personally, I recommend using IPython instead, as it makes measurements
much easier:

ipython3

In [1]: import test_timeit

In [2]: %timeit test_timeit.test_list()

1000 loops, best of 3: 255 µs per loop

Chapter 12

[349]

In [3]: %timeit test_timeit.test_list_comprehension()

1000 loops, best of 3: 430 µs per loop

In [4]: %timeit test_timeit.test_append()

1000 loops, best of 3: 934 µs per loop

In [5]: %timeit test_timeit.test_insert()

10 loops, best of 3: 31.6 ms per loop

In this case, IPython automatically takes care of the string wrapping and passing
of globals(). Still, this is all very limited and useful only for comparing multiple
methods of doing the same thing. When it comes to full Python applications, there
are more methods available.

To view the source of both IPython functions and regular
modules, entering object?? in the IPython shell returns the
source. In this case just enter timeit?? to view the timeit
IPython function definition.

The easiest way you can implement the %timeit function yourself is to simply call
timeit.main:

import timeit

timeit.main(args=['[x for x in range(1000000)]'])

The internals of the timeit module are nothing special. A basic version can be
implemented with just an eval and a time.perf_counter (the highest resolution
timer available in Python) combination:

import time
import functools

TIMEIT_TEMPLATE = '''
import time

def run(number):
 %(setup)s
 start = time.perf_counter()
 for i in range(number):
 %(statement)s
 return time.perf_counter() - start
'''

Performance – Tracking and Reducing Your Memory and CPU Usage

[350]

def timeit(statement='pass', setup='pass', repeat=1, number=1000000,
 globals_=None):
 # Get or create globals
 globals_ = globals() if globals_ is None else globals_

 # Create the test code so we can separate the namespace
 src = TIMEIT_TEMPLATE % dict(
 statement=statement,
 setup=setup,
 number=number,
)
 # Compile the source
 code = compile(src, '<source>', 'exec')

 # Define locals for the benchmarked code
 locals_ = {}

 # Execute the code so we can get the benchmark fuction
 exec(code, globals_, locals_)

 # Get the run function
 run = functools.partial(locals_['run'], number=number)
 for i in range(repeat):
 yield run()

The actual timeit code is a bit more advanced in terms of checking the input but
this example roughly shows how the timeit.repeat function can be implemented.

To register your own function in IPython, you need to use some IPython magic. Note
that the magic is not a pun. The IPython module that takes care of commands such as
these is actually called magic. To demonstrate:

from IPython.core import magic

@magic.register_line_magic(line):
 import timeit
 timeit.main(args[line])

To learn more about custom magic in IPython, take a look at the IPython
documentation at https://ipython.org/ipython-doc/3/config/custommagics.
html.

https://ipython.org/ipython-doc/3/config/custommagics.html
https://ipython.org/ipython-doc/3/config/custommagics.html

Chapter 12

[351]

cProfile – finding the slowest
components
The profile module makes it easily possible to analyze the relative CPU cycles used
in a script/application. Be very careful not to compare these with the results from the
timeit module. While the timeit module tries as best as possible to give an accurate
benchmark of the absolute amount of time it takes to execute a code snippet, the
profile module is only useful for relative results. The reason is that the profiling code
itself incurs such a slowdown that the results are not comparable with non-profiled
code. There is a way to make it a bit more accurate however, but more about that later.

Within this section we will be talking about the profile module
but in the examples we will actually use the cProfile module.
The cProfile module is a high-performance emulation of the
pure Python profile module.

First profiling run
Let's profile our Fibonacci function from Chapter 5, Decorators– Enabling Code Reuse by
Decorating, both with and without the cache function. First, the code:

import sys
import functools

@functools.lru_cache()
def fibonacci_cached(n):
 if n < 2:
 return n
 else:
 return fibonacci_cached(n - 1) + fibonacci_cached(n - 2)

def fibonacci(n):
 if n < 2:
 return n
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

if __name__ == '__main__':
 n = 30

Performance – Tracking and Reducing Your Memory and CPU Usage

[352]

 if sys.argv[-1] == 'cache':
 fibonacci_cached(n)
 else:
 fibonacci(n)

For readabilities sake, all cProfile statistics will be stripped of
the percall and cumtime columns in all cProfile outputs.
These columns are irrelevant for the purposes of these examples.

First we'll execute the function without cache:

python3 -m cProfile -s calls test_fibonacci.py no_cache

 2692557 function calls (21 primitive calls) in 0.815

 seconds

 Ordered by: call count

 ncalls tottime percall filename:lineno(function)

2692537/1 0.815 0.815 test_fibonacci.py:13(fibonacci)

 7 0.000 0.000 {built-in method builtins.getattr}

 5 0.000 0.000 {built-in method builtins.setattr}

 1 0.000 0.000 {method 'update' of 'dict' objects}

 1 0.000 0.000 {built-in method builtins.isinstance}

 1 0.000 0.000 functools.py:422(decorating_function)

 1 0.000 0.815 test_fibonacci.py:1(<module>)

 1 0.000 0.000 {method 'disable' of '_lsprof.Profiler'}

 1 0.000 0.815 {built-in method builtins.exec}

 1 0.000 0.000 functools.py:43(update_wrapper)

 1 0.000 0.000 functools.py:391(lru_cache)

That's quite a lot of calls, isn't it? Apparently, we called the test_fibonacci
function nearly 3 million times. That is where the profiling modules provide a lot of
insight. Let's analyze the metrics a bit further:

•	 Ncalls: The number of calls that were made to the function
•	 Tottime: The total time spent in seconds within this function with all sub-

functions excluded
Percall, tottime / ncalls

•	 Cumtime: The total time spent within this function, including sub-functions
Percall, cumtime / ncalls

Chapter 12

[353]

Which is the most useful depends on your use case. It's quite simple to change the
sort order using the -s parameter within the default output. But now let's see what
the result is with the cached version. Once again, with stripped output:

python3 -m cProfile -s calls test_fibonacci.py cache

 51 function calls (21 primitive calls) in 0.000 seconds

 Ordered by: call count

 ncalls tottime percall filename:lineno(function)

 31/1 0.000 0.000 test_fibonacci.py:5(fibonacci_cached)

 7 0.000 0.000 {built-in method builtins.getattr}

 5 0.000 0.000 {built-in method builtins.setattr}

 1 0.000 0.000 test_fibonacci.py:1(<module>)

 1 0.000 0.000 {built-in method builtins.isinstance}

 1 0.000 0.000 {built-in method builtins.exec}

 1 0.000 0.000 functools.py:422(decorating_function)

 1 0.000 0.000 {method 'disable' of '_lsprof.Profiler'}

 1 0.000 0.000 {method 'update' of 'dict' objects}

 1 0.000 0.000 functools.py:391(lru_cache)

 1 0.000 0.000 functools.py:43(update_wrapper)

This time we see a tottime of 0.000 because it's just too fast to measure. But also,
while the fibonacci_cached function is still the most executed function, it's only
being executed 31 times instead of 3 million.

Calibrating your profiler
To illustrate the difference between profile and cProfile, let's try the uncached
run again with the profile module instead. Just a heads up, this is much slower so
don't be surprised if it stalls a little:

python3 -m profile -s calls test_fibonacci.py no_cache
 2692558 function calls (22 primitive calls) in 7.696 seconds

 Ordered by: call count

 ncalls tottime percall filename:lineno(function)
2692537/1 7.695 7.695 test_fibonacci.py:13(fibonacci)
 7 0.000 0.000 :0(getattr)
 5 0.000 0.000 :0(setattr)

Performance – Tracking and Reducing Your Memory and CPU Usage

[354]

 1 0.000 0.000 :0(isinstance)
 1 0.001 0.001 :0(setprofile)
 1 0.000 0.000 :0(update)
 1 0.000 0.000 functools.py:43(update_wrapper)
 1 0.000 7.696 profile:0(<code object <module> ...>)
 1 0.000 7.695 test_fibonacci.py:1(<module>)
 1 0.000 0.000 functools.py:391(lru_cache)
 1 0.000 7.695 :0(exec)
 1 0.000 0.000 functools.py:422(decorating_function)
 0 0.000 profile:0(profiler)

Huge difference, isn't it? Now the code is nearly 10 times slower and the only
difference is using the pure Python profile module instead of the cProfile
module. This does indicate a big problem with the profile module. The overhead
from the module itself is great enough to skew the results, which means we should
account for that offset. That's what the Profile.calibrate() function takes care of,
as it calculates the bias incurred by the profile module. To calculate the bias, we can
use the following script:

import profile

if __name__ == '__main__':
 profiler = profile.Profile()
 for i in range(10):
 print(profiler.calibrate(100000))

The numbers will vary slightly but you should be able to get a fair estimate of the
bias using this code. If the numbers still vary a lot, you can increase the trials from
100000 to something even larger. This type of calibration only works for the profile
module, but if you are looking for more accurate results and the cProfile module
does not work for you due to inheritance or not being supported on your platform,
you can use this code to set your bias globally and get more accurate results:

import profile

The number here is bias calculated earlier
profile.Profile.bias = 2.0939406059394783e-06

For a specific Profile instance:

import profile

profiler = profile.Profile(bias=2.0939406059394783e-06)

Chapter 12

[355]

Note that in general a smaller bias is better to use than a large one, because a large
bias could cause very strange results. In some cases you will even get negative
timings. Let's give it a try for our Fibonacci code:

import sys
import pstats
import profile
import functools

@functools.lru_cache()
def fibonacci_cached(n):
 if n < 2:
 return n
 else:
 return fibonacci_cached(n - 1) + fibonacci_cached(n - 2)

def fibonacci(n):
 if n < 2:
 return n
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

if __name__ == '__main__':
 profiler = profile.Profile(bias=2.0939406059394783e-06)
 n = 30

 if sys.argv[-1] == 'cache':
 profiler.runcall(fibonacci_cached, n)
 else:
 profiler.runcall(fibonacci, n)

 stats = pstats.Stats(profiler).sort_stats('calls')
 stats.print_stats()

While running it, it indeed appears that I've used a bias that's too large:

python3 test_fibonacci.py no_cache

 2692539 function calls (3 primitive calls) in -0.778

 seconds

 Ordered by: call count

Performance – Tracking and Reducing Your Memory and CPU Usage

[356]

 ncalls tottime percall filename:lineno(function)

2692537/1 -0.778 -0.778 test_fibonacci.py:15(fibonacci)

 1 0.000 0.000 :0(setprofile)

 1 0.000 -0.778 profile:0(<function fibonacci at 0x...>)

 0 0.000 profile:0(profiler)

Still, it shows how the code can be used properly. You can even incorporate the bias
calculation within the script using a snippet like this:

import profile

if __name__ == '__main__':
 profiler = profile.Profile()
 profiler.bias = profiler.calibrate(100000)

Selective profiling using decorators
Calculating simple timings is easy enough using decorators, but profiling is also
important. Both are useful but serve different goals. Let's look at both the options:

import cProfile
import datetime
import functools

def timer(function):
 @functools.wraps(function)
 def _timer(*args, **kwargs):
 start = datetime.datetime.now()
 try:
 return function(*args, **kwargs)
 finally:
 end = datetime.datetime.now()
 print('%s: %s' % (function.__name__, end - start))
 return _timer

def profiler(function):
 @functools.wraps(function)
 def _profiler(*args, **kwargs):
 profiler = cProfile.Profile()
 try:
 profiler.enable()
 return function(*args, **kwargs)

Chapter 12

[357]

 finally:
 profiler.disable()
 profiler.print_stats()
 return _profiler

@profiler
def profiled_fibonacci(n):
 return fibonacci(n)

@timer
def timed_fibonacci(n):
 return fibonacci(n)

def fibonacci(n):
 if n < 2:
 return n
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

if __name__ == '__main__':
 timed_fibonacci(32)
 profiled_fibonacci(32)

The code is simple enough, just a basic timer and profiler printing some default
statistics. Which functions best for you depends on your use-case of course, but they
definitely both have their uses. The added advantage of this selective profiling is that
the output is more limited which helps with readability:

python3 test_fibonacci.py

 timed_fibonacci: 0:00:01.050200

 7049157 function calls (3 primitive calls) in 2.024

 seconds

 Ordered by: standard name

 ncalls tottime percall filename:lineno(function)

 1 0.000 2.024 test_fibonacci.py:31(profiled_fibonacci)

7049155/1 2.024 2.024 test_fibonacci.py:41(fibonacci)

 1 0.000 0.000 {method 'disable' of '_lsprof.Profiler'}

Performance – Tracking and Reducing Your Memory and CPU Usage

[358]

As you can see, the profiler still makes the code about twice as slow, but it's
definitely usable.

Using profile statistics
To get some more intricate profiling results, we will profile the pystone script. The
pystone script is an internal Python performance test which benchmarks the Python
interpreter fairly thoroughly. First, let's create the statistics using this script:

from test import pystone
import cProfile

if __name__ == '__main__':
 profiler = cProfile.Profile()
 profiler.runcall(pystone.main)
 profiler.dump_stats('pystone.profile')

When executing the script, you should get something like this:

python3 test_pystone.py

Pystone(1.2) time for 50000 passes = 0.725432

This machine benchmarks at 68924.4 pystones/second

After running the script, you should have a pystone.profile file containing the
profiling results. These results can be And the pystone.profile file which contains
all of the profiling statistics. These statistics can be viewed through the pstats
module which is bundled with Python:

import pstats

stats = pstats.Stats('pystone.profile')
stats.strip_dirs()
stats.sort_stats('calls', 'cumtime')
stats.print_stats(10)

In some cases, it can be interesting to combine the results from multiple
measurements. That is possible by specifying multiple files or by using stats.
add(*filenames). But first, let's look at the regular output:

python3 parse_statistics.py

 1050012 function calls in 0.776 seconds

Chapter 12

[359]

 Ordered by: call count, cumulative time

 List reduced from 21 to 10 due to restriction <10>

 ncalls tottime percall cumtime percall filename:lineno(function)

 150000 0.032 0.000 0.032 0.000 pystone.py:214(Proc7)

 150000 0.027 0.000 0.027 0.000 pystone.py:232(Func1)

 100000 0.016 0.000 0.016 0.000 {built-in method builtins.
chr}

 100000 0.010 0.000 0.010 0.000 {built-in method builtins.
ord}

 50002 0.029 0.000 0.029 0.000 pystone.py:52(__init__)

 50000 0.127 0.000 0.294 0.000 pystone.py:144(Proc1)

 50000 0.094 0.000 0.094 0.000 pystone.py:219(Proc8)

 50000 0.048 0.000 0.077 0.000 pystone.py:60(copy)

 50000 0.051 0.000 0.061 0.000 pystone.py:240(Func2)

 50000 0.031 0.000 0.043 0.000 pystone.py:171(Proc3)

Obviously, the parameters can easily be modified to change the sort order and
the number of output lines. But that is not the only possibility of the statistics. There
are quite a few packages around which can parse these results and visualize them.
One option is RunSnakeRun, which although useful does not run on Python 3
currently. Also, we have QCacheGrind, a very nice visualizer for profile statistics but
which requires some manual compiling to get running or some searching for binaries
of course.

Let's look at the output from QCacheGrind. In the case of Windows, the
QCacheGrindWin package provides a binary, whereas within Linux it is most likely
available through your package manager, and with OS X you can try brew install
qcachegrind --with-graphviz. But there is one more package you will require:
the pyprof2calltree package. It transforms the profile output into a format that
QCacheGrind understands. So, after a simple pip install pyprof2calltree, we
can now convert the profile file into a callgrind file:

pyprof2calltree -i pystone.profile -o pystone.callgrind

writing converted data to: pystone.callgrind

qcachegrind pystone.callgrind

Performance – Tracking and Reducing Your Memory and CPU Usage

[360]

This results in running of the QCacheGrind application. After switching to the
appropriate tabs, you should see something like the following image:

For a simple script such as this, pretty much all output works. However, with full
applications, a tool such as QCacheGrind is invaluable. Looking at the output
generated by QCacheGrind, it is immediately obvious which process took the most
time. The structure at the top right shows bigger rectangles if the amount of time
taken was greater, which is a very useful visualization of the chunks of CPU time
that were used. The list at the left is very similar to cProfile and therefore nothing
new. The tree at the bottom right can be very valuable or very useless as it is in
this case. It shows you the percentage of CPU time taken in a function and more
importantly, the relationship of that function with the other functions.

Because these tools scale depending on the input the results are useful for just about
any application. Whether a function takes 100 milliseconds or 100 minutes makes no
difference, the output will show a clear overview of the slow parts, which is what we
will try to fix.

Chapter 12

[361]

Line profiler
line_profiler is actually not a package that's bundled with Python, but it's far too
useful to ignore. While the regular profile module profiles all (sub)functions within
a certain block, line_profiler allows for profiling line per line within a function.
The Fibonacci function is not best suited here, but we can use a prime number
generator instead. But first, install line_profiler:

 pip install line_profiler

Now that we have installed the line_profiler module (and with that the kernprof
command), let's test line_profiler:

import itertools

@profile
def primes():
 n = 2
 primes = set()
 while True:
 for p in primes:
 if n % p == 0:
 break
 else:
 primes.add(n)
 yield n
 n += 1

if __name__ == '__main__':
 total = 0
 n = 2000
 for prime in itertools.islice(primes(), n):
 total += prime

 print('The sum of the first %d primes is %d' % (n, total))

You might be wondering where the profile decorator is coming from. It originates
from the line_profiler module, which is why we have to run the script with the
kernprof command:

kernprof -l test_primes.py

The sum of the first 2000 primes is 16274627

Wrote profile results to test_primes.py.lprof

Performance – Tracking and Reducing Your Memory and CPU Usage

[362]

As the command says, the results have been written to the test_primes.py.lprof
file. So let's look at the output of that with the Time column skipped for readability:

python3 -m line_profiler test_primes.py.lprof

Timer unit: 1e-06 s

Total time: 2.33179 s

File: test_primes.py

Function: primes at line 4

Line # Hits Per Hit % Time Line Contents

==

 4 @profile

 5 def primes():

 6 1 3.0 0.0 n = 2

 7 1 1.0 0.0 primes = set()

 8 1 0.0 0.0 while True:

 9 2058163 0.5 43.1 for p in primes:

 10 2056163 0.6 56.0 if n % p == 0:

 11 15388 0.5 0.3 break

 12 else:

 13 2000 1.2 0.1 primes.add(n)

 14 2000 0.5 0.0 yield n

 15 17387 0.6 0.4 n += 1

Wonderful output, isn't it? It makes it trivial to find the slow part within a bit of
code. Within this code, the slowness is obviously originating from the loop, but
within other code it might not be that clear.

This module can be added as an IPython extension as well,
which enables the %lprun command within IPython. To load
the extension, the load_ext command can be used from the
IPython shell %load_ext line_profiler.

Chapter 12

[363]

Improving performance
Much can be said about performance optimization, but truthfully, if you have read
the entire book up to this point, you know most of the Python-specific techniques to
write fast code. The most important factor in application performance will always be
the choice of algorithms, and by extension, the data structures. Searching for an item
within list is almost always a worse idea than searching for an item in dict or set.

Using the right algorithm
Within any application, the right choice of algorithm is by far the most important
performance characteristic, which is why I am repeating it to illustrate the results
of a bad choice:

In [1]: a = list(range(1000000))

In [2]: b = dict.fromkeys(range(1000000))

In [3]: %timeit 'x' in a
10 loops, best of 3: 20.5 ms per loop

In [4]: %timeit 'x' in b
10000000 loops, best of 3: 41.6 ns per loop

Checking whether an item is within a list is an O(n) operation and checking
whether an item is within a dict is an O(1) operation. A huge difference when
n=1000000 obviously, in this simple test we can see that for 1 million items it's 500
times faster.

All other performance tips combined together might make your code twice as fast,
but using the right algorithm for the job can cause a much greater improvement.
Using an algorithm that takes O(n) time instead of O(n^2) time will make your code
1000 times faster for n=1000, and with a larger n the difference only grows further.

Global interpreter lock
One of the most obscure components of the CPython interpreter is the global
interpreter lock (GIL), a mutual exclusion lock (mutex) required to prevent memory
corruption. The Python memory manager is not thread-safe and that is why the GIL
is needed. Without the GIL, multiple threads might alter memory at the same time,
causing all sorts of unexpected and potentially dangerous results.

