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Preface
Python is a language that is easy to learn and both powerful and convenient from the 
start. Mastering Python, however, is a completely different question.

Every programming problem you will encounter has at least several possible 
solutions and/or paradigms to apply within the vast possibilities of Python. This 
book will not only illustrate a range of different and new techniques but also explain 
where and when a method should be applied.

This book is not a beginner's guide to Python 3. It is a book that can teach you about 
the more advanced techniques possible within Python. Specifically targeting Python 
3.5 and up, it also demonstrates several Python 3.5-only features such as async def 
and await statements.

As a Python programmer with many years of experience, I will attempt to rationalize 
the choices made in this book with relevant background information. These 
rationalizations are in no way strict guidelines, however. Several of these cases boil 
down to personal style in the end. Just know that they stem from experience and are, 
in many cases, the solutions recommended by the Python community.

Some of the references in this book might not be obvious to you if you are not a fan 
of Monty Python. This book extensively uses spam and eggs instead of foo and bar in 
code samples. To provide some background information, I recommend watching the 
"Spam" sketch by Monty Python. It is positively silly!

What this book covers
Chapter 1, Getting Started – One Environment per Project, introduces virtual Python 
environments using virtualenv or venv to isolate the packages in your Python projects.

Chapter 2, Pythonic Syntax, Common Pitfalls, and Style Guide, explains what Pythonic 
code is and how to write code that is Pythonic and adheres to the Python philosophy.
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Chapter 3, Containers and Collections – Storing Data the Right Way, is where we use  
the many containers and collections bundled with Python to create code that is fast 
and readable.

Chapter 4, Functional Programming – Readability Versus Brevity, covers functional 
programming techniques such as list/dict/set comprehensions and lambda 
statements that are available in Python. Additionally, it illustrates their similarities 
with the mathematical principles involved.

Chapter 5, Decorators – Enabling Code Reuse by Decorating, explains not only how to 
create your own function/class decorators, but also how internal decorators such as 
property, staticmethod, and classmethod work.

Chapter 6, Generators and Coroutines – Infinity, One Step at a Time, shows how 
generators and coroutines can be used to lazily evaluate structures of infinite size.

Chapter 7, Async IO – Multithreading without Threads, demonstrates the usage of 
asynchronous functions using async def and await so that external resources no 
longer stall your Python processes.

Chapter 8, Metaclasses – Making Classes (Not Instances) Smarter, goes deeper into the 
creation of classes and how class behavior can be completely modified.

Chapter 9, Documentation – How to Use Sphinx and reStructuredText, shows how 
you can make Sphinx automatically document your code with very little effort. 
Additionally, it shows how the Napoleon syntax can be used to document function 
arguments in a way that is legible both in the code and the documentation.

Chapter 10, Testing and Logging – Preparing for Bugs, explains how code can be tested 
and how logging can be added to enable easy debugging in case bugs occur at a  
later time.

Chapter 11, Debugging – Solving the Bugs, demonstrates several methods of hunting 
down bugs with the use of tracing, logging, and interactive debugging.

Chapter 12, Performance – Tracking and Reducing Your Memory and CPU Usage, shows 
several methods of measuring and improving CPU and memory usage.

Chapter 13, Multiprocessing – When a Single CPU Core Is Not Enough, illustrates that 
the multiprocessing library can be used to execute your code, not just on multiple 
processors but even on multiple machines.
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Chapter 14, Extensions in C/C++, System Calls, and C/C++ Libraries, covers the calling of 
C/C++ functions for both interoperability and performance using Ctypes, CFFI, and 
native C/C++.

Chapter 15, Packaging – Creating Your Own Libraries or Applications, demonstrates 
the usage of setuptools and setup.py to build and deploy packages on the Python 
Package Index (PyPI).

What you need for this book
The only hard requirement for this book is a Python interpreter. A Python 3.5 or newer 
interpreter is recommended, but many of the code examples will function in older 
Python versions, such as 2.7, with a simple from __future__ import print_statement 
added at the top of the file.

Additionally, Chapter 14, Extensions in C/C++, System Calls, and C/C++ Libraries requires 
a C/C++ compiler, such as GCC, Visual Studio, or XCode. A Linux machine is by far 
the easiest to execute the C/C++ examples, but these should function on Windows and 
OS X machines without too much effort as well.

Who this book is for
If you are beyond the absolute Python beginner level, then this book is for you. Even 
if you are already an expert Python programmer, I guarantee that you will find some 
useful techniques and insights in this book.

At the very least, it will allow Python 2 programmers to learn a lot more about the 
new features introduced in Python 3, and specifically Python 3.5.

Basic proficiency in Python is required as the installation of Python interpreters and 
the basic Python syntax are not covered.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"It should be noted that the type() function has another use as well."
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A block of code is set as follows:

import abc
import importlib

class Plugins(abc.ABCMeta):
    plugins = dict()

    def __new__(metaclass, name, bases, namespace):
        cls = abc.ABCMeta.__new__(
            metaclass, name, bases, namespace)

Any command-line input or output is written as follows where the >>> indicate the 
Python console and the # indicates a regular Linux/Unix shell:

>>> class Spam(object):

…     eggs = 'my eggs'

>>> Spam = type('Spam', (object,), dict(eggs='my eggs'))

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the 
book's webpage at the Packt Publishing website. This page can be accessed by 
entering the book's name in the Search box. Please note that you need to be logged in 
to your Packt account.

Also, the code for the book is hosted on GitHub at https://github.com/
mastering-python/code

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Getting Started – One 
Environment per Project

There is one aspect of the Python philosophy that always has been, and always will 
be, the most important in the entire language—readability, or Pythonic code. This 
book will help you master writing Python the way it was meant to be: readable, 
beautiful, explicit, and as simple as possible. In short, it will be Pythonic code. That 
is not to say that complicated subjects will not be covered. Naturally, they will, but 
whenever the philosophy of Python is at stake, you will be warned when and where 
the technique is justified.

Most of the code within this book will function on both Python 2 and Python 3, but 
the main target is Python 3. There are three reasons for doing this:

1.	 Python 3 was released in 2008, which is a very long time in the rapidly 
changing software world. It's not a new thing anymore, it's stable, it's usable, 
and, most importantly, it's the future.

2.	 Development for Python 2 effectively stopped in 2009. Certain features have 
been backported from Python 3 to Python 2, but any new development will 
be for Python 3 first.

3.	 Python 3 has become mature. While I have to admit that Python 3.2 and 
older versions still had a few small issues that made it hard to write code 
that functions on both Python 2 and 3, Python 3.3 did improve greatly in 
that aspect, and I consider it mature. This is evidenced by the marginally 
modified syntax in Python 3.4 and 3.5 and a lot of very useful features, which 
are covered in this book.
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To summarize, Python 3 is an improvement over Python 2. I have been a skeptic 
for a very long time myself, but I do not see any reason not to use Python 3 for new 
projects, and even porting existing projects to Python 3 is generally possible with 
only minor changes. With cool new features such as async with in Python 3.5, you 
will want to upgrade just to try it.

This first chapter will show you how to properly set up an environment, create a new 
isolated environment, and make sure you get similar results when running the same 
code on different machines. Most Python programmers are already using virtualenv 
to create virtual Python environments, but the venv command, introduced in Python 
3.3, is a very nice alternative. It is essentially a clone of the virtualenv package but 
is slightly simpler and bundled with Python. While its usage is mostly analogous to 
virtualenv, there are a few changes that are interesting to know.

Secondly, we will discuss the pip command. The pip command is automatically 
installed when using venv through the ensurepip package, a package introduced 
in Python 3.4. This package automatically bootstraps pip into an existing Python 
library while maintaining independent versions of Python and pip. Before Python 
3.4, venv came without pip and had to be installed manually.

Finally, we will discuss how packages created with distutils can be installed. 
While pure Python packages are generally easy to install, it can get challenging when 
C modules are involved.

In this chapter, the following topics are covered:

•	 Creating a virtual Python environment using venv
•	 Bootstrapping pip using ensurepip
•	 Installing packages based on distutils (C/C++) with pip

Creating a virtual Python environment 
using venv
Most Python programmers are already be familiar with venv or virtualenv, but 
even if you're not, it's never too late to start using it. The venv module is designed 
to isolate your Python environments so that you can install packages specific to 
your current project without polluting your global namespace. For example, having 
a filename such as sys.py in your current directory can seriously break your code 
if you expect to have the standard Python sys library—your local sys libraries 
will be imported before the global one, effectively hiding the system library. In 
addition, because the packages are installed locally, you don't need system (root/
administrator) access to install them.
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The result is that you can make sure you have exactly the same version of a package 
on both your local development machine and production machines without 
interfering with other packages. For example, there are many Django packages 
around that require specific versions of the Django project. Using venv, you can 
easily install Django 1.4 for project A and Django 1.8 for project B without them ever 
knowing that there are different versions installed in other environments. By default, 
the environments are even configured in such a way that the global packages are not 
visible. The benefit of this is that to get an exact list of all installed packages within 
the environment, simply a pip freeze will suffice. The downside is that some of 
the heavier packages (for example, numpy) will have to be installed in every separate 
environment. Needless to say, which choice is the best for your project depends 
on the project. For most projects, I would keep the default setting of not having 
the global packages, but when messing around with projects that have lots of C/
C++ extensions, it would be convenient to simply enable the global site packages. 
The reason is simple; if you do not have a compiler available, installing the package 
locally can be difficult, while the global install has an executable for Windows or an 
installable package for Linux/Unix available.

The venv module (https://docs.python.org/3/library/
venv.html) can be seen as a slightly simplified version of the 
virtualenv tool (https://virtualenv.pypa.io/), which 
has been bundled with Python since version 3.3 (refer to PEP 0405 
-- Python Virtual Environments: https://www.python.org/
dev/peps/pep-0405/).
The virtualenv package can generally be used as a drop-in 
replacement for venv, which is especially relevant for older 
Python versions (below 3.3) that do not come bundled with venv.

Creating your first venv
Creating an environment is quite easy. The basic command comes down to pyvenv 
PATH_TO_THE_NEW_VIRTUAL_ENVIRONMENT, so let's give it a try. Note that this 
command works on Linux, Unix, and Mac; the Windows command will follow shortly:

# pyvenv test_venv

# . ./test_venv/bin/activate

(test_venv) #

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://virtualenv.pypa.io/
https://www.python.org/dev/peps/pep-0405/
https://www.python.org/dev/peps/pep-0405/
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Some Ubuntu releases (notably 14.04 LTS) maim the Python 
installation by not including the full pyvenv package with 
ensurepip. The standard workaround is to call pyvenv 
--without-pip test_env, which requires a manual 
pip installation through the get_pip.py file available on 
the pip home page.

This creates an environment called test_venv, and the second line activates the 
environment.

On Windows, everything is slightly different but similar overall. By default, the 
pyvenv command won't be in your PATH, so running the command is slightly 
different. The three options are as follows:

•	 Add the Python\Tools\Scripts\ directory to your PATH
•	 Run the module:

python -m venv test_venv

•	 Run the script directly:
python Python\Tools\Scripts\pyvenv.py test_venv

For convenience, I would recommend that you add the Scripts directory to your 
PATH anyhow, since many other applications/scripts (such as pip) will be installed 
there as well.

Here is the full example for Windows:

C:\envs>python -m venv test_venv

C:\envs>test_venv\Scripts\activate.bat

(test_venv) C:\envs>

When using Windows PowerShell, the environment can be 
activated by using test_venv\Scripts\Activate.ps1 
instead. Note that you really do need backslashes here.

venv arguments
So far, we have just created a plain and regular venv, but there are a few, really 
useful flags for customizing your venv specifically to your needs.
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First, let's look at the venv help:

Parameter Description
--system-site-
packages

It gives the virtual environment access to the system-site-
packages directory

--symlinks
Try to use symlinks rather than copies when symlinks are not 
the default for the platform

--copies
Try to use copies rather than symlinks even when symlinks are 
the default for the platform

--clear
Delete the contents of the environment directory, if it exists, before 
environment creation

--upgrade
Upgrade the environment directory to use this version of Python, 
assuming that Python has been upgraded in-place

--without-pip
This skips installing or upgrading pip in the virtual environment 
(pip is bootstrapped by default)

The most important argument to note is --system-site-packages, which enables 
the global site packages within the environment. This means that if you have a 
package installed in your global Python version, it will be available within your 
environment as well. However, if you try to update it to a different version, it will be 
installed locally. Whenever possible, I would recommend disabling the --system-
site-packages flag because it gives you a simple environment without too 
many variables. A simple update of the system packages could break your virtual 
environment otherwise, but worse, there is no way to know which packages are 
needed locally and which ones are just installed for other purposes.

To enable this for an existing environment, you can simply run the environment 
creation command again, but this time adding the --system-site-packages flag to 
enable the global site packages.

To disable it again, you can simply run the environment creation command without 
the flag. This will keep the locally (within the environment) installed packages 
available but will remove the global packages from your Python scope.

When using virtualenvwrapper, this can also be done with 
the toggleglobalsitepackages command from within the 
activated environment.
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The --symlinks and --copies arguments can generally be ignored, but it is 
important to know the difference. These arguments decide whether the files will be 
copied from the base python directory or whether they will be symlinked.

Symlinks are a Linux/Unix/Mac thing; instead of copying 
a file it creates a symbolic link that tells the system where to 
find the actual file.

By default, venv will try to symlink the files, and if that fails, it will fall back to 
copying. Since Windows Vista and Python 3.2, this is also supported on Windows, so 
unless you're using a very old system, you will most likely be using symlinks in your 
environment. The benefit of symlinks is that it saves disk space and stays in sync 
with your Python installation. The downside is that if your system's Python version 
undergoes an upgrade, it can break the packages installed within your environment, 
but that can easily be fixed by reinstalling the packages using pip.

Finally, the --upgrade argument is useful if your system Python version has been 
upgraded in-place. The most common use case for this argument is for repairing 
broken environments after upgrading the system Python with a copied (as opposed 
to symlinked) environment.

Differences between virtualenv and venv
Since the venv module is essentially a simpler version of virtualenv, they are 
mostly the same, but some things are different. Also, since virtualenv is a package 
that is distributed separately from Python, it does have some advantages.

The following are the advantages of venv over virtualenv:

•	 venv is distributed with Python 3.3 and above, so no separate install  
is needed

•	 venv is simple and straightforward with no features besides the bare 
necessities

Advantages of virtualenv over venv:

•	 virtualenv is distributed outside of Python, so it can be updated separately.
•	 virtualenv works on old Python versions, but Python 2.6 or a higher 

version is recommended. However, Python 2.5 support is possible with older 
versions (1.9.x or lower).

•	 It supports convenient wrappers, such as virtualenvwrapper  
(http://virtualenvwrapper.readthedocs.org/)

http://virtualenvwrapper.readthedocs.org/
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In short, if venv is enough for you, use it. If you are using an old Python version or 
want some extra convenience, such as virtualenvwrapper, use virtualenv instead. 
Both projects essentially do the same thing, and efforts have been made to easily 
switch between them. The biggest and most significant difference between the two is 
the wide variety of Python versions that virtualenv supports.

Bootstrapping pip using ensurepip
Slowly, the pip package manager has been replacing easy_install since its 
introduction in 2008. Since Python 3.4, it has even become the default and is bundled 
with Python. Since Python 3.4 onward, it is installed by default within both the 
regular Python environment and that of pyvenv; before that, a manual install is 
required. To automatically install pip in Python 3.4 and above, the ensurepip 
library is used. This is a library that handles automatic installation and/or upgrades 
of pip, so it is at least as recent as the one bundled with ensurepip.

ensurepip usage
The usage of ensurepip is fairly straightforward. Just run python -m ensurepip to 
guarantee a pip version or python -m ensurepip --upgrade to make sure that pip 
will be at least the version that is bundled with ensurepip.

In addition to installing the regular pip shortcut, this will also install the pipX and 
pipX.Y links, which allow you to select a specific Python version. When using 
Python 2 and Python 3 simultaneously, this allows you to install packages within 
Python 2 and Python 3 with pip2 and pip3, respectively. This means that if you use 
python -m ensurepip on Python 3.5 you will get pip, pip3, and pip3.5 commands 
installed in your environment.

Manual pip install
The ensurepip package is great if you are using Python 3.4 or above. Below that, 
however, you need to install pip manually. Actually, this is surprisingly easy. It 
involves just two steps:

1.	 Download the get-pip.py file: https://bootstrap.pypa.io/get-pip.py.
2.	 Execute the get-pip.py file: python get-pip.py.

If the ensurepip command fails due to permission errors, it can 
be useful to supply the --user argument. This allows you to 
install pip inside the user specific site packages directory, 
so root/admin access is not required.

https://bootstrap.pypa.io/get-pip.py
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Installing C/C++ packages
Most Python packages are purely Python and blissfully easy to install, just as a 
simple pip install packagename does the trick. However, there are cases where 
compilation is involved and installation goes from a simple pip install to searching 
for hours to see which dependencies are needed to install a certain package.

The specific error message will differ as per the project and environment, but there 
is a common pattern in these errors, and understanding what you are looking at can 
help a lot when searching for a solution.

For example, when installing pillow on a standard Ubuntu machine, you'll get a few 
pages full of errors, warnings, and other messages that end like this:

    x86_64-linux-gnu-gcc: error: build/temp.linux-x86_64-3.4/libImaging/
Jpeg2KDecode.o: No such file or directory

    x86_64-linux-gnu-gcc: error: build/temp.linux-x86_64-3.4/libImaging/
Jpeg2KEncode.o: No such file or directory

    x86_64-linux-gnu-gcc: error: build/temp.linux-x86_64-3.4/libImaging/
BoxBlur.o: No such file or directory

    error: command 'x86_64-linux-gnu-gcc' failed with exit status 1

    ----------------------------------------

Command "python3 -c "import setuptools, tokenize;__file__='/tmp/pip-
build-_f0ryusw/pillow/setup.py';exec(compile(getattr(tokenize, 'open', 
open)(__file__).read().replace('\r\n', '\n'), __file__, 'exec'))" install 
--record /tmp/pip-kmmobum2-record/install-record.txt --single-version-
externally-managed --compile --install-headers include/site/python3.4/
pillow" failed with error code 1 in /tmp/pip-build-_f0ryusw/pillow

Upon seeing messages like these, you might be tempted to search for one of the 
lines such as x86_64-linux-gnu-gcc: error: build/temp.linux-x86_64-3.4/
libImaging/Jpeg2KDecode.o: No such file or directory. While this might give 
you some relevant results, most likely it will not. The trick with installations like these 
is to scroll up until you see messages about missing headers. Here is an example:

  In file included from libImaging/Imaging.h:14:0,

                   from libImaging/Resample.c:16:

  libImaging/ImPlatform.h:10:20: fatal error: Python.h: No such file or 
directory

   #include "Python.h"

                      ^

  compilation terminated.
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The key message here is that Python.h is missing. These are part of the Python 
headers and are needed for the compilation of most C/C++ packages within Python. 
Depending on the operating system, the solutions will vary—unfortunately. So, I 
recommend that you skip all parts of this paragraph that are not relevant for your case.

Debian and Ubuntu
In Debian and Ubuntu, the package to be installed is python3-dev or python2-dev if 
you're still using Python 2. The command to execute is as follows:

# sudo apt-get install python3-dev

However, this installs the development headers only. If you want the compiler and 
other headers bundled with the install, then the build-dep command is also very 
useful. Here is an example:

# sudo apt-get build-dep python3

Red Hat, CentOS, and Fedora
Red Hat, CentOS, and Fedora are rpm-based distros that use the yum package 
manager to install the requirements. Most development headers are available 
through <package-name>-devel and are easily installable as such. To install the 
Python 3 development headers, use this line:

# sudo apt-get install python3-devel

To make sure you have all the requirements such as development headers and 
compilers to build packages such as Python, the yum-builddep command is available:

# yum-builddep python3

OS X
The install procedure on OS X consists of three steps before the actual package  
can be installed.

First, you have to install Xcode. This can be done through the OS X App Store at 
https://itunes.apple.com/en/app/xcode/id497799835?mt=12.

Then you have to install the Xcode command-line tools:

# xcode-select --install

https://itunes.apple.com/en/app/xcode/id497799835?mt=12
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Finally, you need to install the Homebrew package manager. The steps are available 
at http://brew.sh/, but the install command is as follows:

# /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/master/install)"

Other package managers, such as Macports, are also possible, 
but Homebrew is currently the OS X package manager with the 
most active development and community.

Once all of these steps have been completed, you should have a working Homebrew 
installation. The working of Homebrew can be verified using the brew doctor 
command. If there are no major errors in the output, then you should be ready to 
install your first packages through brew. Now we simply need to install Python and 
we're done:

# brew install python3

Windows
On Windows, manual compilation of C Python packages is generally a non-trivial 
task to say the least. Most packages have been written with Linux/Unix systems 
in mind (OS X falls under the Unix category), and Windows is a nice-to-have 
for developers. The result is that packages are difficult to compile on Windows 
because there are few people testing them and many of the libraries require manual 
installation, making it a very tedious task. So, unless you really have to, try and 
stay away from manually compiling Python packages on Windows. Most packages 
are available as installable binary downloads with a bit of searching, and there are 
alternatives such as Anaconda that include binary packages for most important C 
Python packages.

If you still feel inclined to manually compile C Python packages, then there is 
another option, and it is generally an easier alternative. The Cygwin project  
(http://cygwin.com/) attempts to make Linux applications run natively on 
Windows. This is generally an easier solution than making packages work with 
Visual Studio.

If you do wish to take the Visual Studio path, I would like to point you towards 
Chapter 14, Extensions in C/C++, System Calls, and C/C++ Libraries, which covers 
manual writing of C/C++ extensions and some information on which Visual Studio 
versions you need for your Python version.

http://brew.sh/
http://cygwin.com/
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Summary
With the inclusion of packages such as pip and venv, I feel that Python 3 has become 
a complete package that should suit most people. Beyond legacy applications, there 
is no real reason not to choose Python 3 anymore. The initial Python 3 release in 2008 
was definitely a bit raw compared to the well-rounded Python 2.6 version released 
the same year, but a lot has changed in that aspect. The last major Python 2 release 
was Python 2.7, which was released in 2010; within the software world, that is a  
very, very long time. While Python 2.7 still receives maintenance, it will not receive 
any of the amazing new features that Python 3 is getting—features such as Unicode 
strings by default, dict generators (Chapter 6, Generators and Coroutines – Infinity,  
One Step at a Time), and async methods (Chapter 7, Async IO – Multithreading  
without Threads).

After finishing this chapter, you should be able to create a clean and recreatable virtual 
environment and know where to look if an installation of C/C++ packages fails.

Here are the most important notes for this chapter:

•	 For a clean and simple environment, use venv. If compatibility with Python 2 
is needed, use virtualenv.

•	 If C/C++ packages fail to install, look for the error about missing includes.

The next chapter covers the Python style guide, which rules are important, and 
why they matter. Readability is one of the most important aspects of the Python 
philosophy, and you will learn methods and styles for writing cleaner and more 
readable Python code.





[ 13 ]

Pythonic Syntax, Common 
Pitfalls, and Style Guide

The design and development of the Python programming language have always 
been in the hands of its original author, Guido van Rossum, in many cases lovingly 
referred to as the Benevolent Dictator For Life (BDFL). Even though van Rossum is 
thought to have a time machine (he has repeatedly answered feature requests with  
"I just implemented that last night": http://www.catb.org/jargon/html/G/Guido.
html), he is still just a human and needs help with the maintenance and development 
of Python. To facilitate that, the Python Enhancement Proposal (PEP) process 
has been developed. This process allows anyone to submit a PEP with a technical 
specification of the feature and a rationale to defend its usefulness. After a discussion 
on the Python mailing lists and possibly some improvements, the BDFL will make a 
decision to accept or reject the proposal.

The Python style guide (PEP 8: https://www.python.org/dev/peps/pep-0008/) 
was once submitted as one of those PEPs, and it is has been accepted and improved 
regularly since. It has a lot of great and widely accepted conventions as well as a 
few disputed ones. Especially, the maximum line length of 79 characters is a topic of 
many discussions. Limiting a line to 79 characters does have some merits, however. 
In addition to this, while just the style guide itself does not make code Pythonic, as 
"The Zen of Python" (PEP 20: https://www.python.org/dev/peps/pep-0020/) 
elegantly says: "Beautiful is better than ugly." PEP 8 defines how code should be 
formatted in an exact way, and PEP 20 is more of a philosophy and mindset.

The common pitfalls are a list of common mistakes made, varying from beginner 
mistakes to advanced ones. They range from passing a list or dictionary (which 
are mutable) as arguments to late-binding problems in closures. An even more 
important issue is how to work around circular imports in a clean way.

http://www.catb.org/jargon/html/G/Guido.html
http://www.catb.org/jargon/html/G/Guido.html
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0020/
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Some of the techniques used in the examples in this chapter might be a bit too 
advanced for such an early chapter, but please don't worry. This chapter is about 
style and common pitfalls. The inner workings of the techniques used will be 
covered in later chapters.

We will cover the following topics in this chapter:

•	 Code style (PEP 8, pyflakes, flake8, and more)
•	 Common pitfalls (lists as function arguments, pass by value versus pass by 

reference, and inheritance behavior)

The definition of Pythonic code is highly subjective and mainly 
reflects the opinion of this author. When working on a project, 
it is more important to stay consistent with the coding styles of 
that project than with the coding guidelines given by Python or 
this book.

Code style – or what is Pythonic code?
Pythonic code—when you first hear of it, you might think it is a programming 
paradigm, similar to object-oriented or functional programming. While some of 
it could be considered as such, it is actually more of a design philosophy. Python 
leaves you free to choose to program in an object-oriented, procedural, functional, 
aspect-oriented or even logic-oriented way. These freedoms make Python a great 
language to write in, but as always, freedom has the drawback of requiring a lot of 
discipline to keep the code clean and readable. The PEP8 standard tells us how to 
format code, but there is more to Pythonic code than syntax alone. That is what the 
Pythonic philosophy (PEP20) is all about, code that is:

•	 Clean
•	 Simple
•	 Beautiful
•	 Explicit
•	 Readable

Most of these sound like common sense, and I think they should be. There are cases 
however, where there is not a single obvious way to do it (unless you're Dutch, of 
course, as you'll read later in this chapter). That is the goal of this chapter—to learn 
what code is beautiful and why certain decisions have been made in the Python  
style guide.
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Some programmers once asked Guido van Rossum whether 
Python would ever support braces. Since that day, braces have 
been available through a __future__ import:
>>> from __future__ import braces

  File "<stdin>", line 1

SyntaxError: not a chance

Formatting strings – printf-style or str.format?
Python has supported both printf-style (%) and str.format for a long time, so 
you are most likely familiar with both already.

Within this book, printf-style formatting will be used for a few reasons:

•	 The most important reason is that it comes naturally to me. I have been using 
printf in many different programming languages for about 20 years now.

•	 The printf syntax is supported in most programming languages, which 
makes it familiar for a lot of people.

•	 While only relevant for the purposes of the examples in this book, it takes 
up slightly less space, requiring less formatting changes. As opposed to 
monitors, books have not gotten wider over the years.

In general most people recommend str.format these days, but it mainly comes 
down to preference. The printf-style is simpler, while the str.format method is 
more powerful.

If you wish to learn more about how printf-style formatting can be replaced with 
str.format (or the other way around, of course), then I recommend the PyFormat 
site at https://pyformat.info/.

PEP20, the Zen of Python
Most of the Pythonic philosophy can be explained through PEP20. Python has a 
nice little Easter egg to always remind you of PEP20. Simply type import this in a 
Python console and you will get the PEP20 lines. To quote PEP20:

"Long time Pythoneer Tim Peters succinctly channels the BDFL's guiding 
principles for Python's design into 20 aphorisms, only 19 of which have been 
written down."

https://pyformat.info/
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The next few paragraphs will explain the intentions of these 19 lines.

The examples within the PEP20 section are not necessarily all 
identical in working, but they do serve the same purpose. Many 
of the examples here are fictional and serve no purpose other 
than explaining the rationale of the paragraph.

For clarity, let's see the output of import this before we begin:

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

Beautiful is better than ugly
While beauty is quite subjective, there are some Python style rules to adhere to: 
limiting line lengths, keeping statements on separate lines, splitting imports on 
separate lines, and so on.
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In short, instead of a somewhat complex function such as this:

 def filter_modulo(items, modulo):
    output_items = []
    for i in range(len(items)):
        if items[i] % modulo:
            output_items.append(items[i])
    return output_items

Or this:

filter_modulo = lambda i, m: [i[j] for i in range(len(i))
                              if i[j] % m]

Just do the following:

def filter_modulo(items, modulo):
    for item in items:
        if item % modulo:
            yield item

Simpler, easier to read, and a bit more beautiful!

These examples are not identical in results. The first two 
return lists whereas the last returns a generator. Generators 
will be discussed more thoroughly in Chapter 6, Generators and 
Coroutines – Infinity, One Step at a Time.

Explicit is better than implicit
Imports, arguments, and variable names are just some of the many cases where 
explicit code is far easier to read at the cost of a little bit more effort and/or verbosity 
when writing the code.

Here is an example:

from spam import *
from eggs import *

some_function()
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While this saves you some typing, it becomes quite difficult to see where  
some_function is defined. Is it defined in foo? In bar? Perhaps in both modules? 
There are editors with advanced introspection that can help you here, but why not 
keep it explicit so that everyone (even when simply viewing the code online) can see 
what it's doing?

import spam
import eggs

spam.some_function()
eggs.some_function()

The added benefit is that we can explicitly call the function from either spam or eggs 
here, and everyone will have a better idea what the code does.

The same goes for functions with *args and **kwargs. They can be very useful at 
times, but they do have the downside of making it less obvious which arguments are 
valid for a function:

def spam(egg, *args, **kwargs):
    processed_egg = process_egg(egg, *args, **kwargs)
    return Spam(processed_egg)

Documentation can obviously help for cases like these and I don't disagree with 
the usage of *args and **kwargs in general, but it is definitely a good idea to keep 
at least the most common arguments explicit. Even when it requires you to repeat 
the arguments for a parent class, it just makes the code that much clearer. When 
refactoring the parent class in future, you'll know whether there are subclasses that 
still use some parameters.

Simple is better than complex
"Simple is better than complex. Complex is better than complicated."

The most important question to ask yourself when starting a new project is: how 
complex does it need to be?

For example, let's assume that we've written a small program and now we need to 
store a bit of data. What options do we have here?

•	 A full database server, such as PostgreSQL or MySQL
•	 A simple file system database, such as SQLite or AnyDBM
•	 Flat file storage, such as CSV and TSV
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•	 Structured storage, such as JSON, YAML, or XML
•	 Serialized Python, such as Pickle or Marshal

All of these options have their own use cases as well as advantages and 
disadvantages depending on the use case:

•	 Are you storing a lot of data? Then full database servers and flat file storage 
are generally the most convenient options.

•	 Should it be easily portable to different systems without any package 
installation? That makes anything besides full database servers  
convenient options.

•	 Do we need to search the data? This is much easier using one of the database 
systems, both filesystem and full servers.

•	 Are there other applications that need to be able to edit the data? That 
makes universal formats such as flat file storage and the structured storage 
convenient options, but excludes serialized Python.

Many questions! But the most important one is: how complex does it need to be? 
Storing data in a pickle file is something you can do in three lines, while connecting 
to a database (even with SQLite) will be more complicated and, in many cases,  
not needed:

import pickle  # Or json/yaml
With open('data.pickle', 'wb') as fh:
    pickle.dump(data, fh, pickle.HIGHEST_PROTOCOL)

Versus:

import sqlite3
connection = sqlite3.connect('database.sqlite')
cursor = connection.cursor()
cursor.execute('CREATE TABLE data (key text, value text)')
cursor.execute('''INSERT INTO data VALUES ('key', 'value')''')
connection.commit()
connection.close()

These examples are far from identical, of course, as one stores a complete data object 
whereas the other simply stores some key/value pairs within a SQLite database. 
That is not the point, however. The point is that the code is far more complex while it 
is actually less versatile in many cases. With proper libraries, this can be simplified, 
but the basic premise stays the same. Simple is better than complex and if the 
complexity is not needed, it's better to avoid it.
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Flat is better than nested
Nested code quickly becomes unreadable and hard to understand. There are no  
strict rules here, but generally when you have three levels of nested loops, it is time 
to refactor.

Just take a look the following example, which prints a list of two-dimensional 
matrices. While nothing is specifically wrong here, splitting it into a few more 
functions might make it easier to understand the purpose and easier to test:

def print_matrices():
    for matrix in matrices:
        print('Matrix:')
        for row in matrix:
            for col in row:
                print(col, end='')
            print()
        print()

The somewhat flatter version is as follows:

def print_row(row):
    for col in row:
        print(col, end='')

def print_matrix(matrix):
    for row in matrix:
        print_row(row)
        print()

def print_matrices(matrices):
    for matrix in matrices:
        print('Matrix:')
        print_matrix(matrix)
        print()

This example might be a bit convoluted, but the idea is sound. Having deeply nested 
code can easily become very unreadable.

Sparse is better than dense
Whitespace is generally a good thing. Yes, it will make your files longer and your 
code will take more space, but it can help a lot with readability if you split your  
code logically:

>>> def make_eggs(a,b):'while',['technically'];print('correct');\
...     {'this':'is','highly':'unreadable'};print(1-a+b**4/2**2)
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...
>>> make_eggs(1,2)
correct
4.0

While technically correct, this is not all that readable. I'm certain that it would take 
me some effort to find out what the code actually does and what number it would 
print without trying it:

>>> def make_eggs(a, b):
...     'while', ['technically']
...     print('correct')
...     {'this': 'is', 'highly': 'unreadable'}
...     print(1 - a + ((b ** 4) / (2 ** 2)))
...
>>> make_eggs(1, 2)
correct
4.0

Still, this is not the best code, but at least it's a bit more obvious what is happening in 
the code.

Readability counts
Shorter does not always mean easier to read:

fib=lambda n:reduce(lambda x,y:(x[0]+x[1],x[0]),[(1,1)]*(n-2))[0]

Although the short version has a certain beauty in conciseness, I personally find the 
following far more beautiful:

def fib(n):
    a, b = 0, 1
    while True:
        yield a
        a, b = b, a + b

Practicality beats purity
"Special cases aren't special enough to break the rules. Although practicality  
beats purity."

Breaking the rules can be tempting at times, but it tends to be a slippery slope. 
Naturally, this applies to all rules. If your quick fix is going to break the rules, you 
should really try to refactor it immediately. Chances are that you won't have the time 
to fix it later and will regret it.
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No need to go overboard though. If the solution is good enough and refactoring 
would be much more work, then choosing the working method might be better. 
Even though all of these examples pertain to imports, this guideline applies to  
nearly all cases.

To prevent long lines, imports can be made shorter by using a few methods, adding 
a backslash, adding parentheses, or just shortening the imports:

from spam.eggs.foo.bar import spam, eggs, extra_spam, extra_eggs, 
extra_stuff  from spam.eggs.foo.bar import spam, eggs, extra_spam, 
extra_eggs

This case can easily be avoided by just following PEP8 (one import per line):

from spam.eggs.foo.bar import spam from spam.eggs.foo.bar import eggs 
from spam.eggs.foo.bar import extra_spam from spam.eggs.foo.bar import 
extra_eggs from spam.eggs.foo.bar import extra_stuff  from spam.eggs.
foo.bar import spam
from spam.eggs.foo.bar import eggs
from spam.eggs.foo.bar import extra_spam
from spam.eggs.foo.bar import extra_eggs

But what about really long imports?

from spam_eggs_and_some_extra_spam_stuff import  
my_spam_and_eggs_stuff_which_is_too_long_for_a_line

Yes… even though adding a backslash for imports is generally not recommended, 
there are some cases where it's still the best option:

from spam_eggs_and_some_extra_spam_stuff \
    import my_spam_and_eggs_stuff_which_is_too_long_for_a_line

Errors should never pass silently
"Errors should never pass silently. Unless explicitly silenced."

To paraphrase Jamie Zawinsky: Some people, when confronted with an error, think 
"I know, I'll use a try/except/pass block." Now they have two problems.

Bare or too broad exception catching is already a bad idea. Not passing them along 
will make you (or some other person working on the code) wonder for ages what  
is happening:

try:
    value = int(user_input)
except:
    pass
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If you really need to catch all errors, be very explicit about it:

try:
    value = int(user_input)
except Exception as e:
    logging.warn('Uncaught exception %r', e)

Or even better, catch it specifically and add a sane default:

try:
    value = int(user_input)
except ValueError:
    value = 0

The problem is actually even more complicated. What about blocks of code that 
depend on whatever is happening within the exception? For example, consider the 
following code block:

try:
    value = int(user_input)
    value = do_some_processing(value)
    value = do_some_other_processing(value)
except ValueError:
    value = 0

If ValueError is raised, which line is causing it? Is it int(user_input), do_some_
processing(value), or do_some_other_processing(value)? With silent catching 
of the error, there is no way to know when regularly executing the code, and this can 
be quite dangerous. If for some reason the processing of the other functions changes, 
it becomes a problem to handle exceptions in this way. So, unless it was actually 
intended to behave like that, use this instead:

try:
    value = int(user_input)
except ValueError:
    value = 0
else:
    value = do_some_processing(value)
    value = do_some_other_processing(value)
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In the face of ambiguity, refuse the temptation  
to guess
While guesses will work in many cases, they can bite you if you're not careful. As 
already demonstrated in the "explicit is better than implicit" paragraph, when having 
a few from ... import *, you cannot always be certain which module is providing 
you the variable you were expecting.

Ambiguity should generally be avoided, so guessing can be avoided. Clear and 
unambiguous code generates fewer bugs. A useful case where ambiguity is likely is 
function calling. Take, for example, the following two function calls:

spam(1, 2, 3, 4, 5)
spam(spam=1, eggs=2, a=3, b=4, c=5)

They could be the same, but they might also not be. It's impossible to say without 
seeing the function. If the function were implemented in the following way, the 
results would be vastly different between the two:

def spam(a=0, b=0, c=0, d=0, e=0, spam=1, eggs=2):
    pass

I'm not saying you should use keyword arguments in all cases, but if there are many 
arguments involved and/or hard-to-identify parameters (such as numbers), it would 
be a good idea. Instead of using keyword arguments, you can choose logical variable 
names to pass the arguments as well, as long as the meaning is clearly conveyed 
from the code.

For example, the following is a similar call that uses custom variable names to 
convey the intent:

a = 3
b = 4
c = 5
spam(a, b, c)

One obvious way to do it
"There should be one—and preferably only one—obvious way to do it. Although 
that way may not be obvious at first unless you're Dutch."
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In general, after thinking about a difficult problem for a while, you will find that 
there is one solution that is clearly preferable over the alternatives. There are cases 
where this is not the case, however, and in that case, it can be useful if you're Dutch. 
The joke here is that Guido van Rossum, the BDFL and original author of Python, is 
Dutch (as is yours truly).

Now is better than never
"Now is better than never. Although never is often better than *right* now."

It's better to fix a problem right now than push it into the future. There are cases, 
however, where fixing it right away is not an option. In those cases, a good 
alternative can be to mark a function as deprecated instead so that there is no chance 
of accidentally forgetting the problem:

import warnings
warnings.warn('Something deprecated', DeprecationWarning)

Hard to explain, easy to explain
"If the implementation is hard to explain, it's a bad idea. If the implementation is 
easy to explain, it may be a good idea."

As always, keep things as simple as you can. While complicated code can be nice to 
test with, it is more prone to bugs. The simpler you can keep things, the better.

Namespaces are one honking great idea
"Namespaces are one honking great idea—let's do more of those!"

Namespaces can make code a lot clearer to use. Naming them properly makes it even 
better. For example, what does the following line of code do?

load(fh)

Not too clear, right?

How about the version with the namespace?

pickle.load(fh)

And now we do understand.
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To give an example of a namespace, the full length of which renders it impractical to 
use, we will take a look at the User class in Django. Within the Django framework, 
the User class is stored in django.contrib.auth.models.User. Many projects use 
the object in the following way:

from django.contrib.auth.models import User
# Use it as: User

While this is fairly clear, it might make someone think that the User class is local  
to the current class. Doing the following instead lets people know that it is in a 
different module:

from django.contrib.auth import models
# Use it as: models.User

This quickly clashes with other models' imports though, so personally I would 
recommend the following instead:

from django.contrib.auth import models as auth_models
# Use it as auth_models.User

Here is another alternative:

import django.contrib.auth as auth_models
# Use it as auth_models.User

Conclusion
Now we should have some idea of what the Pythonic ideology is about. Creating 
code that is:

•	 Beautiful
•	 Readable
•	 Unambiguous
•	 Explicit enough
•	 Not completely void of whitespace

So let's move on to some more examples of how to create beautiful, readable, and 
simple code using the Python style guide.



Chapter 2

[ 27 ]

Explaining PEP8
The previous paragraphs have already shown a lot of examples using PEP20 as a 
reference, but there are a few other important guidelines to note as well. The PEP8 
style guide specifies the standard Python coding conventions. Simply following the 
PEP8 standard doesn't make your code Pythonic though, but it is most certainly a 
good start. Which style you use is really not that much of a concern as long as you 
are consistent. The only thing worse than not using a proper style guide is being 
inconsistent with it.

Duck typing
Duck typing is a method of handling variables by behavior. To quote Alex Martelli 
(one of my Python heroes, also nicknamed the MartelliBot by many):

"Don't check whether it IS-a duck: check whether it QUACKS-like-a duck, 
WALKS-like-a duck, etc, etc, depending on exactly what subset of duck-like 
behaviour you need to play your language-games with. If the argument fails this 
specific-ducklyhood-subset-test, then you can shrug, ask "why a duck?"

In many cases, when people make a comparison such as if spam != '':, they are 
actually just looking for anything that is considered a true value. While you can 
compare the value to the string value '', you generally don't have to make it so 
specific. In many cases, simply doing if spam: is more than enough and actually 
functions better.

For example, the following lines of code use the value of timestamp to generate  
a filename:

filename = '%s.csv' % timestamp

Because it is named timestamp, one might be tempted to check whether it is actually 
a date or datetime object, like this:

import datetime
if isinstance(timestamp, (datetime.date, datetime.datetime)):
    filename = '%s.csv' % timestamp
else:
    raise TypeError(
        'Timestamp %r should be date(time) object, got %s'
        % (timestamp, type(timestamp)))
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While this is not inherently wrong, comparing types is considered a bad practice 
in Python, as there is oftentimes no need for it. In Python, duck typing is preferred 
instead. Just try converting it to a string and don't care what it actually is. To illustrate 
how little difference this can make for the end result, see the following code:

import datetime
timestamp = datetime.date(2000, 10, 5)
filename = '%s.csv' % timestamp
print('Filename from date: %s' % filename)

timestamp = '2000-10-05'
filename = '%s.csv' % timestamp
print('Filename from str: %s' % filename)

As you might expect, the result is identical:

Filename from date: 2000-10-05.csv
Filename from str: 2000-10-05.csv

The same goes for converting a number to a float or an integer; instead of enforcing a 
certain type, just require certain features. Need something that can pass as a number? 
Just try to convert to int or float. Need a file object? Why not just check whether 
there is a read method with hasattr?

So, don't do this:

if isinstance(value, int):

Instead, just use the following:

value = int(value)

And instead of this:

import io

if isinstance(fh, io.IOBase):

Simply use the following line:

if hasattr(fh, 'read'):
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Differences between value and identity comparisons
There are several methods of comparing objects in Python, the standard greater than 
and less than, equal and unequal. But there are actually a few more, and one of them 
is a bit special. That's the identity comparison operator: instead of using if spam == 
eggs, you use if spam is eggs. The big difference is that one compares the value 
and the other compares the identity. This sounds a little vague, but it's actually fairly 
simple. At least within the CPython implementation, the memory address is being 
compared, which means that it is one of the lightest lookups you can get. Whereas a 
value needs to make sure that the types are comparable and perhaps check the sub-
values, the identity check just checks whether the unique identifier is the same.

If you've ever written Java, you should be familiar with this 
principle. In Java, a regular string comparison (spam == eggs) 
will use the identity instead of the value. To compare the value, 
you need to use spam.equals(eggs) to get the correct results.

Look at this example:

a = 200 + 56
b = 256
c = 200 + 57
d = 257

print('%r == %r: %r' % (a, b, a == b))
print('%r is %r: %r' % (a, b, a is b))
print('%r == %r: %r' % (c, d, c == d))
print('%r is %r: %r' % (c, d, c is d))

While the values are the same, the identities are different. The actual result from this 
code is as follows:

256 == 256: True
256 is 256: True
257 == 257: True
257 is 257: False

The catch is that Python keeps an internal array of integer objects for all integers 
between -5 and 256; that's why it works for 256 but not for 257.

You might wonder why anyone would ever want to use is instead of ==. There are 
multiple valid answers; depending on the case, one is correct and the other isn't. But 
performance can also be a very important consideration. The basic guideline is that 
when comparing Python singletons such as True, False, and None, always compare 
using is.
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As for the performance consideration, think of the following example:

spam = range(1000000)
eggs = range(1000000)

When doing spam == eggs, this will compare every item in both lists to each other, 
so effectively it is doing 1,000,000 comparisons internally. Compare this with only 
one simple identity check when using spam is eggs.

To look at what Python is actually doing internally with the is operator, you can use 
the id function. When executing if spam is eggs, Python will actually execute if 
id(spam) == id(eggs) internally.

Loops
Coming from other languages, one might be tempted to use for loops or even while 
loops to process the items of a list, tuple, str, and so on. While valid, it is more 
complex than needed. For example, consider this code:

i = 0
while i < len(my_list):
    item = my_list[i]
    i += 1
    do_something(i, item)

Instead you can do the following:

for i, item in enumerate(my_list):
    do_something(i, item)

While this can be written even shorter, it's generally not recommended, as it does not 
improve readability:

[do_something(i, item) for i, item in enumerate(my_list)]

The last option might be clear to some but not all. Personally, I prefer to limit the 
usage of list comprehensions, dict comprehensions, and map and filter statements for 
when the result is actually being stored.

For example:

spam_items = [x for x in items if x.startswith('spam_')]

But still, only if it doesn't hurt the readability of the code.
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Consider this bit of code:

eggs = [is_egg(item) or create_egg(item) for item in list_of_items if 
egg and hasattr(egg, 'egg_property') and isinstance(egg, Egg)]  eggs = 
[is_egg(item) or create_egg(item) for item in list_of_items
        if egg and hasattr(egg, 'egg_property')
        and isinstance(egg, Egg)]

Instead of putting everything in the list comprehension, why not split it into a  
few functions?

def to_egg(item):
    return is_egg(item) or create_egg(item)

def can_be_egg(item):
    has_egg_property = hasattr(egg, 'egg_property')
    is_egg_instance = isinstance(egg, Egg)
    return egg and has_egg_property and is_egg_instance

eggs = [to_egg(item) for item in list_of_items if can_be_egg(item)]  
eggs = [to_egg(item) for item in list_of_items if
        can_be_egg(item)]

While this code is a bit longer, I would personally argue that it's more readable  
this way.

Maximum line length
Many Python programmers think 79 characters is too constricting and just keep the lines 
longer. While I am not going to argue for 79 characters specifically, setting a low and 
fixed limit such as 79 or 99 is a good idea. While monitors get wider and wider, limiting 
your lines can still help a lot with readability and it allows you to put multiple files next 
to each other. It's a regular occurrence for me to have four Python files opened next to 
each other. If the line width were more than 79 characters, that simply wouldn't fit.

The PEP8 guide tells us to use backslashes in cases where lines get too long. While 
I agree that backslashes are preferable over long lines, I still think they should be 
avoided if possible. Here's an example from PEP8:

with open('/path/to/some/file/you/want/to/read') as file_1, \
        open('/path/to/some/file/being/written', 'w') as file_2:
    file_2.write(file_1.read())

Instead of using backslashes, I would reformat it like this:

filename_1 = '/path/to/some/file/you/want/to/read'
filename_2 = '/path/to/some/file/being/written'
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with open(filename_1) as file_1, open(filename_2, 'w') as file_2:
    file_2.write(file_1.read())

Or perhaps the following:

filename_1 = '/path/to/some/file/you/want/to/read'
filename_2 = '/path/to/some/file/being/written'
with open(filename_1) as file_1:
    with open(filename_2, 'w') as file_2:
        file_2.write(file_1.read())

Not always an option, of course, but it's a good consideration to keep the code short 
and readable. It actually gives a bonus of adding more information to the code. If, 
instead of filename_1, you use a name that conveys the goal of the filename, it 
immediately becomes clearer what you are trying to do.

Verifying code quality, pep8, pyflakes,  
and more
There are many tools for checking code quality in Python. The simplest ones, such 
as pep8, just validate a few simple PEP8 errors. The more advanced ones, such as 
pylint, do advanced introspections to detect potential bugs in otherwise working 
code. A large portion of what pylint offers is a bit over the top for many projects, 
but still interesting to look at.

flake8
The flake8 tool combines pep8, pyflakes, and McCabe to set up a quality standard 
for code. The flake8 tool is one of the most important packages for maintaining 
code quality in my packages. All the packages that I maintain have a 100% flake8 
compliance requirement. It does not promise readable code, but at least it requires a 
certain level of consistency, which is very important when writing on a project with 
multiple programmers.

Pep8
One of the simplest tools used to check the quality of Python code is the pep8 
package. It doesn't check everything that is in the PEP8 standard, but it goes a long 
way and is still updated regularly to add new checks. Some of the most important 
things checked by pep8 are as follows:

•	 Indentation, while Python will not check how many spaces you use to indent, 
it does not help with the readability of your code

•	 Missing whitespace, such as spam=123
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•	 Too much whitespace, such as def eggs(spam = 123):
•	 Too many or too few blank lines 
•	 Too long lines
•	 Syntax and indentation errors
•	 Incorrect and/or superfluous comparisons (not in, is not, if spam is 

True, and type comparisons without isinstance)

The conclusion is that the pep8 tool helps a lot with testing whitespace and some of 
the more common styling issues, but it is still fairly limited.

pyflakes
This is where pyflakes comes in. pyflakes is a bit more intelligent than pep8 and 
warns you about style issues such as:

•	 Unused imports
•	 Wildcard imports (from module import *)
•	 Incorrect __future__ imports (after other imports)

But more importantly, it warns about potential bugs, such as the following:

•	 Redefinitions of names that were imported
•	 Usage of undefined variables
•	 Referencing variables before assignment
•	 Duplicate argument names
•	 Unused local variables

The last bit of PEP8 is covered by the pep8-naming package. It makes sure that your 
naming is close to the standard dictated by PEP8:

•	 Class names as CapWord
•	 Function, variable, and argument names all in lowercase
•	 Constants as full uppercase and being treated as constants
•	 The first argument of instance methods and class methods as self and  

cls, respectively
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McCabe
Lastly, there is the McCabe complexity. It checks the complexity of code by 
looking at the Abstract Syntax Tree (AST). It finds out how many lines, levels, 
and statements are there and warns you if your code has more complexity than a 
preconfigured threshold. Generally, you will use McCabe through flake8, but a 
manual call is possible as well. Using the following code:

def spam():
    pass

def eggs(matrix):
    for x in matrix:
        for y in x:
            for z in y:
                print(z, end='')
            print()
        print()

McCabe will give us the following output:

# pip install mccabe

...

# python -m mccabe cabe_test.py 1:1: 'spam' 1

5:1: 'eggs' 4

Your maximum threshold is configurable, of course, but the default is 10. The 
McCabe test returns a number that is influenced by parameters such as the size of a 
function, the nested depths, and a few others. If your function reaches 10, it might be 
time to refactor the code.

flake8
All of this combined is flake8, a tool that combines these tools and outputs a single 
report. Some of the warnings generated by flake8 might not fit your taste, so each 
and every one of the checks can be disabled, both per file and for the entire project 
if needed. For example, I personally disable W391 for all my projects, which warns 
about blank lines at the end of a file. This is something I find useful while working 
on code so that I can easily jump to the end of the file and start writing code instead 
of having to append a few lines first.

In general, before committing your code and/or putting it online, just run flake8 
from your source directory to check everything recursively.
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Here is a demonstration with some poorly formatted code:

def spam(a,b,c):
    print(a,b+c)

def eggs():
    pass

It results in the following:

# pip install flake8

...

# flake8 flake8_test.py

flake8_test.py:1:11: E231 missing whitespace after ','

flake8_test.py:1:13: E231 missing whitespace after ','

flake8_test.py:2:12: E231 missing whitespace after ','

flake8_test.py:2:14: E226 missing whitespace around arithmetic operator

flake8_test.py:4:1: E302 expected 2 blank lines, found 1

Pylint
pylint is a far more advanced—and in some cases better—code quality checker. The 
power of pylint does come with a few drawbacks, however. Whereas flake8 is a 
really fast, light, and safe quality check, pylint has far more advanced introspection 
and is much slower for this reason. In addition, pylint will most likely give you a 
large number of warnings, which are irrelevant or even wrong. This could be seen as 
a flaw in pylint, but it's actually more of a restriction of passive code analysis. Tools 
such as pychecker actually load and execute your code. In many cases, this is safe, 
but there are cases where it is not. Just think of what could happen when executing a 
command that deletes files.

While I have nothing against pylint, in general I find that most important problems 
are handled by flake8, and others can easily be avoided with some proper 
coding standards. It can be a very useful tool if configured correctly, but without 
configuration, it is very verbose.

Common pitfalls
Python is a language meant to be clear and readable without any ambiguities and 
unexpected behaviors. Unfortunately, these goals are not achievable in all cases, 
and that is why Python does have a few corner cases where it might do something 
different than what you were expecting.
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This section will show you some issues that you might encounter when writing 
Python code.

Scope matters!
There are a few cases in Python where you might not be using the scope that  
you are actually expecting. Some examples are when declaring a class and with 
function arguments.

Function arguments
The following example shows a case that breaks due to a careless choice in default 
parameters:

def spam(key, value, list_=[], dict_={}):
    list_.append(value)
    dict_[key] = value

    print('List: %r' % list_)
    print('Dict: %r' % dict_)

spam('key 1', 'value 1')
spam('key 2', 'value 2')

You would probably expect the following output:

List: ['value 1']
Dict: {'key 1': 'value 1'}
List: ['value 2']
Dict: {'key 2': 'value 2'}

But it's actually this:

List: ['value 1']
Dict: {'key 1': 'value 1'}
List: ['value 1', 'value 2']
Dict: {'key 1': 'value 1', 'key 2': 'value 2'}

The reason is that list_ and dict_ are actually shared between multiple calls. The 
only time this is actually useful is if you are doing something hacky, so please avoid 
using mutable objects as default parameters in a function.

The safe alternative of the same example is as follows:

def spam(key, value, list_=None, dict_=None):
    if list_ is None:
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        list_ = []

    if dict_ is None:
        dict_ {}

    list_.append(value)
    dict_[key] = value

Class properties
The problem also occurs when defining classes. It is very easy to mix class attributes 
and instance attributes. Especially when coming from other languages such as C#, 
this can be confusing. Let's illustrate it:

class Spam(object):
    list_ = []
    dict_ = {}

    def __init__(self, key, value):
        self.list_.append(value)
        self.dict_[key] = value

        print('List: %r' % self.list_)
        print('Dict: %r' % self.dict_)

Spam('key 1', 'value 1')
Spam('key 2', 'value 2')

As with the function arguments, the list and dictionaries are shared. So, the output is 
as follows:

List: ['value 1']
Dict: {'key 1': 'value 1'}
List: ['value 1', 'value 2']
Dict: {'key 1': 'value 1', 'key 2': 'value 2'}

A better alternative is to initialize the mutable objects within the __init__ method of 
the class. This way, they are not shared between instances:

class Spam(object):
    def __init__(self, key, value):
        self.list_ = [key]
        self.dict_ = {key: value}

        print('List: %r' % self.list_)
        print('Dict: %r' % self.dict_)
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Another important thing to note when dealing with classes is that a class property 
will be inherited, and that's where things might prove to be confusing. When 
inheriting, the original properties will stay (unless overwritten), even in subclasses:

 >>> class A(object):

...     spam = 1

>>> class B(A):

...     pass

Regular inheritance, the spam attribute of both A and B are 1 as

you would expect.

>>> A.spam

1

>>> B.spam

1

Assigning 2 to A.spam now modifies B.spam as well

>>> A.spam = 2

>>> A.spam

2

>>> B.spam

2

While this is to be expected due to inheritance, someone else using the class might 
not suspect the variable to change in the meantime. After all, we modified A.spam, 
not B.spam.

There are two easy ways to prevent this. It is obviously possible to simply set spam 
for every class separately. But the better solution is never to modify class properties. 
It's easy to forget that the property will change in multiple locations, and if it has to 
be modifiable anyway, it's usually better to put it in an instance variable instead.

Modifying variables in the global scope
A common problem when accessing variables from the global scope is that setting a 
variable makes it local, even when accessing the global variable.
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This works:

 >>> def eggs():

...     print('Spam: %r' % spam)

>>> eggs()

Spam: 1

But the following does not:

 >>> spam = 1

>>> def eggs():

...     spam += 1

...     print('Spam: %r' % spam)

>>> eggs()

Traceback (most recent call last):

    ...

UnboundLocalError: local variable 'spam' referenced before assignment

The problem is that spam += 1 actually translates to spam = spam + 1, and 
anything containing spam = makes the variable local to your scope. Since the local 
variable is being assigned at that point, it has no value yet and you are trying to use 
it. For these cases, there is the global statement, although I would really recommend 
that you avoid globals altogether.

Overwriting and/or creating extra built-ins
While it can be useful in some cases, generally you will want to avoid overwriting 
global functions. The PEP8 convention for naming your functions—similar to built-in 
statements, functions, and variables—is to use a trailing underscore.

So, do not use this:

list = [1, 2, 3]

Instead, use the following:

list_ = [1, 2, 3]



Pythonic Syntax, Common Pitfalls, and Style Guide

[ 40 ]

For lists and such, this is just a good convention. For statements such as from, 
import, and with, it's a requirement. Forgetting about this can lead to very  
confusing errors:

>>> list = list((1, 2, 3))

>>> list

[1, 2, 3]

>>> list((4, 5, 6))

Traceback (most recent call last):

    ...

TypeError: 'list' object is not callable

>>> import = 'Some import'

Traceback (most recent call last):

    ...

SyntaxError: invalid syntax

If you actually want to define a built-in that is available everywhere, it's possible. For 
debugging purposes, I've been known to add this code to a project while developing:

import builtins
import inspect
import pprint
import re

def pp(*args, **kwargs):
    '''PrettyPrint function that prints the variable name when
    available and pprints the data'''
    name = None
    # Fetch the current frame from the stack
    frame = inspect.currentframe().f_back
    # Prepare the frame info
    frame_info = inspect.getframeinfo(frame)

    # Walk through the lines of the function
    for line in frame_info[3]:
        # Search for the pp() function call with a fancy regexp
        m = re.search(r'\bpp\s*\(\s*([^)]*)\s*\)', line)
        if m:
            print('# %s:' % m.group(1), end=' ')
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            break

    pprint.pprint(*args, **kwargs)

builtins.pf = pprint.pformat
builtins.pp = pp

Much too hacky for production code, but it is still useful when working on a 
large project where you need print statements to debug. Alternative (and better) 
debugging solutions can be found in Chapter 11, Debugging – Solving the Bugs.

The usage is quite simple:

x = 10
pp(x)

Here is the output:

# x: 10

Modifying while iterating
At one point or another, you will run into this problem: while iterating through 
mutable objects such as lists, dicts, or sets, you cannot modify them. All of these result 
in a RuntimeError telling you that you cannot modify the object during iteration:

dict_ = {'spam': 'eggs'}
list_ = ['spam']
set_ = {'spam', 'eggs'}

for key in dict_:
    del dict_[key]

for item in list_:
    list_.remove(item)

for item in set_:
    set_.remove(item)

This can be avoided by copying the object. The most convenient option is by using 
the list function:

dict_ = {'spam': 'eggs'}
list_ = ['spam']
set_ = {'spam', 'eggs'}

for key in list(dict_):
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    del dict_[key]

for item in list(list_):
    list_.remove(item)

for item in list(set_):
    set_.remove(item)

Catching exceptions – differences between 
Python 2 and 3
With Python 3, catching an exception and storing it has been made more obvious 
with the as statement. The problem is that many people are still used to the except 
Exception, variable syntax, which doesn't work anymore. Luckily, the Python 
3 syntax has been backported to Python 2, so now you can use the following syntax 
everywhere:

try:
    ... # do something here
except (ValueError, TypeError) as e:
    print('Exception: %r' % e)

Another important difference is that Python 3 makes this variable local to the 
exception scope. The result is that you need to declare the exception variable before 
the try/except block if you want to use it later:

def spam(value):
    try:
        value = int(value)
    except ValueError as exception:
        print('We caught an exception: %r' % exception)

    return exception

spam('a')

You might expect that since we get an exception here, this works; but actually, it 
doesn't, because exception does not exist at the point of the return statement.

The actual output is as follows:

We caught an exception: ValueError("invalid literal for int() with  
base 10: 'a'",)
Traceback (most recent call last):
  File "test.py", line 14, in <module>
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    spam('a')
  File "test.py", line 11, in spam
    return exception
UnboundLocalError: local variable 'exception' referenced before  
assignment

Personally I would argue that the preceding code is broken in any case: what if there 
isn't an exception somehow? It would have raised the same error. Luckily, the fix is 
simple; just write the value to a variable outside of the scope. One important thing 
to note here is that you explicitly need to save the variable to the parent scope. This 
code does not work either:

def spam(value):
    exception = None
    try:
        value = int(value)
    except ValueError as exception:
        print('We caught an exception: %r' % exception)

    return exception

We really need to save it explicitly because Python 3 automatically deletes anything 
saved with as variable at the end of the except statements. The reason for this is 
that exceptions in Python 3 contain a __traceback__ attribute. Having this attribute 
makes it much more difficult for the garbage collector to handle as it introduces a 
recursive self-referencing cycle (exception -> traceback -> exception -> traceback… ad 
nauseum). To solve this, Python essentially does the following:

exception = None
try:
    value = int(value)
except ValueError as exception:
    try:
        print('We caught an exception: %r' % exception)
    finally:
        del exception

The solution is simple enough—luckily—but you should keep in mind that this can 
introduce memory leaks into your program. The Python garbage collector is smart 
enough to understand that the variables are not visible anymore and will delete 
it eventually, but it can take a lot more time. How the garbage collection actually 
works is covered in Chapter 12, Performance – Tracking and Reducing Your Memory and 
CPU Usage. Here is the working version of the code:

def spam(value):
    exception = None



Pythonic Syntax, Common Pitfalls, and Style Guide

[ 44 ]

    try:
        value = int(value)
    except ValueError as e:
        exception = e
        print('We caught an exception: %r' % exception)

    return exception

Late binding – be careful with closures
Closures are a method of implementing local scopes in code. They make it possible 
to locally define variables without overriding variables in the parent (or global) 
scope and hide the variables from the outside scope later. The problem with closures 
in Python is that Python tries to bind its variables as late as possible for performance 
reasons. While generally useful, it does have some unexpected side effects:

eggs = [lambda a: i * a for i in range(3)]

for egg in eggs:
    print(egg(5))

The expected result? Should be something along the lines of this, right?

0
5
10

No, unfortunately not. This is similar to how class inheritance works with properties. 
Due to late binding, the variable i gets called from the surrounding scope at call 
time, and not when it's actually defined.

The actual result is as follows:

10
10
10

So what to do instead? As with the cases mentioned earlier, the variable needs to be 
made local. One alternative is to force immediate binding by currying the function 
with partial:

import functools

eggs = [functools.partial(lambda i, a: i * a, i) for i in  
range(3)]
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for egg in eggs:
    print(egg(5))

A better solution would be to avoid binding problems altogether by not introducing 
extra scopes (the lambda), that use external variables. If both i and a were specified 
as arguments to lambda, this will not be a problem.

Circular imports
Even though Python is fairly tolerant towards circular imports, there are some cases 
where you will get errors.

Let's assume we have two files.

eggs.py:

from spam import spam

def eggs():
    print('This is eggs')
    spam()

spam.py:

from eggs import eggs

def spam():
    print('This is spam')

if __name__ == '__main__':
    eggs()

Running spam.py will result in a circular import error:

Traceback (most recent call last):
  File "spam.py", line 1, in <module>
    from eggs import eggs
  File "eggs.py", line 1, in <module>
    from spam import spam
  File "spam.py", line 1, in <module>
    from eggs import eggs
ImportError: cannot import name 'eggs'



Pythonic Syntax, Common Pitfalls, and Style Guide

[ 46 ]

There are a few ways to work around this. Restructuring the code is usually the best 
to go around, but the best solution depends on the problem. In the preceding case, 
it can be solved easily. Just use module imports instead of function imports (which I 
recommend regardless of circular imports).

eggs.py:

import spam

def eggs():
    print('This is eggs')
    spam.spam()

spam.py:

import eggs

def spam():
    print('This is spam')

if __name__ == '__main__':
    eggs.eggs()

An alternative solution is to move the imports within the functions so that they occur 
at runtime. This is not the prettiest solution but it does the trick in many cases.

eggs.py:

def eggs():
    from spam import spam
    print('This is eggs')
    spam()

spam.py:

def spam():
    from eggs import eggs
    print('This is spam')

if __name__ == '__main__':
    eggs()
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Lastly there is the solution of moving the imports below the code that actually uses 
them. This is generally not recommended because it can make it non-obvious where the 
imports are, but I still find it preferable to having the import within the function calls.

eggs.py:

def eggs():
    print('This is eggs')
    spam()

from spam import spam

spam.py:

def spam():
    print('This is spam')

from eggs import eggs

if __name__ == '__main__':
    eggs()

And yes, there are still other solutions such as dynamic imports. One example of 
this is how the Django ForeignKey fields support strings instead of actual classes. 
But those are generally a really bad idea to use since they will be checked only 
at runtime. Because of this, bugs will introduce themselves only when executing 
any code that uses it instead of when modifying the code. So please try to avoid 
these whenever possible, or make sure you add proper automated tests to prevent 
unexpected bugs. Especially when they cause circular imports internally, they 
become an enormous pain to debug.

Import collisions
One problem that can be extremely confusing is having colliding imports—multiple 
packages/modules with the same name. I have had more than a few bug reports on 
my packages where, for example, people tried to use my numpy-stl project, which 
resides in a package named stl from a test file named stl.py. The result: it was 
importing itself instead of the stl package. While this case is difficult to avoid, at 
least within packages, a relative import is generally a better option. This is because 
it also tells other programmers that the import comes from the local scope instead of 
another package. So, instead of writing import spam, write from . import spam. 
This way, the code will always load from the current package instead of any global 
package that happens to have the same name.
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In addition to this there is also the problem of packages being incompatible with 
each other. Common names might be used by several packages, so be careful when 
installing those packages. When in doubt, just create a new virtual environment and 
try again. Doing this can save you a lot of debugging.

Summary
This chapter showed us what the Pythonic philosophy is all about and explained to 
us what the Zen of Python is all about. While code style is highly personal, Python 
has a few, very helpful guidelines that at least keep people mostly on the same page 
and style. In the end, we are all consenting adults; everyone has the right to write 
code as he/she sees fit. But I do request you. Please read through the style guides 
and try to adhere to them unless you have a really good reason not to.

With all that power comes great responsibility, and so do a few pitfalls, though 
there aren't too many. Some are tricky enough to fool me regularly and I've been 
writing Python for a long time! Python improves all the time though. Many pitfalls 
have been taken care of since Python 2, but some will always remain. For example, 
recursive imports and definitions can easily bite you in most languages that support 
them, but that doesn't mean we'll stop trying to improve Python.

A good example of the improvements in Python over the years is the collections 
module. It contains many useful collections that have been added by users because 
there was a need. Most of them are actually implemented in pure Python, and 
because of that, they are easy enough to be read by anyone. Understanding might 
take a bit more effort, but I truly believe that if you make it to the end of this 
book, you will have no problem understanding what the collections do. Fully 
understanding how the internals work is something I cannot promise though; some 
parts of that go more towards generic computer science than Python mastery.