Performance – Tracking and Reducing Your Memory and CPU Usage

[364]

So what is the impact of the GIL in a real-life application? Within single-threaded
applications it makes no difference whatsoever and is actually an extremely fast
method for memory consistency. Within multithreaded applications however, it
can slow your application down a bit, because only a single thread can access the
GIL at a time. So if your code has to access the GIL a lot, it might benefit from some
restructuring.

Luckily, Python offers a few other options for parallel processing: the asyncio
module that we saw earlier and the multiprocessing library that we will see in
Chapter 13, Multiprocessing – When a Single CPU Core Is Not Enough.

Try versus if
In many languages a try/except type of block incurs quite a performance hit, but
within Python this is not the case. It's not that an if statement is heavy, but if you
expect your try/except to succeed most of the time and only fail in rare cases, it's
definitely a valid alternative. As always though, focus on readability and conveying
the purpose of the code. If the intention of the code is clearer using an if statement,
use the if statement. If try/except conveys the intention in a better way, use that.

Lists versus generators
Evaluating code lazily using generators is almost always a better idea than
calculating the entire dataset. The most important rule of performance optimization
is probably that you shouldn't calculate anything you're not going to use. If you're
not sure that you are going to need it, don't calculate it.

Don't forget that you can easily chain multiple generators, so everything is calculated
only when it's actually needed. Do be careful that this won't result in recalculation
though; itertools.tee is generally a better idea than recalculating your results
completely.

String concatenation
You might have seen benchmarks saying that using += is much slower than joining
strings. At one point this made quite a lot of difference indeed. With Python 3
however, most of the differences have vanished.

In [1]: %%timeit

 ...: s = ''

 ...: for i in range(1000000):

 ...: s += str(i)

Chapter 12

[365]

 ...:

1 loops, best of 3: 362 ms per loop

In [2]: %%timeit

 ...: ss = []

 ...: for i in range(1000000):

 ...: ss.append(str(i))

 ...: s = ''.join(ss)

 ...:

1 loops, best of 3: 332 ms per loop

In [3]: %timeit ''.join(str(i) for i in range(1000000))

1 loops, best of 3: 324 ms per loop

In [4]: %timeit ''.join([str(i) for i in range(1000000)])

1 loops, best of 3: 294 ms per loop

There are still some differences of course, but they are so small that I recommend to
simply ignore them and choose the most readable option instead.

Addition versus generators
As is the case with string concatenation, once a significant difference now too small
to mention.

In [1]: %%timeit
 ...: x = 0
 ...: for i in range(1000000):
 ...: x += i
 ...:
10 loops, best of 3: 73.2 ms per loop

In [2]: %timeit x = sum(i for i in range(1000000))
10 loops, best of 3: 75.3 ms per loop

In [3]: %timeit x = sum([i for i in range(1000000)])
10 loops, best of 3: 71.2 ms per loop

In [4]: %timeit x = sum(range(1000000))
10 loops, best of 3: 25.6 ms per loop

Performance – Tracking and Reducing Your Memory and CPU Usage

[366]

What does help though is letting Python handle everything internally using native
functions, as can be seen in the last example.

Map versus generators and list
comprehensions
Once again, readability counts more than performance. There are a few cases where
map is faster than list comprehensions and generators, but only if the map function
can use a predefined function. As soon as you need to whip out lambda, it's actually
slower. Not that it matters much, since readability should be key anyhow, use
generators or list comprehensions instead of map:

In [1]: %timeit list(map(lambda x: x/2, range(1000000)))
10 loops, best of 3: 182 ms per loop

In [2]: %timeit list(x/2 for x in range(1000000))
10 loops, best of 3: 122 ms per loop

In [3]: %timeit [x/2 for x in range(1000000)]
10 loops, best of 3: 84.7 ms per loop

As you can see, the list comprehension is obviously quite a bit faster than the
generator. In many cases I would still recommend the generator over the list
comprehension though, if only because of the memory usage and the potential
laziness. If for some reason you are only going to use the first 10 items, you're still
wasting a lot of resources by calculating the full list of items.

Caching
We have already covered the functools.lru_cache decorator in Chapter 5,
Decorators – Enabling Code Reuse by Decorating but the importance should not be
underestimated. Regardless of how fast and smart your code is, not having to
calculate results is always better and that's what caching does. Depending on your
use case, there are many options available. Within a simple script, functools.lru_
cache is a very good contender, but between multiple executions of an application,
the cPickle module can be a life saver as well.

If multiple servers are involved, I recommend taking a look at Redis. The Redis server
is a single threaded in-memory server which is extremely fast and has many useful
data structures available. If you see articles or tutorials about improving performance
using Memcached, simply replace Memcached with Redis everywhere. Redis is
superior to Memcached in every way and in its most basic form the API is compatible.

Chapter 12

[367]

Lazy imports
A common problem in application load times is that everything is loaded
immediately at the start of the program, while with many applications this is actually
not needed and certain parts of the application only require loading when they are
actually used. To facilitate this, one can occasionally move the imports inside of
functions so they can be loaded on demand.

While it's a valid strategy in some cases, I don't generally recommend it for
two reasons:

1.	 It makes your code less clear; having all imports in the same style at the top
of the file improves readability.

2.	 It doesn't make the code faster as it just moves the load time to a
different part.

Using optimized libraries
This is actually a very broad tip, but useful nonetheless. If there's a highly optimized
library which suits your purpose, you most likely won't be able to beat its performance
without a significant amount of effort. Libraries such as numpy, pandas, scipy, and
sklearn are highly optimized for performance and their native operations can be
incredibly fast. If they suit your purpose, be sure to give them a try. Just to illustrate
how fast numpy can be compared to plain Python, refer to the following:

In [1]: import numpy

In [2]: a = list(range(1000000))

In [3]: b = numpy.arange(1000000)

In [4]: %timeit c = [x for x in a if x > 500000]
10 loops, best of 3: 44 ms per loop

In [5]: %timeit d = b[b > 500000]
1000 loops, best of 3: 1.61 ms per loop

The numpy code does exactly the same as the Python code, except that it uses numpy
arrays instead of Python lists. This little difference has made the code more than 25
times faster.

Performance – Tracking and Reducing Your Memory and CPU Usage

[368]

Just-in-time compiling
Just-in-time (JIT) compiling is a method of dynamically compiling (parts) an
application during runtime. Because there is much more information available at
runtime, this can have a huge effect and make your application much faster.

The numba package provides selective JIT compiling for you, allowing you to mark
the functions that are JIT compiler compatible. Essentially, if your functions follow
the functional programming paradigm of basing the calculations only on the input,
then it will most likely work with the JIT compiler.

Basic example of how the numba JIT compiler can be used:

import numba

@numba.jit
def sum(array):
 total = 0.0
 for value in array:
 total += value
 return value

The use cases for these are limited, but if you are using numpy or pandas you will
most likely benefit from numba.

Another very interesting fact to note is that numba supports not only CPU optimized
execution but GPU as well. This means that for certain operations you can use the
fast processor in your video card to process the results.

Converting parts of your code to C
We will see more about this in Chapter 14, Extensions in C/C++, System Calls, and C/C++
Libraries, but if high performance is really required, then a native C function can help
quite a lot. This doesn't even have to be that difficult. The Cython module makes it
trivial to write parts of your code with performance very close to native C code.

Following is an example from the Cython manual to approximate the value of pi:

cdef inline double recip_square(int i):
 return 1./(i*i)

def approx_pi(int n=10000000):
 cdef double val = 0.
 cdef int k

Chapter 12

[369]

 for k in xrange(1,n+1):
 val += recip_square(k)
 return (6 * val)**.5

While there are some small differences such as cdef instead of def and type
definitions for the values and parameters, the code is largely the same as regular
Python would be, but certainly much faster.

Memory usage
So far we have simply looked at the execution times and ignored the memory
usage of the scripts. In many cases, the execution times are the most important, but
memory usage should not be ignored. In almost all cases, CPU and memory are
traded; a code either uses a lot of CPU or a lot of memory, which means that both
do matter a lot.

Tracemalloc
Monitoring memory usage used to be something that was only possible through
external Python modules such as Dowser or Heapy. While those modules still work,
they are largely obsolete now because of the tracemalloc module. Let's give the
tracemalloc module a try to see how easy memory usage monitoring is nowadays:

import tracemalloc

if __name__ == '__main__':
 tracemalloc.start()

 # Reserve some memory
 x = list(range(1000000))

 # Import some modules
 import os
 import sys
 import asyncio

 # Take a snapshot to calculate the memory usage
 snapshot = tracemalloc.take_snapshot()
 for statistic in snapshot.statistics('lineno')[:10]:
 print(statistic)

Performance – Tracking and Reducing Your Memory and CPU Usage

[370]

This results in:

python3 test_tracemalloc.py

test_tracemalloc.py:8: size=35.3 MiB, count=999745, average=37 B

<frozen importlib._bootstrap_external>:473: size=1909 KiB, count=20212,
average=97 B

<frozen importlib._bootstrap>:222: size=895 KiB, count=3798, average=241
B

collections/__init__.py:412: size=103 KiB, count=1451, average=72 B

<string>:5: size=36.6 KiB, count=133, average=282 B

collections/__init__.py:406: size=29.9 KiB, count=15, average=2039 B

abc.py:133: size=26.1 KiB, count=102, average=262 B

ipaddress.py:608: size=21.3 KiB, count=182, average=120 B

<frozen importlib._bootstrap_external>:53: size=21.2 KiB, count=140,
average=155 B

types.py:234: size=15.3 KiB, count=124, average=127 B

You can easily see how every part of the code allocated memory and where it might
be wasted. While it might still be unclear which part was actually causing the memory
usage, there are options for that as well, as we will see in the following sections.

Memory profiler
The memory_profiler module is very similar to line_profiler discussed earlier,
but for memory usage instead. Installing it is as easy as pip install memory_
profiler, but the optional pip install psutil is also highly recommended (and
required in the case of Windows) as it increases your performance by a large amount.
To test line_profiler, we will use the following script:

import memory_profiler

@memory_profiler.profile
def main():
 n = 100000
 a = [i for i in range(n)]
 b = [i for i in range(n)]
 c = list(range(n))
 d = list(range(n))
 e = dict.fromkeys(a, b)
 f = dict.fromkeys(c, d)

if __name__ == '__main__':
 main()

Chapter 12

[371]

Note that we actually import the memory_profiler here although that is not strictly
required. It can also be executed through python3 -m memory_profiler your_
scripts.py:

python3 test_memory_profiler.py

Filename: test_memory_profiler.py

Line # Mem usage Increment Line Contents

==

 4 11.0 MiB 0.0 MiB @memory_profiler.profile

 5 def main():

 6 11.0 MiB 0.0 MiB n = 100000

 7 14.6 MiB 3.5 MiB a = [i for i in range(n)]

 8 17.8 MiB 3.2 MiB b = [i for i in range(n)]

 9 21.7 MiB 3.9 MiB c = list(range(n))

 10 25.5 MiB 3.9 MiB d = list(range(n))

 11 38.0 MiB 12.5 MiB e = dict.fromkeys(a, b)

 12 44.1 MiB 6.1 MiB f = dict.fromkeys(c, d)

Even though everything runs as expected, you might be wondering about the
varying amounts of memory used by the lines of code here. Why does a take 3.5
MiB and b only 3.2 MiB? This is caused by the Python memory allocation code;
it reserves memory in larger blocks, which is subdivided and reused internally.
Another problem is that memory_profiler takes snapshots internally, which results
in memory being attributed to the wrong variables in some cases. The variations
should be small enough to not make a large difference in the end, but some changes
are to be expected.

This module can be added as an IPython extension as well,
which enables the %mprun command within IPython. To load
the extension, the load_ext command can be used from the
IPython shell %load_ext memory_profiler. Another very
useful command is %memit which is the memory equivalent of
the %timeit command.

Performance – Tracking and Reducing Your Memory and CPU Usage

[372]

Memory leaks
The usage of these modules will generally be limited to the search for memory leaks.
Especially the tracemalloc module has a few features to make that fairly easy. The
Python memory management system is fairly simple; it just has a simple reference
counter to see if an object is used. While this works great in most cases, it can easily
introduce memory leaks when circular references are involved. The basic premise of
a memory leak with leak detection code looks like this:

 1 import tracemalloc
 2
 3
 4 class Spam(object):
 5 index = 0
 6 cache = {}
 7
 8 def __init__(self):
 9 Spam.index += 1
10 self.cache[Spam.index] = self
11
12
13 class Eggs(object):
14 eggs = []
15
16 def __init__(self):
17 self.eggs.append(self)
18
19
20 if __name__ == '__main__':
21 # Initialize some variables to ignore them from the leak
22 # detection
23 n = 200000
24 spam = Spam()
25
26 tracemalloc.start()
27 # Your application should initialize here
28
29 snapshot_a = tracemalloc.take_snapshot()
30 # This code should be the memory leaking part
31 for i in range(n):
32 Spam()
33
34 Spam.cache = {}
35 snapshot_b = tracemalloc.take_snapshot()

Chapter 12

[373]

36 # And optionally more leaking code here
37 for i in range(n):
38 a = Eggs()
39 b = Eggs()
40 a.b = b
41 b.a = a
42
43 Eggs.eggs = []
44 snapshot_c = tracemalloc.take_snapshot()
45
46 print('The first leak:')
47 statistics = snapshot_b.compare_to(snapshot_a, 'lineno')
48 for statistic in statistics[:10]:
49 print(statistic)
50
51 print('\nThe second leak:')
52 statistics = snapshot_c.compare_to(snapshot_b, 'lineno')
53 for statistic in statistics[:10]:
54 print(statistic)

Let's see how bad this code is actually leaking:

python3 test_leak.py

The first leak:

tracemalloc.py:349: size=528 B (+528 B), count=3 (+3), average=176 B

test_leak.py:34: size=288 B (+288 B), count=2 (+2), average=144 B

test_leak.py:32: size=120 B (+120 B), count=2 (+2), average=60 B

tracemalloc.py:485: size=64 B (+64 B), count=1 (+1), average=64 B

tracemalloc.py:487: size=56 B (+56 B), count=1 (+1), average=56 B

tracemalloc.py:277: size=32 B (+32 B), count=1 (+1), average=32 B

test_leak.py:31: size=28 B (+28 B), count=1 (+1), average=28 B

test_leak.py:9: size=28 B (+28 B), count=1 (+1), average=28 B

The second leak:

test_leak.py:41: size=18.3 MiB (+18.3 MiB), count=400000 (+400000),
average=48 B

test_leak.py:40: size=18.3 MiB (+18.3 MiB), count=400000 (+400000),
average=48 B

test_leak.py:38: size=10.7 MiB (+10.7 MiB), count=200001 (+200001),
average=56 B

test_leak.py:39: size=10.7 MiB (+10.7 MiB), count=200002 (+200002),
average=56 B

Performance – Tracking and Reducing Your Memory and CPU Usage

[374]

tracemalloc.py:349: size=680 B (+152 B), count=6 (+3), average=113 B

test_leak.py:17: size=72 B (+72 B), count=1 (+1), average=72 B

test_leak.py:43: size=64 B (+64 B), count=1 (+1), average=64 B

test_leak.py:32: size=56 B (-64 B), count=1 (-1), average=56 B

tracemalloc.py:487: size=112 B (+56 B), count=2 (+1), average=56 B

tracemalloc.py:277: size=64 B (+32 B), count=2 (+1), average=32 B

In absolute memory usage the increase is not even that great, but it is definitely
leaking a little. The first leak is negligible; at the last iteration we see an increase of
28 bytes which is next to nothing. The second leak however leaks a lot and peaks at
a 18.3 megabyte increase. Those are memory leaks, the Python garbage collector (gc)
is smart enough to clean circular references eventually but it won't clean them until a
certain limit is reached. More about that soon.

Whenever you want to have a circular reference that does not cause memory leaks,
the weakref module is available. It creates reference which don't count towards the
object reference count. Before we look at the weakref module, let's take a look at the
object references themselves through the eyes of the Python garbage collector (gc):

import gc

class Eggs(object):

 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return '<%s: %s>' % (self.__class__.__name__, self.name)

Create the objects
a = Eggs('a')
b = Eggs('b')

Add some circular references
a.b = a
b.a = b

Remove the objects
del a
del b

See if the objects are still there

Chapter 12

[375]

print('Before manual collection:')
for object_ in gc.get_objects():
 if isinstance(object_, Eggs):
 print('\t', object_, gc.get_referents(object_))

print('After manual collection:')
gc.collect()
for object_ in gc.get_objects():
 if isinstance(object_, Eggs):
 print('\t', object_, gc.get_referents(object_))

print('Thresholds:', gc.get_threshold())

So let's have a look at the output:

python3 test_refcount.py

Before manual collection:

 <Eggs: a> [{'b': <Eggs: a>, 'name': 'a'}, <class '__main__.
Eggs'>]

 <Eggs: b> [{'name': 'b', 'a': <Eggs: b>}, <class '__main__.
Eggs'>]

After manual collection:

Thresholds: (700, 10, 10)

As we can see here, until we manually call the garbage collector, the Eggs objects
will stay in the memory. Even after explicitly deleting the objects. So does this mean
you are always required to manually call gc.collect() to remove these references?
Luckily that's not needed, as the Python garbage collector will automatically collect
once the thresholds have been reached. By default, the thresholds for the Python
garbage collector are set to 700, 10, 10 for the three generations of collected
objects. The collector keeps track of all the memory allocations and deallocations in
Python, and as soon as the number of allocations minus the number of deallocations
reaches 700, the object is either removed if it's not referenced anymore or it is moved
to the next generation if it still has a reference. The same is repeated for generation 2
and 3, albeit with the lower thresholds of 10.

This begs the question: where and when is it useful to manually call the garbage
collector? Since the Python memory allocator reuses blocks of memory and only
rarely releases it, for long running scripts the garbage collector can be very useful.
That's exactly where I recommend its usage: long running scripts in memory-strapped
environments and specifically, right before you allocate a large amount of memory.

Performance – Tracking and Reducing Your Memory and CPU Usage

[376]

More to the point however, the gc module can help you a lot when looking for
memory leaks as well. The tracemalloc module can show you the parts that take the
most memory in bytes but the gc module can help you find the most defined objects.
Just be careful with setting the garbage collector debug settings such as gc.set_
debug(gc.DEBUG_LEAK); it returns a large amount of output even if you don't reserve
any memory yourself. Revisiting our Spam and Eggs script from earlier, let's see where
and how the memory is being used using the garbage collection module:

import gc
import collections

class Spam(object):
 index = 0
 cache = {}

 def __init__(self):
 Spam.index += 1
 self.cache[Spam.index] = self

class Eggs(object):
 eggs = []

 def __init__(self):
 self.eggs.append(self)

if __name__ == '__main__':
 n = 200000
 for i in range(n):
 Spam()

 for i in range(n):
 a = Eggs()
 b = Eggs()
 a.b = b
 b.a = a

 Spam.cache = {}
 Eggs.eggs = []
 objects = collections.Counter()
 for object_ in gc.get_objects():
 objects[type(object_)] += 1

 for object_, count in objects.most_common(5):
 print('%d: %s' % (count, object_))

Chapter 12

[377]

The output is probably close to what you were already expecting:

python3 test_leak.py

400617: <class 'dict'>

400000: <class '__main__.Eggs'>

962: <class 'wrapper_descriptor'>

920: <class 'function'>

625: <class 'method_descriptor'>

The large amount of dict objects is because of the internal state of the classes, but
beyond that we simply see the Eggs objects just as we would expect. The Spam
objects were properly removed by the garbage collector because they and all of the
references were just removed. The Eggs objects couldn't be removed because of the
circular references. Now we will repeat the same example using the weakref module
to see if it makes a difference:

import gc
import weakref
import collections

class Eggs(object):
 eggs = []

 def __init__(self):
 self.eggs.append(self)

if __name__ == '__main__':
 n = 200000
 for i in range(n):
 a = Eggs()
 b = Eggs()
 a.b = weakref.ref(b)
 b.a = weakref.ref(a)

 Eggs.eggs = []
 objects = collections.Counter()
 for object_ in gc.get_objects():
 objects[type(object_)] += 1

 for object_, count in objects.most_common(5):
 print('%d: %s' % (count, object_))

Performance – Tracking and Reducing Your Memory and CPU Usage

[378]

Now let's see what remained this time:

python3 test_leak.py

962: <class 'wrapper_descriptor'>

919: <class 'function'>

625: <class 'method_descriptor'>

618: <class 'dict'>

535: <class 'builtin_function_or_method'>

Nothing besides some standard built-in Python objects, which is exactly what we
had hoped for. Be careful with weak references though, as they can easily blow up in
your face if the referenced object has disappeared:

import weakref

class Eggs(object):
 pass

if __name__ == '__main__':
 a = Eggs()
 b = Eggs()
 a.b = weakref.ref(b)

 print(a.b())
 del b
 print(a.b())

This results in one working reference and a dead one:

python3 test_weakref.py

<__main__.Eggs object at 0x104891a20>

None

Reducing memory usage
In general, memory usage probably won't be your biggest problem in Python, but it
can still be useful to know what you can do to reduce memory usage. When trying to
reduce memory usage, it's important to understand how Python allocates memory.

Chapter 12

[379]

There are four concepts which you need to know about within the Python memory
manager:

•	 First we have the heap. The heap is the collection of all Python managed
memory. Note that this is separate from the regular heap and mixing the two
could result in corrupt memory and crashes.

•	 Second are the arenas. These are the chunks that Python requests from the
system. These chunks have a fixed size of 256 KiB each and they are the
objects that make up the heap.

•	 Third we have the pools. These are the chunks of memory that make up the
arenas. These chunks are 4 KiB each. Since the pools and arenas have fixed
sizes, they are simple arrays.

•	 Fourth and last, we have the blocks. The Python objects get stored within
these and every block has a specific format depending on the data type. Since
an integer takes up more space than a character, for efficiency a different
block size is used.

Now that we know how the memory is allocated, we can also understand how it can
be returned to the operating system. Whenever an arena is completely empty, it can
and will be freed. To increase the likelihood of this happening, some heuristics are
used to maximize the usage of fuller arenas.

It is important to note that the regular heap and Python heap are
maintained separately as mixing them can result in corruption
and/or crashing of applications. Unless you write your own
extensions, you will probably never have to worry about manual
memory allocation though.

Generators versus lists
The most important tip is to use generators whenever possible. Python 3 has come a
long way in replacing lists with generators already, but it really pays off to keep that
in mind as it saves not only memory, but CPU as well when not all of that memory
needs to be kept at the same time.

To illustrate the difference:

Line # Mem usage Increment Line Contents

==

 4 11.0 MiB 0.0 MiB @memory_profiler.profile

 5 def main():

 6 11.0 MiB 0.0 MiB a = range(1000000)

 7 49.7 MiB 38.6 MiB b = list(range(1000000))

Performance – Tracking and Reducing Your Memory and CPU Usage

[380]

The range() generator takes such little memory that it doesn't even register, whereas
the list of numbers takes 38.6 MiB.

Recreating collections versus removing items
One very important detail about collections in Python is that many of them can only
grow; they won't just shrink by themselves. To illustrate:

Line # Mem usage Increment Line Contents

==

 4 11.5 MiB 0.0 MiB @memory_profiler.profile

 5 def main():

 6 # Generate a huge dict

 7 26.3 MiB 14.8 MiB a = dict.fromkeys(range(100000))

 8

 9 # Remove all items

 10 26.3 MiB 0.0 MiB for k in list(a.keys()):

 11 26.3 MiB 0.0 MiB del a[k]

 12

 13 # Recreate the dict

 14 23.6 MiB -2.8 MiB a = dict((k, v) for k, v in a.items())

This is one of the most common memory usage mistakes made with lists and
dictionaries. Besides recreating the objects, there is, of course, also the option of using
generators instead so the memory is never allocated at all.

Using slots
If you've used Python for a long time you may have seen the __slots__ feature of
classes. It allows you to specify which fields you want to store in a class and it skips
all the others by not implementing instance.__dict__. While this method does
save a little bit of memory in your class definitions, I recommend against its usage
as there are several downsides to using it. The most important one is that they make
inheritance non-obvious (adding __slots__ to a subclassed class that doesn't have
__slots__ has no effect). It also makes it impossible to modify class attributes on the
fly and breaks weakref by default. And lastly, classes with slots cannot be pickled
without defining a __getstate__ function.

Chapter 12

[381]

For completeness however, here's a demonstration of the slots feature and the
difference in memory usage:

import memory_profiler

class Slots(object):
 __slots__ = 'index', 'name', 'description'

 def __init__(self, index):
 self.index = index
 self.name = 'slot %d' % index
 self.description = 'some slot with index %d' % index

class NoSlots(object):

 def __init__(self, index):
 self.index = index
 self.name = 'slot %d' % index
 self.description = 'some slot with index %d' % index

@memory_profiler.profile
def main():
 slots = [Slots(i) for i in range(25000)]
 no_slots = [NoSlots(i) for i in range(25000)]
 return slots, no_slots

if __name__ == '__main__':
 main()

And the memory usage:

python3 test_slots.py

Filename: test_slots.py

Line # Mem usage Increment Line Contents

==

 21 11.1 MiB 0.0 MiB @memory_profiler.profile

 22 def main():

Performance – Tracking and Reducing Your Memory and CPU Usage

[382]

 23 17.0 MiB 5.9 MiB slots = [Slots(i) for i in
range(25000)]

 24 25.0 MiB 8.0 MiB no_slots = [NoSlots(i) for i in
range(25000)]

 25 25.0 MiB 0.0 MiB return slots, no_slots

You might argue that this is not a fair comparison, since they both store a lot of
data which skews the results. And you would indeed be right, because the "bare"
comparison storing only index and nothing else gives 2 MiB versus 4.5 MiB. But
let's be honest, if you're not going to store data, then what's the point in creating
class instances? That's why I recommend against the usage of __slots__ and instead
recommend the usage of tuples or collections.namedtuple if memory is that
important. There is one more structure that's even more memory efficient, the array
module. It stores the data in pretty much a bare memory array. Note that this is
generally slower than lists and much less convenient to use.

Performance monitoring
So far we have seen how to measure and improve both CPU and memory performance,
but there is one part we have completely skipped over. Performance changes due to
external factors such as growing amounts of data are very hard to predict. In real life
applications, bottlenecks aren't constant. They change all the time and code that was
once extremely fast might bog down as soon as more load is applied.

Because of that I recommend implementing a monitoring solution that tracks
the performance of anything and everything over time. The big problem with
performance monitoring is that you can't know what will slow down in the future
and what the cause is going to be. I've even had websites slow down because of
Memcached and Redis calls. These are memory only caching servers that respond
well within a millisecond which makes slowdowns highly unlikely, until you do
over a 100 cache calls and the latency towards the cache server increases from
0.1 milliseconds to 2 milliseconds, and all of a sudden those 100 calls take 200
milliseconds instead of 10 milliseconds. Even though 200 milliseconds still sounds
like very little, if your total page load time is generally below 100 milliseconds, that is
all of a sudden an enormous increase and definitely noticeable.

Chapter 12

[383]

To monitor performance and to be able to track changes over time and find the
responsible components, I am personally a big fan of the Statsd statistic collection server
together with the Graphite interface. Even though usability is a bit lacking, the result
is a graphing interface which you can dynamically query to analyze when, where,
and how your performance changed. To be able to use these you will have to send the
metrics from your application towards the Statsd server. To do just that, I have written
the Python-Statsd (https://pypi.python.org/pypi/python-statsd) and Django-
Statsd (https://pypi.python.org/pypi/django-statsd) packages. These packages
allow you to monitor your application from beginning to end, and in the case of Django
you will be able to monitor your performance per application or view and within those
see all of the components, such as the database, template, and caching layers. This way,
you know exactly what is causing the slowdowns in your website (or application).

Summary
When it comes to performance, there is no holy grail, no single thing you can do to
ensure peak performance in all cases. This shouldn't worry you however, as in most
cases you will never need to tune the performance and if you do, a single tweak
could probably fix your problem. You should be able to find performance problems
and memory leaks in your code now which is what matters most, so just try to
contain yourself and only tweak when it's actually needed.

The most important outtakes from this chapter are:

•	 Test before you invest any effort. Making some functions faster seems like a
great achievement but it is only rarely needed.

•	 Choosing the correct data structure/algorithm is much more effective
than any other performance optimization.

•	 Circular references drain the memory until the garbage collector
starts cleaning.

•	 Slots are not worth the effort.

The next chapter will discuss multiprocessing, a library which makes it trivial
to employ multiple processors for your scripts. If you can't squeeze any more
performance out of your script, multiprocessing might be your answer, as every
(remote?) CPU core can make your script faster.

https://pypi.python.org/pypi/python-statsd
https://pypi.python.org/pypi/django-statsd

[385]

Multiprocessing – When a
Single CPU Core Is

Not Enough
In the previous chapter, we discussed factors that influence performance and some
methods to increase performance. This chapter can actually be seen as an extension
to the list of performance tips. In this chapter, we will discuss the multiprocessing
module, a module that makes it very easy to make your code run on multiple CPU
cores and even on multiple machines. This is an easy way to work around the Global
Interpreter Lock (GIL) that was discussed in the previous chapter.

To summarize, this chapter will cover:

•	 Local multiprocessing
•	 Remote multiprocessing
•	 Data sharing and synchronization between processes

Multithreading versus multiprocessing
Within this book we haven't really covered multithreading yet, but you have
probably seen multithreaded code in the past. The big difference between
multithreading and multiprocessing is that with multithreading everything is still
executed within a single process. That effectively limits your performance to a single
CPU core. It actually limits you even further because the code has to deal with the
GIL limitations of CPython.

Multiprocessing – When a Single CPU Core Is Not Enough

[386]

The GIL is the global lock that Python uses for safe memory access.
It is discussed in more detail in Chapter 12, Performance – Tracking
and Reducing Your Memory and CPU Usage, about performance.

To illustrate that multithreading code doesn't help performance in all cases and can
actually be slightly slower than single threaded code, look at this example:

import datetime
import threading

def busy_wait(n):
 while n > 0:
 n -= 1

if __name__ == '__main__':
 n = 10000000
 start = datetime.datetime.now()
 for _ in range(4):
 busy_wait(n)
 end = datetime.datetime.now()
 print('The single threaded loops took: %s' % (end - start))

 start = datetime.datetime.now()
 threads = []
 for _ in range(4):
 thread = threading.Thread(target=busy_wait, args=(n,))
 thread.start()
 threads.append(thread)

 for thread in threads:
 thread.join()

 end = datetime.datetime.now()
 print('The multithreaded loops took: %s' % (end - start))

With Python 3.5, which has the new and improved GIL implementation (introduced
in Python 3.2), the performance is quite comparable but there is no improvement:

python3 test_multithreading.py

The single threaded loops took: 0:00:02.623443

The multithreaded loops took: 0:00:02.597900

Chapter 13

[387]

With Python 2.7, which still has the old GIL, the performance is a lot better in the
single threaded variant:

python2 test_multithreading.py

The single threaded loops took: 0:00:02.010967

The multithreaded loops took: 0:00:03.924950

From this test we can conclude that Python 2 is faster in some cases while Python 3 is
faster in other cases. What you should take from this is that there is no performance
reason to choose between Python 2 or Python 3 specifically. Just note that Python 3 is
at least as fast as Python 2 in most cases and if that is not the case, it will be fixed soon.

Regardless, for CPU-bound operations, threading does not offer any performance
benefit since it executes on a single processor core. For I/O bound operations
however, the threading library does offer a clear benefit, but in that case I would
recommend trying asyncio instead. The biggest problem with threading is that if
one of the threads blocks, the main process blocks.

The multiprocessing library offers an API that is very similar to the threading
library but utilizes multiple processes instead of multiple threads. The advantages
are that the GIL is no longer an issue and that multiple processor cores and even
multiple machines can be used for processing.

To illustrate the performance difference, let's repeat the test while using the
multiprocessing module instead of threading:

import datetime
import multiprocessing

def busy_wait(n):
 while n > 0:
 n -= 1

if __name__ == '__main__':
 n = 10000000
 start = datetime.datetime.now()

 processes = []
 for _ in range(4):
 process = multiprocessing.Process(
 target=busy_wait, args=(n,))
 process.start()

Multiprocessing – When a Single CPU Core Is Not Enough

[388]

 processes.append(process)

 for process in processes:
 process.join()

 end = datetime.datetime.now()
 print('The multiprocessed loops took: %s' % (end - start))

When running it, we see a huge improvement:

python3 test_multiprocessing.py

The multiprocessed loops took: 0:00:00.671249

Note that this was run on a quad core processor, which is why I chose four processes.
The multiprocessing library defaults to multiprocessing.cpu_count() which
counts the available CPU cores, but that method fails to take CPU hyper-threading
into account. Which means it would return 8 in my case and that is why I hardcoded
it to 4 instead.

It's important to note that because the multiprocessing library
uses multiple processes, the code needs to be imported from the sub
processes. The result is that the multiprocessing library does not
work within the Python or IPython shells. As we will see later in this
chapter, IPython has its own provisions for multiprocessing.

Hyper-threading versus physical CPU
cores
In most cases, hyper-threading is very useful and improves performance, but
when you truly maximize CPU usage it is generally better to only use the physical
processor count. To demonstrate how this affects the performance, we will run the
tests from the previous section again. This time with 1, 2, 4, 8, and 16 processes to
demonstrate how it affects the performance. Luckily, the multiprocessing library
has a nice Pool class to manage the processes for us:

import sys
import datetime
import multiprocessing

def busy_wait(n):
 while n > 0:

Chapter 13

[389]

 n -= 1

if __name__ == '__main__':
 n = 10000000
 start = datetime.datetime.now()
 if sys.argv[-1].isdigit():
 processes = int(sys.argv[-1])
 else:
 print('Please specify the number of processes')
 print('Example: %s 4' % ' '.join(sys.argv))
 sys.exit(1)

 with multiprocessing.Pool(processes=processes) as pool:
 # Execute the busy_wait function 8 times with parameter n
 pool.map(busy_wait, [n for _ in range(8)])

 end = datetime.datetime.now()
 print('The multithreaded loops took: %s' % (end - start))

The pool code makes starting a pool of workers and processing a queue a bit simpler
as well. In this case we used map but there are several other options such as imap,
map_async, imap_unordered, apply, apply_async, starmap, and starmap_async.
Since these are very similar to how the similarly named itertools methods work,
there won't be specific examples for all of them.

But now, the tests with varying amounts of processes:

python3 test_multiprocessing.py 1

The multithreaded loops took: 0:00:05.297707

python3 test_multiprocessing.py 2

The multithreaded loops took: 0:00:02.701344

python3 test_multiprocessing.py 4

The multithreaded loops took: 0:00:01.477845

python3 test_multiprocessing.py 8

The multithreaded loops took: 0:00:01.579218

python3 test_multiprocessing.py 16

The multithreaded loops took: 0:00:01.595239

Multiprocessing – When a Single CPU Core Is Not Enough

[390]

You probably weren't expecting these results, but this is exactly the problem with
hyper-threading. As soon as the single processes actually use 100 percent of a CPU
core, the task switching between the processes actually reduces performance. Since
there are only 4 physical cores, the other 4 have to fight to get something done on the
processor cores. This fight takes time which is why the 4 process version is slightly
faster than the 8 process version. Additionally, the scheduling effect can be seen in
the runs using 1 and 2 cores as well. If we look at the single core version, we see
that it took 5.3 seconds, which means that 4 cores should do it in 5.3 / 4 = 1.325
seconds instead of the 1.48 seconds it actually took. The 2 core version has a similar
effect, 2.7 / 2 = 1.35 seconds which is still faster than 4 core version.

If you are truly pressed for performance with a CPU-bound problem then matching
the physical CPU cores is the best solution. If you do not expect to maximize all cores
all the time, then I recommend leaving it to the default as hyper-threading definitely
has some performance benefits in other scenarios.

It all depends on your use-case however and the only way to know for certain is to
test for your specific scenario:

•	 Disk I/O bound? A single process is most likely your best bet.
•	 CPU bound? The amount of physical CPU cores is your best bet.
•	 Network I/O bound? Start with the defaults and tune if needed.
•	 No obvious bound but many parallel processes are needed? Perhaps you

should try asyncio instead of multiprocessing.

Note that the creation of multiple processes is not free in terms of memory and open
files, whereas you could have a nearly unlimited amount of coroutines this is not the
case for processes. Depending on your operating system configuration, it could max
out long before you even reach a hundred, and even if you reach those numbers,
CPU scheduling will be your bottleneck instead.

Creating a pool of workers
Creating a processing pool of worker processes is generally a difficult task. You need
to take care of scheduling jobs, processing the queue, handling the processes, and
the most difficult part, handling synchronization between the processes without too
much overhead.

Chapter 13

[391]

With multiprocessing however, these problems have been solved already. You can
simply create a process pool with a given number of processes and just add tasks to
it whenever you need to. The following is an example of a multiprocessing version of
the map operator and demonstrates that processing will not stall the application:

import time
import multiprocessing

def busy_wait(n):
 while n > 0:
 n -= 1

if __name__ == '__main__':
 n = 10000000
 items = [n for _ in range(8)]
 with multiprocessing.Pool() as pool:
 results = []
 start = time.time()
 print('Start processing...')
 for _ in range(5):
 results.append(pool.map_async(busy_wait, items))
 print('Still processing %.3f' % (time.time() - start))
 for result in results:
 result.wait()
 print('Result done %.3f' % (time.time() - start))
 print('Done processing: %.3f' % (time.time() - start))

The processing itself is pretty straightforward. The point is that the pool stays
available and you are not required to wait for it. Just add jobs whenever you need to
and use the asynchronous results as soon as they are available:

python3 test_pool.py

Start processing...

Still processing 0.000

Result done 1.513

Result done 2.984

Result done 4.463

Result done 5.978

Result done 7.388

Done processing: 7.388

Multiprocessing – When a Single CPU Core Is Not Enough

[392]

Sharing data between processes
This is really the most difficult part about multiprocessing, multithreading, and
distributed programming - which data to pass along and which data to skip. The
theory is really simple, however: whenever possible don't transfer any data, don't share
anything, and keep everything local. Essentially the functional programming paradigm,
which is why functional programming mixes really well with multiprocessing. In
practice, regrettably, this is simply not always possible. The multiprocessing library
has several options to share data: Pipe, Namespace, Queue, and a few others. All these
options might tempt you to share your data between the processes all the time. This
is indeed possible, but the performance impact is, in many cases, more than what
the distributed calculation will offer as extra power. All data sharing options come
at the price of synchronization between all processing kernels, which takes a lot of
time. Especially with distributed options, these synchronizations can take several
milliseconds or, if executed globally, cause hundreds of milliseconds of latency.

The multiprocessing namespace behaves just as a regular object would work, with
one small difference that all the actions are safe for multiprocessing. With all this
power, namespaces are still very easy to use:

import multiprocessing
manager = multiprocessing.Manager()
namespace = manager.Namespace()
namespace.spam = 123
namespace.eggs = 456

A pipe is not that much more interesting either. It's just a bidirectional
communication endpoint which allows both reading and writing. In this regard,
it simply offers you a reader and a writer, and because of that, you can combine
multiple processes/endpoints. The only thing you must always keep in mind when
synchronizing data is that locking takes time. For a proper lock to be set, all the
parties need to agree that the data is locked, which is a process that takes time. And
that simple fact slows down execution much more than most people would expect.

On a regular hard disk setup, the database servers aren't able to handle more than
about 10 transactions per second on the same row due to locking and disk latency.
Using lazy file syncing, SSDs, and battery backed RAID cache, that performance
can be increased to handle, perhaps, a 100 transactions per second on the same row.
Those are simple hardware limitations, because you have multiple processes trying
to write to a single target you need to synchronize the actions between the processes
and that takes a lot of time.

Chapter 13

[393]

The "database servers" statistic is a common statistic for all
database servers that offer safe and consistent data storage.

Even with the fastest hardware available, synchronization can lock all the processes
and produce enormous slowdowns, so if at all possible, try to avoid sharing data
between multiple processes. Put simply, if all the processes are reading and writing
from/to the same object, it is generally faster to use a single process instead.

Remote processes
So far, we have only executed our scripts on multiple local processors, but we can
actually expand this further. Using the multiprocessing library, it's actually very
easy to execute jobs on remote servers, but the documentation is currently still a bit
cryptic. There are actually a few ways of executing processes in a distributed way,
but the most obvious one isn't the easiest one. The multiprocessing.connection
module has both the Client and Listener classes, which facilitate secure
communication between the clients and servers in a simple way. Communication
is not the same as process management and queue management however, those
features requires some extra effort. The multiprocessing library is still a bit bare in
this regard, but it's most certainly possible given a few different processes.