The next chapter will show you some of the collections available in Python and how 
they are constructed internally. Even though you are undoubtedly familiar with 
collections such as lists and dictionaries, you might not be aware of the performance 
characteristics involved with some of the operations. If some of the examples in this 
chapter were less than clear, you don't have to worry. The next chapter will at least 
revisit some of them, and more will come in later chapters.
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Containers and Collections – 
Storing Data the Right Way

Python comes bundled with several very useful collections, a few of which are basic 
Python collection data types. The rest are advanced combinations of these types. In 
this chapter, we will explain some of these collections, how to use them, and the pros 
and cons of each of them.

Before we can properly discuss data structures and the related performance, a basic 
understanding of time complexity (and specifically the big O notation) is required. 
No need to worry! The concept is really simple, but without it, we cannot easily 
explain the performance characteristics of operations.

Once the big O notation is clear, we will discuss the basic data structures:

•	 list

•	 dict

•	 set

•	 tuple

Building on the basic data structures, we will continue with more advanced 
collections, such as the following:

•	 Dictionary-like types:
°° ChainMap

°° Counter

°° Defaultdict

°° OrderedDict
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•	 List types:
°° Deque

°° Heapq

•	 Tuple types:
°° NamedTuple

•	 Other types:
°° Enum

Time complexity – the big O notation
Before we can begin with this chapter, there is a simple notation that you need 
to understand. This chapter heavily uses the big O notation to indicate the time 
complexity for an operation. Feel free to skip this paragraph if you are already 
familiar with this notation. While this notation sounds really complicated, the 
concept is actually quite simple.

When we say that a function takes O(1) time, it means that it generally only takes 1 
step to execute. Similarly, a function with O(n) would take n steps to execute, where 
n is generally the size of the object. This time complexity is just a basic indication of 
what to expect when executing the code, as it is generally what matters most.

The purpose of this system is to indicate the approximate performance of an 
operation; this is separate from code speed but it is still relevant. A piece of code 
that executes a single step 1000 times faster but needs O(2**n) steps to execute will 
still be slower than another version of it that takes only O(n) steps for a value of n 
equal to 10 or more. This is because 2**n for n=10 is 2**10=1024, that is, 1,024 steps 
to execute the same code. This makes choosing the right algorithm very important. 
Even though C code is generally faster than Python, if it uses the wrong algorithm, it 
won't help at all.

For example, suppose you have a list of 1000 items and you walk through them. 
This will take O(n) time because there are n=1000 items. Checking whether or not an 
item exists in the list takes O(n), so that's 1,000 steps. Doing this 100 times will take 
you 100*O(n) = 100 * 1000 = 100,000 steps. When you compare this to a dict, 
where checking whether the item exists or not takes only O(1) time the difference is 
huge. With a dict, it would be 100*O(1) = 100 * 1 = 100 steps. So, using a dict 
instead of a list will be roughly 1,000 times faster for an object with 1,000 items:

n = 1000
a = list(range(n))
b = dict.fromkeys(range(n))
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for i in range(100):
    i in a  # takes n=1000 steps
    i in b  # takes 1 step

To illustrate O(1), O(n), and O(n**2) functions:

def o_one(items):
    return 1  # 1 operation so O(1)

def o_n(items):
    total = 0
    # Walks through all items once so O(n)
    for item in items:
        total += item
    return total

def o_n_squared(items):
    total = 0
    # Walks through all items n*n times so O(n**2)
    for a in items:
        for b in items:
            total += a * b
    return total

n = 10
items = range(n)
o_one(items)  # 1 operation
o_n(items)  # n = 10 operations
o_n_squared(items)  # n*n = 10*10 = 100 operations

It should be noted that the big O in this chapter is about the average case and not the 
worst case. In some cases, they can be much worse, but those are rare enough to be 
ignored for the general case.

Core collections
Before we can look at the more advanced combined collections later in this chapter, 
you need to understand the workings of the core Python collections. This is not just 
about the usage, however; it is also about the time complexities involved, which can 
strongly affect how your application will behave as it grows. If you are well versed 
with the time complexities of these objects and know the possibilities of Python 
3's tuple packing and unpacking by heart, then feel free to jump to the Advanced 
collections section.
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list – a mutable list of items
The list is most likely the container structure that you've used most in Python. It is 
simple in its usage, and for most cases, it exhibits great performance.

While you may already be well versed with the usage of list, you might not be aware 
of the time complexities of the list object. Luckily, many of the time complexities of 
list are very low; append, get, set, and len all take O(1) time—the best possible. 
However, you might not be aware of the fact that remove and insert have O(n) 
time complexity. So, to delete a single item out of 1,000 items, Python will have to 
walk-through 1,000 items. Internally, the remove and insert operations execute 
something along these lines:

>>> def remove(items, value):

...     new_items = []

...     found = False

...     for item in items:

...         # Skip the first item which is equal to value

...         if not found and item == value:

...             found = True

...             continue

...         new_items.append(item)

...

...     if not found:

...         raise ValueError('list.remove(x): x not in list')

...

...     return new_items

>>> def insert(items, index, value):

...     new_items = []

...     for i, item in enumerate(items):

...         if i == index:

...             new_items.append(value)

...         new_items.append(item)

...     return new_items

>>> items = list(range(10))

>>> items
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[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> items = remove(items, 5)

>>> items

[0, 1, 2, 3, 4, 6, 7, 8, 9]

>>> items = insert(items, 2, 5)

>>> items

[0, 1, 5, 2, 3, 4, 6, 7, 8, 9]

To remove or insert a single item from/into the list, Python needs to copy the entire 
list, which is especially heavy with larger lists. When executing this only once, it is 
of course not all that bad. But when executing a large number of deletions, a filter 
or list comprehension is a much faster solution because, if properly structured, it 
needs to copy the list only once. For example, suppose we wish to remove a specific 
set of numbers from the list. We have quite a few options for this. The first is a 
solution using remove, followed by a list comprehension, and then comes a filter 
statement. Chapter 4, Functional Programming – Readability Versus Brevity, will explain 
list comprehensions and the filter statement in more detail. But first, let's check 
out the example:

>>> primes = set((1, 2, 3, 5, 7))

# Classic solution

>>> items = list(range(10))

>>> for prime in primes:

...     items.remove(prime)

>>> items

[0, 4, 6, 8, 9]

# List comprehension

>>> items = list(range(10))

>>> [item for item in items if item not in primes]

[0, 4, 6, 8, 9]

# Filter

>>> items = list(range(10))

>>> list(filter(lambda item: item not in primes, items))

[0, 4, 6, 8, 9]
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The latter two are much faster for large lists of items. This is because the operations 
are much faster. To compare using n=len(items) and m=len(primes), the first takes 
O(m*n)=5*10=50 operations, whereas the latter two take O(n*1)=10*1=10 operations.

The first method is actually slightly better than that since n 
decreases during the loop. So, it's effectively 10+9+8+7+6=40, 
but this is an effect that is negligible enough to ignore. In 
the case of n=1000, that would be the difference between 
1000+999+998+997+996=4990 and 5*1000=5000, which 
is negligible in most cases.

Of course, min, max, and in all take O(n) as well, but that is expected for a structure 
that is not optimized for these types of lookups.

They can be implemented like this:

>>> def in_(items, value):

...     for item in items:

...         if item == value:

...             return True

...     return False

>>> def min_(items):

...     current_min = items[0]

...     for item in items[1:]:

...         if current_min > item:

...             current_min = item

...     return current_min

>>> def max_(items):

...     current_max = items[0]

...     for item in items[1:]:

...         if current_max < item:

...             current_max = item

...     return current_max

>>> items = range(5)

>>> in_(items, 3)

True



Chapter 3

[ 55 ]

>>> min_(items)

0

>>> max_(items)

4

With these examples, it's obvious as well that the in operator could work O(1) if 
you're lucky, but we count it as O(n) because it might not exist, in which case all 
values need to be checked.

dict – unsorted but a fast map of items
The dict has to be at least among the top three container structures you use in 
Python. It's fast, simple to use, and very effective. The average time complexity is 
exactly as you would expect—O(1) for get, set, and del—but there are cases where 
this is not true. The way a dict works is by converting the key to a hash using the 
hash function (calls the __hash__ function of an object) and storing it in a hash table. 
There are two problems with hash tables, however. The first and the most obvious 
is that the items will be sorted by hash, which appears at random in most cases. The 
second problem with hash tables is that they can have hash collisions, and the result 
of a hash collision is that in the worst case, all the former operations can take O(n) 
instead. Hash collisions are not all that likely to occur, but they can occur, and if a 
large dict performs subpar, that's the place to look.

Let's see how this actually works in practice. For the sake of this example, I will use 
the simplest hashing algorithm I can think of, which is the most significant digit of a 
number. So, for the case of 12345, it will return 1, and for 56789, it will return 5:

>>> def most_significant(value):

...     while value >= 10:

...         value //= 10

...     return value

>>> most_significant(12345)

1

>>> most_significant(99)

9

>>> most_significant(0)

0
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Now we will emulate a dict using a list of lists with this hashing method. We 
know that our hashing method can only return numbers from 0 to 9, so we need only 
10 buckets in our list. Now we will add a few values and show how the spam in eggs 
might work:

>>> def add(collection, key, value):

...     index = most_significant(key)

...     collection[index].append((key, value))

>>> def contains(collection, key):

...     index = most_significant(key)

...     for k, v in collection[index]:

...         if k == key:

...             return True

...     return False

# Create the collection of 10 lists

>>> collection = [[], [], [], [], [], [], [], [], [], []]

# Add some items, using key/value pairs

>>> add(collection, 123, 'a')

>>> add(collection, 456, 'b')

>>> add(collection, 789, 'c')

>>> add(collection, 101, 'c')

# Look at the collection

>>> collection

[[], [(123, 'a'), (101, 'c')], [], [],

 [(456, 'b')], [], [], [(789, 'c')], [], []]

# Check if the contains works correctly

>>> contains(collection, 123)

True

>>> contains(collection, 1)

False
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This code is obviously not identical to the dict implementation, but it is actually quite 
similar internally. Because we can just get item 1 for a value of 123 by simple indexing, 
we have only O(1) lookup costs in the general case. However, since both keys, 123 and 
101, are within the 1 bucket, the runtime can actually increase to O(n) in the worst case 
where all keys have the same hash. That is what we call a hash collision.

To debug hash collisions, you can use the hash() function paired 
with the counter collection, discussed in the counter – keeping track 
of the most occurring elements section.

In addition to the hash collision performance problem, there is another behavior that 
might surprise you. When deleting items from a dictionary, it won't actually resize 
the dictionary in memory yet. The result is that both copying and iterating the entire 
dictionary take O(m) time (where m is the maximum size of the dictionary); n, the 
current number of items is not used. So, if you add 1,000 items to a dict and remove 
999, iterating and copying will still take 1,000 steps. The only way to work around this 
issue is by recreating the dictionary, which is something that both the copy and insert 
operations will perform internally. Note that recreation during an insert operation is 
not guaranteed and depends on the number of free slots available internally.

set – like a dict without values
A set is a structure that uses the hash method to get a unique collection of values. 
Internally, it is very similar to a dict, with the same hash collision problem, but 
there are a few handy features of set that need to be shown:

# All output in the table below is generated using this function

>>> def print_set(expression, set_):

...     'Print set as a string sorted by letters'

...     print(expression, ''.join(sorted(set_)))

>>> spam = set('spam')

>>> print_set('spam:', spam)

spam: amps

>>> eggs = set('eggs')

>>> print_set('eggs:', spam)

eggs: amps
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The first few are pretty much as expected. At the operators, it gets interesting.

Expression Output Explanation
spam amps All unique items. A set doesn't allow for duplicates.
eggs egs

spam & eggs s Every item in both.
spam | eggs aegmps Every item in either or both.
spam ^ eggs aegmp Every item in either but not in both.
spam - eggs amp Every item in the first but not the latter.
eggs - spam eg

spam > eggs False True if every item in the latter is in the first.
eggs > spam False

spam > sp True

spam < sp False True if every item in the first is contained in the latter.

One useful example for set operations is calculating the differences between two 
objects. For example, let's assume we have two lists:

•	 current_users: The current users in a group
•	 new_users: The new list of users in a group

In permission systems, this is a very common scenario—mass adding and/or 
removing users from a group. Within many permission databases, it's not easily 
possible to set the entire list at once, so you need a list to insert and a list to delete. 
This is where set comes in really handy:

The set function takes a sequence as argument so the double ( is

required.

>>> current_users = set((

...     'a',

...     'b',

...     'd',

... ))

>>> new_users = set((

...     'b',

...     'c',

...     'd',

...     'e',
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... ))

>>> to_insert = new_users - current_users

>>> sorted(to_insert)

['c', 'e']

>>> to_delete = current_users - new_users

>>> sorted(to_delete)

['a']

>>> unchanged = new_users & current_users

>>> sorted(unchanged)

['b', 'd']

Now we have lists of all users who were added, removed, and unchanged. Note that 
sorted is only needed for consistent output, since a set, similar to a dict, has no 
predefined sort order.

tuple – the immutable list
A tuple is an object that you use very often without even noticing it. When you 
look at it initially, it seems like a useless data structure. It's like a list that you can't 
modify, so why not just use a list? There are a few cases where a tuple offers some 
really useful functionalities that a list does not.

Firstly, they are hashaable. This means that you can use a tuple as a key in a dict, 
which is something a list can't do:

>>> spam = 1, 2, 3

>>> eggs = 4, 5, 6

>>> data = dict()

>>> data[spam] = 'spam'

>>> data[eggs] = 'eggs'

>>> import pprint  # Using pprint for consistent and sorted output

>>> pprint.pprint(data)

{(1, 2, 3): 'spam', (4, 5, 6): 'eggs'}
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However, it can actually be more than simple numbers. As long as all elements  
of a tuple are hashable, it will work. This means that you can use nested tuples, 
strings, numbers, and anything else for which the hash() function returns a 
consistent result:

>>> spam = 1, 'abc', (2, 3, (4, 5)), 'def'

>>> eggs = 4, (spam, 5), 6

>>> data = dict()

>>> data[spam] = 'spam'

>>> data[eggs] = 'eggs'

>>> import pprint  # Using pprint for consistent and sorted output

>>> pprint.pprint(data)

{(1, 'abc', (2, 3, (4, 5)), 'def'): 'spam',

 (4, ((1, 'abc', (2, 3, (4, 5)), 'def'), 5), 6): 'eggs'}

You can make these as complex as you need. As long as all the parts are hashable, it 
will function as expected.

Perhaps, even more useful is the fact that tuples also support tuple packing and 
unpacking:

# Assign using tuples on both sides

>>> a, b, c = 1, 2, 3

>>> a

1

# Assign a tuple to a single variable

>>> spam = a, (b, c)

>>> spam

(1, (2, 3))

# Unpack a tuple to two variables

>>> a, b = spam

>>> a

1

>>> b

(2, 3)
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In addition to regular packing and unpacking, from Python 3 onwards, we can 
actually pack and unpack objects with a variable number of items:

# Unpack with variable length objects which actually assigns as a

list, not a tuple

>>> spam, *eggs = 1, 2, 3, 4

>>> spam

1

>>> eggs

[2, 3, 4]

# Which can be unpacked as well of course

>>> a, b, c = eggs

>>> c

4

# This works for ranges as well

>>> spam, *eggs = range(10)

>>> spam

0

>>> eggs

[1, 2, 3, 4, 5, 6, 7, 8, 9]

# Which works both ways

>>> a

2

>>> a, b, *c = a, *eggs

>>> a, b

(2, 1)

>>> c

[2, 3, 4, 5, 6, 7, 8, 9]

This very method can be applied in many cases, even for function arguments:

>>> def eggs(*args):

...     print('args:', args)

>>> eggs(1, 2, 3)

args: (1, 2, 3)
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And its equally useful to return multiple arguments from a function:

>>> def spam_eggs():

...     return 'spam', 'eggs'

>>> spam, eggs = spam_eggs()

>>> print('spam: %s, eggs: %s' % (spam, eggs))

spam: spam, eggs: eggs

Advanced collections
The following collections are mostly just extensions of base collections, some of them 
fairly simple and others a bit more advanced. For all of them though, it is important 
to know the characteristics of the underlying structures. Without understanding 
them, it will be difficult to comprehend the characteristics of these collections.

There are a few collections that are implemented in native C code for performance 
reasons, but all of them can easily be implemented in pure Python as well.

ChainMap – the list of dictionaries
Introduced in Python 3.3, ChainMap allows you to combine multiple mappings 
(dictionaries for example) into one. This is especially useful when combining 
multiple contexts. For example, when looking for a variable in your current scope,  
by default, Python will search in locals(), globals(), and lastly builtins.

Normally, you would do something like this:

import builtins

builtin_vars = vars(builtins)
if key in locals():
    value = locals()[key]
elif key in globals():
    value = globals()[key]
elif key in builtin_vars:
    value = builtin_vars[key]
else:
    raise NameError('name %r is not defined' % key)
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This works, but it's ugly to say the least. We can make it prettier, of course:

import builtins

mappings = globals(), locals(), vars(builtins)
for mapping in mappings:
    if key in mapping:
        value = mapping[key]
        break
else:
    raise NameError('name %r is not defined' % key)

A lot better! Moreover, this can actually be considered a nice solution. But since 
Python 3.3, it's even easier. Now we can simply use the following code:

import builtins
import collections

mappings = collections.ChainMap(globals(), locals(), vars(builtins))
value = mappings[key]

The ChainMap collection is very useful for command-line applications. The most 
important configuration happens through command-line arguments, followed by 
directory local config files, followed by global config files, followed by defaults:

import argparse
import collections

defaults = {
    'spam': 'default spam value',
    'eggs': 'default eggs value',
}

parser = argparse.ArgumentParser()
parser.add_argument('--spam')
parser.add_argument('--eggs')

args = vars(parser.parse_args())
# We need to check for empty/default values so we can't simply use 
vars(args)
filtered_args = {k: v for k, v in args.items() if v}

combined = collections.ChainMap(filtered_args, defaults)

print(combined ['spam'])
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Note that accessing specific mappings is still possible:

print(combined.maps[1]['spam'])

for map_ in combined.maps:
    print(map_.get('spam'))

counter – keeping track of the most occurring 
elements
The counter is a class for keeping track of the number of occurrences of an element. 
Its basic usage is as you would expect:

>>> import collections

>>> counter = collections.Counter('eggs')

>>> for k in 'eggs':

...     print('Count for %s: %d' % (k, counter[k]))

Count for e: 1

Count for g: 2

Count for g: 2

Count for s: 1

However, counter can do more than simply return the count. It also has a few very 
useful and fast (it uses heapq) methods for getting the most common elements. Even 
with a million elements added to the counter, it still executes within a second:

>>> import math

>>> import collections

>>> counter = collections.Counter()

>>> for i in range(0, 100000):

...    counter[math.sqrt(i) // 25] += 1

>>> for key, count in counter.most_common(5):

...     print('%s: %d' % (key, count))

11.0: 14375

10.0: 13125

9.0: 11875

8.0: 10625

12.0: 10000
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But wait, there's more! In addition to getting the most frequent elements, it's also 
possible to add, subtract, intersect, and "union" counters very similarly to the 
set operations that we saw earlier. So what is the difference between adding two 
counters and making a union of them? As you would expect, they are similar, but 
there is a small difference. Let's look at its workings:

>>> import collections

>>> def print_counter(expression, counter):

...     sorted_characters = sorted(counter.elements())

...     print(expression, ''.join(sorted_characters))

>>> eggs = collections.Counter('eggs')

>>> spam = collections.Counter('spam')

>>> print_counter('eggs:', eggs)

eggs: eggs

>>> print_counter('spam:', spam)

spam: amps

>>> print_counter('eggs & spam:', eggs & spam)

eggs & spam: s

>>> print_counter('spam & eggs:', spam & eggs)

spam & eggs: s

>>> print_counter('eggs - spam:', eggs - spam)

eggs - spam: egg

>>> print_counter('spam - eggs:', spam - eggs)

spam - eggs: amp

>>> print_counter('eggs + spam:', eggs + spam)

eggs + spam: aeggmpss

>>> print_counter('spam + eggs:', spam + eggs)

spam + eggs: aeggmpss

>>> print_counter('eggs | spam:', eggs | spam)

eggs | spam: aeggmps

>>> print_counter('spam | eggs:', spam | eggs)

spam | eggs: aeggmps

The first two are obvious. The eggs string is just a sequence of characters with two 
"g"s, one "s", and one "e", and spam is almost the same but with different letters.
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The result of spam & eggs (and the reverse) is also quite predictable. The only letter 
that's shared between spam and eggs is s, so that's the result. When it comes to 
counts, it simply does a min(element_a, element_b) per shared element from both 
and gets the lowest.

When subtracting the letters s, p, a, and m from eggs, you are left with e and g. 
Similarly, when removing e, g, and s from spam, you are left with p, a, and m.

Now, adding is as you would expect—just an element-by-element addition of  
both counters.

So how is the union (OR) any different? It gets the max(element_a, element_b) 
per element in either of the counters instead of adding them; regardless as is the case 
with the addition.

Lastly, as is demonstrated in the preceding code, the elements method returns an 
expanded list of all elements repeated by the count.

The Counter object will automatically remove elements 
that are zero or less during the execution of mathematical 
operations.

deque – the double ended queue
The deque (short for Double Ended Queue) object is one of the oldest collections. 
It was introduced in Python 2.4, so it has been available for over 10 years by now. 
Generally, this object will be too low-level for most purposes these days, as many 
operations that would otherwise use it have well-supported libraries available, but 
that doesn't make it less useful.

Internally, deque is created as a doubly linked list, which means that every item 
points to the next and the previous item. Since deque is double-ended, the list itself 
points to both the first and the last element. This makes both adding and removing 
items from either the beginning or the end a very light O(1) operation, since only the 
pointer to the beginning/end of the list needs to change and a pointer needs to be 
added to the first/last item, depending on whether an item is added at the beginning 
or the end.

For simple stack/queue purposes, it seems wasteful to use a double-ended queue, 
but the performance is good enough for us not to care about the overhead incurred. 
The deque class is fully implemented in C (with CPython).
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Its usage as a queue is very straightforward:

>>> import collections

>>> queue = collections.deque()

>>> queue.append(1)

>>> queue.append(2)

>>> queue

deque([1, 2])

>>> queue.popleft()

1

>>> queue.popleft()

2

>>> queue.popleft()

Traceback (most recent call last):

    ...

IndexError: pop from an empty deque

As expected, the items are followed by an IndexError since there are only two items 
and we are trying to get three.

The usage as a stack is almost identical, but we have to use pop instead of popleft 
(or appendleft instead of append):

>>> import collections

>>> queue = collections.deque()

>>> queue.append(1)

>>> queue.append(2)

>>> queue

deque([1, 2])

>>> queue.pop()

2

>>> queue.pop()

1

>>> queue.pop()

Traceback (most recent call last):

    ...

IndexError: pop from an empty deque
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Another very useful feature is that deque can be used as a circular queue with the 
maxlen parameter. By using this, it can be used to keep the last n status messages or 
something similar:

>>> import collections

>>> circular = collections.deque(maxlen=2)

>>> for i in range(5):

...     circular.append(i)

...     circular

deque([0], maxlen=2)

deque([0, 1], maxlen=2)

deque([1, 2], maxlen=2)

deque([2, 3], maxlen=2)

deque([3, 4], maxlen=2)

>>> circular

deque([3, 4], maxlen=2)

Whenever you require a queue or stack class within a single-threaded application, 
deque is a very convenient option. If you require the object to be synchronized for 
multithreading operations, then the queue.Queue class would be better suited. 
Internally, it wraps deque, but it's a thread-safe alternative. In the same category, 
there is also an asyncio.Queue for asynchronous operations and multiprocessing.
Queue for multiprocessing operations. Examples of asyncio and multiprocessing 
can be found in Chapter 7, Async IO – Multithreading without Threads and Chapter 13, 
Multiprocessing – When a Single CPU Core Is Not Enough respectively.

defaultdict – dictionary with a default value
The defaultdict is by far my favorite object in the collections package. I still 
remember writing my own versions of it before it was added to the core. While it's a 
fairly simple object, it is extremely useful for all sorts of design patterns. Instead of 
having to check for the existence of a key and adding a value every time, you can just 
declare the default from the beginning, and there is no need to worry about the rest.

For example, let's say we are building a very basic graph structure from a list of 
connected nodes.

This is our list of connected nodes (one way):

nodes = [
    ('a', 'b'),
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    ('a', 'c'),
    ('b', 'a'),
    ('b', 'd'),
    ('c', 'a'),
    ('d', 'a'),
    ('d', 'b'),
    ('d', 'c'),
]

Now let's put this graph into a normal dictionary:

>>> graph = dict()

>>> for from_, to in nodes:

...     if from_ not in graph:

...         graph[from_] = []

...     graph[from_].append(to)

>>> import pprint

>>> pprint.pprint(graph)

{'a': ['b', 'c'],

 'b': ['a', 'd'],

 'c': ['a'],

 'd': ['a', 'b', 'c']}

Some variations are possible, of course, using setdefault for example. But they 
remain more complex than they need to be.

The truly Pythonic version uses defaultdict instead:

>>> import collections

>>> graph = collections.defaultdict(list)

>>> for from_, to in nodes:

...     graph[from_].append(to)

>>> import pprint

>>> pprint.pprint(graph)

defaultdict(<class 'list'>,

            {'a': ['b', 'c'],

             'b': ['a', 'd'],

             'c': ['a'],

             'd': ['a', 'b', 'c']})
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Isn't that a beautiful bit of code? The defaultdict can actually be seen as the 
precursor of the counter object. It's not as fancy and doesn't have all the bells  
and whistles that counter has, but it does the job in many cases:

>>> counter = collections.defaultdict(int)

>>> counter['spam'] += 5

>>> counter

defaultdict(<class 'int'>, {'spam': 5})

The default value for defaultdict needs to be a callable object. In the previous 
cases, these were int and list, but you can easily define your own functions to 
use as a default value. That's what the following example uses, although I won't 
recommend production usage since it lacks a bit of readability. I do believe, however, 
that it is a beautiful example of the power of Python.

This is how we create a tree in a single line of Python:

import collections
def tree(): return collections.defaultdict(tree)

Brilliant, isn't it? Here's how we can actually use it:

>>> import json

>>> import collections

>>> def tree():

...     return collections.defaultdict(tree)

>>> colours = tree()

>>> colours['other']['black'] = 0x000000

>>> colours['other']['white'] = 0xFFFFFF

>>> colours['primary']['red'] = 0xFF0000

>>> colours['primary']['green'] = 0x00FF00

>>> colours['primary']['blue'] = 0x0000FF

>>> colours['secondary']['yellow'] = 0xFFFF00

>>> colours['secondary']['aqua'] = 0x00FFFF

>>> colours['secondary']['fuchsia'] = 0xFF00FF

>>> print(json.dumps(colours, sort_keys=True, indent=4))

{
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    "other": {

        "black": 0,

        "white": 16777215

    },

    "primary": {

        "blue": 255,

        "green": 65280,

        "red": 16711680

    },

    "secondary": {

        "aqua": 65535,

        "fuchsia": 16711935,

        "yellow": 16776960

    }

}

The nice thing is that you can make it go as deep as you'd like. Because of the 
defaultdict base, it generates itself recursively.

namedtuple – tuples with field names
The namedtuple object is exactly what the name implies—a tuple with a name. It 
has a few useful use cases, though I must admit that I haven't found too many in the 
wild, except for some Python modules such as inspect and urllib.parse. Points in 
2D or 3D space are a nice example of where it is definitely useful:

>>> import collections

>>> Point = collections.namedtuple('Point', ['x', 'y', 'z'])

>>> point_a = Point(1, 2, 3)

>>> point_a

Point(x=1, y=2, z=3)

>>> point_b = Point(x=4, z=5, y=6)

>>> point_b

Point(x=4, y=6, z=5)
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Not too much can be said about namedtuple; it does what you would expect, and the 
greatest advantage is that the properties can be executed both by name and by index, 
which makes tuple unpacking quite easy:

>>> x, y, z = point_a

>>> print('X: %d, Y: %d, Z: %d' % (x, y, z))

X: 1, Y: 2, Z: 3

>>> print('X: %d, Y: %d, Z: %d' % point_b)

X: 4, Y: 6, Z: 5

>>> print('X: %d' % point_a.x)

enum – a group of constants
The enum package is quite similar to namedtuple but has a completely different goal 
and interface. The basic enum object makes it really easy to have constants in your 
modules while still avoiding magic numbers. This is a basic example:

>>> import enum

>>> class Color(enum.Enum):

...     red = 1

...     green = 2

...     blue = 3

>>> Color.red

<Color.red: 1>

>>> Color['red']

<Color.red: 1>

>>> Color(1)

<Color.red: 1>

>>> Color.red.name

'red'

>>> Color.red.value

1

>>> isinstance(Color.red, Color)

True

>>> Color.red is Color['red']
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True

>>> Color.red is Color(1)

True

A few of the handy features of the enum package are that the objects are iterable, 
accessible through both numeric and textual representation of the values, and, with 
proper inheritance, even comparable to other classes.

The following code shows the usage of a basic API:

>>> for color in Color:

...     color

<Color.red: 1>

<Color.green: 2>

<Color.blue: 3>

>>> colors = dict()

>>> colors[Color.green] = 0x00FF00

>>> colors

{<Color.green: 2>: 65280}

There is more though. One of the lesser known possibilities from the enum package 
is that you can make value comparisons work through inheritance of specific types, 
and this works for every type—not just integers but (your own) custom types as well.

This is the regular enum:

>>> import enum

>>> class Spam(enum.Enum):

...     EGGS = 'eggs'

>>> Spam.EGGS == 'eggs'

False

The following is enum with str inheritance:

>>> import enum

>>> class Spam(str, enum.Enum):
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...     EGGS = 'eggs'

>>> Spam.EGGS == 'eggs'

True

OrderedDict – a dictionary where the insertion 
order matters
OrderdDict is a dict that keeps track of the order in which the items were inserted. 
Whereas a normal dict will return your keys in the order of hash, OrderedDict will 
return your keys by the order of insertion. So, it's not ordered by key or value, but 
that is easily possible too:

>>> import collections

>>> spam = collections.OrderedDict()

>>> spam['b'] = 2

>>> spam['c'] = 3

>>> spam['a'] = 1

>>> spam

OrderedDict([('b', 2), ('c', 3), ('a', 1)])

>>> for key, value in spam.items():

...     key, value

('b', 2)

('c', 3)

('a', 1)

>>> eggs = collections.OrderedDict(sorted(spam.items()))

>>> eggs

OrderedDict([('a', 1), ('b', 2), ('c', 3)])

While you can probably guess how this works, the internals might surprise you a 
little. I know I was expecting a different implementation.

Internally, OrderedDict uses a normal dict for key/value storage, and in addition 
to that, it uses a doubly linked list to keep track of the next/previous items. To keep 
track of the reverse relation (from the doubly linked list back to the keys), there is an 
extra dict stored internally.
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Put simply, OrderedDict can be a very handy tool for keeping your dict sorted, but 
it does come at a cost. The system is structured in such a way that set and get are 
really fast O(1), but the object is still a lot heavier (double or more memory usage) 
when compared to a regular dict. In many cases, the memory usage of the objects 
inside will outweigh the memory usage of the dict itself, of course, but this is 
something to keep in mind.

heapq – the ordered list
The heapq module is a great little module that makes it very easy to create a priority 
queue in Python. A structure that will always make the smallest (or largest, depending 
on the implementation) item available with minimum effort. The API is quite simple, 
and one of the best examples of its usage can be seen in the OrderedDict object. You 
probably don't want to use heapq directly, but understanding the inner workings is 
important in order to analyze how classes such as OrderedDict work.

If you are looking for a structure to keep your list always sorted, 
try the bisect module instead.

The basic usage is quite simple though:

>>> import heapq

>>> heap = [1, 3, 5, 7, 2, 4, 3]

>>> heapq.heapify(heap)

>>> heap

[1, 2, 3, 7, 3, 4, 5]

>>> while heap:

...     heapq.heappop(heap), heap

(1, [2, 3, 3, 7, 5, 4])

(2, [3, 3, 4, 7, 5])

(3, [3, 5, 4, 7])

(3, [4, 5, 7])

(4, [5, 7])

(5, [7])

(7, [])
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One important thing to note here—something that you have probably already 
understood from the preceding example—is that the heapq module does not create 
a special object. It is simply a bunch of methods for treating a regular list as a heap. 
That doesn't make it less useful, but it is something to take into consideration. You 
may also wonder why the heap isn't sorted. Actually, it is sorted but not the way you 
expect it to be. If you view the heap as a tree, it becomes much more obvious:

   1
 2   3
7 3 4 5

The smallest number is always at the top and the biggest numbers are always at the 
bottom of the tree. Because of that, it's really easy to find the smallest number, but 
finding the largest is not so easy. To get the sorted version of the heap, we simply 
need to keep removing the top of the tree until all items are gone.

bisect – the sorted list
We have seen the heapq module in the previous paragraph, which makes it really 
simple to always get the smallest number from a list, and therefore makes it easy 
to sort a list of objects. While the heapq module appends items to form a tree-like 
structure, the bisect module inserts items in such a way that they stay sorted. A 
big difference is that adding/removing items with the heapq module is very light 
whereas finding items is really light with the bisect module. If your primary 
purpose is searching, then bisect should be your choice.

As is the case with heapq, bisect does not really create a special data structure. 
It just works on a standard list and expects that list to always be sorted. It is 
important to understand the performance implications of this; simply adding items 
to the list using the bisect algorithm can be very slow because an insert on a list 
takes O(n). Effectively, creating a sorted list using bisect takes O(n*n), which is quite 
slow, especially because creating the same sorted list using heapq or sorted takes O(n 
* log(n)) instead.

The log(n) refers to the base 2 logarithm function. To calculate 
this value, the math.log2() function can be used. This results in 
an increase of 1 every time the number doubles in size. For n=2, 
the value of log(n) is 1, and consequently for n=4 and n=8, the 
log values are 2 and 3, respectively.
This means that a 32-bit number, which is 2**32 = 4294967296, 
has a log of 32.
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If you have a sorted structure and you only need to add a single item, then the 
bisect algorithm can be used for insertion. Otherwise, it's generally faster to simply 
append the items and call a .sort() afterwards.

To illustrate, we have these lines:

>>> import bisect

Using the regular sort:

>>> sorted_list = []

>>> sorted_list.append(5)  # O(1)

>>> sorted_list.append(3)  # O(1)

>>> sorted_list.append(1)  # O(1)

>>> sorted_list.append(2)  # O(1)

>>> sorted_list.sort()  # O(n * log(n)) = O(4 * log(4)) = O(8)

>>> sorted_list

[1, 2, 3, 5]

Using bisect:

>>> sorted_list = []

>>> bisect.insort(sorted_list, 5)  # O(n) = O(1)

>>> bisect.insort(sorted_list, 3)  # O(n) = O(2)

>>> bisect.insort(sorted_list, 1)  # O(n) = O(3)

>>> bisect.insort(sorted_list, 2)  # O(n) = O(4)

>>> sorted_list

[1, 2, 3, 5]

For a small number of items, the difference is negligible, but it quickly grows to a 
point where the difference will be large. For n=4, the difference is just between 4 * 
1 + 8 = 12 and 1 + 2 + 3 + 4 = 10 making the bisect solution faster. But if we 
were to insert 1,000 items, it would be 1000 + 1000 * log(1000) = 10966 versus 
1 + 2 + … 1000 = 1000 * (1000 + 1) / 2 = 500500. So, be very careful while 
inserting many items.

Searching within the list is very fast though; because it is sorted, we can use a very 
simple binary search algorithm. For example, what if we want to check whether a 
few numbers exist within the list?

>>> import bisect

>>> sorted_list = [1, 2, 3, 5]
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>>> def contains(sorted_list, value):

...     i = bisect.bisect_left(sorted_list, value)

...     return i < len(sorted_list) and sorted_list[i] == value

>>> contains(sorted_list, 2)

True

>>> contains(sorted_list, 4)

False

>>> contains(sorted_list, 6)

False

As you can see, the bisect_left function finds the position at which the number is 
supposed to be. This is actually what the insort function does as well; it inserts the 
number at the correct position by searching for the location of the number.

So how is this different from a regular value in sorted_list? The biggest difference 
is that bisect does a binary search internally, which means that it starts in the 
middle and jumps left or right depending on whether the value is bigger or smaller 
than the value. To illustrate, we will search for 4 in a list of numbers from 0 to 14:

sorted_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
Step 1: 4 > 7                       ^
Step 2: 4 > 3           ^
Step 3: 4 > 5                 ^
Step 4: 4 > 5              ^

As you can see, after only four steps (actually three; the fourth is just for illustration), 
we have found the number we searched for. Depending on the number (7, for 
example), it may go faster, but it will never take more than O(log(n)) steps to find  
a number.

With a regular list, a search would simply walk through all items until it finds the 
desired item. If you're lucky, it could be the first number you encounter, but if 
you're unlucky, it could be the last item. In the case of 1,000 items, that would be the 
difference between 1,000 steps and log(1000) = 10 steps.
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Summary
Python has quite a few very useful collections built in. Since more and more 
collections are added regularly, the best thing to do is simply keep track of the 
collections manual. And do you ever wonder how or why any of the structures 
works? Just look at the source here:

https://hg.python.org/cpython/file/default/Lib/collections/__init__.
py

After finishing this chapter, you should be aware of both the core collections and 
the most important collections from the collections module, but more importantly 
the performance characteristics of these collections in several scenarios. Selecting 
the correct data structure within your applications is by far the most important 
performance factor that your code will ever experience, making this essential 
knowledge for any programmer.

Next, we will continue with functional programming which covers lambda functions, 
list comprehensions, dict comprehensions, set comprehensions and an array 
of related topics. This includes some background information on the mathematics 
involved which could be interesting but can safely be skipped.

https://hg.python.org/cpython/file/default/Lib/collections/__init__.py
https://hg.python.org/cpython/file/default/Lib/collections/__init__.py
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Functional Programming – 
Readability Versus Brevity

Python is one of the few (or at least the earliest) nonfunctional languages to 
incorporate functional features. While Guido van Rossum has tried to remove some 
of them a few times, they have become ingrained in the Python community, and list 
comprehensions (dict and set comprehensions soon to follow) are widely used in 
all sorts of code. The most important thing about code shouldn't be how cool your 
reduce statement is or how you can fit the entire function in a single line with an 
incomprehensible list comprehension. Readability counts (once again, PEP20)!

This chapter will show you some of the cool tricks that functional programming 
in Python gives you, and it will explain some of the limitations of Python's 
implementation. While we will try to steer clear of lambda calculus (λ-calculus) as 
much as possible, the Y combinator will be discussed briefly.

The last few paragraphs will list (and explain) the usage of the functools and 
itertools libraries. If you are familiar with these libraries, feel free to skip them, but 
note that some of these will be used heavily in the later chapters about decorators 
(Chapter 5, Decorators – Enabling Code Reuse by Decorating), generators (Chapter 6, 
Generators and Coroutines – Infinity, One Step at a Time), and performance (Chapter 12, 
Performance – Tracking and Reducing Your Memory and CPU Usage).
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These are the topics covered in this chapter:

•	 The theory behind functional programming
•	 list comprehensions
•	 dict comprehensions
•	 set comprehensions
•	 lambda functions
•	 functools (partial, and reduce)
•	 itertools (accumulate, chain, dropwhile, starmap, and so on)

Functional programming
Functional programming is a paradigm that originates from the lambda calculus. 
Without diving too much into the lambda calculus (λ-calculus), this roughly means 
that computation is performed through the use of mathematical functions, which 
avoids mutable data and changing state of surroundings. The idea of a strictly 
functional language is that all function outputs are dependent only on the input  
and not on any external state. Since Python is not strictly a programming language, 
this doesn't necessarily hold true, but it is a good idea to adhere to this paradigm  
as mixing these can cause unforeseen bugs as discussed in Chapter 2, Pythonic Syntax, 
Common Pitfalls, and Style Guide.

Even outside of functional programming, this is a good idea. Keeping functions 
purely functional (relying only on the given input) makes code clearer, easier to 
understand, and better to test as there are less dependencies. Well-known examples 
can be found within the math module. These functions (sin, cos, pow, sqrt, and so 
on) have an input and an output that is strictly dependent on the input.

list comprehensions
The Python list comprehensions are a very easy way to apply a function or filter 
to a list of items. List comprehensions can be very useful if used correctly but very 
unreadable if you're not careful.

Let's dive right into a few examples. The basic premise of a list comprehension 
looks like this:

>>> squares = [x ** 2 for x in range(10)]

>>> squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
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We can easily expand this with a filter:

>>> uneven_squares = [x ** 2 for x in range(10) if x % 2]

>>> uneven_squares

[1, 9, 25, 49, 81]

The syntax is pretty close to regular Python for loops, but the if statement and 
automatic storing of results makes it quite useful for some cases. The regular Python 
equivalent is not much longer, however:

>>> uneven_squares = []

>>> for x in range(10):

...     if x % 2:

...         uneven_squares.append(x ** 2)

>>> uneven_squares

[1, 9, 25, 49, 81]

Care must be taken though; because of the special list comprehension structure, 
some types of operations are not as obvious as you might expect. This time, we are 
looking for random numbers greater than 0.5:

>>> import random

>>> [random.random() for _ in range(10) if random.random() >= 0.5]

[0.5211948104577864, 0.650010512129705, 0.021427316545174158]

See that last number? It's actually less than 0.5. This happens because the first and 
the last random calls are actually separate calls and return different results.

One way to counter this is by creating the list separate from the filter:

>>> import random

>>> numbers = [random.random() for _ in range(10)]

>>> [x for x in numbers if x >= 0.5]

[0.715510247827078, 0.8426277505519564, 0.5071133900377911]

That obviously works, but it's not all that pretty. So what other options are there? 
Well, there are a few but the readability is a bit questionable, so these are not the 
solutions that I would recommend. It's good to see them at least once, however.

Here is a list comprehension in a list comprehension:

>>> import random

>>> [x for x in [random.random() for _ in range(10)] if x >= 0.5]
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And here's one that quickly becomes an incomprehensible list comprehension:

>>> import random

>>> [x for _ in range(10) for x in [random.random()] if x >= 0.5]

Caution is needed with these options as the double list comprehension actually 
works like a nested for loop would, so it quickly generates a lot of results. To 
elaborate on this regard:

>>> [(x, y) for x in range(3) for y in range(3, 5)]

[(0, 3), (0, 4), (1, 3), (1, 4), (2, 3), (2, 4)]

This effectively does the following:

>>> results = []

>>> for x in range(3):

...     for y in range(3, 5):

...         results.append((x, y))

...

>>> results

[(0, 3), (0, 4), (1, 3), (1, 4), (2, 3), (2, 4)]

These can be useful for some cases, but I would recommend that you limit their 
usage, as they have a tendency to quickly become unreadable. I would strongly 
advise against using list comprehensions within list comprehensions for the sake 
of readability. It's still important to understand what is happening, so let's look at 
one more example. The following list comprehension swaps the column and row 
counts, so a 3 x 4 matrix becomes 4 x 3:

>>> matrix = [

...     [1, 2, 3, 4],

...     [5, 6, 7, 8],

...     [9, 10, 11, 12],

... ]

>>> reshaped_matrix = [

...     [

...         [y for x in matrix for y in x][i * len(matrix) + j]

...         for j in range(len(matrix))

...     ]

...     for i in range(len(matrix[0]))
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... ]

>>> import pprint

>>> pprint.pprint(reshaped_matrix, width=40)

[[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9],

 [10, 11, 12]]

Even with the extra indentation, the list comprehension just isn't all that readable. 
With four nested loops, that is expectedly so, of course. There are rare cases where 
nested list comprehensions might be justified, but generally I won't recommend  
their usage.

dict comprehensions
dict comprehensions are very similar to list comprehensions, but the result is a dict 
instead. Other than this, the only real difference is that you need to return both a key 
and a value, whereas a list comprehension accepts any type of value. The following 
is a basic example:

>>> {x: x ** 2 for x in range(10)}

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

>>> {x: x ** 2 for x in range(10) if x % 2}

{1: 1, 3: 9, 9: 81, 5: 25, 7: 49}

Since the output is a dictionary, the key needs to be hashable 
for the dict comprehension to work.

The funny thing is that you can mix these two, of course, for even more unreadable 
magic:

>>> {x ** 2: [y for y in range(x)] for x in range(5)}

{0: [], 1: [0], 4: [0, 1], 16: [0, 1, 2, 3], 9: [0, 1, 2]}

Obviously, you need to be careful with these. They can be very useful if used 
correctly, but the output quickly becomes unreadable, even with proper whitespace.
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set comprehensions
Just as you can create a set using curly brackets ({}), you can also create a set using 
set comprehensions. These work in a way similar to list comprehensions, but the 
values are unique (and without sort order):

>>> [x*y for x in range(3) for y in range(3)]

[0, 0, 0, 0, 1, 2, 0, 2, 4]

>>> {x*y for x in range(3) for y in range(3)}

{0, 1, 2, 4}

As is the case with the regular set, set comprehensions 
support only hashable types.

lambda functions
The lambda statement in Python is simply an anonymous function. Due to the 
syntax, it is slightly more limited than regular functions, but a lot can be done 
through it. As always though, readability counts, so generally it is a good idea to 
keep it as simple as possible. One of the more common use cases is the sort key for 
the sorted function:

>>> class Spam(object):

...     def __init__(self, value):

...         self.value = value

...

...     def __repr__(self):

...         return '<%s: %s>' % (self.__class__.__name__, self.value)

...

>>> spams = [Spam(5), Spam(2), Spam(4), Spam(1)]

>>> sorted_spams = sorted(spams, key=lambda spam: spam.value)

>>> spams

[<Spam: 5>, <Spam: 2>, <Spam: 4>, <Spam: 1>]

>>> sorted_spams

[<Spam: 1>, <Spam: 2>, <Spam: 4>, <Spam: 5>]



Chapter 4

[ 87 ]

While the function could have been written separately or the __cmp__ method of 
Spam could have been overwritten in this case, in many cases, this is an easy way to 
get a quick sort function as you would want it.

It's not that the regular function would be verbose, but by using an anonymous 
function, you have a small advantage; you are not contaminating your local scope 
with an extra function:

>>> def key_function(spam):

...     return spam.value

>>> spams = [Spam(5), Spam(2), Spam(4), Spam(1)]

>>> sorted_spams = sorted(spams, key=lambda spam: spam.value)

As for style, do note that PEP8 dictates that assigning a lambda to a variable is a 
bad idea. And logically, it is. The idea of an anonymous function is that it is just 
that—anonymous. If you are giving it an identity, you should define it as a normal 
function. It really isn't much longer if you want to keep it short. Note that both of the 
following statements are considered bad style and are for example purposes only:

>>> def key(spam): return spam.value

>>> key = lambda spam: spam.value

In my opinion, the only valid use case for lambda functions is as anonymous 
functions used as function parameters, and preferably only if they are short enough 
to fit on a single line.

The Y combinator
Note that this paragraph can easily be skipped. It is mostly an 
example of the mathematical value of the lambda statement.

The Y combinator is probably the most famous example of the λ-calculus:

All this looks very complicated, but that's also because it has used the lambda 
calculus notation. You should read this syntax, , as an anonymous (lambda) 
function that takes x as an input and returns . In Python, this would be expressed 
almost exactly as it is in the original lambda calculus, except for replacing  with 
lambda and . with :, so it results in lambda x: x^2.
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With some algebra, this can be reduced to , or a function that takes the f 
function and applies it to itself. The λ-calculus notation of this function is as follows:

Here is the Python notation:

Y = lambda f: lambda *args: f(Y(f))(*args)

The following is the longer version:

def Y(f):
    def y(*args):
        y_function = f(Y(f))
        return y_function(*args)
    return y

This might still be a bit unclear to you, so let's look at an example that actually uses 
it:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> def factorial(combinator):

...     def _factorial(n):

...         if n:

...             return n * combinator(n - 1)

...         else:

...             return 1

...     return _factorial

>>> Y(factorial)(5)

120

The following is the short version, where the power of the Y combinator actually 
appears, with a recursive but still anonymous function:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> Y(lambda c: lambda n: n and n * c(n - 1) or 1)(5)

120
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Note that the n and n * c(n – 1) or 1 part is short for the if statement used in the 
longer version of the function. Alternatively, this can be written using the Python 
ternary operator:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> Y(lambda c: lambda n: n * c(n - 1) if n else 1)(5)

120

You might be wondering about the point of this entire exercise. Can't you write a 
factorial shorter/easier? Yes, you can. The importance of the Y combinator is that it 
can be applied to any function and is very close to the mathematical definition.

One final example of the Y combinator will be given by the definition of quicksort 
in a few lines:

>>> quicksort = Y(lambda f:

...     lambda x: (

...         f([item for item in x if item < x[0]])

...         + [y for y in x if x[0] == y]

...         + f([item for item in x if item > x[0]])

...     ) if x else [])

>>> quicksort([1, 3, 5, 4, 1, 3, 2])

[1, 1, 2, 3, 3, 4, 5]

While the Y combinator most likely doesn't have much practical use in Python, 
it does show the power of the lambda statement and how close Python is to the 
mathematical definition. Essentially, the difference is only in the notation and not  
in the functionality.

functools
In addition to the list/dict/set comprehensions, Python also has a few (more 
advanced) functions that can be really convenient when coding functionally. The 
functools library is a collection of functions that return callable objects. Some of 
these functions are used as decorators (we'll cover more about that in Chapter 5, 
Decorators – Enabling Code Reuse by Decorating), but the ones that we are going to talk 
about are used as straight-up functions to make your life easier.
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partial – no need to repeat all arguments 
every time
The partial function is really convenient for adding some default arguments to a 
function that you use often but can't (or don't want to) redefine. With object-oriented 
code, you can usually work around cases similar to these, but with procedural code, 
you will often have to repeat your arguments. Let's take the heapq functions from 
Chapter 3, Containers and Collections – Storing Data the Right Way, as an example:

>>> import heapq

>>> heap = []

>>> heapq.heappush(heap, 1)

>>> heapq.heappush(heap, 3)

>>> heapq.heappush(heap, 5)

>>> heapq.heappush(heap, 2)

>>> heapq.heappush(heap, 4)

>>> heapq.nsmallest(3, heap)

[1, 2, 3]

Almost all the heapq functions require a heap argument, so why not make a shortcut 
for it? This is where functools.partial comes in:

>>> import functools

>>> import heapq

>>> heap = []

>>> push = functools.partial(heapq.heappush, heap)

>>> smallest = functools.partial(heapq.nsmallest, iterable=heap)

>>> push(1)

>>> push(3)

>>> push(5)

>>> push(2)

>>> push(4)

>>> smallest(3)

[1, 2, 3]

Seems a bit cleaner, right? In this case, both versions are fairly short and readable, 
but it's a convenient function to have.
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Why should we use partial instead of writing a lambda argument? Well, it's mostly 
about convenience, but it also helps solve the late binding problem discussed in 
Chapter 2, Pythonic Syntax, Common Pitfalls, and Style Guide. Additionally, partial 
functions can be pickled whereas lambda statements cannot.

reduce – combining pairs into a single result
The reduce function implements a mathematical technique called fold. It basically 
applies a function to the first and second elements, uses that result to apply together 
with the third element, and continues until the list is exhausted.

The reduce function is supported by many languages but in most cases using 
different names such as curry, fold, accumulate, or aggregate. Python has actually 
supported reduce for a very long time, but since Python 3, it has been moved from 
the global scope to the functools library. Some code can be simplified beautifully 
using the reduce statement; whether it's readable or not is debatable, however.

Implementing a factorial function
One of the most used examples of reduce is for calculating factorials, which is 
indeed quite simple:

>>> import operator

>>> import functools

>>> functools.reduce(operator.mul, range(1, 6))

120

The preceding code uses operator.mul instead of 
lambda a, b: a * b. While they produce the same 
results, the former can be quite faster.

Internally, the reduce function will do the following:

>>> import operator

>>> f = operator.mul

>>> f(f(f(f(1, 2), 3), 4), 5)

120

To clarify this further, let's look at it like this:

>>> iterable = range(1, 6)

>>> import operator
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# The initial values:

>>> a, b, *iterable = iterable

>>> a, b, iterable

(1, 2, [3, 4, 5])

# First run

>>> a = operator.mul(a, b)

>>> b, *iterable = iterable

>>> a, b, iterable

(2, 3, [4, 5])

# Second run

>>> a = operator.mul(a, b)

>>> b, *iterable = iterable

>>> a, b, iterable

(6, 4, [5])

# Third run

>>> a = operator.mul(a, b)

>>> b, *iterable = iterable

>>> a, b, iterable

(24, 5, [])

# Fourth and last run

>>> a = operator.mul (a, b)

>>> a

120

Or with a simple while loop using the deque collection:

>>> import operator

>>> import collections

>>> iterable = collections.deque(range(1, 6))

>>> value = iterable.popleft()

>>> while iterable:

...     value = operator.mul(value, iterable.popleft())

>>> value

120
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Processing trees
Trees are a case where the reduce function really shines. Remember the one-line tree 
definition using a defaultdict from Chapter 3, Containers and Collections – Storing Data 
the Right Way? What would be a good way to access the keys inside of that object? 
Given a path of a tree item, we can use reduce to easily access the items inside:

>>> import json

>>> import functools

>>> import collections

>>> def tree():

...     return collections.defaultdict(tree)

# Build the tree:

>>> taxonomy = tree()

>>> reptilia = taxonomy['Chordata']['Vertebrata']['Reptilia']

>>> reptilia['Squamata']['Serpentes']['Pythonidae'] = [

...     'Liasis', 'Morelia', 'Python']

# The actual contents of the tree

>>> print(json.dumps(taxonomy, indent=4))

{

    "Chordata": {

        "Vertebrata": {

            "Reptilia": {

                "Squamata": {

                    "Serpentes": {

                        "Pythonidae": [

                            "Liasis",

                            "Morelia",

                            "Python"

                        ]

                    }

                }

            }

        }

    }

}

# The path we wish to get
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>>> path = 'Chordata.Vertebrata.Reptilia.Squamata.Serpentes'

# Split the path for easier access

>>> path = path.split('.')

# Now fetch the path using reduce to recursively fetch the items

>>> family = functools.reduce(lambda a, b: a[b], path, taxonomy)

>>> family.items()

dict_items([('Pythonidae', ['Liasis', 'Morelia', 'Python'])])

# The path we wish to get

>>> path = 'Chordata.Vertebrata.Reptilia.Squamata'.split('.')

>>> suborder = functools.reduce(lambda a, b: a[b], path, taxonomy)

>>> suborder.keys()

dict_keys(['Serpentes'])

And lastly, some people might be wondering why Python only has fold_left and 
no fold_right. In my opinion, you don't really need both of them as you can easily 
reverse the operation.

The regular reduce—the fold left operation:

fold_left = functools.reduce(
    lambda x, y: function(x, y),
    iterable,
    initializer,
)

The reverse—the fold right operation:
fold_right = functools.reduce(
    lambda x, y: function(y, x),
    reversed(iterable),
    initializer,
)

While this one is definitely very useful in purely functional languages—where 
these operations are used quite often—initially there were plans to remove the 
reduce function from Python with the introduction of Python 3. Luckily, that plan 
was modified, and instead of being removed, it has been moved from reduce to 
functools.reduce. There may not be many useful cases for reduce, but there are 
some cool use cases. Especially traversing recursive data structures is far more easily 
done using reduce, since it would otherwise involve more complicated loops or 
recursive functions.
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itertools
The itertools library contains iterable functions inspired by those available in 
functional languages. All of these are iterable and have been constructed in such a 
way that only a minimal amount of memory is required to process even the largest of 
datasets. While you can easily write most of these functions yourself using a simple 
function, I would still recommend using the ones available in the itertools library. 
These are all fast, memory efficient, and—perhaps more importantly—tested.

Even though the titles of the paragraphs are capitalized, the 
functions themselves are not. Be careful not to accidently 
type Accumulate instead of accumulate.

accumulate – reduce with intermediate results
The accumulate function is very similar to the reduce function, which is why some 
languages actually have accumulate instead of reduce as the folding operator.

The major difference between the two is that the accumulate function returns the 
immediate results. This can be useful when summing the results of a company's 
sales, for example:

>>> import operator

>>> import itertools

# Sales per month

>>> months = [10, 8, 5, 7, 12, 10, 5, 8, 15, 3, 4, 2]

>>> list(itertools.accumulate(months, operator.add))

[10, 18, 23, 30, 42, 52, 57, 65, 80, 83, 87, 89]

It should be noted that the operator.add function is actually optional in this case 
as the default behavior of accumulate is to sum the results. In some other languages 
and libraries, this function is called cumsum (cumulative sum).

chain – combining multiple results
The chain function is a simple but useful function that combines the results of 
multiple iterators. Very simple but also very useful if you have multiple lists, 
iterators, and so on—just combine them with a simple chain:

>>> import itertools

>>> a = range(3)



Functional Programming – Readability Versus Brevity

[ 96 ]

>>> b = range(5)

>>> list(itertools.chain(a, b))

[0, 1, 2, 0, 1, 2, 3, 4]

It should be noted that there is a small variant of chain that accepts an iterable 
containing iterables, namely chain.from_iterable. They work nearly identically, 
except for the fact that you need to pass along an iterable item instead of passing a 
list of arguments. Your initial response might be that this can be achieved simply by 
unpacking the (*args) tuple, as we will see in Chapter 6, Generators and Coroutines 
– Infinity, One Step at a Time. However, this is not always the case. For now, just 
remember that if you have a iterable containing iterables, the easiest method is to use 
itertools.chain.from_iterable.

combinations – combinatorics in Python
The combinations iterator produces results exactly as you would expect from the 
mathematical definition. All combinations with a specific length from a given list  
of items:

>>> import itertools

>>> list(itertools.combinations(range(3), 2))

[(0, 1), (0, 2), (1, 2)]

The combinations function gives all possible combinations 
of the given items of a given length. The number of possible 
combinations is given by the binomial coefficient, the nCr 
button on many calculators. It is commonly denoted as follows:

We have n=2 and k=4 in this case.

Here is the variant with repetition of elements:

>>> import itertools

>>> list(itertools.combinations_with_replacement(range(3), 2))

[(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)]
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The combinations_with_repetitions function is 
very similar to the regular combinations function, except 
that the items can be combined with themselves as well. 
To calculate the number of results, the binomial coefficient 
described earlier can be used with the parameters as 
n=n+k-1 and k=k.

Let's look at a little combination of combinations and chain for generating a 
powerset:

>>> import itertools

>>> def powerset(iterable):

...     return itertools.chain.from_iterable(

...         itertools.combinations(iterable, i)

...         for i in range(len(iterable) + 1))

>>> list(powerset(range(3)))

[(), (0,), (1,), (2,), (0, 1), (0, 2), (1, 2), (0, 1, 2)]

The powerset is essentially the combined result of all 
combinations from 0 to n, meaning that it also includes 
elements with zero items (the empty set, or ()), elements with 
1 item, and all the way up to n. The number of items in the 
powerset is easily calculated using the power operator: 2**n.

permutations – combinations where the order 
matters
The permutations function is quite similar to the combinations function. The only 
real difference is that (a, b) is considered distinct from (b, a). In other words, the 
order matters:

>>> import itertools

>>> list(itertools.permutations(range(3), 2))

[(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
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compress – selecting items using a list  
of Booleans
The compress function is one of those that you won't need too often, but it can be 
very useful when you do need it. It applies a Boolean filter to your iterable, making it 
return only the ones you actually need. The most important thing to note here is that 
it's all executed lazily and that compress will stop if either the data or the selectors 
collection is exhausted. So, even with infinite ranges, it works without a hitch:

>>> import itertools

>>> list(itertools.compress(range(1000), [0, 1, 1, 1, 0, 1]))

[1, 2, 3, 5]

dropwhile/takewhile – selecting items using  
a function
The dropwhile function will drop all results until a given predicate evaluates to true. 
This can be useful if you are waiting for a device to finally return an expected result. 
That's a bit difficult to demonstrate here, so I'll just show an example with the basic 
usage—waiting for a number greater than 3:

>>> import itertools

>>> list(itertools.dropwhile(lambda x: x <= 3, [1, 3, 5, 4, 2]))

[5, 4, 2]

As you might expect, the takewhile function is the reverse of this. It will simply 
return all rows until the predicate turns false:

>>> import itertools

>>> list(itertools.takewhile(lambda x: x <= 3, [1, 3, 5, 4, 2]))

[1, 3]

Simply adding the two will give you the original result again.

count – infinite range with decimal steps
The count function is quite similar to the range function, but there are two 
significant differences.

The first is that this range is infinite, so don't even try to do list(itertools.
count()). You'll definitely run out of memory immediately and it might even freeze 
your system.
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The second difference is that unlike the range function, you can actually use  
floating-point numbers here, so there is no need of whole/integer numbers.

Since listing the entire range will kill our Python interpreter, we'll simply use zip 
both to limit the results and to compare the results of the regular range function. In a 
later paragraph, we will see a more convenient option using itertools.islice. The 
count function takes two optional parameters: a start parameter, which defaults to 
0, and a step parameter, which defaults to 1:

>>> import itertools

# Except for being infinite, the standard version returns the same

# results as the range function does.

>>> for a, b in zip(range(3), itertools.count()):

...     a, b

(0, 0)

(1, 1)

(2, 2)

# With a different starting point the results are still the same

>>> for a, b in zip(range(5, 8), itertools.count(5)):

...     a, b

(5, 5)

(6, 6)

(7, 7)

# And a different step works the same as well

>>> for a, b in zip(range(5, 10, 2), itertools.count(5, 2)):

...     a, b

(5, 5)

(7, 7)

(9, 9)

# Unless you try to use floating point numbers

>>> range(5, 10, 0.5)

Traceback (most recent call last):

    ...
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TypeError: 'float' object cannot be interpreted as an integer

# Which does work for count

>>> for a, b in zip(range(5, 10), itertools.count(5, 0.5)):

...     a, b

(5, 5)

(6, 5.5)

(7, 6.0)

(8, 6.5)

(9, 7.0)

The itertools.islice function is also very useful in conjunction with itertools.
count, as we'll see in a later paragraph.

groupby – grouping your sorted iterable
The groupby function is a really convenient function for grouping results. The usage 
and use cases are probably clear, but there are some important things to keep in 
mind when using this function:

•	 The input needs to be sorted by the group parameter. Otherwise, it will be 
added as a separate group.

•	 The results are available for use only once. So, after processing a group, it 
will not be available anymore.

Here is an example of the proper use of groupby:

>>> import itertools

>>> items = [('a', 1), ('a', 2), ('b', 2), ('b', 0), ('c', 3)]

>>> for group, items in itertools.groupby(items, lambda x: x[0]):

...     print('%s: %s' % (group, [v for k, v in items]))

a: [1, 2]

b: [2, 0]

c: [3]

And then there are cases where you might get unexpected results:

>>> import itertools

>>> items = [('a', 1), ('b', 0), ('b', 2), ('a', 2), ('c', 3)]

>>> groups = dict()
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>>> for group, items in itertools.groupby(items, lambda x: x[0]):

...     groups[group] = items

...     print('%s: %s' % (group, [v for k, v in items]))

a: [1]

b: [0, 2]

a: [2]

c: [3]

>>> for group, items in sorted(groups.items()):

...     print('%s: %s' % (group, [v for k, v in items]))

a: []

b: []

c: []

Now we see two groups containing a. So, make sure you sort by the grouping 
parameter before trying to group. Additionally, walking through the same  
group a second time offers no results. This can be fixed easily using  
groups[group] = list(items) instead, but it can give quite a few unexpected 
bugs if you are not aware of this.

islice – slicing any iterable
When working with the itertools functions, you might notice that you cannot 
slice these objects. That is because they are generators, a topic that we will discuss 
in Chapter 6, Generators and Coroutines – Infinity, One Step at a Time. Luckily, the 
itertools library has a function for slicing these objects as well—islice.

Let's take itertools.counter from before as an example:

>>> import itertools

>>> list(itertools.islice(itertools.count(), 2, 7))

[2, 3, 4, 5, 6]

So, instead of the regular slice:

itertools.count()[:10]

We enter the slice parameters to the function:

itertools.islice(itertools.count(), 10)



Functional Programming – Readability Versus Brevity

[ 102 ]

What you should note from this is actually more than the inability to slice the objects. 
It is not just that slicing doesn't work, but it is not possible to get the length either—at 
least not without counting all items separately—and with infinite iterators, even that 
is not possible. The only understanding you actually get from a generator is that you 
can fetch items one at a time. You won't even know in advance whether you're at the 
end of the generator or not.

Summary
For some reason, functional programming is a paradigm that scares many people, 
but really it shouldn't. The most important difference between functional and 
procedural programming (within Python) is the mindset. Everything is executed 
using simple (and often translations of the mathematical equivalent) functions 
without any storage of variables. Simply put, a functional program consists of many 
functions having a simple input and output, without using (or even having) any 
outside scope or context to access. Python is not a purely functional language, so it is 
easy to cheat and work outside of the local scope, but that is not recommended.

This chapter covered the basics of functional programming within Python and  
some of the mathematics behind it. In addition to this, some of the many useful 
libraries that can be used in a very convenient way by using functional programming 
were covered.

The most important outtakes should be the following:

•	 Lambda statements are not inherently bad but it would be best to make them 
use variables from the local scope only, and they should not be longer than a 
single line.

•	 Functional programming can be very powerful, but it has a tendency to 
quickly become unreadable. Care must be taken.

•	 list/dict/set comprehensions are very useful, but they should generally 
not be nested, and for the purpose of readability, they should be kept short  
as well.

Ultimately, it is a matter of preference. For the sake of readability, I recommend 
limiting the usage of the functional paradigm when there is no obvious benefit. 
Having said that, when executed correctly, it can be a thing of beauty.

Next up are decorators—methods to wrap your functions and classes in other 
functions and/or classes to modify their behavior and extend their functionality.
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Decorators – Enabling Code 
Reuse by Decorating

In this chapter, you are going to learn about Python decorators. Decorators are 
essentially function/class wrappers that can be used to modify the input, output, or 
even the function/class itself before executing it. This type of wrapping can just as 
easily be achieved by having a separate function that calls the inner function, or via 
mixins. As is the case with many Python constructs, decorators are not the only way 
to reach the goal but are definitely convenient in many cases.

While you can live perfectly without knowing too much about decorators, they give 
you a lot of "reuse power" and are therefore used heavily in framework libraries such 
as web frameworks. Python actually comes bundled with some useful decorators, 
most notably the property decorator.

There are, however, some particularities to take note of: wrapping a function creates a 
new function and makes it harder to reach the inner function and its properties. One 
example of this is the help(function) functionality of Python; by default, you will 
lose function properties such as the help text and the module the function exists in.

This chapter will cover the usage of both function and class decorators as well as the 
intricate details you need to know when decorating functions within classes.

The following are the topics covered:

•	 Decorating functions
•	 Decorating class functions
•	 Decorating classes
•	 Using classes as decorators
•	 Useful decorators in the Python standard library
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Decorating functions
Essentially, a decorator is nothing more than a function or class wrapper. If we 
have a function called spam and a decorator called eggs, then the following would 
decorate spam with eggs:

spam = eggs(spam)

To make the syntax easier to use, Python has a special syntax for this case. So, instead 
of adding a line such as the preceding one below the function, you can simply 
decorate a function using the @ operator:

@eggs
def spam():
    pass

The decorator simply receives the function and returns a—usually  
different—function. The simplest possible decorator is:

def eggs(function):
    return function

Looking at the earlier example, we realize that this gets spam as the argument for 
function and returns that function again, effectively changing nothing. Most 
decorators nest functions, however. The following decorator will print all arguments 
sent to spam and pass them to spam unmodified:

>>> import functools

>>> def eggs(function):

...    @functools.wraps(function)

...    def _eggs(*args, **kwargs):

...        print('%r got args: %r and kwargs: %r' % (

...            function.__name__, args, kwargs))

...        return function(*args, **kwargs)

...