Distributed processing using multiprocessing
First of all, we will start with a module with containing a few constants which
should be shared between all clients and the server, so the secret password and the
hostname of the server are available to all. In addition to that, we will add our prime
calculation functions, which we will be using later. The imports in the following
modules will expect this file to be stored as constants.py, but feel free to call it
anything you like as long as you modify the imports and references:

host = 'localhost'
port = 12345
password = b'some secret password'

def primes(n):
 for i, prime in enumerate(prime_generator()):
 if i == n:
 return prime

def prime_generator():

Multiprocessing – When a Single CPU Core Is Not Enough

[394]

 n = 2
 primes = set()
 while True:
 for p in primes:
 if n % p == 0:
 break
 else:
 primes.add(n)
 yield n
 n += 1

Now it's time to create the actual server which links the functions and the job queue:

import constants
import multiprocessing
from multiprocessing import managers

queue = multiprocessing.Queue()
manager = managers.BaseManager(address=('', constants.port),
 authkey=constants.password)

manager.register('queue', callable=lambda: queue)
manager.register('primes', callable=constants.primes)

server = manager.get_server()
server.serve_forever()

After creating the server, we need to have a script that sends the jobs, which will
actually be a regular client. It's simple enough really and a regular client can also
function as a processor, but to keep things sensible we will use them as separate
scripts. The following script will add 0 to 999 to the queue for processing:

from multiprocessing import managers
import functions

manager = managers.BaseManager(
 address=(functions.host, functions.port),
 authkey=functions.password)
manager.register('queue')
manager.connect()

queue = manager.queue()
for i in range(1000):
 queue.put(i)

Chapter 13

[395]

Lastly, we need to create a client to actually process the queue:

from multiprocessing import managers
import functions

manager = managers.BaseManager(
 address=(functions.host, functions.port),
 authkey=functions.password)
manager.register('queue')
manager.register('primes')
manager.connect()

queue = manager.queue()
while not queue.empty():
 print(manager.primes(queue.get()))

From the preceding code you can see how we pass along functions; the manager
allows registering of functions and classes which can be called from the clients as
well. With that we pass along a queue from the multiprocessing class which is safe
for both multithreading and multiprocessing. Now we need to start the processes
themselves. First the server which keeps on running:

python3 multiprocessing_server.py

After that, run the producer to generate the prime generation requests:

python3 multiprocessing_producer.py

And now we can run multiple clients on multiple machines to get the first 1000
primes. Since these clients now print the first 1000 primes, the output is a bit too
lengthy to show here, but you can simply run this in parallel on multiple machines to
generate your output:

python3 multiprocessing_client.py

Instead of printing, you can obviously use queues or pipes to send the output to a
different process if you'd like. As you can see verify though, it's still a bit of work
to process things in parallel and it requires some code synchronization to work.
There are a few alternatives available, such as ØMQ, Celery, and IPyparallel. Which
of these is the best and most suitable depends on your use case. If you are simply
looking for processing tasks on multiple CPUs, then multiprocessing and IPyparallel
are probably your best choices. If you are looking for background processing and/or
easy offloading to multiple machines, then ØMQ and Celery are better choices.

Multiprocessing – When a Single CPU Core Is Not Enough

[396]

Distributed processing using IPyparallel
The IPyparallel module (previously, IPython Parallel) is a module that makes it
really easy to process code on multiple computers at the same time. The library
supports more features than you are likely to need, but the basic usage is important
to know just in case you need to do heavy calculations which can benefit from
multiple computers. First let's start with installing the latest IPyparallel package and
all the IPython components:

pip install -U ipython[all] ipyparallel

Especially on Windows, it might be easier to install IPython
using Anaconda instead, as it includes binaries for many
science, math, engineering, and data analysis packages. To get
a consistent installation, the Anaconda installer is also available
for OS X and Linux systems.

Secondly, we need a cluster configuration. Technically this is optional, but since
we are going to create a distributed IPython cluster, it is much more convenient to
configure everything using a specific profile:

ipython profile create --parallel --profile=mastering_python

[ProfileCreate] Generating default config file: '~/.ipython/profile_
mastering_python/ipython_config.py'

[ProfileCreate] Generating default config file: '~/.ipython/profile_
mastering_python/ipython_kernel_config.py'

[ProfileCreate] Generating default config file: '~/.ipython/profile_
mastering_python/ipcontroller_config.py'

[ProfileCreate] Generating default config file: '~/.ipython/profile_
mastering_python/ipengine_config.py'

[ProfileCreate] Generating default config file: '~/.ipython/profile_
mastering_python/ipcluster_config.py'

These configuration files contain a huge amount of options so I recommend
searching for a specific section instead of walking through them. A quick listing gave
me about 2500 lines of configuration in total for these five files. The filenames already
provide hint about the purpose of the configuration files, but we'll explain them in a
little more detail since they are still a tad confusing.

Chapter 13

[397]

ipython_config.py
This is the generic IPython configuration file; you can customize pretty much
everything about your IPython shell here. It defines how your shell should look,
which modules should be loaded by default, whether or not to load a GUI, and quite
a bit more. For the purpose of this chapter not all that important but it's definitely
worth a look if you're going to use IPython more often. One of the things you can
configure here is the automatic loading of extensions, such as line_profiler and
memory_profiler discussed in the previous chapter. For example:

c.InteractiveShellApp.extensions = [
 'line_profiler',
 'memory_profiler',
]

ipython_kernel_config.py
This file configures your IPython kernel and allows you to overwrite/extend
ipython_config.py. To understand its purpose, it's important to know what
an IPython kernel is. The kernel, in this context, is the program that runs and
introspects the code. By default this is IPyKernel, which is a regular Python
interpreter, but there are also other options such as IRuby or IJavascript to run
Ruby or JavaScript respectively.

One of the more useful options is the possibility to configure the listening port(s) and
IP addresses for the kernel. By default the ports are all set to use a random number,
but it is important to note that if someone else has access to the same machine while
you are running your kernel, they will be able to connect to your IPython kernel
which can be dangerous on shared machines.

ipcontroller_config.py
ipcontroller is the master process of your IPython cluster. It controls the engines
and the distribution of tasks, and takes care of tasks such as logging.

The most important parameter in terms of performance is the TaskScheduler
setting. By default, the c.TaskScheduler.scheme_name setting is set to use the
Python LRU scheduler, but depending on your workload, others such as leastload
and weighted might be better. And if you have to process so many tasks on such a
large cluster that the scheduler becomes the bottleneck, there is also the plainrandom
scheduler that works surprisingly well if all your machines have similar specs and
the tasks have similar durations.

Multiprocessing – When a Single CPU Core Is Not Enough

[398]

For the purpose of our test we will set the IP of the controller to *, which means that
all IP addresses will be accepted and that every network connection will be accepted.
If you are in an unsafe environment/network and/or don't have any firewalls
which allow you to selectively enable certain IP addresses, then this method is not
recommended! In such cases, I recommend launching through more secure options,
such as SSHEngineSetLauncher or WindowsHPCEngineSetLauncher instead.

But, assuming your network is indeed safe, set the factory IP to all the local
addresses:

c.HubFactory.client_ip = '*'
c.RegistrationFactory.ip = '*'

Now start the controller:

ipcontroller --profile=mastering_python

[IPControllerApp] Hub listening on tcp://*:58412 for registration.

[IPControllerApp] Hub listening on tcp://127.0.0.1:58412 for
registration.

[IPControllerApp] Hub using DB backend: 'NoDB'

[IPControllerApp] hub::created hub

[IPControllerApp] writing connection info to ~/.ipython/profile_
mastering_python/security/ipcontroller-client.json

[IPControllerApp] writing connection info to ~/.ipython/profile_
mastering_python/security/ipcontroller-engine.json

[IPControllerApp] task::using Python leastload Task scheduler

[IPControllerApp] Heartmonitor started

[IPControllerApp] Creating pid file: .ipython/profile_mastering_python/
pid/ipcontroller.pid

[scheduler] Scheduler started [leastload]

[IPControllerApp] client::client b'\x00\x80\x00A\xa7' requested
'connection_request'

[IPControllerApp] client::client [b'\x00\x80\x00A\xa7'] connected

Pay attention to the files that were written to the security directory of the profile
directory. They have the authentication information which is used by ipengine to
find ipcontroller. It contains the ports, encryption keys, and IP address.

Chapter 13

[399]

ipengine_config.py
ipengine is the actual worker process. These processes run the actual calculations,
so to speed up the processing you will need these on as many machines as you
have available. You probably won't need to change this file, but it can be useful if
you want to configure centralized logging or need to change the working directory.
Generally, you don't want to start the ipengine process manually since you will
most likely want to launch multiple processes per computer. That's where our next
command comes in, the ipcluster command.

ipcluster_config.py
The ipcluster command is actually just an easy shorthand to start a combination of
ipcontroller and ipengine at the same time. For a simple local processing cluster,
I recommend using this, but when starting a distributed cluster, it can be useful
to have the control that the separate use of ipcontroller and ipengine offers. In
most cases the command offers enough options, so you might have no need for the
separate commands.

The most important configuration option is c.IPClusterEngines.engine_
launcher_class, as this controls the communication method between the engines
and the controller. Along with that, it is also the most important component for
secure communication between the processes. By default it's set to ipyparallel.
apps.launcher.LocalControllerLauncher which is designed for local processes
but ipyparallel.apps.launcher.SSHEngineSetLauncher is also an option if you
want to use SSH to communicate with the clients. Or ipyparallel.apps.launcher.
WindowsHPCEngineSetLauncher for Windows HPC.

Before we can create the cluster on all machines, we need to transfer the
configuration files. Your options are to transfer all the files or to simply transfer the
files in your IPython profile's security directory.

Now it's time to start the cluster, since we already started the ipcontroller
separately, we only need to start the engines. On the local machine we simply need
to start it, but the other machines don't have the configuration yet. One option
is copying the entire IPython profile directory, but the only file that really needs
copying is security/ipcontroller-engine.json. After creating the profile using
the profile creation command that is. So unless you are going to copy the entire
IPython profile directory, you need to execute the profile creation command again:

ipython profile create --parallel --profile=mastering_python

Multiprocessing – When a Single CPU Core Is Not Enough

[400]

After that, simply copy the ipcontroller-engine.json file and you're done.
Now we can start the actual engines:

ipcluster engines --profile=mastering_python -n 4

[IPClusterEngines] IPython cluster: started

[IPClusterEngines] Starting engines with [daemon=False]

[IPClusterEngines] Starting 4 Engines with LocalEngineSetLauncher

Note that the 4 here was chosen for a quad-core processor, but any number would
do. The default will use the amount of logical processor cores, but depending on the
workload it might be better to match the amount of physical processor cores instead.

Now we can run some parallel code from our IPython shell. To demonstrate the
performance difference, we will use a simple sum of all the numbers from 0 to
10,000,000. Not an extremely heavy task, but when performed 10 times in succession,
a regular Python interpreter takes a while:

In [1]: %timeit for _ in range(10): sum(range(10000000))
1 loops, best of 3: 2.27 s per loop

This time however, to illustrate the difference, we will run it a 100 times to
demonstrate how fast a distributed cluster is. Note that this is with only three
machines cluster, but it's still quite a bit faster:

In [1]: import ipyparallel

In [2]: client = ipyparallel.Client(profile='mastering_python')

In [3]: view = client.load_balanced_view()

In [4]: %timeit view.map(lambda _: sum(range(10000000)), range(100)).
wait()
1 loop, best of 3: 909 ms per loop

More fun however is the definition of parallel functions in IPyParallel. With just a
simple decorator, a function is marked as parallel:

In [1]: import ipyparallel

In [2]: client = ipyparallel.Client(profile='mastering_python')

In [3]: view = client.load_balanced_view()

In [4]: @view.parallel()
 ...: def loop():

Chapter 13

[401]

 ...: return sum(range(10000000))
 ...:

In [5]: loop.map(range(10))
Out[5]: <AsyncMapResult: loop>

The IPyParallel library offers many more useful features, but that is outside the scope
of this book. Even though IPyParallel is a separate entity from the rest of Jupyter/
IPython, it does integrate well, which makes combining them easy enough.

One of the most convenient ways of using IPyParallel is through the Jupyter/
IPython Notebooks. To demonstrate, we first have to make sure to enable the parallel
processing in the Jupyter Notebook since IPython notebooks execute single threaded
by default:

ipcluster nbextension enable

After that we can start the notebook and see what it's all about:

jupyter notebook

Unrecognized JSON config file version, assuming version 1

Loading IPython parallel extension

Serving notebooks from local directory: ./

0 active kernels

The Jupyter Notebook is running at: http://localhost:8888/

Use Control-C to stop this server and shut down all kernels (twice to
skip confirmation).

With the Jupyter Notebook you can create scripts in your web browser which can
easily be shared with others later. It is really very useful for sharing scripts and
debugging your code, especially since web pages (as opposed to command line
environments) can display images easily. This helps a lot with graphing data. Here's
a screenshot of our Notebook:

Multiprocessing – When a Single CPU Core Is Not Enough

[402]

Summary
This chapter has shown us how multiprocessing works, how we can pool a lot
of jobs, and how we should share data between multiple processes. But more
interestingly, it has also shown how we can distribute processing across multiple
machines which helps a lot in speeding up heavy calculations.

The most important lesson you can learn from this chapter is that you should always
try to avoid data sharing and synchronisation between multiple processes or servers,
as it is slow and will thus slow down your applications a lot. Whenever possible,
keep your calculations and data local.

In the next chapter we will learn about creating extensions in C/C++ to increase
performance and allow low-level access to memory and other hardware resources.
While Python will generally protect you from silly mistakes, C and C++ most
certainly won't.

"C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you
do, it blows away your whole leg."

- Bjarne Stroustrup (the creator of C++)

[403]

Extensions in C/C++, System
Calls, and C/C++ Libraries

Now that we know a bit more about performance and multiprocessing, we will
explain another subject that is at least somewhat performance-related—the usage of
C and/or C++ extensions.

There are multiple reasons to consider C/C++ extensions. Having existing
libraries available is an important one, but truthfully, the most important reason is
performance. In Chapter 12, Performance – Tracking and Reducing Your Memory and
CPU Usage, we saw that the cProfile module is about 10 times faster than the
profile module, which indicates that at least some C extensions are faster than their
pure Python equivalents. This chapter will not focus on performance that much,
however. The goal here is interaction with non-Python libraries. Any performance
improvement will just be a completely unintentional side effect.

We will discuss the following options in this chapter:

•	 Ctypes for handling foreign (C/C++) functions and data from Python
•	 CFFI (short for C Foreign Function Interface), similar to ctypes but with a

slightly different approach
•	 Writing native C/C++ to extend Python

Introduction
Before you start with this chapter, it is important to note that this chapter will require
a working compiler that plays nicely with your Python interpreter. Unfortunately,
these vary from platform to platform. While generally easy enough for most Linux
distributions, this can be a big challenge on Windows. With OS X, it's generally easy
enough provided you install the correct tools.

Extensions in C/C++, System Calls, and C/C++ Libraries

[404]

The generic building instructions are always available in the Python manual:

https://docs.python.org/3.5/extending/building.html

Do you need C/C++ modules?
In almost all cases, I'm inclined to say that you don't need C/C++ modules. If
you are really strapped for best performance, then there are almost always highly
optimized libraries available that fit your purpose. There are some cases where
native C/C++ (or just "not Python") is a requirement. If you need to communicate
directly with hardware that has specific timings, then Python might just not do the
trick for you. Generally, however, that kind of communication should be left to a
driver that takes care of the specific timings. Regardless, even if you will never write
one of these modules yourself, you might still need to know how they work when
you are debugging a project.

Windows
For Windows, the general recommendation is Visual Studio. The specific version
depends on your Python version:

•	 Python 3.2 and lower: Microsoft Visual Studio 2008
•	 Python 3.3 and 3.4: Microsoft Visual Studio 2010
•	 Python 3.5 and 3.6: Microsoft Visual Studio 2015

The specifics of installing Visual Studio and compiling Python modules fall a bit
outside of the scope of this book. Luckily, the Python documentation has some
documentation available to get you started:

https://docs.python.org/3.5/extending/windows.html

OS X
For a Mac, the process is mostly straightforward, but there are a few tips specific to
OS X.

First, install Xcode through the Mac App Store. Once you have done that, you should
be able to run the following command:

xcode-select --install

https://docs.python.org/3.5/extending/building.html
https://docs.python.org/3.5/extending/windows.html

Chapter 14

[405]

Next up is the fun part. Because OS X comes with a bundled Python version
(which is generally out of date), I would recommend installing a new Python
version through Homebrew instead. The most up-to-date instructions for installing
Homebrew can be found on the Homebrew homepage (http://brew.sh/), but the
gist of installing Homebrew is this command:

/usr/bin/ruby -e "$(curl -fsSL \

https://raw.githubusercontent.com/Homebrew/install/master/install)"

After that, make sure you check whether everything is set up correctly using the
doctor command:

brew doctor

When all of this is done, simply install Python through Homebrew and make sure
you use that Python release when executing your scripts:

brew install python3

python3 –version

Python 3.5.1

which python3

/usr/local/bin/python3

Also ensure that the Python process is in /usr/local/bin, that is, the homebrewed
version. The regular OS X version would be in /usr/bin/ instead.

Linux/Unix
The installation for Linux/Unix systems greatly depends on the distribution, but it is
generally simple to do.

For Fedora, Red Hat, Centos, and other systems that use yum as the package
manager, use these lines:

sudo yum install yum-utils

sudo yum-builddep python3

For Debian, Ubuntu, and other systems that use apt as the package manager, use the
following line:

sudo apt-get build-dep python3.5

http://brew.sh/

Extensions in C/C++, System Calls, and C/C++ Libraries

[406]

Note that Python 3.5 is not available everywhere yet, so you might need Python 3.4
instead.

For most systems, to get help with the installation, a web
search along the lines of <operating system> python.h
should do the trick.

Calling C/C++ with ctypes
The ctypes library makes it easily possible to call functions from C libraries, but you
do need to be careful with memory access and data types. Python is generally very
lenient in memory allocation and type casting; C is, most definitely, not that forgiving.

Platform-specific libraries
Even though all platforms will have a standard C library available somewhere, the
location and the method of calling it differs per platform. For the purpose of having
a simple environment that is easily accessible to most people, I will assume the use
of an Ubuntu (virtual) machine. If you don't have a native Ubuntu available, you can
easily run it through VirtualBox on Windows, Linux, and OS X.

Since you will often want to run examples on your native system instead, we will
first show the basics of loading printf from the standard C library.

Windows
One problem of calling C functions from Python is that the default libraries are
platform-specific. While the following example will work just fine on Windows
systems, it won't run on other platforms:

>>> import ctypes

>>> ctypes.cdll

<ctypes.LibraryLoader object at 0x...>

>>> libc = ctypes.cdll.msvcrt

>>> libc

<CDLL 'msvcrt', handle ... at ...>

>>> libc.printf

<_FuncPtr object at 0x...>

Chapter 14

[407]

Because of these limitations, not all examples can work for every Python version
and distribution without requiring manual compilation. The basic premise of
calling functions from external libraries functions is to simply access their names as
properties of the ctypes import. There is a difference, however; on Windows, the
modules will generally be auto-loaded, while on Linux/Unix systems, you will need
to load them manually.

Linux/Unix
Calling standard system libraries from Linux/Unix does require manual loading, but
it's nothing too involved luckily. Fetching the printf function from the standard C
library is quite simple:

>>> import ctypes

>>> ctypes.cdll

<ctypes.LibraryLoader object at 0x...>

>>> libc = ctypes.cdll.LoadLibrary('libc.so.6')

>>> libc

<CDLL 'libc.so.6', handle ... at ...>

>>> libc.printf

<_FuncPtr object at 0x...>

OS X
For OS X, explicit loading is also required, but beyond that, it is quite similar to how
everything works on regular Linux/Unix systems:

>>> import ctypes

>>> libc = ctypes.cdll.LoadLibrary('libc.dylib')

>>> libc

<CDLL 'libc.dylib', handle ... at 0x...>

>>> libc.printf

<_FuncPtr object at 0x...>

Extensions in C/C++, System Calls, and C/C++ Libraries

[408]

Making it easy
Besides the way libraries are loaded, there are more differences—unfortunately—but
these examples at least give you the standard C library. It allows you to call functions
such as printf straight from your C implementation. If, for some reason, you have
trouble loading the right library, there is always the ctypes.util.find_library
function. As always, I recommend explicit over implicit declarations, but things can
be made easier using this function. Let's illustrate a run on an OS X system:

>>> from ctypes import util

>>> from ctypes import cdll

>>> libc = cdll.LoadLibrary(util.find_library('libc'))

>>> libc

<CDLL '/usr/lib/libc.dylib', handle ... at 0x...>

Calling functions and native types
Calling a function through ctypes is nearly as simple as calling native Python
functions. The notable difference is the arguments and return statements. These
should be converted to native C variables:

These examples will assume that you have libc in your scope
from one of the examples in the previous paragraphs.

>>> spam = ctypes.create_string_buffer(b'spam')

>>> ctypes.sizeof(spam)

5

>>> spam.raw

b'spam\x00'

>>> spam.value

b'spam'

>>> libc.printf(spam)

4

spam>>>

As you can see, to call the printf function you must—and I cannot stress this
enough—convert your values from Python to C explicitly. While it might appear to
work without this initially, it really doesn't:

>>> libc.printf(123)

segmentation fault (core dumped) python3

Chapter 14

[409]

Remember to use the faulthandler module from Chapter 11,
Debugging – Solving the Bugs to debug segfaults.

Another thing to note from the example is that ctypes.sizeof(spam) returns 5
instead of 4. This is caused by the trailing null character, which C strings require.
This is visible in the raw property of the C string. Without it, the printf function
won't know where the string will end.

To pass along other types (such as integers) towards libc functions, we have to use
some conversion as well. In some cases, it is optional:

>>> format_string = ctypes.create_string_buffer(b'Number: %d\n')

>>> libc.printf(format_string, 123)

Number: 123

12

>>> x = ctypes.c_int(123)

>>> libc.printf(format_string, x)

Number: 123

12

But not in all cases, so it's definitely recommended that you convert your values
explicitly in all cases:

>>> format_string = ctypes.create_string_buffer(b'Number: %.3f\n')

>>> libc.printf(format_string, 123.45)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ctypes.ArgumentError: argument 2: <class 'TypeError'>: Don't know how to
convert parameter 2

>>> x = ctypes.c_double(123.45)

>>> libc.printf(format_string, x)

Number: 123.450

16

It's important to note that even though these values are usable as native C types, they
are still mutable through the value attribute:

>>> x = ctypes.c_double(123.45)

>>> x.value

123.45

>>> x.value = 456

>>> x

c_double(456.0)

Extensions in C/C++, System Calls, and C/C++ Libraries

[410]

However, this is not the case if the original object was immutable, which is a very
important distinction to make. The create_string_buffer object creates a mutable
string object, whereas c_wchar_p, c_char_p, and c_void_p create references to the
actual Python string. Since strings are immutable in Python, these values are also
immutable. You can still change the value property, but it will only assign a new
string. Actually, passing one of these to a C function that mutates the internal value
will cause problems.

The only values that should convert to C without any issues are integers, strings, and
bytes, but I personally recommend that you always convert all of your values so that
you are certain of which type you will get and how to treat it.

Complex data structures
We have already seen that we can't just pass along Python values to C, but what
if we need more complex objects? That is, not just bare values that are directly
translatable to C but complex objects containing multiple values. Luckily, we can
easily create (and access) C structures using ctypes:

>>> class Spam(ctypes.Structure):

... _fields_ = [

... ('spam', ctypes.c_int),

... ('eggs', ctypes.c_double),

...]

...>>> spam = Spam(123, 456.789)

>>> spam.spam

123

>>> spam.eggs

456.789

Arrays
Within Python, we generally use a list to represent a collection of objects. These are
very convenient in that you can easily add and remove values. Within C, the default
collection object is the array, which is just a block of memory with a fixed size.

The size of the block in bytes is decided by multiplying the number of items with the
size of the type. In the case of a char, this is 8 bits, so if you wish to store 100 chars,
you would have 100 * 8 bits = 800 bits = 100 bytes.

Chapter 14

[411]

This is literally all it is—a block of memory—and the only reference you receive from
C is a pointer to the memory address where the block of memory begins. Since the
pointer does have a type, char* in this case, C will know how many bytes to jump
ahead when trying to access a different item. Effectively, when trying to access item
25 in a char array, you simply need to do array_pointer + 25 * sizeof(char).
This has a convenient shortcut: array_pointer[25].

Note that C does not store the number of items in the array, so even though our array
has only 100 items, it won't block us from doing array_pointer[1000] and reading
other (random) memory.

If you take all of that into account, it is definitely usable, but mistakes are quickly
made and C is unforgiving. No warnings, just crashes and strangely behaving code.
Beyond that, let's see how easily we can declare an array with ctypes:

>>> TenNumbers = 10 * ctypes.c_double

>>> numbers = TenNumbers()

>>> numbers[0]

0.0

As you can see, because of the fixed sizes and the requirement of declaring the type
before using it, its usage is slightly awkward. However, it does function as you
would expect, and the values are initialized to zero by default. Obviously, this can be
combined with the previously discussed structures as well:

>>> Spams = 5 * Spam

>>> spams = Spams()

>>> spams[0].eggs = 123.456

>>> spams

<__main__.Spam_Array_5 object at 0x...>

>>> spams[0]

<__main__.Spam object at 0x...>

>>> spams[0].eggs

123.456

>>> spams[0].spam

0

Extensions in C/C++, System Calls, and C/C++ Libraries

[412]

Even though you cannot simply append to these arrays to resize them, they are
actually resizable with a few constraints. Firstly, the new array needs to be larger
than the original array. Secondly, the size needs to be specified in bytes, not items.
To illustrate, we have this example:

>>> TenNumbers = 10 * ctypes.c_double

>>> numbers = TenNumbers()

>>> ctypes.resize(numbers, 11 * ctypes.sizeof(ctypes.c_double))

>>> ctypes.resize(numbers, 10 * ctypes.sizeof(ctypes.c_double))

>>> ctypes.resize(numbers, 9 * ctypes.sizeof(ctypes.c_double))

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: minimum size is 80

>>> numbers[:5] = range(5)

>>> numbers[:]

[0.0, 1.0, 2.0, 3.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Gotchas with memory management
Besides the obvious memory allocation issues and mixing mutable and immutable
objects, there is one more strange memory mutability issue:

>>> class Point(ctypes.Structure):

... _fields_ = ('x', ctypes.c_int), ('y', ctypes.c_int)

...

>>> class Vertex(ctypes.Structure):

... _fields_ = ('a', Point), ('b', Point), ('c', Point)

...

>>> v = Vertex()

>>> v.a = Point(0, 1)

>>> v.b = Point(2, 3)

>>> v.c = Point(4, 5)

>>> v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

(0, 1, 2, 3, 4, 5)

>>> v.a, v.b, v.c = v.b, v.c, v.a

>>> v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

(2, 3, 4, 5, 2, 3)

>>> v.a.x = 123

>>> v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

(123, 3, 4, 5, 2, 3)

Chapter 14

[413]

Why didn't we get 2, 3, 4, 5, 0, 1? The problem is that these objects are copied
to a temporary buffer variable. In the meantime, the values of that object are being
changed because it contains separate objects internally. After that, the object is
transferred back, but the values have already changed, giving the incorrect results.

CFFI
The CFFI library offers options very similar to ctypes, but it's a bit more direct.
Unlike the ctypes library, a C compiler is really a necessity for CFFI. With it comes
the opportunity to directly call your C compiler in a very easy way:

>>> import cffi

>>> ffi = cffi.FFI()

>>> ffi.cdef('int printf(const char* format, ...);')

>>> libc = ffi.dlopen(None)

>>> arg = ffi.new('char[]', b'spam')

>>> libc.printf(arg)

4

spam>>>

Okay… so that looks a bit weird right? We had to define how the printf function
looks and specify the arguments to printf with a valid C type declaration. Getting
back to the declarations, however, instead of None to ffi.dlopen, you can also
specify the library you wish to load. If you remember the ctypes.util.find_
library function, you can use that again in this case:

>>> from ctypes import util

>>> import cffi

>>> libc = ffi.dlopen(util.find_library('libc'))

>>> ffi.printf

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AttributeError: 'FFI' object has no attribute 'printf'

But it still won't make its definitions readily available for you. The function definitions
are still required to make sure that everything works as you would like it to.

Extensions in C/C++, System Calls, and C/C++ Libraries

[414]

Complex data structures
The CFFI definitions are somewhat similar to the ctypes definitions, but instead of
having Python emulating C, it's just plain C that is accessible from Python. In reality,
it's just a small syntactical difference. Whereas ctypes is a library for accessing C
from Python while remaining as close to the Python syntax as possible, CFFI uses
plain C syntax to access C systems, which actually removes some confusion for
people experienced with C. I personally find CFFI easier to use because I know what
is actually happening, whereas I am not always a 100% certain with ctypes. Let's
repeat the Vertex and Point example with CFFI:
>>> import cffi

>>> ffi = cffi.FFI()

>>> ffi.cdef('''

... typedef struct {

... int x;

... int y;

... } point;

...

... typedef struct {

... point a;

... point b;

... point c;

... } vertex;

... ''')

>>> vertices = ffi.new('vertex[]', 5)

>>> v = vertices[0]

>>> v.a.x = 1

>>> v.a.y = 2

>>> v.b.x = 3

>>> v.b.y = 4

>>> v.c.x = 5

>>> v.c.y = 6

>>> v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

(1, 2, 3, 4, 5, 6)

v.a, v.b, v.c = v.b, v.c, v.a

v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

>>> v.a, v.b, v.c = v.b, v.c, v.a

>>> v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

(3, 4, 5, 6, 3, 4)

As you can see, the mutable variable issues remain but the code is just as usable.

Chapter 14

[415]

Arrays
Allocation memory for new variables is almost trivial with CFFI. The previous
paragraph showed you an example of array allocation; let's see the possibilities of
array definitions now:

>>> import cffi

>>> ffi = cffi.FFI()

>>> x = ffi.new('int[10]')

>>> y = ffi.new('int[]', 10)

>>> x[0:10] = range(10)

>>> y[0:10] = range(10, 0, -1)

>>> list(x)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(y)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

In this case, you might wonder why the slice includes both the start and the stop.
This is actually a requirement for CFFI. Not always problematic but a tad annoying
nonetheless. Currently, however, it's unavoidable.

ABI or API?
As always, there are some caveats—unfortunately. The examples so far have
partially used the ABI, which loads the binary structures from the libraries. With
the standard C library, this is generally safe; with other libraries, it generally isn't.
The difference between the API and the ABI is that the latter calls the functions at
a binary level, directly addressing memory, directly calling memory locations, and
expecting them to be functions. Effectively, it's the difference between ffi.dlopen
and ffi.cdef. Here, the dlopen is not always safe but cdef is, because it passes a
compiler instead of just guessing how to call a method.

CFFI or ctypes?
This really depends on what you are looking for. If you have a C library that you
simply need to call and you don't need anything special, then ctypes is most likely
the better choice. If you're actually writing your own C library and trying to link it,
well, CFFI is probably a more convenient option. If you're not familiar with the C
programming language, then I would definitely recommend ctypes. Alternatively,
you'll find CFFI to be a more convenient option.

Extensions in C/C++, System Calls, and C/C++ Libraries

[416]

Native C/C++ extensions
The libraries that we have used so far only showed us how to access a C/C++
library within our Python code. Now we are going to look at the other side of the
story—how C/C++ functions/modules within Python are actually written and how
modules such as cPickle and cProfile are created.

A basic example
Before we can actually start with writing and using native C/C++ extensions, we
have a few prerequisites. First of all, we need the compiler and Python headers; the
instructions in the beginning of this chapter should have taken care of this for us.
After that, we need to tell Python what to compile. The setuptools package mostly
takes care of this, but we do need to create a setup.py file:

import setuptools

spam = setuptools.Extension('spam', sources=['spam.c'])

setuptools.setup(
 name='Spam',
 version='1.0',
 ext_modules=[spam],
)

This tells Python that we have an Extension object named Spam that will be based
on spam.c.

Now, let's write a function in C that sums all perfect squares (2*2, 3*3, and so on) up
to a given number. The Python code will look like this:

def sum_of_squares(n):
 sum = 0

 for i in range(n):
 if i * i < n:
 sum += i * i
 else:
 break

 return sum

The raw C version of this code would look something like this:

long sum_of_squares(long n){
 long sum = 0;

Chapter 14

[417]

 /* The actual summing code */
 for(int i=0; i<n; i++){
 if((i * i) < n){
 sum += i * i;
 }else{
 break;
 }
 }

 return sum;
}

And the Python C version looks like this:

#include <Python.h>

static PyObject* spam_sum_of_squares(PyObject *self, PyObject
 *args){
 /* Declare the variables */
 int n;
 int sum = 0;

 /* Parse the arguments */
 if(!PyArg_ParseTuple(args, "i", &n)){
 return NULL;
 }

 /* The actual summing code */
 for(int i=0; i<n; i++){
 if((i * i) < n){
 sum += i * i;
 }else{
 break;
 }
 }

 /* Return the number but convert it to a Python object first
 */
 return PyLong_FromLong(sum);
}

static PyMethodDef spam_methods[] = {
 /* Register the function */
 {"sum_of_squares", spam_sum_of_squares, METH_VARARGS,
 "Sum the perfect squares below n"},

Extensions in C/C++, System Calls, and C/C++ Libraries

[418]

 /* Indicate the end of the list */
 {NULL, NULL, 0, NULL},
};

static struct PyModuleDef spam_module = {
 PyModuleDef_HEAD_INIT,
 "spam", /* Module name */
 NULL, /* Module documentation */
 -1, /* Module state, -1 means global. This parameter is
 for sub-interpreters */
 spam_methods,
};

/* Initialize the module */
PyMODINIT_FUNC PyInit_spam(void){
 return PyModule_Create(&spam_module);
}

It looks quite complicated, but it's really not that hard. There is just a lot of overhead
in this case because we only have a single function. Generally, you would have
several functions, in which case you only need to expand the spam_methods array and
create the functions. The next paragraph will explain the code in more detail, but first
let's look at how to run our first example. We need to build and install the module:

python setup.py build install

running build

running build_ext

running install

running install_lib

running install_egg_info

Removing lib/python3.5/site-packages/Spam-1.0-py3.5.egg-info

Writing lib/python3.5/site-packages/Spam-1.0-py3.5.egg-info

Now, let's create a little test script to time the difference between the Python version
and the C version:

import sys
import spam
import timeit

def sum_of_squares(n):
 sum = 0

Chapter 14

[419]

 for i in range(n):
 if i * i < n:
 sum += i * i
 else:
 break

 return sum

if __name__ == '__main__':
 c = int(sys.argv[1])
 n = int(sys.argv[2])
 print('%d executions with n: %d' % (c, n))
 print('C sum of squares: %d took %.3f seconds' % (
 spam.sum_of_squares(n),
 timeit.timeit('spam.sum_of_squares(n)', number=c,
 globals=globals()),
))
 print('Python sum of squares: %d took %.3f seconds' % (
 sum_of_squares(n),
 timeit.timeit('sum_of_squares(n)', number=c,
 globals=globals()),
))

And now let's execute it:

python3 test_spam.py 10000 1000000

10000 executions with n: 1000000

C sum of squares: 332833500 took 0.008 seconds

Python sum of squares: 332833500 took 1.778 seconds

Perfect! Exactly the same results but more than 200 times faster!

C is not Python – size matters
The Python language makes programming so easy that you might forget about the
underlying data structures at times; with C, you can't afford to do that. Just take our
example from the previous chapter but with different parameters:

python3 test_spam.py 1000 10000000

1000 executions with n: 10000000

C sum of squares: 1953214233 took 0.002 seconds

Python sum of squares: 10543148825 took 0.558 seconds

Extensions in C/C++, System Calls, and C/C++ Libraries

[420]

It's still very fast, but what happened to the numbers? The Python and C versions
give different results, 1953214233 versus 10543148825. This is caused by integer
overflows in C. Whereas Python numbers can essentially have any size, with C,
a regular number has a fixed size. How much you get depends on the type you
use (int, long, and so on) and your architecture (32-bit, 64-bit, and so on), but it's
definitely something to be careful with. It might be hundreds of times faster in some
cases, but that is meaningless if the results are incorrect.

We can increase the size a bit, of course. This makes it better:

static PyObject* spam_sum_of_squares(PyObject *self, PyObject *args){
 /* Declare the variables */
 unsigned long long int n;
 unsigned long long int sum = 0;

 /* Parse the arguments */
 if(!PyArg_ParseTuple(args, "K", &n)){
 return NULL;
 }

 /* The actual summing code */
 for(unsigned long long int i=0; i<n; i++){
 if((i * i) < n){
 sum += i * i;
 }else{
 break;
 }
 }

 /* Return the number but convert it to a Python object first */
 return PyLong_FromUnsignedLongLong(sum);
}

If we test it now, we realize that it works great:

python3 test_spam.py 1000 100000001000 executions with n: 10000000

C sum of squares: 10543148825 took 0.002 seconds

Python sum of squares: 10543148825 took 0.635 seconds

Unless we make the number even larger:

python3 test_spam.py 1 100000000000000
~/Dropbox/Mastering Python/code/h14

1 executions with n: 100000000000000

C sum of squares: 1291890006563070912 took 0.006 seconds

Python sum of squares: 333333283333335000000 took 2.081 seconds

Chapter 14

[421]

So how can you fix this? The simple answer is that you can't. The complex answer
is that you can if you use a different data type to store your data. The C language
by itself doesn't have the "big number support" that Python has. Python supports
infinitely large numbers by combining several regular numbers in the actual
memory. Within C, there are no commonly available provisions for this, so there is
simply no easy way to get this working. But we can check for errors instead:

static unsigned long long int get_number_from_object(int* overflow,
PyObject* some_very_large_number){
 return PyLong_AsLongLongAndOverflow(sum, overflow);
}

Note that this only works for PyObject*, which means it doesn't work for internal
C overflows. But you can, of course, just keep the original Python long around
and perform operations on that instead. So, you do have big number support in C
without too much effort.

The example explained
We have seen the results from our example, but if you're not familiar with the Python
C API, you might be confused as to why the function parameters look the way they
do. The basic calculations within spam_sum_of_squares are identical to the regular
C sum_of_squares function, but there are a few small differences. Firstly, the type
definition for a function using the Python C API should look something like this:

static PyObject* spam_sum_of_squares(PyObject *self, PyObject

 *args)

static
This means that the function is static. A function that's static can be called only
from the same translation unit within the compiler. This effectively results in a
function that cannot be linked from other modules, which allows the compiler to
optimize a bit further. Since functions in C are global by default, this can be very
useful to prevent collisions. Just to be sure, however, we have prefixed the function
name with spam_ to indicate that this function comes from the spam module.

Be careful not to confuse the word static here with the static before a variable.
They are completely different beasts. A static variable means that the variable
that will exist for the entire runtime of the program instead of the runtime of just
the function.

Extensions in C/C++, System Calls, and C/C++ Libraries

[422]

PyObject*
The PyObject type is the basic type for Python data types, which means that all
Python objects can be cast to PyObject* (the PyObject pointer). Effectively, it only
tells the compiler what kind of properties to expect, which can be used later for type
identification and memory management. Instead of direct access to PyObject*, it is
generally a better idea to use the available macros, such as Py_TYPE(some_object).
Internally, this expands to (((PyObject*)(o))->ob_type), which is why the macro
is generally a better idea. Besides being unreadable, a typo can easily happen.

The list of properties is long and depends greatly on the type of object. For those, I
would like to refer to the Python documentation:

https://docs.python.org/3/c-api/typeobj.html

The entire Python C API could fill a book of its own, but it is luckily well documented
within the Python manual. The usage, on the other hand, might be less obvious.

Parsing arguments
With regular C and Python, you specify the arguments explicitly, since variable-
sized arguments are a bit tricky with C. This is because they need to be parsed
separately. PyObject* args is the reference to objects containing the actual
values. To parse these, you need to know how many and which type of variables
to expect. In the example, we used the PyArg_ParseTuple function, which parses
the arguments as positional arguments only, but it is quite easily possible to parse
named arguments as well using PyArg_ParseTupleAndKeywords or PyArg_
VaParseTupleAndKeywords. The difference between the last two is that the first one
uses a variable number of arguments to specify the destination and the latter uses a
va_list to set the values to. But first, let's analyze the code from the actual example:

if(!PyArg_ParseTuple(args, "i", &n)){
 return NULL;
}

We know that args is the object containing the reference to the actual arguments.
The "i" is a format string, which in this case will try to parse a single integer. And &n
tells the function to store the value at the memory address of the n variable.