...    return _eggs

>>> @eggs

... def spam(a, b, c):
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...     return a * b + c

>>> spam(1, 2, 3)

'spam' got args: (1, 2, 3) and kwargs: {}

5

This should indicate how powerful decorators can be. By modifying *args and 
**kwargs, you can add, modify and remove arguments completely. Additionally, 
the return statement can be modified as well. Instead of return function(...), 
you can return something completely different if you wish.

Why functools.wraps is important
Whenever you are writing a decorator, always be sure to add functools.wraps to 
wrap the inner function. Without wrapping it, you will lose all properties from the 
original function, which can lead to confusion. Take a look at the following code 
without functools.wraps:

>>> def eggs(function):

...    def _eggs(*args, **kwargs):

...        return function(*args, **kwargs)

...    return _eggs

>>> @eggs

... def spam(a, b, c):

...     '''The spam function Returns a * b + c'''

...     return a * b + c

>>> help(spam)

Help on function _eggs in module ...:

<BLANKLINE>

_eggs(*args, **kwargs)

<BLANKLINE>

>>> spam.__name__

'_eggs'
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Now, our spam method has no documentation anymore and the name is gone. It has 
been renamed to _eggs. Since we are indeed calling _eggs, this is understandable, 
but it's very inconvenient for code that relies on this information. Now we will try 
the same code with the minor difference; we will use functools.wraps:

>>> import functools

>>> def eggs(function):

...     @functools.wraps(function)

...     def _eggs(*args, **kwargs):

...         return function(*args, **kwargs)

...     return _eggs

>>> @eggs

... def spam(a, b, c):

...     '''The spam function Returns a * b + c'''

...     return a * b + c

>>> help(spam)

Help on function spam in module ...:

<BLANKLINE>

spam(a, b, c)

    The spam function Returns a * b + c

<BLANKLINE>

>>> spam.__name__

'spam'

Without any further changes, we now have documentation and the expected function 
name. The working of functools.wraps is nothing magical though; it simply copies 
and updates several attributes. Specifically, the following attributes are copied:

•	 __doc__

•	 __name__

•	 __module__

•	 __annotations__

•	 __qualname__
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Additionally, __dict__ is updated using _eggs.__dict__.update(spam.__dict__), 
and a new property called __wrapped__ is added, which contains the original (spam in 
this case) function. The actual wraps function is available in the functools.py file of 
your Python distribution.

How are decorators useful?
The use cases for decorators are plentiful, but some of the most useful cases are with 
debugging. More extensive examples of this will be covered in Chapter 11, Debugging 
– Solving the Bugs but I can give you a sneak preview of how to use decorators to 
keep track of what your code is doing.

Let's assume you have a bunch of functions that may or may not be called, and you're 
not entirely sure what kind of input and output each of these is getting. In this case, 
you could, of course, modify the function and add some print statements at the 
beginning and the end to print the output. This quickly gets tedious, however, and it's 
one of those cases where a simple decorator will make it easy to do the same thing.

For this example, we are using a very simple function, but we all know that in real 
life, we're not always that lucky:

>>> def spam(eggs):

...     return 'spam' * (eggs % 5)

...

>>> output = spam(3)

Let's take our simple spam function and add some output so that we can see what 
happens internally:

>>> def spam(eggs):

...     output = 'spam' * (eggs % 5)

...     print('spam(%r): %r' % (eggs, output))

...     return output

...

>>> output = spam(3)

spam(3): 'spamspamspam'

While this works, wouldn't it be far nicer to have a little decorator that takes care of 
this problem?

>>> def debug(function):

...     @functools.wraps(function)

...     def _debug(*args, **kwargs):
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...         output = function(*args, **kwargs)

...         print('%s(%r, %r): %r' % (function.__name__, args, kwargs, 
output))

...         return output

...     return _debug

...

>>>

>>> @debug

... def spam(eggs):

...     return 'spam' * (eggs % 5)

...

>>> output = spam(3)

spam((3,), {}): 'spamspamspam'

Now we have a decorator that we can easily reuse for any function that prints the 
input, output, and function name. This type of decorator can also be very useful for 
logging applications, as we will see in Chapter 10, Testing and Logging – Preparing for 
Bugs. It should be noted that you can use this example even if you are not able to 
modify the module containing the original code. We can wrap the function locally 
and even monkey-patch the module if needed:

import some_module

# Regular call
some_module.some_function()

# Wrap the function
debug_some_function = debug(some_module.some_function)

# Call the debug version
debug_some_function()

# Monkey patch the original module
some_module.some_function = debug_some_function

# Now this calls the debug version of the function
some_module.some_function()

Naturally, monkey-patching is not a good idea in production code, but it can be very 
useful when debugging.
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Memoization using decorators
Memoization is a simple trick for making some code run a bit faster. The basic trick 
here is to store a mapping of the input and expected output so that you have to 
calculate a value only once. One of the most common examples of this technique is 
when demonstrating the naïve (recursive) Fibonacci function:

>>> import functools

>>> def memoize(function):

...     function.cache = dict()

...

...     @functools.wraps(function)

...     def _memoize(*args):

...         if args not in function.cache:

...             function.cache[args] = function(*args)

...         return function.cache[args]

...     return _memoize

>>> @memoize

... def fibonacci(n):

...     if n < 2:

...         return n

...     else:

...         return fibonacci(n - 1) + fibonacci(n - 2)

>>> for i in range(1, 7):

...     print('fibonacci %d: %d' % (i, fibonacci(i)))

fibonacci 1: 1

fibonacci 2: 1

fibonacci 3: 2

fibonacci 4: 3

fibonacci 5: 5

fibonacci 6: 8

>>> fibonacci.__wrapped__.cache

{(5,): 5, (0,): 0, (6,): 8, (1,): 1, (2,): 1, (3,): 2, (4,): 3}
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While this example would work just fine without any memoization, for larger 
numbers, it would kill the system. For n=2, the function would execute fibonacci(n 
- 1) and fibonacci(n - 2) recursively, effectively giving an exponential time 
complexity. Also, effectively for n=30, the Fibonacci function is called 2,692,537 times 
which is still doable nonetheless. At n=40, it is going to take you quite a very long 
time to calculate.

The memoized version, however, doesn't even break a sweat and only needs to 
execute 31 times for n=30.

This decorator also shows how a context can be attached to a function itself. In this 
case, the cache property becomes a property of the internal (wrapped fibonacci) 
function so that an extra memoize decorator for a different object won't clash with 
any of the other decorated functions.

Note, however, that implementing the memoization function yourself is generally not 
that useful anymore since Python introduced lru_cache (least recently used cache) in 
Python 3.2. The lru_cache is similar to the preceding memoize function but a bit more 
advanced. It only maintains a fixed (128 by default) cache size to save memory and 
uses some statistics to check whether the cache size should be increased.

To demonstrate how lru_cache works internally, we will calculate 
fibonacci(100), which would keep our computer busy until the end of the 
universe without any caching. Moreover, to make sure that we can actually see how 
many times the fibonacci function is being called, we'll add an extra decorator that 
keeps track of the count, as follows:

>>> import functools

# Create a simple call counting decorator

>>> def counter(function):

...     function.calls = 0

...     @functools.wraps(function)

...     def _counter(*args, **kwargs):

...         function.calls += 1

...         return function(*args, **kwargs)

...     return _counter

# Create a LRU cache with size 3 

>>> @functools.lru_cache(maxsize=3)

... @counter

... def fibonacci(n):
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...     if n < 2:

...         return n

...     else:

...         return fibonacci(n - 1) + fibonacci(n - 2)

>>> fibonacci(100)

354224848179261915075

# The LRU cache offers some useful statistics

>>> fibonacci.cache_info()

CacheInfo(hits=98, misses=101, maxsize=3, currsize=3)

# The result from our counter function which is now wrapped both by

# our counter and the cache

>>> fibonacci.__wrapped__.__wrapped__.calls

101

You might wonder why we need only 101 calls with a cache size of 3. That's because 
we recursively require only n - 1 and n - 2, so we have no need of a larger cache 
in this case. With others, it would still be useful though.

Additionally, this example shows the usage of two decorators for a single function. 
You can see these as the layers of an onion. The first one is the outer layer and it 
works towards the inside. When calling fibonacci, lru_cache will be called first 
because it's the first decorator in the list. Assuming there is no cache available yet, 
the counter decorator will be called. Within the counter, the actual fibonacci 
function will be called.

Returning the values works in the reverse order, of course; fibonacci returns its 
value to counter, which passes the value along to lru_cache.

Decorators with (optional) arguments
The previous examples mostly used simple decorators without any arguments. As 
we have already seen with lru_cache, decorators can accept arguments as well since 
they are just regular functions, but this adds an extra layer to a decorator. This means 
that adding an argument can be as simple as the following:

>>> import functools

>>> def add(extra_n=1):
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...     'Add extra_n to the input of the decorated function'

...

...     # The inner function, notice that this is the actual

...     # decorator

...     def _add(function):

...         # The actual function that will be called

...         @functools.wraps(function)

...         def __add(n):

...             return function(n + extra_n)

...

...         return __add

...

...     return _add

>>> @add(extra_n=2)

... def eggs(n):

...     return 'eggs' * n

>>> eggs(2)

'eggseggseggseggs'

Optional arguments are a different matter, however, because they make the extra 
function layer optional. With arguments, you need three layers, but without 
arguments, you need only two layers. Since decorators are essentially regular 
functions that return functions, the difference would be to return the sub-function or 
the sub-sub-function, based on the parameters. This leaves just one issue—detecting 
whether the parameter is a function or a regular parameter. To illustrate, with the 
parameters the actual call looks like the following:

add(extra_n=2)(eggs)(2)

Whereas the call without arguments would look like this:

add(eggs)(2)

To detect whether the decorator was called with a function or a regular argument  
as a parameter, we have several options, none of which are completely ideal in  
my opinion:

•	 Using keyword arguments for decorator arguments so that the regular 
argument will always be the function

•	 Detecting whether the first and only argument is callable



Chapter 5

[ 113 ]

In my opinion, the first one—using keyword arguments—is the better of the two 
options because it is somewhat more explicit and leaves less room for confusion.  
The second option could be problematic if, for some reason, your argument is 
callable as well.

Using the first method, the normal (non-keyword) argument has to be the decorated 
function and the other two checks can still apply. We can still check whether the 
function is indeed callable and whether there is only a single argument available. 
Here is an example using a modified version of the previous example:

>>> import functools

>>> def add(*args, **kwargs):

...     'Add n to the input of the decorated function'

...

...     # The default kwargs, we don't store this in kwargs

...     # because we want to make sure that args and kwargs

...     # can't both be filled

...     default_kwargs = dict(n=1)

...

...     # The inner function, notice that this is actually a

...     # decorator itself

...     def _add(function):

...         # The actual function that will be called

...         @functools.wraps(function)

...         def __add(n):

...             default_kwargs.update(kwargs)

...             return function(n + default_kwargs['n'])

...

...         return __add

...

...     if len(args) == 1 and callable(args[0]) and not kwargs:

...         # Decorator call without arguments, just call it

...         # ourselves

...         return _add(args[0])

...     elif not args and kwargs:

...         # Decorator call with arguments, this time it will

...         # automatically be executed with function as the
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...         # first argument

...         default_kwargs.update(kwargs)

...         return _add

...     else:

...         raise RuntimeError('This decorator only supports '

...                            'keyword arguments')

>>> @add

... def spam(n):

...     return 'spam' * n

>>> @add(n=3)

... def eggs(n):

...     return 'eggs' * n

>>> spam(3)

'spamspamspamspam'

>>> eggs(2)

'eggseggseggseggseggs'

>>> @add(3)

... def bacon(n):

...     return 'bacon' * n

Traceback (most recent call last):

  ...

RuntimeError: This decorator only supports keyword arguments

Whenever you have the choice available, I recommend that you either have a 
decorator with arguments or without them, instead of having optional arguments. 
However, if you have a really good reason for making the arguments optional, then 
you have a relatively safe method of making this possible.
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Creating decorators using classes
Similar to how we create regular function decorators, it is also possible to create 
decorators using classes instead. After all, a function is just a callable object and  
a class can implement the callable interface as well. The following decorator  
works similarly to the debug decorator we used earlier, but uses a class instead  
of a regular function:

>>> import functools

>>> class Debug(object):

...

...     def __init__(self, function):

...         self.function = function

...         # functools.wraps for classes

...         functools.update_wrapper(self, function)

...

...     def __call__(self, *args, **kwargs):

...         output = self.function(*args, **kwargs)

...         print('%s(%r, %r): %r' % (

...             self.function.__name__, args, kwargs, output))

...         return output

>>> @Debug

... def spam(eggs):

...     return 'spam' * (eggs % 5)

...

>>> output = spam(3)

spam((3,), {}): 'spamspamspam'

The only notable difference between functions and classes is that functools.wraps 
is now replaced with functools.update_wrapper in the __init__ method.
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Decorating class functions
Decorating class functions is very similar to regular functions, but you need to be 
aware of the required first argument, self—the class instance. You have most likely 
already used a few class function decorators. The classmethod, staticmethod, 
and property decorators for example, are used in many different projects. To 
explain how all this works, we will build our own versions of the classmethod, 
staticmethod, and property decorators. First, let's look at a simple decorator for 
class functions to show the difference from regular decorators:

>>> import functools

>>> def plus_one(function):
...     @functools.wraps(function)
...     def _plus_one(self, n):
...         return function(self, n + 1)
...     return _plus_one

>>> class Spam(object):
...     @plus_one
...     def get_eggs(self, n=2):
...         return n * 'eggs'

>>> spam = Spam()
>>> spam.get_eggs(3)
'eggseggseggseggs'

As is the case with regular functions, the class function decorator now gets passed 
along self as the instance. Nothing unexpected!

Skipping the instance – classmethod and 
staticmethod
The difference between a classmethod and a staticmethod is fairly simple. 
The classmethod passes a class object instead of a class instance (self), and 
staticmethod skips both the class and the instance entirely. This effectively makes 
staticmethod very similar to a regular function outside of a class.
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Before we recreate classmethod and staticmethod, we need to take a look at the 
expected behavior of these methods:

>>> import pprint

>>> class Spam(object):

...

...     def some_instancemethod(self, *args, **kwargs):

...         print('self: %r' % self)

...         print('args: %s' % pprint.pformat(args))

...         print('kwargs: %s' % pprint.pformat(kwargs))

...

...     @classmethod

...     def some_classmethod(cls, *args, **kwargs):

...         print('cls: %r' % cls)

...         print('args: %s' % pprint.pformat(args))

...         print('kwargs: %s' % pprint.pformat(kwargs))

...

...     @staticmethod

...     def some_staticmethod(*args, **kwargs):

...         print('args: %s' % pprint.pformat(args))

...         print('kwargs: %s' % pprint.pformat(kwargs))

# Create an instance so we can compare the difference between

# executions with and without instances easily

>>> spam = Spam()

# With an instance (note the lowercase spam)

>>> spam.some_instancemethod(1, 2, a=3, b=4)

self: <...Spam object at 0x...>

args: (1, 2)

kwargs: {'a': 3, 'b': 4}

# Without an instance (note the capitalized Spam)

>>> Spam.some_instancemethod()
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Traceback (most recent call last):

    ...

TypeError: some_instancemethod() missing 1 required positional argument: 
'self'

# But what if we add parameters? Be very careful with these!

# Our first argument is now used as an argument, this can give

# very strange and unexpected errors

>>> Spam.some_instancemethod(1, 2, a=3, b=4)

self: 1

args: (2,)

kwargs: {'a': 3, 'b': 4}

# Classmethods are expectedly identical

>>> spam.some_classmethod(1, 2, a=3, b=4)

cls: <class '...Spam'>

args: (1, 2)

kwargs: {'a': 3, 'b': 4}

>>> Spam.some_classmethod()

cls: <class '...Spam'>

args: ()

kwargs: {}

>>> Spam.some_classmethod(1, 2, a=3, b=4)

cls: <class '...Spam'>

args: (1, 2)

kwargs: {'a': 3, 'b': 4}

# Staticmethods are also identical

>>> spam.some_staticmethod(1, 2, a=3, b=4)

args: (1, 2)

kwargs: {'a': 3, 'b': 4}

>>> Spam.some_staticmethod()
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args: ()

kwargs: {}

>>> Spam.some_staticmethod(1, 2, a=3, b=4)

args: (1, 2)

kwargs: {'a': 3, 'b': 4}

Note that calling some_instancemethod without an instance results in an error 
whereby self is missing. As expected (since we didn't instantiate the class in that 
case), for the version with the arguments, it seems to work but it is actually broken. 
This is because the first argument is now assumed to be self. This is obviously 
incorrect in this case, where you pass an integer, but if you had passed along some 
other class instance, this could be a source of very strange bugs. Both classmethod 
and staticmethod handle this correctly.

Before we can continue with decorators, you need to be aware of how Python 
descriptors function. Descriptors can be used to modify the binding behavior of 
object attributes. This means that if a descriptor is used as the value of an attribute, 
you can modify which value is being set, get, and deleted when these operations are 
called on the attribute. Here is a basic example of this behavior:

>>> class MoreSpam(object):

...

...     def __init__(self, more=1):

...         self.more = more

...

...     def __get__(self, instance, cls):

...         return self.more + instance.spam

...

...     def __set__(self, instance, value):

...         instance.spam = value - self.more

>>> class Spam(object):

...

...     more_spam = MoreSpam(5)

...

...     def __init__(self, spam):

...         self.spam = spam
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>>> spam = Spam(1)

>>> spam.spam

1

>>> spam.more_spam

6

>>> spam.more_spam = 10

>>> spam.spam

5

As you can see, whenever we set or get values from more_spam, it actually calls 
__get__ or __set__ on MoreSpam. A very useful feat for automatic conversions and 
type checking, the property decorator we will see in the next paragraph is just a 
more convenient implementation of this technique.

Now that we know how descriptors work, we can continue with creating the 
classmethod and staticmethod decorators. For these two, we simply need to 
modify __get__ instead of __call__ so that we can control which type of instance 
(or none at all) is passed along:

import functools

class ClassMethod(object):

    def __init__(self, method):
        self.method = method

    def __get__(self, instance, cls):
        @functools.wraps(self.method)
        def method(*args, **kwargs):
            return self.method(cls, *args, **kwargs)
        return method

class StaticMethod(object):

    def __init__(self, method):
        self.method = method

    def __get__(self, instance, cls):
        return self.method
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The ClassMethod decorator still features a sub-function to actually produce a working 
decorator. Looking at the function, you can most likely guess how it functions. Instead 
of passing instance as the first argument to self.method, it passes cls.

StaticMethod is even simpler, because it completely ignores both the instance and 
the cls. It can just return the original method unmodified. Because it returns the 
original method without any modifications, we have no need for the functools.
wraps call either.

Properties – smart descriptor usage
The property decorator is probably the most used decorator in Python land. It 
allows you to add getters/setters to existing instance properties so that you can add 
validators and modify your values before setting them to your instance properties. 
The property decorator can be used both as an assignment and as a decorator. The 
following example shows both syntaxes so that we know what to expect from the 
property decorator:

>>> class Spam(object):

...

...     def get_eggs(self):

...         print('getting eggs')

...         return self._eggs

...

...     def set_eggs(self, eggs):

...         print('setting eggs to %s' % eggs)

...         self._eggs = eggs

...

...     def delete_eggs(self):

...         print('deleting eggs')

...         del self._eggs

...

...     eggs = property(get_eggs, set_eggs, delete_eggs)

...

...     @property

...     def spam(self):

...         print('getting spam')

...         return self._spam

...
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...     @spam.setter

...     def spam(self, spam):

...         print('setting spam to %s' % spam)

...         self._spam = spam

...

...     @spam.deleter

...     def spam(self):

...         print('deleting spam')

...         del self._spam

>>> spam = Spam()

>>> spam.eggs = 123

setting eggs to 123

>>> spam.eggs

getting eggs

123

>>> del spam.eggs

deleting eggs

Note that the property decorator works only if the class 
inherits object.

Similar to how we implemented the classmethod and staticmethod decorators, 
we need the Python descriptors again. This time, we require the full power of the 
descriptors, however—not just __get__ but __set__ and __delete__ as well:

class Property(object):
    def __init__(self, fget=None, fset=None, fdel=None,
                 doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        # If no specific documentation is available, copy it
        # from the getter
        if fget and not doc:
            doc = fget.__doc__
        self.__doc__ = doc
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    def __get__(self, instance, cls):
        if instance is None:
            # Redirect class (not instance) properties to
            # self
            return self
        elif self.fget:
            return self.fget(instance)
        else:
            raise AttributeError('unreadable attribute')

    def __set__(self, instance, value):
        if self.fset:
            self.fset(instance, value)
        else:
            raise AttributeError("can't set attribute")

    def __delete__(self, instance):
        if self.fdel:
            self.fdel(instance)
        else:
            raise AttributeError("can't delete attribute")

    def getter(self, fget):
        return type(self)(fget, self.fset, self.fdel)

    def setter(self, fset):
        return type(self)(self.fget, fset, self.fdel)

    def deleter(self, fdel):
        return type(self)(self.fget, self.fset, fdel)

As you can see, most of the Property implementation is simply an implementation 
of the descriptor methods. The getter, setter, and deleter functions are simply 
shortcuts for making the usage of the decorator possible, which is why we have to 
return self if no instance is available.

Naturally, there are more methods of achieving this effect. In the previous paragraph, 
we saw the bare descriptor implementation, and in our previous example, we saw 
the property decorator. A somewhat more generic solution for a class is to implement 
__getattr__ or __getattribute__. Here's a simple demonstration:

>>> class Spam(object):

...     def __init__(self):

...         self.registry = {}
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...

...     def __getattr__(self, key):

...         print('Getting %r' % key)

...         return self.registry.get(key, 'Undefined')

...

...     def __setattr__(self, key, value):

...         if key == 'registry':

...             object.__setattr__(self, key, value)

...         else:

...             print('Setting %r to %r' % (key, value))

...             self.registry[key] = value

...

...     def __delattr__(self, key):

...         print('Deleting %r' % key)

...         del self.registry[key]

>>> spam = Spam()

>>> spam.a

Getting 'a'

'Undefined'

>>> spam.a = 1

Setting 'a' to 1

>>> spam.a

Getting 'a'

1

>>> del spam.a

Deleting 'a'

The __getattr__ method looks for the key in instance.__dict__ first and is called 
only if it does not exist. That's why we never see a __getattr__ for the registry 
attribute. The __getattribute__ method is called in all cases, which makes it a 
bit more dangerous to use. With the __getattribute__ method, you will need a 
specific exclusion for registry since it will be executed recursively if you try to 
access self.registry.
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There is rarely a need to look at descriptors, but they are used by several internal 
Python processes, such as the super() method when inheriting classes.

Decorating classes
Python 2.6 introduced the class decorator syntax. As is the case with the function 
decorator syntax, this is not really a new technique either. Even without the 
syntax, a class can be decorated simply by executing DecoratedClass = 
decorator(RegularClass). After the previous paragraphs, you should be familiar 
with writing decorators. Class decorators are no different from regular ones, except 
for the fact that they take a class instead of a function. As is the case with functions, 
this happens at declaration time and not at instantiating/calling time.

Because there are quite a few alternative ways to modify how classes work, such 
as standard inheritance, mixins, and metaclasses (more about that in Chapter 8, 
Metaclasses – Making Classes (Not Instances) Smarter), class decorators are never strictly 
needed. This does not reduce their usefulness, but it does offer an explanation of 
why you will most likely not see too many examples of class decorating in the wild.

Singletons – classes with a single instance
Singletons are classes that always allow only a single instance to exist. So, instead of 
getting an instance specifically for your call, you always get the same one. These can 
be very useful for things such as a database connection pool, where you don't want 
to keep opening connections all of the time but want to reuse the original ones:

>>> import functools

>>> def singleton(cls):

...     instances = dict()

...     @functools.wraps(cls)

...     def _singleton(*args, **kwargs):

...         if cls not in instances:

...             instances[cls] = cls(*args, **kwargs)

...         return instances[cls]

...     return _singleton

>>> @singleton

... class Spam(object):

...     def __init__(self):
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...         print('Executing init')

>>> a = Spam()

Executing init

>>> b = Spam()

>>> a is b

True

>>> a.x = 123

>>> b.x

123

As you can see in the a is b comparison, both objects have the same identity, so 
we can conclude that they are indeed the same object. As is the case with regular 
decorators, due to the functools.wraps functionality, we can still access the original 
class through Spam.__wrapped__ if needed.

The is operator compares objects by identity, which is implemented 
as the memory address in CPython. If a is b returns True, we can 
conclude that both a and b are the same instance.

Total ordering – sortable classes the easy way
At some point or the other, you have probably needed to sort data structures. 
While this is easily achievable using the key parameter to the sorted function, 
there is a more convenient way if you need to do this often—by implementing the 
__gt__, __ge__, __lt__, __le__, and __eq__ functions. That seems a bit verbose, 
doesn't it? If you want the best performance, it's still a good idea, but if you can 
take a tiny performance hit and some slightly more complicated stack traces, then 
total_ordering might be a nice alternative. The total_ordering class decorator 
can implement all required sort functions based on a class that possesses an __eq__ 
function and one of the comparison functions (__lt__, __le__, __gt__, or __ge__). 
This means you can seriously shorten your function definitions. Let's compare the 
regular one and the one using the total_ordering decorator:

>>> import functools

>>> class Value(object):
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...     def __init__(self, value):

...         self.value = value

...

...     def __repr__(self):

...         return '<%s[%d]>' % (self.__class__, self.value)

>>> class Spam(Value):

...     def __gt__(self, other):

...         return self.value > other.value

...

...     def __ge__(self, other):

...         return self.value >= other.value

...

...     def __lt__(self, other):

...         return self.value < other.value

...

...     def __le__(self, other):

...         return self.value <= other.value

...

...     def __eq__(self, other):

...         return self.value == other.value

>>> @functools.total_ordering

... class Egg(Value):

...     def __lt__(self, other):

...         return self.value < other.value

...

...     def __eq__(self, other):

...         return self.value == other.value

>>> numbers = [4, 2, 3, 4]

>>> spams = [Spam(n) for n in numbers]

>>> eggs = [Egg(n) for n in numbers]

>>> spams
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[<<class 'H05.Spam'>[4]>, <<class 'H05.Spam'>[2]>,

<<class 'H05.Spam'>[3]>, <<class 'H05.Spam'>[4]>]

>>> eggs

[<<class 'H05.Egg'>[4]>, <<class 'H05.Egg'>[2]>,

<<class 'H05.Egg'>[3]>, <<class 'H05.Egg'>[4]>]

>>> sorted(spams)

[<<class 'H05.Spam'>[2]>, <<class 'H05.Spam'>[3]>,

<<class 'H05.Spam'>[4]>, <<class 'H05.Spam'>[4]>]

>>> sorted(eggs)

[<<class 'H05.Egg'>[2]>, <<class 'H05.Egg'>[3]>,

<<class 'H05.Egg'>[4]>, <<class 'H05.Egg'>[4]>]

# Sorting using key is of course still possible and in this case

# perhaps just as easy:

>>> values = [Value(n) for n in numbers]

>>> values

[<<class 'H05.Value'>[4]>, <<class 'H05.Value'>[2]>,

<<class 'H05.Value'>[3]>, <<class 'H05.Value'>[4]>]

>>> sorted(values, key=lambda v: v.value)

[<<class 'H05.Value'>[2]>, <<class 'H05.Value'>[3]>,

<<class 'H05.Value'>[4]>, <<class 'H05.Value'>[4]>]

Now, you might be wondering, "Why isn't there a class decorator to make a class 
sortable using a specified key property?" Well, that might indeed be a good idea for 
the functools library but it isn't there yet. So let's see how we would implement 
something like it:

>>> def sort_by_attribute(attr, keyfunc=getattr):

...     def _sort_by_attribute(cls):

...         def __gt__(self, other):

...             return getattr(self, attr) > getattr(other, attr)

...

...         def __ge__(self, other):

...             return getattr(self, attr) >= getattr(other, attr)

...
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...         def __lt__(self, other):

...             return getattr(self, attr) < getattr(other, attr)

...

...         def __le__(self, other):

...             return getattr(self, attr) <= getattr(other, attr)

...

...         def __eq__(self, other):

...             return getattr(self, attr) <= getattr(other, attr)

...

...         cls.__gt__ = __gt__

...         cls.__ge__ = __ge__

...         cls.__lt__ = __lt__

...         cls.__le__ = __le__

...         cls.__eq__ = __eq__

...

...         return cls

...     return _sort_by_attribute

>>> class Value(object):

...     def __init__(self, value):

...         self.value = value

...

...     def __repr__(self):

...         return '<%s[%d]>' % (self.__class__, self.value)

>>> @sort_by_attribute('value')

... class Spam(Value):

...     pass

>>> numbers = [4, 2, 3, 4]

>>> spams = [Spam(n) for n in numbers]

>>> sorted(spams)

[<<class '...Spam'>[2]>, <<class '...Spam'>[3]>,

<<class '...Spam'>[4]>, <<class '...Spam'>[4]>]
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Certainly, this greatly simplifies the making of a sortable class. And if you would 
rather have your own key function instead of getattr, it's even easier. Simply 
replace the getattr(self, attr) call with key_function(self), do that for other 
as well, and change the argument for the decorator to your function. You can even 
use that as the base function and implement sort_by_attribute by simply passing 
a wrapped getattr function.

Useful decorators
In addition to the ones already mentioned in this chapter, Python comes bundled 
with a few other useful decorators. There are some that aren't in the standard  
library (yet?).

Single dispatch – polymorphism in Python
If you've used C++ or Java before, you're probably used to having ad hoc 
polymorphism available—different functions being called depending on the 
argument types. Python being a dynamically typed language, most people would 
not expect the possibility of a single dispatch pattern. Python, however, is a language 
that is not only dynamically typed but also strongly typed, which means we can rely 
on the type we receive.

A dynamically typed language does not require strict type 
definitions. On the other hand, a language such as C would 
require the following to declare an integer:

int some_integer = 123;

Python simply accepts that your value has a type:
some_integer = 123

As opposed to languages such as JavaScript and PHP, however, 
Python does very little implicit type conversion. In Python, the 
following will return an error, whereas JavaScript would execute 
it without any problems:

'spam' + 5

In Python, the result is a TypeError. In Javascript, it's 'spam5'.
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The idea of single dispatch is that depending on the type you pass along, the correct 
function is called. Since str + int results in an error in Python, this can be very 
convenient to automatically convert your arguments before passing them to your 
function. This can be useful to separate the actual workings of your function from the 
type conversions.

Since Python 3.4, there is a decorator that makes it easily possible to implement the 
single dispatch pattern in Python. For one of those cases that you need to handle a 
specific type different from the normal execution. Here is the basic example:

>>> import functools

>>> @functools.singledispatch

... def printer(value):

...     print('other: %r' % value)

>>> @printer.register(str)

... def str_printer(value):

...     print(value)

>>> @printer.register(int)

... def int_printer(value):

...     printer('int: %d' % value)

>>> @printer.register(dict)

... def dict_printer(value):

...     printer('dict:')

...     for k, v in sorted(value.items()):

...         printer('    key: %r, value: %r' % (k, v))

>>> printer('spam')

spam

>>> printer([1, 2, 3])

other: [1, 2, 3]

>>> printer(123)



Decorators – Enabling Code Reuse by Decorating

[ 132 ]

int: 123

>>> printer({'a': 1, 'b': 2})

dict:

    key: 'a', value: 1

    key: 'b', value: 2

See how, depending on the type, the other functions were called? This pattern can be 
very useful for reducing the complexity of a single function that takes several types 
of argument.

When naming the functions, make sure that you do not 
overwrite the original singledispatch function. If we had 
named str_printer as just printer, it would overwrite the 
initial printer function. This would make it impossible to 
access the original printer function and make all register 
operations after that fail as well.

Now, a slightly more useful example—differentiating between a filename and  
a file handler:

>>> import json

>>> import functools

>>> @functools.singledispatch

... def write_as_json(file, data):

...     json.dump(data, file)

>>> @write_as_json.register(str)

... @write_as_json.register(bytes)

... def write_as_json_filename(file, data):

...     with open(file, 'w') as fh:

...         write_as_json(fh, data)

>>> data = dict(a=1, b=2, c=3)
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>>> write_as_json('test1.json', data)

>>> write_as_json(b'test2.json', 'w')

>>> with open('test3.json', 'w') as fh:

...     write_as_json(fh, data)

So now we have a single write_as_json function; it calls the right code depending 
on the type. If it's an str or bytes object, it will automatically open the file and call 
the regular version of write_as_json, which accepts file objects.

Writing a decorator that does this is not that hard to do, of course, but it's still 
quite convenient to have it in the base library. It most certainly beats a couple of 
isinstance calls in your function. To see which function will be called, you can use 
the write_as_json.dispatch function with a specific type. When passing along 
an str, you will get the write_as_json_filename function. It should be noted that 
the name of the dispatched functions is completely arbitrary. They are accessible as 
regular functions, of course, but you can name them anything you like.

To check the registered types, you can access the registry, which is a dictionary, 
through write_as_json.registry:

>>> write_as_json.registry.keys()

dict_keys([<class 'bytes'>, <class 'object'>, <class 'str'>])

Contextmanager, with statements made easy
Using the contextmanager class, we can make the creation of a context wrapper 
very easy. Context wrappers are used whenever you use a with statement. One 
example is the open function, which works as a context wrapper as well, allowing 
you to use the following code:

with open(filename) as fh:
    pass

Let's just assume for now that the open function is not usable as a context manager 
and that we need to build our own function to do this. The standard method of 
creating a context manager is by creating a class that implements the __enter__ and 
__exit__ methods, but that's a bit verbose. We can have it shorter and simpler:

>>> import contextlib

>>> @contextlib.contextmanager

... def open_context_manager(filename, mode='r'):

...     fh = open(filename, mode)
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...     yield fh

...     fh.close()

>>> with open_context_manager('test.txt', 'w') as fh:

...     print('Our test is complete!', file=fh)

Simple, right? However, I should mention that for this specific case—the closing of 
objects—there is a dedicated function in contextlib, and it is even easier to use. 
Let's demonstrate it:

>>> import contextlib

>>> with contextlib.closing(open('test.txt', 'a')) as fh:

...     print('Yet another test', file=fh)

For a file object, this is of course not needed since it already functions as a context 
manager. However, some objects such as requests made by urllib don't support 
automatic closing in that manner and benefit from this function.

But wait; there's more! In addition to being usable in a with statement, the results 
of a contextmanager are actually usable as decorators since Python 3.2. In older 
Python versions, it was simply a small wrapper, but since Python 3.2 it's based on the 
ContextDecorator class, which makes it a decorator. The previous decorator isn't really 
suitable for that task since it yields a result (more about that in Chapter 6, Generators and 
Coroutines – Infinity, One Step at a Time), but we can think of other functions:

>>> @contextlib.contextmanager

... def debug(name):

...     print('Debugging %r:' % name)

...     yield

...     print('End of debugging %r' % name)

>>> @debug('spam')

... def spam():

...     print('This is the inside of our spam function')

>>> spam()

Debugging 'spam':

This is the inside of our spam function

End of debugging 'spam'



Chapter 5

[ 135 ]

There are quite a few nice use cases for this, but at the very least, it's just a convenient 
way to wrap a function in a context without all the (nested) with statements.

Validation, type checks, and conversions
While checking for types is usually not the best way to go in Python, at times it can 
be useful if you know that you will need a specific type (or something that can be 
cast to that type). To facilitate this, Python 3.5 introduces a type hinting system so 
that you can do the following:

def spam(eggs: int):
    pass

Since Python 3.5 is not that common yet, here's a decorator that achieves the same with 
more advanced type checking. To allow for this type of checking, some magic has to 
be used, specifically the usage of the inspect module. Personally, I am not a great fan 
of inspecting code to perform tricks like these, as they are easy to break. This piece of 
code actually breaks when a regular decorator (one that doesn't copy argspec) is used 
between the function and this decorator, but it's a nice example nonetheless:

>>> import inspect

>>> import functools

>>> def to_int(name, minimum=None, maximum=None):

...     def _to_int(function):

...         # Use the method signature to map *args to named

...         # arguments

...         signature = inspect.signature(function)

...

...         # Unfortunately functools.wraps doesn't copy the

...         # signature (yet) so we do it manually.

...         # For more info: http://bugs.python.org/issue23764

...         @functools.wraps(function, ['__signature__'])

...         @functools.wraps(function)

...         def __to_int(*args, **kwargs):

...             # Bind all arguments to the names so we get a single

...             # mapping of all arguments

...             bound = signature.bind(*args, **kwargs)

...
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...             # Make sure the value is (convertible to) an integer

...             default = signature.parameters[name].default

...             value = int(bound.arguments.get(name, default))

...

...             # Make sure it's within the allowed range

...             if minimum is not None:

...                 assert value >= minimum, (

...                     '%s should be at least %r, got: %r' %

...                     (name, minimum, value))

...

...             if maximum is not None:

...                 assert value <= maximum, (

...                     '%s should be at most %r, got: %r' %

...                     (name, maximum, value))

...

...             return function(*args, **kwargs)

...         return __to_int

...     return _to_int

>>> @to_int('a', minimum=10)

... @to_int('b', maximum=10)

... @to_int('c')

... def spam(a, b, c=10):

...     print('a', a)

...     print('b', b)

...     print('c', c)

>>> spam(10, b=0)

a 10

b 0

c 10

>>> spam(a=20, b=10)

a 20

b 10

c 10

>>> spam(1, 2, 3)
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Traceback (most recent call last):

    ...

AssertionError: a should be at least 10, got: 1

>>> spam()

Traceback (most recent call last):

    ...

TypeError: 'a' parameter lacking default value

>>> spam('spam', {})

Traceback (most recent call last):

    ...

ValueError: invalid literal for int() with base 10: 'spam'

Because of the inspect magic, I'm still not sure whether I would recommend  
using the decorator like this. Instead, I would opt for a simpler version that uses  
no inspect whatsoever and simply parses the arguments from kwargs:

>>> import functools

>>> def to_int(name, minimum=None, maximum=None):

...     def _to_int(function):

...         @functools.wraps(function)

...         def __to_int(**kwargs):

...             value = int(kwargs.get(name))

...

...             # Make sure it's within the allowed range

...             if minimum is not None:

...                 assert value >= minimum, (

...                     '%s should be at least %r, got: %r' %

...                     (name, minimum, value))

...

...             if maximum is not None:

...                 assert value <= maximum, (

...                     '%s should be at most %r, got: %r' %

...                     (name, maximum, value))

...
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...             return function(**kwargs)

...         return __to_int

...     return _to_int

>>> @to_int('a', minimum=10)

... @to_int('b', maximum=10)

... def spam(a, b):

...     print('a', a)

...     print('b', b)

>>> spam(a=20, b=10)

a 20

b 10

>>> spam(a=1, b=10)

Traceback (most recent call last):

    ...

AssertionError: a should be at least 10, got: 1

However, as demonstrated, supporting both args and kwargs is not impossible as 
long as you keep in mind that __signature__ is not copied by default. Without 
__signature__, the inspect module won't know which parameters are allowed and 
which aren't.

The missing __signature__ issue is currently being discussed 
and might be solved in a future Python version:
http://bugs.python.org/issue23764.

Useless warnings – how to ignore them
Generally when writing Python, warnings are very useful the first time when you're 
actually writing the code. When executing it, however, it is not useful to get that 
same message every time you run your script/application. So, let's create some code 
that allows easy hiding of the expected warnings, but not all of them so that we can 
easily catch new ones:

import warnings
import functools

def ignore_warning(warning, count=None):

http://bugs.python.org/issue23764
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    def _ignore_warning(function):
        @functools.wraps(function)
        def __ignore_warning(*args, **kwargs):
            # Execute the code while recording all warnings
            with warnings.catch_warnings(record=True) as ws:
                # Catch all warnings of this type
                warnings.simplefilter('always', warning)
                # Execute the function
                result = function(*args, **kwargs)

            # Now that all code was executed and the warnings
            # collected, re-send all warnings that are beyond our
            # expected number of warnings
            if count is not None:
                for w in ws[count:]:
                    warnings.showwarning(
                        message=w.message,
                        category=w.category,
                        filename=w.filename,
                        lineno=w.lineno,
                        file=w.file,
                        line=w.line,
                    )

            return result
        return __ignore_warning
    return _ignore_warning

@ignore_warning(DeprecationWarning, count=1)
def spam():
    warnings.warn('deprecation 1', DeprecationWarning)
    warnings.warn('deprecation 2', DeprecationWarning)

Using this method, we can catch the first (expected) warning and still see the second 
(not expected) warning.
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Summary
This chapter showed us some of the places where decorators can be used to make 
our code simpler and add some fairly complex behavior to very simple functions. 
Truthfully, most decorators are more complex than the regular function would 
have been by simply adding the functionality directly, but the added advantage of 
applying the same pattern to many functions and classes is generally well worth it.

Decorators have so many uses to make your functions and classes smarter and more 
convenient to use:

•	 Debugging
•	 Validation
•	 Argument convenience (pre-filling or converting arguments)
•	 Output convenience (converting the output to a specific type)

The most important takeaway of this chapter should be to never forget functools.
wraps when wrapping a function. Debugging decorated functions can be rather 
difficult because of (unexpected) behavior modification, but losing attributes as well 
can make that problem much worse.

The next chapter will show us how and when to use generators and coroutines. This 
chapter has already shown us the usage of the with statement slightly, but generators 
and coroutines go much further with this. We will still be using decorators often 
though, so make sure you have a good understanding of how they work.
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Generators and Coroutines – 
Infinity, One Step at a Time

A generator is a specific type of iterator that generates values through a function. 
While traditional methods build and return a list of items, a generator will simply 
yield every value separately at the moment when they are requested by the caller. 
This method has several benefits:

•	 Generators pause execution completely until the next value is yielded, which 
makes them completely lazy. If you fetch five items from a generator, only 
five items will be generated, so no other computation is needed.

•	 Generators have no need to save values. Whereas a traditional function 
would require creating a list and storing all results until they are returned, 
a generator only needs to store a single value.

•	 Generators can have infinite size. There is no requirement to stop at a  
certain point.

These benefits come at a price, however. The immediate results of these benefits are a 
few disadvantages:

•	 Until you are done processing, you never know how many values are left; it 
could even be infinite. This makes usage dangerous in some cases; executing 
list(some_infinite_generator) will run out of memory.

•	 You cannot slice generators.
•	 You cannot get specific items without yielding all values before that index.
•	 You cannot restart a generator. All values are yielded exactly once.
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In addition to generators, there is a variation to the generator's syntax that creates 
coroutines. Coroutines are functions that allow for multitasking without requiring 
multiple threads or processes. Whereas generators can only yield values to the caller, 
coroutines actually receive values from the caller while it is still running. While 
this technique has a few limitations, if it suits your purpose, it can result in great 
performance at a very little cost.

In short, the topics covered in this chapter are:

•	 The characteristics and uses of generators
•	 Generator comprehensions
•	 Generator functions
•	 Generator classes
•	 Bundled generators
•	 Coroutines

What are generators?
A generator, in its simplest form, is a function that returns elements one at a time 
instead of returning a collection of items. The most important advantage of this is 
that it requires very little memory and that it doesn't need to have a predefined size. 
Creating an endless generator (such as the itertools.count iterator discussed in 
Chapter 4, Functional Programming – Readability Versus Brevity) is actually quite easy, 
but it does come with a cost, of course. Not having the size of an object available 
makes certain patterns difficult to achieve.

The basic trick in writing generators (as functions) is using the yield statement.  
Let's use the itertools.count generator as an example and extend it with a  
stop variable:

>>> def count(start=0, step=1, stop=10):

...     n = start

...     while n <= stop:

...         yield n

...         n += step

>>> for x in count(10, 2.5, 20):

...     print(x)

10

12.5
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15.0

17.5

20.0

Due to the potentially infinite nature of generators, caution is required. Without 
the stop variable, simply doing list(count()) would result in an out-of-memory 
situation quite fast.

So how does this work? It's just a normal for loop, but the big difference between 
this and the regular method of returning a list of items is that the yield statement 
returns the items one at a time. An important thing to note here is that the return 
statement results in a StopIteration and passing something along to return 
will be the argument to the StopIteration. It should be noted that this behavior 
changed in Python 3.3; in Python 3.2 and earlier versions, it was simply not possible 
to return anything other than None. Here is an example:

>>> def generator():

...     yield 'this is a generator'

...     return 'returning from a generator'

>>> g = generator()

>>> next(g)

'this is a generator'

>>> next(g)

Traceback (most recent call last):

    ...

StopIteration: returning from a generator

Of course, as always, there are multiple ways of creating generators with Python. 
Other than functions, there are also generator comprehensions and classes that 
can do the same thing. Generator comprehensions are pretty much identical to list 
comprehensions but use parentheses instead of brackets, like this for example:

>>> generator = (x ** 2 for x in range(4))

>>> for x in generator:

...    print(x)

0

1

4

9
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For completeness, the class version of the count function is as follows:

>>> class Count(object):

...     def __init__(self, start=0, step=1, stop=10):

...         self.n = start

...         self.step = step

...         self.stop = stop

...

...     def __iter__(self):

...         return self

...

...     def __next__(self):

...         n = self.n

...         if n > self.stop:

...             raise StopIteration()

...

...         self.n += self.step

...         return n

>>> for x in Count(10, 2.5, 20):

...     print(x)

10

12.5

15.0

17.5

20.0

The biggest difference between the class and the function-based approach is that  
you are required to raise a StopIteration explicitly instead of just returning it. 
Beyond that, they are quite similar, although the class-based version obviously  
adds some verbosity.
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Advantages and disadvantages of generators
You have seen a few examples of generators and know the basics of what you can  
do with them. However, it is important to keep their advantages and disadvantages 
in mind.

The following are most important pros:

•	 Memory usage. Items can be processed one at a time, so there is generally no 
need to keep the entire list in memory.

•	 The results can depend on outside factors, instead of having a static list. 
Think of processing a queue/stack for example.

•	 Generators are lazy. This means that if you're using only the first five results 
of a generator, the rest won't even be calculated.

•	 Generally, it is simpler to write than list generating functions.

The most important cons:

•	 The results are available only once. After processing the results of a 
generator, it cannot be used again.

•	 The size is unknown until you are done processing, which can be detrimental 
to certain algorithms.

•	 Generators are not indexable, which means that some_generator[5] will  
not work.

Considering all the advantages and disadvantages, my general advice would be to 
use generators if possible and only return a list or tuple when you actually need 
to. Converting a generator to a list is as simple as list(some_generator), so that 
shouldn't stop you since generator functions tend to be simpler than the equivalents 
that produce list.

The memory usage advantage is understandable; one item requires less memory 
than many items. The lazy part, however, needs some additional explanation as it 
has a small snag:

>>> def generator():

...     print('Before 1')

...     yield 1

...     print('After 1')

...     print('Before 2')

...     yield 2

...     print('After 2')
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...     print('Before 3')

...     yield 3

...     print('After 3')

>>> g = generator()

>>> print('Got %d' % next(g))

Before 1

Got 1

>>> print('Got %d' % next(g))

After 1

Before 2

Got 2

As you can see, the generator effectively freezes right after the yield statement,  
so even the After 2 won't print until 3 is yielded.

This has important advantages, but it's definitely something you need to take into 
consideration. You can't have your cleanup right after the yield as it won't be 
executed until the next yield.

Pipelines – an effective use of generators
The theoretical possibilities of generators are infinite (no pun intended), but their 
practical uses can be difficult to find. If you are familiar with the Unix/Linux shell, 
you must have probably used pipes before, something like ps aux | grep python' 
for example to list all Python processes. There are many ways to do this, of course, 
but let's emulate something similar in Python to see a practical example. To create  
an easy and consistent output, we will create a file called lines.txt with the 
following lines:

spam
eggs
spam spam
eggs eggs
spam spam spam
eggs eggs eggs
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Now, let's take the following Linux/Unix/Mac shell command to read the file with 
some modifications:

# cat lines.txt | grep spam | sed 's/spam/bacon/g'

bacon

bacon bacon

bacon bacon bacon

This reads the file using cat, outputs all lines that contain spam using grep, and 
replaces spam with bacon using the sed command. Now let's see how we can 
recreate this with the use of Python generators:

>>> def cat(filename):

...     for line in open(filename):

...         yield line.rstrip()

...

>>> def grep(sequence, search):

...     for line in sequence:

...         if search in line:

...             yield line

...

>>> def replace(sequence, search, replace):

...     for line in sequence:

...         yield line.replace(search, replace)

...

>>> lines = cat('lines.txt')

>>> spam_lines = grep(lines, 'spam')

>>> bacon_lines = replace(spam_lines, 'spam', 'bacon')

>>> for line in bacon_lines:

...     print(line)

...

bacon

bacon bacon

bacon bacon bacon
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# Or the one-line version, fits within 78 characters:

>>> for line in replace(grep(cat('lines.txt'), 'spam'),

...                     'spam', 'bacon'):

...     print(line)

...

bacon

bacon bacon

bacon bacon bacon

That's the big advantage of generators. You can wrap a list or sequence multiple 
times with very little performance impact. Not a single one of the functions  
involved executes anything until a value is requested.

tee – using an output multiple times
As mentioned before, one of the biggest disadvantages of generators is that the 
results are usable only once. Luckily, Python has a function that allows you to 
copy the output to several generators. The name tee might be familiar to you if 
you are used to working in a command-line shell. The tee program allows you to 
write outputs to both the screen and a file, so you can store an output while still 
maintaining a live view of it.

The Python version, itertools.tee, does a similar thing except that it returns 
several iterators, allowing you to process the results separately.

By default, tee will split your generator into a tuple containing two different 
generators, which is why tuple unpacking works nicely here. By passing along the n 
parameter, this can easily be changed to support more than 2 generators. Here is an 
example:

>>> import itertools

>>> def spam_and_eggs():

...     yield 'spam'

...     yield 'eggs'

>>> a, b = itertools.tee(spam_and_eggs())

>>> next(a)

'spam'

>>> next(a)

'eggs'



Chapter 6

[ 149 ]

>>> next(b)

'spam'

>>> next(b)

'eggs'

>>> next(b)

Traceback (most recent call last):

    ...

StopIteration

After seeing this code, you might be wondering about the memory usage of tee. 
Does it need to store the entire list for you? Luckily, no. The tee function is pretty 
smart in handling this. Assume you have a generator that contains 1,000 items, and 
you read the first 100 items from a and the first 75 items from b simultaneously. 
Then tee will only keep the difference (100 - 75 = 25 items) in the memory and 
drop the rest while you are iterating the results.

Whether tee is the best solution in your case or not depends, of course. If instance a 
is read from the beginning to (nearly) the end before instance b is read, then it would 
not be a great idea to use tee. Simply converting the generator to a list would be 
faster since it involves much fewer operations.

Generating from generators
As we have seen before, we can use generators to filter, modify, add, and remove 
items. In many cases, however, you'll notice that when writing generators, you'll 
be returning from sub-generators and/or sequences. An example of this is when 
creating a powerset using the itertools library:

>>> import itertools

>>> def powerset(sequence):

...     for size in range(len(sequence) + 1):

...         for item in itertools.combinations(sequence, size):

...             yield item

>>> for result in powerset('abc'):

...     print(result)

()

('a',)

('b',)
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('c',)

('a', 'b')

('a', 'c')

('b', 'c')

('a', 'b', 'c')

This pattern was so common that the yield syntax was actually enhanced to make 
this even easier. Instead of manually looping over the results, Python 3.3 introduced 
the yield from syntax, which makes this common pattern even simpler:

>>> import itertools

>>> def powerset(sequence):

...     for size in range(len(sequence) + 1):

...         yield from itertools.combinations(sequence, size)

>>> for result in powerset('abc'):

...     print(result)

()

('a',)

('b',)

('c',)

('a', 'b')

('a', 'c')

('b', 'c')

('a', 'b', 'c')

And that's how you create a powerset in only three lines of code.

Perhaps, a more useful example of this is flattening a sequence recursively:

>>> def flatten(sequence):

...     for item in sequence:

...         try:

...             yield from flatten(item)

...         except TypeError:

...             yield item

...

>>> list(flatten([1, [2, [3, [4, 5], 6], 7], 8]))

[1, 2, 3, 4, 5, 6, 7, 8]
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Note that this code uses TypeError to detect non-iterable objects. The result is that  
if the sequence (which could be a generator) returns a TypeError, it will silently  
hide it.

Also note that this is a very basic flattening function that has no type checking 
whatsoever. An iterable containing an str for example will be flattened recursively 
until the maximum recursion depth is reached, since every item in an str also 
returns an str.

Context managers
As with most of the techniques described in this book, Python also comes bundled 
with a few useful generators. Some of these (itertools and contextlib.
contextmanager for example) have already been discussed in Chapter 4, Functional 
Programming – Readability Versus Brevity and Chapter 5, Decorators – Enabling Code 
Reuse by Decorating but we can use some extra examples to demonstrate how simple 
and powerful they can be.

The Python context managers do not appear to be directly related to generators,  
but that's a large part of what they use internally:

>>> import datetime

>>> import contextlib

# Context manager that shows how long a context was active

>>> @contextlib.contextmanager

... def timer(name):

...     start_time = datetime.datetime.now()

...     yield

...     stop_time = datetime.datetime.now()

...     print('%s took %s' % (name, stop_time - start_time))

# The write to log function writes all stdout (regular print data) to

# a file. The contextlib.redirect_stdout context wrapper

# temporarily redirects standard output to a given file handle, in

# this case the file we just opened for writing.

>>> @contextlib.contextmanager

... def write_to_log(name):

...     with open('%s.txt' % name, 'w') as fh:

...         with contextlib.redirect_stdout(fh):
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...             with timer(name):

...                 yield

# Use the context manager as a decorator

>>> @write_to_log('some function')

... def some_function():

...     print('This function takes a bit of time to execute')

...     ...

...     print('Do more...')

>>> some_function()

While all this works just fine, the three levels of context managers tend to get a bit 
unreadable. Generally, decorators can solve this. In this case, however, we need the 
output from one context manager as the input for the next.

That's where ExitStack comes in. It allows easy combining of multiple context 
managers:

>>> import contextlib

>>> @contextlib.contextmanager

... def write_to_log(name):

...     with contextlib.ExitStack() as stack:

...         fh = stack.enter_context(open('stdout.txt', 'w'))

...         stack.enter_context(contextlib.redirect_stdout(fh))

...         stack.enter_context(timer(name))

...

...         yield

>>> @write_to_log('some function')

... def some_function():

...     print('This function takes a bit of time to execute')

...     ...

...     print('Do more...')

>>> some_function()
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Looks at least a bit simpler, doesn't it? While the necessity is limited in this case, the 
convenience of ExitStack becomes quickly apparent when you need to do specific 
teardowns. In addition to the automatic handling as seen before, it's also possible to 
transfer the contexts to a new ExitStack and manually handle the closing:

>>> import contextlib

>>> with contextlib.ExitStack() as stack:

...     spam_fh = stack.enter_context(open('spam.txt', 'w'))

...     eggs_fh = stack.enter_context(open('eggs.txt', 'w'))

...     spam_bytes_written = spam_fh.write('writing to spam')

...     eggs_bytes_written = eggs_fh.write('writing to eggs')

...     # Move the contexts to a new ExitStack and store the

...     # close method

...     close_handlers = stack.pop_all().close

>>> spam_bytes_written = spam_fh.write('still writing to spam')

>>> eggs_bytes_written = eggs_fh.write('still writing to eggs')

# After closing we can't write anymore

>>> close_handlers()

>>> spam_bytes_written = spam_fh.write('cant write anymore')

Traceback (most recent call last):

    ...

ValueError: I/O operation on closed file.

Most of the contextlib functions have extensive documentation available in the 
Python manual. ExitStack in particular is documented using many examples 
at https://docs.python.org/3/library/contextlib.html#contextlib.
ExitStack. I recommend keeping an eye on the contextlib documentation as it is 
improving greatly with every Python version.

https://docs.python.org/3/library/contextlib.html#contextlib.ExitStack
https://docs.python.org/3/library/contextlib.html#contextlib.ExitStack
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Coroutines
Coroutines are subroutines that offer non-pre-emptive multitasking through 
multiple entry points. The basic premise is that coroutines allow two functions to 
communicate with each other while running. Normally, this type of communication 
is reserved only for multitasking solutions, but coroutines offer a relatively simple 
way of achieving this at almost no added performance cost.

Since generators are lazy by default, the working of coroutines is fairly obvious. 
Until a result is consumed, the generator sleeps; but while consuming a result, the 
generator becomes active. The difference between regular generators and coroutines 
is that coroutines don't simply return values to the calling function but can receive 
values as well.

A basic example
In the previous paragraphs, we saw how regular generators can yield values. But 
that's not all that generators can do. They can actually receive values as well. The 
basic usage is fairly simple:

>>> def generator():

...     value = yield 'spam'

...     print('Generator received: %s' % value)

...     yield 'Previous value: %r' % value

>>> g = generator()

>>> print('Result from generator: %s' % next(g))

Result from generator: spam

>>> print(g.send('eggs'))

Generator received: eggs

Previous value: 'eggs'

And that's all there is to it. The function is frozen until the send method is called,  
at which point it will process up to the next yield statement.
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Priming
Since generators are lazy, you can't just send a value to a brand new generator. 
Before a value can be sent to the generator, either a result must be fetched using 
next() or a send(None) has to be issued so that the code is actually reached. The 
need for this is understandable but a bit tedious at times. Let's create a simple 
decorator to omit the need for this:

>>> import functools

>>> def coroutine(function):

...     @functools.wraps(function)

...     def _coroutine(*args, **kwargs):

...         active_coroutine = function(*args, **kwargs)

...         next(active_coroutine)

...         return active_coroutine

...     return _coroutine

>>> @coroutine

... def spam():

...     while True:

...         print('Waiting for yield...')

...         value = yield

...         print('spam received: %s' % value)

>>> generator = spam()

Waiting for yield...

>>> generator.send('a')

spam received: a

Waiting for yield...

>>> generator.send('b')

spam received: b

Waiting for yield...
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As you've probably noticed, even though the generator is still lazy, it now 
automatically executes all of the code until it reaches the yield statement  
again. At that point, it will stay dormant until new values are sent.

Note that the coroutine decorator will be used throughout this 
chapter from this point onwards. For brevity, we will omit it from 
the following examples.

Closing and throwing exceptions
Unlike regular generators, which simply exit as soon as the input sequence is 
exhausted, coroutines generally employ infinite while loops, which means that they 
won't be torn down the normal way. That's why coroutines also support both close 
and throw methods, which will exit the function. The important thing here is not 
the closing but the possibility of adding a teardown method. Essentially, it is very 
comparable to how context wrappers function with an __enter__ and __exit__ 
method, but with coroutines in this case:

@coroutine
def simple_coroutine():
    print('Setting up the coroutine')
    try:
        while True:
            item = yield
            print('Got item: %r' % item)
    except GeneratorExit:
        print('Normal exit')
    except Exception as e:
        print('Exception exit: %r' % e)
        raise
    finally:
        print('Any exit')

print('Creating simple coroutine')
active_coroutine = simple_coroutine()
print()

print('Sending spam')
active_coroutine.send('spam')
print()
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print('Close the coroutine')
active_coroutine.close()
print()

print('Creating simple coroutine')
active_coroutine = simple_coroutine()
print()

print('Sending eggs')
active_coroutine.send('eggs')
print()

print('Throwing runtime error')
active_coroutine.throw(RuntimeError, 'Oops...')
print()

This generates the following output, which should be as expected—no strange 
behavior but simply two methods of exiting a coroutine:

# python3 H06.py

Creating simple coroutine

Setting up the coroutine

Sending spam

Got item: 'spam'

Close the coroutine

Normal exit

Any exit

Creating simple coroutine

Setting up the coroutine

Sending eggs

Got item: 'eggs'

Throwing runtime error

Exception exit: RuntimeError('Oops...',)

Any exit
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Traceback (most recent call last):

...

  File ... in <module>

    active_coroutine.throw(RuntimeError, 'Oops...')

  File ... in simple_coroutine

    item = yield

RuntimeError: Oops...

Bidirectional pipelines
In the previous paragraphs, we saw pipelines; they process the output sequentially 
and one-way. However, there are cases where this is simply not enough—times 
where you need a pipe that not only sends values to the next pipe but also receives 
information back from the sub-pipe. Instead of always having a single list that is 
processed, we can maintain the state of the generator between executions this way. 
So, let's start by converting the earlier pipelines to coroutines. First, the lines.txt 
file again:

spam
eggs
spam spam
eggs eggs
spam spam spam
eggs eggs eggs

Now, the coroutine pipeline. The functions are the same as before but using 
coroutines instead:

>>> @coroutine

... def replace(search, replace):

...     while True:

...         item = yield

...         print(item.replace(search, replace))

>>> spam_replace = replace('spam', 'bacon')

>>> for line in open('lines.txt'):

...     spam_replace.send(line.rstrip())

bacon

eggs
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bacon bacon

eggs eggs

bacon bacon bacon

eggs eggs eggs

Given this example, you might be wondering why we are now printing the value 
instead of yielding it. Well! We can, but remember that generators freeze until a 
value is yielded. Let's see what would happen if we simply yield the value instead 
of calling print. By default, you might be tempted to do this:

>>> @coroutine

... def replace(search, replace):

...     while True:

...         item = yield

...         yield item.replace(search, replace)

>>> spam_replace = replace('spam', 'bacon')

>>> spam_replace.send('spam')

'bacon'

>>> spam_replace.send('spam spam')

>>> spam_replace.send('spam spam spam')

'bacon bacon bacon'

Half of the values have disappeared now, so the question is, "Where did they go?" 
Notice that the second yield isn't storing the results. That's where the values are 
disappearing. We need to store those as well:

>>> @coroutine

... def replace(search, replace):

...     item = yield

...     while True:

...         item = yield item.replace(search, replace)

>>> spam_replace = replace('spam', 'bacon')

>>> spam_replace.send('spam')
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'bacon'

>>> spam_replace.send('spam spam')

'bacon bacon'

>>> spam_replace.send('spam spam spam')

'bacon bacon bacon'

But even this is far from optimal. We are essentially using coroutines to mimic the 
behavior of generators right now. Although it works, it's just a tad silly and not all 
that clear. Let's make a real pipeline this time where the coroutines send the data 
to the next coroutine (or coroutines) and actually show the power of coroutines by 
sending the results to multiple coroutines:

# Grep sends all matching items to the target

>>> @coroutine

... def grep(target, pattern):

...     while True:

...         item = yield

...         if pattern in item:

...             target.send(item)

# Replace does a search and replace on the items and sends it to

# the target once it's done

>>> @coroutine

... def replace(target, search, replace):

...     while True:

...         target.send((yield).replace(search, replace))

# Print will print the items using the provided formatstring

>>> @coroutine

... def print_(formatstring):

...     while True:

...         print(formatstring % (yield))

# Tee multiplexes the items to multiple targets

>>> @coroutine

... def tee(*targets):

...     while True:
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...         item = yield

...         for target in targets:

...             target.send(item)

# Because we wrap the results we need to work backwards from the

# inner layer to the outer layer.

# First, create a printer for the items:

>>> printer = print_('%s')

# Create replacers that send the output to the printer

>>> replacer_spam = replace(printer, 'spam', 'bacon')

>>> replacer_eggs = replace(printer, 'spam spam', 'sausage')

# Create a tee to send the input to both the spam and the eggs

# replacers

>>> branch = tee(replacer_spam, replacer_eggs)

# Send all items containing spam to the tee command

>>> grepper = grep(branch, 'spam')

# Send the data to the grepper for all the processing

>>> for line in open('lines.txt'):

...     grepper.send(line.rstrip())

bacon

spam

bacon bacon

sausage

bacon bacon bacon

sausage spam

This makes the code much simpler and more readable, but more importantly, it 
shows how a single source can be split into multiple destinations. While this might 
not look too exciting, it most certainly is. If you look closely, you will see that the tee 
method splits the input into two different outputs, but both of those outputs write 
back to the same print_ instance. This means that it's possible to route your data 
along whichever way is convenient for you while still having it end up at the same 
endpoint with no effort whatsoever.
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Regardless, the example is still not that useful, as these functions still don't use all 
of the coroutine's power. The most important feature, a consistent state, is not really 
used in this case.

The most important lesson to learn from these lines is that mixing generators and 
coroutines is not a good idea in most cases since it can have very strange side effects 
if used incorrectly. Even though both use the yield statement, they are significantly 
different creatures with different behavior. The next paragraph will show one of the 
few cases where mixing coroutines and generators can be useful.

Using the state
Now that we know how to write basic coroutines and which pitfalls we have to take 
care of, how about writing a function where remembering the state is required? That 
is, a function that always gives you the average value of all sent values. This is one of 
the few cases where it is still relatively safe and useful to combine the coroutine and 
generator syntax:

>>> @coroutine

... def average():

...     count = 1

...     total = yield

...     while True:

...         total += yield total / count

...         count += 1

>>> averager = average()

>>> averager.send(20)

20.0

>>> averager.send(10)

15.0

>>> averager.send(15)

15.0

>>> averager.send(-25)

5.0
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It still requires some extra logic to work properly though. To make sure we don't 
divide by zero, we initialize the count to 1. After that, we fetch our first item using 
yield, but we don't send any data at that point because the first yield is the primer 
and is executed before we get the value. Once that's all set up, we can easily yield 
the average value while summing. Not all that bad, but the pure coroutine version is 
slightly simpler to understand since we don't have to worry about priming:

>>> @coroutine

... def print_(formatstring):

...     while True:

...         print(formatstring % (yield))

>>> @coroutine

... def average(target):

...     count = 0

...     total = 0

...     while True:

...         count += 1

...         total += yield

...         target.send(total / count)

>>> printer = print_('%.1f')

>>> averager = average(printer)

>>> averager.send(20)

20.0

>>> averager.send(10)

15.0

>>> averager.send(15)

15.0

>>> averager.send(-25)

5.0

As simple as it should be, just keeping the count and the total value and simply send 
the new average for every new value.
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Another nice example is itertools.groupby, also quite simple to do with 
coroutines. For comparison, we will once again show both the generator  
coroutine and the pure coroutine version:

>>> @coroutine

... def groupby():

...     # Fetch the first key and value and initialize the state

...     # variables

...     key, value = yield

...     old_key, values = key, []

...     while True:

...         # Store the previous value so we can store it in the

...         # list

...         old_value = value

...         if key == old_key:

...             key, value = yield

...         else:

...             key, value = yield old_key, values

...             old_key, values = key, []

...         values.append(old_value)

>>> grouper = groupby()

>>> grouper.send(('a', 1))

>>> grouper.send(('a', 2))

>>> grouper.send(('a', 3))

>>> grouper.send(('b', 1))

('a', [1, 2, 3])

>>> grouper.send(('b', 2))

>>> grouper.send(('a', 1))

('b', [1, 2])

>>> grouper.send(('a', 2))

>>> grouper.send((None, None))

('a', [1, 2])
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As you can see, this function uses a few tricks. We store the previous key and value 
so that we can detect when the group (key) changes. And that is the second issue; we 
obviously cannot recognize a group until the group has changed, so only after the 
group has changed will the results be returned. This means that the last group will 
be sent only if a different group is sent after it, hence the (None, None). And now, 
here is the pure coroutine version:

>>> @coroutine

... def print_(formatstring):

...     while True:

...         print(formatstring % (yield))

>>> @coroutine

... def groupby(target):

...     old_key = None

...     while True:

...         key, value = yield

...         if old_key != key:

...             # A different key means a new group so send the

...             # previous group and restart the cycle.

...             if old_key and values:

...                 target.send((old_key, values))

...             values = []

...             old_key = key

...         values.append(value)

>>> grouper = groupby(print_('group: %s, values: %s'))

>>> grouper.send(('a', 1))

>>> grouper.send(('a', 2))

>>> grouper.send(('a', 3))

>>> grouper.send(('b', 1))

group: a, values: [1, 2, 3]

>>> grouper.send(('b', 2))

>>> grouper.send(('a', 1))

group: b, values: [1, 2]

>>> grouper.send(('a', 2))

>>> grouper.send((None, None))

group: a, values: [1, 2]



Generators and Coroutines – Infinity, One Step at a Time

[ 166 ]

While the functions are fairly similar, the pure coroutine version is, once again, quite 
a bit simpler. This is because we don't have to think about priming and values that 
might get lost.