The format string is the important part here. Depending on the character, you
get a different data type, but there are many; i specifies a regular integer, and s
converts your variable to a c-string (actually a char*, which is a null-terminated
character array). It should be noted that this function is, luckily, smart enough to take
overflows into consideration as well.

https://docs.python.org/3/c-api/typeobj.html

Chapter 14

[423]

Parsing multiple arguments is quite similar; you simply need to add multiple
characters to the format string and multiple destination variables:

PyObject* callback;
int n;

/* Parse the arguments */
if(!PyArg_ParseTuple(args, "Oi", &callback, &n)){
 return NULL;
}

The version with keyword arguments is similar but requires a few more code
changes as the list of methods needs to be informed that the function takes keyword
arguments. Otherwise, the kwargs parameter would never arrive:

static PyObject* function(
 PyObject *self,
 PyObject *args,
 PyObject *kwargs){
 /* Declare the variables */
 int sum = 0;

 PyObject* callback;
 int n;

 static char* keywords[] = {"callback", "n", NULL};

 /* Parse the arguments */
 if(!PyArg_ParseTupleAndKeywords(args, kwargs, "Oi", keywords,
 &callback, &n)){
 return NULL;
 }

 Py_RETURN_NONE;
}

static PyMethodDef methods[] = {
 /* Register the function with kwargs */
 {"function", function, METH_VARARGS | METH_KEYWORDS,
 "Some kwargs function"},
 /* Indicate the end of the list */
 {NULL, NULL, 0, NULL},
};

Note that this still supports normal arguments, but keyword arguments are also
supported now.

Extensions in C/C++, System Calls, and C/C++ Libraries

[424]

C is not Python – errors are silent or lethal
As we saw in the previous example, integer overflows are not something you will
generally notice, and unfortunately there's no good cross-platform way to catch
them. However, those are actually the easier errors to handle; the worst one is
generally memory management. With Python, if you get an error, you will get an
exception that you can catch. But with C, you can't really handle it gracefully. Take
a division by zero for example:

python3 -c '1/0'

Traceback (most recent call last):

 File "<string>", line 1, in <module>

ZeroDivisionError: division by zero

This is simple enough to catch with try: ... except ZeroDivisionError:
With C on the other hand, if you get a bad error, it will kill your entire process. But
debugging C code is what C compilers have debuggers for, and to find the cause of
the error, you can use the faulthandler module discussed in Chapter 11, Debugging
– Solving the Bugs. Right now, let's see how we can properly throw errors from C.
Let's use the spam module from earlier, but for brevity, we will omit the rest of the
C code:

static PyObject* spam_eggs(PyObject *self, PyObject *args){
 PyErr_SetString(PyExc_RuntimeError, "Too many eggs!");
 return NULL;
}

static PyMethodDef spam_methods[] = {
 /* Register the function */
 {"eggs", spam_eggs, METH_VARARGS,
 "Count the eggs"},
 /* Indicate the end of the list */
 {NULL, NULL, 0, NULL},
};

Here is the execution:

python3 setup.py clean build install

...

python3 -c 'import spam; spam.eggs()'

Traceback (most recent call last):

 File "<string>", line 1, in <module>

RuntimeError: Too many eggs!

Chapter 14

[425]

The syntax is slightly different—PyErr_SetString instead of raise—but it's the
same basic principle, luckily.

Calling Python from C – handling complex
types
We have seen how to call C functions from Python, but now let's try Python from
C and back. Instead of using the readily available sum function, we will build one
of our own with a callback and handling of any type of iterable. While this sounds
simple enough, it does actually require a bit of type meddling as you can only expect
PyObject* as arguments. This is contrary to the simple types, such as integers, chars,
and strings, which are immediately converted to the native Python version:

static PyObject* spam_sum(PyObject* self, PyObject* args){
 /* Declare all variables, note that the values for sum and
 * callback are defaults in the case these arguments are not
 * specified */
 long long int sum = 0;
 int overflow = 0;
 PyObject* iterator;
 PyObject* iterable;
 PyObject* callback = NULL;
 PyObject* value;
 PyObject* item;

 /* Now we parse a PyObject* followed by, optionally
 * (the | character), a PyObject* and a long long int */
 if(!PyArg_ParseTuple(args, "O|OL", &iterable, &callback,
 &sum)){
 return NULL;
 }

 /* See if we can create an iterator from the iterable. This is
 * effectively the same as doing iter(iterable) in Python */
 iterator = PyObject_GetIter(iterable);
 if(iterator == NULL){
 PyErr_SetString(PyExc_TypeError,
 "Argument is not iterable");
 return NULL;
 }

 /* Check if the callback exists or wasn't specified. If it was
 * specified check whether it's callable or not */

Extensions in C/C++, System Calls, and C/C++ Libraries

[426]

 if(callback != NULL && !PyCallable_Check(callback)){
 PyErr_SetString(PyExc_TypeError,
 "Callback is not callable");
 return NULL;
 }

 /* Loop through all items of the iterable */
 while((item = PyIter_Next(iterator))){
 /* If we have a callback available, call it. Otherwise
 * just return the item as the value */
 if(callback == NULL){
 value = item;
 }else{
 value = PyObject_CallFunction(callback, "O", item);
 }

 /* Add the value to sum and check for overflows */
 sum += PyLong_AsLongLongAndOverflow(value, &overflow);
 if(overflow > 0){
 PyErr_SetString(PyExc_RuntimeError,
 "Integer overflow");
 return NULL;
 }else if(overflow < 0){
 PyErr_SetString(PyExc_RuntimeError,
 "Integer underflow");
 return NULL;
 }

 /* If we were indeed using the callback, decrease the
 * reference count to the value because it is a separate
 * object now */
 if(callback != NULL){
 Py_DECREF(value);
 }
 Py_DECREF(item);
 }
 Py_DECREF(iterator);

 return PyLong_FromLongLong(sum);
}

Make sure you note the PyDECREF calls, which ensure that you don't leak these
objects. Without them, the objects will stay in use and the Python interpreter won't
be able to clear them.

Chapter 14

[427]

This function is callable in three different ways:

>>> import spam

>>> x = range(10)

>>> spam.sum(x)

45

>>> spam.sum(x, lambda y: y + 5)

95

>>> spam.sum(x, lambda y: y + 5, 5)

100

Another important issue is that even though we catch overflow errors when
converting to long long int, this code is still not safe. If we sum even two very
large numbers (close to the long long int limit), we will still have an overflow:

>>> import spam

>>> n = (2 ** 63) - 1

>>> x = n,

>>> spam.sum(x)

9223372036854775807

>>> x = n, n

>>> spam.sum(x)

-2

Summary
In this chapter, you learned the most important aspects of writing code that uses
ctypes, CFFI, and how to extend the Python functionality using native C. These
topics can be extensive enough to fill books on their own, but you should have a
grasp of the most important topics now. Even though you are able to create C/C++
extensions now, I still recommend that you avoid these as much as possible. This is
because bugs are so easily made by not being careful enough. It is actually likely that
at least some of the examples given in this chapter contain bugs when it comes to
memory management and can crash your Python interpreter when given the wrong
input. Unfortunately, this is a side effect of C. A tiny mistake can have a huge impact.

While building the examples in this chapter, you may have noticed that we used
a setup.py file and imported from the setuptools library. This is what the next
chapter will cover—packaging your code into an installable Python library and
distributing it on the Python package index.

[429]

Packaging – Creating Your
Own Libraries or Applications

The chapters thus far have covered how to write, test and, debug the Python
code. With all of that, there is only one thing that remains, that is packaging and
distributing your Python libraries /and applications. To create installable packages
we will use the setuptools package which is bundled with Python these days.
If you have created packages before, you might remember distribute and
distutils2, but it is very important to remember that these have all been replaced
by setuptools and distutils and you shouldn't use them anymore!

What types of program can we package with setuptools? We will show you
several cases:

•	 Regular packages
•	 Packages with data
•	 Installing executables and custom setuptools commands
•	 Running tests on the package
•	 Packages containing C/C++ extensions

Installing packages
Before we actually get started, it is important to know how to install a package
properly. There are at least four different options for installing a package. The first
and most obvious is by using the plain pip command:

pip install package

Packaging – Creating Your Own Libraries or Applications

[430]

This can also be achieved by using setup.py directly:

cd package

python setup.py install

This installs the package within your Python environment which would be the likely
virtualenv/venv if you are using it or the global environment otherwise.

For development however, this is not recommended. To test your code, you would
need to either reinstall the package for every test or modify the files within the
Python's site-packages directory, which would mean it would be outside of your
revision control system as well. That's where the development installs come in;
instead of copying the package files to the Python package directory, they simply
install a link within the site-packages directory to the path where the package is
actually located. This allows you to modify the code and immediately see the results
in the scripts and applications you run without the need to reinstall your code after
each change.

As is the case with a regular install, both pip and setup.py versions are available:

pip install –e package_directory

And the setup.py version:

cd package_directory

python setup.py develop

Setup parameters
The previous chapters have actually already shown us a couple of examples, but let's
reiterate and review what the most important parts actually do. The core function
you will be using in this entire chapter is setuptools.setup.

For the most simple packages, the distutils package
bundled with Python will be sufficient as well, but I
recommend setuptools regardless. The setuptools
package has many great features that distutils lacks
and nearly all Python environments will have setuptools
available anyhow.

Before we continue, make sure you have the latest version of both pip and
setuptools:

pip install -U pip setuptools

Chapter 15

[431]

The setuptools and distutils packages have changed
significantly over the last few years and the documentation/
examples written before 2014 are most likely out of date. Be
careful not to implement deprecated examples and skip any
documentation/examples using distutils.

Now that we have all the prerequisites, let's create an example containing the most
important fields with inline documentation:

import setuptools

if __name__ == '__main__':
 setuptools.setup(
 name='Name',
 version='0.1',

 # This automatically detects the packages in the specified
 # (or current directory if no directory is given).
 packages=setuptools.find_packages(),

 # The entry points are the big difference between
 # setuptools and distutils, the entry points make it
 # possible to extend setuptools and make it smarter and/or
 # add custom commands.
 entry_points={

 # The following would add: python setup.py
 # command_name
 'distutils.commands': [
 'command_name = your_package:YourClass',
],

 # The following would make these functions callable as
 # standalone scripts. In this case it would add the
 # spam command to run in your shell.
 'console_scripts': [
 'spam = your_package:SpamClass',
],
 },

 # Packages required to use this one, it is possible to
 # specify simply the application name, a specific version
 # or a version range. The syntax is the same as pip

Packaging – Creating Your Own Libraries or Applications

[432]

 # accepts.
 install_requires=['docutils>=0.3'],

 # Extra requirements are another amazing feature of
 # setuptools, it allows people to install extra
 # dependencies if you are interested. In this example
 # doing a "pip install name[all]" would install the
 # python-utils package as well.
 extras_requires={
 'all': ['python-utils'],
 },

 # Packages required to install this package, not just for
 # running it but for the actual install. These will not be
 # installed but only downloaded so they can be used during
 # the install. The pytest-runner is a useful example:
 setup_requires=['pytest-runner'],

 # The requirements for the test command. Regular testing
 # is possible through: python setup.py test The Pytest
 # module installs a different command though: python
 # setup.py pytest
 tests_require=['pytest'],

 # The package_data, include_package_data and
 # exclude_package_data arguments are used to specify which
 # non-python files should be included in the package. An
 # example would be documentation files. More about this
 # in the next paragraph
 package_data={
 # Include (restructured text) documentation files from
 # any directory
 '': ['*.rst'],
 # Include text files from the eggs package:
 'eggs': ['*.txt'],
 },

 # If a package is zip_safe the package will be installed
 # as a zip file. This can be faster but it generally
 # doesn't make too much of a difference and breaks
 # packages if they need access to either the source or the
 # data files. When this flag is omitted setuptools will
 # try to autodetect based on the existance of datafiles
 # and C extensions. If either exists it will not install

Chapter 15

[433]

 # the package as a zip. Generally omitting this parameter
 # is the best option but if you have strange problems with
 # missing files, try disabling zip_safe.
 zip_safe=False,

 # All of the following fileds are PyPI metadata fields.
 # When registering a package at PyPI this is used as
 # information on the package page.
 author='Rick van Hattem',
 author_email='wolph@wol.ph',

 # This should be a short description (one line) for the
 # package
 description='Description for the name package',

 # For this parameter I would recommend including the
 # README.rst

 long_description='A very long description',
 # The license should be one of the standard open source
 # licenses: https://opensource.org/licenses/alphabetical
 license='BSD',

 # Homepage url for the package
 url='https://wol.ph/',
)

That was quite a lot of code and comments, but it covers most of the options you will
ever encounter in real-life packages. The most interesting and versatile parameters
discussed here will be covered in the following sections separately.

Additional documentation can be found in the pip and setuptools documentation,
as well as in the Python Packaging User Guide:

•	 http://pythonhosted.org/setuptools/

•	 https://pip.pypa.io/en/stable/

•	 http://python-packaging-user-guide.readthedocs.org/en/latest/

http://pythonhosted.org/setuptools/
https://pip.pypa.io/en/stable/
http://python-packaging-user-guide.readthedocs.org/en/latest/

Packaging – Creating Your Own Libraries or Applications

[434]

Packages
In our example, we simply use packages=setuptools.find_packages(). In
most cases this will work just fine, but it's important to understand what it does.
The find_packages function looks through all the directories within the given
directory and adds it to the list if it has an __init__.py file inside. So instead of
find_packages() you can generally use ['your_package'] instead. If you have
several packages however, that tends to get tedious. That's where find_packages()
is useful; simply specify some inclusion parameters (second parameter) or some
exclusion parameters (third parameter) and you'll have all the relevant packages
within your project. For example:

packages = find_packages(exclude=['tests', 'docs'])

Entry points
The entry_points parameter is arguably the most useful feature of setuptools.
It allows you to add hooks to many things within setuptools but the most useful
two are the possibility to add both the command line and GUI commands and to
extend the setuptools commands. The command line and GUI commands will even
be converted to executables on Windows. The example in the first section already
demonstrated both the features:

entry_points={
 'distutils.commands': [
 'command_name = your_package:YourClass',
],
 'console_scripts': [
 'spam = your_package:SpamClass',
],
},

This demonstration only shows how to call the functions but it doesn't show the
actual functions.

Creating global commands
The first, a simple example, is nothing special at all; just a function that gets called as
a regular main function where you need to specify sys.argv yourself (or better, use
argparse). This is the setup.py file:

import setuptools

if __name__ == '__main__':

Chapter 15

[435]

 setuptools.setup(
 name='Our little project',
 entry_points={
 'console_scripts': [
 'spam = spam.main:main',
],
 },
)

And, of course, here's the spam/main.py file:

import sys

def main():
 print('Args:', sys.argv)

Be sure not to forget to create a spam/__init__.py file. It can be empty but it needs
to exist for Python to know that it's a package.

Now, let's give it a try by installing the package:

pip install -e .

Installing collected packages: Our-little-project

 Running setup.py develop for Our-little-project

Successfully installed Our-little-project

spam 123 abc

Args: ['~/envs/mastering_python/bin/spam', '123', 'abc']

See how easy it was to create a spam command that installs in your regular
command line shell! On Windows it will actually give you an executable which
will be added to your path but regardless of the platform it will be as a separate
executable that's callable.

Custom setup.py commands
Writing custom setup.py commands can be very useful. One example is sphinx-
pypi-upload-2 which I use in all my packages and is my fork of the unmaintained
sphinx-pypi-upload package. It's a package that makes it trivial to build and
upload Sphinx documentation to the Python package index, which is very useful
when distributing your packages. With the sphinx-pypi-upload-2 package you can
do the following (which I do when distributing any of the packages I maintain):

python setup.py sdist bdist_wheel upload build_sphinx upload_sphinx

Packaging – Creating Your Own Libraries or Applications

[436]

This command builds your package and uploads it to PyPI, and builds the Sphinx
documentation and uploads it to PyPI as well.

But you want to see how this works, of course. First, here's setup.py for our spam
command:

import setuptools

if __name__ == '__main__':
 setuptools.setup(
 name='Our little project',
 entry_points={
 'distutils.commands': [
 'spam = spam.command:SpamCommand',
],
 },
)

Second, the SpamCommand class. The basic essentials are inheriting setuptools.
Command and making sure to implement all the needed methods. Note that all of these
need to be implemented but can be left empty if desired. Here is the spam/command.
py file:

import setuptools

class SpamCommand(setuptools.Command):
 description = 'Make some spam!'
Specify the commandline arguments for this command here. This
parameter uses the getopt module for parsing'
 user_options = [
 ('spam=', 's', 'Set the amount of spams'),
]

 def initialize_options(self):
This method can be used to set default values for the
options. These defaults can be overridden by
command-line, configuration files and the setup script
itself.
 self.spam = 3

 def finalize_options(self):
This method allows you to override the values for the
options, useful for automatically disabling
incompatible options and for validation.

Chapter 15

[437]

 self.spam = max(0, int(self.spam))

 def run(self):
 # The actual running of the command.
 print('spam' * self.spam)

Executing it is simple enough:

pip install -e .

Installing collected packages: Our-little-project

 Running setup.py develop for Our-little-project

Successfully installed Our-little-project-0.0.0

python setup.py --help-commands

[...]

Extra commands:

 [...]

 spam Make some spam!

 test run unit tests after in-place build

 [...]

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]

 or: setup.py --help [cmd1 cmd2 ...]

 or: setup.py --help-commands

 or: setup.py cmd –help

python setup.py --help spam

Common commands: (see '--help-commands' for more)

[...]

Options for 'SpamCommand' command:

 --spam (-s) Set the amount of spams

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]

 or: setup.py --help [cmd1 cmd2 ...]

 or: setup.py --help-commands

Packaging – Creating Your Own Libraries or Applications

[438]

 or: setup.py cmd --help

python setup.py spam

running spam

spamspamspam

python setup.py spam -s 5

running spam

spamspamspamspamspam

There are very few cases where you will actually need the custom setup.py
commands, but the example is still useful since it is currently an undocumented
part of setuptools.

Package data
In most cases you probably won't have to include the package data, but in the cases
where you do need data to go with your package, there are a few different options.
First, it is important to know which files are included in your package by default:

•	 Python source files in the package directories recursively
•	 The setup.py and setup.cfg files
•	 Tests: test/test*.py
•	 All *.txt and *.py files in the examples directory
•	 All *.txt files in the root directory

So after the defaults, we have the first solution: the package_data argument to the
setup function. The syntax for that is simple enough, a dictionary where the keys are
the packages and the values are the patterns to include:

package_data = {
 'docs': ['*.rst'],
}

The second solution is using a MANIFEST.in file. This file contains patterns to
include, exclude, and more. The include and exclude commands use patterns
to match. These patterns are glob-style patterns (see the glob module for
documentation: https://docs.python.org/3/library/glob.html) and have three
variants for both the include and exclude commands:

•	 include/exclude: These commands only work for the given path and
nothing else

https://docs.python.org/3/library/glob.html

Chapter 15

[439]

•	 recursive-include/recursive-exclude: These commands are similar to
the include/exclude commands but process the given paths recursively

•	 global-include/global-exclude: Be very careful with these, they will
include or exclude these files anywhere within the source tree

Besides the include/exclude commands, there are also two others; the graft and
prune commands which include or exclude directories including all the files under a
given directory. This can be useful for tests and documentation since they can include
non-standard files. Beyond those examples, it's almost always better to explicitly
include the files you need and ignore all the others. Here's an example MANIFEST.in:

Comments can be added with a hash tag
include LICENSE CHANGES AUTHORS

Include the docs, tests and examples completely
graft docs
graft tests
graft examples

Always exclude compiled python files
global-exclude *.py[co]

Remove documentation builds
prune docs/_build

Testing packages
In Chapter 10, Testing and Logging – Preparing for Bugs, the testing chapter, we saw a
few of the many testing systems for Python. As you might suspect, at least some of
these have setup.py integration.