Summary
This chapter showed us how to create generators and both the strengths and 
weaknesses that they possess. Additionally, it should now be clear how to work 
around their limitations and the implications of doing so.

While the paragraphs about coroutines should have provided some insights into 
what they are and how they can be used, not everything has been shown yet. We 
saw the constructs of both pure coroutines and coroutines that are generators at 
the same time, but they are still all synchronous. The coroutines allow sending the 
results to many other coroutines, therefore effectively executing many functions 
at once, but they can still freeze Python completely if an operation turns out to be 
blocking. That's where our next chapter will help.

Python 3.5 introduced a few useful features, such as the async and await statements. 
These make it possible to make coroutines fully asynchronous and non-blocking, 
whereas this chapter uses the basic coroutine features that have been available  
since Python 2.5.

The next chapter will expand on the newer features, including the asyncio module. 
This module makes it almost simple to use coroutines for asynchronous I/O to 
endpoints such as TCP, UDP, files, and processes.
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Async IO – Multithreading 
without Threads

The previous chapter showed us the basic implementation of synchronous 
coroutines. Whenever you are dealing with external resources, however, 
synchronous coroutines are a bad idea. Just a single stalling remote connection 
can cause your entire process to hang, unless you are using multiprocessing 
(explained in Chapter 13, Multiprocessing – When a Single CPU Core Is Not Enough) or 
asynchronous functions that is.

Asynchronous IO makes it possible to access external resources without having to 
worry about slowing down or stalling your application. Instead of actively waiting 
for results, the Python interpreter can simply continue with other tasks until it is 
needed again. This is very similar to the functioning of Node.js and AJAX calls 
in JavaScript. Within Python, we have seen libraries such as asyncore, gevent, 
and eventlet that have made this possible for years. With the introduction of the 
asyncio module, however, it has become significantly easier to use.

This chapter will explain how asynchronous functions can be used in Python 
(particularly 3.5 and above) and how code can be restructured in such a way that it 
still functions even though it doesn't follow the standard procedural coding pattern 
of returning values.
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The following topics will be covered in this chapter:

•	 Functions using:
°° async def

°° async for

°° async with

°° await

•	 Parallel execution
•	 Servers
•	 Clients
•	 Eventual results using Future

Introducing the asyncio library
The asyncio library was created to make asynchronous processing much easier 
and results more predictable. It was introduced with the purpose of replacing the 
asyncore module, which has been available for a very long time (since Python 1.5 
in fact). The asyncore module was never very usable, which prompted the creation 
of the gevent and eventlet third-party libraries. Both gevent and eventlet make 
asynchronous programming much easier than asyncore ever did, but I feel that both 
have been made largely obsolete with the introduction of asyncio. Even though 
I have to admit that asyncio still has quite a few rough edges, it is in very active 
development, which makes me think that all the rough edges will soon be fixed by 
either the core Python library or third-party wrappers.

The asyncio library was officially introduced for Python 3.4, but a back port for Python 
3.3 is available through the Python Package Index. With that in mind, while some 
portions of this chapter will be able to run on Python 3.3, most of it has been written 
with Python 3.5 and the newly introduced async and await keywords in mind.

The async and await statements
Before we continue with any example, it is important to know how the Python 
3.4 and Python 3.5 code syntaxes relate. Even though the asyncio library was 
introduced only in Python 3.4, a large portion of the generic syntax has already been 
replaced in Python 3.5. Not forcefully, but the easier and therefore recommended 
syntax using async and await has been introduced.
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Python 3.4
For the traditional Python 3.4 usage, a few things need to be considered:

•	 Functions should be declared using the asyncio.coroutine decorator
•	 Asynchronous results should be fetched using yield from coroutine()
•	 Asynchronous loops are not directly supported but can be emulated using 

while True: yield from coroutine()

Here is an example:

import asyncio

@asyncio.coroutine
def sleeper():
    yield from asyncio.sleep(1)

Python 3.5
In Python 3.5, a new syntax was introduced to mark a function as asynchronous. 
Instead of the asyncio.coroutine decorator, the async keyword can be used. 
Also, instead of the confusing yield from syntax, Python now supports the await 
statement. The yield from statement was slightly confusing because it might give 
someone the idea that a value is being exchanged, which is not always the case.

The following is the async statement:

async def some_coroutine():
    pass

It can be used instead of the decorator:

import asyncio

@asyncio.coroutine
def some_coroutine():
    pass

Within Python 3.5, and most likely in future versions as well, the coroutine 
decorator will still be supported, but if backwards compatibility is not an issue,  
I strongly recommend the new syntax.
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Additionally, instead of the yield from statement, we can use the much more 
logical await statement. So, the example from the previous paragraph becomes as 
simple as the following:

import asyncio

async def sleeper():
    await asyncio.sleep(1)

The yield from statement originated from the original coroutines implementation 
in Python and was a logical extension from the yield statement used within 
synchronous coroutines. Actually, the yield from statement still works and the 
await statement is just a wrapper for it, with some added checks. While using await, 
the interpreter checks whether the object is an awaitable object, meaning it needs to 
be one of the following:

•	 A native coroutine created with the async def statement
•	 A coroutine created with the asyncio.coroutine decorator
•	 An object that implements the __await__ method

This check alone makes the await statement preferable over the yield from 
statement, but I personally think that await conveys the meaning of the statement 
much better as well.

To summarize, to convert to the new syntax, make the following changes:

•	 Functions should be declared using async def instead of def
•	 Asynchronous results should be fetched using await coroutine()
•	 Asynchronous loops can be created using async for ... in ...
•	 Asynchronous with statements can be created using async with ...

Choosing between the 3.4 and 3.5 syntax
Unless you really need Python 3.3 or 3.4 support, I would strongly recommend 
the Python 3.5 syntax. The new syntax is clearer and supports more features, such 
as asynchronous for loops and with statements. Unfortunately, they are not fully 
compatible, so you need to make a choice. Within an async def (3.5), we cannot use 
yield from, but all we need to do to fix that is replace yield from with await.
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A simple example of single-threaded parallel 
processing
Parallel processing has many uses: a server taking care of multiple requests at the 
same time, speeding up heavy tasks, waiting for external resources, and much more. 
Generic coroutines can help with handling multiple requests and external resources 
in some cases, but they are still synchronous and therefore limited. With asyncio, 
we can transcend the limitations of generic coroutines and easily handle stalling 
resources without having to worry about blocking the main thread. Let's see a quick 
example of how the code does not stall with multiple parallel functions:

>>> import asyncio

>>> async def sleeper(delay):

...     await asyncio.sleep(delay)

...     print('Finished sleeper with delay: %d' % delay)

>>> loop = asyncio.get_event_loop()

>>> results = loop.run_until_complete(asyncio.wait((

...     sleeper(1),

...     sleeper(3),

...     sleeper(2),

... )))

Finished sleeper with delay: 1

Finished sleeper with delay: 2

Finished sleeper with delay: 3

Even though we started the sleepers with the order of 1, 3, 2, which sleeps for that 
amount of time, asyncio.sleep combined with the await statement actually tells 
Python that it should just continue with a task that needs actual processing at this 
time. A regular time.sleep would actually stall the Python task, meaning they 
would execute sequentially. This makes it somewhat more obviously transparent 
what these can be used for, as it handles any type of wait, which we can hand off 
to asyncio instead of keeping the entire Python thread busy. So, instead of while 
True: fh.read(), we can just respond whenever there is new data.
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Let's analyze the components used in this example:

•	 asyncio.coroutine: This decorator enables yielding from async def 
coroutines. Unless you are using this syntax, there is no real need for the 
decorator, but it's a good default if only used as documentation.

•	 asyncio.sleep: This is the asynchronous version of time.sleep. The 
big difference between these two is that time.sleep will keep the Python 
process busy while it is sleeping, whereas asyncio.sleep will allow 
switching to a different task within the event loop. This process is very 
similar to the workings of task switching in most operating systems.

•	 asyncio.get_event_loop: The default event loop is effectively the asyncio 
task switcher; we'll explain more about these in the next paragraph.

•	 asyncio.wait: This is the coroutine for wrapping a sequence of coroutines 
or futures and waiting for the results. The wait time is configurable, as is the 
manner of waiting (first done, all done, or the first exception).

That should explain the basic workings of the example: the sleeper function is the 
asynchronous coroutine, which exits after the given delay. The wait function waits 
for all coroutines to finish before exiting, and the event loop is used for switching 
between the three coroutines.

Concepts of asyncio
The asyncio library has several basic concepts, which have to be explained before 
we venture further into examples and uses. The example shown in the previous 
paragraph actually used most of them, but a little explanation about the how and the 
why might still be useful.

The main concepts of asyncio are coroutines and event loops. Within them, there 
are several helper classes available, such as Streams, Futures, and Processes. 
The next few paragraphs will explain the basics so that you can understand the 
implementations in the examples in the later paragraphs.

Futures and tasks
The asyncio.Future class is essentially a promise of a result; it returns the results 
if they are available, and once it receives results, it will pass them along to all the 
registered callbacks. It maintains a state variable internally, which allows an outside 
party to mark a future as canceled. The API is very similar to the concurrent.
futures.Future class, but since they are not fully compatible, make sure you do not 
confuse the two.
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The Future class by itself is not that convenient to use though, so that is where 
asyncio.Task comes in. The Task class wraps a coroutine and automatically 
handles the execution, results, and state for you. The coroutine will be executed 
through the given event loop, or the default event loop if none was given.

The creation of these classes is not something you need to worry about directly. 
This is because instead of creating the class yourself, the recommended way is 
through either asyncio.ensure_future or loop.create_task. The former actually 
executes loop.create_task internally but it is more convenient if you simply 
want to execute it on the main/default event loop without having to specify it first. 
The usage is simple enough. To create your own future manually, you simply tell 
the event loop to execute create_task for you. The following example is a bit 
complicated because of all the setup code but the usage of C should be clear enough. 
The most important aspect to note is that the event loop should be linked so that the 
task knows how/where to run:

>>> import asyncio

>>> async def sleeper(delay):

...     await asyncio.sleep(delay)

...     print('Finished sleeper with delay: %d' % delay)

# Create an event loop

>>> loop = asyncio.get_event_loop()

# Create the task

>>> result = loop.call_soon(loop.create_task, sleeper(1))

# Make sure the loop stops after 2 seconds

>>> result = loop.call_later(2, loop.stop)

# Start the loop and make it run forever. Or at least until the loop.stop 
gets

# called in 2 seconds.

>>> loop.run_forever()

Finished sleeper with delay: 1
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Now, a little bit about debugging asynchronous functions. Debugging asynchronous 
functions used to be very difficult if not impossible, as there was no good way to see 
where and how the functions were stalling. Luckily, that has changed. In the case of 
the Task class, it is as simple as calling task.get_stack or task.print_stack to see 
where it is currently. The usage can be as simple as the following:

>>> import asyncio

>>> async def stack_printer():

...     for task in asyncio.Task.all_tasks():

...         task.print_stack()

# Create an event loop

>>> loop = asyncio.get_event_loop()

# Create the task

>>> result = loop.run_until_complete(stack_printer())

Event loops
The concept of event loops is actually the most important one within asyncio. You 
might have suspected that the coroutines themselves are what everything is about, 
but without the event loop, they are useless. Event loops function as task switchers, 
just the way operating systems switch between active tasks on the CPU. Even with 
multicore processors, there is still a need for a main process to tell the CPU which 
tasks have to run and which need to wait/sleep for a while. This is exactly what the 
event loop does: it decides which task to run.

Event loop implementations
So far, we have only seen asyncio.get_event_loop, which returns the default event 
loop with the default event loop policy. Currently, there are two bundled event loop 
implementations: the async.SelectorEventLoop and async.ProactorEventLoop 
implementations. Which of the two is available depends on your operating 
system. The latter event loop is available only on Windows machines and uses I/O 
Completion Ports, which is a system that is supposedly faster and more efficient than 
the Select implementation of asyncio.SelectorEventLoop. This is something to 
consider if performance is an issue. The usage is simple enough, luckily:

import asyncio

loop = asyncio.ProActorEventLoop()
asyncio.set_event_loop(loop)
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The alternative event loop is based on selectors, which, since Python 3.4, are available 
through the selectors module in the core Python installation. The selectors module 
was introduced in Python 3.4 to enable easy access to low-level asynchronous I/O 
operations. Basically, it allows you to open and read from many files by using I/O 
multiplexing. Since asyncio handles all complexities for you, there is generally no 
need to use the module directly, but the usage is simple enough if you need it. Here's 
an example of binding a function to the read event (EVENT_READ) on the standard 
input. The code will simply wait until one of the registered files provides new data:

import sys
import selectors

def read(fh):
    print('Got input from stdin: %r' % fh.readline())

if __name__ == '__main__':
    # Create the default selector
    selector = selectors.DefaultSelector()

    # Register the read function for the READ event on stdin
    selector.register(sys.stdin, selectors.EVENT_READ, read)

    while True:
        for key, mask in selector.select():
            # The data attribute contains the read function here
            callback = key.data
            # Call it with the fileobj (stdin here)
            callback(key.fileobj)

There are several selectors available, such as the traditional selectors.
SelectSelector (which uses select.select internally), but there are also more 
modern solutions such as selectors.KqueueSelector, selectors.EpollSelector, 
and selectors.DevpollSelector. Even though it should select the most efficient 
selector by default, there are cases where the most efficient one is not suitable in 
some way or another. In those cases, the selector event loop allows you to specify a 
different selector:

import asyncio
import selectors

selector = selectors.SelectSelector()
loop = asyncio.SelectorEventLoop(selector)
asyncio.set_event_loop(loop)
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It should be noted that the differences between these selectors are generally too 
small to notice in most real-world applications. The only situation I have come across 
where such an optimization makes a difference is when building a server that has to 
handle a lot of simultaneous connections. With "a lot," I am referring to over 100,000 
concurrent connections on a single server, which is a problem only a few people on 
this planet have had to deal with.

Event loop policies
Event loop policies are objects that create and store the actual event loops for you. 
They have been written with maximum flexibility in mind but are not objects that 
you often need to modify. The only reason I can think of modifying the event loop 
policy is if you want to make specific event loops run on specific processors and/
or systems, or if you wish to change the default event loop type. Beyond that, it 
offers more flexibility than most people will ever need. Making your own event loop 
(ProActorEventLoop in this case) the default is simply possible through this code:

import asyncio

class ProActorEventLoopPolicy(
        asyncio.events.BaseDefaultEventLoopPolicy):
    _loop_factory = asyncio.SelectorEventLoop

policy = ProActorEventLoopPolicy()
asyncio.set_event_loop_policy(policy)

Event loop usage
So far, we have only seen the loop.run_until_complete method. Naturally, there 
are a few others as well. The one you will most likely use most often is loop.run_
forever. This method, as you might expect, keeps running forever, or at least until 
loop.stop has been run.

So, assuming we have an event loop running forever now, we need to add tasks to 
it. This is where things get interesting. There are quite a few choices available within 
the default event loops:

•	 call_soon: Add an item to the end of the (FIFO) queue so that the functions 
will be executed in the order in which they were inserted.

•	 call_soon_threadsafe: This is the same as call_soon except for being 
thread safe. The call_soon method is not thread safe because thread safety 
requires the usage of the global interpreter lock (GIL), which effectively 
makes your program single threaded at the moment of thread safety. The 
performance chapter will explain this more thoroughly.
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•	 call_later: Call the function after the given number of seconds. If two jobs 
would run at the same time, they will run in an undefined order. Note that 
the delay is a minimum. If the event loop is locked/busy, it can run later.

•	 call_at: Call a function at a specific time related to the output of loop.time. 
Every integer after loop.time adds a second.

All of these functions return asyncio.Handle objects. These objects allow the 
cancellation of the task through the handle.cancel function as long as it has 
not been executed yet. Be careful with canceling from other threads, however, 
as cancellation is not thread safe either. To execute it in a thread-safe way, we 
have to execute the cancellation function as a task as well: loop.call_soon_
threadsafe(handle.cancel). The following is an example usage:

>>> import time

>>> import asyncio

>>> t = time.time()

>>> def printer(name):

...     print('Started %s at %.1f' % (name, time.time() - t))

...     time.sleep(0.2)

...     print('Finished %s at %.1f' % (name, time.time() - t))

>>> loop = asyncio.get_event_loop()

>>> result = loop.call_at(loop.time() + .2, printer, 'call_at')

>>> result = loop.call_later(.1, printer, 'call_later')

>>> result = loop.call_soon(printer, 'call_soon')

>>> result = loop.call_soon_threadsafe(printer, 'call_soon_threadsafe')

>>> # Make sure we stop after a second

>>> result = loop.call_later(1, loop.stop)

>>> loop.run_forever()

Started call_soon at 0.0

Finished call_soon at 0.2

Started call_soon_threadsafe at 0.2
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Finished call_soon_threadsafe at 0.4

Started call_later at 0.4

Finished call_later at 0.6

Started call_at at 0.6

Finished call_at at 0.8

You might be wondering why we are not using the coroutine decorator here. The 
reason is that the loop won't allow running of coroutines directly. To run a coroutine 
through these call functions, we need to make sure that it is wrapped in an asyncio.
Task. As we have seen in the previous paragraph, this is easy enough—luckily:

>>> import time

>>> import asyncio

>>> t = time.time()

>>> async def printer(name):

...     print('Started %s at %.1f' % (name, time.time() - t))

...     await asyncio.sleep(0.2)

...     print('Finished %s at %.1f' % (name, time.time() - t))

>>> loop = asyncio.get_event_loop()

>>> result = loop.call_at(

...     loop.time() + .2, loop.create_task, printer('call_at'))

>>> result = loop.call_later(.1, loop.create_task,

...     printer('call_later'))

>>> result = loop.call_soon(loop.create_task,

...     printer('call_soon'))

>>> result = loop.call_soon_threadsafe(

...     loop.create_task, printer('call_soon_threadsafe'))

>>> # Make sure we stop after a second

>>> result = loop.call_later(1, loop.stop)
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>>> loop.run_forever()

Started call_soon at 0.0

Started call_soon_threadsafe at 0.0

Started call_later at 0.1

Started call_at at 0.2

Finished call_soon at 0.2

Finished call_soon_threadsafe at 0.2

Finished call_later at 0.3

Finished call_at at 0.4

These call methods might appear slightly different but the internals actually boil 
down to two queues that are implemented through heapq. The loop._scheduled is 
used for scheduled operations and loop._ready is for immediate execution. When 
the _run_once method is called (the run_forever method wraps this method in a 
while True loop), the loop will first try to process all items in the loop._ready heap 
with the specific loop implementation (for example, SelectorEventLoop). Once 
everything in loop._ready is processed, the loop will continue to move items from 
the loop._scheduled heap to the loop._ready heap if they are due.

Both call_soon and call_soon_threadsafe write to the loop._ready heap.  
And the call_later method is simply a wrapper for call_at with the current  
value of asyncio.time added to the scheduled time, which writes to the  
loop._scheduled heap.

The result of this method of processing is that everything added through the call_
soon* methods will always execute after everything that is added through the call_
at/call_later methods.

As for the ensure_futures function, it will call loop.create_task internally to 
wrap the coroutine in a Task object, which is, of course, a subclass of a Future object. 
If you need to extend the Task class for some reason, that is easily possible through 
the loop.set_task_factory method.

Depending on the type of event loop, there are actually many other methods for 
creating connections, file handlers, and more. Those will be explained by example in 
later paragraphs, since they have less to do with the event loop and are more about 
programming with coroutines.
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Processes
So far, we have simply executed specifically asynchronous Python functions, but 
some things are a tad more difficult to run asynchronously within Python. For 
example, let's assume we have a long-running external application that we wish 
to run. The subprocess module would be the standard approach for running 
external applications, and it works quite well. With a bit of care, one could even 
make sure that these do not block the main thread by polling the output. That 
still requires polling, however. Yet, won't events be better so that we can do other 
things while we are waiting for the results? Luckily, this is easily arranged through 
asyncio.Process. Similar to the Future and Task classes, this class is meant to be 
created through the event loop. In terms of usage, the class is very similar to the 
subprocess.Popen class, except that the functions have been made asynchronous. 
This results in the removal of the polling function, of course.

First, let's look at the traditional sequential version:

>>> import time

>>> import subprocess

>>>

>>>

>>> t = time.time()

>>>

>>>

>>> def process_sleeper():

...     print('Started sleep at %.1f' % (time.time() - t))

...     process = subprocess.Popen(['sleep', '0.1'])

...     process.wait()

...     print('Finished sleep at %.1f' % (time.time() - t))

...

>>>

>>> for i in range(3):

...     process_sleeper()

Started sleep at 0.0

Finished sleep at 0.1

Started sleep at 0.1

Finished sleep at 0.2

Started sleep at 0.2

Finished sleep at 0.3
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Since everything is executed sequentially, it takes three times the 0.1 seconds that the 
sleep command is sleeping. So, instead of waiting for all of them at the same time, 
let's run them in parallel this time:

>>> import time

>>> import subprocess

>>> t = time.time()

>>> def process_sleeper():

...     print('Started sleep at %.1f' % (time.time() - t))

...     return subprocess.Popen(['sleep', '0.1'])

...

>>>

>>> processes = []

>>> for i in range(5):

...     processes.append(process_sleeper())

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

>>> for process in processes:

...     returncode = process.wait()

...     print('Finished sleep at %.1f' % (time.time() - t))

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1
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While this looks a lot better in terms of runtime, our program structure is a bit messy 
now. We needed two loops, one to start the processes and one to measure the finish 
time. Moreover, we had to move the print statement outside of the function, which is 
generally not desirable either. This time, we will try the asyncio version:

>>> import time

>>> import asyncio

>>> t = time.time()

>>> async def async_process_sleeper():

...     print('Started sleep at %.1f' % (time.time() - t))

...     process = await asyncio.create_subprocess_exec('sleep', '0.1')

...     await process.wait()

...     print('Finished sleep at %.1f' % (time.time() - t))

>>> loop = asyncio.get_event_loop()

>>> for i in range(5):

...     task = loop.create_task(async_process_sleeper())

>>> future = loop.call_later(.5, loop.stop)

>>> loop.run_forever()

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

Started sleep at 0.0

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1

Finished sleep at 0.1
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As you can see, it is easy to run multiple applications at the same time this way. 
But that is the easy part; the difficult part with processes is interactive input and 
output. The asyncio module has several measures to make it easier, but it can still 
be difficult when actually working with the results. Here's an example of calling the 
Python interpreter, executing some code, and exiting again:

import asyncio

async def run_script():
    process = await asyncio.create_subprocess_shell(
        'python3',
        stdout=asyncio.subprocess.PIPE,
        stdin=asyncio.subprocess.PIPE,
    )

    # Write a simple Python script to the interpreter
    process.stdin.write(b'\n'.join((
        b'import math',
        b'x = 2 ** 8',
        b'y = math.sqrt(x)',
        b'z = math.sqrt(y)',
        b'print("x: %d" % x)',
        b'print("y: %d" % y)',
        b'print("z: %d" % z)',
        b'for i in range(int(z)):',
        b'    print("i: %d" % i)',
    )))
    # Make sure the stdin is flushed asynchronously
    await process.stdin.drain()
    # And send the end of file so the Python interpreter will
    # start processing the input. Without this the process will
    # stall forever.
    process.stdin.write_eof()

    # Fetch the lines from the stdout asynchronously
    async for out in process.stdout:
        # Decode the output from bytes and strip the whitespace
        # (newline) at the right
        print(out.decode('utf-8').rstrip())

    # Wait for the process to exit
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    await process.wait()

if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    loop.run_until_complete(run_script())
    loop.close()

The code is simple enough, but there are a few parts of this code that are not obvious 
to us and yet required to function. While the creation of the subprocess and the writing 
code is quite obvious, you might be wondering about the process.stdin.write_
eof() line. The problem here is buffering. To improve performance, most programs 
will buffer input and output by default. In the case of the Python program, the result is 
that unless we send the end of file (eof), the program will keep waiting for more input. 
An alternative solution would be to close the stdin stream or somehow communicate 
with the Python program that we will not send any more input. However, it is 
certainly something to take into consideration. Another option is to use yield from 
process.stdin.drain(), but that only takes care of the sending side of the code; the 
receiving side might still be waiting for more input. Let's see the output though:

# python3 processes.py

x: 256

y: 16

z: 4

i: 0

i: 1

i: 2

i: 3

With this implementation, we still need a loop to get all the results from the stdout 
stream. Unfortunately, the asyncio.StreamReader (which process.stdout is) 
class does not support the async for syntax yet. If it did, a simple async for 
out in process.stdout would have worked. A simple yield from process.
stdout.read() would have worked as well, but reading per line is generally more 
convenient to use.

If possible, I recommend that you abstain from using stdin to send data to 
subprocesses and instead use some network, pipe, or file communication. As we will 
see in the next paragraphs, these are much more convenient to handle.
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Asynchronous servers and clients
One of the most common reason for stalling scripts and applications is the usage of 
remote resources. With asyncio, at least a large portion of that is easily fixable. Fetching 
multiple remote resources and serving to multiple clients is quite a bit easier and more 
lightweight than it used to be. While both multithreading and multiprocessing can 
be used for these cases as well, asyncio is a much lighter alternative and it is actually 
easier to manage. There are two main methods of creating clients and servers. The 
coroutine way is to use asyncio.open_connection and asyncio.start_server. The 
class-based approach requires you to inherit the asyncio.Protocol class. While these 
are essentially the same thing, the workings are slightly different.

Basic echo server
The basic client and server versions are simple enough to write. The asyncio 
module takes care of all the low-level connection handling, leaving us with only the 
requirement of connecting the correct methods. For the server, we need a method 
to handle the incoming connections, and for the client, we need a function to create 
connections. And to illustrate what is happening and at which point in time, we will 
add a dedicated print function that prints both the time since the server process was 
started and the given arguments:

import time
import sys
import asyncio

HOST = '127.0.0.1'
PORT = 1234

start_time = time.time()

def printer(start_time, *args, **kwargs):
    '''Simple function to print a message prefixed with the
    time relative to the given start_time'''
    print('%.1f' % (time.time() - start_time), *args, **kwargs)

async def handle_connection(reader, writer):
    client_address = writer.get_extra_info('peername')
    printer(start_time, 'Client connected', client_address)

    # Send over the server start time to get consistent
    # timestamps
    writer.write(b'%.2f\n' % start_time)
    await writer.drain()
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    repetitions = int((await reader.readline()))
    printer(start_time, 'Started sending to', client_address)

    for i in range(repetitions):
        message = 'client: %r, %d\n' % (client_address, i)
        printer(start_time, message, end='')
        writer.write(message.encode())
        await writer.drain()

    printer(start_time, 'Finished sending to', client_address)
    writer.close()

async def create_connection(repetitions):
    reader, writer = await asyncio.open_connection(
        host=HOST, port=PORT)

    start_time = float((await reader.readline()))

    writer.write(repetitions.encode() + b'\n')
    await writer.drain()

    async for line in reader:
        # Sleeping a little to emulate processing time and make
        # it easier to add more simultaneous clients
        await asyncio.sleep(1)

        printer(start_time, 'Got line: ', line.decode(),
                end='')

    writer.close()

if __name__ == '__main__':
    loop = asyncio.get_event_loop()

    if sys.argv[1] == 'server':
        server = asyncio.start_server(
            handle_connection,
            host=HOST,
            port=PORT,
        )
        running_server = loop.run_until_complete(server)

        try:
            result = loop.call_later(5, loop.stop)
            loop.run_forever()
        except KeyboardInterrupt:
            pass
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        running_server.close()
        loop.run_until_complete(running_server.wait_closed())
    elif sys.argv[1] == 'client':
        loop.run_until_complete(create_connection(sys.argv[2]))

    loop.close()

Now we will run the server and two simultaneous clients. Since these run in parallel, 
the server output is a bit strange, of course. Because of that, we synchronize the start 
time from the server to the clients and prefix all print statements with the number of 
seconds since the server was started.

The server:

# python3 simple_connections.py server

0.4 Client connected ('127.0.0.1', 59990)

0.4 Started sending to ('127.0.0.1', 59990)

0.4 client: ('127.0.0.1', 59990), 0

0.4 client: ('127.0.0.1', 59990), 1

0.4 client: ('127.0.0.1', 59990), 2

0.4 Finished sending to ('127.0.0.1', 59990)

2.0 Client connected ('127.0.0.1', 59991)

2.0 Started sending to ('127.0.0.1', 59991)

2.0 client: ('127.0.0.1', 59991), 0

2.0 client: ('127.0.0.1', 59991), 1

2.0 Finished sending to ('127.0.0.1', 59991)

The first client:

# python3 simple_connections.py client 3

1.4 Got line:  client: ('127.0.0.1', 59990), 0

2.4 Got line:  client: ('127.0.0.1', 59990), 1

3.4 Got line:  client: ('127.0.0.1', 59990), 2

The second client:

# python3 simple_connections.py client 2

3.0 Got line:  client: ('127.0.0.1', 59991), 0

4.0 Got line:  client: ('127.0.0.1', 59991), 1

Since both the input and output have buffers, we need to manually drain the input 
after writing and use yield from when reading the output from the other party. 
That is exactly the reason that communication with regular external processes is more 
difficult than network interaction. The standard input for processes is more focused 
towards user input than computer input, which makes it less convenient to use.
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If you wish to use reader.read(BUFFER) instead of reader.
readline(), that's also possible. Just note that you need 
to specifically separate the data because it might accidently 
get appended otherwise. All write operations write to the 
same buffer, resulting in one long return stream. On the other 
hand, trying to write without a new line (\n) for reader.
readline() to recognize will cause the client to wait forever.

Summary
In this chapter, we saw how to use asynchronous I/O in Python using asyncio. 
For many scenarios, the asyncio module is still a bit raw and unfinished, but there 
should not be any obstacles in using it. Creating a fully functional server/client 
setup is still a tad complicated, but the most obvious use of asyncio is the handling 
of basic network I/O such as database connections and external resources such as 
websites. Especially, the latter takes only a few lines to implement with the use of 
asyncio, removing some very important bottlenecks from your code.

The point of this chapter is understanding how to tell Python to wait for results in 
the background instead of simply waiting or polling for them as usual. In Chapter 
13, Multiprocessing – When a Single CPU Core Is Not Enough you will learn about 
multiprocessing, which is also an option for handling stalling resources. However, 
the goal of multiprocessing is actually to use multiple processors instead of  
handling stalling resources. When it comes to potentially slow external resources,  
I recommend that you always use asyncio, if at all possible.

When building utilities based on the asyncio library, make sure you search for 
premade libraries to solve your problems, as many of them are currently being 
developed. While writing this chapter, Python 3.5 was not officially out yet, so the 
odds are that a lot more documentation and libraries using the async/await syntax 
will pop up soon. To make sure you do not repeat work that others have done, 
search the Internet thoroughly before writing your own code extending on asyncio.

The next chapter will explain a completely different topic—the construction of classes 
using metaclasses. Regular classes are created using the type class, but now we will see 
how we can extend and modify the default behavior to make a class do pretty much 
anything we want. Metaclasses even make it possible to have automatically registering 
plugins and add features to classes in a very magical way—in short, how to customize 
not just the class instances but the class definitions themselves.
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Metaclasses – Making 
Classes (Not Instances) 

Smarter
The previous chapters have already shown us how to modify classes and functions 
using decorators. But that's not the only option to modify or extend a class. An even 
more advanced technique of modifying your classes before creation is the usage of 
metaclasses. The name already gives a hint to what it could be; a metaclass is a class 
containing meta information about a class.

The basic premise of a metaclass is a class that generates another class for you at 
definition time, so generally you wouldn't use it to change the class instances but only 
the class definitions. By changing the class definitions, it is possible to automatically 
add some properties to a class, validate whether certain properties are set, change 
inheritance, automatically register the class at a manager, and do many other things.

Although metaclasses are generally considered to be a more powerful technique than 
(class) decorators, effectively they don't differ too much in possibilities. The choice 
usually comes down to either convenience or personal preference.

The following topics are covered in this chapter:

•	 Basic dynamic class creation
•	 Metaclasses with arguments
•	 Internals of class creation, the order of operations
•	 Abstract base classes, examples and inner workings
•	 Automatic plugin system using metaclasses
•	 Storing definition order of class attributes
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Dynamically creating classes
Metaclasses are the factories that create new classes in Python. In fact, even though 
you may not be aware of it, Python will always execute the type metaclass whenever 
you create a class.

When creating classes in a procedural way, the type metaclass is used as a function. 
This function takes three arguments: name, bases, and dict. The name will become 
the __name__ attribute, the bases is the list of inherited base classes and will be 
stored in __bases__ and dict is the namespace dictionary that contains all variables 
and will be stored in __dict__.

It should be noted that the type() function has another use as well. Given the 
arguments documented earlier, it creates a class given those specifications. Given a 
single argument with the instance of a class, it will return the class as well but from 
the instance. Your next question might be, "What happens if I call type() on a class 
definition instead of a class instance?" Well, that returns the metaclass for the class 
which is type by default.

Let's clarify this using a few examples:

>>> class Spam(object):

>>>     eggs = 'my eggs'

>>> Spam = type('Spam', (object,), dict(eggs='my eggs'))

The preceding two definitions of Spam are completely identical; they both create a 
class with an instantiated property of eggs and object as a base. Let's test if this 
actually works as you would expect:

>>> class Spam(object):

...     eggs = 'my eggs'

>>> spam = Spam()

>>> spam.eggs

'my eggs'

>>> type(spam)

<class '…Spam'>

>>> type(Spam)

<class 'type'>
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>>> Spam = type('Spam', (object,), dict(eggs='my eggs'))

>>> spam = Spam()

>>> spam.eggs

'my eggs'

>>> type(spam)

<class '...Spam'>

>>> type(Spam)

<class 'type'>

As expected, the results for the two are the same. When creating a class, Python 
silently adds the type metaclass and custom metaclasses are simply classes that 
inherit type. A simple class definition has a silent metaclass making a simple 
definition such as:

class Spam(object):

    pass

Essentially identical to:

class Spam(object, metaclass=type):

    pass

This raises the question that if every class is created by a (silent) metaclass, what is 
the metaclass of type? This is actually a recursive definition; the metaclass of type 
is type. This is the essence of what a custom metaclass is: a class that inherits type to 
allow class modification without needing to modify the class definition itself.

A basic metaclass
Since metaclasses can modify any class attribute, you can do absolutely anything  
you wish. Before we continue with more advanced metaclasses, let's look at a  
basic example:

# The metaclass definition, note the inheritance of type instead

# of object

>>> class MetaSpam(type):

...

...     # Notice how the __new__ method has the same arguments

...     # as the type function we used earlier?

...     def __new__(metaclass, name, bases, namespace):

...         name = 'SpamCreatedByMeta'
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...         bases = (int,) + bases

...         namespace['eggs'] = 1

...         return type.__new__(metaclass, name, bases, namespace)

# First, the regular Spam:

>>> class Spam(object):

...     pass

>>> Spam.__name__

'Spam'

>>> issubclass(Spam, int)

False

>>> Spam.eggs

Traceback (most recent call last):

    ...

AttributeError: type object 'Spam' has no attribute 'eggs'

# Now the meta-Spam

>>> class Spam(object, metaclass=MetaSpam):

...     pass

>>> Spam.__name__

'SpamCreatedByMeta'

>>> issubclass(Spam, int)

True

>>> Spam.eggs

1

As you can see, everything about the class definition can easily be modified using 
metaclasses. This makes it both a very powerful and a very dangerous tool, as you 
can easily cause very unexpected behavior.
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Arguments to metaclasses
The possibility of adding arguments to a metaclass is a little-known feature, but very 
useful nonetheless. In many cases, simply adding attributes or methods to a class 
definition is enough to detect what to do, but there are cases where it is useful to be 
more specific.

>>> class MetaWithArguments(type):

...     def __init__(metaclass, name, bases, namespace, **kwargs):

...         # The kwargs should not be passed on to the

...         # type.__init__

...         type.__init__(metaclass, name, bases, namespace)

...

...     def __new__(metaclass, name, bases, namespace, **kwargs):

...         for k, v in kwargs.items():

...             namespace.setdefault(k, v)

...

...         return type.__new__(metaclass, name, bases, namespace)

>>> class WithArgument(metaclass=MetaWithArguments, spam='eggs'):

...     pass

>>> with_argument = WithArgument()

>>> with_argument.spam

'eggs'

This simplistic example may not be useful but the possibilities are. The only thing 
you need to keep in mind is that both the __new__ and __init__ methods need to be 
extended for this to work.

Accessing metaclass attributes through 
classes
When using metaclasses, it might be confusing to note that the class actually does 
more than simply construct the class, it actually inherits the class during the creation. 
To illustrate:

>>> class Meta(type):

...

...     @property
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...     def spam(cls):

...         return 'Spam property of %r' % cls

...

...     def eggs(self):

...         return 'Eggs method of %r' % self

>>> class SomeClass(metaclass=Meta):

...     pass

>>> SomeClass.spam

"Spam property of <class '...SomeClass'>"

>>> SomeClass().spam

Traceback (most recent call last):

    ...

AttributeError: 'SomeClass' object has no attribute 'spam'

>>> SomeClass.eggs()

"Eggs method of <class '...SomeClass'>"

>>> SomeClass().eggs()

Traceback (most recent call last):

    ...

AttributeError: 'SomeClass' object has no attribute 'eggs'

As can be seen in the preceding example, these methods are only available for the 
class objects and not the instances. The spam attribute and the eggs method are 
not accessible through the instance while they are accessible through the class. I 
personally don't see any useful cases for this behavior but it is definitely noteworthy.

Abstract classes using collections.abc
The abstract base classes module is one of the most useful and most used examples 
of metaclasses in Python, as it makes it easy to ensure that a class adheres to a certain 
interface without a lot of manual checks. We have already seen some examples of 
abstract base classes in the previous chapters, but now we will look at the inner 
workings of these and the more advanced features, such as custom ABCs.
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Internal workings of the abstract classes
First, let's demonstrate the usage of the regular abstract base class:

>>> import abc

>>> class Spam(metaclass=abc.ABCMeta):

...

...     @abc.abstractmethod

...     def some_method(self):

...         raise NotImplemented()

>>> class Eggs(Spam):

...     def some_new_method(self):

...         pass

>>> eggs = Eggs()

Traceback (most recent call last):

    ...

TypeError: Can't instantiate abstract class Eggs with abstract

methods some_method

>>> class Bacon(Spam):

...     def some_method():

...         pass

>>> bacon = Bacon()

As you can see, the abstract base class blocks us from instantiating the classes until 
all the abstract methods have been inherited. In addition to the regular methods, 
property, staticmethod, and classmethod are also supported.

>>> import abc

>>> class Spam(object, metaclass=abc.ABCMeta):

...     @property
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...     @abc.abstractmethod

...     def some_property(self):

...         raise NotImplemented()

...

...     @classmethod

...     @abc.abstractmethod

...     def some_classmethod(cls):

...         raise NotImplemented()

...

...     @staticmethod

...     @abc.abstractmethod

...     def some_staticmethod():

...         raise NotImplemented()

...

...     @abc.abstractmethod

...     def some_method():

...         raise NotImplemented()

So what does Python do internally? You could, of course, read the abc.py source 
code but I think a simple explanation would be better.

First, abc.abstractmethod sets the __isabstractmethod__ property on the 
function to True. So if you don't want to use the decorator, you can simply emulate 
the behavior by doing something along the lines of:

some_method.__isabstractmethod__ = True

After that, the abc.ABCMeta metaclass walks through all the items in a namespace and 
looks for objects where the __isabstractmethod__ attribute evaluates to True. In 
addition to that, it walks through all bases and checks the __abstractmethods__ set 
for every base class, in case the class inherits an abstract class. All the items where __
isabstractmethod__ still evaluates to True get added to the __abstractmethods__ 
set which is stored in the class as frozenset.

Note that we don't use abc.abstractproperty, 
abc.abstractclassmethod, and abc.
abstractstaticmethod. Since Python 3.3 these have 
been deprecated as the classmethod, staticmethod, 
and property decorators are recognized by abc.
abstractmethod so a simple property decorator followed 
by a abc.abstractmethod is recognized as well. Take care 
when ordering the decorators; abc.abstractmethod needs 
to be the innermost decorator for this to work properly.
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The next question now is about where the actual checks come in; the checks to see 
if the classes are completely implemented. This actually functions through a few 
Python internals:

>>> class AbstractMeta(type):

...     def __new__(metaclass, name, bases, namespace):

...         cls = super().__new__(metaclass, name, bases, namespace)

...         cls.__abstractmethods__ = frozenset(('something',))

...         return cls

>>> class Spam(metaclass=AbstractMeta):

...     pass

>>> eggs = Spam()

Traceback (most recent call last):

    ...

TypeError: Can't instantiate abstract class Spam with ...

We can easily emulate the same behavior with a metaclass ourselves, but it should 
be noted that abc.ABCMeta actually does more, which we will demonstrate in the 
next section. To mimic the behavior of the built-in abstract base class support, take a 
look at the following example:

>>> import functools

>>> class AbstractMeta(type):

...     def __new__(metaclass, name, bases, namespace):

...         # Create the class instance

...         cls = super().__new__(metaclass, name, bases, namespace)

...

...         # Collect all local methods marked as abstract

...         abstracts = set()

...         for k, v in namespace.items():

...             if getattr(v, '__abstract__', False):

...                 abstracts.add(k)

...

...         # Look for abstract methods in the base classes and add
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...         # them to the list of abstracts

...         for base in bases:

...             for k in getattr(base, '__abstracts__', ()):

...                 v = getattr(cls, k, None)

...                 if getattr(v, '__abstract__', False):

...                     abstracts.add(k)

...

...         # store the abstracts in a frozenset so they cannot be

...         # modified

...         cls.__abstracts__ = frozenset(abstracts)

...

...         # Decorate the __new__ function to check if all abstract

...         # functions were implemented

...         original_new = cls.__new__

...         @functools.wraps(original_new)

...         def new(self, *args, **kwargs):

...             for k in self.__abstracts__:

...                 v = getattr(self, k)

...                 if getattr(v, '__abstract__', False):

...                     raise RuntimeError(

...                         '%r is not implemented' % k)

...

...             return original_new(self, *args, **kwargs)

...

...         cls.__new__ = new

...         return cls

>>> def abstractmethod(function):

...     function.__abstract__ = True

...     return function

>>> class Spam(metaclass=AbstractMeta):

...     @abstractmethod

...     def some_method(self):
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...         pass

# Instantiating the function, we can see that it functions as the

# regular ABCMeta does

>>> eggs = Spam()

Traceback (most recent call last):

    ...

RuntimeError: 'some_method' is not implemented

The actual implementation is a bit more complicated as it still needs to take care 
of the old style classes and the property, classmethod, and staticmethod types 
of methods. Additionally, it features caching, but this code covers the most useful 
part of the implementation. One of the most important tricks to note here is that the 
actual check is executed by decorating the __new__ function of the actual class. This 
method is only executed once within a class so we can avoid the overhead of these 
checks for multiple instantiations.

The actual implementation of the abstract methods can be 
found by looking for __isabstractmethod__ in the Python 
source code in the following files: Objects/descrobject.c, 
Objects/funcobject.c, and Objects/object.c. The 
Python part of the implementation can be found in Lib/abc.py.

Custom type checks
Defining your own interfaces using abstract base classes is great, of course. But it can 
also be very convenient to tell Python what your class actually resembles and what 
kind of types are similar. For that, abc.ABCMeta offers a register function which 
allows you to specify which types are similar. For example, a custom list that sees the 
list type as similar:

>>> import abc

>>> class CustomList(abc.ABC):

...     'This class implements a list-like interface'

...     pass

>>> CustomList.register(list)

<class 'list'>
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>>> issubclass(list, CustomList)

True

>>> isinstance([], CustomList)

True

>>> issubclass(CustomList, list)

False

>>> isinstance(CustomList(), list)

False

As demonstrated with the last four lines, this is a one-way relationship. The other 
way around would generally be easy enough to realize through inheriting list, but 
that won't work in this case. abc.ABCMeta refuses to create inheritance cycles.

>>> import abc

>>> class CustomList(abc.ABC, list):

...     'This class implements a list-like interface'

...     pass

>>> CustomList.register(list)

Traceback (most recent call last):

    ...

RuntimeError: Refusing to create an inheritance cycle

To be able to handle cases like these, there is another useful feature in abc.ABCMeta. 
When subclassing abc.ABCMeta, the __subclasshook__ method can be extended to 
customize the behavior of issubclass and with that, isinstance.

>>> import abc

>>> class UniversalClass(abc.ABC):

...    @classmethod

...    def __subclasshook__(cls, subclass):

...        return True

>>> issubclass(list, UniversalClass)

True

>>> issubclass(bool, UniversalClass)
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True

>>> isinstance(True, UniversalClass)

True

>>> issubclass(UniversalClass, bool)

False

The __subclasshook__ should return True, False, or NotImplemented, which 
would result in issubclass returning True, False, or the usual behavior when 
NotImplemented is raised.

Using abc.ABC before Python 3.4
The abc.ABC class we have used in this paragraph is only available in Python 
versions 3.4 and higher, but it's trivial to implement it in older versions. It's little 
more than syntactic sugar for metaclass=abc.ABCMeta. To implement it yourself, 
you can simply use the following snippet:

import abc

class ABC(metaclass=abc.ABCMeta):
    pass

Automatically registering a plugin system
One of the most common uses of metaclasses is to have classes automatically register 
themselves as plugins/handlers. Examples of these can be seen in many projects, 
such as web frameworks. Those codebases are too extensive to usefully explain here 
though. Hence, we'll show a simpler example showing the power of metaclasses as a 
self-registering plugin system:

>>> import abc

>>> class Plugins(abc.ABCMeta):

...     plugins = dict()

...

...     def __new__(metaclass, name, bases, namespace):

...         cls = abc.ABCMeta.__new__(metaclass, name, bases,

...                                   namespace)

...         if isinstance(cls.name, str):

...             metaclass.plugins[cls.name] = cls
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...         return cls

...

...     @classmethod

...     def get(cls, name):

...         return cls.plugins[name]

>>> class PluginBase(metaclass=Plugins):

...     @property

...     @abc.abstractmethod

...     def name(self):

...         raise NotImplemented()

>>> class SpamPlugin(PluginBase):

...     name = 'spam'

>>> class EggsPlugin(PluginBase):

...     name = 'eggs'

>>> Plugins.get('spam')

<class '...SpamPlugin'>

>>> Plugins.plugins

{'spam': <class '...SpamPlugin'>,

 'eggs': <class '...EggsPlugin'>}

This example is a tad simplistic of course, but it's the basis for many plugin systems. 
Which is a very important thing to note while implementing systems like these; 
however, while metaclasses run at definition time, the module still needs to be 
imported to work. There are several options to do this; loading on-demand through 
the get method has my vote as that also doesn't add load time if the plugin is not used.

The following examples will use the following file structure to get reproducible 
results. All files will be contained in a plugins directory.



Chapter 8

[ 203 ]

The __init__.py file is used to create shortcuts, so a simple import plugins will 
result in having plugins.Plugins available, instead of requiring importing 
plugins.base explicitly.

# plugins/__init__.py
from .base import Plugin
from .base import Plugins

__all__ = ['Plugin', 'Plugins']

The base.py file containing the Plugins collection and the Plugin base class:

# plugins/base.py
import abc

class Plugins(abc.ABCMeta):
    plugins = dict()

    def __new__(metaclass, name, bases, namespace):
        cls = abc.ABCMeta.__new__(
            metaclass, name, bases, namespace)
        if isinstance(cls.name, str):
            metaclass.plugins[cls.name] = cls
        return cls

    @classmethod
    def get(cls, name):
        return cls.plugins[name]

class Plugin(metaclass=Plugins):
    @property
    @abc.abstractmethod
    def name(self):
        raise NotImplemented()

And two simple plugins, spam.py:

from . import base

class Spam(base.Plugin):
    name = 'spam'
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And eggs.py:

from . import base

class Eggs(base.Plugin):
    name = 'eggs'

Importing plugins on-demand
The first of the solutions for the import problem is simply taking care of it in the get 
method of the Plugins metaclass. Whenever the plugin is not found in the registry, 
it should automatically load the module from the plugins directory.

The advantages of this approach are that not only the plugins don't explicitly 
need to be preloaded but also that the plugins are only loaded when the need is 
there. Unused plugins are not touched, so this method can help in reducing your 
applications' load times.

The downside is that the code will not be run or tested, so it might be completely 
broken and you won't know about it until it is finally loaded. Solutions for this 
problem will be covered in the testing chapter, Chapter 10, Testing and Logging – 
Preparing for Bugs. The other problem is that if the code self-registers itself into other 
parts of an application then that code won't be executed either.

Modifying the Plugins.get method, we get the following:

import abc
import importlib

class Plugins(abc.ABCMeta):
    plugins = dict()

    def __new__(metaclass, name, bases, namespace):
        cls = abc.ABCMeta.__new__(
            metaclass, name, bases, namespace)
        if isinstance(cls.name, str):
            metaclass.plugins[cls.name] = cls
        return cls

    @classmethod
    def get(cls, name):
        if name not in cls.plugins:
            print('Loading plugins from plugins.%s' % name)
            importlib.import_module('plugins.%s' % name)
        return cls.plugins[name]
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This results in the following when executing:

>>> import plugins

>>> plugins.Plugins.get('spam')

Loading plugins from plugins.spam

<class 'plugins.spam.Spam'>

>>> plugins.Plugins.get('spam')

<class 'plugins.spam.Spam'>

As you can see, this approach only results in running import once. The second time, 
the plugin will be available in the plugins dictionary so no loading will be necessary.

Importing plugins through configuration
While only loading the needed plugins is generally a better idea, there is something 
to be said to preload the plugins you will likely need. As explicit is better than 
implicit, an explicit list of plugins to load is generally a good solution. The added 
advantages of this method are that firstly you are able to make the registration a 
bit more advanced as you are guaranteed that it is run and secondly you can load 
plugins from multiple packages.

Instead of importing in the get method, we will add a load method this time; a load 
method that imports all the given module names:

import abc
import importlib

class Plugins(abc.ABCMeta):
    plugins = dict()

    def __new__(metaclass, name, bases, namespace):
        cls = abc.ABCMeta.__new__(
            metaclass, name, bases, namespace)
        if isinstance(cls.name, str):
            metaclass.plugins[cls.name] = cls
        return cls

    @classmethod
    def get(cls, name):
        return cls.plugins[name]
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    @classmethod
    def load(cls, *plugin_modules):
        for plugin_module in plugin_modules:
            plugin = importlib.import_module(plugin_module)

Which can be called using the following code:

>>> import plugins

>>> plugins.Plugins.load(

...     'plugins.spam',

...     'plugins.eggs',

... )

>>> plugins.Plugins.get('spam')

<class 'plugins.spam.Spam'>

A fairly simple and straightforward system to load the plugins based on settings, this 
can easily be combined with any type of settings system to fill the load method.

Importing plugins through the file system
Whenever possible, it is best to avoid having systems depend on automatic detection 
of modules on a filesystem as it goes directly against PEP8. Specifically, "explicit is 
better than implicit". While these systems can work fine in specific cases, they often 
make debugging much more difficult. Similar automatic import systems in Django 
have caused me a fair share of headaches as they tend to obfuscate the errors. Having 
said that, automatic plugin loading based on all the files in a plugins directory is still 
a possibility warranting a demonstration.

import os
import re
import abc
import importlib

MODULE_NAME_RE = re.compile('[a-z][a-z0-9_]*', re.IGNORECASE)

class Plugins(abc.ABCMeta):
    plugins = dict()

    def __new__(metaclass, name, bases, namespace):
        cls = abc.ABCMeta.__new__(
            metaclass, name, bases, namespace)
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        if isinstance(cls.name, str):
            metaclass.plugins[cls.name] = cls
        return cls

    @classmethod
    def get(cls, name):
        return cls.plugins[name]

    @classmethod
    def load_directory(cls, module, directory):
        for file_ in os.listdir(directory):
            name, ext = os.path.splitext(file_)
            full_path = os.path.join(directory, file_)
            import_path = [module]
            if os.path.isdir(full_path):
                import_path.append(file_)
            elif ext == '.py' and MODULE_NAME_RE.match(name):
                import_path.append(name)
            else:
                # Ignoring non-matching files/directories
                continue

            plugin = importlib.import_module('.'.join(import_path))

    @classmethod
    def load(cls, **plugin_directories):
        for module, directory in plugin_directories.items():
            cls.load_directory(module, directory)

If possible, I would try to avoid using a fully automatic import system as it's very 
prone to accidental errors and can make debugging more difficult, not to mention 
that the import order cannot easily be controlled this way. To make this system a bit 
smarter (even importing packages outside of your Python path), you can create a 
plugin loader using the abstract base classes in importlib.abc. Note that you will 
most likely still need to list the directories through os.listdir or os.walk though.

Order of operations when instantiating 
classes
The order of operations during class instantiation is very important to keep in mind 
when debugging issues with dynamically created and/or modified classes. The 
instantiation of a class happens in the following order.
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Finding the metaclass
The metaclass comes from either the explicitly given metaclass on the class or bases, 
or by using the default type metaclass.

For every class, the class itself and the bases, the first matching of the following will 
be used:

•	 Explicitly given metaclass
•	 Explicit metaclass from bases
•	 type()

Note that if no metaclass is found that is a subtype of all the 
candidate metaclasses, a TypeError will be raised. This 
scenario is not that likely to occur but certainly a possibility 
when using multiple inheritance/mixins with metaclasses.

Preparing the namespace
The class namespace is prepared through the metaclass selected previously. If  
the metaclass has a __prepare__ method, it will be called namespace = 
metaclass.__prepare__(names, bases, **kwargs), where **kwargs originates 
from the class definition. If no __prepare__ method is available, the result will be 
namespace = dict().

Note that there are multiple ways of achieving custom namespaces, as we saw in the 
previous paragraph, the type() function call also takes a dict argument which can 
be used to alter the namespace as well.

Executing the class body
The body of the class is executed very similarly to normal code execution with one 
key difference, the separate namespace. Since a class has a separate namespace, 
which shouldn't pollute the globals()/locals() namespaces, it is executed within 
that context. The resulting call looks something like this: exec(body, globals(), 
namespace) where namespace is the previously produced namespace.
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Creating the class object (not instance)
Now that we have all the components ready, the actual class object can be produced. 
This is done through the class_ = metaclass(name, bases, namespace, 
**kwargs) call. This is, as you can see, actually identical to the type() call 
previously discussed. **kwargs here are the same as the ones passed to  
the __prepare__ method earlier.

It might be useful to note that this is also the object that will be referenced from the 
super() call without arguments.

Executing the class decorators
Now that the class object is actually done already, the class decorators will be 
executed. Since this is only executed after everything else in the class object has 
already been constructed, it becomes difficult to modify class attributes, such as which 
classes are being inherited, and the name of the class. By modifying the __class__ 
object you can still modify or overwrite these, but it is, at the very least, more difficult.

Creating the class instance
From the class object produced previously, we can now finally create the actual 
instances as you normally would with a class. It should be noted that this step and 
the class decorators steps, unlike the earlier steps, are the only ones that are executed 
every time you instantiate a class. The steps before these two are only executed once 
per class definition.

Example
Enough theory! Let's illustrate the creation and instantiation of the class objects so we 
can check the order of operations:

>>> import functools

>>> def decorator(name):

...     def _decorator(cls):

...         @functools.wraps(cls)

...         def __decorator(*args, **kwargs):

...             print('decorator(%s)' % name)

...             return cls(*args, **kwargs)
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...         return __decorator

...     return _decorator

>>> class SpamMeta(type):

...

...     @decorator('SpamMeta.__init__')

...     def __init__(self, name, bases, namespace, **kwargs):

...         print('SpamMeta.__init__()')

...         return type.__init__(self, name, bases, namespace)

...

...     @staticmethod

...     @decorator('SpamMeta.__new__')

...     def __new__(cls, name, bases, namespace, **kwargs):

...         print('SpamMeta.__new__()')

...         return type.__new__(cls, name, bases, namespace)

...

...     @classmethod

...     @decorator('SpamMeta.__prepare__')

...     def __prepare__(cls, names, bases, **kwargs):

...         print('SpamMeta.__prepare__()')

...         namespace = dict(spam=5)

...         return namespace

>>> @decorator('Spam')

... class Spam(metaclass=SpamMeta):

...

...     @decorator('Spam.__init__')

...     def __init__(self, eggs=10):

...         print('Spam.__init__()')

...         self.eggs = eggs

decorator(SpamMeta.__prepare__)

SpamMeta.__prepare__()

decorator(SpamMeta.__new__)

SpamMeta.__new__()
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decorator(SpamMeta.__init__)

SpamMeta.__init__()

# Testing with the class object

>>> spam = Spam

>>> spam.spam

5

>>> spam.eggs

Traceback (most recent call last):

    ...

AttributeError: ... object has no attribute 'eggs'

# Testing with a class instance

>>> spam = Spam()

decorator(Spam)

decorator(Spam.__init__)

Spam.__init__()

>>> spam.spam

5

>>> spam.eggs

10

The example clearly shows the creation order of the class:

1.	 Preparing the namespace through __prepare__.
2.	 Creating the class body using __new__.
3.	 Initializing the metaclass using __init__ (note that this is not the  

class __init__).
4.	 Initializing the class through the class decorator.
5.	 Initializing the class through the class __init__ function.

One thing we can note from this is that the class decorators are executed each and 
every time the class is actually instantiated and not before that. This can be both an 
advantage and a disadvantage of course, but if you wish to build a register of all 
subclasses, it is definitely more convenient to use a metaclass since the decorator will 
not register until you instantiate the class.



Metaclasses – Making Classes (Not Instances) Smarter

[ 212 ]

In addition to this, having the power to modify the namespace before actually 
creating the class object (not the instance) can be very powerful as well. It can be 
convenient for sharing a certain scope between several class objects for example, or 
for easily ensuring that certain items are always available in the scope.

Storing class attributes in definition 
order
There are cases where the definition order makes a difference. For example, let's 
assume we are creating a class that represents a CSV (Comma Separated Values) 
format. The CSV format expects the fields to have a particular order. In some cases 
this will be indicated by a header but it's still useful to have a consistent field order. 
Similar systems are using in ORM systems such as SQLAlchemy to store the column 
order for table definitions and for the input field order within forms in Django.

The classic solution without metaclasses
An easy way to store the order of the fields is by giving the field instances a special 
__init__ method which increments for every definition, so the fields have an 
incrementing index property. This solution can be considered the classic solution as 
it also works in Python 2.

>>> import itertools

>>> class Field(object):

...     counter = itertools.count()

...

...     def __init__(self, name=None):

...         self.name = name

...         self.index = next(Field.counter)

...

...     def __repr__(self):

...         return '<%s[%d] %s>' % (

...             self.__class__.__name__,

...             self.index,

...             self.name,

...         )

>>> class FieldsMeta(type):
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...     def __new__(metaclass, name, bases, namespace):

...         cls = type.__new__(metaclass, name, bases, namespace)

...         fields = []

...         for k, v in namespace.items():

...             if isinstance(v, Field):

...                 fields.append(v)

...                 v.name = v.name or k

...

...         cls.fields = sorted(fields, key=lambda f: f.index)

...         return cls

>>> class Fields(metaclass=FieldsMeta):

...     spam = Field()

...     eggs = Field()

>>> Fields.fields

[<Field[0] spam>, <Field[1] eggs>]

>>> fields = Fields()

>>> fields.eggs.index

1

>>> fields.spam.index

0

>>> fields.fields

[<Field[0] spam>, <Field[1] eggs>]

For convenience, and to make things prettier, we have added the FieldsMeta class. 
It is not strictly required here, but it automatically takes care of filling in the name if 
needed, and adds the fields list which contains a sorted list of fields.

Using metaclasses to get a sorted namespace
The previous solution is a bit more straightforward and supports Python 2 as 
well, but with Python 3 we have more options. As you have seen in the previous 
paragraphs, since Python 3 we have the __prepare__ method, which returns the 
namespace. From the previous chapters you might also remember collections.
OrderedDict, so let's see what happens when we combine them.

>>> import collections

>>> class Field(object):
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...     def __init__(self, name=None):

...         self.name = name

...

...     def __repr__(self):

...         return '<%s %s>' % (

...             self.__class__.__name__,

...             self.name,

...         )

>>> class FieldsMeta(type):
...     @classmethod
...     def __prepare__(metaclass, name, bases):
...         return collections.OrderedDict()
...
...     def __new__(metaclass, name, bases, namespace):
...         cls = type.__new__(metaclass, name, bases, namespace)
...         cls.fields = []
...         for k, v in namespace.items():
...             if isinstance(v, Field):
...                 cls.fields.append(v)
...                 v.name = v.name or k
...
...         return cls

>>> class Fields(metaclass=FieldsMeta):
...     spam = Field()
...     eggs = Field()

>>> Fields.fields
[<Field spam>, <Field eggs>]
>>> fields = Fields()
>>> fields.fields
[<Field spam>, <Field eggs>]

As you can see, the fields are indeed in the order we defined them. Spam first and 
eggs after that. Since the class namespace is now a collections.OrderedDict 
instance, we know that the order is guaranteed. Instead of the regular not 
predetermined order of the Python dict. This demonstrates how convenient 
metaclasses can be to extend your classes in a generic way. Another big advantage 
of metaclasses, instead of a custom __init__ method, is that the users won't lose the 
functionality if they forget to call the parent __init__ method. The metaclass will 
always be executed, unless a different metaclass is added, that is.
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Summary
The Python metaclass system is something every Python programmer uses all the 
time, perhaps without even knowing about it. Every class should be created through 
some (subclass of) type, which allows for endless customization and magic. Instead 
of statically defining your class, you can now have it created as you normally 
would and dynamically add, modify, or remove attributes from your class during 
definition; very magical but very useful. The magic component, however, is also 
the reason it should be used with a lot of caution. While metaclasses can be used to 
make your life much easier, they are also amongst the easiest ways of producing 
completely incomprehensible code.

Regardless, there are some great use-cases for metaclasses and many libraries such as 
SQLAlchemy and Django use metaclasses to make your code work much easier and 
arguably better. Actually comprehending the magic that is used inside is generally 
not needed for the usage of these libraries, which makes the cases defendable. The 
question becomes whether a much better experience for beginners is worth some  
dark magic internally, and looking at the success of these libraries, I would say yes  
in this case.

To conclude, when thinking about using metaclasses, keep in mind what Tim Peters 
once said: "Metaclasses are deeper magic than 99% of users should ever worry about. 
If you wonder whether you need them, you don't."

Now we will continue with a solution to remove some of the magic that metaclasses 
generate: documentation. The next chapter will show us how your code can be 
documented, how that documentation can be tested, and most importantly, how the 
documentation can be made smarter by annotating types in your documentation.
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Documentation – How to Use 
Sphinx and reStructuredText

Documenting code can be both fun and useful! I will admit that many programmers 
have a strong dislike for documenting code and understandably so. Writing 
documentation can be a boring job and traditionally only others reap the benefits of 
that effort. The tools available for Python, however, make it almost trivial to generate 
useful and up-to-date documentation with little to no effort at all. Generating 
documentation has actually become so easy that I create and generate documentation 
before using a Python package. Assuming it wasn't available already, that is.

In addition to simple text documentation explaining what a function does, it is also 
possible to add metadata, such as type hints. These type hints can be used to make 
the arguments and return types of a function or class clickable in the documentation. 
But more importantly, many modern IDEs and editors, such as VIM, have plugins 
available that parse the type hints and use them for intelligent auto-completion. So if 
you type Spam.eggs, your editor will automatically complete the specific attributes 
and methods of the eggs object; something that is traditionally only viable with 
statically typed languages such as Java, C, and C++.

This chapter will explain the types of documentation available in Python and how 
easily a full set of documentation can be created. With the amazing tools that Python 
provides, you can have fully functioning documentation within minutes.

Topics covered in this chapter are as follows:

•	 The reStructuredText syntax
•	 Setting up documentation using Sphinx
•	 Sphinx style docstrings
•	 Google style docstrings
•	 NumPy style docstrings
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The reStructuredText syntax
The reStructuredText format (also known as RST, ReST, or reST) was developed in 
2002 as a simple language that implements enough markup to be usable, but is simple 
enough to be readable as plain text. These two features make it readable enough to use 
in code, yet still versatile enough to generate pretty and useful documentation.

The greatest thing about reStructuredText is that it is very intuitive. Even without 
knowing anything about the standard, you can easily write documentation in this 
style without ever knowing that it would be recognized as a language. However, 
more advanced techniques, such as images and links, do require some explanation.

Next to reStructuredText, there are also languages such as Markdown which are quite 
similar in usage. Within the Python community, reStructuredText has been the standard 
documentation language for over 10 years, making it the recommended solution.

To easily convert between formats such as reStructuredText 
and Markdown, use the Pandoc tool, available at http://
pandoc.org/.

The basic syntax reads just like text and the next few paragraphs will show some 
of the more advanced features. However, let us start with a simple example 
demonstrating how simple a reStructuredText file can be.

Documentation, how to use Sphinx and reStructuredText

##################################################################

Documenting code can be both fun and useful! ...

Additionally, adding ...

... So that typing `Spam.eggs.` will automatically ...

Topics covered in this chapter are as follows:

 - The reStructuredText syntax

 - Setting up documentation using Sphinx

 - Sphinx style docstrings

 - Google style docstrings

 - NumPy style docstrings

http://pandoc.org/
http://pandoc.org/
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The reStructuredText syntax

******************************************************************

The reStructuredText format (also known as ...

That's how easy it is to convert the text of this chapter so far to reStructuredText. The 
following paragraphs will cover the following features:

1.	 Inline markup (italic, bold, code, and links)
2.	 Lists
3.	 Headers
4.	 Advanced links
5.	 Images
6.	 Substitutions
7.	 Blocks containing code, math, and others

Getting started with reStructuredText
To quickly convert a reStructuredText file to HTML, we can use the docutils 
library. The sphinx library discussed later in this chapter actually uses the docutils 
library internally, but has some extra features that we won't need initially. To get 
started, we just need to install docutils:

pip install docutils

After that we can easily convert reStructuredText into PDF, LaTeX, HTML, and other 
formats. For the examples in this paragraph, we'll use the HTML format which is 
easily generated using the following command:

rst2html.py file.rst file.html

The basic components of reStructuredText are roles, which are used for inline 
modifications of the output and directives to generate markup blocks. Within pure 
reStructuredText, the directives are the most important, but we will see many uses 
for the roles in the section about Sphinx.

Inline markup
Inline markup is the markup that is used within a regular line of text. Examples of 
these are emphasis, in-line code examples, links, images, and bullet lists.



Documentation – How to Use Sphinx and reStructuredText

[ 220 ]

Emphasis, for example, can be added by encapsulating the words between one or 
two asterisk signs. This sentence for example could add a little bit of *emphasis* 
by adding a single asterisk on both sides or a lot of **emphasis** by adding two 
asterisks at both sides. There are many different inline markup directives so we 
will list only the most common ones. A full list can always be found through the 
reStructuredText homepage at docutils.sourceforge.net.

Following are some examples:

•	 Emphasis (italic) text: *emphasis for this phrase*.
•	 Extra emphasis (bold) text: **extra emphasis for this phrase**.
•	 For lists without numbers, a simple dash with spaces after it:

- item 1
- item 2

The space after the dash is required for reStructuredText 
to recognize the list.

•	 For lists with numbers, the number followed by a period and a space:
1. item 1
2. item 2

•	 For numbered lists, the period after the number is required.
•	 Interpreted text: These are domain specific. Within Python documentation, 

the default role is code which means that surround text with back ticks will 
convert your code to use code tags. For example, `if spam and eggs:`.
Different roles can be set through either a role prefix or suffix depending 
on your preference. For example, :math:`E=mc^2` to show mathematical 
equations.

•	 Inline literals: This is formatted with a mono-space font, which makes it ideal 
for inline code. Just add two back ticks to ``add some code``.

•	 References: These can be created through a trailing underscore. They can 
point to headers, links, labels, and more. The next section will cover more 
about these, but the basic syntax is simply reference_ or enclosed in back 
ticks when the reference contains spaces, `some reference link`_.

•	 To escape the preceding characters, the backslash can be used. So if you wish 
to have an asterisk with emphasis, it's possible to use *\**, quite similar to 
escaping in Python strings.

There are many more available, but these are the ones you will use the most when 
writing reStructuredText.
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Headers
The headers are used to indicate the start of a document, section, chapter, or 
paragraph. It is therefore the first structure you need in a document. While not 
strictly needed, its usage is highly recommended as it serves several purposes:

1.	 The headers are consistently formatted according to their level.
2.	 Sphinx can generate a Table Of Contents (TOC) tree from the headers.
3.	 All headers automatically function as labels, which means you can create 

links towards them.

When creating headers, consistency is one of the few constraints; the character used 
is fairly arbitrary as is the amount of levels.

Personally, I default to a simple system with a fixed-size header, but I recommend 
at least following the default of the Python documentation in terms of the parts, 
chapters, sections, subsections, subsubsections, and paragraphs. Something along the 
lines of the following:

Part

################################################################

Chapter

****************************************************************

Section

================================================================

Subsection

----------------------------------------------------------------

Subsubsection

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Paragraph

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

Content
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Output:

That is just the common usage of the headers, but the main idea of reStructuredText 
is that you can use just about anything that feels natural to you, which means that 
you can use any of the following characters: = - ` : ' " ~ ^ _ * + # <>. It also 
supports both underlines and overlines, so if you prefer that, they are options as well:

################################################################

Part

################################################################

****************************************************************

Chapter

****************************************************************

================================================================

Section

================================================================

----------------------------------------------------------------

Subsection

----------------------------------------------------------------

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Subsubsection

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

Paragraph

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

Content
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While I try to keep the number of characters fixed to 78 characters as PEP8 (Chapter 2,  
Pythonic Syntax, Common Pitfalls, and Style Guide) recommends for Python, the 
number of characters used is mostly arbitrary, but it does have to be at least as long 
as the text of the header. This allows it to get the following result:

Section

=======

But not this:

Section

====

Lists
The reStructuredText format has several styles of lists:

1.	 Enumerated
2.	 Bulleted
3.	 Options
4.	 Definitions

The simplest forms of lists were already displayed in the introduction section, 
but it's actually possible to use many different characters, such as letters, Roman 
numerals, and others, for enumeration. After demonstrating the basic list types, we 
will continue with the nesting of lists and structures which makes them even more 
powerful. Care must be taken with the amount of whitespace, as a space too many 
can cause a structure to be recognized as regular text instead of a structure.

Enumerated list
Enumerated lists are convenient for all sorts of enumerations. The basic premise 
for enumerated lists is an alphanumeric character followed by a period, a right 
parenthesis, or parentheses on both sides. Additionally, the # character functions as 
an automatic enumeration. For example:

1. With

2. Numbers

a. With

#. letters
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i. Roman

#. numerals

(1) With

(2) Parenthesis

The output is perhaps a bit simpler than you would expect. The reason is that 
it depends on the output format. These were generated with the HTML output 
format which has no support for parentheses. If you output LaTeX for example, the 
difference can be made visible. Following is the rendered HTML output:

Bulleted list
If the order of the list is not relevant and you simply need a list of items without 
enumeration, then the bulleted list is what you need. To create a simple list using 
bullets only, the bulleted items need to start with a *, +, -, •, ‣, or ⁃. This list is 
mostly arbitrary and can be modified by extending Sphinx or Docutils. For example:

- dashes

- and more dashes

* asterisk

* stars

+ plus

+ and plus
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As you can see, with the HTML output again all bullets look identical. When 
generating documentation as LaTeX (and consecutively, PDF or Postscript), these can 
differ. Since web-based documentation is by far the most common output format for 
Sphinx, we default to that output instead. The rendered HTML output is as follows:

Option list
The option list is one meant specifically for documenting the command line 
arguments of a program. The only special thing about the syntax is that the comma-
space is recognized as a separator for options.

-s, --spam  This is the spam option

--eggs      This is the eggs option

Following is the output:

Definition list
The definition list is a bit more obscure than the other types of lists, since the actual 
structure consists of whitespace only. It's therefore pretty straightforward to use, but 
not always as easy to identify in a file.

spam

    Spam is a canned pork meat product

eggs

    Is, similar to spam, also food
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Following is the output:

Nested lists
Nesting items is actually not limited to lists and can be done with multiple types of 
blocks, but the idea is the same. Just be careful to keep the indenting at the correct level. 
If you don't, it either won't be recognized as a separate level or you will get an error.

1. With

2. Numbers

   (food) food

    spam

        Spam is a canned pork meat product

    eggs

        Is, similar to spam, also food

    (other) non-food stuff

Following is the output:
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Links, references, and labels
There are many types of links supported in reStructuredText, the simplest of which 
is just a link with the protocol such as http://python.org, which will automatically 
be recognized by most parsers. However, custom labels are also an option by using 
the interpreted text syntax we saw earlier: `Python <http://python.org>`_.

Both of these are nice for simple links, which won't be repeated too often, but 
generally it's more convenient to attach labels to links so they can be reused and 
don't clog up the text too much.

For example, refer to the following:

The switch to reStructuredText and Sphinx was made with the

`Python 2.6 <https://docs.python.org/whatsnew/2.6.html>`_

release.

Now compare it with the following:

The switch to reStructuredText and Sphinx was made with the

`python 2.6`_ release.

.. _`Python 2.6`: https://docs.python.org/whatsnew/2.6.html

The output is as follows:

Using labels, you can easily have a list of references at a designated location without 
making the actual text harder to read. These labels can be used for more than 
external links however; similar to the GOTO statements found in older programming 
languages, you can create labels and refer to them from other parts of the 
documentation:

.. _label:

Within HTML or PDF output, this can be used to create a clickable link from 
anywhere in the text using the underscore links. Creating a clickable link to the label 
is as simple as having label_ in the text. Note that reStructuredText ignores case 
differences so both uppercase and lowercase links work just fine. Even though it's 
not likely to make this mistake, having the same label in a single document with only 
case differences results in an error to make sure duplicates never occur.

http://python.org
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The usage of references in conjunction with the headers works in a very natural way; 
you can just refer to them as you normally would and add an underscore to make it 
a link:

The introduction section

================================================================

This section contains:

- `chapter 1`_

- :ref:`chapter2`

  1. my_label_

  2. `And a label link with a custom title <my_label>`_

Chapter 1

----------------------------------------------------------------

Jumping back to the beginning of `chapter 1`_ is also possible.

Or jumping to :ref:`Chapter 2 <chapter2>`

.. _chapter2:

Chapter 2 With a longer title

----------------------------------------------------------------

The next chapter.

.. _my_label:

The label points here.

Back to `the introduction section`_
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The output is as follows:

Images
The image directive looks very similar to the label syntax. They're actually a bit 
different but the pattern is quite similar. The image directive is just one of the many 
directives that is supported by reStructuredText. We will see more about that later 
on when we cover Sphinx and reStructuredText extensions. For the time being, it is 
enough to know that the directives start with two periods followed by a space, the 
name of the directive, and two colons:

 .. name_of_directive::

In the case of the image, the directive is called image of course:

.. image:: python.png

Scaled output as the actual image is much larger:

Note the double colon after the directives.
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But how about specifying the size and other properties? The image directive has 
many other options (as do most other directives) which can be used: http://
docutils.sourceforge.net/docs/ref/rst/directives.html#images, they 
are mostly fairly obvious however. To specify the width and height or the scale (in 
percent) of the image:

.. image:: python.png

   :width: 150

   :height: 100

.. image:: python.png

   :scale: 10

Following is the output:

The scale option uses the width and height options if available 
and falls back to the PIL (Python Imaging Library) or Pillow 
library to detect the image. If both width/height and PIL/Pillow 
are not available, the scale option will be ignored silently.

In addition to the image directive, there is also the figure directive. The difference is 
that figure adds a caption to the image. Beyond that, the usage is the same as image:

.. figure:: python.png

   :scale: 10

   The Python logo

http://docutils.sourceforge.net/docs/ref/rst/directives.html#images
http://docutils.sourceforge.net/docs/ref/rst/directives.html#images
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The output is as follows:

Substitutions
When writing documentation, it often happens that constructs are being repeated, 
the links have their own labelling system but there are more ways within 
reStructuredText. The substitution definitions make it possible to shorten directives 
so they can easily be re-used.

Let's assume we have a logo that we use quite often within a bit of text. Instead of 
typing the entire .. image:: <url> it would be very handy to have a shorthand to 
make it easier. That's where the substitutions are very useful:

.. |python| image:: python.png

   :scale: 1

The Python programming language uses the logo: |python|

The output is as follows:

These substitutions can be used with many directives, though they are particularly 
useful for outputting a variable in many places of a document. For example:

.. |author| replace:: Rick van Hattem

This book was written by |author|

Following is the output:
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Blocks, code, math, comments, and quotes
When writing documentation, a common scenario is the need for blocks that contain 
different type of content, explanations with mathematical formulas, code examples, 
and more. The usage of these directives is similar to the image directive. Following is 
an example of a code block:

.. code:: python

   def spam(*args):

       print('spam got args', args)

The output is as follows:

Or math using LaTeX syntax, the fundamental theorem of calculus:

.. math::

    \int_a^b f(x)\,dx = F(b) - F(a)

Following is the output:

Commenting a bunch of text/commands is easily achieved by using the "empty" 
directive followed by an indent:

Before comments

.. Everything here will be commented
  

   And this as well

    
   .. code:: python 
  

      def even_this_code_sample():

          pass  # Will be commented

After comments
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The output is as follows:

The simplest ones are the block quotes. A block quote requires nothing but just a 
simple bit of indentation.

Normal text

    Quoted text

The output is as follows:

Conclusion
reStructuredText is both a very simple and a very extensive language; a large portion 
of the syntax comes naturally when writing plain-text notes. A full guide to all the 
intricacies, however, could fill a separate book. The previous demonstrations should 
have given enough of an introduction to do at least 90 percent of the work you will 
need when documenting your projects. Beyond that, Sphinx will help a lot as we will 
see in the next sections.

The Sphinx documentation generator
The Sphinx documentation generator was created in 2008 for the Python 2.6 release 
to replace the old LaTeX documentation for Python. It's a generator that makes it 
almost trivial to generate documentation for programming projects, but even outside 
of the programming world it can be easily used. Within programming projects, there 
is specific support for the following domains (programming languages):

•	 Python
•	 C
•	 C++
•	 Javascript
•	 reStructuredText
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Outside of these languages, there are extensions available for many other languages 
such as CoffeeScript, MATLAB, PHP, Ruby Lisp, Go, and Scala. And if you're  
simply looking for snippet code highlighting, the Pygments highlighter which 
is used internally supports over 120 languages and is easily extendible for new 
languages if needed.

The most important advantage of Sphinx is that almost everything can be 
automatically generated from your source code. So the documentation is always  
up to date.

Getting started with Sphinx
First of all, we have to make sure we install Sphinx. Even though the Python core 
documentation is written using Sphinx, it is still a separately maintained project and 
must be installed separately. Luckily, that's easy enough using pip:

pip install sphinx

After installing Sphinx, there are two ways of getting started with a project, the 
sphinx-quickstart script and the sphinx-apidoc script. If you want to create 
and customize an entire Sphinx project then sphinx-quickstart may be best as it 
assists you in configuring a fully featured Sphinx project. If you simply want API 
documentation for an existing project then sphinx-apidoc might be better suited 
since it takes a single command and no further input to create a project.

In the end, both are valid options for creating Sphinx projects and personally I usually 
end up generating the initial configuration using sphinx-quickstart and call the 
sphinx-apidoc command every time I add a Python module to add the new module. 
Since sphinx-apidoc does not overwrite any files by default, it is a safe operation.

Using sphinx-quickstart
The sphinx-quickstart script interactively asks you about the most important 
decisions in your Sphinx project. No need to worry if you've accidently made a typo 
however. Most of the configuration is stored in the conf.py directory so it's easy 
enough to edit the configuration later in case you still want to enable a certain module.

Usage is easy enough, as a default I would recommend using the following settings. 
The output uses the following conventions:

•	 Inline comments start with #
•	 User input lines start with >
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•	 Cropped output is indicated with ... and all questions skipped in between 
use the default settings

# sphinx-quickstart

Welcome to the Sphinx 1.3.3 quickstart utility.

...

Enter the root path for documentation.

> Root path for the documentation [.]: docs

...

The project name will occur in several places in the built documentation.

> Project name: Mastering Python

> Author name(s): Rick van Hattem

# As version you might want to start below 1.0 or add an extra digit

# but I would recommend leaving the default and modify the

# configuration file instead. Just make it import from the Python

# package instead. An example can be found in the numpy-stl package:

# https://github.com/WoLpH/numpy-stl/blob/develop/docs/conf.py

...

> Project version: 1.0

> Project release [1.0]:

...

# Enabling the epub builder can be useful for people using e-readers to

# read the documentation.

Sphinx can also add configuration for epub output:

> Do you want to use the epub builder (y/n) [n]: y

...

# Autodoc is required to document the code, definitely recommended to

# enable

> autodoc: automatically insert docstrings from
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  modules (y/n) [n]: y

# With the doctest feature we can run tests embedded in the

# documentation. This is meant for doctests in the .rst files.

> doctest: automatically test code snippets in

  doctest blocks (y/n) [n]: y

# Intersphinx enables linking between Sphinx documentation sets

# allowing for links to external documentation. After enabling this

# you can make str link to the regular Python documentation about str

# for example.

> intersphinx: link between Sphinx documentation

  of different projects (y/n) [n]: y

...

# Mathjax enables LaTeX style mathematical rendering, not strictly

# needed but very useful for rendering equations.

> mathjax: include math, rendered in the browser

  by MathJax (y/n) [n]: y

...

> viewcode: include links to the source code of

  documented Python objects (y/n) [n]: y

...

Creating file docs/conf.py.

Creating file docs/index.rst.

Creating file docs/Makefile.

Creating file docs/make.bat.

Finished: An initial directory structure has been created.

You should now populate your master file docs/index.rst and create other 
documentation source files. Use the Makefile to build the docs, like so:

   make builder

where "builder" is one of the supported builders, e.g. html, latex or 
linkcheck.
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After running this, we should have a docs directory containing the Sphinx project. 
Let's see what the command actually created for us:

# find docs

docs

docs/_build

docs/_static

docs/_templates

docs/conf.py

docs/index.rst

docs/make.bat

docs/Makefile

The _build, _static, and _templates directories are initially empty and 
can be ignored for now. The _build directory is used to output the generated 
documentation whereas the _static directory can be used to easily include custom 
CSS files and such. The _templates directory makes it possible to style the HTML 
output to your liking as well. Examples of these can be found in the Sphinx Git 
repository at https://github.com/sphinx-doc/sphinx/tree/master/sphinx/
themes.

Makefile and make.bat can be used to generate the documentation output. 
Makefile can be used for any operating system that supports the make utility and 
make.bat is there to support Windows systems out of the box. Now let's look at the 
index.rst source:

Welcome to Mastering Python's documentation!

============================================

Contents:

.. toctree::

   :maxdepth: 2

Indices and tables

==================

* :ref:`genindex`

* :ref:`modindex`

* :ref:`search`

https://github.com/sphinx-doc/sphinx/tree/master/sphinx/themes
https://github.com/sphinx-doc/sphinx/tree/master/sphinx/themes
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We see the document title as expected, followed by toctree (table of contents tree; 
more about that later in this chapter), and the links to the indices and search. toctree 
automatically generates a tree out of the headers of all available documentation pages. 
The indices and tables are automatically generated Sphinx pages, which are very 
useful but nothing we need to worry about in terms of settings.

Now it's time to generate the HTML output:

cd docs

make html

The make html command generates the documentation for you and the result is 
placed in _build/html/. Just open index.html in your browser to see the results. 
You should have something looking similar to the following now:

With just that single command and by answering a few questions, we now have a 
documentation project with an index, search, and table of contents on all the pages.

In addition to the HTML output, there are quite a few other formats supported by 
default, although some require external libraries to actually work:

# make

Please use `make <target>' where <target> is one of

  html       to make standalone HTML files

  dirhtml    to make HTML files named index.html in directories

  singlehtml to make a single large HTML file

  pickle     to make pickle files

  json       to make JSON files
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  htmlhelp   to make HTML files and a HTML help project

  qthelp     to make HTML files and a qthelp project

  applehelp  to make an Apple Help Book

  devhelp    to make HTML files and a Devhelp project

  epub       to make an epub

  latex      to make LaTeX files, you can set PAPER=a4 or ...

  latexpdf   to make LaTeX files and run them through pdflatex

  latexpdfja to make LaTeX files and run them through platex/...

  text       to make text files

  man        to make manual pages

  texinfo    to make Texinfo files

  info       to make Texinfo files and run them through makeinfo

  gettext    to make PO message catalogs

  changes    to make an overview of all changed/added/deprecate...

  xml        to make Docutils-native XML files

  pseudoxml  to make pseudoxml-XML files for display purposes

  linkcheck  to check all external links for integrity

  doctest    to run all doctests embedded in the documentation

  coverage   to run coverage check of the documentation

Using sphinx-apidoc
The sphinx-apidoc command is generally used together with sphinx-quickstart. 
It is possible to generate an entire project with the --full parameter but it's 
generally a better idea to generate the entire project using sphinx-quickstart and 
simply add the API documentation using sphinx-apidoc. To properly demonstrate 
the sphinx-apidoc command, we need some Python files, so we'll create two files 
within a project called h09.

The first one is h09/spam.py containing a class called Spam with some methods:

class Spam(object):

    def __init__(self, arg, *args, **kwargs):

        pass

    def regular_method(self, arg):

        pass

    @classmethod



Documentation – How to Use Sphinx and reStructuredText

[ 240 ]

    def decorated_method(self, arg):

        pass

    def _hidden_method(self):

        pass

Next we have h09/eggs.py containing a Eggs class that inherits Spam:

import spam

class Eggs(spam.Spam):

    def regular_method(self):

        '''This regular method overrides

        :meth:`spam.Spam.regular_method`

        '''

        pass

Now that we have our source files, it's time to generate the actual API documentation:

# sphinx-apidoc h09 -o docs

Creating file docs/eggs.rst.

Creating file docs/spam.rst.

Creating file docs/modules.rst.

This alone is not enough to include the API in the documentation. It needs to be 
added to toctree. Luckily, that's as simple as adding modules to toctree in the 
index.rst file to look something like this:

.. toctree::

   :maxdepth: 2

   modules

The toctree directive is discussed in further detail later in this chapter.

We also have to make sure that the modules can be imported, otherwise Sphinx 
won't be able to read the Python files. To do that, we simply add the h09 directory to 
sys.path; this can be put anywhere in the conf.py file:

import os

sys.path.insert(0, os.path.join(os.path.abspath('..'), 'h09'))
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Now it's time to generate the documentation again:

cd docs

make html

Open the docs/_build/index.html file again. For the sake of brevity, the repeated 
parts of the document will be omitted from the screenshots. The cropped output is  
as follows:

But it actually generated quite a bit more. When running the sphinx-apidoc 
command, it looks at all the Python modules in the specified directory recursively 
and generates a rst file for each of them. After generating all those separate files, it 
adds all those to a file called modules.rst which makes it easy to add them to your 
documentation.

The modules.rst file is really straight to the point; nothing more than a list of 
modules with the package name as the title really:

h09

===

.. toctree::

   :maxdepth: 4

   eggs

   spam

The output is as follows:
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spam.rst and eggs.rst are equally simple, but more important in terms of 
customization. Within those files it adds the automodule directive which imports the 
Python module and lists the methods. The methods that are listed can be configured 
and by default we already get pretty useful output:

eggs module

===========

.. automodule:: eggs

    :members:

    :undoc-members:

    :show-inheritance:

Following is the output:

Pretty, isn't it? And all that can be generated from most Python projects with 
virtually no effort whatsoever. The nice things about this is that the documentation 
we added to Eggs.regular_method is immediately added here, the inherited base 
(spam.Spam) is a clickable link to the spam.Spam documentation page, and the 
:func: role makes spam.Spam.regular_method immediately clickable as well.

The output for the spam module is similar:
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New files won't be added to your docs automatically. It is safe to 
rerun the sphinx-apidoc command to add the new files but 
it won't update your existing files. Even though the --force 
option can be used to force overwriting the files, within existing 
files I recommend manually editing them instead. As we will see 
in the next sections, there are quite a few reasons to manually 
modify the generated files after.

Sphinx directives
Sphinx adds a few directives on top of the default ones in reStructuredText and an 
easy API to add new directives yourself. Most of them are generally not that relevant 
to modify but, as one would expect, Sphinx has pretty good documentation in case 
you need to know more about them. There are a few very commonly used ones 
which we will discus however.

The table of contents tree directive (toctree)
This is one of the most important directives in Sphinx; it generates toctree (table of 
contents tree). The toctree directive has a couple of options but the most important 
one is probably maxdepth which specifies how deep the tree needs to go. The top 
level of toctree has to be specified manually by specifying the files to be read, but 
beyond that every level within a document (section, chapter, paragraph, and so on) 
can be another level in toctree, depending on the depth of course. Even though the 
maxdepth option is optional, without it all the available levels will be shown, which 
is usually more than required. In most cases a maxdepth of 2 is a good default value 
which makes the basic example look like this:

.. toctree::

   :maxdepth: 2

The items in toctree are the .rst files in the same directory without the extension. 
This can include subdirectories, in which case the directories are separated with a . 
(period):

.. toctree::

   :maxdepth: 2

   module.a

   module.b

   module.c
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Another very useful option is the glob option. It tells toctree to use the glob 
module in Python to automatically add all the documents matching a pattern. By 
simply adding a directory with a glob pattern, you can add all the files in that 
directory. This makes the toctree we had before as simple as:

.. toctree::

   :maxdepth: 2

   :glob:

   module.*

If for some reason the document title is not as you would have liked, you can easily 
change the title to something customized:

.. toctree::

   :maxdepth: 2

   The A module <module.a>

Autodoc, documenting Python modules, classes, 
and functions
The most powerful feature of Sphinx is the possibility of automatically documenting 
your modules, classes, and functions. The sphinx-apidoc command has already 
generated some of these for us, so let's use those files for the Spam and Eggs classes to 
extend the documentation a bit.

The original result from sphinx-apidoc was:

eggs module

===========

.. automodule:: eggs

    :members:

    :undoc-members:

    :show-inheritance:
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This renders as:

The Eggs class has only a single function right now. We can of course click towards 
the parent class with ease, but in many cases it's useful to see all available functions 
in the class. So let's add all the functions that are inherited from Spam as well:

eggs module

===========

.. automodule:: eggs

    :members:

    :undoc-members:

    :show-inheritance:

    :inherited-members:

The output is as follows:

Much more useful already, but we are still missing the hidden method. Let's add the 
private members as well:

eggs module

===========
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.. automodule:: eggs

    :members:

    :undoc-members:

    :show-inheritance:

    :inherited-members:

    :private-members:

Following is the output:

Now all the methods are shown, but what about the members option? Without the 
members option or the *-members options, no functions will be visible anymore.

show-inheritance is useful if you want to have the Bases: ... section so it is 
possible to click to the parent class.

Naturally, it is also possible to create classes manually. While this has little practical 
use, it does show the internal structure of Python classes within Sphinx.

There is a practical case however, if you are dynamically creating classes then 
autodoc will not always be able to document correctly and some additional help is 
required. There is more however, while it's generally not that useful as you're doing 
double work. In some cases, the autodoc extension won't be able to correctly identify 
the members of your class. This is true in case of dynamic class/function generation, 
for example. For such cases, it can be useful to add some manual documentation to 
the module/class/function:

eggs module

===========

.. automodule:: eggs

    :members:

    :undoc-members:
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    :show-inheritance:

    .. class:: NonExistingClass

       This class doesn't actually exist, but it's in the documentation 
now.

       .. method:: non_existing_function()

          And this function does not exist either.

Following is the output:

If at all possible, I would avoid this usage though. The biggest benefit of Sphinx is 
that it can automatically generate a large portion of your docs for you. By manually 
documenting, you may produce the one thing that's worse than no documentation, 
that is incorrect documentation. These statements are mainly useful for meta-
documentation; documenting how a class might look instead of an actual example.

Sphinx roles
We have seen Sphinx directives, which are separate blocks. Now we will discuss 
Sphinx roles, which can be used in-line. A role allows you to tell Sphinx how to parse 
some input. Examples of these roles are links, math, code, and markup. But the most 
important ones are the roles within the Sphinx domains for referencing other classes, 
even for external projects. Within Sphinx, the default domain is the Python one so a 
role such as :py:meth: can be used as :meth: as well. These roles are really useful 
to link to different packages, modules, classes, methods, and other objects. The basic 
usage is simple enough. To link to a class, use the following:

Spam: :class:`spam.Spam`
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The output is:

The same goes for just about any other object, functions, exceptions, attributes, and 
so on. The Sphinx documentation offers a list of supported objects: http://sphinx-
doc.org/domains.html#cross-referencing-python-objects.

One of the nicer features of Sphinx is that this is actually possible across projects as 
well, adding a reference to the int object in the standard Python documentation is 
easily possible using :obj:`int`. And adding references to your own projects on 
other sites is fairly trivial as well. Perhaps you remember the intersphinx question 
from the sphinx-quickstart script:

> intersphinx: link between Sphinx documentation

  of different projects (y/n) [n]: y

That's what makes cross-referencing between external Sphinx documentation and 
your local one possible. With intersphinx you can add links between projects with 
virtually no effort whatsoever. The standard intersphinx_mapping in conf.py is a 
bit limited:

intersphinx_mapping = {'https://docs.python.org/': None}

However, it can easily be extended to other documentation sites:

intersphinx_mapping = {

    'https://docs.python.org/': None,

    'sphinx': ('http://sphinx-doc.org/', None),

}

Now we can easily link to the documentation on the Sphinx homepage:

Link to the intersphinx module: :mod:`sphinx.ext.intersphinx`

Following is the output:

This links to http://www.sphinx-doc.org/en/stable/ext/intersphinx.html.

http://sphinx-doc.org/domains.html#cross-referencing-python-objects
http://sphinx-doc.org/domains.html#cross-referencing-python-objects
http://www.sphinx-doc.org/en/stable/ext/intersphinx.html
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Documenting code
There are currently three different documentation styles supported by Sphinx: the 
original Sphinx style and the more recent NumPy and Google styles. The differences 
between them are mainly in style but it's actually slightly more than that.

The Sphinx style was developed using a bunch of reStructuredText roles, a very 
effective method but when used a lot it can be detrimental for readability. You can 
probably tell what the following does but it's not the nicest syntax:

:param amount: The amount of eggs to return

:type amount: int

The Google style was (as the name suggests) developed by Google. The goal was 
to have a simple/readable format which works both as in-code documentation 
and parse able for Sphinx. In my opinion, this comes closer to the original idea of 
reStructuredText, a format that's very close to how you would document instinctively. 
This example has the same meaning as the Sphinx style example shown earlier:

Args:

    amount (int): The amount of eggs to return

The NumPy style was created specifically for the NumPy project. The NumPy project 
has many functions with a huge amount of documentation and generally a lot of 
documentation per argument. It is slightly more verbose than the Google format but 
quite easy to read as well:

Parameters

----------

amount : int

    The amount of eggs to return

In the future, with the Python 3.5 type hint annotations, at least 
the argument type part of these syntaxes might become useless. 
For the time being, Sphinx has no specific support for the 
annotations yet, so explicit type hinting through the docs must 
be used. But perhaps we can use the following soon:

def eggs(amount: int):
    pass
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Documenting a class with the Sphinx style
First of all, let's look at the traditional style, the Sphinx style. While it's easy to 
understand what all the parameters mean, it's a bit verbose and not all that readable. 
Nonetheless, it's pretty clear and definitely not a bad style to use:

class Spam(object):

    '''

    The Spam object contains lots of spam

    :param arg: The arg is used for ...

    :type arg: str

    :param `*args`: The variable arguments are used for ...

    :param `**kwargs`: The keyword arguments are used for ...

    :ivar arg: This is where we store arg

    :vartype arg: str

    '''

    def __init__(self, arg, *args, **kwargs):

        self.arg = arg

    def eggs(self, amount, cooked):

        '''We can't have spam without eggs, so here's the eggs

        :param amount: The amount of eggs to return

        :type amount: int

        :param bool cooked: Should the eggs be cooked?

        :raises: :class:`RuntimeError`: Out of eggs

        :returns: A bunch of eggs

        :rtype: Eggs

        '''

        pass
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Following is the output:

This is a very useful output indeed with documented functions, classes, and 
arguments. And more importantly, the types are documented as well, resulting in a 
clickable link towards the actual type. An added advantage of specifying the type is 
that many editors understand the documentation and will provide auto-completion 
based on the given types.

To explain what's actually happening here, Sphinx has a few roles within the 
docstrings that offer hints as to what we are documenting.

The param role paired with a name sets the documentation for the parameter with 
that name. The type role paired with a name tells Sphinx the data type of the 
parameter. Both the roles are optional and the parameter simply won't have any 
added documentation if they are omitted, but the param role is always required for 
any documentation to show. Simply adding the type role without the param role will 
result in no output whatsoever, so take note to always pair them.

The returns role is similar to the param role with regards to documenting. While the 
param role documents a parameter, the returns role documents the returned object. 
They are slightly different however. Opposed to the param role, the returns role is 
not dependent of the rtype role or vice versa. They both work independently of each 
other making it possible to use either or both of the roles.

The rtype, as you can expect, tells Sphinx (and several editors) what type of object is 
returned from the function.
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Documenting a class with the Google style
The Google style is just a more legible version of the Sphinx style documentation. 
It doesn't actually support more or less but it's a lot more intuitive to use. The only 
thing to keep in mind is that it's a fairly recent feature of Sphinx. With the older 
versions, you were required to install the sphinxcontrib-napoleon package. These 
days it comes bundled with Sphinx but still needs to be enabled through the conf.py 
file. So, depending on the Sphinx version (Napoleon was added in Sphinx 1.3), you 
will need to add either sphinx.ext.napoleon or sphinxcontrib.napoleon to the 
extensions list in conf.py.

Once you have everything configured correctly, we can use both the Google and 
NumPy style. Here's the Google style version of the Spam class:

class Spam(object):

    '''

    The Spam object contains lots of spam

    Args:

        arg (str): The arg is used for ...

        *args: The variable arguments are used for ...

        **kwargs: The keyword arguments are used for ...

    Attributes:

        arg (str): This is where we store arg,

    '''

    def __init__(self, arg, *args, **kwargs):

        self.arg = arg

    def eggs(self, amount, cooked):

        '''We can't have spam without eggs, so here's the eggs

        Args:

            amount (int): The amount of eggs to return

            cooked (bool): Should the eggs be cooked?

        Raises:

            RuntimeError: Out of eggs



Chapter 9

[ 253 ]

        Returns:

            Eggs: A bunch of eggs

        '''

        pass

This is easier on the eyes than the Sphinx style and has the same amount of 
possibilities. For longer argument documentation, it's less than convenient though. 
Just imagine how a multiline description of amount would look. That is why the 
NumPy style was developed, a lot of documentation for its arguments.

Documenting a class with the NumPy style
The NumPy style is meant for having a lot of documentation. Honestly, most people 
are too lazy for that, so for most projects it would not be a good fit. If you do plan to 
have extensive documentation of your functions and all their parameters, the NumPy 
style might be a good option for you. It's a bit more verbose than the Google style but 
it's very legible, especially with more detailed documentation. Just remember that, 
similar to the Google style, this requires the Napoleon extension for Sphinx, so make 
sure you have Sphinx 1.3 or above installed. Following is the NumPy version of the 
Spam class:

class Spam(object):

    '''

    The Spam object contains lots of spam

    Parameters

    ----------

    arg : str

        The arg is used for ...

    *args

        The variable arguments are used for ...

    **kwargs

        The keyword arguments are used for ...

    Attributes

    ----------

    arg : str

        This is where we store arg,

    '''
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    def __init__(self, arg, *args, **kwargs):

        self.arg = arg

    def eggs(self, amount, cooked):

        '''We can't have spam without eggs, so here's the eggs

        Parameters

        ----------

        amount : int

            The amount of eggs to return

        cooked : bool

            Should the eggs be cooked?

        Raises

        ------

        RuntimeError

            Out of eggs

        Returns

        -------

        Eggs

            A bunch of eggs

        '''

        pass

While the NumPy style definitely isn't bad, it's just very verbose. This example 
alone is about 1.5 times as long as the alternatives. So, for longer and more detailed 
documentation it's a very good choice, but if you're planning to have short 
documentation anyhow, just use the Google style instead.

Which style to choose
For most projects, the Google style is the best choice since it is readable but not too 
verbose. If you are planning to use large amounts of documentation per parameter 
then the NumPy style might be a good option as well.

The only reason to choose the Sphinx style is legacy. Even though the Google style 
might be more legible, consistency is more important.
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Summary
Documentation can help greatly in a project's popularity and bad documentation can 
kill productivity. I think there are few aspects of a library that have more impact on 
the usage by third parties than documentation. Thus in many cases, documentation is 
a more important factor in deciding the usage of a project than the actual code quality. 
That's why it is very important to always try to have some documentation available.

With Sphinx it is actually easy to generate documentation. With just a few minutes 
of your time, you can have a fully functioning website with documentation available, 
or a PDF, or ePub, or one of the many other output formats. There really is no excuse 
for having no documentation anymore. And even if you don't use the documentation 
that much yourself, offering type hints to your editor can help a lot in productivity as 
well. Making your editor smarter should always help in productivity. I for one have 
added type hints to several projects simply to increase my productivity.

The next chapter will explain how code can be tested in Python and some part of the 
documentation will return there. Using doctest, it is possible to have example code, 
documentation, and tests in one.
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Testing and Logging – 
Preparing for Bugs

When programming, most developers plan a bit and immediately continue writing 
code. After all, we all expect to write bug-free code! Unfortunately, we don't. At some 
point, an incorrect assumption, a misinterpretation, or just a silly mistake is bound to 
happen. Debugging (covered in Chapter 11, Debugging – Solving the Bugs) will always 
be required at some point, but there are several methods that you can use to prevent 
bugs or, at the very least, make it much easier to solve them when they do occur.

To prevent bugs from occurring in the first place, test-driven development or, 
at the very least, functional/regression/unit tests are very useful. The standard 
Python installation alone offers several options such as the doctest, unittest, 
and test modules. The doctest module allows you to combine tests with example 
documentation. The unittest module allows you to easily write regression tests. 
The test module is meant for internal usage only, so unless you are planning to 
modify the Python core, you probably won't need this one.

The test modules we will discuss in this chapter are:

•	 doctest

•	 py.test (and why it's more convenient than unittest)
•	 unittest.mock

The py.test module has roughly the same purpose as the unittest module, but it's 
much more convenient to use and has a few extra options.
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After learning how to avoid the bugs, it's time to take a look at logging so that we 
can inspect what is happening in our program and why. The logging module in 
Python is highly configurable and can be adjusted for just about any use case. If 
you've ever written Java code, you should feel right at home with the logging 
module, as its design is largely based on the log4j module and is very similar in both 
implementation and naming. The latter makes it a bit of an odd module in Python as 
well, as it is one of the few modules that do not follow the pep8 naming standards.

This chapter will explain the following topics:

•	 Combining documentation with tests using doctest
•	 Regression and unit tests using py.test and unittest
•	 Testing with fake objects using unittest.mock
•	 Using the logging module effectively
•	 Combining logging and py.test

Using examples as tests with doctest
The doctest module is one of the most useful modules within Python. It allows you 
to combine documenting your code with tests to make sure that it keeps working as 
it is supposed to.

A simple doctest example
Let's start with a quick example: a function that squares the input. The following 
example is a fully functional command-line application, containing not only code 
but also functioning tests. The first few tests cover how the function is supposed 
to behave when executing normally, followed by a few tests to demonstrate the 
expected errors:

def square(n):

    '''

    Returns the input number, squared

    >>> square(0)

    0

    >>> square(1)

    1

    >>> square(2)

    4
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    >>> square(3)

    9

    >>> square()

    Traceback (most recent call last):

    ...

    TypeError: square() missing 1 required positional argument: 'n'

    >>> square('x')

    Traceback (most recent call last):

    ...

    TypeError: can't multiply sequence by non-int of type 'str'

    Args:

        n (int): The number to square

    Returns:

        int: The squared result

    '''

    return n * n

if __name__ == '__main__':

    import doctest

    doctest.testmod()

It can be executed as any Python script, but the regular command won't give any 
output as all tests are successful. The doctest.testmod function takes verbosity 
parameters, luckily:

# python square.py -v

Trying:

    square(0)

Expecting:

    0

ok

Trying:

    square(1)

Expecting:

    1
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ok

Trying:

    square(2)

Expecting:

    4

ok

Trying:

    square(3)

Expecting:

    9

ok

Trying:

    square()

Expecting:

    Traceback (most recent call last):

    ...

    TypeError: square() missing 1 required positional argument: 'n'

ok

Trying:

    square('x')

Expecting:

    Traceback (most recent call last):

    ...

    TypeError: can't multiply sequence by non-int of type 'str'

ok

1 items had no tests:

    __main__

1 items passed all tests:

   6 tests in __main__.square

6 tests in 2 items.

6 passed and 0 failed.

Test passed.
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Additionally, since it uses the Google syntax (as discussed in Chapter 9, 
Documentation – How to Use Sphinx and reStructuredText, the documentation chapter), 
we can generate pretty documentation using Sphinx:

However, the code is not always correct, of course. What would happen if we modify 
the code so that the tests do not pass anymore?

This time, instead of n * n, we use n ** 2. Both square a number right? So the 
results must be identical. Right? These are the types of assumptions that create bugs, 
and the types of assumptions that are trivial to catch using a few basic tests:

def square(n):

    '''

    Returns the input number, squared

    >>> square(0)

    0

    >>> square(1)

    1

    >>> square(2)
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    4

    >>> square(3)

    9

    >>> square()

    Traceback (most recent call last):

    ...

    TypeError: square() missing 1 required positional argument: 'n'

    >>> square('x')

    Traceback (most recent call last):

    ...

    TypeError: can't multiply sequence by non-int of type 'str'

    Args:

        n (int): The number to square

    Returns:

        int: The squared result

    '''

    return n ** 2

if __name__ == '__main__':

    import doctest

    doctest.testmod()

So let's execute the test again and see what happens this time. For brevity, we will 
skip the verbosity flag this time:

# python square.py

**********************************************************************

File "square.py", line 17, in __main__.square

Failed example:

    square('x')

Expected:

    Traceback (most recent call last):

    ...

    TypeError: can't multiply sequence by non-int of type 'str'

Got:
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    Traceback (most recent call last):

      File "doctest.py", line 1320, in __run

        compileflags, 1), test.globs)

      File "<doctest __main__.square[5]>", line 1, in <module>

        square('x')

      File "square.py", line 28, in square

        return n ** 2

    TypeError: unsupported operand type(s) for ** or pow(): 'str' and 
'int'

**********************************************************************

1 items had failures:

   1 of   6 in __main__.square

***Test Failed*** 1 failures.

The only modification we made to the code was replacing n * n with n ** 2, which 
translates to the power function. Since multiplication is not the same as taking the 
power of a number, the results are slightly different but similar enough in practice 
that most programmers wouldn't notice the difference.

The only difference caused by the code change was that we now have a different 
exception—an innocent mistake, only breaking the tests in this case. But it shows 
how useful these tests are. When rewriting code, an incorrect assumption is easily 
made, and that is where tests are most useful—knowing you are breaking code as 
soon as you break it instead of finding out months later.

Writing doctests
Perhaps, you have noticed from the preceding examples that the syntax is very 
similar to the regular Python console, and that is exactly the point. The doctest 
input is nothing more than the output of a regular Python shell session. This is what 
makes testing with this module so intuitive; simply write the code in the Python 
console and copy the output into a docstring to get tests. Here is an example:

# python

>>> from square import square

>>> square(5)

25

>>> square()

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

TypeError: square() missing 1 required positional argument: 'n'
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That's why this is probably the easiest way to test code. With almost no effort, you 
can check whether your code is working as you would expect it, add tests, and add 
documentation at the same time. Simply copy the output from the interpreter to your 
function or class documentation and you have functioning doctests.

Testing with pure documentation
The docstrings in functions, classes, and modules are usually the most obvious 
way to add doctests to your code, but they are not the only way. The Sphinx 
documentation, as we discussed in the previous chapter, also supports the doctest 
module. You might remember that when creating the Sphinx project, we enabled the 
doctest module:

> doctest: automatically test code snippets in doctest blocks (y/n) [n]:y

This flag enables the sphinx.ext.doctest extension in Sphinx, which tells Sphinx 
to run those tests as well. Since not all the examples in the code are useful, let's see 
whether we can split them between the ones that are actually useful and the ones 
that are only relevant for documentation. Moreover, to see the results, we will add an 
error to the documentation:

square.py

def square(n):

    '''

    Returns the input number, squared

    >>> square(2)

    4

    Args:

        n (int): The number to square

    Returns:

        int: The squared result

    '''

    return n * n

if __name__ == '__main__':

    import doctest

    doctest.testmod()
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square.rst

square module

=============

.. automodule:: square

    :members:

    :undoc-members:

    :show-inheritance:

Examples:

.. testsetup::

    from square import square

.. doctest::

    >>> square(100)

    >>> square(0)

    0

    >>> square(1)

    1

    >>> square(3)

    9

    >>> square()

    Traceback (most recent call last):

    ...

    TypeError: square() missing 1 required positional argument: 'n'

    >>> square('x')

    Traceback (most recent call last):

    ...

    TypeError: can't multiply sequence by non-int of type 'str'
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Now, it's time to execute the tests. In the case of Sphinx, there is a specific command 
for this:

# make doctest

sphinx-build -b doctest -d _build/doctrees . _build/doctest

Running Sphinx v1.3.3

loading translations [en]... done

loading pickled environment... done

building [mo]: targets for 0 po files that are out of date

building [doctest]: targets for 3 source files that are out of date

updating environment: 0 added, 0 changed, 0 removed

looking for now-outdated files... none found

running tests...

Document: square

----------------

**********************************************************************

File "square.rst", line 16, in default

Failed example:

    square(100)

Expected nothing

Got:

    10000

**********************************************************************

1 items had failures:

   1 of   7 in default

7 tests in 1 items.

6 passed and 1 failed.

***Test Failed*** 1 failures.

Doctest summary

===============

    7 tests

    1 failure in tests

    0 failures in setup code

    0 failures in cleanup code

build finished with problems.

make: *** [doctest] Error 1
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As expected, we are getting an error for the incomplete doctest, but beyond that, all 
tests executed correctly. To make sure that the tests know what square is, we had to 
add the testsetup directive, and this still generates a pretty output:

The doctest flags
The doctest module features several option flags. They affect how doctest 
processes the tests. These option flags can be passed globally using your test suite, 
through command-line parameters while running the tests, and through inline 
commands. For this book, I have globally enabled the following option flags through 
a pytest.ini file (we will cover more about py.test later in this chapter):

doctest_optionflags = ELLIPSIS NORMALIZE_WHITESPACE
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Without these option flags, some of the examples in this book will not function 
properly. This is because they have to be reformatted to fit. The next few paragraphs 
will cover the following option flags:

•	 DONT_ACCEPT_TRUE_FOR_1

•	 NORMALIZE_WHITESPACE

•	 ELLIPSIS

There are several other option flags available with varying degrees of usefulness, but 
these are better left to the Python documentation:

https://docs.python.org/3/library/doctest.html#option-flags

True and False versus 1 and 0
Having True evaluating to 1 and False evaluating to 0 is useful in most cases, but it 
can give unexpected results. To demonstrate the difference, we have these lines:

'''

>>> False

0

>>> True

1

>>> False  # doctest: +DONT_ACCEPT_TRUE_FOR_1

0

>>> True  # doctest: +DONT_ACCEPT_TRUE_FOR_1

1

'''

if __name__ == '__main__':

    import doctest

    doctest.testmod()

Here are the results of the DONT_ACCEPT_TRUE_FOR_1 flag:

# python test.py

**********************************************************************

File "test.py", line 6, in __main__

Failed example:

    False  # doctest: +DONT_ACCEPT_TRUE_FOR_1

https://docs.python.org/3/library/doctest.html#option-flags 
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Expected:

    0

Got:

    False

**********************************************************************

File "test.py", line 8, in __main__

Failed example:

    True  # doctest: +DONT_ACCEPT_TRUE_FOR_1

Expected:

    1

Got:

    True

**********************************************************************

1 items had failures:

   2 of   4 in __main__

***Test Failed*** 2 failures.

As you can see, the DONT_ACCEPT_TRUE_FOR_1 flag makes doctest reject 1 as a valid 
response for True as well as 0 for False.

Normalizing whitespace
Since doctests are used for both documentation and test purposes, it is pretty much 
a requirement to keep them readable. Without normalizing whitespace, this can be 
tricky, however. Consider the following example:

>>> [list(range(5)) for i in range(5)]

[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 
1, 2, 3, 4]]

While not all that bad, this output isn't the best for readability. With whitespace 
normalizing, here is what we can do instead:

>>> [list(range(5)) for i in range(5)]  # doctest: +NORMALIZE_WHITESPACE

[[0, 1, 2, 3, 4],

 [0, 1, 2, 3, 4],

 [0, 1, 2, 3, 4],

 [0, 1, 2, 3, 4],

 [0, 1, 2, 3, 4]]

Formatting the output in this manner is both more readable and convenient for 
keeping your line length less.
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Ellipsis
The ELLIPSIS flag is very useful but also a bit dangerous, as it can easily lead 
to incorrect matches. It makes ... match any substring, which is very useful for 
exceptions but dangerous in other cases:

>>> {10: 'a', 20: 'b'}  # doctest: +ELLIPSIS

{...}

>>> [True, 1, 'a']  # doctest: +ELLIPSIS

[...]

>>> True,  # doctest: +ELLIPSIS

(...)

>>> [1, 2, 3, 4]  # doctest: +ELLIPSIS

[1, ..., 4]

>>> [1, 0, 0, 0, 0, 0, 4]  # doctest: +ELLIPSIS

[1, ..., 4]

These cases are not too useful in real scenarios, but they demonstrate how the 
ELLIPSIS option flag functions. They also indicate the danger. Both [1, 2, 3, 4] 
and [1, 0, ... , 4] match the [1, ..., 4] test, which is probably unintentional, 
so be very careful while using ELLIPSIS.

A more useful case is when documenting class instances:

>>> class Spam(object):

...     pass

>>> Spam()  # doctest: +ELLIPSIS

<__main__.Spam object at 0x...>

Without the ELLIPSIS flag, the memory address (the 0x... part) would never be 
what you expect. Let's demonstrate an actual run in a normal CPython instance:

Failed example:

    Spam()

Expected:

    <__main__.Spam object at 0x...>

Got:

    <__main__.Spam object at 0x10d9ad160>
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Doctest quirks
The three option flags discussed earlier take care of quite a few quirks found in doctests, 
but there are several more cases that require care. In these cases, you just need to be a bit 
careful and work around the limitations of the doctest module. The doctest module 
effectively uses the representation string, and those are not always consistent.

The most important cases are floating-point inaccuracies, dictionaries, and random 
values, such as timers. The following example will fail most of the time because 
certain types in Python have no consistent ordering and depend on external variables:

>>> dict.fromkeys('spam')

{'s': None, 'p': None, 'a': None, 'm': None}

>>> 1./7.

0.14285714285714285

>>> import time

>>> time.time() - time.time()

-9.5367431640625e-07

All the problems have several possible solutions, which differ mostly in style and 
your personal preference.

Testing dictionaries
The problem with dictionaries is that they are internally implemented as hash tables, 
resulting in an effectively random representation order. Since the doctest system 
requires a representation string that is identical in meaning (save for certain doctest 
flags, of course) to the docstring, this does not work. Naturally, there are several 
workaround options available and all have some advantages and disadvantages.

The first is using the pprint library to format it in a pretty way:

>>> import pprint

>>> data = dict.fromkeys('spam')

>>> pprint.pprint(data)

{'a': None, 'm': None, 'p': None, 's': None}

Since the pprint library always sorts the items before outputting, this solves the 
problem with random representation orders. However, it does require an extra 
import and function call, which some people prefer to avoid.
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Another option is manual sorting of the items:

>>> data = dict.fromkeys('spam')

>>> sorted(data.items())

[('a', None), ('m', None), ('p', None), ('s', None)]

The downside here is that it is not visible from the output that data is a dictionary, 
which makes the output less readable.

Lastly, comparing the dict with a different dict comprised of the same elements 
works as well:

>>> data = dict.fromkeys('spam')

>>> data == {'a': None, 'm': None, 'p': None, 's': None}

True

A perfectly okay solution, of course! But True is not really the clearest output, 
especially if the comparison doesn't work:

Failed example:

    data == {'a': None, 'm': None, 'p': None}

Expected:

    True

Got:

    False

On the other hand, the other options presented previously show both the expected 
value and the returned value correctly:

Failed example:

    sorted(data.items())

Expected:

    [('a', None), ('m', None), ('p', None)]

Got:

    [('a', None), ('m', None), ('p', None), ('s', None)]

Failed example:

    pprint.pprint(data)

Expected:

    {'a': None, 'm': None, 'p': None}

Got:

    {'a': None, 'm': None, 'p': None, 's': None}
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Personally, out of the solutions presented, I would recommend using pprint, as I 
find it the most readable solution, but all the solutions have some merits to them.

Testing floating-point numbers
For the same reason as a floating-point comparison can be problematic (that is, 
1/3 == 0.333), a representation string comparison is also problematic. The easiest 
solution is to simply add some rounding/clipping to your code, but the ELLIPSIS 
flag is also an option here. Here is a list of several solutions:

>>> 1/3  # doctest: +ELLIPSIS

0.333...

>>> '%.3f' % (1/3)

'0.333'

>>> '{:.3f}'.format(1/3)

'0.333'

>>> round(1/3, 3)

0.333

>>> 0.333 < 1/3 < 0.334

True

When the ELLIPSIS option flag is enabled globally anyhow, that would be the most 
obvious solution. In other cases, I recommend one of the alternative solutions.

Times and durations
For timings, the problems that you will encounter are quite similar to the floating-
point issues. When measuring the duration execution time of a code snippet, there 
will always be some variation present. That's why the most stable solution for 
tests, including time, is limiting the precision, although even that is no guarantee. 
Regardless, the simplest solution checks whether the delta between the two times is 
smaller than a certain number, as follows:

>>> import time

>>> a = time.time()

>>> b = time.time()

>>> (b - a) < 0.01

True
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For the timedelta objects, however, it's slightly more complicated. Yet, this is where 
the ELLIPSIS flag definitely comes in handy again:

>>> import datetime

>>> a = datetime.datetime.now()

>>> b = datetime.datetime.now()

>>> str(b - a)  # doctest: +ELLIPSIS

'0:00:00.000...

The alternative to the ELLIPSIS option flag would be comparing the days, hours, 
minutes, and microseconds in timedelta separately.

In a later paragraph, we will see a completely stable solution for problems like these 
using mock objects. For doctests, however, that is generally overkill.

Testing with py.test
The py.test tool makes it very easy to write tests and run them. There are a few 
other options such as nose and the bundled unittest module available, but the 
py.test library offers a very good combination of usability and active development. 
In the past, I was an avid nose user but have since switched to py.test as it tends 
to be easier to use and has better community support, in my experience at least. 
Regardless, nose is still a good choice, and if you're already using it, there is little 
reason to switch and rewrite all of your tests. When writing tests for a new project, 
however, py.test can be much more convenient.

Now, we will run the doctests from the previously discussed square.py file using 
py.test.

First, start by installing py.test, of course:

pip install pytest

Now you can do a test run, so let's give the doctests we have in square.py a try:

# py.test --doctest-modules -v square.py

======================== test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.2, py-1.4.30, pluggy-0.3.1 -- 
python3.5

cachedir: .cache

rootdir: code, inifile: pytest.ini

collected 1 items



Chapter 10

[ 275 ]

square.py::square.square PASSED

===================== 1 passed in 0.02 seconds ======================

The difference between the unittest and 
py.test output
We have the doctests in square.py. Let's create a new class called cube and create a 
proper set of tests outside of the code.

First of all, we have the code of cube.py, similar to square.py but minus the 
doctests, since we don't need them anymore:

def cube(n):

    '''

    Returns the input number, cubed

    Args:

        n (int): The number to cube

    Returns:

        int: The cubed result

    '''

    return n ** 3

Now let's start with the unittest example, test_cube.py:

import cube

import unittest

class TestCube(unittest.TestCase):

    def test_0(self):

        self.assertEqual(cube.cube(0), 0)

    def test_1(self):

        self.assertEqual(cube.cube(1), 1)

    def test_2(self):
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        self.assertEqual(cube.cube(2), 8)

    def test_3(self):

        self.assertEqual(cube.cube(3), 27)

    def test_no_arguments(self):

        with self.assertRaises(TypeError):

            cube.cube()

    def test_exception_str(self):

        with self.assertRaises(TypeError):

            cube.cube('x')

if __name__ == '__main__':

    unittest.main()

This can be executed by executing the file itself:

# python test_cube.py -v

test_0 (__main__.TestCube) ... ok

test_1 (__main__.TestCube) ... ok

test_2 (__main__.TestCube) ... ok

test_3 (__main__.TestCube) ... ok

test_exception_str (__main__.TestCube) ... ok

test_no_arguments (__main__.TestCube) ... ok

----------------------------------------------------------------------

Ran 6 tests in 0.001s

OK

Alternatively, it can be done through the module:

# python -m unittest -v test_cube.py

test_0 (test_cube.TestCube) ... ok

test_1 (test_cube.TestCube) ... ok

test_2 (test_cube.TestCube) ... ok

test_3 (test_cube.TestCube) ... ok

test_exception_str (test_cube.TestCube) ... ok
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test_no_arguments (test_cube.TestCube) ... ok

----------------------------------------------------------------------

Ran 6 tests in 0.001s

OK

This one is through py.test:

# py.test -v test_cube.py

====================== test session starts ======================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1 -- 
python3.5

cachedir: ../.cache

rootdir: code, inifile: pytest.ini

collected 6 items

test_cube.py::TestCube::test_0 PASSED

test_cube.py::TestCube::test_1 PASSED

test_cube.py::TestCube::test_2 PASSED

test_cube.py::TestCube::test_3 PASSED

test_cube.py::TestCube::test_exception_str PASSED

test_cube.py::TestCube::test_no_arguments PASSED

=================== 6 passed in 0.02 seconds ====================

We even have nose:

# nosetests -v test_cube.py

test_0 (test_cube.TestCube) ... ok

test_1 (test_cube.TestCube) ... ok

test_2 (test_cube.TestCube) ... ok

test_3 (test_cube.TestCube) ... ok

test_exception_str (test_cube.TestCube) ... ok

test_no_arguments (test_cube.TestCube) ... ok

----------------------------------------------------------------------

Ran 6 tests in 0.001s

OK
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As long as all the results are successful, the differences between unittest and 
py.test are slim. In the case of unittest and nose, the results are identical. This 
time around, however, we are going to break the code to show the difference when it 
actually matters. Instead of the cube code, we will add the square code. So returning 
n ** 2 instead of n ** 3 from square.

First of all, we have the regular unittest output:

# python test_cube.py -v

test_0 (__main__.TestCube) ... ok

test_1 (__main__.TestCube) ... ok

test_2 (__main__.TestCube) ... FAIL

test_3 (__main__.TestCube) ... FAIL

test_exception_str (__main__.TestCube) ... ok

test_no_arguments (__main__.TestCube) ... ok

======================================================================

FAIL: test_2 (__main__.TestCube)

----------------------------------------------------------------------

Traceback (most recent call last):

  File "test_cube.py", line 13, in test_2

    self.assertEqual(cube.cube(2), 8)

AssertionError: 4 != 8

======================================================================

FAIL: test_3 (__main__.TestCube)

----------------------------------------------------------------------

Traceback (most recent call last):

  File "test_cube.py", line 16, in test_3

    self.assertEqual(cube.cube(3), 27)

AssertionError: 9 != 27

----------------------------------------------------------------------

Ran 6 tests in 0.001s

FAILED (failures=2)
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Not all that bad, as per each test returns a nice stack trace that includes the values 
and everything. Yet, we can observe a small difference here when compared with the 
py.test run:

# py.test -v test_cube.py

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1 -- 
python3.5

cachedir: ../.cache

rootdir: code, inifile: pytest.ini

collected 6 items

test_cube.py::TestCube::test_0 PASSED

test_cube.py::TestCube::test_1 PASSED

test_cube.py::TestCube::test_2 FAILED

test_cube.py::TestCube::test_3 FAILED

test_cube.py::TestCube::test_exception_str PASSED

test_cube.py::TestCube::test_no_arguments PASSED

============================= FAILURES =============================

_________________________ TestCube.test_2 __________________________

self = <test_cube.TestCube testMethod=test_2>

    def test_2(self):

>       self.assertEqual(cube.cube(2), 8)

E       AssertionError: 4 != 8

test_cube.py:13: AssertionError

_________________________ TestCube.test_3 __________________________

self = <test_cube.TestCube testMethod=test_3>

    def test_3(self):

>       self.assertEqual(cube.cube(3), 27)

E       AssertionError: 9 != 27

test_cube.py:16: AssertionError

================= 2 failed, 4 passed in 0.03 seconds ================
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In small cases such as these, the difference is not all that apparent, but when testing 
complicated code with large stack traces, it becomes even more useful. However, for 
me personally, seeing the surrounding test code is a big advantage. In the example 
that was just discussed, the self.assertEqual(...) line shows the entire test, but 
in many other cases, you will need more information. The difference between the 
regular unittest module and the py.test module is that you can see the entire 
function with all of the code and the output. Later in this chapter, we will see how 
powerful this can be when writing more advanced tests.

To truly appreciate the py.test output, we need to enable colors as well. The colors 
depend on your local color schemes, of course, but it's useful to see them side by side 
at least once, as shown here:

Perhaps you are wondering now, "Is that all?" The only difference between py.test 
and unittest is a bit of color and a slightly different output? Well, far from it, there 
are many other differences, but this alone is enough reason to give it a try.

The difference between unittest and  
py.test tests
The improved output does help a bit, but the combination of improved output and 
a much easier way to write tests is what makes py.test so useful. There are quite a 
few methods for making the tests simpler and more legible, and in many cases, you 
can choose which you prefer. As always, readability counts, so choose wisely and try 
not to over-engineer the solutions.
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Simplifying assertions
Where the unittest library requires the usage of self.assertEqual to compare 
variables, py.test uses some magic to allow for simpler tests using regular  
assert statements.

The following test file contains both styles of tests, so they can be compared easily:

import cube
import pytest
import unittest

class TestCube(unittest.TestCase):
    def test_0(self):
        self.assertEqual(cube.cube(0), 0)

    def test_1(self):
        self.assertEqual(cube.cube(1), 1)

    def test_2(self):
        self.assertEqual(cube.cube(2), 8)

    def test_3(self):
        self.assertEqual(cube.cube(3), 27)

    def test_no_arguments(self):
        with self.assertRaises(TypeError):
            cube.cube()

    def test_exception_str(self):
        with self.assertRaises(TypeError):
            cube.cube('x')

class TestPyCube(object):
    def test_0(self):
        assert cube.cube(0) == 0

    def test_1(self):
        assert cube.cube(1) == 1

    def test_2(self):
        assert cube.cube(2) == 8
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    def test_3(self):
        assert cube.cube(3) == 27

    def test_no_arguments(self):
        with pytest.raises(TypeError):
            cube.cube()

    def test_exception_str(self):
        with pytest.raises(TypeError):
            cube.cube('x')

So what did we do? Well, we simply replaced self.assertEqual with assert 
... == ... and with self.assertRaises with with pytest.raises. A minor 
improvement indeed, but the actual benefit is seen in the failure output. The first two 
use the unittest style and the latter two use the py.test style:

============================= FAILURES =============================

_________________________ TestCube.test_2 __________________________

self = <test_cube.TestCube testMethod=test_2>

    def test_2(self):

>       self.assertEqual(cube.cube(2), 8)

E       AssertionError: 4 != 8

test_cube.py:14: AssertionError

_________________________ TestCube.test_3 __________________________

self = <test_cube.TestCube testMethod=test_3>

    def test_3(self):

>       self.assertEqual(cube.cube(3), 27)

E       AssertionError: 9 != 27

test_cube.py:17: AssertionError

________________________ TestPyCube.test_2 _________________________

self = <test_cube.TestPyCube object at 0x107c7bef0>
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    def test_2(self):

>       assert cube.cube(2) == 8

E       assert 4 == 8

E        +  where 4 = <function cube at 0x107bb7c80>(2)

E        +    where <function cube at 0x107bb7c80> = cube.cube

test_cube.py:36: AssertionError

________________________ TestPyCube.test_3 _________________________

self = <test_cube.TestPyCube object at 0x107c56a90>

    def test_3(self):

>       assert cube.cube(3) == 27

E       assert 9 == 27

E        +  where 9 = <function cube at 0x107bb7c80>(3)

E        +    where <function cube at 0x107bb7c80> = cube.cube

test_cube.py:39: AssertionError

================ 4 failed, 8 passed in 0.05 seconds ================

Therefore, in addition to seeing the values that were compared, we can actually see 
the function that was called and which input parameters it received. With the static 
numbers that we have here, it may not be that useful, but it is invaluable when using 
variables, as we'll see in the next paragraphs.

The preceding tests are all stored in a class. With py.test, 
that's completely optional, however. If readability or inheritance 
makes it useful to encapsulate the tests in a class, then feel free to 
do so, but as far as py.test is concerned, there is no advantage.

The standard py.test behavior works for most test cases, but it may not be enough 
for some custom types. For example, let's say that we have a Spam object with a 
count attribute that should be compared with the count attribute on another object. 
This part can easily be achieved by implementing the __eq__ method on Spam, but 
it does not improve clarity. Since count is the attribute that we compare, it would be 
useful if the tests show count when errors are displayed. First is the class with two 
tests, one working and one broken to demonstrate the regular output:

test_spam.py

class Spam(object):
    def __init__(self, count):
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        self.count = count

    def __eq__(self, other):
        return self.count == other.count

def test_spam_equal_correct():
    a = Spam(5)
    b = Spam(5)

    assert a == b

def test_spam_equal_broken():
    a = Spam(5)
    b = Spam(10)

    assert a == b

And here is the regular py.test output:

============================= FAILURES =============================

______________________ test_spam_equal_broken ______________________

    def test_spam_equal_broken():

        a = Spam(5)

        b = Spam(10)

>       assert a == b

E       assert <test_spam.Spam object at 0x105b484e0> == <test_spam.Spam 
object at 0x105b48518>

test_spam.py:20: AssertionError

================ 1 failed, 1 passed in 0.01 seconds ================

The default test output is still usable since the function is fairly straightforward, and 
the value for count is visible due to it being available in the constructor. However, 
it would have been more useful if we could explicitly see the value of count. By 
adding a pytest_assertrepr_compare function to the conftest.py file, we can 
modify the behavior of the assert statements.
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That's a special file for py.test that can be used to override 
or extend py.test. Note that this file will automatically be 
loaded by every test run in that directory, so we need to test 
the types of both the left-hand side and the right-hand side of 
the operator. In this case, it's a and b.

conftest.py

import test_spam

def pytest_assertrepr_compare(config, op, left, right):
    left_spam = isinstance(left, test_spam.Spam)
    right_spam = isinstance(right, test_spam.Spam)
    if left_spam and right_spam and op == '==':
        return [
            'Comparing Spam instances:',
            '    counts: %s != %s' % (left.count, right.count),
        ]

The preceding function will be used as the output for our test. So when it fails, this 
time we get our own, slightly more useful, output:

============================= FAILURES =============================

______________________ test_spam_equal_broken ______________________

    def test_spam_equal_broken():

        a = Spam(5)

        b = Spam(10)

>       assert a == b

E       assert Comparing Spam instances:

E             counts: 5 != 10

test_spam.py:20: AssertionError

================ 1 failed, 1 passed in 0.01 seconds ================

In this case, we could have easily changed the __repr__ function of Spam as well, but 
there are many cases where modifying the py.test output can be useful. Similar to 
this, there is specific support for many types, such as sets, dictionaries, and texts.
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Parameterizing tests
So far, we have specified every test separately, but we can simplify tests a lot by 
parameterizing them. Both the square and cube tests were very similar; a certain 
input gave a certain output. This is something that can easily be verified using 
a loop, of course, but using a loop in a test has a pretty big downside. It will be 
executed as a single test. This means that it will fail in its entirety if a single test 
iteration of the loop fails, and that is a problem. Instead of having an output for 
every version, you will get it only once, while they actually might be separate bugs. 
That's where parameters help. You can simply create a list of parameters and the 
expected data and make it run the test function for every parameter separately:

import cube
import pytest

cubes = (
    (0, 0),
    (1, 1),
    (2, 8),
    (3, 27),
)

@pytest.mark.parametrize('n,expected', cubes)
def test_cube(n, expected):
    assert cube.cube(n) == expected

This outputs the following, as you might have already expected:

============================= FAILURES =============================

__________________________ test_cube[2-8] __________________________

n = 2, expected = 8

    @pytest.mark.parametrize('n,expected', cubes)

    def test_cube(n, expected):

>       assert cube.cube(n) == expected

E       assert 4 == 8

E        +  where 4 = <function cube at 0x106576268>(2)

E        +    where <function cube at 0x106576268> = cube.cube

test_cube.py:15: AssertionError

_________________________ test_cube[3-27] __________________________
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n = 3, expected = 27

    @pytest.mark.parametrize('n,expected', cubes)

    def test_cube(n, expected):

>       assert cube.cube(n) == expected

E       assert 9 == 27

E        +  where 9 = <function cube at 0x106576268>(3)

E        +    where <function cube at 0x106576268> = cube.cube

test_cube.py:15: AssertionError

================ 2 failed, 2 passed in 0.02 seconds ================

With the parameterized tests, we can see the parameters clearly, which means we 
can see all inputs and outputs without any extra effort.

Generating the list of tests dynamically at runtime is also possible with a global 
function. Similar to the pytest_assertrepr_compare function that we added 
to conftest.py earlier, we can add a pytest_generate_tests function, which 
generates tests.

Creating the pytest_generate_tests function can be useful only to test a subset of 
options depending on the configuration options. If possible, however, I recommend 
trying to configure selective tests using fixtures instead, as they are somewhat more 
explicit. The problem with functions such as pytest_generate_tests is that they 
are global and don't discriminate between specific tests, resulting in strange behavior 
if you are not expecting that.

Automatic arguments using fixtures
The fixture system is one of the most magical features of py.test. It magically 
executes a fixture function with the same name as your arguments. Because of this, 
the naming of the arguments becomes very important, as they can easily collide 
with other fixtures. To prevent collisions, the scope is set to function by default. 
However, class, module, and session are also valid options for the scope. There 
are several fixtures available by default, some of which you will use often, and 
others most likely never. A complete list can always be generated with the following 
command:

# py.test --quiet --fixtures

cache

    Return a cache object that can persist state between testing 
sessions.

    cache.get(key, default)
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    cache.set(key, value)

    Keys must be a ``/`` separated value, where the first part is usually 
the

    name of your plugin or application to avoid clashes with other cache 
users.

    Values can be any object handled by the json stdlib module.

capsys

    enables capturing of writes to sys.stdout/sys.stderr and makes

    captured output available via ``capsys.readouterr()`` method calls

    which return a ``(out, err)`` tuple.

capfd

    enables capturing of writes to file descriptors 1 and 2 and makes

    captured output available via ``capfd.readouterr()`` method calls

    which return a ``(out, err)`` tuple.

record_xml_property

    Fixture that adds extra xml properties to the tag for the calling 
test.