Unittest
Before we start, we should create a test script for our package. For actual tests, look
at Chapter 10, Testing and Logging – Preparing for Bugs, the testing chapter. In this case,
we will just use a no-op test, test.py:

import unittest

class Test(unittest.TestCase):

 def test(self):
 pass

Packaging – Creating Your Own Libraries or Applications

[440]

The standard python setup.py test command will run the regular unittest
command:

python setup.py -v test

running test

running "unittest --verbose"

running egg_info

writing Our_little_project.egg-info/PKG-INFO

writing dependency_links to Our_little_project.egg-info/dependency_links.
txt

writing top-level names to Our_little_project.egg-info/top_level.txt

writing entry points to Our_little_project.egg-info/entry_points.txt

reading manifest file 'Our_little_project.egg-info/SOURCES.txt'

writing manifest file 'Our_little_project.egg-info/SOURCES.txt'

running build_ext

test (test.Test) ... ok

--

Ran 1 test in 0.000s

OK

It is possible to tell setup.py to use different tests using the --test-module,
--test-suite, or --test-runner arguments. While these are easy enough to use, I
recommend skipping the regular test command and trying nose or py.test instead.

py.test
The py.test package has several methods of integration: pytest-runner, your
own test command, and the deprecated method of generating a runtests.py script
to test. If one of your packages is still using runtests.py, I strongly recommend
switching to one of the other options.

But before we discuss the other options, let's make sure we have some tests. So let's
create a test in our package. We will store it in test_pytest.py:

def test_a():
 pass

def test_b():
 pass

Chapter 15

[441]

Now, the other test options. Since the custom command doesn't really add much and
actually makes things more complicated, we will skip that. If you want to customize
how the tests are being run, use the pytest.ini and setup.cfg files instead. The
best option is pytest-runner which makes running tests a trivial task:

pip install pytest-runner

Collecting pytest-runner

 Using cached pytest_runner-2.7-py2.py3-none-any.whl

Installing collected packages: pytest-runner

Successfully installed pytest-runner-2.7

python setup.py pytest

running pytest

running egg_info

writing top-level names to Our_little_project.egg-info/top_level.txt

writing dependency_links to Our_little_project.egg-info/dependency_links.
txt

writing entry points to Our_little_project.egg-info/entry_points.txt

writing Our_little_project.egg-info/PKG-INFO

reading manifest file 'Our_little_project.egg-info/SOURCES.txt'

writing manifest file 'Our_little_project.egg-info/SOURCES.txt'

running build_ext

======================== test session starts =========================

platform darwin -- Python 3.5.1, pytest-2.8.7, py-1.4.31, pluggy-0.3.1

rootdir: h15, inifile: pytest.ini

collected 2 items

test_pytest.py ..

====================== 2 passed in 0.01 seconds ======================

To properly integrate this method, we should make a few changes to the setup.py
script. They are not strictly needed but it makes things more convenient for others
using your package, others that may not be aware that you are using py.test, for
example. First, we make sure that the standard python setup.py test command
actually runs the pytest command instead by modifying setup.cfg:

[aliases]
test=pytest

Packaging – Creating Your Own Libraries or Applications

[442]

Second, we want to make sure that the setup.py command installs the packages we
need to run the py.test tests. To do that, we need to modify setup.py as well:

import setuptools

if __name__ == '__main__':
 setuptools.setup(
 name='Our little project',
 entry_points={
 'distutils.commands': [
 'spam = spam.command:SpamCommand',
],
 },
 setup_requires=['pytest-runner'],
 tests_require=['pytest'],
)

The beauty of this approach is that the regular python setup.py test command
works and all needed requirements are automatically installed before running
the tests. Because the pytest requirement is only in the tests_require section
however, they will not be installed if the test command isn't run. The only package
that will always be installed is the pytest-runner package and that's a really light
package so it will be very light to install and run.

Nosetests
The nose package handles the installation only and is slightly different from
py.test. The only difference is that py.test has a separate pytest-runner package
for the test runner and nose package has a built-in nosetests command. So without
further ado, here is the nose version:

pip install nose

Collecting nose

 Using cached nose-1.3.7-py3-none-any.whl

Installing collected packages: nose

Successfully installed nose-1.3.7

python setup.py nosetests

running nosetests

running egg_info

writing top-level names to Our_little_project.egg-info/top_level.txt

writing entry points to Our_little_project.egg-info/entry_points.txt

Chapter 15

[443]

writing Our_little_project.egg-info/PKG-INFO

writing dependency_links to Our_little_project.egg-info/dependency_lin

ks.txt

reading manifest file 'Our_little_project.egg-info/SOURCES.txt'

writing manifest file 'Our_little_project.egg-info/SOURCES.txt'

..

--

Ran 2 tests in 0.006s

OK

C/C++ extensions
The previous chapter already covered this somewhat, as it's a requirement to
compile the C/C++ files. But that chapter didn't explain what and how the setup.py
was doing in this case.

For convenience, we will repeat the setup.py file:

import setuptools

spam = setuptools.Extension('spam', sources=['spam.c'])

setuptools.setup(
 name='Spam',
 version='1.0',
 ext_modules=[spam],
)

Before you start with these extensions, you should learn the following commands:

•	 build: This is actually not a C/C++ specific build function (try build_clib
for that) but a combined build function to build everything within setup.py.

•	 clean: This cleans the results from the build command. This is generally
not needed but sometimes the detection of files that need to be recompiled
to work is incorrect. So if you encounter strange or unexpected issues, try
cleaning the project first.

Packaging – Creating Your Own Libraries or Applications

[444]

Regular extensions
The setuptools.Extension class tells setuptools that a module named spam uses
the source file spam.c. This is just the simplest version of an extension, a name, and a
list of sources, but in many cases you are going to need more than the simple case.

One example is the pillow library which detects the libraries available on the system
and adds extensions based on that. But because these extensions include libraries,
some extra compilation flags are required. The basic PIL module itself doesn't appear
too involved but the libs are actually filled with all auto-detected libraries with the
matching macro definitions:

exts = [(Extension("PIL._imaging", files, libraries=libs,
 define_macros=defs))]

The freetype extension has something similar:

if feature.freetype:
 exts.append(Extension(
 "PIL._imagingft", ["_imagingft.c"],
libraries=["freetype"]))

Cython extensions
The setuptools library is actually a bit smarter than the regular distutils library
when it comes to extensions. It actually adds a little trick to the Extension class.
Remember the brief introduction to Cython in Chapter 12, Performance – Tracking and
Reducing Your Memory and CPU Usage about performance? The setuptools library
makes it a bit more convenient to compile those. The Cython manual recommends
you to use something similar to the following code:

from distutils.core import setup
from Cython.Build import cythonize

setup(
 ext_modules = cythonize("eggs.pyx")
)

Here eggs.pyx contains:
def make_eggs(int n):
 print('Making %d eggs: %s' % (n, n * 'eggs '))

The problem with this approach is that setup.py will break unless you have
Cython installed:

python setup.py build

Traceback (most recent call last):

Chapter 15

[445]

 File "setup.py", line 2, in <module>

 import Cython

ImportError: No module named 'Cython'

To prevent that issue, we are just going to let setuptools handle this:

import setuptools

eggs = setuptools.Extension('eggs', sources=['eggs.pyx'])

setuptools.setup(
 name='Eggs',
 version='1.0',
 ext_modules=[eggs],
 setup_requires=['Cython'],
)

Now Cython will be automatically installed if needed and the code will work
just fine:

python setup.py build

running build

running build_ext

cythoning eggs.pyx to eggs.c

building 'eggs' extension

...

python setup.py develop

running develop

running egg_info

creating Eggs.egg-info

writing dependency_links to Eggs.egg-info/dependency_links.txt

writing top-level names to Eggs.egg-info/top_level.txt

writing Eggs.egg-info/PKG-INFO

writing manifest file 'Eggs.egg-info/SOURCES.txt'

reading manifest file 'Eggs.egg-info/SOURCES.txt'

writing manifest file 'Eggs.egg-info/SOURCES.txt'

running build_ext

skipping 'eggs.c' Cython extension (up-to-date)

copying build/... ->

Creating Eggs.egg-link (link to .)

Packaging – Creating Your Own Libraries or Applications

[446]

Adding Eggs 1.0 to easy-install.pth file

Installed Eggs

Processing dependencies for Eggs==1.0

Finished processing dependencies for Eggs==1.0

python -c 'import eggs; eggs.make_eggs(3)'

Making 3 eggs: eggs eggs eggs

For development purposes however, Cython also offers a simpler method which
doesn't require manual building. First, to make sure we are actually using this
method, let's install Cython and uninstall and clean eggs completely:

pip uninstall eggs -y

Uninstalling Eggs-1.0:

 Successfully uninstalled Eggs-1.0

pip uninstall eggs -y

Cannot uninstall requirement eggs, not installed

python setup.py clean

pip install cython

Now let's try and run our eggs.pyx module:

>>> import pyximport

>>> pyximport.install()

(None, <pyximport.pyximport.PyxImporter object at 0x...>)

>>> import eggs

>>> eggs.make_eggs(3)

Making 3 eggs: eggs eggs eggs

That's how easy it is to run the pyx files without explicit compiling.

Wheels – the new eggs
For pure Python packages, the sdist (source distribution) command has always
been enough. For C/C++ packages however, it is usually not that convenient. The
problem with C/C++ packages is that compilation is needed unless you use a binary
package. Traditionally those were generally the .egg files but they never really
solved the issue quite right. That is why the wheel format has been introduced (PEP
0427), a binary package format that contains both source and binaries and can install
on both Windows and OS X without requiring a compiler. As an added bonus, it
installs faster for pure Python packages as well.

Chapter 15

[447]

Implementation is luckily simple. First, install the wheel package:

pip install wheel

Now you'll be able to use the bdist_wheel command to build your packages. The
only small gotcha is that by default the packages created by Python 3 will only work
on Python 3, so Python 2 installations will fall back to the sdist file. To fix that, you
can add the following to your setup.cfg file:

[bdist_wheel]
universal = 1

The only important thing to note here is that in the case of C extensions, this can go
wrong. The binary C extensions for Python 3 are not compatible with those from
Python 2. So if you have a pure Python package and are targeting both Python 2 and
3, enable the flag. Otherwise just leave it as the default.

Distributing to the Python Package Index
Once you have everything up and running, tested, and documented, it is time to
actually push the project to the Python Package Index (PyPI). Before pushing the
package to PyPI, we need to make sure everything is in order.

First, let's check the setup.py file for issues:

python setup.py check

running check

warning: check: missing required meta-data: url

warning: check: missing meta-data: either (author and author_email) or
(maintainer and maintainer_email) must be supplied

It seems that we forgot to specify a url and the author or maintainer information.
Let's fill those:

import setuptools

eggs = setuptools.Extension('eggs', sources=['eggs.pyx'])

setuptools.setup(
 name='Eggs',
 version='1.0',
 ext_modules=[eggs],
 setup_requires=['Cython'],
 url='https://wol.ph/',

Packaging – Creating Your Own Libraries or Applications

[448]

 author='Rick van Hattem (Wolph)',
 author_email='wolph@wol.ph',
)

Now let's check again:

python setup.py check

running check

Perfect! No errors and everything looks good.

Now that our setup.py is in order, let's try testing. Since our little test project has
virtually no tests, this will come up close to empty. But if you're starting a new
project, then I recommend trying to maintain 100 percent test coverage from the
beginning. Implementing all the tests later is usually more difficult, and testing while
you work generally makes you think more about the design decisions of the code.
Running the test is easy enough:

python setup.py test

running test

running egg_info

writing dependency_links to Eggs.egg-info/dependency_links.txt

writing Eggs.egg-info/PKG-INFO

writing top-level names to Eggs.egg-info/top_level.txt

reading manifest file 'Eggs.egg-info/SOURCES.txt'

writing manifest file 'Eggs.egg-info/SOURCES.txt'

running build_ext

skipping 'eggs.c' Cython extension (up-to-date)

copying build/... ->

Ran 0 tests in 0.000s

OK

Now that we have all in check, the next step is building the documentation. As
mentioned earlier, the sphinx and sphinx-pypi-upload-2 packages can help here:

python setup.py build_sphinx

running build_sphinx

Running Sphinx v1.3.5

...

Chapter 15

[449]

Once we are certain that everything is correct, we can build the package and upload
it to PyPI. For pure Python releases, you can use the sdist (source distribution)
command. For a package that uses a native installer, there are a few options, such as
bdist_wininst and bdist_rpm, available. I personally use the following for nearly
all my packages:

python setup.py build_sphinx upload_sphinx sdist bdist_wheel upload

This automatically builds the Sphinx documentation, uploads the documentation to
PyPI, builds the package with the source, and uploads the package with the source.

This will obviously only succeed if you are the owner of that specific package and
are authorized with PyPI.

Before you can upload the packages, you need to register
the package on PyPI. This can be done using the register
command, but since that immediately registers the package at
the PyPI servers, it should not be used while testing.

Summary
After reading this chapter, you should be able to create Python packages containing not
only pure-Python files but also extra data, compiled C/C++ extensions, documentation,
and tests. With all these tools at your disposal, you are now able to make high quality
Python packages that can easily be reused in other projects and packages.

The Python infrastructure makes it really quite easy to create new packages and split
your project into multiple subprojects. This allows you to create simple and reusable
packages with fewer bugs because everything is easily testable. While you shouldn't
go overboard with splitting up the packages, if a script or module has a purpose of
its own then it's a candidate for packaging separately.

With this chapter we have come to the end of the book. I sincerely hope you
enjoyed reading it and have learned about new and interesting topics. Any and all
feedback is greatly appreciated, so feel free to contact me through my website at
https://wol.ph/.

https://wol.ph/

[451]

Index
Symbols
.egg files 446
__signature__ issue

reference link 138

A
ABI

or API, selecting between 415
abstract classes

abc.ABC class, using 201
collections.abc, using 194
custom type checks, performing 199, 200
usage 195-199

Abstract Syntax Tree (AST) 34
accumulate function 95
addition

versus generators 365
advanced collections

about 62
bisect 76-78
ChainMap 62-66
defaultdict 68-71
deque 66-68
enum 72, 73
heapq 75, 76
namedtuple 71, 72
OrderedDict 74

arrays
declaring, with C Foreign Function

Interface (CFFI) 415
declaring, with ctypes 410-412

assertions
simplifying 281-285

asynchronous servers
about 185
basic echo server 185-187

asyncio.coroutine decorator 172
asyncio.get_event_loop event loop 172
asyncio library

about 168
asynchronous clients 185
asynchronous servers 185
basic concepts 172
coroutines 172
debugging 329, 330
event loops 172-174
futures 172-174
processes 180-184
single-threaded parallel processing,

example 171
tasks 172-174
using, in Python 3.4 169
using, in Python 3.5 169, 170

asyncio.sleep function 172
asyncio.wait function 172
async statement 168
automatically registering plugin system

about 201, 202
plugins, importing on-demand 204
plugins, importing through

configuration 205
plugins, importing through file

system 206, 207
automatic arguments

with fixtures 287, 289
await statement 168

[452]

B
basic echo server 185-187
basic metaclass 191, 192
Benevolent Dictator For Life (BDFL) 13
bidirectional pipelines

using 158-161
big O notation 50, 51
bisect 76-78
breakpoints

using 335-338
bulleted list 224, 225

C
C

code, converting to 368, 369
cache fixture 289
caching 366
call stack

displaying, without exceptions 327, 328
C/C++

calling, with ctypes 406
C/C++ extensions

about 443
build command 443
clean command 443
Cython extensions 444-446
Regular extensions 444

C/C++ modules
need for 404

C/C++ packages
installing 8
installing, on CentOS 9
installing, on Debian 9
installing, on Fedora 9
installing, on OS X 9, 10
installing, on Red Hat 9
installing, on Ubuntu 9
installing, on Windows 10

C Foreign Function Interface (CFFI)
ABI or API, selecting between 415
about 413
arrays, declaring 415
complex data structures 414
versus ctypes 415

chain function 95, 96

ChainMap 62-66
circular imports 45-47
class attributes

metaclasses, used for obtaining sorted
namespace 213, 214

storing, in definition order 212
storing, without metaclasses 212, 213

classes
basic metaclass 191, 192
creating, dynamically 190, 191
decorating 125
metaclass attributes, accessing 193, 194
metaclasses, arguments 193
singletons 125, 126
total ordering class decorator 126-130
used, for creating decorators 115

class functions
classmethod decorator, versus staticmethod

decorator 116-121
decorating 116
property decorator 121-125

class instantiation, operations
about 207
class body, executing 208
class decorators, executing 209
class instance, creating 209
class object, creating 209
example 209-211
metaclass, searching 208
namespace, preparing 208

classmethod decorator
versus staticmethod decorator 116-121

closures 44
code documentation

about 249
class, documenting with

Google style 252, 253
class, documenting with

NumPy style 253, 254
class, documenting with

Sphinx style 250, 251
code quality

verifying 32
verifying, with flake8 tool 32
verifying, with pylint 35

code style
Pythonic code 14

[453]

collections.abc
using 194

collections recreation
versus items removal 380

combinations function 96, 97
combinations_with_repetitions function 97
commands command 340, 341
complex data structures

creating, with C Foreign Function
Interface (CFFI) 414

creating, with ctypes 410
compress function 98
configuration, logging module

basic logging configuration 306, 307
dictionary configuration 307, 308
Ini file configuration 309, 310
JSON configuration 308, 309
network configuration 310-313

console
for interactive debugging 332, 333

contextmanager class 133-135
context managers 151-153
core collections

about 51
dict 55, 57
list 52-55
set 57-59
tuple 59-61

coroutines
about 154
bidirectional pipelines 158-161
closing 156, 157
example 154
exceptions, throwing 156, 157
priming 155, 156
state, using 162-165

count function 98-100
cProfile

about 351
executing 351-353
profiler, calibrating 353-355
profile statistics, using 358-360
selective profiling, with decorators 356, 357

ctypes
memory management issues 412, 413
platform-specific libraries 406
used, for calling C/C++ 406

used, for calling functions 408-410
used, for calling native types 408-410
used, for creating complex data

structures 410
used, for declaring arrays 410-412
versus C Foreign Function

Interface (CFFI) 415
custom fixtures 290, 291
custom setup.py commands

writing 435-438
Cython extensions 444-446

D
data sharing

between processes 392
Debian

C/C++ packages, installing 9
debuggers

pudb 343
rpdb2 343
Werkzeug 343

debugging
interactive debugging 332
non-interactive debugging 320, 321

debugging services 343
decorators

about 103
creating, classes used 115
functools.wraps, using 105, 106
use cases 107, 108
used, for decorating functions 104, 105
used, for memoization 109-111
used, for selective profiling 356, 357
useful decorators 130
with (optional) arguments 111-114

defaultdict 68-71
definition list 225
deque 66-68
dict 55-57
dict comprehensions 85
dictionaries

testing 271, 272
distributed processing

with IPyparallel 396
with multiprocessing 393-395

distutils package 430

[454]

Django-Statsd
URL 383

doctest flags
about 267, 268
ELLIPSIS flag 270
True and False, versus 1 and 0 268, 269
whitespace, normalizing 269

doctest module
doctest example 258-263
doctest flags 267, 268
doctest quirks 271
doctests, writing 263
testing, with documentation 264-267
using 258

doctest quirks
about 271
dictionaries, testing 271, 272
durations, setting 273
floating-point numbers, testing 273
times, setting 273

docutils library 219
Dowser 369
dropwhile function 98
duck typing 27, 28

E
eggs decorator 104
ELLIPSIS flag 270
end of file (eof) 184
ensurepip

used, for bootstrapping pip 7
entry points

about 434
custom setup.py commands,

writing 435- 438
global commands, creating 434, 435

enum 72, 73
enumerated list 223, 224
event loops

about 174
call_at 177
call_later 177
call_soon 176
call_soon_threadsafe 176

implementation 174, 175
policies 176
usage 176-179

exceptions catching
about 338, 339
in Python 2, versus Python 3 42, 43

ExitStack
about 152
reference link 153

extra built-ins
creating 39, 40
overwriting 39, 40

F
factorial function

implementing 91, 92
faulthandler

used, for handling crashes 331, 332
Fedora

C/C++ packages, installing 9
fixtures

cache fixture 289
custom fixtures 290, 291
used, for automatic arguments 287-289

flake8 tool
about 32
features 34, 35
McCabe 34
PEP8 32
pyflakes 33
used, for verifying code quality 32

floating-point numbers
testing 273

functional programming 82
functions

calling, with ctypes 408-410
decorating, with decorators 104, 105

functools library
about 89
partial function 90, 91
reduce function 91

functools.wraps
using 105, 106

futures 172-174

[455]