    The fixture is callable with (name, value), with value being 
automatically

    xml-encoded.

monkeypatch

    The returned ``monkeypatch`` funcarg provides these

    helper methods to modify objects, dictionaries or os.environ::

    monkeypatch.setattr(obj, name, value, raising=True)

    monkeypatch.delattr(obj, name, raising=True)

    monkeypatch.setitem(mapping, name, value)

    monkeypatch.delitem(obj, name, raising=True)

    monkeypatch.setenv(name, value, prepend=False)

    monkeypatch.delenv(name, value, raising=True)

    monkeypatch.syspath_prepend(path)

    monkeypatch.chdir(path)

    All modifications will be undone after the requesting

    test function has finished. The ``raising``
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    parameter determines if a KeyError or AttributeError

    will be raised if the set/deletion operation has no target.

pytestconfig

    the pytest config object with access to command line opts.

recwarn

    Return a WarningsRecorder instance that provides these methods:

    * ``pop(category=None)``: return last warning matching the category.

    * ``clear()``: clear list of warnings

    See http://docs.python.org/library/warnings.html for information

    on warning categories.

tmpdir_factory

    Return a TempdirFactory instance for the test session.

tmpdir

    return a temporary directory path object

    which is unique to each test function invocation,

    created as a sub directory of the base temporary

    directory.  The returned object is a `py.path.local`_

    path object.

The standard fixtures are quite well documented, but a few examples never hurt. The 
next paragraphs demonstrate fixture usage.

Cache
The cache fixture is as simple as it is useful; there is a get function and a set 
function, and it remains between sessions. This test, for example, will allow five 
executions and raise an error every time after that. While it is not the most useful and 
elaborate example, it does show how the cache function works:

def test_cache(cache):
    counter = cache.get('counter', 0)
    assert counter < 5
    cache.set('counter', counter + 1)

The default value (0 in this case) is required for the 
cache.get function.

The cache can be cleared through the --cache-clear command-line parameter, and 
all caches can be shown through --cache-show.
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Custom fixtures
Bundled fixtures are quite useful, but within most projects, you will need to create your 
own fixtures to make things easier. Fixtures make it trivial to repeat code that is needed 
more often. You are most likely wondering how this is different from a regular function, 
context wrapper, or something else, but the special thing about fixtures is that they 
themselves can accept fixtures as well. So, if your function needs the pytestconfig 
variables, it can ask for it without needing to modify the calling functions.

The use cases for fixtures strongly depend on the projects, and because of that, it is 
difficult to generate a universally useful example, but a theoretical one is of course 
an option. The basic premise is simple enough, though: a function with the pytest.
fixture decorator, which returns a value that will be passed along as an argument. 
Also, the function can take parameters and fixtures just as any test can. The only 
notable variation is pytest.yield_fixture. This fixture variation has one small 
difference; the actual test will be executed at the yield (more than one yield results 
in errors) and the code before/after functions as setup/teardown code. The most 
basic example of a fixture with yield_fixture looks like this:

import pytest

@pytest.yield_fixture
def some_yield_fixture():
    # Before the function
    yield 'some_value_to_pass_as_parameter'
    # After the function

@pytest.fixture
def some_regular_fixture():
    # Do something here
    return 'some_value_to_pass_as_parameter'

These fixtures take no parameters and simply pass a parameter to the py.test 
functions. A more useful example would be setting up a database connection and 
executing a query in a transaction:

import pytest
import sqlite3

@pytest.fixture(params=[':memory:'])
def connection(request):
    return sqlite3.connect(request.param)
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@pytest.yield_fixture
def transaction(connection):
    with connection:
        yield connection

def test_insert(transaction):
    transaction.execute('create table test (id integer)')
    transaction.execute('insert into test values (1), (2), (3)')

Naturally, instead of using the :memory: database in sqlite3, we can use a different 
database name (or several) as well.

Print statements and logging
Even though print statements are generally not the most optimal way to debug 
code, I admit that it is still my default method of debugging. This means that when 
running and trying tests, I will include many print statements. However, let's see 
what happens when we try this with py.test. Here is the testing code:

import sys
import logging

def test_print():
    print('Printing to stdout')
    print('Printing to stderr', file=sys.stderr)
    logging.debug('Printing to debug')
    logging.info('Printing to info')
    logging.warning('Printing to warning')
    logging.error('Printing to error')

The following is the actual output:

# py.test test_print.py -v

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1

cachedir: ../.cache

rootdir: code, inifile: pytest.ini

collected 1 items

test_print.py .

===================== 1 passed in 0.01 seconds =====================
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So, all of our print statements and logging got trashed? Well, not really. In this case, 
py.test assumed that it wouldn't be relevant to you, so it ignored the output. But 
what about the same test with an error?

import sys
import logging

def test_print():
    print('Printing to stdout')
    print('Printing to stderr', file=sys.stderr)
    logging.debug('Printing to debug')
    logging.info('Printing to info')
    logging.warning('Printing to warning')
    logging.error('Printing to error')
    assert False, 'Dying because we can'

And the output with the error?

============================= FAILURES =============================

____________________________ test_print ____________________________

    def test_print():

        print('Printing to stdout')

        print('Printing to stderr', file=sys.stderr)

        logging.debug('Printing to debug')

        logging.info('Printing to info')

        logging.warning('Printing to warning')

        logging.error('Printing to error')

>       assert False, 'Dying because we can'

E       AssertionError: Dying because we can

E       assert False

test_print.py:12: AssertionError

------------------------ Captured stdout call ------------------------

Printing to stdout

------------------------ Captured stderr call ------------------------

Printing to stderr

WARNING:root:Printing to warning

ERROR:root:Printing to error

===================== 1 failed in 0.01 seconds =====================
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Wow! Do you see that? The stdout, stderr, and logging with a level of WARNING or 
higher do get output now. DEBUG and INFO still won't be visible, but we'll see more 
about that later in this chapter, in the logging section.

Plugins
One of the most powerful features of py.test is the plugin system. Within py.test, 
nearly everything can be modified using the available hooks, the result of which 
is that writing plugins is almost simple. Actually, you already wrote a few plugins 
in the previous paragraphs without realizing it. By packaging conftest.py in a 
different package or directory, it becomes a py.test plugin. We will explain more 
about packaging in Chapter 15, Packaging – Creating Your Own Libraries or Applications. 
Generally, it won't be required to write your own plugin because the odds are that 
the plugins you seek are already available. A small list of plugins can be found on 
the py.test website at https://pytest.org/latest/plugins.html, and a longer 
list can be found through the Python package index at https://pypi.python.org/
pypi?%3Aaction=search&term=pytest-.

By default, py.test does cover quite a bit of the desirable features, so you can easily 
do without plugins, but within the packages that I write myself, I generally default to 
the following list:

•	 pytest-cov

•	 pytest-pep8

•	 pytest-flakes

By using these plugins, it becomes much easier to maintain the code quality of your 
project. In order to understand why, we will take a closer look at these packages in 
the following paragraphs.

pytest-cov
Using the pytest-cov package, you can see whether your code is properly covered 
by tests or not. Internally, it uses the coverage package to detect how much of the 
code is being tested. To demonstrate the principle, we will check the coverage of a 
cube_root function.

Make sure you have pytest-cov installed:
pip install pytest-cov

https://pytest.org/latest/plugins.html
https://pypi.python.org/pypi?%3Aaction=search&term=pytest-
https://pypi.python.org/pypi?%3Aaction=search&term=pytest-
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First of all, let's create a .coveragerc file with some useful defaults:

[report]
# The test coverage you require, keeping to 100% is not easily
# possible for all projects but it's a good default for new projects.
fail_under = 100

# These functions are generally only needed for debugging and/or
# extra safety so we want to ignore them from the coverage
# requirements
exclude_lines =
    # Make it possible to ignore blocks of code
    pragma: no cover

    # Generally only debug code uses this
    def __repr__

    # If a debug setting is set, skip testing
    if self\.debug:
    if settings.DEBUG

    # Don't worry about safety checks and expected errors
    raise AssertionError
    raise NotImplementedError

    # This code will probably never run so don't complain about that
    if 0:
    if __name__ == .__main__.:
    @abc.abstractmethod

[run]
# Make sure we require that all branches of the code is covered. So
# both the if and the else
branch = True

# No need to test the testing code
omit =
    test_*.py

Here is the cube_root.py code:

def cube_root(n):
    '''
    Returns the cube root of the input number
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    Args:
        n (int): The number to cube root

    Returns:
        int: The cube root result
    '''
    if n >= 0:
        return n ** (1/3)
    else:
        raise ValueError('A number larger than 0 was expected')

And the test_cube_root.py code:

import pytest
import cube_root

cubes = (
    (0, 0),
    (1, 1),
    (8, 2),
    (27, 3),
)

@pytest.mark.parametrize('n,expected', cubes)
def test_cube_root(n, expected):
    assert cube_root.cube_root(n) == expected

Now let's see what happens when we run this with the --cov-report=html 
parameter:

# py.test test_cube_root.py --cov-report=html --cov-report=term-missing 
--cov=cube_root.py

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1

rootdir: code, inifile: pytest.ini

plugins: cov-2.2.0

collected 4 items

test_cube_root.py ....

--------- coverage: platform darwin, python 3.5.1-final-0 ----------

Name           Stmts   Miss Branch BrPart  Cover   Missing
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----------------------------------------------------------

cube_root.py       4      1      2      1    67%   14, 11->14

Coverage HTML written to dir htmlcov

Traceback (most recent call last):

...

pytest_cov.plugin.CoverageError: Required test coverage of 100% not 
reached. Total coverage: 66.67%

What happened here? It looks like we forgot to test some part of the code: line 14 and 
the branch that goes from line 11 to line 14. This output isn't all that readable, and 
that's why we specified the HTML output as well:

Perfect! So now we know. We forgot to test for values smaller than 0.

The yellow line indicates that only one part of the branch was executed ((n >= 0) 
== True) and not the other ((n >= 0) == False), this occurs with if statements, 
loops, and other things where at least one of the branches is not covered. For 
example, if a loop over an empty array is an impossible scenario, then the test can be 
partially skipped:

#  pragma: no branch
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But since we know the problem, that is, the missing test for ValueError, let's add the 
test case:

import cube
import pytest

cubes = (
    (0, 0),
    (1, 1),
    (2, 8),
    (3, 27),
)

@pytest.mark.parametrize('n,expected', cubes)
def test_cube(n, expected):
    assert cube.cube(n) == expected

def test_cube_root_below_zero():
    with pytest.raises(ValueError):
        cube_root.cube_root(-1)

Then we run the test again:

# py.test test_cube_root.py --cov-report=html --cov-report=term-missing 
--cov=cube_root.py

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1

rootdir: code, inifile: pytest.ini

plugins: cov-2.2.0

collected 5 items

test_cube_root.py .....

---------- coverage: platform darwin, python 3.5.1-final-0 -----------

Name           Stmts   Miss Branch BrPart  Cover   Missing

----------------------------------------------------------

cube_root.py       4      0      2      0   100%

Coverage HTML written to dir htmlcov

===================== 5 passed in 0.03 seconds =====================
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Perfect! 100% coverage without a problem, and the HTML output is also exactly 
what we expect:

But what if the code was slightly different? Instead of raising a ValueError for 
values below 0, what if we just raise a NotImplementedError?

def cube_root(n):
    '''
    Returns the cube root of the input number

    Args:
        n (int): The number to cube root

    Returns:
        int: The cube root result
    '''
    if n >= 0:
        return n ** (1 / 3)
    else:
        raise NotImplementedError(
            'A number larger than 0 was expected')
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And remove the extra test as well:

import cube_root
import pytest

cubes = (
    (0, 0),
    (1, 1),
    (8, 2),
    (27, 3),
)

@pytest.mark.parametrize('n,expected', cubes)
def test_cube_root(n, expected):
    assert cube_root.cube_root(n) == expected

Run the test again:

# py.test test_cube_root.py --cov-report=html --cov-report=term-missing 
--cov=cube_root.py

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1

rootdir: code, inifile: pytest.ini

plugins: cov-2.2.0

collected 4 items

test_cube_root.py ....

---------- coverage: platform darwin, python 3.5.1-final-0 -----------

Name           Stmts   Miss Branch BrPart  Cover   Missing

----------------------------------------------------------

cube_root.py       3      0      0      0   100%

Coverage HTML written to dir htmlcov

===================== 4 passed in 0.03 seconds =====================
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You might wonder why we get 100% test coverage now though we actually 
didn't cover NotImplementedError. This is because we added raise 
NotImplementedError to the ignore list in the .coveragerc file. This also  
gives us a different result in the HTML output:

Even if we add the test for NotImplementedError in the test file, the coverage report 
will still ignore the line.

pytest-pep8 and pytest-flakes
Pyflakes and pep8 are code quality testing tools that are very useful for making your 
code readable and pep8 compliant. The pytest-pep8 and pytest-flakes modules 
automatically execute these checks before running the actual tests. To install them, 
simply execute this line:

# pip install pytest-flakes pytest-pep8

After that, you'll be able to run both of them like this:

# py.test --flakes --pep8 cube_root.py

======================= test session starts ========================

platform darwin -- Python 3.5.1, pytest-2.8.5, py-1.4.31, pluggy-0.3.1

rootdir: code, inifile: pytest.ini

plugins: cov-2.2.0, flakes-1.0.1, pep8-1.0.6
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collected 2 items

cube_root.py ..

===================== 2 passed in 0.01 seconds =====================

Configuring plugins
To make sure that all the plugins get executed and to configure them, simply add the 
settings to the pytest.ini file. The following example can be a reasonable default 
for development, but for production releases, you will probably want to care of the 
UnusedImport warnings.

pytest.ini:

[pytest]
python_files =
    your_project_source/*.py
    tests/*.py

addopts =
    --doctest-modules
    --cov your_project_source
    --cov-report term-missing
    --cov-report html
    --pep8
    --flakes

# W391 is the error about blank lines at the end of a file
pep8ignore =
    *.py W391

# Ignore unused imports
flakes-ignore =
    *.py UnusedImport

When debugging to find out why a test is failing, it can be 
useful to simply look at the first test that fails. The py.test 
module offers both a -x flag to stop after the first failure and 
--maxfail=n to stop after n failures.
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Mock objects
When writing tests, this regularly occurs: you are testing not only your own code but 
also the interaction with external resources, such as hardware, databases, web hosts, 
servers, and others. Some of these can be run safely, but certain tests are too slow, too 
dangerous, or even impossible to run. In those cases, mock objects are your friends; 
they can be used to fake anything, so you can be certain that your code still returns 
the expected results without having any variation from external factors.

Using unittest.mock
The unittest.mock library provides two base objects, Mock and MagicMock, to 
easily mock any external resources. The Mock object is just a general generic mock 
object and MagicMock is mostly the same, but it has all the magic methods such as 
__contains__ and __len__ defined. In addition to this, it can make your life even 
easier. This is because in addition to creating mock objects manually, it is possible to 
patch objects directly using the patch decorator/context manager.

The following function uses random to return True or False given governed by a 
certain probability distribution. Due to the random nature of a function like this, it is 
notoriously difficult to test, but not with unittest.mock. With the use of unittest.
mock, it's easy to get repeatable results:

from unittest import mock
import random

def bernoulli(p):
    return random.random() > p

@mock.patch('random.random')
def test_bernoulli(mock_random):
    # Test for random value of 0.1
    mock_random.return_value = 0.1
    assert bernoulli(0.0)
    assert not bernoulli(0.1)
    assert mock_random.call_count == 2
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Wonderful, isn't it? Without having to modify the original code, we can make 
sure that random.random now returns 0.1 instead of some random number. For 
completeness, the version that uses a context manager is given here:

from unittest import mock
import random

def bernoulli(p):
    return random.random() > p

def test_bernoulli():
    with mock.patch('random.random') as mock_random:
        mock_random.return_value = 0.1
        assert bernoulli(0.0)
        assert not bernoulli(0.1)
        assert mock_random.call_count == 2

The possibilities with mock objects are nearly endless. They vary from raising 
exceptions on access to faking entire APIs and returning different results on multiple 
calls. For example, let's fake deleting a file:

import os
from unittest import mock

def delete_file(filename):
    while os.path.exists(filename):
        os.unlink(filename)

@mock.patch('os.path.exists', side_effect=(True, False, False))
@mock.patch('os.unlink')
def test_delete_file(mock_exists, mock_unlink):
    # First try:
    delete_file('some non-existing file')

    # Second try:
    delete_file('some non-existing file')

Quite a bit of magic in this example! The side_effect parameter tells mock to 
return those values in that sequence, making sure that the first call to os.path.
exists returns True and the other two return False. The mock.patch without 
arguments simply returns a callable that does nothing.
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Using py.test monkeypatch
The monkeypatch object in py.test is a fixture that allows mocking as well. While 
it may seem useless after seeing the possibilities with unittest.mock, in summary, 
it's not. Some of the functionality does overlap, but while unittest.mock focuses on 
controlling and recording the actions of an object, the monkeypatch fixture focuses 
on simple and temporary environmental changes. Some examples of these are given 
in the following list:

•	 Setting and deleting attributes using monkeypatch.setattr and 
monkeypatch.delattr

•	 Setting and deleting dictionary items using monkeypatch.setitem and 
monkeypatch.delitem

•	 Setting and deleting environment variables using monkeypatch.setenv and 
monkeypatch.delenv

•	 Inserting an extra path to sys.path before all others using monkeypatch.
syspath_prepend

•	 Changing the directory using monkeypatch.chdir

To undo all modifications, simply use monkeypatch.undo.

For example, let's say that for a certain test, we need to work from a different 
directory. With mock, your options would be to mock pretty much all file functions, 
including the os.path functions, and even in that case, you will probably forget 
about a few. So, it's definitely not useful in this case. Another option would be to put 
the entire test into a try…finally block and just do an os.chdir before and after the 
testing code. This is quite a good and safe solution, but it's a bit of extra work, so let's 
compare the two methods:

import os

def test_chdir_monkeypatch(monkeypatch):
    monkeypatch.chdir('/dev')
    assert os.getcwd() == '/dev'
    monkeypatch.chdir('/')
    assert os.getcwd() == '/'

def test_chdir():
    original_directory = os.getcwd()
    try:
        os.chdir('/dev')
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        assert os.getcwd() == '/dev'
        os.chdir('/')
        assert os.getcwd() == '/'
    finally:
        os.chdir(original_directory)

They effectively do the same, but one needs four lines of code whereas the other 
needs eight. All of these can easily be worked around with a few extra lines of code, 
of course, but the simpler the code is, the fewer mistakes you can make and the more 
readable it is.

Logging
The Python logging module is one of those modules that are extremely useful, but it 
tends to be very difficult to use correctly. The result is often that people just disable 
logging completely and use print statements instead. This is insightful but a waste of 
the very extensive logging system in Python. If you've written Java code before, you 
might be familiar with the Log4j Java library. The Python logging module is largely 
and primarily based on that library.

The most important objects of the logging module are the following:

•	 Logger: the actual logging interface
•	 Handler: This processes the log statements and outputs them
•	 Formatter: This formats the input data into a string
•	 Filter: This allows filtering of certain messages

Within these objects, you can set the logging levels to one of the default levels:

•	 CRITICAL: 50

•	 ERROR: 40

•	 WARNING: 30

•	 INFO: 20

•	 DEBUG: 10

•	 NOTSET: 0

The numbers are the numeric values of these log levels. While you can generally 
ignore them, the order is obviously important while setting the minimum level. Also, 
when defining custom levels, you will have to overwrite existing levels if they have 
the same numeric value.
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Configuration
There are several ways to configure the logging system, ranging from pure code to 
JSON files or even remote configuration. The examples will use parts of the logging 
module later discussed in this chapter, but the usage of the config system is all 
that matters here. If you are not interested in the internal workings of the logging 
module, you should be able to get by with just this paragraph of the logging section.

Basic logging configuration
The most basic logging configuration is, of course, no configuration, but that will not 
get you much useful output:

import logging

logging.debug('debug')
logging.info('info')
logging.warning('warning')
logging.error('error')
logging.critical('critical')

With the default log level, you will only see a warning and up:

# python log.py

WARNING:root:warning

ERROR:root:error

CRITICAL:root:critical

A quick and easy start for a configuration is basicConfig. I recommend using this if 
you just need some quick logging for a script you're writing, but not for a full-blown 
application. While you can configure pretty much anything you wish, once you get 
a more complicated setup, there are usually more convenient options. We will talk 
more about that in later paragraphs, but first, we have a basicConfig that configures 
our logger to display some more information, including the logger name:

import logging

log_format = (
    '[%(asctime)s] %(levelname)-8s %(name)-12s %(message)s')

logging.basicConfig(
    filename='debug.log',
    format=log_format,
    level=logging.DEBUG,
)
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formatter = logging.Formatter(log_format)
handler = logging.StreamHandler()
handler.setLevel(logging.WARNING)
handler.setFormatter(formatter)
logging.getLogger().addHandler(handler)

We test the code:

logging.debug('debug')
logging.info('info')
some_logger = logging.getLogger('some')
some_logger.warning('warning')
some_logger.error('error')
other_logger = some_logger.getChild('other')
other_logger.critical('critical')

This will give us the following output on our screen:

# python log.py

[2015-12-02 15:56:19,449] WARNING  some         warning

[2015-12-02 15:56:19,449] ERROR    some         error

[2015-12-02 15:56:19,449] CRITICAL some.other   critical

And here is the output in the debug.log file:

[2015-12-02 15:56:19,449] DEBUG    root         debug
[2015-12-02 15:56:19,449] INFO     root         info
[2015-12-02 15:56:19,449] WARNING  some         warning
[2015-12-02 15:56:19,449] ERROR    some         error
[2015-12-02 15:56:19,449] CRITICAL some.other   critical

This configuration shows how log outputs can be configured with separate 
configurations, log levels, and, if you choose so, formatting. It tends to become 
unreadable though, which is why it's usually a better idea to use basicConfig only 
for simple configurations that don't involve multiple handlers.

Dictionary configuration
The dictconfig makes it possible to name all parts so that they can be reused easily, 
for example, a single formatter for multiple loggers and handlers. So let's rewrite our 
previous configuration using dictconfig:

from logging import config

config.dictConfig({
    'version': 1,
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    'formatters': {
        'standard': {
            'format': '[%(asctime)s] %(levelname)-8s '
            '%(name)-12s %(message)s',
        },
    },
    'handlers': {
        'file': {
            'filename': 'debug.log',
            'level': 'DEBUG',
            'class': 'logging.FileHandler',
            'formatter': 'standard',
        },
        'stream': {
            'level': 'WARNING',
            'class': 'logging.StreamHandler',
            'formatter': 'standard',
        },
    },
    'loggers': {
        '': {
            'handlers': ['file', 'stream'],
            'level': 'DEBUG',
        },
    },
})

The nice thing about the dictionary configuration is that it's very easy to extend 
and/or overwrite the logging configuration. For example, if you want to change the 
formatter for all of your logging, you can simply change the standard formatter or 
even loop through handlers.

JSON configuration
Since dictconfig takes any type of dictionary, it is actually quite simple to implement 
a different type of reader employing JSON or YAML files. This is especially useful 
as they tend to be a bit friendlier towards non-Python programmers. As opposed to 
Python files, they are easily readable and writable from outside of Python.

Let's assume that we have a log_config.json file such as the following:

{
    "version": 1,
    "formatters": {
        "standard": {
            "format": "[%(asctime)s] %(levelname)-8s %(name)-12s 
%(message)s"
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        }
    },
    "handlers": {
        "file": {
            "filename": "debug.log",
            "level": "DEBUG",
            "class": "logging.FileHandler",
            "formatter": "standard"
        },
        "stream": {
            "level": "WARNING",
            "class": "logging.StreamHandler",
            "formatter": "standard"
        }
    },
    "loggers": {
        "": {
            "handlers": ["file", "stream"],
            "level": "DEBUG"
        }
    }
}

We can simply use this code to read the config:

import json
from logging import config

with open('log_config.json') as fh:
    config.dictConfig(json.load(fh))

Ini file configuration
The file configuration is probably the most readable format for non-programmers. 
It uses the ini-style configuration format and uses the configparser module 
internally. The downside is that it is perhaps a little verbose, but it is clear enough 
and makes it easy to combine several configuration files without us having to worry 
too much about overwriting other configurations. Having said that, if dictConfig is 
an option, then it is most likely a better option. This is because fileConfig is slightly 
limited and awkward at times. Just look at the handlers as an example:

[formatters]
keys=standard

[handlers]
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keys=file,stream

[loggers]
keys=root

[formatter_standard]
format=[%(asctime)s] %(levelname)-8s %(name)-12s %(message)s

[handler_file]
level=DEBUG
class=FileHandler
formatter=standard
args=('debug.log',)

[handler_stream]
level=WARNING
class=StreamHandler
formatter=standard
args=(sys.stderr,)

[logger_root]
handlers=file,stream
level=DEBUG

Reading the files is extremely easy though:

from logging import config

config.fileConfig('log_config.ini')

One thing to make note of, however, is that if you look carefully, you will see that 
this config is slightly different from the other configs. With fileConfig you can't 
just use keyword arguments alone. The args is required for both FileHandler and 
StreamHandler.

The network configuration
The network configuration is both very convenient and a bit dangerous, because it 
allows you to configure your logger on the fly while your application/script is still 
running. The dangerous part is that the config is (partially) read by using the eval 
function, which allows people to potentially execute code within your application 
remotely. Even though logging.config.listen only listens to local connections, it 
can still be dangerous if you execute the code on a shared/unsafe host.
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Luckily, since version Python 3.4, it is possible to add a verify parameter, which 
is a function that will be executed to convert the input into the output. The default 
is obviously something along the lines of lambda config: config, but it can be 
configured to return just about anything.

To prove this point through an example, we need two scripts. One script will 
continuously print a few messages to the loggers and the other will change the 
logging configuration. We will start with the same test code that we had before but 
keep it running in an endless loop with a sleep in between:

import time
import logging
from logging import config

listener = config.listen()
listener.start()

try:
    while True:
        logging.debug('debug')
        logging.info('info')
        some_logger = logging.getLogger('some')
        some_logger.warning('warning')
        some_logger.error('error')
        other_logger = some_logger.getChild('other')
        other_logger.critical('critical')

        time.sleep(5)

except KeyboardInterrupt:
    # Stop listening and finish the listening thread
    logging.config.stopListening()
    listener.join()

Now comes the code that will send the configuration file:

import struct
import socket
from logging import config

with open('log_config.ini') as fh:
    data = fh.read()

# Open the socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
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# Connect to the server
sock.connect(('127.0.0.1', config.DEFAULT_LOGGING_CONFIG_PORT))
# Send the magic logging packet
sock.send(struct.pack('>L', len(data)))
# Send the config
sock.send(data)
# And close the connection again
sock.close()

Next, let's see the output. After the first execution of the loop, we will execute the 
second script to read the logging configuration:

# python log_networkconfig.py

WARNING:some:warning

ERROR:some:error

CRITICAL:some.other:critical

You might be wondering where the rest of the output is. There is none.  
The debug.log file has been filled with messages like these, however:

[2015-12-03 12:32:38,894] DEBUG    root         debug
[2015-12-03 12:32:38,894] INFO     root         info

So what happened? This is where we see the pitfalls of custom loggers and 
configuration after using the loggers. The logging.config.listen function will 
modify the root logger as requested, but since the other loggers (some and some.
other) weren't specified, they weren't modified. We modify the configuration to 
include them, as follows:

[formatters]
keys=standard

[handlers]
keys=file,stream

[loggers]
keys=root,some

[formatter_standard]
format=[%(asctime)s] %(levelname)-8s %(name)-12s %(message)s

[handler_file]
level=DEBUG
class=FileHandler
formatter=standard
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args=('debug.log',)

[handler_stream]
level=WARNING
class=StreamHandler
formatter=standard
args=(sys.stderr,)

[logger_root]
handlers=file,stream
level=DEBUG

[logger_some]
level=DEBUG
qualname=some
handlers=

Now it works as expected:

# python log_networkconfig.py

WARNING:some:warning

ERROR:some:error

CRITICAL:some.other:critical

[2015-12-03 12:42:05,621] WARNING  some         warning

[2015-12-03 12:42:05,622] ERROR    some         error

[2015-12-03 12:42:05,622] CRITICAL some.other   critical

You will probably notice that we didn't add any handlers to the some logger. 
That's because the handler is already present—at the root level. However, without 
manually telling the logging module that the logger is there, it won't send it to the 
handler anymore. This is not problematic generally, but it's a dangerous pitfall when 
modifying logging configurations at runtime.

An alternative way to configure it without having this propagation issue is by 
disabling propagation altogether, but that will create an entirely new logger and 
will forget any configuration added to the root. So, if you have a handler for the 
error level at the root that gets sent to your error reporting system, it won't arrive 
anymore. In this case, however, the config is slightly clearer:

[logger_some]
handlers=file,stream
level=DEBUG
qualname=some
propagate=0
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Logger
The main object that you will be using all the time with the logging module is the 
Logger object. This object contains all the APIs that you will need to do the actual 
logging. Most are simple enough but some require attention.

First of all, loggers inherit the parent settings by default. As we have seen previously 
with the propagate setting, by default, all settings will propagate from the parent. 
This is really useful when incorporating loggers within your files. Assuming your 
modules are using sane names and import paths, I recommend the following style of 
naming your loggers:

import logging

logger = logging.getLogger(__name__)

class Spam(object):
    def __init__(self, count):
        self.logger = logger.getChild(self.__class__.__name__)

By using this style, your loggers will get names such as main_module.sub_module.
ClassName. Not only does this make your logs easier to read, but also it is easily 
possible to enable or disable logging per module with the propagation of log settings. 
To create a new log file that logs everything from main_module.sub_module, we can 
simply do this:

import logging

logger = logging.getLogger('main_module.sub_module')
logger.addHandler(logging.FileHandler('sub_module.log'))

Alternatively, you can configure it using your chosen configuration option, of course. 
The relevant point is that with sub-loggers, you have very fine-grained control over 
your loggers.

This includes increasing the log level:

import logging

logger = logging.getLogger('main_module.sub_module')
logger.setLevel(logging.DEBUG)
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Usage
The usage of the Logger object is mostly identical to that of the bare logging 
module, but Logger actually supports a bit more. This is because the bare logging 
module just calls the functions on the root logger. It has a few very useful properties, 
although most of these are undocumented in the library:

•	 Propagate: Whether to pass events to this logger or to the handlers of the 
parent loggers. Without this, a log message to main_module.sub_module 
won't be logged by main_module.
The handle method will keep looking for parent handlers as long as those 
loggers have propagate set to true, which is the default.

•	 Filters: These are the filters attached to the logger. They can be added 
through addFilter and removeFilter, To see whether a message will be 
filtered, the filter method can be used.

•	 Disabled: By setting this property, it's possible to disable a certain logger. 
The regular API only allows disabling of all loggers below a certain level. 
This offers some fine-grained control.

•	 Handlers: These are the handlers attached to the logger. They can be added 
through addHandler and removeHandler. The existence of any (inherited) 
handlers can be checked through the hasHandlers function.

•	 Level: This is really an internal one as it simply has a numeric value and not 
a name. But beyond that, it doesn't take inheritance into account, so it's better 
to avoid the property and use the getEffectiveLevel function instead. To 
check whether the setting is enabled for a DEBUG for example, you can simply 
do logger.isEnabledFor(logging.DEBUG). Setting the property is possible 
through the setLevel function, of course.

•	 Name: As this property's name says, it is very useful for your own reference, 
of course.

Now that you know about the properties, it is time to discuss the logging functions 
themselves. The functions you will use most often are the log, debug, info, warning, 
error, and critical log functions. They can be used quite simply, but they support 
string formatting as well, which is very useful:

import logging

logger = logging.getLogger()
exception = 'Oops...'
logger.error('Some horrible error: %r', exception)
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You might wonder why we don't simply use the regular string formatting with % 
or string.format instead. The reason is that when parameters are used instead of 
preformatted strings, the handler gets them as parameters. The result is that you 
can group log messages by the original string, which is what tools such as sentry 
(https://github.com/getsentry/sentry) use.

There is more to it, however. In terms of parameters, *args are only for string 
formatting, but it's possible to add extra parameters to a log object using the extra 
keyword parameter:

import logging

logger = logging.getLogger()
logger.error('simple error', extra=dict(spam='some spam'))

These extra parameters can be used in the logging formatter to display extra 
information just like the standard formatting options:

import logging

logging.basicConfig(format='%(spam)s: %(message)s')
logger = logging.getLogger()
logger.error('the message', extra=dict(spam='some spam'))

This results in the following:

# python test_spam.py

some spam: the message

However, one of the most useful features is the support for exceptions:

import logging

logger = logging.getLogger()

try:
    raise RuntimeError('Not enough spam')
except:
    logger.exception('Got an exception')

logger.error('And an error')

https://github.com/getsentry/sentry
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This results in a stack trace for the exception, but it will not kill the code:

# python test_spam.py

Got an exception

Traceback (most recent call last):

  File "test_spam.py", line 6, in <module>

    raise RuntimeError('Not enough spam')

RuntimeError: Not enough spam

And an error

Summary
This chapter showed us how to write doctests, make use of the shortcuts  
provided by py.test, and use the logging module. With testing, there is never a 
one-size-fits-all solution. While the doctest system is very useful in many cases for 
providing both documentation and tests at the same time, in many functions, there 
are edge cases that simply don't matter for documentation, but still need to be tested. 
This is where regular unit tests come in and where py.test helps a lot.

Because the py.test library is always evolving, this chapter cannot fully cover 
everything you will need, but it should provide you with enough of a basis to be able 
to use it effectively and extend it where needed.

The logging module is extremely useful but it's also a pain if configured incorrectly. 
Unfortunately, the right configuration can be a bit obscure when multiple modules 
are trying to configure logging simultaneously. The usage of the logging system 
should be clear enough for most of the common use cases now, and as long as you 
keep the propagate parameter in check, you should be fine when implementing a 
logging system.

Next up is debugging, where testing helps prevent bugs. We will see how to solve 
them effectively. In addition, the logging that we added in this chapter will help a lot 
in that area.
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Debugging – Solving  
the Bugs

The previous chapter showed you how to add logging and tests to your code, but no 
matter how many tests you have, you will always have bugs. The biggest problem is 
always user input, as it is simply impossible to test all possible inputs, implying that 
at one point, we will need to debug the code.

There are many debugging techniques, and most certainly, you have already used 
a few of them. Within this chapter, we are going to focus on print/trace debugging 
and interactive debugging.

Debugging using print statements, stack traces, and logging is one of the most 
versatile methods to work with, and it is most likely the first type of debugging 
you've ever used. Even a print 'Hello world' can be considered this type, as the 
output will show you that your code is being executed correctly. There is obviously 
no point in explaining how and where to place print statements to debug your code, 
but there are quite a few nice tricks using decorators and other Python modules that 
render this type of debugging a lot more useful, such as faulthandler.

Interactive debugging is a more complicated debugging method. It allows you to 
debug a program while it's still running. Using this method, it's even possible to 
change variables while the application is running and pause the application at any 
point desired. The downside is that it requires some knowledge about the debugger 
commands to be really useful.

To summarize, we will cover the following topics:

•	 Debugging using print, trace, logging, and faulthandler
•	 Interactive debugging using pdb
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Non-interactive debugging
The most basic form of debugging is adding a simple print statement into your code 
to see what is still working and what isn't. This is useful in a variety of cases and likely 
to help solve most of your issues. Later in this chapter, we will show some interactive 
debugging methods, but those are not always suitable. Interactive debugging tends  
to become difficult or even impossible in multithreaded environments, while on a 
closed-off remote server, you might need a different solution as well. Both methods 
have their merits, but I personally opt for non-interactive debugging 90% of the time 
since a simple print/log statement is usually enough to analyze the cause of a problem.

A basic example of this (I've been known to do similar) with a generator can be  
as follows:

>>> def spam_generator():

...     print('a')

...     yield 'spam'

...     print('b')

...     yield 'spam!'

...     print('c')

...     yield 'SPAM!'

...     print('d')

>>> generator = spam_generator()

>>> next(generator)

a

'spam'

>>> next(generator)

b

'spam!'

This shows exactly where the code does, and consequently, does not reach. Without 
this example, you might have expected the first print to come immediately after the 
spam_generator() call, since it's a generator. However, the execution completely 
stalls until we yield an item. Assuming you would have some setup code before the 
first yield, it won't run until next is actually called.
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Although this is one of the simplest ways to debug functions using print statements, 
it's definitely not the best way. We can start by making an auto-print function that 
automatically increments the letter:

>>> import string

>>> def print_character():

...     i = 0

...     while True:

...         print('Letter: %r' % string.ascii_letters[i])

...         i = (i + 1) % len(string.ascii_letters)

...         yield

>>> # Always initialize

>>> print_character = print_character()

>>> next(print_character)

Letter: 'a'

>>> next(print_character)

Letter: 'b'

>>> next(print_character)

Letter: 'c'

While the print statement generator is slightly better than bare print statements,  
it doesn't help that much yet. It would be much more useful to see which lines  
were actually executed while running the code. We can do this manually using 
inspect.currentframe, but there is no need for hacking. Python has you covered 
with some dedicated tools.

Inspecting your script using trace
Simple print statements are useful in a lot of cases since you can easily incorporate 
print statements in nearly every application. It does not matter whether it's remote or 
local, threaded or using multiprocessing. It works almost everywhere, making it the 
most universal solution available, in addition to logging that is. The general solution 
is often not the best solution, however. There are better solutions available for the 
most common scenarios. One of them is the trace module. It offers you a way to 
trace every execution, relationships between functions, and a few others.
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To demonstrate, we will use our previous code but without print statements:

def eggs_generator():
    yield 'eggs'
    yield 'EGGS!'

def spam_generator():
    yield 'spam'
    yield 'spam!'
    yield 'SPAM!'

generator = spam_generator()
print(next(generator))
print(next(generator))

generator = eggs_generator()
print(next(generator))

We will execute it with the trace module:

# python3 -m trace --trace --timing tracing.py

 --- modulename: tracing, funcname: <module>

0.00 tracing.py(1): def eggs_generator():

0.00 tracing.py(6): def spam_generator():

0.00 tracing.py(11): generator = spam_generator()

0.00 tracing.py(12): print(next(generator))

 --- modulename: tracing, funcname: spam_generator

0.00 tracing.py(7):     yield 'spam'

spam

0.00 tracing.py(13): print(next(generator))

 --- modulename: tracing, funcname: spam_generator

0.00 tracing.py(8):     yield 'spam!'

spam!

0.00 tracing.py(15): generator = eggs_generator()

 --- modulename: tracing, funcname: spam_generator

0.00 tracing.py(16): print(next(generator))

 --- modulename: tracing, funcname: eggs_generator

0.00 tracing.py(2):     yield 'eggs'

eggs

 --- modulename: trace, funcname: _unsettrace

0.00 trace.py(77):         sys.settrace(None)
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Quite nice, isn't it? It shows you exactly which line is being executed with function 
names and, more importantly, which line was caused by which statement (or 
statements). Additionally, it shows you at what time it was executed relative to the 
start time of the program. This is due to the --timing flag.

As you might expect, this output is a bit too verbose to be universally useful. In 
spite of the fact that you can opt to ignore specific modules and directories by using 
command-line parameters, it is still too verbose in many cases. So let's go for the next 
solution—a context manager. The preceding output has already revealed some of the 
trace internals. The last line shows a sys.settrace call, which is exactly what we 
need for manual tracing:

import- sys
import trace as trace_module
import contextlib

@contextlib.contextmanager
def trace(count=False, trace=True, timing=True):
    tracer = trace_module.Trace(
        count=count, trace=trace, timing=timing)
    sys.settrace(tracer.globaltrace)
    yield tracer
    sys.settrace(None)

    result = tracer.results()
    result.write_results(show_missing=False, summary=True)

def eggs_generator():
    yield 'eggs'
    yield 'EGGS!'

def spam_generator():
    yield 'spam'
    yield 'spam!'
    yield 'SPAM!'

with trace():
    generator = spam_generator()
    print(next(generator))
    print(next(generator))

generator = eggs_generator()
print(next(generator))
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When executed as a regular Python file, this returns:

# python3 tracing.py

 --- modulename: tracing, funcname: spam_generator

0.00 tracing.py(24):     yield 'spam'

spam

 --- modulename: tracing, funcname: spam_generator

0.00 tracing.py(25):     yield 'spam!'

spam!

 --- modulename: contextlib, funcname: __exit__

0.00 contextlib.py(64):         if type is None:

0.00 contextlib.py(65):             try:

0.00 contextlib.py(66):                 next(self.gen)

 --- modulename: tracing, funcname: trace

0.00 tracing.py(12):     sys.settrace(None)

This code immediately reveals what the trace code does internally as well: it uses 
sys.settrace to tell the Python interpreter where to send every statement that is 
being executed. Given this, it's obviously trivial to write the function as a decorator, 
but I'll leave that as an exercise to you if you need it.

Another take-away from this is that you can easily add extra filters to your trace 
function by wrapping tracer.globaltrace. The function takes the following 
parameters (from the standard Python documentation):

Parameter Description
Call A function is called (or some other code block entered). The global trace 

function is called; arg is None. The return value specifies the local trace 
function.

Line The interpreter is about to execute a new line of code or re-execute 
the condition of a loop. The local trace function is called; arg is None. 
The return value specifies the new local trace function. See Objects/
lnotab_notes.txt for a detailed explanation of how this works.

return A function (or another code block) is about to return. The local trace 
function is called; arg is the value that will be returned or None if the 
event is caused by an exception being raised. The trace function's return 
value is ignored.

exception This means an exception has occurred. The local trace function is called; 
arg is a tuple (exception, value, traceback). The return value 
specifies the new local trace function.
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Parameter Description
c_call A C function is about to be called. This may be an extension function or a 

built-in function. The arg is the C function object.
c_return A C function has returned, and arg is the C function object.
c_exception A C function has raised an exception, and arg is the C function object.

As you must have expected, with a simple filter function, you can easily make sure 
that only specific functions will be returned, instead of the long list you would 
normally get. You really shouldn't underestimate the amount of data generated by 
tracing code with a few imports. The preceding context manager code gives over 300 
lines of output.

Debugging using logging
In Chapter 10, Testing and Logging – Preparing for Bugs, our chapter about testing 
and logging, we saw how to create custom loggers, set the levels for them, and add 
handlers to specific levels. We are going to use the logging.DEBUG level to log now, 
which is nothing special by itself, but with a few decorators, we can add some very 
useful debug-only code.

Whenever I'm debugging, I always find it very useful to know the input and output 
for a function. The basic version with a decorator is simple enough to write; just print 
the args and kwargs and you are done. The following example goes a little further. 
By using the inspect module, we can retrieve the default arguments as well, making 
it possible to show all arguments with the argument names and values in all cases, 
even if the argument was not specified:

import pprint
import inspect
import logging
import functools

logging.basicConfig(level=logging.DEBUG)

def debug(function):
    @functools.wraps(function)
    def _debug(*args, **kwargs):
        try:
            result = function(*args, **kwargs)
        finally:
            # Extract the signature from the function
            signature = inspect.signature(function)
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            # Fill the arguments
            arguments = signature.bind(*args, **kwargs)
            # NOTE: This only works for Python 3.5 and up!
            arguments.apply_defaults()

            logging.debug('%s(%s): %s' % (
                function.__qualname__,
                ', '.join('%s=%r' % (k, v) for k, v in
                          arguments.arguments.items()),
                pprint.pformat(result),
            ))

    return _debug

@debug
def spam(a, b=123):
    return 'some spam'

spam(1)
spam(1, 456)
spam(b=1, a=456)

The following output is returned:

# python3 logged.py

DEBUG:root:spam(a=1, b=123): 'some spam'

DEBUG:root:spam(a=1, b=456): 'some spam'

DEBUG:root:spam(a=456, b=1): 'some spam'

Very nice of course, as we have a clear sight of when the function is called, which 
parameters were used, and what is returned. However, this is something you will 
probably only execute when you are actively debugging your code. You can also 
make the regular logging.debug statements in your code quite a bit more useful by 
adding a debug-specific logger, which shows more information. Simply replace the 
logging config of the preceding example with this:

import logging

log_format = (
    '[%(relativeCreated)d %(levelname)s] '
    '%(pathname)s:%(lineno)d:%(funcName)s: %(message)s'
)
logging.basicConfig(level=logging.DEBUG, format=log_format)
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Then your result will be something like this:

# time python3 logged.py

[0 DEBUG] logged.py:31:_debug: spam(a=1, b=123): 'some spam'

[0 DEBUG] logged.py:31:_debug: spam(a=1, b=456): 'some spam'

[0 DEBUG] logged.py:31:_debug: spam(a=456, b=1): 'some spam'

python3 logged.py  0.04s user 0.01s system 96% cpu 0.048 total

It shows the time relative to the start of the application in milliseconds and the 
log level. This is followed by an identification block that shows the filename, line 
number, and function name that originated the logs. Of course, there is a message  
at the end.

Showing call stack without exceptions
When looking at how and why a piece of code is being run, it's often useful to see the 
entire stack trace. Simply raising an exception is, of course, an option. However, that 
will kill the current code execution, which is generally not something we are looking 
for. This is where the traceback module comes in handy. With just a few simple 
lines, we get a full (or limited, if you prefer) stack list:

import traceback

class Spam(object):

    def run(self):
        print('Before stack print')
        traceback.print_stack()
        print('After stack print')

class Eggs(Spam):
    pass

if __name__ == '__main__':
    eggs = Eggs()
    eggs.run()

This results in the following:

# python3 traceback_test.py

Before stack print
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  File "traceback_test.py", line 18, in <module>

    eggs.run()

  File "traceback_test.py", line 8, in run

    traceback.print_stack()

After stack print

As you can see, the traceback simply prints without any exceptions. The traceback 
module actually has quite a few other methods for printing tracebacks based on 
exceptions and such, but you probably won't need them often. The most useful one 
is probably the limit parameter; this parameter allows you to limit the stack trace 
to the useful part. For example, if you've added this code using a decorator or helper 
function, you probably have no need to include those in the stack trace. That's where 
the limit parameter helps:

import traceback

class Spam(object):

    def run(self):
        print('Before stack print')
        traceback.print_stack(limit=-1)
        print('After stack print')

class Eggs(Spam):
    pass

if __name__ == '__main__':
    eggs = Eggs()
    eggs.run()

This results in the following:

# python3 traceback_test.py

Before stack print

  File "traceback_test.py", line 18, in <module>

    eggs.run()

After stack print
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As you can see, the print_stack function itself has now been hidden from the stack 
trace, which makes everything a bit cleaner.

The negative limit support was added in Python 3.5. Before 
that, only positive limits were supported.

Debugging asyncio
The asyncio module has a few special provisions to make debugging somewhat 
easier. Given the asynchronous nature of functions within asyncio, this is a very 
welcome feat. While debugging of multithreaded/multiprocessing functions or 
classes can be difficult—since concurrent classes can easily change environment 
variables in parallel—with asyncio, it's just as difficult if not more.

Within most Linux/Unix/Mac shell sessions, environment 
variables can be set using it as a prefix:
SOME_ENVIRONMENT_VARIABLE=value python3 script.py

Also, it can be configured for the current shell session using 
export:
export SOME_ENVIRONMENT_VARIABLE=value

The current value can be fetched using the following line:
echo $SOME_ENVIRONMENT_VARIABLE

On Windows, you can configure an environment variable for 
your local shell session using the set command:
set SOME_ENVIRONMENT_VARIABLE=value

The current value can be fetched using this line:
set SOME_ENVIRONMENT_VARIABLE

When enabling the debug mode using the PYTHONASYNCIODEBUG environment setting 
the asyncio module will check whether every defined coroutine is actually run:

import asyncio

@asyncio.coroutine
def printer():
    print('This is a coroutine')

printer()
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This results in an error for the printer coroutine, which is never yielded here:

# PYTHONASYNCIODEBUG=1 python3 asyncio_test.py

<CoroWrapper printer() running, defined at asyncio_test.py:4, created at 
asyncio_test.py:8> was never yielded from

Coroutine object created at (most recent call last):

  File "asyncio_test.py", line 8, in <module>

    printer()

Additionally, the event loop has some log messages by default:

import asyncio
import logging

logging.basicConfig(level=logging.DEBUG)
loop = asyncio.get_event_loop()

This results in debug messages such as the following:

# PYTHONASYNCIODEBUG=1 python3 asyncio_test.py

DEBUG:asyncio:Using selector: KqueueSelector

DEBUG:asyncio:Close <_UnixSelectorEventLoop running=False closed=False 
debug=True>

You might wonder why we are using the PYTHONASYNCIODEBUG flag instead of  
loop.set_debug(True). The reason is that there are cases where this won't work 
because debugging is enabled too late. For example, when trying that with the 
preceding printer(), you will see that you won't get any errors when using  
loop.set_debug(True) alone.

When enabling debugging, the following will change:

•	 Coroutines that have not been yielded (as can be seen in the preceding lines) 
will raise an exception.

•	 Calling coroutines from the "wrong" thread raises an exception.
•	 The execution time of the selector will be logged.
•	 Slow callbacks (more than 100 ms) will be logged. This timeout can be 

modified through loop.slow_callback_duration.
•	 Warnings will be raised when resources are not closed properly.
•	 Tasks that were destroyed before execution will be logged.
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Handling crashes using faulthandler
The faulthandler module helps when debugging really low-level crashes, that is, 
crashes that should only be possible when using low-level access to memory, such as 
C extensions.

For example, here's a bit of code that will cause your Python interpreter to crash:

import ctypes

# Get memory address 0, your kernel shouldn't allow this:
ctypes.string_at(0)

It results in something similar to the following:

# python faulthandler_test.py

zsh: segmentation fault  python faulthandler_test.py

That's quite an ugly response of course and gives you no possibility to handle the 
error. Just in case you are wondering, having a try/except structure won't help you 
in these cases either. The following code will crash exactly in the same way:

import ctypes

try:
    # Get memory address 0, your kernel shouldn't allow this:
    ctypes.string_at(0)
except Exception as e:
    print('Got exception:', e)

This is where the faulthandler module helps. It will still cause your interpreter to 
crash, but at least you will see a proper error message raised, so it's a good default if 
you (or any of the sublibraries) have any interaction with raw memory:

import ctypes
import faulthandler

faulthandler.enable()

# Get memory address 0, your kernel shouldn't allow this:
ctypes.string_at(0)

It results in something along these lines:

# python faulthandler_test.py

Fatal Python error: Segmentation fault
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Current thread 0x00007fff79171300 (most recent call first):

  File "ctypes/__init__.py", line 491 in string_at

  File "faulthandler_test.py", line 7 in <module>

zsh: segmentation fault  python faulthandler_test.py

Obviously, it's not desirable to have a Python application exit in this manner as the 
code won't exit with a normal cleanup. Resources won't be closed cleanly and your 
exit handler won't be called. If you somehow need to catch this behavior, your best 
bet is to wrap the Python executable in a separate script.

Interactive debugging
Now that we have discussed basic debugging methods that will always work, we 
will look at interactive debugging for some more advanced debugging techniques. 
The previous debugging methods made variables and stacks visible through 
modifying the code and/or foresight. This time around, we will look at a slightly 
smarter method, which constitutes doing the same thing interactively, but once the 
need arises.

Console on demand
When testing some Python code, you may have used the interactive console a couple 
of times, since it's a simple yet effective tool for testing your Python code. What you 
might not have known is that it is actually simple to start your own shell from within 
your code. So, whenever you want to drop into a regular shell from a specific point 
in your code, that's easily possible:

import code

def spam():
    eggs = 123
    print('The begin of spam')
    code.interact(banner='', local=locals())
    print('The end of spam')
    print('The value of eggs: %s' % eggs)

if __name__ == '__main__':
    spam()
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When executing that, we will drop into an interactive console halfway:

# python3 test_code.py

The begin of spam

>>> eggs

123

>>> eggs = 456

>>>

The end of spam

The value of eggs: 123

To exit this console, we can use ^d (Ctrl + d) on Linux/Mac systems and ^z (Ctrl + Z) 
on Windows systems.

One important thing to note here is that the scope is not shared between the two. 
Even though we passed along locals() to share the local variables for convenience, 
this relation is not bidirectional. The result is that even though we set eggs to 456 in 
the interactive session, it does not carry over to the outside function. You can modify 
variables in the outside scope through direct manipulation (for example, setting the 
properties) if you wish, but all variables declared locally will remain local.

Debugging using pdb
When it comes to actually debugging code, the regular interactive console just isn't 
suited. With a bit of effort, you can make it work, but it's just not all that convenient 
for debugging since you can only see the current scope and can't jump around the 
stack easily. With pdb (Python debugger), this is easily possible. So let's look at a 
simple example of using pdb:

import pdb

def spam():
    eggs = 123
    print('The begin of spam')
    pdb.set_trace()
    print('The end of spam')
    print('The value of eggs: %s' % eggs)

if __name__ == '__main__':
    spam()
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This example is pretty much identical to the one in the previous paragraph, except 
that this time we end up in the pdb console instead of a regular interactive console. 
So let's give the interactive debugger a try:

# python3 test_pdb.py

The begin of spam

> test_pdb.py(8)spam()

-> print('The end of spam')

(Pdb) eggs

123

(Pdb) eggs = 456

(Pdb) continue

The end of spam

The value of eggs: 456

As you can see, we've actually modified the value of eggs now. In this case, we used 
the full continue command, but all the pdb commands have short versions as well. 
So, using c instead of continue gives the same result. Just typing eggs (or any other 
variable) will show the contents and setting the variable will simply set it, just as we 
would expect from an interactive session.

To get started with pdb, first of all, a list of the most useful (full) commands with 
shorthands is shown here:

Command Explanation
h(elp) This shows the list of commands (this list).
h(elp) command This shows the help for the given command.
w(here) Current stack trace with an arrow at the current frame.
d(own) Move down/to a newer frame in the stack.
u(p) Move up/to an older frame in the stack.
s(tep) Execute the current line and stop as soon as possible.
n(ext) Execute the current line and stop at the next line within 

the current function.
r(eturn) Continue execution until the function returns.
c(ont(inue)) Continue execution up to the next breakpoint.
l(ist) [first[, last]] List the lines of source code (by default, 11 lines) around 

the current line.
ll | longlist List all of the source code for the current function or frame.
source expression List the source code for the given object. This is similar to 

longlist.
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Command Explanation
a(rgs) Print the arguments for the current function.
pp expression Pretty-print the given expression.
b(reak) Show the list of breakpoints.

b(reak) [filename:]
lineno

Place a breakpoint at the given line number and, 
optionally, file.

b(reak) function[, 
condition]

Place a breakpoint at the given function. The condition 
is an expression that must evaluate to True for the 
breakpoint to work.

cl(ear) [filename:]
lineno

Clear the breakpoint (or breakpoints) at this line.

cl(ear) breakpoint 
[breakpoint ...]

Clear the breakpoint (or breakpoints) with these numbers.

Command List all defined commands.
command breakpoint Specify a list of commands to execute whenever the given 

breakpoint is encountered. The list is ended using the end 
command.

Alias List all aliases.
alias name command Create an alias. The command can be any valid Python 

expression, so you can do the following to print all 
properties for an object:
alias pd pp %1.__dict__ 

unalias name Remove an alias.
! statement Execute the statement at the current point in the stack. 

Normally the ! sign is not needed, but this can be useful 
if there are collisions with debugger commands. For 
example, try b = 123.

Interact Open an interactive session similar to the previous 
paragraph. Note that variables set within that local scope 
will not be transferred.

Breakpoints
It's quite a long list, but you will probably use most of these quite regularly. To 
highlight one of the options shown in the preceding table, let's demonstrate the 
setting and use of breakpoints:

import pdb

def spam():
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    print('The begin of spam')
    print('The end of spam')

if __name__ == '__main__':
    pdb.set_trace()
    spam()

So far, nothing new has happened, but let's now open the interactive debugging 
session, as follows:

# python3 test_pdb.py

> test_pdb.py(11)<module>()

-> while True:

(Pdb) source spam  # View the source of spam

  4     def spam():

  5         print('The begin of spam')

  6         print('The end of spam')

(Pdb) b 5  # Add a breakpoint to line 5

Breakpoint 1 at test_pdb.py:5

(Pdb) w  # Where shows the current line

> test_pdb.py(11)<module>()

-> while True:

(Pdb) c  # Continue (until the next breakpoint or exception)

> test_pdb.py(5)spam()

-> print('The begin of spam')

(Pdb) w  # Where again

  test_pdb.py(12)<module>()

-> spam()

> test_pdb.py(5)spam()

-> print('The begin of spam')

(Pdb) ll  # List the lines of the current function

  4     def spam():

  5 B->     print('The begin of spam')
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  6         print('The end of spam')

(Pdb) b  # Show the breakpoints

Num Type         Disp Enb   Where

1   breakpoint   keep yes   at test_pdb.py:5

        breakpoint already hit 1 time

(Pdb) cl 1  # Clear breakpoint 1

Deleted breakpoint 1 at test_pdb.py:5

That was a lot of output, but it's actually not as complex as it seems:

1.	 First, we used the source spam command to see the source for the  
spam function.

2.	 After that, we knew the line number of the first print statement, which we 
used to place a breakpoint (b 5) at line 5.

3.	 To check whether we were still at the right position, we used the w command.
4.	 Since the breakpoint was set, we used c to continue up to the next breakpoint.
5.	 Having stopped at the breakpoint at line 5, we used w again to confirm that.
6.	 Listing the code of the current function using ll.
7.	 Listing the breakpoints using b.
8.	 Removing the breakpoint again using cl 1 with the breakpoint number from 

the previous command.

It all seems a bit complicated in the beginning, but you'll see that it's actually a very 
convenient way of debugging once you've tried a few times.

To make it even better, this time we will execute the breakpoint only when eggs = 3. 
The code is pretty much the same, although we need a variable in this case:

import pdb

def spam(eggs):
    print('eggs:', eggs)

if __name__ == '__main__':
    pdb.set_trace()
    for i in range(5):
        spam(i)
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Now, let's execute the code and make sure that it only breaks at certain times:
# python3 test_breakpoint.py

> test_breakpoint.py(10)<module>()

-> for i in range(5):

(Pdb) source spam

  4     def spam(eggs):

  5         print('eggs:', eggs)

(Pdb) b 5, eggs == 3  # Add a breakpoint to line 5 whenever eggs=3

Breakpoint 1 at test_breakpoint.py:5

(Pdb) c  # Continue

eggs: 0

eggs: 1

eggs: 2

> test_breakpoint.py(5)spam()

-> print('eggs:', eggs)

(Pdb) a  # Show function arguments

eggs = 3

(Pdb) c  # Continue

eggs: 3

eggs: 4

To list what we have done:

1.	 First, using source spam, we looked for the line number.
2.	 After that, we placed a breakpoint with the eggs == 3 condition.
3.	 Then we continued execution using c. As you can see, the values 0, 1, and 2 

are printed as normal.
4.	 The breakpoint was reached at value 3. To verify this we used a to see the 

function arguments.
5.	 And we continued to execute the rest of the code.

Catching exceptions
All of these have been manual calls to the pdb.set_trace() function, but in general, 
you are just running your application and not really expecting issues. This is where 
exception catching can be very handy. In addition to importing pdb yourself, you can 
run scripts through pdb as a module as well. Let's examine this bit of code, which 
dies as soon as it reaches zero division:

print('This still works')
1/0
print('We shouldnt reach this code')
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If we run it using the pdb parameter, we can end up in the Python Debugger 
whenever it crashes:

# python3 -m pdb test_zero.py

> test_zero.py(1)<module>()

-> print('This still works')

(Pdb) w  # Where

  bdb.py(431)run()

-> exec(cmd, globals, locals)

  <string>(1)<module>()

> test_zero.py(1)<module>()

-> print('This still works')

(Pdb) s  # Step into the next statement

This still works

> test_zero.py(2)<module>()

-> 1/0

(Pdb) c  # Continue

Traceback (most recent call last):

  File "pdb.py", line 1661, in main

    pdb._runscript(mainpyfile)

  File "pdb.py", line 1542, in _runscript

    self.run(statement)

  File "bdb.py", line 431, in run

    exec(cmd, globals, locals)

  File "<string>", line 1, in <module>

  File "test_zero.py", line 2, in <module>

    1/0

ZeroDivisionError: division by zero

Uncaught exception. Entering post mortem debugging

Running 'cont' or 'step' will restart the program

> test_zero.py(2)<module>()

-> 1/0

A useful little trick within pdb is to use the Enter button, which, 
by default, will execute the previously executed command again. 
This is very useful when stepping through the program.
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Commands
The commands command is a little complicated but very useful. It allows you to 
execute commands whenever a specific breakpoint is encountered. To illustrate this, 
let's start from a simple example again:

import pdb

def spam(eggs):
    print('eggs:', eggs)

if __name__ == '__main__':
    pdb.set_trace()
    for i in range(5):
        spam(i)

The code is simple enough, so now we'll add the breakpoint and the commands,  
as follows:

# python3 test_breakpoint.py

> test_breakpoint.py(10)<module>()

-> for i in range(3):

(Pdb) b spam  # Add a breakpoint to function spam

Breakpoint 1 at test_breakpoint.py:4

(Pdb) commands 1  # Add a command to breakpoint 1

(com) print('The value of eggs: %s' % eggs)

(com) end  # End the entering of the commands

(Pdb) c  # Continue

The value of eggs: 0

> test_breakpoint.py(5)spam()

-> print('eggs:', eggs)

(Pdb) c  # Continue

eggs: 0

The value of eggs: 1

> test_breakpoint.py(5)spam()

-> print('eggs:', eggs)

(Pdb) cl 1  # Clear breakpoint 1

Deleted breakpoint 1 at test_breakpoint.py:4

(Pdb) c  # Continue

eggs: 1

eggs: 2
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As you can see, we can easily add commands to the breakpoint. After removing the 
breakpoint, these commands obviously won't be executed anymore.

Debugging using ipdb
While the generic Python console is useful, it can be a little rough around the edges. 
The IPython console offers a whole new world of extra features, which make it a much 
nicer console to work with. One of those features is a more convenient debugger.

First, make sure you have ipdb installed:

pip install ipdb

Next, let's try the debugger again with our previous script. The only small change is 
that we now import ipdb instead of pdb:

import ipdb

def spam(eggs):
    print('eggs:', eggs)

if __name__ == '__main__':
    ipdb.set_trace()
    for i in range(3):
        spam(i)

Then we execute it:

# python3 test_ipdb.py

> test_ipdb.py(10)<module>()

      9     ipdb.set_trace()

---> 10     for i in range(3):

     11         spam(i)

ipdb> b spam  # Set a breakpoint

Breakpoint 1 at test_ipdb.py:4

ipdb> c  # Continue (until exception or breakpoint)

> test_ipdb.py(5)spam()

1     4 def spam(eggs):

----> 5     print('eggs:', eggs)

      6
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ipdb> a  # Show the arguments

eggs = 0

ipdb> c  # Continue

eggs: 0

> test_ipdb.py(5)spam()

1     4 def spam(eggs):

----> 5     print('eggs:', eggs)

      6

ipdb>   # Repeat the previous command, so continue again

eggs: 1

> test_ipdb.py(5)spam()

1     4 def spam(eggs):

----> 5     print('eggs:', eggs)

      6

ipdb> cl 1  # Remove breakpoint 1

Deleted breakpoint 1 at test_ipdb.py:4

ipdb> c  # Continue

eggs: 2

The commands are all the same, but the output is just a tad more legible in my 
opinion. The actual version also includes syntax highlighting, which makes the 
output even easier to follow.

In short, you can just replace pdb with ipdb in most situations to simply get a more 
intuitive debugger. But I will give you the recommendation as well, to the ipdb 
context manager:

import ipdb

with ipdb.launch_ipdb_on_exception():
    main()

This is as convenient as it looks. It simply hooks ipdb into your exceptions so that 
you can easily debug whenever needed. Combine that with a debug flag to your 
application to easily allow debugging when needed.
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Other debuggers
pdb and ipdb are just two of the large number of debuggers available for Python. 
Some of the currently noteworthy debuggers are as follows:

•	 pudb: This offers a a full-screen command-line debugger
•	 pdbpp: This hooks into the regular pdb
•	 rpdb2: This is a remote debugger that allows hooking into running (remote) 

applications
•	 Werkzeug: This is a web-based debugger that allows debugging of web 

applications while they are running

There are many others, of course, and there isn't a single one that's the absolute best. 
As is the case with all tools, they all have their advantages and their fallacies, and 
the one that is best for your current purpose can be properly decided only by you. 
Chances are that your current Python IDE already has an integrated debugger.

Debugging services
In addition to debugging when you encounter a problem, there are times when you 
simply need to keep track of errors for later debugging. Especially when working 
with remote servers, these can be invaluable to detect when and how a Python 
process is malfunctioning. Additionally, these services offer grouping of errors as 
well, making them far more useful than a simple e-mail-on-exception type of script, 
which can quickly spam your inbox.

A nice open source solution for keeping track of errors is sentry. If you need a full-
fletched solution that offers performance tracking as well, then Opbeat and Newrelic 
are very nice solutions; they offer both free and paid versions. Note that all of these 
also support tracking of other languages, such as JavaScript.
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Summary
This chapter explained a few different debugging techniques and gotchas. There 
is, of course, much more that can be said about debugging, but I hope you have 
acquired a nice vantage point for debugging your Python code now. Interactive 
debugging techniques are very useful for single-threaded applications and locations 
where interactive sessions are available. But since that's not always the case, we also 
discussed some non-interactive options.

Here's an overview of all the points discussed in this chapter:

•	 Non-interactive debugging using:
°° print

°° logging

°° trace

°° traceback

°° asyncio

°° faulthandler

•	 Interactive debugging using both pdb and ipdb

In the next chapter, we will see how to monitor and improve both CPU and memory 
performance, as well as finding and fixing memory leaks.
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Performance – Tracking and 
Reducing Your Memory and 

CPU Usage
Before we talk about performance, there is a quote by Donald Knuth you need to 
consider first:

"The real problem is that programmers have spent far too much time worrying 
about efficiency in the wrong places and at the wrong times; premature 
optimization is the root of all evil (or at least most of it) in programming."

Donald Knuth is often called the father of algorithm analysis. His 
book series, The Art of Computer Programming, can be considered the 
Bible of all fundamental algorithms.

As long as you pick the correct data structures with the right algorithms, 
performance should not be something to worry about. That does not mean you 
should ignore performance entirely, but just make sure you pick the right battles 
and optimize only when it is actually needed. Micro/premature optimizations can 
definitely be fun, but only very rarely useful.

We have seen the performance characteristics of many data structures in Chapter 2, 
Pythonic Syntax, Common Pitfalls, and Style Guide, already, so we won't discuss that, 
but we will show you how performance can be measured and how problems can 
be detected. There are cases where micro optimizations make a difference, but you 
won't know until you measure the performance.
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Within this chapter, we will cover:

•	 Profiling CPU usage
•	 Profiling memory usage
•	 Learning how to correctly compare performance metrics
•	 Optimizing performance
•	 Finding and fixing memory leaks

What is performance?
Performance is a very broad term. It has many different meanings and in many cases 
it is defined incorrectly. You have probably heard statements similar to "Language 
X is faster than Python". However, that statement is inherently wrong. Python is 
neither fast nor slow; Python is a programming language and a language has no 
performance metrics whatsoever. If one were to say that the CPython interpreter 
is faster or slower than interpreter Y for language X, that would be possible. The 
performance characteristics of code can vary greatly between different interpreters. 
Just take a look at this small test:

# python3 -m timeit '"".join(str(i) for i in range(10000))'

100 loops, best of 3: 2.91 msec per loop

# python2 -m timeit '"".join(str(i) for i in range(10000))'

100 loops, best of 3: 2.13 msec per loop

# pypy -m timeit '"".join(str(i) for i in range(10000))'

1000 loops, best of 3: 677 usec per loop

Three different interpreters with all vastly different performance! All are Python but 
the interpreters obviously vary. Looking at this benchmark, you might be tempted 
to drop the CPython interpreter completely and only use Pypy. The danger with 
benchmarks such as these is that they rarely offer any meaningful results. For this 
limited example, the Pypy interpreter was about four times faster than the CPython3 
interpreter, but that has no relevance whatsoever for the general case. The only 
conclusion that can safely be drawn here is that this specific version of the Pypy 
interpreter is more than four times faster than this specific version of CPython3  
for this exact test. For any other test and interpreter version the results could be 
vastly different.
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Timeit – comparing code snippet 
performance
Before we can start improving performance, we need a reliable method to measure 
it. Python has a really nice module (timeit) with the specific purpose of measuring 
execution times of bits of code. It executes a bit of code many times to make sure there 
is as little variation as possible and to make the measurement fairly clean. It's very 
useful if you want to compare a few code snippets. Following are example executions:

# python3 -m timeit 'x=[]; [x.insert(0, i) for i in range(10000)]'

10 loops, best of 3: 30.2 msec per loop

# python3 -m timeit 'x=[]; [x.append(i) for i in range(10000)]'

1000 loops, best of 3: 1.01 msec per loop

# python3 -m timeit 'x=[i for i in range(10000)]'

1000 loops, best of 3: 381 usec per loop

# python3 -m timeit 'x=list(range(10000))'

10000 loops, best of 3: 212 usec per loop

These few examples demonstrate the performance difference between list.insert, 
list.append, a list comprehension, and the list function. But more importantly, 
it demonstrates how to use the timeit command. Naturally, the command can be 
used with regular scripts as well, but the timeit module only accepts statements 
as strings to execute which is a bit of an annoyance. Luckily, you can easily work 
around that by wrapping your code in a function and just timing that function:

import timeit

def test_list():
    return list(range(10000))

def test_list_comprehension():
    return [i for i in range(10000)]

def test_append():
    x = []
    for i in range(10000):
        x.append(i)

    return x
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def test_insert():
    x = []
    for i in range(10000):
        x.insert(0, i)

    return x

def benchmark(function, number=100, repeat=10):
    # Measure the execution times
    times = timeit.repeat(function, number=number, globals=globals())
    # The repeat function gives `repeat` results so we take the min()
    # and divide it by the number of runs
    time = min(times) / number
    print('%d loops, best of %d: %9.6fs :: %s' % (
        number, repeat, time, function))

if __name__ == '__main__':
    benchmark('test_list()')
    benchmark('test_list_comprehension()')
    benchmark('test_append()')
    benchmark('test_insert()')

When executing this, you will get something along the following lines:

# python3 test_timeit.py

100 loops, best of 10:  0.000238s :: test_list()

100 loops, best of 10:  0.000407s :: test_list_comprehension()

100 loops, best of 10:  0.000838s :: test_append()

100 loops, best of 10:  0.031795s :: test_insert()

As you may have noticed, this script is still a bit basic. While the regular version 
keeps trying until it reaches 0.2 seconds or more, this script just has a fixed number 
of executions. Unfortunately, the timeit module wasn't entirely written with re-use 
in mind, so besides calling timeit.main() from your script there is not much you 
can do to re-use that logic.

Personally, I recommend using IPython instead, as it makes measurements  
much easier:

# ipython3

In [1]: import test_timeit

In [2]: %timeit test_timeit.test_list()

1000 loops, best of 3: 255 µs per loop
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In [3]: %timeit test_timeit.test_list_comprehension()

1000 loops, best of 3: 430 µs per loop

In [4]: %timeit test_timeit.test_append()

1000 loops, best of 3: 934 µs per loop

In [5]: %timeit test_timeit.test_insert()

10 loops, best of 3: 31.6 ms per loop

In this case, IPython automatically takes care of the string wrapping and passing 
of globals(). Still, this is all very limited and useful only for comparing multiple 
methods of doing the same thing. When it comes to full Python applications, there 
are more methods available.

To view the source of both IPython functions and regular 
modules, entering object?? in the IPython shell returns the 
source. In this case just enter timeit?? to view the timeit 
IPython function definition.

The easiest way you can implement the %timeit function yourself is to simply call 
timeit.main:

import timeit

timeit.main(args=['[x for x in range(1000000)]'])

The internals of the timeit module are nothing special. A basic version can be 
implemented with just an eval and a time.perf_counter (the highest resolution 
timer available in Python) combination:

import time
import functools

TIMEIT_TEMPLATE = '''
import time

def run(number):
    %(setup)s
    start = time.perf_counter()
    for i in range(number):
        %(statement)s
    return time.perf_counter() - start
'''
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def timeit(statement='pass', setup='pass', repeat=1, number=1000000,
           globals_=None):
    # Get or create globals
    globals_ = globals() if globals_ is None else globals_

    # Create the test code so we can separate the namespace
    src = TIMEIT_TEMPLATE % dict(
        statement=statement,
        setup=setup,
        number=number,
    )
    # Compile the source
    code = compile(src, '<source>', 'exec')

    # Define locals for the benchmarked code
    locals_ = {}

    # Execute the code so we can get the benchmark fuction
    exec(code, globals_, locals_)

    # Get the run function
    run = functools.partial(locals_['run'], number=number)
    for i in range(repeat):
        yield run()

The actual timeit code is a bit more advanced in terms of checking the input but 
this example roughly shows how the timeit.repeat function can be implemented.

To register your own function in IPython, you need to use some IPython magic. Note 
that the magic is not a pun. The IPython module that takes care of commands such as 
these is actually called magic. To demonstrate:

from IPython.core import magic

@magic.register_line_magic(line):
    import timeit
    timeit.main(args[line])

To learn more about custom magic in IPython, take a look at the IPython 
documentation at https://ipython.org/ipython-doc/3/config/custommagics.
html.

https://ipython.org/ipython-doc/3/config/custommagics.html
https://ipython.org/ipython-doc/3/config/custommagics.html
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cProfile – finding the slowest 
components
The profile module makes it easily possible to analyze the relative CPU cycles used 
in a script/application. Be very careful not to compare these with the results from the 
timeit module. While the timeit module tries as best as possible to give an accurate 
benchmark of the absolute amount of time it takes to execute a code snippet, the 
profile module is only useful for relative results. The reason is that the profiling code 
itself incurs such a slowdown that the results are not comparable with non-profiled 
code. There is a way to make it a bit more accurate however, but more about that later.

Within this section we will be talking about the profile module 
but in the examples we will actually use the cProfile module. 
The cProfile module is a high-performance emulation of the 
pure Python profile module.

First profiling run
Let's profile our Fibonacci function from Chapter 5, Decorators– Enabling Code Reuse by 
Decorating, both with and without the cache function. First, the code:

import sys
import functools

@functools.lru_cache()
def fibonacci_cached(n):
    if n < 2:
        return n
    else:
        return fibonacci_cached(n - 1) + fibonacci_cached(n - 2)

def fibonacci(n):
    if n < 2:
        return n
    else:
        return fibonacci(n - 1) + fibonacci(n - 2)

if __name__ == '__main__':
    n = 30
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    if sys.argv[-1] == 'cache':
        fibonacci_cached(n)
    else:
        fibonacci(n)

For readabilities sake, all cProfile statistics will be stripped of 
the percall and cumtime columns in all cProfile outputs. 
These columns are irrelevant for the purposes of these examples.

First we'll execute the function without cache:

# python3 -m cProfile -s calls test_fibonacci.py no_cache

         2692557 function calls (21 primitive calls) in 0.815

         seconds

   Ordered by: call count

   ncalls tottime percall filename:lineno(function)

2692537/1   0.815   0.815 test_fibonacci.py:13(fibonacci)

        7   0.000   0.000 {built-in method builtins.getattr}

        5   0.000   0.000 {built-in method builtins.setattr}

        1   0.000   0.000 {method 'update' of 'dict' objects}

        1   0.000   0.000 {built-in method builtins.isinstance}

        1   0.000   0.000 functools.py:422(decorating_function)

        1   0.000   0.815 test_fibonacci.py:1(<module>)

        1   0.000   0.000 {method 'disable' of '_lsprof.Profiler'}

        1   0.000   0.815 {built-in method builtins.exec}

        1   0.000   0.000 functools.py:43(update_wrapper)

        1   0.000   0.000 functools.py:391(lru_cache)

That's quite a lot of calls, isn't it? Apparently, we called the test_fibonacci 
function nearly 3 million times. That is where the profiling modules provide a lot of 
insight. Let's analyze the metrics a bit further:

•	 Ncalls: The number of calls that were made to the function
•	 Tottime: The total time spent in seconds within this function with all sub-

functions excluded
Percall, tottime / ncalls

•	 Cumtime: The total time spent within this function, including sub-functions
Percall, cumtime / ncalls
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Which is the most useful depends on your use case. It's quite simple to change the 
sort order using the -s parameter within the default output. But now let's see what 
the result is with the cached version. Once again, with stripped output:

# python3 -m cProfile -s calls test_fibonacci.py cache

         51 function calls (21 primitive calls) in 0.000 seconds

   Ordered by: call count

   ncalls tottime percall filename:lineno(function)

     31/1   0.000   0.000 test_fibonacci.py:5(fibonacci_cached)

        7   0.000   0.000 {built-in method builtins.getattr}

        5   0.000   0.000 {built-in method builtins.setattr}

        1   0.000   0.000 test_fibonacci.py:1(<module>)

        1   0.000   0.000 {built-in method builtins.isinstance}

        1   0.000   0.000 {built-in method builtins.exec}

        1   0.000   0.000 functools.py:422(decorating_function)

        1   0.000   0.000 {method 'disable' of '_lsprof.Profiler'}

        1   0.000   0.000 {method 'update' of 'dict' objects}

        1   0.000   0.000 functools.py:391(lru_cache)

        1   0.000   0.000 functools.py:43(update_wrapper)

This time we see a tottime of 0.000 because it's just too fast to measure. But also, 
while the fibonacci_cached function is still the most executed function, it's only 
being executed 31 times instead of 3 million.

Calibrating your profiler
To illustrate the difference between profile and cProfile, let's try the uncached 
run again with the profile module instead. Just a heads up, this is much slower so 
don't be surprised if it stalls a little:

# python3 -m profile -s calls test_fibonacci.py no_cache
         2692558 function calls (22 primitive calls) in 7.696 seconds

   Ordered by: call count

   ncalls tottime percall filename:lineno(function)
2692537/1   7.695   7.695 test_fibonacci.py:13(fibonacci)
        7   0.000   0.000 :0(getattr)
        5   0.000   0.000 :0(setattr)
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        1   0.000   0.000 :0(isinstance)
        1   0.001   0.001 :0(setprofile)
        1   0.000   0.000 :0(update)
        1   0.000   0.000 functools.py:43(update_wrapper)
        1   0.000   7.696 profile:0(<code object <module> ...>)
        1   0.000   7.695 test_fibonacci.py:1(<module>)
        1   0.000   0.000 functools.py:391(lru_cache)
        1   0.000   7.695 :0(exec)
        1   0.000   0.000 functools.py:422(decorating_function)
        0   0.000         profile:0(profiler)

Huge difference, isn't it? Now the code is nearly 10 times slower and the only 
difference is using the pure Python profile module instead of the cProfile 
module. This does indicate a big problem with the profile module. The overhead 
from the module itself is great enough to skew the results, which means we should 
account for that offset. That's what the Profile.calibrate() function takes care of, 
as it calculates the bias incurred by the profile module. To calculate the bias, we can 
use the following script:

import profile

if __name__ == '__main__':
    profiler = profile.Profile()
    for i in range(10):
        print(profiler.calibrate(100000))

The numbers will vary slightly but you should be able to get a fair estimate of the 
bias using this code. If the numbers still vary a lot, you can increase the trials from 
100000 to something even larger. This type of calibration only works for the profile 
module, but if you are looking for more accurate results and the cProfile module 
does not work for you due to inheritance or not being supported on your platform, 
you can use this code to set your bias globally and get more accurate results:

import profile

# The number here is bias calculated earlier
profile.Profile.bias = 2.0939406059394783e-06

For a specific Profile instance:

import profile

profiler = profile.Profile(bias=2.0939406059394783e-06)
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Note that in general a smaller bias is better to use than a large one, because a large 
bias could cause very strange results. In some cases you will even get negative 
timings. Let's give it a try for our Fibonacci code:

import sys
import pstats
import profile
import functools

@functools.lru_cache()
def fibonacci_cached(n):
    if n < 2:
        return n
    else:
        return fibonacci_cached(n - 1) + fibonacci_cached(n - 2)

def fibonacci(n):
    if n < 2:
        return n
    else:
        return fibonacci(n - 1) + fibonacci(n - 2)

if __name__ == '__main__':
    profiler = profile.Profile(bias=2.0939406059394783e-06)
    n = 30

    if sys.argv[-1] == 'cache':
        profiler.runcall(fibonacci_cached, n)
    else:
        profiler.runcall(fibonacci, n)

    stats = pstats.Stats(profiler).sort_stats('calls')
    stats.print_stats()

While running it, it indeed appears that I've used a bias that's too large:

# python3 test_fibonacci.py no_cache

         2692539 function calls (3 primitive calls) in -0.778

         seconds

   Ordered by: call count
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   ncalls tottime percall filename:lineno(function)

2692537/1  -0.778  -0.778 test_fibonacci.py:15(fibonacci)

        1   0.000   0.000 :0(setprofile)

        1   0.000  -0.778 profile:0(<function fibonacci at 0x...>)

        0   0.000         profile:0(profiler)

Still, it shows how the code can be used properly. You can even incorporate the bias 
calculation within the script using a snippet like this:

import profile

if __name__ == '__main__':
    profiler = profile.Profile()
    profiler.bias = profiler.calibrate(100000)

Selective profiling using decorators
Calculating simple timings is easy enough using decorators, but profiling is also 
important. Both are useful but serve different goals. Let's look at both the options:

import cProfile
import datetime
import functools

def timer(function):
    @functools.wraps(function)
    def _timer(*args, **kwargs):
        start = datetime.datetime.now()
        try:
            return function(*args, **kwargs)
        finally:
            end = datetime.datetime.now()
            print('%s: %s' % (function.__name__, end - start))
    return _timer

def profiler(function):
    @functools.wraps(function)
    def _profiler(*args, **kwargs):
        profiler = cProfile.Profile()
        try:
            profiler.enable()
            return function(*args, **kwargs)



Chapter 12

[ 357 ]

        finally:
            profiler.disable()
            profiler.print_stats()
    return _profiler

@profiler
def profiled_fibonacci(n):
    return fibonacci(n)

@timer
def timed_fibonacci(n):
    return fibonacci(n)

def fibonacci(n):
    if n < 2:
        return n
    else:
        return fibonacci(n - 1) + fibonacci(n - 2)

if __name__ == '__main__':
    timed_fibonacci(32)
    profiled_fibonacci(32)

The code is simple enough, just a basic timer and profiler printing some default 
statistics. Which functions best for you depends on your use-case of course, but they 
definitely both have their uses. The added advantage of this selective profiling is that 
the output is more limited which helps with readability:

# python3 test_fibonacci.py

 timed_fibonacci: 0:00:01.050200

         7049157 function calls (3 primitive calls) in 2.024

         seconds

   Ordered by: standard name

   ncalls tottime percall filename:lineno(function)

        1   0.000   2.024 test_fibonacci.py:31(profiled_fibonacci)

7049155/1   2.024   2.024 test_fibonacci.py:41(fibonacci)

        1   0.000   0.000 {method 'disable' of '_lsprof.Profiler'}
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As you can see, the profiler still makes the code about twice as slow, but it's 
definitely usable.

Using profile statistics
To get some more intricate profiling results, we will profile the pystone script. The 
pystone script is an internal Python performance test which benchmarks the Python 
interpreter fairly thoroughly. First, let's create the statistics using this script:

from test import pystone
import cProfile

if __name__ == '__main__':
    profiler = cProfile.Profile()
    profiler.runcall(pystone.main)
    profiler.dump_stats('pystone.profile')

When executing the script, you should get something like this:

# python3 test_pystone.py

Pystone(1.2) time for 50000 passes = 0.725432

This machine benchmarks at 68924.4 pystones/second

After running the script, you should have a pystone.profile file containing the 
profiling results. These results can be And the pystone.profile file which contains 
all of the profiling statistics. These statistics can be viewed through the pstats 
module which is bundled with Python:

import pstats

stats = pstats.Stats('pystone.profile')
stats.strip_dirs()
stats.sort_stats('calls', 'cumtime')
stats.print_stats(10)

In some cases, it can be interesting to combine the results from multiple 
measurements. That is possible by specifying multiple files or by using stats.
add(*filenames). But first, let's look at the regular output:

# python3 parse_statistics.py

         1050012 function calls in 0.776 seconds
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   Ordered by: call count, cumulative time

   List reduced from 21 to 10 due to restriction <10>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)

   150000    0.032    0.000    0.032    0.000 pystone.py:214(Proc7)

   150000    0.027    0.000    0.027    0.000 pystone.py:232(Func1)

   100000    0.016    0.000    0.016    0.000 {built-in method builtins.
chr}

   100000    0.010    0.000    0.010    0.000 {built-in method builtins.
ord}

    50002    0.029    0.000    0.029    0.000 pystone.py:52(__init__)

    50000    0.127    0.000    0.294    0.000 pystone.py:144(Proc1)

    50000    0.094    0.000    0.094    0.000 pystone.py:219(Proc8)

    50000    0.048    0.000    0.077    0.000 pystone.py:60(copy)

    50000    0.051    0.000    0.061    0.000 pystone.py:240(Func2)

    50000    0.031    0.000    0.043    0.000 pystone.py:171(Proc3)

Obviously, the parameters can easily be modified to change the sort order and  
the number of output lines. But that is not the only possibility of the statistics. There 
are quite a few packages around which can parse these results and visualize them. 
One option is RunSnakeRun, which although useful does not run on Python 3 
currently. Also, we have QCacheGrind, a very nice visualizer for profile statistics but 
which requires some manual compiling to get running or some searching for binaries 
of course.

Let's look at the output from QCacheGrind. In the case of Windows, the 
QCacheGrindWin package provides a binary, whereas within Linux it is most likely 
available through your package manager, and with OS X you can try brew install 
qcachegrind --with-graphviz. But there is one more package you will require: 
the pyprof2calltree package. It transforms the profile output into a format that 
QCacheGrind understands. So, after a simple pip install pyprof2calltree, we 
can now convert the profile file into a callgrind file:

# pyprof2calltree -i pystone.profile -o pystone.callgrind

writing converted data to: pystone.callgrind

# qcachegrind pystone.callgrind
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This results in running of the QCacheGrind application. After switching to the 
appropriate tabs, you should see something like the following image:

For a simple script such as this, pretty much all output works. However, with full 
applications, a tool such as QCacheGrind is invaluable. Looking at the output 
generated by QCacheGrind, it is immediately obvious which process took the most 
time. The structure at the top right shows bigger rectangles if the amount of time 
taken was greater, which is a very useful visualization of the chunks of CPU time 
that were used. The list at the left is very similar to cProfile and therefore nothing 
new. The tree at the bottom right can be very valuable or very useless as it is in 
this case. It shows you the percentage of CPU time taken in a function and more 
importantly, the relationship of that function with the other functions.

Because these tools scale depending on the input the results are useful for just about 
any application. Whether a function takes 100 milliseconds or 100 minutes makes no 
difference, the output will show a clear overview of the slow parts, which is what we 
will try to fix.
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Line profiler
line_profiler is actually not a package that's bundled with Python, but it's far too 
useful to ignore. While the regular profile module profiles all (sub)functions within 
a certain block, line_profiler allows for profiling line per line within a function. 
The Fibonacci function is not best suited here, but we can use a prime number 
generator instead. But first, install line_profiler:

 pip install line_profiler

Now that we have installed the line_profiler module (and with that the kernprof 
command), let's test line_profiler:

import itertools

@profile
def primes():
    n = 2
    primes = set()
    while True:
        for p in primes:
            if n % p == 0:
                break
        else:
            primes.add(n)
            yield n
        n += 1

if __name__ == '__main__':
    total = 0
    n = 2000
    for prime in itertools.islice(primes(), n):
        total += prime

    print('The sum of the first %d primes is %d' % (n, total))

You might be wondering where the profile decorator is coming from. It originates 
from the line_profiler module, which is why we have to run the script with the 
kernprof command:

# kernprof -l test_primes.py

The sum of the first 2000 primes is 16274627

Wrote profile results to test_primes.py.lprof
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As the command says, the results have been written to the test_primes.py.lprof 
file. So let's look at the output of that with the Time column skipped for readability:

# python3 -m line_profiler test_primes.py.lprof

Timer unit: 1e-06 s

Total time: 2.33179 s

File: test_primes.py

Function: primes at line 4

Line #      Hits   Per Hit   % Time  Line Contents

==================================================

     4                               @profile

     5                               def primes():

     6         1       3.0      0.0      n = 2

     7         1       1.0      0.0      primes = set()

     8         1       0.0      0.0      while True:

     9   2058163       0.5     43.1          for p in primes:

    10   2056163       0.6     56.0              if n % p == 0:

    11     15388       0.5      0.3                  break

    12                                       else:

    13      2000       1.2      0.1              primes.add(n)

    14      2000       0.5      0.0              yield n

    15     17387       0.6      0.4          n += 1

Wonderful output, isn't it? It makes it trivial to find the slow part within a bit of 
code. Within this code, the slowness is obviously originating from the loop, but 
within other code it might not be that clear.

This module can be added as an IPython extension as well, 
which enables the %lprun command within IPython. To load 
the extension, the load_ext command can be used from the 
IPython shell %load_ext line_profiler.
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Improving performance
Much can be said about performance optimization, but truthfully, if you have read 
the entire book up to this point, you know most of the Python-specific techniques to 
write fast code. The most important factor in application performance will always be 
the choice of algorithms, and by extension, the data structures. Searching for an item 
within list is almost always a worse idea than searching for an item in dict or set.

Using the right algorithm
Within any application, the right choice of algorithm is by far the most important 
performance characteristic, which is why I am repeating it to illustrate the results  
of a bad choice:

In [1]: a = list(range(1000000))

In [2]: b = dict.fromkeys(range(1000000))

In [3]: %timeit 'x' in a
10 loops, best of 3: 20.5 ms per loop

In [4]: %timeit 'x' in b
10000000 loops, best of 3: 41.6 ns per loop

Checking whether an item is within a list is an O(n) operation and checking 
whether an item is within a dict is an O(1) operation. A huge difference when 
n=1000000 obviously, in this simple test we can see that for 1 million items it's 500 
times faster.

All other performance tips combined together might make your code twice as fast, 
but using the right algorithm for the job can cause a much greater improvement. 
Using an algorithm that takes O(n) time instead of O(n^2) time will make your code 
1000 times faster for n=1000, and with a larger n the difference only grows further.

Global interpreter lock
One of the most obscure components of the CPython interpreter is the global 
interpreter lock (GIL), a mutual exclusion lock (mutex) required to prevent memory 
corruption. The Python memory manager is not thread-safe and that is why the GIL 
is needed. Without the GIL, multiple threads might alter memory at the same time, 
causing all sorts of unexpected and potentially dangerous results.
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So what is the impact of the GIL in a real-life application? Within single-threaded 
applications it makes no difference whatsoever and is actually an extremely fast 
method for memory consistency. Within multithreaded applications however, it 
can slow your application down a bit, because only a single thread can access the 
GIL at a time. So if your code has to access the GIL a lot, it might benefit from some 
restructuring.

Luckily, Python offers a few other options for parallel processing: the asyncio 
module that we saw earlier and the multiprocessing library that we will see in 
Chapter 13, Multiprocessing – When a Single CPU Core Is Not Enough.

Try versus if
In many languages a try/except type of block incurs quite a performance hit, but 
within Python this is not the case. It's not that an if statement is heavy, but if you 
expect your try/except to succeed most of the time and only fail in rare cases, it's 
definitely a valid alternative. As always though, focus on readability and conveying 
the purpose of the code. If the intention of the code is clearer using an if statement, 
use the if statement. If try/except conveys the intention in a better way, use that.

Lists versus generators
Evaluating code lazily using generators is almost always a better idea than 
calculating the entire dataset. The most important rule of performance optimization 
is probably that you shouldn't calculate anything you're not going to use. If you're 
not sure that you are going to need it, don't calculate it.

Don't forget that you can easily chain multiple generators, so everything is calculated 
only when it's actually needed. Do be careful that this won't result in recalculation 
though; itertools.tee is generally a better idea than recalculating your results 
completely.

String concatenation
You might have seen benchmarks saying that using += is much slower than joining 
strings. At one point this made quite a lot of difference indeed. With Python 3 
however, most of the differences have vanished.

In [1]: %%timeit

   ...: s = ''

   ...: for i in range(1000000):

   ...:     s += str(i)
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   ...:

1 loops, best of 3: 362 ms per loop

In [2]: %%timeit

   ...: ss = []

   ...: for i in range(1000000):

   ...:     ss.append(str(i))

   ...: s = ''.join(ss)

   ...:

1 loops, best of 3: 332 ms per loop

In [3]: %timeit ''.join(str(i) for i in range(1000000))

1 loops, best of 3: 324 ms per loop

In [4]: %timeit ''.join([str(i) for i in range(1000000)])

1 loops, best of 3: 294 ms per loop

There are still some differences of course, but they are so small that I recommend to 
simply ignore them and choose the most readable option instead.

Addition versus generators
As is the case with string concatenation, once a significant difference now too small 
to mention.

In [1]: %%timeit
   ...: x = 0
   ...: for i in range(1000000):
   ...:     x += i
   ...:
10 loops, best of 3: 73.2 ms per loop

In [2]: %timeit x = sum(i for i in range(1000000))
10 loops, best of 3: 75.3 ms per loop

In [3]: %timeit x = sum([i for i in range(1000000)])
10 loops, best of 3: 71.2 ms per loop

In [4]: %timeit x = sum(range(1000000))
10 loops, best of 3: 25.6 ms per loop
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What does help though is letting Python handle everything internally using native 
functions, as can be seen in the last example.

Map versus generators and list 
comprehensions
Once again, readability counts more than performance. There are a few cases where 
map is faster than list comprehensions and generators, but only if the map function 
can use a predefined function. As soon as you need to whip out lambda, it's actually 
slower. Not that it matters much, since readability should be key anyhow, use 
generators or list comprehensions instead of map:

In [1]: %timeit list(map(lambda x: x/2, range(1000000)))
10 loops, best of 3: 182 ms per loop

In [2]: %timeit list(x/2 for x in range(1000000))
10 loops, best of 3: 122 ms per loop

In [3]: %timeit [x/2 for x in range(1000000)]
10 loops, best of 3: 84.7 ms per loop

As you can see, the list comprehension is obviously quite a bit faster than the 
generator. In many cases I would still recommend the generator over the list 
comprehension though, if only because of the memory usage and the potential 
laziness. If for some reason you are only going to use the first 10 items, you're still 
wasting a lot of resources by calculating the full list of items.

Caching
We have already covered the functools.lru_cache decorator in Chapter 5, 
Decorators – Enabling Code Reuse by Decorating but the importance should not be 
underestimated. Regardless of how fast and smart your code is, not having to 
calculate results is always better and that's what caching does. Depending on your 
use case, there are many options available. Within a simple script, functools.lru_
cache is a very good contender, but between multiple executions of an application, 
the cPickle module can be a life saver as well.

If multiple servers are involved, I recommend taking a look at Redis. The Redis server 
is a single threaded in-memory server which is extremely fast and has many useful 
data structures available. If you see articles or tutorials about improving performance 
using Memcached, simply replace Memcached with Redis everywhere. Redis is 
superior to Memcached in every way and in its most basic form the API is compatible.
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Lazy imports
A common problem in application load times is that everything is loaded 
immediately at the start of the program, while with many applications this is actually 
not needed and certain parts of the application only require loading when they are 
actually used. To facilitate this, one can occasionally move the imports inside of 
functions so they can be loaded on demand.

While it's a valid strategy in some cases, I don't generally recommend it for  
two reasons:

1.	 It makes your code less clear; having all imports in the same style at the top 
of the file improves readability.

2.	 It doesn't make the code faster as it just moves the load time to a  
different part.

Using optimized libraries
This is actually a very broad tip, but useful nonetheless. If there's a highly optimized 
library which suits your purpose, you most likely won't be able to beat its performance 
without a significant amount of effort. Libraries such as numpy, pandas, scipy, and 
sklearn are highly optimized for performance and their native operations can be 
incredibly fast. If they suit your purpose, be sure to give them a try. Just to illustrate 
how fast numpy can be compared to plain Python, refer to the following:

In [1]: import numpy

In [2]: a = list(range(1000000))

In [3]: b = numpy.arange(1000000)

In [4]: %timeit c = [x for x in a if x > 500000]
10 loops, best of 3: 44 ms per loop

In [5]: %timeit d = b[b > 500000]
1000 loops, best of 3: 1.61 ms per loop

The numpy code does exactly the same as the Python code, except that it uses numpy 
arrays instead of Python lists. This little difference has made the code more than 25 
times faster.
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Just-in-time compiling
Just-in-time (JIT) compiling is a method of dynamically compiling (parts) an 
application during runtime. Because there is much more information available at 
runtime, this can have a huge effect and make your application much faster.

The numba package provides selective JIT compiling for you, allowing you to mark 
the functions that are JIT compiler compatible. Essentially, if your functions follow 
the functional programming paradigm of basing the calculations only on the input, 
then it will most likely work with the JIT compiler.

Basic example of how the numba JIT compiler can be used:

import numba

@numba.jit
def sum(array):
    total = 0.0
    for value in array:
        total += value
    return value

The use cases for these are limited, but if you are using numpy or pandas you will 
most likely benefit from numba.

Another very interesting fact to note is that numba supports not only CPU optimized 
execution but GPU as well. This means that for certain operations you can use the 
fast processor in your video card to process the results.

Converting parts of your code to C
We will see more about this in Chapter 14, Extensions in C/C++, System Calls, and C/C++ 
Libraries, but if high performance is really required, then a native C function can help 
quite a lot. This doesn't even have to be that difficult. The Cython module makes it 
trivial to write parts of your code with performance very close to native C code.

Following is an example from the Cython manual to approximate the value of pi:

cdef inline double recip_square(int i):
    return 1./(i*i)

def approx_pi(int n=10000000):
    cdef double val = 0.
    cdef int k
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    for k in xrange(1,n+1):
        val += recip_square(k)
    return (6 * val)**.5

While there are some small differences such as cdef instead of def and type 
definitions for the values and parameters, the code is largely the same as regular 
Python would be, but certainly much faster.

Memory usage
So far we have simply looked at the execution times and ignored the memory 
usage of the scripts. In many cases, the execution times are the most important, but 
memory usage should not be ignored. In almost all cases, CPU and memory are 
traded; a code either uses a lot of CPU or a lot of memory, which means that both  
do matter a lot.

Tracemalloc
Monitoring memory usage used to be something that was only possible through 
external Python modules such as Dowser or Heapy. While those modules still work, 
they are largely obsolete now because of the tracemalloc module. Let's give the 
tracemalloc module a try to see how easy memory usage monitoring is nowadays:

import tracemalloc

if __name__ == '__main__':
    tracemalloc.start()

    # Reserve some memory
    x = list(range(1000000))

    # Import some modules
    import os
    import sys
    import asyncio

    # Take a snapshot to calculate the memory usage
    snapshot = tracemalloc.take_snapshot()
    for statistic in snapshot.statistics('lineno')[:10]:
        print(statistic)
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This results in:

# python3 test_tracemalloc.py

test_tracemalloc.py:8: size=35.3 MiB, count=999745, average=37 B

<frozen importlib._bootstrap_external>:473: size=1909 KiB, count=20212, 
average=97 B

<frozen importlib._bootstrap>:222: size=895 KiB, count=3798, average=241 
B

collections/__init__.py:412: size=103 KiB, count=1451, average=72 B

<string>:5: size=36.6 KiB, count=133, average=282 B

collections/__init__.py:406: size=29.9 KiB, count=15, average=2039 B

abc.py:133: size=26.1 KiB, count=102, average=262 B

ipaddress.py:608: size=21.3 KiB, count=182, average=120 B

<frozen importlib._bootstrap_external>:53: size=21.2 KiB, count=140, 
average=155 B

types.py:234: size=15.3 KiB, count=124, average=127 B

You can easily see how every part of the code allocated memory and where it might 
be wasted. While it might still be unclear which part was actually causing the memory 
usage, there are options for that as well, as we will see in the following sections.

Memory profiler
The memory_profiler module is very similar to line_profiler discussed earlier, 
but for memory usage instead. Installing it is as easy as pip install memory_
profiler, but the optional pip install psutil is also highly recommended (and 
required in the case of Windows) as it increases your performance by a large amount. 
To test line_profiler, we will use the following script:

import memory_profiler

@memory_profiler.profile
def main():
    n = 100000
    a = [i for i in range(n)]
    b = [i for i in range(n)]
    c = list(range(n))
    d = list(range(n))
    e = dict.fromkeys(a, b)
    f = dict.fromkeys(c, d)

if __name__ == '__main__':
    main()
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Note that we actually import the memory_profiler here although that is not strictly 
required. It can also be executed through python3 -m memory_profiler your_
scripts.py:

# python3 test_memory_profiler.py

Filename: test_memory_profiler.py

Line #    Mem usage    Increment   Line Contents

================================================

     4     11.0 MiB      0.0 MiB   @memory_profiler.profile

     5                             def main():

     6     11.0 MiB      0.0 MiB       n = 100000

     7     14.6 MiB      3.5 MiB       a = [i for i in range(n)]

     8     17.8 MiB      3.2 MiB       b = [i for i in range(n)]

     9     21.7 MiB      3.9 MiB       c = list(range(n))

    10     25.5 MiB      3.9 MiB       d = list(range(n))

    11     38.0 MiB     12.5 MiB       e = dict.fromkeys(a, b)

    12     44.1 MiB      6.1 MiB       f = dict.fromkeys(c, d)

Even though everything runs as expected, you might be wondering about the 
varying amounts of memory used by the lines of code here. Why does a take 3.5 
MiB and b only 3.2 MiB? This is caused by the Python memory allocation code; 
it reserves memory in larger blocks, which is subdivided and reused internally. 
Another problem is that memory_profiler takes snapshots internally, which results 
in memory being attributed to the wrong variables in some cases. The variations 
should be small enough to not make a large difference in the end, but some changes 
are to be expected.

This module can be added as an IPython extension as well, 
which enables the %mprun command within IPython. To load 
the extension, the load_ext command can be used from the 
IPython shell %load_ext memory_profiler. Another very 
useful command is %memit which is the memory equivalent of 
the %timeit command.
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Memory leaks
The usage of these modules will generally be limited to the search for memory leaks. 
Especially the tracemalloc module has a few features to make that fairly easy. The 
Python memory management system is fairly simple; it just has a simple reference 
counter to see if an object is used. While this works great in most cases, it can easily 
introduce memory leaks when circular references are involved. The basic premise of 
a memory leak with leak detection code looks like this:

 1 import tracemalloc
 2
 3
 4 class Spam(object):
 5     index = 0
 6     cache = {}
 7
 8     def __init__(self):
 9         Spam.index += 1
10         self.cache[Spam.index] = self
11
12
13 class Eggs(object):
14     eggs = []
15
16     def __init__(self):
17         self.eggs.append(self)
18
19
20 if __name__ == '__main__':
21     # Initialize some variables to ignore them from the leak
22     # detection
23     n = 200000
24     spam = Spam()
25
26     tracemalloc.start()
27     # Your application should initialize here
28
29     snapshot_a = tracemalloc.take_snapshot()
30     # This code should be the memory leaking part
31     for i in range(n):
32         Spam()
33
34     Spam.cache = {}
35     snapshot_b = tracemalloc.take_snapshot()



Chapter 12

[ 373 ]

36     # And optionally more leaking code here
37     for i in range(n):
38         a = Eggs()
39         b = Eggs()
40         a.b = b
41         b.a = a
42
43     Eggs.eggs = []
44     snapshot_c = tracemalloc.take_snapshot()
45
46     print('The first leak:')
47     statistics = snapshot_b.compare_to(snapshot_a, 'lineno')
48     for statistic in statistics[:10]:
49         print(statistic)
50
51     print('\nThe second leak:')
52     statistics = snapshot_c.compare_to(snapshot_b, 'lineno')
53     for statistic in statistics[:10]:
54         print(statistic)

Let's see how bad this code is actually leaking:

# python3 test_leak.py

The first leak:

tracemalloc.py:349: size=528 B (+528 B), count=3 (+3), average=176 B

test_leak.py:34: size=288 B (+288 B), count=2 (+2), average=144 B

test_leak.py:32: size=120 B (+120 B), count=2 (+2), average=60 B

tracemalloc.py:485: size=64 B (+64 B), count=1 (+1), average=64 B

tracemalloc.py:487: size=56 B (+56 B), count=1 (+1), average=56 B

tracemalloc.py:277: size=32 B (+32 B), count=1 (+1), average=32 B

test_leak.py:31: size=28 B (+28 B), count=1 (+1), average=28 B

test_leak.py:9: size=28 B (+28 B), count=1 (+1), average=28 B

The second leak:

test_leak.py:41: size=18.3 MiB (+18.3 MiB), count=400000 (+400000), 
average=48 B

test_leak.py:40: size=18.3 MiB (+18.3 MiB), count=400000 (+400000), 
average=48 B

test_leak.py:38: size=10.7 MiB (+10.7 MiB), count=200001 (+200001), 
average=56 B

test_leak.py:39: size=10.7 MiB (+10.7 MiB), count=200002 (+200002), 
average=56 B
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tracemalloc.py:349: size=680 B (+152 B), count=6 (+3), average=113 B

test_leak.py:17: size=72 B (+72 B), count=1 (+1), average=72 B

test_leak.py:43: size=64 B (+64 B), count=1 (+1), average=64 B

test_leak.py:32: size=56 B (-64 B), count=1 (-1), average=56 B

tracemalloc.py:487: size=112 B (+56 B), count=2 (+1), average=56 B

tracemalloc.py:277: size=64 B (+32 B), count=2 (+1), average=32 B

In absolute memory usage the increase is not even that great, but it is definitely 
leaking a little. The first leak is negligible; at the last iteration we see an increase of 
28 bytes which is next to nothing. The second leak however leaks a lot and peaks at 
a 18.3 megabyte increase. Those are memory leaks, the Python garbage collector (gc) 
is smart enough to clean circular references eventually but it won't clean them until a 
certain limit is reached. More about that soon.

Whenever you want to have a circular reference that does not cause memory leaks, 
the weakref module is available. It creates reference which don't count towards the 
object reference count. Before we look at the weakref module, let's take a look at the 
object references themselves through the eyes of the Python garbage collector (gc):

import gc

class Eggs(object):

    def __init__(self, name):
        self.name = name

    def __repr__(self):
        return '<%s: %s>' % (self.__class__.__name__, self.name)

# Create the objects
a = Eggs('a')
b = Eggs('b')

# Add some circular references
a.b = a
b.a = b

# Remove the objects
del a
del b

# See if the objects are still there
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print('Before manual collection:')
for object_ in gc.get_objects():
    if isinstance(object_, Eggs):
        print('\t', object_, gc.get_referents(object_))

print('After manual collection:')
gc.collect()
for object_ in gc.get_objects():
    if isinstance(object_, Eggs):
        print('\t', object_, gc.get_referents(object_))

print('Thresholds:', gc.get_threshold())

So let's have a look at the output:

# python3 test_refcount.py

Before manual collection:

         <Eggs: a> [{'b': <Eggs: a>, 'name': 'a'}, <class '__main__.
Eggs'>]

         <Eggs: b> [{'name': 'b', 'a': <Eggs: b>}, <class '__main__.
Eggs'>]

After manual collection:

Thresholds: (700, 10, 10)

As we can see here, until we manually call the garbage collector, the Eggs objects 
will stay in the memory. Even after explicitly deleting the objects. So does this mean 
you are always required to manually call gc.collect() to remove these references? 
Luckily that's not needed, as the Python garbage collector will automatically collect 
once the thresholds have been reached. By default, the thresholds for the Python 
garbage collector are set to 700, 10, 10 for the three generations of collected 
objects. The collector keeps track of all the memory allocations and deallocations in 
Python, and as soon as the number of allocations minus the number of deallocations 
reaches 700, the object is either removed if it's not referenced anymore or it is moved 
to the next generation if it still has a reference. The same is repeated for generation 2 
and 3, albeit with the lower thresholds of 10.

This begs the question: where and when is it useful to manually call the garbage 
collector? Since the Python memory allocator reuses blocks of memory and only 
rarely releases it, for long running scripts the garbage collector can be very useful. 
That's exactly where I recommend its usage: long running scripts in memory-strapped 
environments and specifically, right before you allocate a large amount of memory.
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More to the point however, the gc module can help you a lot when looking for 
memory leaks as well. The tracemalloc module can show you the parts that take the 
most memory in bytes but the gc module can help you find the most defined objects. 
Just be careful with setting the garbage collector debug settings such as gc.set_
debug(gc.DEBUG_LEAK); it returns a large amount of output even if you don't reserve 
any memory yourself. Revisiting our Spam and Eggs script from earlier, let's see where 
and how the memory is being used using the garbage collection module:

import gc
import collections

class Spam(object):
    index = 0
    cache = {}

    def __init__(self):
        Spam.index += 1
        self.cache[Spam.index] = self

class Eggs(object):
    eggs = []

    def __init__(self):
        self.eggs.append(self)

if __name__ == '__main__':
    n = 200000
    for i in range(n):
        Spam()

    for i in range(n):
        a = Eggs()
        b = Eggs()
        a.b = b
        b.a = a

    Spam.cache = {}
    Eggs.eggs = []
    objects = collections.Counter()
    for object_ in gc.get_objects():
        objects[type(object_)] += 1

    for object_, count in objects.most_common(5):
        print('%d: %s' % (count, object_))
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The output is probably close to what you were already expecting:

# python3 test_leak.py

400617: <class 'dict'>

400000: <class '__main__.Eggs'>

962: <class 'wrapper_descriptor'>

920: <class 'function'>

625: <class 'method_descriptor'>

The large amount of dict objects is because of the internal state of the classes, but 
beyond that we simply see the Eggs objects just as we would expect. The Spam 
objects were properly removed by the garbage collector because they and all of the 
references were just removed. The Eggs objects couldn't be removed because of the 
circular references. Now we will repeat the same example using the weakref module 
to see if it makes a difference:

import gc
import weakref
import collections

class Eggs(object):
    eggs = []

    def __init__(self):
        self.eggs.append(self)

if __name__ == '__main__':
    n = 200000
    for i in range(n):
        a = Eggs()
        b = Eggs()
        a.b = weakref.ref(b)
        b.a = weakref.ref(a)

    Eggs.eggs = []
    objects = collections.Counter()
    for object_ in gc.get_objects():
        objects[type(object_)] += 1

    for object_, count in objects.most_common(5):
        print('%d: %s' % (count, object_))
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Now let's see what remained this time:

# python3 test_leak.py

962: <class 'wrapper_descriptor'>

919: <class 'function'>

625: <class 'method_descriptor'>

618: <class 'dict'>

535: <class 'builtin_function_or_method'>

Nothing besides some standard built-in Python objects, which is exactly what we 
had hoped for. Be careful with weak references though, as they can easily blow up in 
your face if the referenced object has disappeared:

import weakref

class Eggs(object):
    pass

if __name__ == '__main__':
    a = Eggs()
    b = Eggs()
    a.b = weakref.ref(b)

    print(a.b())
    del b
    print(a.b())

This results in one working reference and a dead one:

# python3 test_weakref.py

<__main__.Eggs object at 0x104891a20>

None

Reducing memory usage
In general, memory usage probably won't be your biggest problem in Python, but it 
can still be useful to know what you can do to reduce memory usage. When trying to 
reduce memory usage, it's important to understand how Python allocates memory.
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There are four concepts which you need to know about within the Python memory 
manager:

•	 First we have the heap. The heap is the collection of all Python managed 
memory. Note that this is separate from the regular heap and mixing the two 
could result in corrupt memory and crashes.

•	 Second are the arenas. These are the chunks that Python requests from the 
system. These chunks have a fixed size of 256 KiB each and they are the 
objects that make up the heap.

•	 Third we have the pools. These are the chunks of memory that make up the 
arenas. These chunks are 4 KiB each. Since the pools and arenas have fixed 
sizes, they are simple arrays.

•	 Fourth and last, we have the blocks. The Python objects get stored within 
these and every block has a specific format depending on the data type. Since 
an integer takes up more space than a character, for efficiency a different 
block size is used.

Now that we know how the memory is allocated, we can also understand how it can 
be returned to the operating system. Whenever an arena is completely empty, it can 
and will be freed. To increase the likelihood of this happening, some heuristics are 
used to maximize the usage of fuller arenas.

It is important to note that the regular heap and Python heap are 
maintained separately as mixing them can result in corruption 
and/or crashing of applications. Unless you write your own 
extensions, you will probably never have to worry about manual 
memory allocation though.

Generators versus lists
The most important tip is to use generators whenever possible. Python 3 has come a 
long way in replacing lists with generators already, but it really pays off to keep that 
in mind as it saves not only memory, but CPU as well when not all of that memory 
needs to be kept at the same time.

To illustrate the difference:

Line #    Mem usage    Increment   Line Contents

================================================

     4     11.0 MiB      0.0 MiB   @memory_profiler.profile

     5                             def main():

     6     11.0 MiB      0.0 MiB    a = range(1000000)

     7     49.7 MiB     38.6 MiB    b = list(range(1000000))
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The range() generator takes such little memory that it doesn't even register, whereas 
the list of numbers takes 38.6 MiB.

Recreating collections versus removing items
One very important detail about collections in Python is that many of them can only 
grow; they won't just shrink by themselves. To illustrate:

Line #    Mem usage    Increment   Line Contents

================================================

     4     11.5 MiB      0.0 MiB   @memory_profiler.profile

     5                             def main():

     6                             # Generate a huge dict

     7     26.3 MiB     14.8 MiB   a = dict.fromkeys(range(100000))

     8

     9                             # Remove all items

    10     26.3 MiB      0.0 MiB   for k in list(a.keys()):

    11     26.3 MiB      0.0 MiB   del a[k]

    12

    13                             # Recreate the dict

    14     23.6 MiB     -2.8 MiB   a = dict((k, v) for k, v in a.items())

This is one of the most common memory usage mistakes made with lists and 
dictionaries. Besides recreating the objects, there is, of course, also the option of using 
generators instead so the memory is never allocated at all.

Using slots
If you've used Python for a long time you may have seen the __slots__ feature of 
classes. It allows you to specify which fields you want to store in a class and it skips 
all the others by not implementing instance.__dict__. While this method does 
save a little bit of memory in your class definitions, I recommend against its usage 
as there are several downsides to using it. The most important one is that they make 
inheritance non-obvious (adding __slots__ to a subclassed class that doesn't have 
__slots__ has no effect). It also makes it impossible to modify class attributes on the 
fly and breaks weakref by default. And lastly, classes with slots cannot be pickled 
without defining a __getstate__ function.
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For completeness however, here's a demonstration of the slots feature and the 
difference in memory usage:

import memory_profiler

class Slots(object):
    __slots__ = 'index', 'name', 'description'

    def __init__(self, index):
        self.index = index
        self.name = 'slot %d' % index
        self.description = 'some slot with index %d' % index

class NoSlots(object):

    def __init__(self, index):
        self.index = index
        self.name = 'slot %d' % index
        self.description = 'some slot with index %d' % index

@memory_profiler.profile
def main():
    slots = [Slots(i) for i in range(25000)]
    no_slots = [NoSlots(i) for i in range(25000)]
    return slots, no_slots

if __name__ == '__main__':
    main()

And the memory usage:

# python3 test_slots.py

Filename: test_slots.py

Line #    Mem usage    Increment   Line Contents

================================================

    21     11.1 MiB      0.0 MiB   @memory_profiler.profile

    22                             def main():
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    23     17.0 MiB      5.9 MiB   slots = [Slots(i) for i in 
range(25000)]

    24     25.0 MiB      8.0 MiB   no_slots = [NoSlots(i) for i in 
range(25000)]

    25     25.0 MiB      0.0 MiB   return slots, no_slots

You might argue that this is not a fair comparison, since they both store a lot of 
data which skews the results. And you would indeed be right, because the "bare" 
comparison storing only index and nothing else gives 2 MiB versus 4.5 MiB. But 
let's be honest, if you're not going to store data, then what's the point in creating 
class instances? That's why I recommend against the usage of __slots__ and instead 
recommend the usage of tuples or collections.namedtuple if memory is that 
important. There is one more structure that's even more memory efficient, the array 
module. It stores the data in pretty much a bare memory array. Note that this is 
generally slower than lists and much less convenient to use.

Performance monitoring
So far we have seen how to measure and improve both CPU and memory performance, 
but there is one part we have completely skipped over. Performance changes due to 
external factors such as growing amounts of data are very hard to predict. In real life 
applications, bottlenecks aren't constant. They change all the time and code that was 
once extremely fast might bog down as soon as more load is applied.

Because of that I recommend implementing a monitoring solution that tracks 
the performance of anything and everything over time. The big problem with 
performance monitoring is that you can't know what will slow down in the future 
and what the cause is going to be. I've even had websites slow down because of 
Memcached and Redis calls. These are memory only caching servers that respond 
well within a millisecond which makes slowdowns highly unlikely, until you do 
over a 100 cache calls and the latency towards the cache server increases from 
0.1 milliseconds to 2 milliseconds, and all of a sudden those 100 calls take 200 
milliseconds instead of 10 milliseconds. Even though 200 milliseconds still sounds 
like very little, if your total page load time is generally below 100 milliseconds, that is 
all of a sudden an enormous increase and definitely noticeable.
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To monitor performance and to be able to track changes over time and find the 
responsible components, I am personally a big fan of the Statsd statistic collection server 
together with the Graphite interface. Even though usability is a bit lacking, the result 
is a graphing interface which you can dynamically query to analyze when, where, 
and how your performance changed. To be able to use these you will have to send the 
metrics from your application towards the Statsd server. To do just that, I have written 
the Python-Statsd (https://pypi.python.org/pypi/python-statsd) and Django-
Statsd (https://pypi.python.org/pypi/django-statsd) packages. These packages 
allow you to monitor your application from beginning to end, and in the case of Django 
you will be able to monitor your performance per application or view and within those 
see all of the components, such as the database, template, and caching layers. This way, 
you know exactly what is causing the slowdowns in your website (or application).

Summary
When it comes to performance, there is no holy grail, no single thing you can do to 
ensure peak performance in all cases. This shouldn't worry you however, as in most 
cases you will never need to tune the performance and if you do, a single tweak 
could probably fix your problem. You should be able to find performance problems 
and memory leaks in your code now which is what matters most, so just try to 
contain yourself and only tweak when it's actually needed.

The most important outtakes from this chapter are:

•	 Test before you invest any effort. Making some functions faster seems like a 
great achievement but it is only rarely needed.

•	 Choosing the correct data structure/algorithm is much more effective  
than any other performance optimization.

•	 Circular references drain the memory until the garbage collector  
starts cleaning.

•	 Slots are not worth the effort.

The next chapter will discuss multiprocessing, a library which makes it trivial 
to employ multiple processors for your scripts. If you can't squeeze any more 
performance out of your script, multiprocessing might be your answer, as every 
(remote?) CPU core can make your script faster.

https://pypi.python.org/pypi/python-statsd
https://pypi.python.org/pypi/django-statsd
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Multiprocessing – When a 
Single CPU Core Is  

Not Enough
In the previous chapter, we discussed factors that influence performance and some 
methods to increase performance. This chapter can actually be seen as an extension 
to the list of performance tips. In this chapter, we will discuss the multiprocessing 
module, a module that makes it very easy to make your code run on multiple CPU 
cores and even on multiple machines. This is an easy way to work around the Global 
Interpreter Lock (GIL) that was discussed in the previous chapter.

To summarize, this chapter will cover:

•	 Local multiprocessing
•	 Remote multiprocessing
•	 Data sharing and synchronization between processes

Multithreading versus multiprocessing
Within this book we haven't really covered multithreading yet, but you have 
probably seen multithreaded code in the past. The big difference between 
multithreading and multiprocessing is that with multithreading everything is still 
executed within a single process. That effectively limits your performance to a single 
CPU core. It actually limits you even further because the code has to deal with the 
GIL limitations of CPython.
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The GIL is the global lock that Python uses for safe memory access. 
It is discussed in more detail in Chapter 12, Performance – Tracking 
and Reducing Your Memory and CPU Usage, about performance.

To illustrate that multithreading code doesn't help performance in all cases and can 
actually be slightly slower than single threaded code, look at this example:

import datetime
import threading

def busy_wait(n):
    while n > 0:
        n -= 1

if __name__ == '__main__':
    n = 10000000
    start = datetime.datetime.now()
    for _ in range(4):
        busy_wait(n)
    end = datetime.datetime.now()
    print('The single threaded loops took: %s' % (end - start))

    start = datetime.datetime.now()
    threads = []
    for _ in range(4):
        thread = threading.Thread(target=busy_wait, args=(n,))
        thread.start()
        threads.append(thread)

    for thread in threads:
        thread.join()

    end = datetime.datetime.now()
    print('The multithreaded loops took: %s' % (end - start))

With Python 3.5, which has the new and improved GIL implementation (introduced 
in Python 3.2), the performance is quite comparable but there is no improvement:

# python3 test_multithreading.py

The single threaded loops took: 0:00:02.623443

The multithreaded loops took: 0:00:02.597900
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With Python 2.7, which still has the old GIL, the performance is a lot better in the 
single threaded variant:

# python2 test_multithreading.py

The single threaded loops took: 0:00:02.010967

The multithreaded loops took: 0:00:03.924950

From this test we can conclude that Python 2 is faster in some cases while Python 3 is 
faster in other cases. What you should take from this is that there is no performance 
reason to choose between Python 2 or Python 3 specifically. Just note that Python 3 is 
at least as fast as Python 2 in most cases and if that is not the case, it will be fixed soon.

Regardless, for CPU-bound operations, threading does not offer any performance 
benefit since it executes on a single processor core. For I/O bound operations 
however, the threading library does offer a clear benefit, but in that case I would 
recommend trying asyncio instead. The biggest problem with threading is that if 
one of the threads blocks, the main process blocks.

The multiprocessing library offers an API that is very similar to the threading 
library but utilizes multiple processes instead of multiple threads. The advantages 
are that the GIL is no longer an issue and that multiple processor cores and even 
multiple machines can be used for processing.

To illustrate the performance difference, let's repeat the test while using the 
multiprocessing module instead of threading:

import datetime
import multiprocessing

def busy_wait(n):
    while n > 0:
        n -= 1

if __name__ == '__main__':
    n = 10000000
    start = datetime.datetime.now()

    processes = []
    for _ in range(4):
        process = multiprocessing.Process(
            target=busy_wait, args=(n,))
        process.start()
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        processes.append(process)

    for process in processes:
        process.join()

    end = datetime.datetime.now()
    print('The multiprocessed loops took: %s' % (end - start))

When running it, we see a huge improvement:

# python3 test_multiprocessing.py

The multiprocessed loops took: 0:00:00.671249

Note that this was run on a quad core processor, which is why I chose four processes. 
The multiprocessing library defaults to multiprocessing.cpu_count() which 
counts the available CPU cores, but that method fails to take CPU hyper-threading 
into account. Which means it would return 8 in my case and that is why I hardcoded 
it to 4 instead.

It's important to note that because the multiprocessing library 
uses multiple processes, the code needs to be imported from the sub 
processes. The result is that the multiprocessing library does not 
work within the Python or IPython shells. As we will see later in this 
chapter, IPython has its own provisions for multiprocessing.

Hyper-threading versus physical CPU 
cores
In most cases, hyper-threading is very useful and improves performance, but 
when you truly maximize CPU usage it is generally better to only use the physical 
processor count. To demonstrate how this affects the performance, we will run the 
tests from the previous section again. This time with 1, 2, 4, 8, and 16 processes to 
demonstrate how it affects the performance. Luckily, the multiprocessing library 
has a nice Pool class to manage the processes for us:

import sys
import datetime
import multiprocessing

def busy_wait(n):
    while n > 0:
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        n -= 1

if __name__ == '__main__':
    n = 10000000
    start = datetime.datetime.now()
    if sys.argv[-1].isdigit():
        processes = int(sys.argv[-1])
    else:
        print('Please specify the number of processes')
        print('Example: %s 4' % ' '.join(sys.argv))
        sys.exit(1)

    with multiprocessing.Pool(processes=processes) as pool:
        # Execute the busy_wait function 8 times with parameter n
        pool.map(busy_wait, [n for _ in range(8)])

    end = datetime.datetime.now()
    print('The multithreaded loops took: %s' % (end - start))

The pool code makes starting a pool of workers and processing a queue a bit simpler 
as well. In this case we used map but there are several other options such as imap, 
map_async, imap_unordered, apply, apply_async, starmap, and starmap_async. 
Since these are very similar to how the similarly named itertools methods work, 
there won't be specific examples for all of them.

But now, the tests with varying amounts of processes:

# python3 test_multiprocessing.py 1

The multithreaded loops took: 0:00:05.297707

# python3 test_multiprocessing.py 2

The multithreaded loops took: 0:00:02.701344

# python3 test_multiprocessing.py 4

The multithreaded loops took: 0:00:01.477845

# python3 test_multiprocessing.py 8

The multithreaded loops took: 0:00:01.579218

# python3 test_multiprocessing.py 16

The multithreaded loops took: 0:00:01.595239
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You probably weren't expecting these results, but this is exactly the problem with 
hyper-threading. As soon as the single processes actually use 100 percent of a CPU 
core, the task switching between the processes actually reduces performance. Since 
there are only 4 physical cores, the other 4 have to fight to get something done on the 
processor cores. This fight takes time which is why the 4 process version is slightly 
faster than the 8 process version. Additionally, the scheduling effect can be seen in 
the runs using 1 and 2 cores as well. If we look at the single core version, we see 
that it took 5.3 seconds, which means that 4 cores should do it in 5.3 / 4 = 1.325 
seconds instead of the 1.48 seconds it actually took. The 2 core version has a similar 
effect, 2.7 / 2 = 1.35 seconds which is still faster than 4 core version.

If you are truly pressed for performance with a CPU-bound problem then matching 
the physical CPU cores is the best solution. If you do not expect to maximize all cores 
all the time, then I recommend leaving it to the default as hyper-threading definitely 
has some performance benefits in other scenarios.

It all depends on your use-case however and the only way to know for certain is to 
test for your specific scenario:

•	 Disk I/O bound? A single process is most likely your best bet.
•	 CPU bound? The amount of physical CPU cores is your best bet.
•	 Network I/O bound? Start with the defaults and tune if needed.
•	 No obvious bound but many parallel processes are needed? Perhaps you 

should try asyncio instead of multiprocessing.

Note that the creation of multiple processes is not free in terms of memory and open 
files, whereas you could have a nearly unlimited amount of coroutines this is not the 
case for processes. Depending on your operating system configuration, it could max 
out long before you even reach a hundred, and even if you reach those numbers, 
CPU scheduling will be your bottleneck instead.

Creating a pool of workers
Creating a processing pool of worker processes is generally a difficult task. You need 
to take care of scheduling jobs, processing the queue, handling the processes, and 
the most difficult part, handling synchronization between the processes without too 
much overhead.
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With multiprocessing however, these problems have been solved already. You can 
simply create a process pool with a given number of processes and just add tasks to 
it whenever you need to. The following is an example of a multiprocessing version of 
the map operator and demonstrates that processing will not stall the application:

import time
import multiprocessing

def busy_wait(n):
    while n > 0:
        n -= 1

if __name__ == '__main__':
    n = 10000000
    items = [n for _ in range(8)]
    with multiprocessing.Pool() as pool:
        results = []
        start = time.time()
        print('Start processing...')
        for _ in range(5):
            results.append(pool.map_async(busy_wait, items))
        print('Still processing %.3f' % (time.time() - start))
        for result in results:
            result.wait()
            print('Result done %.3f' % (time.time() - start))
        print('Done processing: %.3f' % (time.time() - start))

The processing itself is pretty straightforward. The point is that the pool stays 
available and you are not required to wait for it. Just add jobs whenever you need to 
and use the asynchronous results as soon as they are available:

# python3 test_pool.py

Start processing...

Still processing 0.000

Result done 1.513

Result done 2.984

Result done 4.463

Result done 5.978

Result done 7.388

Done processing: 7.388
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Sharing data between processes
This is really the most difficult part about multiprocessing, multithreading, and 
distributed programming - which data to pass along and which data to skip. The 
theory is really simple, however: whenever possible don't transfer any data, don't share 
anything, and keep everything local. Essentially the functional programming paradigm, 
which is why functional programming mixes really well with multiprocessing. In 
practice, regrettably, this is simply not always possible. The multiprocessing library 
has several options to share data: Pipe, Namespace, Queue, and a few others. All these 
options might tempt you to share your data between the processes all the time. This 
is indeed possible, but the performance impact is, in many cases, more than what 
the distributed calculation will offer as extra power. All data sharing options come 
at the price of synchronization between all processing kernels, which takes a lot of 
time. Especially with distributed options, these synchronizations can take several 
milliseconds or, if executed globally, cause hundreds of milliseconds of latency.

The multiprocessing namespace behaves just as a regular object would work, with 
one small difference that all the actions are safe for multiprocessing. With all this 
power, namespaces are still very easy to use:

import multiprocessing
manager = multiprocessing.Manager()
namespace = manager.Namespace()
namespace.spam = 123
namespace.eggs = 456

A pipe is not that much more interesting either. It's just a bidirectional 
communication endpoint which allows both reading and writing. In this regard, 
it simply offers you a reader and a writer, and because of that, you can combine 
multiple processes/endpoints. The only thing you must always keep in mind when 
synchronizing data is that locking takes time. For a proper lock to be set, all the 
parties need to agree that the data is locked, which is a process that takes time. And 
that simple fact slows down execution much more than most people would expect.

On a regular hard disk setup, the database servers aren't able to handle more than 
about 10 transactions per second on the same row due to locking and disk latency. 
Using lazy file syncing, SSDs, and battery backed RAID cache, that performance 
can be increased to handle, perhaps, a 100 transactions per second on the same row. 
Those are simple hardware limitations, because you have multiple processes trying 
to write to a single target you need to synchronize the actions between the processes 
and that takes a lot of time.
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The "database servers" statistic is a common statistic for all 
database servers that offer safe and consistent data storage.

Even with the fastest hardware available, synchronization can lock all the processes 
and produce enormous slowdowns, so if at all possible, try to avoid sharing data 
between multiple processes. Put simply, if all the processes are reading and writing 
from/to the same object, it is generally faster to use a single process instead.

Remote processes
So far, we have only executed our scripts on multiple local processors, but we can 
actually expand this further. Using the multiprocessing library, it's actually very 
easy to execute jobs on remote servers, but the documentation is currently still a bit 
cryptic. There are actually a few ways of executing processes in a distributed way, 
but the most obvious one isn't the easiest one. The multiprocessing.connection 
module has both the Client and Listener classes, which facilitate secure 
communication between the clients and servers in a simple way. Communication 
is not the same as process management and queue management however, those 
features requires some extra effort. The multiprocessing library is still a bit bare in 
this regard, but it's most certainly possible given a few different processes.

Distributed processing using multiprocessing
First of all, we will start with a module with containing a few constants which 
should be shared between all clients and the server, so the secret password and the 
hostname of the server are available to all. In addition to that, we will add our prime 
calculation functions, which we will be using later. The imports in the following 
modules will expect this file to be stored as constants.py, but feel free to call it 
anything you like as long as you modify the imports and references:

host = 'localhost'
port = 12345
password = b'some secret password'

def primes(n):
    for i, prime in enumerate(prime_generator()):
        if i == n:
            return prime

def prime_generator():
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    n = 2
    primes = set()
    while True:
        for p in primes:
            if n % p == 0:
                break
        else:
            primes.add(n)
            yield n
        n += 1

Now it's time to create the actual server which links the functions and the job queue:

import constants
import multiprocessing
from multiprocessing import managers

queue = multiprocessing.Queue()
manager = managers.BaseManager(address=('', constants.port),
                               authkey=constants.password)

manager.register('queue', callable=lambda: queue)
manager.register('primes', callable=constants.primes)

server = manager.get_server()
server.serve_forever()

After creating the server, we need to have a script that sends the jobs, which will 
actually be a regular client. It's simple enough really and a regular client can also 
function as a processor, but to keep things sensible we will use them as separate 
scripts. The following script will add 0 to 999 to the queue for processing:

from multiprocessing import managers
import functions

manager = managers.BaseManager(
    address=(functions.host, functions.port),
    authkey=functions.password)
manager.register('queue')
manager.connect()

queue = manager.queue()
for i in range(1000):
    queue.put(i)
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Lastly, we need to create a client to actually process the queue:

from multiprocessing import managers
import functions

manager = managers.BaseManager(
    address=(functions.host, functions.port),
    authkey=functions.password)
manager.register('queue')
manager.register('primes')
manager.connect()

queue = manager.queue()
while not queue.empty():
    print(manager.primes(queue.get()))

From the preceding code you can see how we pass along functions; the manager 
allows registering of functions and classes which can be called from the clients as 
well. With that we pass along a queue from the multiprocessing class which is safe 
for both multithreading and multiprocessing. Now we need to start the processes 
themselves. First the server which keeps on running:

# python3 multiprocessing_server.py

After that, run the producer to generate the prime generation requests:

# python3 multiprocessing_producer.py

And now we can run multiple clients on multiple machines to get the first 1000 
primes. Since these clients now print the first 1000 primes, the output is a bit too 
lengthy to show here, but you can simply run this in parallel on multiple machines to 
generate your output:

# python3 multiprocessing_client.py

Instead of printing, you can obviously use queues or pipes to send the output to a 
different process if you'd like. As you can see verify though, it's still a bit of work 
to process things in parallel and it requires some code synchronization to work. 
There are a few alternatives available, such as ØMQ, Celery, and IPyparallel. Which 
of these is the best and most suitable depends on your use case. If you are simply 
looking for processing tasks on multiple CPUs, then multiprocessing and IPyparallel 
are probably your best choices. If you are looking for background processing and/or 
easy offloading to multiple machines, then ØMQ and Celery are better choices.
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Distributed processing using IPyparallel
The IPyparallel module (previously, IPython Parallel) is a module that makes it 
really easy to process code on multiple computers at the same time. The library 
supports more features than you are likely to need, but the basic usage is important 
to know just in case you need to do heavy calculations which can benefit from 
multiple computers. First let's start with installing the latest IPyparallel package and 
all the IPython components:

pip install -U ipython[all] ipyparallel

Especially on Windows, it might be easier to install IPython 
using Anaconda instead, as it includes binaries for many 
science, math, engineering, and data analysis packages. To get 
a consistent installation, the Anaconda installer is also available 
for OS X and Linux systems.

Secondly, we need a cluster configuration. Technically this is optional, but since 
we are going to create a distributed IPython cluster, it is much more convenient to 
configure everything using a specific profile:

# ipython profile create --parallel --profile=mastering_python

[ProfileCreate] Generating default config file: '~/.ipython/profile_
mastering_python/ipython_config.py'

[ProfileCreate] Generating default config file: '~/.ipython/profile_
mastering_python/ipython_kernel_config.py'

[ProfileCreate] Generating default config file: '~/.ipython/profile_
mastering_python/ipcontroller_config.py'

[ProfileCreate] Generating default config file: '~/.ipython/profile_
mastering_python/ipengine_config.py'

[ProfileCreate] Generating default config file: '~/.ipython/profile_
mastering_python/ipcluster_config.py'

These configuration files contain a huge amount of options so I recommend 
searching for a specific section instead of walking through them. A quick listing gave 
me about 2500 lines of configuration in total for these five files. The filenames already 
provide hint about the purpose of the configuration files, but we'll explain them in a 
little more detail since they are still a tad confusing.
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ipython_config.py
This is the generic IPython configuration file; you can customize pretty much 
everything about your IPython shell here. It defines how your shell should look, 
which modules should be loaded by default, whether or not to load a GUI, and quite 
a bit more. For the purpose of this chapter not all that important but it's definitely 
worth a look if you're going to use IPython more often. One of the things you can 
configure here is the automatic loading of extensions, such as line_profiler and 
memory_profiler discussed in the previous chapter. For example:

c.InteractiveShellApp.extensions = [
    'line_profiler',
    'memory_profiler',
]

ipython_kernel_config.py
This file configures your IPython kernel and allows you to overwrite/extend 
ipython_config.py. To understand its purpose, it's important to know what  
an IPython kernel is. The kernel, in this context, is the program that runs and 
introspects the code. By default this is IPyKernel, which is a regular Python 
interpreter, but there are also other options such as IRuby or IJavascript to run 
Ruby or JavaScript respectively.