G
generators

about 141, 142
advantages 145
benefits 141
context managers 151-153
disadvantages 141-145
example 142-144
generating, from generators 149, 150
pipelines 146-148
tee 148, 149
usage 145
versus addition 365
versus lists 364, 379
versus map and list comprehensions 366

get-pip.py file
URL 7

global commands
creating 434, 435

global interpreter lock (GIL) 363, 385
glob module

URL 438
Google style

class, documenting 252, 253
selecting 254

groupby function 100, 101

H
headers, reStructuredText syntax 221-223
heapq 75, 76
Heapy 369
Homebrew

URL 405
hyper-threading

versus physical CPU cores 388-390

I
identity comparison

versus value comparison 29
if statement

versus try/except 364
image directive

URL 230
images, reStructuredText syntax 229-231

import collisions 47
inline markup 219, 220
interactive debugging

about 332
debugging services 343
with console 332, 333
with ipdb 341, 342
with other debuggers 343
with pdb 333-335

IPyparallel
ipcluster_config.py file 399-401
ipcontroller_config.py file 397, 398
ipengine_config.py file 399
ipython_config.py file 397
ipython_kernel_config.py file 397
used, for distributed processing 396

IPython
URL 350

islice function 101
is operator 126
items removal

versus collections recreation 380
itertools library

about 95
accumulate function 95
chain function 95, 96
combinations function 96, 97
compress function 98
count function 98, 100
dropwhile function 98
groupby function 100, 101
islice function 101
permutations function 97
takewhile function 98

J
just-in-time (JIT) compiling 368

L
labels, reStructuredText syntax 227
lambda functions

about 86, 87
Y combinator 87, 89

lazy imports 367
line profiler 361, 362

[456]

links, reStructuredText syntax 227-229
Linux/Unix

platform-specific libraries 407
Python interpreter 405

list comprehensions
about 82-84
versus map and generators 366

lists
about 52-55
versus generators 364, 379

lists, reStructuredText syntax
about 223
bulleted list 224, 225
definition list 225
enumerated list 223, 224
nested lists 226
option list 225

Logger object
about 314
usage 315, 316

Logger object, properties
Disabled 315
Filters 315
Handlers 315
Level 315
Name 315
Propagate 315

logging module
about 305
configuration 306
Logger object 314
used, for debugging 325-327

logging module, objects
Filter 305
Formatter 305
Handler 305
Logger 305

loops, PEP8 30

M
MANIFEST.in file

global-include/global-exclude
command 439

include/exclude command 438
recursive-include/recursive-exclude

command 439

map
versus generators and list

comprehensions 366
Markdown 218
McCabe 34
memoization

with decorators 109-111
memory leaks

monitoring 372-378
memory management issues 412, 413
memory profiler

used, for monitoring memory
usage 370, 371

memory usage
about 369
collections recreation, versus items

removal 380
generators, versus lists 379
monitoring, with memory profiler 370, 371
monitoring, with tracemalloc 369, 370
reducing 378, 379
slots, using 380, 381

metaclass attributes
accessing, through classes 193, 194

metaclasses
about 189
arguments 193
class attributes, storing without 212, 213
searching 208
used, for obtaining sorted

namespace 213, 214
mock objects

about 302
py.test monkeypatch, using 304, 305
unittest.mock, using 302, 303

multiprocessing
used, for distributed processing 393-395
versus multithreading 385-388

mutual exclusion lock (mutex) 363

N
namedtuple 71, 72
namespace

preparing 208

[457]

native C/C++ extensions
about 416
big number support 419-421
example 416-419
Python function, calling 425-427

native C/C++ extensions, example
arguments, parsing 422, 423
error handling 424, 425
PyObject*, using 422
static function, declaring 421
sum_of_squares function, using 421

native types
calling, with ctypes 408-410

nested lists 226
non-interactive debugging

about 320, 321
asyncio library, debugging 329, 330
call stack, displaying without

exceptions 327, 328
crashes, handling with

faulthandler 331, 332
script, inspecting with trace

module 321-325
with logging module 325-327

nosetests
used, for testing packages 442

NumPy style
class, documenting 253, 254
selecting 254

O
optimized libraries

using 367
option list 225
OrderedDict 74
OS X

C/C++ packages, installing 9, 10
platform-specific libraries 407
Python interpreter 404, 405

P
package data

including 438
packages

installing 429, 430
testing, with nosetests 442

testing, with py.test 440-442
testing, with unittest 439, 440
using 434

Pandoc tool
about 218
URL 218

parameters
setting up 430-433

partial function 90, 91
pdb

breakpoints, using 335-338
commands command, using 340, 341
exceptions, catching 338, 339
used, for interactive debugging 333-335

pdb, commands
! statement 335
Alias 335
alias name command 335
a(rgs) 335
b(reak) 335
b(reak) [filename:]lineno 335
b(reak) function[, condition] 335
cl(ear) breakpoint [breakpoint ...] 335
cl(ear) [filename:]lineno 335
Command 335
command breakpoint 335
c(ont(inue)) 334
d(own) 334
h(elp) 334
h(elp) command 334
Interact 335
l(ist) [first[, last]] 334
ll | longlist 334
n(ext) 334
pp expression 335
r(eturn) 334
source expression 334
s(tep) 334
unalias name 335
u(p) 334
w(here) 334

pdbpp 343
PEP8

about 27, 32
duck typing 27, 28
loops 30
maximum line length 31, 32

[458]

URL 13
value comparison, versus identity

comparison 29
PEP20

about 15, 16
ambiguity, avoiding 24
code beautification 16, 17
complexity, avoiding 18, 19
complicated code, avoiding 25
conclusion 26
error handling 22, 23
explicit code, using 17, 18
namespaces, using 25, 26
nested code, avoiding 20
one solution 25
problem, fixing 25
readability 21
rules, following 21
URL 13
whitespace, using 20

PEP 0405
URL 3

performance
about 346
monitoring 382

performance optimization
about 363
addition, versus generators 365
caching 366
code converting, to C 368, 369
global interpreter lock (GIL) 363
just-in-time (JIT) compiling 368
lazy imports 367
lists, versus generators 364
map, versus generators and list

comprehensions 366
optimized libraries, using 367
right algorithm, using 363
string concatenation 364, 365
try/except, versus if statement 364

permutations function 97
physical CPU cores

versus hyper-threading 388-390
pip

bootstrapping, ensurepip used 7
manual installation 7

pip command 2
pipelines

using 146-148
platform-specific libraries

about 406
for Linux/Unix 407
for OS X 407
for Windows 406
loading 408

plugins, py.test
about 293
configuring 301
pytest-cov package 293-300
pytest-flakes package 300
pytest-pep8 package 300
URL 293

pool of workers
creating 390, 391

powerset 97
printf-style 15
print statements 291-293
processes

about 180-184
data, sharing 392

profile statistics
using 358-360

profiling modules
cumtime 352
ncalls 352
tottime 352

property decorator 121-125
pudb 343
pyflakes 33
PyFormat

URL 15
pylint

used, for verifying code quality 35
PyObject*

about 422
URL 422

py.test
and unittest output, differentiating 275-280
testing with 274
used, for testing packages 440-442
versus unittest 280

pytest-cov package 293-300
pytest-flakes package 300

[459]

py.test monkeypatch
monkeypatch.chdir 304
monkeypatch.delattr 304
monkeypatch.delenv 304
monkeypatch.delitem 304
monkeypatch.setattr 304
monkeypatch.setenv 304
monkeypatch.setitem 304
monkeypatch.syspath_prepend 304
using 304, 305

pytest-pep8 package 300
py.test, versus unittest

assertions, simplifying 281-285
fixtures, used for automatic

arguments 287-289
logging 291-293
plugins 293
print statements 291-293
tests, parameterizing 286, 287

Python
URL, for documentation 404

Python 2
versus Python 3 1

Python 3.4
and Python 3.5, selecting between 170
asyncio library, using 169

Python 3.5
asyncio library, using 169, 170

Python Enhancement Proposal (PEP) 13
Pythonic code

about 14
code quality, verifying 32
PEP8 27
PEP20 15, 16
strings, formatting 15

Pythonic code, pitfalls
about 35, 36
circular imports 45-47
closures 44
exceptions, catching 42, 43
extra built-ins, creating 39, 40
extra built-ins, overwriting 39, 40
import collisions 47
objects, modifying during iteration 41
scope usage 36

Python interpreter
C/C++ modules, need for 404
for Linux/Unix 405
for OS X 404, 405
for Windows 404
reference link 404

Python memory manager
arenas 379
blocks 379
heap 379
pools 379

Python package
URL 293

Python Package Index (PyPI) 447, 448
Python Packaging User Guide

URL 433
Python-Statsd

URL 383

Q
QCacheGrind 359

R
Red Hat

C/C++ packages, installing 9
Redis 366
reduce function

about 91
factorial function, implementing 91, 92
trees, processing 93, 94

references, reStructuredText syntax 227
Regular extensions 444
remote processes

about 393
distributed processing, with IPyparallel 396
distributed processing, with

multiprocessing 393-395
reStructuredText syntax

about 218, 219
blocks 232, 233
code 232, 233
comments 232, 233
conclusion 233
features 219

[460]

headers 221-223
images 229, 230
inline markup 219, 220
labels 227-229
links 227-229
lists 223
math 232, 233
quotes 232, 233
references 227-229
substitutions 231

rpdb2 343

S
scope usage

class properties, defining 37, 38
function arguments, using 36
variables, modifying in global scope 38, 39

selective profiling
with decorators 356, 357

sentry
URL 316

set 57-59
set comprehensions 86
setuptools package 431
single dispatch 130-133
single-threaded parallel processing

example 171
singletons 125, 126
slots

using 380-382
spam function 104
Sphinx

installing 234
sphinx-apidoc command 239-242
sphinx-quickstart 234-238
URL 248

Sphinx directives
about 243
autodoc 244-247
Python classes, documenting 244-247
Python functions, documenting 244-247
Python modules, documenting 244-247
table of contents tree directive (toctree) 243

Sphinx documentation generator
about 233

Sphinx directives 243
Sphinx roles 247, 248

Sphinx style
class, documenting 250, 251
selecting 254

static function 421
staticmethod decorator

versus classmethod decorator 116-121
str.format 15
string concatenation 364, 365
strings

formatting, with printf-style 15
formatting, with str.format 15

substitutions 231

T
takewhile function 98
tasks 172-174
tee 148, 149
tests

parameterizing 286, 287
timeit

about 347
used, for comparing code snippet

performance 347-350
total ordering class decorator 126-130
tracemalloc

used, for monitoring memory
usage 369, 370

trace module
used, for inspecting script 321-325

tracer.globaltrace function, parameters
Call 324
c_call 325
c_exception 325
c_return 325
exception 324
Line 324
return 324

trees
processing 93, 94

try/except
versus if statement 364

tuple 59-61

[461]

U
Ubuntu

C/C++ packages, installing 9
unittest

and py.test output, differentiating 275-280
used, for testing packages 439, 440
versus py.test 280

unittest.mock
using 302, 303

useful decorators
contextmanager class 133-135
conversions 135-138
single dispatch 130-133
type checks 135-138
validation 135-138
warnings, hiding 138
with statement 133-135

V
value comparison

versus identity comparison 29
venv

--clear argument 5
--copies argument 5
--symlinks argument 5
--system-site-packages argument 5
--upgrade argument 5, 6
--without-pip argument 5
creating 3, 4

URL 3
used, for creating virtual Python

environment 2, 3
versus virtualenv 6

virtualenv tool
URL 3

virtualenvwrapper
URL 6

W
warnings

hiding 138
weakref module 374
Werkzeug 343
wheel package

about 446
Python Package Index (PyPI) 447, 448

Windows
C/C++ packages, installing 10
platform-specific libraries 406
Python interpreter 404

with statement 133-135

X
Xcode

URL 9

Y
Y combinator 81, 87-89

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started – One Environment per Project
	Creating a virtual Python environment using venv
	Creating your first venv
	venv arguments
	Differences between virtualenv and venv

	Bootstrapping pip using ensurepip
	ensurepip usage
	Manual pip install

	Installing C/C++ packages
	Debian and Ubuntu
	Red Hat, CentOS, and Fedora
	OS X
	Windows

	Summary

	Chapter 2: Pythonic Syntax, Common Pitfalls, and Style Guide
	Code style – or what is Pythonic code?
	Formatting strings – printf-style or str.format?
	PEP20, the Zen of Python
	Beautiful is better than ugly
	Explicit is better than implicit
	Simple is better than complex
	Flat is better than nested
	Sparse is better than dense
	Readability counts
	Practicality beats purity
	Errors should never pass silently
	In the face of ambiguity, refuse the temptation
to guess
	One obvious way to do it
	Now is better than never
	Hard to explain, easy to explain
	Namespaces are one honking great idea
	Conclusion

	Explaining PEP8
	Duck typing
	Differences between value and identity comparisons
	Loops
	Maximum line length

	Verifying code quality, pep8, pyflakes,
and more
	flake8
	Pylint

	Common pitfalls
	Scope matters!
	Function arguments
	Class properties
	Modifying variables in the global scope

	Overwriting and/or creating extra built-ins
	Modifying while iterating
	Catching exceptions – differences between Python 2 and 3
	Late binding – be careful with closures
	Circular imports
	Import collisions

	Summary

	Chapter 3: Containers and Collections – Storing Data the Right Way
	Time complexity – the big O notation
	Core collections
	list – a mutable list of items
	dict – unsorted but a fast map of items
	set – like a dict without values
	tuple – the immutable list

	Advanced collections
	ChainMap – the list of dictionaries
	counter – keeping track of the most occurring elements
	deque – the double ended queue
	defaultdict – dictionary with a default value
	namedtuple – tuples with field names
	enum – a group of constants
	OrderedDict – a dictionary where the insertion order matters
	heapq – the ordered list
	bisect – the sorted list

	Summary

	Chapter 4: Functional Programming – Readability versus Brevity
	Functional programming
	list comprehensions
	dict comprehensions
	set comprehensions
	lambda functions
	The Y combinator

	functools
	partial – no need to repeat all arguments every time
	reduce – combining pairs into a single result
	Implementing a factorial function
	Processing trees

	itertools
	accumulate – reduce with intermediate results
	chain – combining multiple results
	combinations – combinatorics in Python
	permutations – combinations where the order matters
	compress – selecting items using a list
of Booleans
	dropwhile/takewhile – selecting items using
a function
	count – infinite range with decimal steps
	groupby – grouping your sorted iterable
	islice – slicing any iterable

	Summary

	Chapter 5: Decorators – Enabling Code Reuse by Decorating
	Decorating functions
	Why functools.wraps is important
	How are decorators useful?
	Memoization using decorators
	Decorators with (optional) arguments
	Creating decorators using classes

	Decorating class functions
	Skipping the instance – classmethod and staticmethod
	Properties – smart descriptor usage

	Decorating classes
	Singletons – classes with a single instance
	Total ordering – sortable classes the easy way

	Useful decorators
	Single dispatch – polymorphism in Python
	Contextmanager, with statements made easy
	Validation, type checks, and conversions
	Useless warnings – how to ignore them

	Summary

	Chapter 6: Generators and Coroutines – Infinity, One Step at a Time
	What are generators?
	Advantages and disadvantages of generators
	Pipelines – an effective use of generators
	tee – using an output multiple times
	Generating from generators
	Context managers

	Coroutines
	A basic example
	Priming
	Closing and throwing exceptions
	Bidirectional pipelines
	Using the state

	Summary

	Chapter 7: Async IO – Multithreading without Threads
	Introducing the asyncio library
	The async and await statements
	Python 3.4
	Python 3.5
	Choosing between the 3.4 and 3.5 syntax

	A simple example of single-threaded parallel processing
	Concepts of asyncio
	Futures and tasks
	Event loops
	Processes

	Asynchronous servers and clients
	Basic echo server

	Summary

	Chapter 8: Metaclasses – Making Classes (Not Instances) Smarter
	Dynamically creating classes
	A basic metaclass
	Arguments to metaclasses
	Accessing metaclass attributes through classes

	Abstract classes using collections.abc
	Internal workings of the abstract classes
	Custom type checks
	Using abc.ABC before Python 3.4

	Automatically registering a plugin system
	Importing plugins on-demand
	Importing plugins through configuration
	Importing plugins through the file system

	Order of operations when instantiating classes
	Finding the metaclass
	Preparing the namespace
	Executing the class body
	Creating the class object (not instance)
	Executing the class decorators
	Creating the class instance
	Example

	Storing class attributes in definition order
	The classic solution without metaclasses
	Using metaclasses to get a sorted namespace

	Summary

	Chapter 9: Documentation – How to Use Sphinx and reStructuredText
	The reStructuredText syntax
	Getting started with reStructuredText
	Inline markup
	Headers
	Lists
	Enumerated list
	Bulleted list
	Option list
	Definition list
	Nested lists

	Links, references, and labels
	Images
	Substitutions
	Blocks, code, math, comments, and quotes
	Conclusion

	The Sphinx documentation generator
	Getting started with Sphinx
	Using sphinx-quickstart
	Using sphinx-apidoc

	Sphinx directives
	The table of contents tree directive (toctree)
	Autodoc, documenting Python modules, classes, and functions

	Sphinx roles

	Documenting code
	Documenting a class with the Sphinx style
	Documenting a class with the Google style
	Documenting a class with the NumPy style
	Which style to choose

	Summary

	Chapter 10: Testing and Logging – Preparing for Bugs
	Using examples as tests with doctest
	A simple doctest example
	Writing doctests
	Testing with pure documentation
	The doctest flags
	True and False versus 1 and 0
	Normalizing whitespace
	Ellipsis

	Doctest quirks
	Testing dictionaries
	Testing floating-point numbers
	Times and durations

	Testing with py.test
	The difference between the unittest and py.test output
	The difference between unittest and
py.test tests
	Simplifying assertions
	Parameterizing tests
	Automatic arguments using fixtures
	Print statements and logging
	Plugins

	Mock objects
	Using unittest.mock
	Using py.test monkeypatch

	Logging
	Configuration
	Basic logging configuration
	Dictionary configuration
	JSON configuration
	Ini file configuration
	The network configuration

	Logger
	Usage

	Summary

	Chapter 11: Debugging – Solving
the Bugs
	Non-interactive debugging
	Inspecting your script using trace
	Debugging using logging
	Showing call stack without exceptions
	Debugging asyncio
	Handling crashes using faulthandler

	Interactive debugging
	Console on demand
	Debugging using pdb
	Breakpoints
	Catching exceptions
	Commands

	Debugging using ipdb
	Other debuggers
	Debugging services

	Summary

	Chapter 12: Performance – Tracking and Reducing your Memory and CPU Usage
	What is performance?
	Timeit – comparing code snippet performance
	cProfile – finding the slowest components
	First profiling run
	Calibrating your profiler
	Selective profiling using decorators
	Using profile statistics

	Line profiler
	Improving performance
	Using the right algorithm
	Global interpreter lock
	Try versus if
	Lists versus generators
	String concatenation
	Addition versus generators
	Map versus generators and list comprehensions
	Caching
	Lazy imports
	Using optimized libraries
	Just-in-time compiling
	Converting parts of your code to C

	Memory usage
	Tracemalloc
	Memory profiler
	Memory leaks
	Reducing memory usage
	Generators versus lists
	Recreating collections versus removing items
	Using slots

	Performance monitoring
	Summary

	Chapter 13: Multiprocessing – When a Single CPU Core Is
not Enough
	Multithreading versus multiprocessing
	Hyper-threading versus physical CPU cores
	Creating a pool of workers
	Sharing data between processes
	Remote processes
	Distributed processing using multiprocessing
	Distributed processing using IPyparallel
	ipython_config.py
	ipython_kernel_config.py
	ipcontroller_config.py
	ipengine_config.py
	ipcluster_config.py

	Summary

	Chapter 14: Extensions in C/C++, System Calls, and C/C++ Libraries
	Introduction
	Do you need C/C++ modules?
	Windows
	OS X
	Linux/Unix

	Calling C/C++ with ctypes
	Platform-specific libraries
	Windows
	Linux/Unix
	OS X
	Making it easy

	Calling functions and native types
	Complex data structures
	Arrays
	Gotchas with memory management

	CFFI
	Complex data structures
	Arrays
	ABI or API?
	CFFI or ctypes?

	Native C/C++ extensions
	A basic example
	C is not Python – size matters
	The example explained
	static
	PyObject*
	Parsing arguments

	C is not Python – errors are silent or lethal
	Calling Python from C – handling complex types

	Summary

	Chapter 15: Packaging – Creating Your Own Libraries or Applications
	Installing packages
	Setup parameters
	Packages
	Entry points
	Creating global commands
	Custom setup.py commands

	Package data
	Testing packages
	Unittest
	py.test
	Nosetests

	C/C++ extensions
	Regular extensions
	Cython extensions

	Wheels – the new eggs
	Distributing to the Python Package Index

	Summary

	Index