One of the more useful options is the possibility to configure the listening port(s) and 
IP addresses for the kernel. By default the ports are all set to use a random number, 
but it is important to note that if someone else has access to the same machine while 
you are running your kernel, they will be able to connect to your IPython kernel 
which can be dangerous on shared machines.

ipcontroller_config.py
ipcontroller is the master process of your IPython cluster. It controls the engines 
and the distribution of tasks, and takes care of tasks such as logging.

The most important parameter in terms of performance is the TaskScheduler 
setting. By default, the c.TaskScheduler.scheme_name setting is set to use the 
Python LRU scheduler, but depending on your workload, others such as leastload 
and weighted might be better. And if you have to process so many tasks on such a 
large cluster that the scheduler becomes the bottleneck, there is also the plainrandom 
scheduler that works surprisingly well if all your machines have similar specs and 
the tasks have similar durations.
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For the purpose of our test we will set the IP of the controller to *, which means that 
all IP addresses will be accepted and that every network connection will be accepted. 
If you are in an unsafe environment/network and/or don't have any firewalls 
which allow you to selectively enable certain IP addresses, then this method is not 
recommended! In such cases, I recommend launching through more secure options, 
such as SSHEngineSetLauncher or WindowsHPCEngineSetLauncher instead.

But, assuming your network is indeed safe, set the factory IP to all the local 
addresses:

c.HubFactory.client_ip = '*'
c.RegistrationFactory.ip = '*'

Now start the controller:

# ipcontroller --profile=mastering_python

[IPControllerApp] Hub listening on tcp://*:58412 for registration.

[IPControllerApp] Hub listening on tcp://127.0.0.1:58412 for 
registration.

[IPControllerApp] Hub using DB backend: 'NoDB'

[IPControllerApp] hub::created hub

[IPControllerApp] writing connection info to ~/.ipython/profile_
mastering_python/security/ipcontroller-client.json

[IPControllerApp] writing connection info to ~/.ipython/profile_
mastering_python/security/ipcontroller-engine.json

[IPControllerApp] task::using Python leastload Task scheduler

[IPControllerApp] Heartmonitor started

[IPControllerApp] Creating pid file: .ipython/profile_mastering_python/
pid/ipcontroller.pid

[scheduler] Scheduler started [leastload]

[IPControllerApp] client::client b'\x00\x80\x00A\xa7' requested 
'connection_request'

[IPControllerApp] client::client [b'\x00\x80\x00A\xa7'] connected

Pay attention to the files that were written to the security directory of the profile 
directory. They have the authentication information which is used by ipengine to 
find ipcontroller. It contains the ports, encryption keys, and IP address.
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ipengine_config.py
ipengine is the actual worker process. These processes run the actual calculations, 
so to speed up the processing you will need these on as many machines as you 
have available. You probably won't need to change this file, but it can be useful if 
you want to configure centralized logging or need to change the working directory. 
Generally, you don't want to start the ipengine process manually since you will 
most likely want to launch multiple processes per computer. That's where our next 
command comes in, the ipcluster command.

ipcluster_config.py
The ipcluster command is actually just an easy shorthand to start a combination of 
ipcontroller and ipengine at the same time. For a simple local processing cluster, 
I recommend using this, but when starting a distributed cluster, it can be useful 
to have the control that the separate use of ipcontroller and ipengine offers. In 
most cases the command offers enough options, so you might have no need for the 
separate commands.

The most important configuration option is c.IPClusterEngines.engine_
launcher_class, as this controls the communication method between the engines 
and the controller. Along with that, it is also the most important component for 
secure communication between the processes. By default it's set to ipyparallel.
apps.launcher.LocalControllerLauncher which is designed for local processes 
but ipyparallel.apps.launcher.SSHEngineSetLauncher is also an option if you 
want to use SSH to communicate with the clients. Or ipyparallel.apps.launcher.
WindowsHPCEngineSetLauncher for Windows HPC.

Before we can create the cluster on all machines, we need to transfer the 
configuration files. Your options are to transfer all the files or to simply transfer the 
files in your IPython profile's security directory.

Now it's time to start the cluster, since we already started the ipcontroller 
separately, we only need to start the engines. On the local machine we simply need 
to start it, but the other machines don't have the configuration yet. One option 
is copying the entire IPython profile directory, but the only file that really needs 
copying is security/ipcontroller-engine.json. After creating the profile using 
the profile creation command that is. So unless you are going to copy the entire 
IPython profile directory, you need to execute the profile creation command again:

# ipython profile create --parallel --profile=mastering_python
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After that, simply copy the ipcontroller-engine.json file and you're done.  
Now we can start the actual engines:

# ipcluster engines --profile=mastering_python -n 4

[IPClusterEngines] IPython cluster: started

[IPClusterEngines] Starting engines with [daemon=False]

[IPClusterEngines] Starting 4 Engines with LocalEngineSetLauncher

Note that the 4 here was chosen for a quad-core processor, but any number would 
do. The default will use the amount of logical processor cores, but depending on the 
workload it might be better to match the amount of physical processor cores instead.

Now we can run some parallel code from our IPython shell. To demonstrate the 
performance difference, we will use a simple sum of all the numbers from 0 to 
10,000,000. Not an extremely heavy task, but when performed 10 times in succession, 
a regular Python interpreter takes a while:

In [1]: %timeit for _ in range(10): sum(range(10000000))
1 loops, best of 3: 2.27 s per loop

This time however, to illustrate the difference, we will run it a 100 times to 
demonstrate how fast a distributed cluster is. Note that this is with only three 
machines cluster, but it's still quite a bit faster:

In [1]: import ipyparallel

In [2]: client = ipyparallel.Client(profile='mastering_python')

In [3]: view = client.load_balanced_view()

In [4]: %timeit view.map(lambda _: sum(range(10000000)), range(100)).
wait()
1 loop, best of 3: 909 ms per loop

More fun however is the definition of parallel functions in IPyParallel. With just a 
simple decorator, a function is marked as parallel:

In [1]: import ipyparallel

In [2]: client = ipyparallel.Client(profile='mastering_python')

In [3]: view = client.load_balanced_view()

In [4]: @view.parallel()
   ...: def loop():
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   ...:     return sum(range(10000000))
   ...:

In [5]: loop.map(range(10))
Out[5]: <AsyncMapResult: loop>

The IPyParallel library offers many more useful features, but that is outside the scope 
of this book. Even though IPyParallel is a separate entity from the rest of Jupyter/
IPython, it does integrate well, which makes combining them easy enough.

One of the most convenient ways of using IPyParallel is through the Jupyter/
IPython Notebooks. To demonstrate, we first have to make sure to enable the parallel 
processing in the Jupyter Notebook since IPython notebooks execute single threaded 
by default:

ipcluster nbextension enable

After that we can start the notebook and see what it's all about:

# jupyter notebook

Unrecognized JSON config file version, assuming version 1

Loading IPython parallel extension

Serving notebooks from local directory: ./

0 active kernels

The Jupyter Notebook is running at: http://localhost:8888/

Use Control-C to stop this server and shut down all kernels (twice to 
skip confirmation).

With the Jupyter Notebook you can create scripts in your web browser which can 
easily be shared with others later. It is really very useful for sharing scripts and 
debugging your code, especially since web pages (as opposed to command line 
environments) can display images easily. This helps a lot with graphing data. Here's 
a screenshot of our Notebook:
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Summary
This chapter has shown us how multiprocessing works, how we can pool a lot 
of jobs, and how we should share data between multiple processes. But more 
interestingly, it has also shown how we can distribute processing across multiple 
machines which helps a lot in speeding up heavy calculations.

The most important lesson you can learn from this chapter is that you should always 
try to avoid data sharing and synchronisation between multiple processes or servers, 
as it is slow and will thus slow down your applications a lot. Whenever possible, 
keep your calculations and data local.

In the next chapter we will learn about creating extensions in C/C++ to increase 
performance and allow low-level access to memory and other hardware resources. 
While Python will generally protect you from silly mistakes, C and C++ most 
certainly won't.

"C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you 
do, it blows away your whole leg."

- Bjarne Stroustrup (the creator of C++)
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Extensions in C/C++, System 
Calls, and C/C++ Libraries

Now that we know a bit more about performance and multiprocessing, we will 
explain another subject that is at least somewhat performance-related—the usage of 
C and/or C++ extensions.

There are multiple reasons to consider C/C++ extensions. Having existing 
libraries available is an important one, but truthfully, the most important reason is 
performance. In Chapter 12, Performance – Tracking and Reducing Your Memory and 
CPU Usage, we saw that the cProfile module is about 10 times faster than the 
profile module, which indicates that at least some C extensions are faster than their 
pure Python equivalents. This chapter will not focus on performance that much, 
however. The goal here is interaction with non-Python libraries. Any performance 
improvement will just be a completely unintentional side effect.

We will discuss the following options in this chapter:

•	 Ctypes for handling foreign (C/C++) functions and data from Python
•	 CFFI (short for C Foreign Function Interface), similar to ctypes but with a 

slightly different approach
•	 Writing native C/C++ to extend Python

Introduction
Before you start with this chapter, it is important to note that this chapter will require 
a working compiler that plays nicely with your Python interpreter. Unfortunately, 
these vary from platform to platform. While generally easy enough for most Linux 
distributions, this can be a big challenge on Windows. With OS X, it's generally easy 
enough provided you install the correct tools.
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The generic building instructions are always available in the Python manual:

https://docs.python.org/3.5/extending/building.html

Do you need C/C++ modules?
In almost all cases, I'm inclined to say that you don't need C/C++ modules. If 
you are really strapped for best performance, then there are almost always highly 
optimized libraries available that fit your purpose. There are some cases where 
native C/C++ (or just "not Python") is a requirement. If you need to communicate 
directly with hardware that has specific timings, then Python might just not do the 
trick for you. Generally, however, that kind of communication should be left to a 
driver that takes care of the specific timings. Regardless, even if you will never write 
one of these modules yourself, you might still need to know how they work when 
you are debugging a project.

Windows
For Windows, the general recommendation is Visual Studio. The specific version 
depends on your Python version:

•	 Python 3.2 and lower: Microsoft Visual Studio 2008
•	 Python 3.3 and 3.4: Microsoft Visual Studio 2010
•	 Python 3.5 and 3.6: Microsoft Visual Studio 2015

The specifics of installing Visual Studio and compiling Python modules fall a bit 
outside of the scope of this book. Luckily, the Python documentation has some 
documentation available to get you started:

https://docs.python.org/3.5/extending/windows.html

OS X
For a Mac, the process is mostly straightforward, but there are a few tips specific to 
OS X.

First, install Xcode through the Mac App Store. Once you have done that, you should 
be able to run the following command:

xcode-select --install

https://docs.python.org/3.5/extending/building.html
https://docs.python.org/3.5/extending/windows.html
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Next up is the fun part. Because OS X comes with a bundled Python version 
(which is generally out of date), I would recommend installing a new Python 
version through Homebrew instead. The most up-to-date instructions for installing 
Homebrew can be found on the Homebrew homepage (http://brew.sh/), but the 
gist of installing Homebrew is this command:

# /usr/bin/ruby -e "$(curl -fsSL \

       
https://raw.githubusercontent.com/Homebrew/install/master/install)"

After that, make sure you check whether everything is set up correctly using the 
doctor command:

# brew doctor

When all of this is done, simply install Python through Homebrew and make sure 
you use that Python release when executing your scripts:

# brew install python3

# python3 –version

Python 3.5.1

which python3

/usr/local/bin/python3

Also ensure that the Python process is in /usr/local/bin, that is, the homebrewed 
version. The regular OS X version would be in /usr/bin/ instead.

Linux/Unix
The installation for Linux/Unix systems greatly depends on the distribution, but it is 
generally simple to do.

For Fedora, Red Hat, Centos, and other systems that use yum as the package 
manager, use these lines:

# sudo yum install yum-utils

# sudo yum-builddep python3

For Debian, Ubuntu, and other systems that use apt as the package manager, use the 
following line:

# sudo apt-get build-dep python3.5

http://brew.sh/
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Note that Python 3.5 is not available everywhere yet, so you might need Python 3.4 
instead.

For most systems, to get help with the installation, a web 
search along the lines of <operating system> python.h 
should do the trick.

Calling C/C++ with ctypes
The ctypes library makes it easily possible to call functions from C libraries, but you 
do need to be careful with memory access and data types. Python is generally very 
lenient in memory allocation and type casting; C is, most definitely, not that forgiving.

Platform-specific libraries
Even though all platforms will have a standard C library available somewhere, the 
location and the method of calling it differs per platform. For the purpose of having 
a simple environment that is easily accessible to most people, I will assume the use 
of an Ubuntu (virtual) machine. If you don't have a native Ubuntu available, you can 
easily run it through VirtualBox on Windows, Linux, and OS X.

Since you will often want to run examples on your native system instead, we will 
first show the basics of loading printf from the standard C library.

Windows
One problem of calling C functions from Python is that the default libraries are 
platform-specific. While the following example will work just fine on Windows 
systems, it won't run on other platforms:

>>> import ctypes

>>> ctypes.cdll

<ctypes.LibraryLoader object at 0x...>

>>> libc = ctypes.cdll.msvcrt

>>> libc

<CDLL 'msvcrt', handle ... at ...>

>>> libc.printf

<_FuncPtr object at 0x...>
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Because of these limitations, not all examples can work for every Python version 
and distribution without requiring manual compilation. The basic premise of 
calling functions from external libraries functions is to simply access their names as 
properties of the ctypes import. There is a difference, however; on Windows, the 
modules will generally be auto-loaded, while on Linux/Unix systems, you will need 
to load them manually.

Linux/Unix
Calling standard system libraries from Linux/Unix does require manual loading, but 
it's nothing too involved luckily. Fetching the printf function from the standard C 
library is quite simple:

>>> import ctypes

>>> ctypes.cdll

<ctypes.LibraryLoader object at 0x...>

>>> libc = ctypes.cdll.LoadLibrary('libc.so.6')

>>> libc

<CDLL 'libc.so.6', handle ... at ...>

>>> libc.printf

<_FuncPtr object at 0x...>

OS X
For OS X, explicit loading is also required, but beyond that, it is quite similar to how 
everything works on regular Linux/Unix systems:

>>> import ctypes

>>> libc = ctypes.cdll.LoadLibrary('libc.dylib')

>>> libc

<CDLL 'libc.dylib', handle ... at 0x...>

>>> libc.printf

<_FuncPtr object at 0x...>
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Making it easy
Besides the way libraries are loaded, there are more differences—unfortunately—but 
these examples at least give you the standard C library. It allows you to call functions 
such as printf straight from your C implementation. If, for some reason, you have 
trouble loading the right library, there is always the ctypes.util.find_library 
function. As always, I recommend explicit over implicit declarations, but things can 
be made easier using this function. Let's illustrate a run on an OS X system:

>>> from ctypes import util

>>> from ctypes import cdll

>>> libc = cdll.LoadLibrary(util.find_library('libc'))

>>> libc

<CDLL '/usr/lib/libc.dylib', handle ... at 0x...>

Calling functions and native types
Calling a function through ctypes is nearly as simple as calling native Python 
functions. The notable difference is the arguments and return statements. These 
should be converted to native C variables:

These examples will assume that you have libc in your scope 
from one of the examples in the previous paragraphs.

>>> spam = ctypes.create_string_buffer(b'spam')

>>> ctypes.sizeof(spam)

5

>>> spam.raw

b'spam\x00'

>>> spam.value

b'spam'

>>> libc.printf(spam)

4

spam>>>

As you can see, to call the printf function you must—and I cannot stress this 
enough—convert your values from Python to C explicitly. While it might appear to 
work without this initially, it really doesn't:

>>> libc.printf(123)

segmentation fault (core dumped)  python3
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Remember to use the faulthandler module from Chapter 11, 
Debugging – Solving the Bugs to debug segfaults.

Another thing to note from the example is that ctypes.sizeof(spam) returns 5 
instead of 4. This is caused by the trailing null character, which C strings require. 
This is visible in the raw property of the C string. Without it, the printf function 
won't know where the string will end.

To pass along other types (such as integers) towards libc functions, we have to use 
some conversion as well. In some cases, it is optional:

>>> format_string = ctypes.create_string_buffer(b'Number: %d\n')

>>> libc.printf(format_string, 123)

Number: 123

12

>>> x = ctypes.c_int(123)

>>> libc.printf(format_string, x)

Number: 123

12

But not in all cases, so it's definitely recommended that you convert your values 
explicitly in all cases:

>>> format_string = ctypes.create_string_buffer(b'Number: %.3f\n')

>>> libc.printf(format_string, 123.45)

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

ctypes.ArgumentError: argument 2: <class 'TypeError'>: Don't know how to 
convert parameter 2

>>> x = ctypes.c_double(123.45)

>>> libc.printf(format_string, x)

Number: 123.450

16

It's important to note that even though these values are usable as native C types, they 
are still mutable through the value attribute:

>>> x = ctypes.c_double(123.45)

>>> x.value

123.45

>>> x.value = 456

>>> x

c_double(456.0)
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However, this is not the case if the original object was immutable, which is a very 
important distinction to make. The create_string_buffer object creates a mutable 
string object, whereas c_wchar_p, c_char_p, and c_void_p create references to the 
actual Python string. Since strings are immutable in Python, these values are also 
immutable. You can still change the value property, but it will only assign a new 
string. Actually, passing one of these to a C function that mutates the internal value 
will cause problems.

The only values that should convert to C without any issues are integers, strings, and 
bytes, but I personally recommend that you always convert all of your values so that 
you are certain of which type you will get and how to treat it.

Complex data structures
We have already seen that we can't just pass along Python values to C, but what 
if we need more complex objects? That is, not just bare values that are directly 
translatable to C but complex objects containing multiple values. Luckily, we can 
easily create (and access) C structures using ctypes:

>>> class Spam(ctypes.Structure):

...     _fields_ = [

...         ('spam', ctypes.c_int),

...         ('eggs', ctypes.c_double),

...     ]

...>>> spam = Spam(123, 456.789)

>>> spam.spam

123

>>> spam.eggs

456.789

Arrays
Within Python, we generally use a list to represent a collection of objects. These are 
very convenient in that you can easily add and remove values. Within C, the default 
collection object is the array, which is just a block of memory with a fixed size.

The size of the block in bytes is decided by multiplying the number of items with the 
size of the type. In the case of a char, this is 8 bits, so if you wish to store 100 chars, 
you would have 100 * 8 bits = 800 bits = 100 bytes.
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This is literally all it is—a block of memory—and the only reference you receive from 
C is a pointer to the memory address where the block of memory begins. Since the 
pointer does have a type, char* in this case, C will know how many bytes to jump 
ahead when trying to access a different item. Effectively, when trying to access item 
25 in a char array, you simply need to do array_pointer + 25 * sizeof(char). 
This has a convenient shortcut: array_pointer[25].

Note that C does not store the number of items in the array, so even though our array 
has only 100 items, it won't block us from doing array_pointer[1000] and reading 
other (random) memory.

If you take all of that into account, it is definitely usable, but mistakes are quickly 
made and C is unforgiving. No warnings, just crashes and strangely behaving code. 
Beyond that, let's see how easily we can declare an array with ctypes:

>>> TenNumbers = 10 * ctypes.c_double

>>> numbers = TenNumbers()

>>> numbers[0]

0.0

As you can see, because of the fixed sizes and the requirement of declaring the type 
before using it, its usage is slightly awkward. However, it does function as you 
would expect, and the values are initialized to zero by default. Obviously, this can be 
combined with the previously discussed structures as well:

>>> Spams = 5 * Spam

>>> spams = Spams()

>>> spams[0].eggs = 123.456

>>> spams

<__main__.Spam_Array_5 object at 0x...>

>>> spams[0]

<__main__.Spam object at 0x...>

>>> spams[0].eggs

123.456

>>> spams[0].spam

0
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Even though you cannot simply append to these arrays to resize them, they are 
actually resizable with a few constraints. Firstly, the new array needs to be larger 
than the original array. Secondly, the size needs to be specified in bytes, not items.  
To illustrate, we have this example:

>>> TenNumbers = 10 * ctypes.c_double

>>> numbers = TenNumbers()

>>> ctypes.resize(numbers, 11 * ctypes.sizeof(ctypes.c_double))

>>> ctypes.resize(numbers, 10 * ctypes.sizeof(ctypes.c_double))

>>> ctypes.resize(numbers, 9 * ctypes.sizeof(ctypes.c_double))

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

ValueError: minimum size is 80

>>> numbers[:5] = range(5)

>>> numbers[:]

[0.0, 1.0, 2.0, 3.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Gotchas with memory management
Besides the obvious memory allocation issues and mixing mutable and immutable 
objects, there is one more strange memory mutability issue:

>>> class Point(ctypes.Structure):

...     _fields_ = ('x', ctypes.c_int), ('y', ctypes.c_int)

...

>>> class Vertex(ctypes.Structure):

...     _fields_ = ('a', Point), ('b', Point), ('c', Point)

...

>>> v = Vertex()

>>> v.a = Point(0, 1)

>>> v.b = Point(2, 3)

>>> v.c = Point(4, 5)

>>> v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

(0, 1, 2, 3, 4, 5)

>>> v.a, v.b, v.c = v.b, v.c, v.a

>>> v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

(2, 3, 4, 5, 2, 3)

>>> v.a.x = 123

>>> v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

(123, 3, 4, 5, 2, 3)
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Why didn't we get 2, 3, 4, 5, 0, 1? The problem is that these objects are copied 
to a temporary buffer variable. In the meantime, the values of that object are being 
changed because it contains separate objects internally. After that, the object is 
transferred back, but the values have already changed, giving the incorrect results.

CFFI
The CFFI library offers options very similar to ctypes, but it's a bit more direct. 
Unlike the ctypes library, a C compiler is really a necessity for CFFI. With it comes 
the opportunity to directly call your C compiler in a very easy way:

>>> import cffi

>>> ffi = cffi.FFI()

>>> ffi.cdef('int printf(const char* format, ...);')

>>> libc = ffi.dlopen(None)

>>> arg = ffi.new('char[]', b'spam')

>>> libc.printf(arg)

4

spam>>>

Okay… so that looks a bit weird right? We had to define how the printf function 
looks and specify the arguments to printf with a valid C type declaration. Getting 
back to the declarations, however, instead of None to ffi.dlopen, you can also 
specify the library you wish to load. If you remember the ctypes.util.find_
library function, you can use that again in this case:

>>> from ctypes import util

>>> import cffi

>>> libc = ffi.dlopen(util.find_library('libc'))

>>> ffi.printf

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

AttributeError: 'FFI' object has no attribute 'printf'

But it still won't make its definitions readily available for you. The function definitions 
are still required to make sure that everything works as you would like it to.
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Complex data structures
The CFFI definitions are somewhat similar to the ctypes definitions, but instead of 
having Python emulating C, it's just plain C that is accessible from Python. In reality, 
it's just a small syntactical difference. Whereas ctypes is a library for accessing C 
from Python while remaining as close to the Python syntax as possible, CFFI uses 
plain C syntax to access C systems, which actually removes some confusion for 
people experienced with C. I personally find CFFI easier to use because I know what 
is actually happening, whereas I am not always a 100% certain with ctypes. Let's 
repeat the Vertex and Point example with CFFI:
>>> import cffi

>>> ffi = cffi.FFI()

>>> ffi.cdef('''

... typedef struct {

...     int x;

...     int y;

... } point;

...

... typedef struct {

...     point a;

...     point b;

...     point c;

... } vertex;

... ''')

>>> vertices = ffi.new('vertex[]', 5)

>>> v = vertices[0]

>>> v.a.x = 1

>>> v.a.y = 2

>>> v.b.x = 3

>>> v.b.y = 4

>>> v.c.x = 5

>>> v.c.y = 6

>>> v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

(1, 2, 3, 4, 5, 6)

v.a, v.b, v.c = v.b, v.c, v.a

v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

>>> v.a, v.b, v.c = v.b, v.c, v.a

>>> v.a.x, v.a.y, v.b.x, v.b.y, v.c.x, v.c.y

(3, 4, 5, 6, 3, 4)

As you can see, the mutable variable issues remain but the code is just as usable.
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Arrays
Allocation memory for new variables is almost trivial with CFFI. The previous 
paragraph showed you an example of array allocation; let's see the possibilities of 
array definitions now:

>>> import cffi

>>> ffi = cffi.FFI()

>>> x = ffi.new('int[10]')

>>> y = ffi.new('int[]', 10)

>>> x[0:10] = range(10)

>>> y[0:10] = range(10, 0, -1)

>>> list(x)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(y)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

In this case, you might wonder why the slice includes both the start and the stop. 
This is actually a requirement for CFFI. Not always problematic but a tad annoying 
nonetheless. Currently, however, it's unavoidable.

ABI or API?
As always, there are some caveats—unfortunately. The examples so far have 
partially used the ABI, which loads the binary structures from the libraries. With 
the standard C library, this is generally safe; with other libraries, it generally isn't. 
The difference between the API and the ABI is that the latter calls the functions at 
a binary level, directly addressing memory, directly calling memory locations, and 
expecting them to be functions. Effectively, it's the difference between ffi.dlopen 
and ffi.cdef. Here, the dlopen is not always safe but cdef is, because it passes a 
compiler instead of just guessing how to call a method.

CFFI or ctypes?
This really depends on what you are looking for. If you have a C library that you 
simply need to call and you don't need anything special, then ctypes is most likely 
the better choice. If you're actually writing your own C library and trying to link it, 
well, CFFI is probably a more convenient option. If you're not familiar with the C 
programming language, then I would definitely recommend ctypes. Alternatively, 
you'll find CFFI to be a more convenient option.
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Native C/C++ extensions
The libraries that we have used so far only showed us how to access a C/C++ 
library within our Python code. Now we are going to look at the other side of the 
story—how C/C++ functions/modules within Python are actually written and how 
modules such as cPickle and cProfile are created.

A basic example
Before we can actually start with writing and using native C/C++ extensions, we 
have a few prerequisites. First of all, we need the compiler and Python headers; the 
instructions in the beginning of this chapter should have taken care of this for us. 
After that, we need to tell Python what to compile. The setuptools package mostly 
takes care of this, but we do need to create a setup.py file:

import setuptools

spam = setuptools.Extension('spam', sources=['spam.c'])

setuptools.setup(
    name='Spam',
    version='1.0',
    ext_modules=[spam],
)

This tells Python that we have an Extension object named Spam that will be based 
on spam.c.

Now, let's write a function in C that sums all perfect squares (2*2, 3*3, and so on) up 
to a given number. The Python code will look like this:

def sum_of_squares(n):
    sum = 0

    for i in range(n):
        if i * i < n:
            sum += i * i
        else:
            break

    return sum

The raw C version of this code would look something like this:

long sum_of_squares(long n){
    long sum = 0;
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    /* The actual summing code */
    for(int i=0; i<n; i++){
        if((i * i) < n){
            sum += i * i;
        }else{
            break;
        }
    }

    return sum;
}

And the Python C version looks like this:

#include <Python.h>

static PyObject* spam_sum_of_squares(PyObject *self, PyObject
        *args){
    /* Declare the variables */
    int n;
    int sum = 0;

    /* Parse the arguments */
    if(!PyArg_ParseTuple(args, "i", &n)){
        return NULL;
    }

    /* The actual summing code */
    for(int i=0; i<n; i++){
        if((i * i) < n){
            sum += i * i;
        }else{
            break;
        }
    }

    /* Return the number but convert it to a Python object first
     */
    return PyLong_FromLong(sum);
}

static PyMethodDef spam_methods[] = {
    /* Register the function */
    {"sum_of_squares", spam_sum_of_squares, METH_VARARGS,
     "Sum the perfect squares below n"},
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    /* Indicate the end of the list */
    {NULL, NULL, 0, NULL},
};

static struct PyModuleDef spam_module = {
    PyModuleDef_HEAD_INIT,
    "spam", /* Module name */
    NULL, /* Module documentation */
    -1, /* Module state, -1 means global. This parameter is
           for sub-interpreters */
    spam_methods,
};

/* Initialize the module */
PyMODINIT_FUNC PyInit_spam(void){
    return PyModule_Create(&spam_module);
}

It looks quite complicated, but it's really not that hard. There is just a lot of overhead 
in this case because we only have a single function. Generally, you would have 
several functions, in which case you only need to expand the spam_methods array and 
create the functions. The next paragraph will explain the code in more detail, but first 
let's look at how to run our first example. We need to build and install the module:

# python setup.py build install

running build

running build_ext

running install

running install_lib

running install_egg_info

Removing lib/python3.5/site-packages/Spam-1.0-py3.5.egg-info

Writing lib/python3.5/site-packages/Spam-1.0-py3.5.egg-info

Now, let's create a little test script to time the difference between the Python version 
and the C version:

import sys
import spam
import timeit

def sum_of_squares(n):
    sum = 0
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    for i in range(n):
        if i * i < n:
            sum += i * i
        else:
            break

    return sum

if __name__ == '__main__':
    c = int(sys.argv[1])
    n = int(sys.argv[2])
    print('%d executions with n: %d' % (c, n))
    print('C sum of squares: %d took %.3f seconds' % (
        spam.sum_of_squares(n),
        timeit.timeit('spam.sum_of_squares(n)', number=c,
                      globals=globals()),
    ))
    print('Python sum of squares: %d took %.3f seconds' % (
        sum_of_squares(n),
        timeit.timeit('sum_of_squares(n)', number=c,
                      globals=globals()),
    ))

And now let's execute it:

# python3 test_spam.py 10000 1000000

10000 executions with n: 1000000

C sum of squares: 332833500 took 0.008 seconds

Python sum of squares: 332833500 took 1.778 seconds

Perfect! Exactly the same results but more than 200 times faster!

C is not Python – size matters
The Python language makes programming so easy that you might forget about the 
underlying data structures at times; with C, you can't afford to do that. Just take our 
example from the previous chapter but with different parameters:

# python3 test_spam.py 1000 10000000

1000 executions with n: 10000000

C sum of squares: 1953214233 took 0.002 seconds

Python sum of squares: 10543148825 took 0.558 seconds



Extensions in C/C++, System Calls, and C/C++ Libraries

[ 420 ]

It's still very fast, but what happened to the numbers? The Python and C versions 
give different results, 1953214233 versus 10543148825. This is caused by integer 
overflows in C. Whereas Python numbers can essentially have any size, with C, 
a regular number has a fixed size. How much you get depends on the type you 
use (int, long, and so on) and your architecture (32-bit, 64-bit, and so on), but it's 
definitely something to be careful with. It might be hundreds of times faster in some 
cases, but that is meaningless if the results are incorrect.

We can increase the size a bit, of course. This makes it better:

static PyObject* spam_sum_of_squares(PyObject *self, PyObject *args){
    /* Declare the variables */
    unsigned long long int n;
    unsigned long long int sum = 0;

    /* Parse the arguments */
    if(!PyArg_ParseTuple(args, "K", &n)){
        return NULL;
    }

    /* The actual summing code */
    for(unsigned long long int i=0; i<n; i++){
        if((i * i) < n){
            sum += i * i;
        }else{
            break;
        }
    }

    /* Return the number but convert it to a Python object first */
    return PyLong_FromUnsignedLongLong(sum);
}

If we test it now, we realize that it works great:

# python3 test_spam.py 1000 100000001000 executions with n: 10000000

C sum of squares: 10543148825 took 0.002 seconds

Python sum of squares: 10543148825 took 0.635 seconds

Unless we make the number even larger:

# python3 test_spam.py 1 100000000000000  
~/Dropbox/Mastering Python/code/h14

1 executions with n: 100000000000000

C sum of squares: 1291890006563070912 took 0.006 seconds

Python sum of squares: 333333283333335000000 took 2.081 seconds
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So how can you fix this? The simple answer is that you can't. The complex answer 
is that you can if you use a different data type to store your data. The C language 
by itself doesn't have the "big number support" that Python has. Python supports 
infinitely large numbers by combining several regular numbers in the actual 
memory. Within C, there are no commonly available provisions for this, so there is 
simply no easy way to get this working. But we can check for errors instead:

static unsigned long long int get_number_from_object(int* overflow, 
PyObject* some_very_large_number){
    return PyLong_AsLongLongAndOverflow(sum, overflow);
}

Note that this only works for PyObject*, which means it doesn't work for internal 
C overflows. But you can, of course, just keep the original Python long around 
and perform operations on that instead. So, you do have big number support in C 
without too much effort.

The example explained
We have seen the results from our example, but if you're not familiar with the Python 
C API, you might be confused as to why the function parameters look the way they 
do. The basic calculations within spam_sum_of_squares are identical to the regular 
C sum_of_squares function, but there are a few small differences. Firstly, the type 
definition for a function using the Python C API should look something like this:

static PyObject* spam_sum_of_squares(PyObject *self, PyObject

        *args)

static
This means that the function is static. A function that's static can be called only 
from the same translation unit within the compiler. This effectively results in a 
function that cannot be linked from other modules, which allows the compiler to 
optimize a bit further. Since functions in C are global by default, this can be very 
useful to prevent collisions. Just to be sure, however, we have prefixed the function 
name with spam_ to indicate that this function comes from the spam module.

Be careful not to confuse the word static here with the static before a variable. 
They are completely different beasts. A static variable means that the variable  
that will exist for the entire runtime of the program instead of the runtime of just  
the function.



Extensions in C/C++, System Calls, and C/C++ Libraries

[ 422 ]

PyObject*
The PyObject type is the basic type for Python data types, which means that all 
Python objects can be cast to PyObject* (the PyObject pointer). Effectively, it only 
tells the compiler what kind of properties to expect, which can be used later for type 
identification and memory management. Instead of direct access to PyObject*, it is 
generally a better idea to use the available macros, such as Py_TYPE(some_object). 
Internally, this expands to (((PyObject*)(o))->ob_type), which is why the macro 
is generally a better idea. Besides being unreadable, a typo can easily happen.

The list of properties is long and depends greatly on the type of object. For those, I 
would like to refer to the Python documentation:

https://docs.python.org/3/c-api/typeobj.html

The entire Python C API could fill a book of its own, but it is luckily well documented 
within the Python manual. The usage, on the other hand, might be less obvious.

Parsing arguments
With regular C and Python, you specify the arguments explicitly, since variable-
sized arguments are a bit tricky with C. This is because they need to be parsed 
separately. PyObject* args is the reference to objects containing the actual 
values. To parse these, you need to know how many and which type of variables 
to expect. In the example, we used the PyArg_ParseTuple function, which parses 
the arguments as positional arguments only, but it is quite easily possible to parse 
named arguments as well using PyArg_ParseTupleAndKeywords or PyArg_
VaParseTupleAndKeywords. The difference between the last two is that the first one 
uses a variable number of arguments to specify the destination and the latter uses a 
va_list to set the values to. But first, let's analyze the code from the actual example:

if(!PyArg_ParseTuple(args, "i", &n)){
    return NULL;
}

We know that args is the object containing the reference to the actual arguments. 
The "i" is a format string, which in this case will try to parse a single integer. And &n 
tells the function to store the value at the memory address of the n variable.

The format string is the important part here. Depending on the character, you 
get a different data type, but there are many; i specifies a regular integer, and s 
converts your variable to a c-string (actually a char*, which is a null-terminated 
character array). It should be noted that this function is, luckily, smart enough to take 
overflows into consideration as well.

https://docs.python.org/3/c-api/typeobj.html
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Parsing multiple arguments is quite similar; you simply need to add multiple 
characters to the format string and multiple destination variables:

PyObject* callback;
int n;

/* Parse the arguments */
if(!PyArg_ParseTuple(args, "Oi", &callback, &n)){
    return NULL;
}

The version with keyword arguments is similar but requires a few more code 
changes as the list of methods needs to be informed that the function takes keyword 
arguments. Otherwise, the kwargs parameter would never arrive:

static PyObject* function(
        PyObject *self,
        PyObject *args,
        PyObject *kwargs){
    /* Declare the variables */
    int sum = 0;

    PyObject* callback;
    int n;

    static char* keywords[] = {"callback", "n", NULL};

    /* Parse the arguments */
    if(!PyArg_ParseTupleAndKeywords(args, kwargs, "Oi", keywords,
                &callback, &n)){
        return NULL;
    }

    Py_RETURN_NONE;
}

static PyMethodDef methods[] = {
    /* Register the function with kwargs */
    {"function", function, METH_VARARGS | METH_KEYWORDS,
     "Some kwargs function"},
    /* Indicate the end of the list */
    {NULL, NULL, 0, NULL},
};

Note that this still supports normal arguments, but keyword arguments are also 
supported now.
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C is not Python – errors are silent or lethal
As we saw in the previous example, integer overflows are not something you will 
generally notice, and unfortunately there's no good cross-platform way to catch 
them. However, those are actually the easier errors to handle; the worst one is 
generally memory management. With Python, if you get an error, you will get an 
exception that you can catch. But with C, you can't really handle it gracefully. Take  
a division by zero for example:

# python3 -c '1/0'

Traceback (most recent call last):

  File "<string>", line 1, in <module>

ZeroDivisionError: division by zero

This is simple enough to catch with try: ... except ZeroDivisionError: .... 
With C on the other hand, if you get a bad error, it will kill your entire process. But 
debugging C code is what C compilers have debuggers for, and to find the cause of 
the error, you can use the faulthandler module discussed in Chapter 11, Debugging 
– Solving the Bugs. Right now, let's see how we can properly throw errors from C. 
Let's use the spam module from earlier, but for brevity, we will omit the rest of the  
C code:

static PyObject* spam_eggs(PyObject *self, PyObject *args){
    PyErr_SetString(PyExc_RuntimeError, "Too many eggs!");
    return NULL;
}

static PyMethodDef spam_methods[] = {
    /* Register the function */
    {"eggs", spam_eggs, METH_VARARGS,
     "Count the eggs"},
    /* Indicate the end of the list */
    {NULL, NULL, 0, NULL},
};

Here is the execution:

# python3 setup.py clean build install

...

# python3 -c 'import spam; spam.eggs()'

Traceback (most recent call last):

  File "<string>", line 1, in <module>

RuntimeError: Too many eggs!
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The syntax is slightly different—PyErr_SetString instead of raise—but it's the 
same basic principle, luckily.

Calling Python from C – handling complex 
types
We have seen how to call C functions from Python, but now let's try Python from 
C and back. Instead of using the readily available sum function, we will build one 
of our own with a callback and handling of any type of iterable. While this sounds 
simple enough, it does actually require a bit of type meddling as you can only expect 
PyObject* as arguments. This is contrary to the simple types, such as integers, chars, 
and strings, which are immediately converted to the native Python version:

static PyObject* spam_sum(PyObject* self, PyObject* args){
    /* Declare all variables, note that the values for sum and
     * callback are defaults in the case these arguments are not
     * specified */
    long long int sum = 0;
    int overflow = 0;
    PyObject* iterator;
    PyObject* iterable;
    PyObject* callback = NULL;
    PyObject* value;
    PyObject* item;

    /* Now we parse a PyObject* followed by, optionally
     * (the | character), a PyObject* and a long long int */
    if(!PyArg_ParseTuple(args, "O|OL", &iterable, &callback,
                &sum)){
        return NULL;
    }

    /* See if we can create an iterator from the iterable. This is
     * effectively the same as doing iter(iterable) in Python */
    iterator = PyObject_GetIter(iterable);
    if(iterator == NULL){
        PyErr_SetString(PyExc_TypeError,
                "Argument is not iterable");
        return NULL;
    }

    /* Check if the callback exists or wasn't specified. If it was
     * specified check whether it's callable or not */
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    if(callback != NULL && !PyCallable_Check(callback)){
        PyErr_SetString(PyExc_TypeError,
                "Callback is not callable");
        return NULL;
    }

    /* Loop through all items of the iterable */
    while((item = PyIter_Next(iterator))){
        /* If we have a callback available, call it. Otherwise
         * just return the item as the value */
        if(callback == NULL){
            value = item;
        }else{
            value = PyObject_CallFunction(callback, "O", item);
        }

        /* Add the value to sum and check for overflows */
        sum += PyLong_AsLongLongAndOverflow(value, &overflow);
        if(overflow > 0){
            PyErr_SetString(PyExc_RuntimeError,
                    "Integer overflow");
            return NULL;
        }else if(overflow < 0){
            PyErr_SetString(PyExc_RuntimeError,
                    "Integer underflow");
            return NULL;
        }

        /* If we were indeed using the callback, decrease the
         * reference count to the value because it is a separate
         * object now */
        if(callback != NULL){
            Py_DECREF(value);
        }
        Py_DECREF(item);
    }
    Py_DECREF(iterator);

    return PyLong_FromLongLong(sum);
}

Make sure you note the PyDECREF calls, which ensure that you don't leak these 
objects. Without them, the objects will stay in use and the Python interpreter won't 
be able to clear them.
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This function is callable in three different ways:

>>> import spam

>>> x = range(10)

>>> spam.sum(x)

45

>>> spam.sum(x, lambda y: y + 5)

95

>>> spam.sum(x, lambda y: y + 5, 5)

100

Another important issue is that even though we catch overflow errors when 
converting to long long int, this code is still not safe. If we sum even two very 
large numbers (close to the long long int limit), we will still have an overflow:

>>> import spam

>>> n = (2 ** 63) - 1

>>> x = n,

>>> spam.sum(x)

9223372036854775807

>>> x = n, n

>>> spam.sum(x)

-2

Summary
In this chapter, you learned the most important aspects of writing code that uses 
ctypes, CFFI, and how to extend the Python functionality using native C. These 
topics can be extensive enough to fill books on their own, but you should have a 
grasp of the most important topics now. Even though you are able to create C/C++ 
extensions now, I still recommend that you avoid these as much as possible. This is 
because bugs are so easily made by not being careful enough. It is actually likely that 
at least some of the examples given in this chapter contain bugs when it comes to 
memory management and can crash your Python interpreter when given the wrong 
input. Unfortunately, this is a side effect of C. A tiny mistake can have a huge impact.

While building the examples in this chapter, you may have noticed that we used 
a setup.py file and imported from the setuptools library. This is what the next 
chapter will cover—packaging your code into an installable Python library and 
distributing it on the Python package index.
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Packaging – Creating Your 
Own Libraries or Applications

The chapters thus far have covered how to write, test and, debug the Python 
code. With all of that, there is only one thing that remains, that is packaging and 
distributing your Python libraries /and applications. To create installable packages 
we will use the setuptools package which is bundled with Python these days. 
If you have created packages before, you might remember distribute and 
distutils2, but it is very important to remember that these have all been replaced 
by setuptools and distutils and you shouldn't use them anymore!

What types of program can we package with setuptools? We will show you  
several cases:

•	 Regular packages
•	 Packages with data
•	 Installing executables and custom setuptools commands
•	 Running tests on the package
•	 Packages containing C/C++ extensions

Installing packages
Before we actually get started, it is important to know how to install a package 
properly. There are at least four different options for installing a package. The first 
and most obvious is by using the plain pip command:

pip install package
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This can also be achieved by using setup.py directly:

cd package

python setup.py install

This installs the package within your Python environment which would be the likely 
virtualenv/venv if you are using it or the global environment otherwise.

For development however, this is not recommended. To test your code, you would 
need to either reinstall the package for every test or modify the files within the 
Python's site-packages directory, which would mean it would be outside of your 
revision control system as well. That's where the development installs come in; 
instead of copying the package files to the Python package directory, they simply 
install a link within the site-packages directory to the path where the package is 
actually located. This allows you to modify the code and immediately see the results 
in the scripts and applications you run without the need to reinstall your code after 
each change.

As is the case with a regular install, both pip and setup.py versions are available:

pip install –e package_directory

And the setup.py version:

cd package_directory

python setup.py develop

Setup parameters
The previous chapters have actually already shown us a couple of examples, but let's 
reiterate and review what the most important parts actually do. The core function 
you will be using in this entire chapter is setuptools.setup.

For the most simple packages, the distutils package 
bundled with Python will be sufficient as well, but I 
recommend setuptools regardless. The setuptools 
package has many great features that distutils lacks 
and nearly all Python environments will have setuptools 
available anyhow.

Before we continue, make sure you have the latest version of both pip and 
setuptools:

pip install -U pip setuptools
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The setuptools and distutils packages have changed 
significantly over the last few years and the documentation/
examples written before 2014 are most likely out of date. Be 
careful not to implement deprecated examples and skip any 
documentation/examples using distutils.

Now that we have all the prerequisites, let's create an example containing the most 
important fields with inline documentation:

import setuptools

if __name__ == '__main__':
    setuptools.setup(
        name='Name',
        version='0.1',

        # This automatically detects the packages in the specified
        # (or current directory if no directory is given).
        packages=setuptools.find_packages(),

        # The entry points are the big difference between
        # setuptools and distutils, the entry points make it
        # possible to extend setuptools and make it smarter and/or
        # add custom commands.
        entry_points={

            # The following would add: python setup.py
            # command_name
            'distutils.commands': [
                'command_name = your_package:YourClass',
            ],

            # The following would make these functions callable as
            # standalone scripts. In this case it would add the
            # spam command to run in your shell.
            'console_scripts': [
                'spam = your_package:SpamClass',
            ],
        },

        # Packages required to use this one, it is possible to
        # specify simply the application name, a specific version
        # or a version range. The syntax is the same as pip



Packaging – Creating Your Own Libraries or Applications

[ 432 ]

        # accepts.
        install_requires=['docutils>=0.3'],

        # Extra requirements are another amazing feature of
        # setuptools, it allows people to install extra
        # dependencies if you are interested. In this example
        # doing a "pip install name[all]" would install the
        # python-utils package as well.
        extras_requires={
            'all': ['python-utils'],
        },

        # Packages required to install this package, not just for
        # running it but for the actual install. These will not be
        # installed but only downloaded so they can be used during
        # the install. The pytest-runner is a useful example:
        setup_requires=['pytest-runner'],

        # The requirements for the test command. Regular testing
        # is possible through: python setup.py test The Pytest
        # module installs a different command though: python
        # setup.py pytest
        tests_require=['pytest'],

        # The package_data, include_package_data and
        # exclude_package_data arguments are used to specify which
        # non-python files should be included in the package. An
        # example would be documentation files.  More about this
        # in the next paragraph
        package_data={
            # Include (restructured text) documentation files from
            # any directory
            '': ['*.rst'],
            # Include text files from the eggs package:
            'eggs': ['*.txt'],
        },

        # If a package is zip_safe the package will be installed
        # as a zip file. This can be faster but it generally
        # doesn't make too much of a difference and breaks
        # packages if they need access to either the source or the
        # data files. When this flag is omitted setuptools will
        # try to autodetect based on the existance of datafiles
        # and C extensions. If either exists it will not install
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        # the package as a zip. Generally omitting this parameter
        # is the best option but if you have strange problems with
        # missing files, try disabling zip_safe.
        zip_safe=False,

        # All of the following fileds are PyPI metadata fields.
        # When registering a package at PyPI this is used as
        # information on the package page.
        author='Rick van Hattem',
        author_email='wolph@wol.ph',

        # This should be a short description (one line) for the
        # package
        description='Description for the name package',

        # For this parameter I would recommend including the
        # README.rst

        long_description='A very long description',
        # The license should be one of the standard open source
        # licenses: https://opensource.org/licenses/alphabetical
        license='BSD',

        # Homepage url for the package
        url='https://wol.ph/',
    )

That was quite a lot of code and comments, but it covers most of the options you will 
ever encounter in real-life packages. The most interesting and versatile parameters 
discussed here will be covered in the following sections separately.

Additional documentation can be found in the pip and setuptools documentation, 
as well as in the Python Packaging User Guide:

•	 http://pythonhosted.org/setuptools/

•	 https://pip.pypa.io/en/stable/

•	 http://python-packaging-user-guide.readthedocs.org/en/latest/

http://pythonhosted.org/setuptools/
https://pip.pypa.io/en/stable/
http://python-packaging-user-guide.readthedocs.org/en/latest/ 
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Packages
In our example, we simply use packages=setuptools.find_packages(). In 
most cases this will work just fine, but it's important to understand what it does. 
The find_packages function looks through all the directories within the given 
directory and adds it to the list if it has an __init__.py file inside. So instead of 
find_packages() you can generally use ['your_package'] instead. If you have 
several packages however, that tends to get tedious. That's where find_packages() 
is useful; simply specify some inclusion parameters (second parameter) or some 
exclusion parameters (third parameter) and you'll have all the relevant packages 
within your project. For example:

packages = find_packages(exclude=['tests', 'docs'])

Entry points
The entry_points parameter is arguably the most useful feature of setuptools. 
It allows you to add hooks to many things within setuptools but the most useful 
two are the possibility to add both the command line and GUI commands and to 
extend the setuptools commands. The command line and GUI commands will even 
be converted to executables on Windows. The example in the first section already 
demonstrated both the features:

entry_points={
    'distutils.commands': [
        'command_name = your_package:YourClass',
    ],
    'console_scripts': [
        'spam = your_package:SpamClass',
    ],
},

This demonstration only shows how to call the functions but it doesn't show the 
actual functions.

Creating global commands
The first, a simple example, is nothing special at all; just a function that gets called as 
a regular main function where you need to specify sys.argv yourself (or better, use 
argparse). This is the setup.py file:

import setuptools

if __name__ == '__main__':
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    setuptools.setup(
        name='Our little project',
        entry_points={
            'console_scripts': [
                'spam = spam.main:main',
            ],
        },
    )

And, of course, here's the spam/main.py file:

import sys

def main():
    print('Args:', sys.argv)

Be sure not to forget to create a spam/__init__.py file. It can be empty but it needs 
to exist for Python to know that it's a package.

Now, let's give it a try by installing the package:

# pip install -e .

Installing collected packages: Our-little-project

  Running setup.py develop for Our-little-project

Successfully installed Our-little-project

# spam 123 abc

Args: ['~/envs/mastering_python/bin/spam', '123', 'abc']

See how easy it was to create a spam command that installs in your regular  
command line shell! On Windows it will actually give you an executable which 
will be added to your path but regardless of the platform it will be as a separate 
executable that's callable.

Custom setup.py commands
Writing custom setup.py commands can be very useful. One example is sphinx-
pypi-upload-2 which I use in all my packages and is my fork of the unmaintained 
sphinx-pypi-upload package. It's a package that makes it trivial to build and 
upload Sphinx documentation to the Python package index, which is very useful 
when distributing your packages. With the sphinx-pypi-upload-2 package you can 
do the following (which I do when distributing any of the packages I maintain):

python setup.py sdist bdist_wheel upload build_sphinx upload_sphinx
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This command builds your package and uploads it to PyPI, and builds the Sphinx 
documentation and uploads it to PyPI as well.

But you want to see how this works, of course. First, here's setup.py for our spam 
command:

import setuptools

if __name__ == '__main__':
    setuptools.setup(
        name='Our little project',
        entry_points={
            'distutils.commands': [
                'spam = spam.command:SpamCommand',
            ],
        },
    )

Second, the SpamCommand class. The basic essentials are inheriting setuptools.
Command and making sure to implement all the needed methods. Note that all of these 
need to be implemented but can be left empty if desired. Here is the spam/command.
py file:

import setuptools

class SpamCommand(setuptools.Command):
    description = 'Make some spam!'
# Specify the commandline arguments for this command here. This
# parameter uses the getopt module for parsing'
    user_options = [
        ('spam=', 's', 'Set the amount of spams'),
    ]

    def initialize_options(self):
# This method can be used to set default values for the
# options. These defaults can be overridden by
# command-line, configuration files and the setup script
# itself.
        self.spam = 3

    def finalize_options(self):
# This method allows you to override the values for the
# options, useful for automatically disabling
# incompatible options and for validation.
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        self.spam = max(0, int(self.spam))

    def run(self):
        # The actual running of the command.
        print('spam' * self.spam)

Executing it is simple enough:

# pip install -e .

Installing collected packages: Our-little-project

  Running setup.py develop for Our-little-project

Successfully installed Our-little-project-0.0.0

# python setup.py --help-commands

[...]

Extra commands:

  [...]

  spam              Make some spam!

  test              run unit tests after in-place build

  [...]

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]

   or: setup.py --help [cmd1 cmd2 ...]

   or: setup.py --help-commands

   or: setup.py cmd –help

# python setup.py --help spam

Common commands: (see '--help-commands' for more)

[...]

Options for 'SpamCommand' command:

  --spam (-s)  Set the amount of spams

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]

   or: setup.py --help [cmd1 cmd2 ...]

   or: setup.py --help-commands
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   or: setup.py cmd --help

# python setup.py spam

running spam

spamspamspam

# python setup.py spam -s 5

running spam

spamspamspamspamspam

There are very few cases where you will actually need the custom setup.py 
commands, but the example is still useful since it is currently an undocumented  
part of setuptools.

Package data
In most cases you probably won't have to include the package data, but in the cases 
where you do need data to go with your package, there are a few different options. 
First, it is important to know which files are included in your package by default:

•	 Python source files in the package directories recursively
•	 The setup.py and setup.cfg files
•	 Tests: test/test*.py
•	 All *.txt and *.py files in the examples directory
•	 All *.txt files in the root directory

So after the defaults, we have the first solution: the package_data argument to the 
setup function. The syntax for that is simple enough, a dictionary where the keys are 
the packages and the values are the patterns to include:

package_data = {
    'docs': ['*.rst'],
}

The second solution is using a MANIFEST.in file. This file contains patterns to 
include, exclude, and more. The include and exclude commands use patterns 
to match. These patterns are glob-style patterns (see the glob module for 
documentation: https://docs.python.org/3/library/glob.html) and have three 
variants for both the include and exclude commands:

•	 include/exclude: These commands only work for the given path and 
nothing else

https://docs.python.org/3/library/glob.html
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•	 recursive-include/recursive-exclude: These commands are similar to 
the include/exclude commands but process the given paths recursively

•	 global-include/global-exclude: Be very careful with these, they will 
include or exclude these files anywhere within the source tree

Besides the include/exclude commands, there are also two others; the graft and 
prune commands which include or exclude directories including all the files under a 
given directory. This can be useful for tests and documentation since they can include 
non-standard files. Beyond those examples, it's almost always better to explicitly 
include the files you need and ignore all the others. Here's an example MANIFEST.in:

# Comments can be added with a hash tag
include LICENSE CHANGES AUTHORS

# Include the docs, tests and examples completely
graft docs
graft tests
graft examples

# Always exclude compiled python files
global-exclude *.py[co]

# Remove documentation builds
prune docs/_build

Testing packages
In Chapter 10, Testing and Logging – Preparing for Bugs, the testing chapter, we saw a 
few of the many testing systems for Python. As you might suspect, at least some of 
these have setup.py integration.

Unittest
Before we start, we should create a test script for our package. For actual tests, look 
at Chapter 10, Testing and Logging – Preparing for Bugs, the testing chapter. In this case, 
we will just use a no-op test, test.py:

import unittest

class Test(unittest.TestCase):

    def test(self):
        pass
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The standard python setup.py test command will run the regular unittest 
command:

# python setup.py -v test

running test

running "unittest --verbose"

running egg_info

writing Our_little_project.egg-info/PKG-INFO

writing dependency_links to Our_little_project.egg-info/dependency_links.
txt

writing top-level names to Our_little_project.egg-info/top_level.txt

writing entry points to Our_little_project.egg-info/entry_points.txt

reading manifest file 'Our_little_project.egg-info/SOURCES.txt'

writing manifest file 'Our_little_project.egg-info/SOURCES.txt'

running build_ext

test (test.Test) ... ok

----------------------------------------------------------------------

Ran 1 test in 0.000s

OK

It is possible to tell setup.py to use different tests using the --test-module, 
--test-suite, or --test-runner arguments. While these are easy enough to use, I 
recommend skipping the regular test command and trying nose or py.test instead.

py.test
The py.test package has several methods of integration: pytest-runner, your 
own test command, and the deprecated method of generating a runtests.py script 
to test. If one of your packages is still using runtests.py, I strongly recommend 
switching to one of the other options.

But before we discuss the other options, let's make sure we have some tests. So let's 
create a test in our package. We will store it in test_pytest.py:

def test_a():
    pass

def test_b():
    pass
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Now, the other test options. Since the custom command doesn't really add much and 
actually makes things more complicated, we will skip that. If you want to customize 
how the tests are being run, use the pytest.ini and setup.cfg files instead. The 
best option is pytest-runner which makes running tests a trivial task:

# pip install pytest-runner

Collecting pytest-runner

  Using cached pytest_runner-2.7-py2.py3-none-any.whl

Installing collected packages: pytest-runner

Successfully installed pytest-runner-2.7

# python setup.py pytest

running pytest

running egg_info

writing top-level names to Our_little_project.egg-info/top_level.txt

writing dependency_links to Our_little_project.egg-info/dependency_links.
txt

writing entry points to Our_little_project.egg-info/entry_points.txt

writing Our_little_project.egg-info/PKG-INFO

reading manifest file 'Our_little_project.egg-info/SOURCES.txt'

writing manifest file 'Our_little_project.egg-info/SOURCES.txt'

running build_ext

======================== test session starts =========================

platform darwin -- Python 3.5.1, pytest-2.8.7, py-1.4.31, pluggy-0.3.1

rootdir: h15, inifile: pytest.ini

collected 2 items

test_pytest.py ..

====================== 2 passed in 0.01 seconds ======================

To properly integrate this method, we should make a few changes to the setup.py 
script. They are not strictly needed but it makes things more convenient for others 
using your package, others that may not be aware that you are using py.test, for 
example. First, we make sure that the standard python setup.py test command 
actually runs the pytest command instead by modifying setup.cfg:

[aliases]
test=pytest
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Second, we want to make sure that the setup.py command installs the packages we 
need to run the py.test tests. To do that, we need to modify setup.py as well:

import setuptools

if __name__ == '__main__':
    setuptools.setup(
        name='Our little project',
        entry_points={
            'distutils.commands': [
                'spam = spam.command:SpamCommand',
            ],
        },
        setup_requires=['pytest-runner'],
        tests_require=['pytest'],
    )

The beauty of this approach is that the regular python setup.py test command 
works and all needed requirements are automatically installed before running 
the tests. Because the pytest requirement is only in the tests_require section 
however, they will not be installed if the test command isn't run. The only package 
that will always be installed is the pytest-runner package and that's a really light 
package so it will be very light to install and run.

Nosetests
The nose package handles the installation only and is slightly different from 
py.test. The only difference is that py.test has a separate pytest-runner package 
for the test runner and nose package has a built-in nosetests command. So without 
further ado, here is the nose version:

# pip install nose

Collecting nose

  Using cached nose-1.3.7-py3-none-any.whl

Installing collected packages: nose

Successfully installed nose-1.3.7

# python setup.py nosetests

running nosetests

running egg_info

writing top-level names to Our_little_project.egg-info/top_level.txt

writing entry points to Our_little_project.egg-info/entry_points.txt
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writing Our_little_project.egg-info/PKG-INFO

writing dependency_links to Our_little_project.egg-info/dependency_lin

ks.txt

reading manifest file 'Our_little_project.egg-info/SOURCES.txt'

writing manifest file 'Our_little_project.egg-info/SOURCES.txt'

..

----------------------------------------------------------------------

Ran 2 tests in 0.006s

OK

C/C++ extensions
The previous chapter already covered this somewhat, as it's a requirement to 
compile the C/C++ files. But that chapter didn't explain what and how the setup.py 
was doing in this case.

For convenience, we will repeat the setup.py file:

import setuptools

spam = setuptools.Extension('spam', sources=['spam.c'])

setuptools.setup(
    name='Spam',
    version='1.0',
    ext_modules=[spam],
)

Before you start with these extensions, you should learn the following commands:

•	 build: This is actually not a C/C++ specific build function (try build_clib 
for that) but a combined build function to build everything within setup.py.

•	 clean: This cleans the results from the build command. This is generally 
not needed but sometimes the detection of files that need to be recompiled 
to work is incorrect. So if you encounter strange or unexpected issues, try 
cleaning the project first.
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Regular extensions
The setuptools.Extension class tells setuptools that a module named spam uses 
the source file spam.c. This is just the simplest version of an extension, a name, and a 
list of sources, but in many cases you are going to need more than the simple case.

One example is the pillow library which detects the libraries available on the system 
and adds extensions based on that. But because these extensions include libraries, 
some extra compilation flags are required. The basic PIL module itself doesn't appear 
too involved but the libs are actually filled with all auto-detected libraries with the 
matching macro definitions:

exts = [(Extension("PIL._imaging", files, libraries=libs,
                   define_macros=defs))]

The freetype extension has something similar:

if feature.freetype:
    exts.append(Extension(
        "PIL._imagingft", ["_imagingft.c"],  
libraries=["freetype"]))

Cython extensions
The setuptools library is actually a bit smarter than the regular distutils library 
when it comes to extensions. It actually adds a little trick to the Extension class. 
Remember the brief introduction to Cython in Chapter 12, Performance – Tracking and 
Reducing Your Memory and CPU Usage about performance? The setuptools library 
makes it a bit more convenient to compile those. The Cython manual recommends 
you to use something similar to the following code:

from distutils.core import setup
from Cython.Build import cythonize

setup(
    ext_modules = cythonize("eggs.pyx")
)

Here eggs.pyx contains:
def make_eggs(int n):
    print('Making %d eggs: %s' % (n, n * 'eggs '))

The problem with this approach is that setup.py will break unless you have  
Cython installed:

# python setup.py build

Traceback (most recent call last):
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  File "setup.py", line 2, in <module>

    import Cython

ImportError: No module named 'Cython'

To prevent that issue, we are just going to let setuptools handle this:

import setuptools

eggs = setuptools.Extension('eggs', sources=['eggs.pyx'])

setuptools.setup(
    name='Eggs',
    version='1.0',
    ext_modules=[eggs],
    setup_requires=['Cython'],
)

Now Cython will be automatically installed if needed and the code will work  
just fine:

# python setup.py build

running build

running build_ext

cythoning eggs.pyx to eggs.c

building 'eggs' extension

...

# python setup.py develop

running develop

running egg_info

creating Eggs.egg-info

writing dependency_links to Eggs.egg-info/dependency_links.txt

writing top-level names to Eggs.egg-info/top_level.txt

writing Eggs.egg-info/PKG-INFO

writing manifest file 'Eggs.egg-info/SOURCES.txt'

reading manifest file 'Eggs.egg-info/SOURCES.txt'

writing manifest file 'Eggs.egg-info/SOURCES.txt'

running build_ext

skipping 'eggs.c' Cython extension (up-to-date)

copying build/... ->

Creating Eggs.egg-link (link to .)
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Adding Eggs 1.0 to easy-install.pth file

Installed Eggs

Processing dependencies for Eggs==1.0

Finished processing dependencies for Eggs==1.0

# python -c 'import eggs; eggs.make_eggs(3)'

Making 3 eggs: eggs eggs eggs

For development purposes however, Cython also offers a simpler method which 
doesn't require manual building. First, to make sure we are actually using this 
method, let's install Cython and uninstall and clean eggs completely:

# pip uninstall eggs -y

Uninstalling Eggs-1.0:

  Successfully uninstalled Eggs-1.0

# pip uninstall eggs -y

Cannot uninstall requirement eggs, not installed

# python setup.py clean

# pip install cython

Now let's try and run our eggs.pyx module:

>>> import pyximport

>>> pyximport.install()

(None, <pyximport.pyximport.PyxImporter object at 0x...>)

>>> import eggs

>>> eggs.make_eggs(3)

Making 3 eggs: eggs eggs eggs

That's how easy it is to run the pyx files without explicit compiling.

Wheels – the new eggs
For pure Python packages, the sdist (source distribution) command has always 
been enough. For C/C++ packages however, it is usually not that convenient. The 
problem with C/C++ packages is that compilation is needed unless you use a binary 
package. Traditionally those were generally the .egg files but they never really 
solved the issue quite right. That is why the wheel format has been introduced (PEP 
0427), a binary package format that contains both source and binaries and can install 
on both Windows and OS X without requiring a compiler. As an added bonus, it 
installs faster for pure Python packages as well.
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Implementation is luckily simple. First, install the wheel package:

# pip install wheel

Now you'll be able to use the bdist_wheel command to build your packages. The 
only small gotcha is that by default the packages created by Python 3 will only work 
on Python 3, so Python 2 installations will fall back to the sdist file. To fix that, you 
can add the following to your setup.cfg file:

[bdist_wheel]
universal = 1

The only important thing to note here is that in the case of C extensions, this can go 
wrong. The binary C extensions for Python 3 are not compatible with those from 
Python 2. So if you have a pure Python package and are targeting both Python 2 and 
3, enable the flag. Otherwise just leave it as the default.

Distributing to the Python Package Index
Once you have everything up and running, tested, and documented, it is time to 
actually push the project to the Python Package Index (PyPI). Before pushing the 
package to PyPI, we need to make sure everything is in order.

First, let's check the setup.py file for issues:

# python setup.py check

running check

warning: check: missing required meta-data: url

warning: check: missing meta-data: either (author and author_email) or 
(maintainer and maintainer_email) must be supplied

It seems that we forgot to specify a url and the author or maintainer information. 
Let's fill those:

import setuptools

eggs = setuptools.Extension('eggs', sources=['eggs.pyx'])

setuptools.setup(
    name='Eggs',
    version='1.0',
    ext_modules=[eggs],
    setup_requires=['Cython'],
    url='https://wol.ph/',
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    author='Rick van Hattem (Wolph)',
    author_email='wolph@wol.ph',
)

Now let's check again:

# python setup.py check

running check

Perfect! No errors and everything looks good.

Now that our setup.py is in order, let's try testing. Since our little test project has 
virtually no tests, this will come up close to empty. But if you're starting a new 
project, then I recommend trying to maintain 100 percent test coverage from the 
beginning. Implementing all the tests later is usually more difficult, and testing while 
you work generally makes you think more about the design decisions of the code. 
Running the test is easy enough:

# python setup.py test

running test

running egg_info

writing dependency_links to Eggs.egg-info/dependency_links.txt

writing Eggs.egg-info/PKG-INFO

writing top-level names to Eggs.egg-info/top_level.txt

reading manifest file 'Eggs.egg-info/SOURCES.txt'

writing manifest file 'Eggs.egg-info/SOURCES.txt'

running build_ext

skipping 'eggs.c' Cython extension (up-to-date)

copying build/... ->

---------------------------------------------------------------------

Ran 0 tests in 0.000s

OK

Now that we have all in check, the next step is building the documentation. As 
mentioned earlier, the sphinx and sphinx-pypi-upload-2 packages can help here:

# python setup.py build_sphinx

running build_sphinx

Running Sphinx v1.3.5

...
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Once we are certain that everything is correct, we can build the package and upload 
it to PyPI. For pure Python releases, you can use the sdist (source distribution) 
command. For a package that uses a native installer, there are a few options, such as 
bdist_wininst and bdist_rpm, available. I personally use the following for nearly 
all my packages:

# python setup.py build_sphinx upload_sphinx sdist bdist_wheel upload

This automatically builds the Sphinx documentation, uploads the documentation to 
PyPI, builds the package with the source, and uploads the package with the source.

This will obviously only succeed if you are the owner of that specific package and 
are authorized with PyPI.

Before you can upload the packages, you need to register 
the package on PyPI. This can be done using the register 
command, but since that immediately registers the package at 
the PyPI servers, it should not be used while testing.

Summary
After reading this chapter, you should be able to create Python packages containing not 
only pure-Python files but also extra data, compiled C/C++ extensions, documentation, 
and tests. With all these tools at your disposal, you are now able to make high quality 
Python packages that can easily be reused in other projects and packages.

The Python infrastructure makes it really quite easy to create new packages and split 
your project into multiple subprojects. This allows you to create simple and reusable 
packages with fewer bugs because everything is easily testable. While you shouldn't 
go overboard with splitting up the packages, if a script or module has a purpose of 
its own then it's a candidate for packaging separately.

With this chapter we have come to the end of the book. I sincerely hope you  
enjoyed reading it and have learned about new and interesting topics. Any and all 
feedback is greatly appreciated, so feel free to contact me through my website at  
https://wol.ph/.

https://wol.ph/
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